. Commissariat-À-l-'energie-atomique, Very High-Temperature Reactors (VHTRs): Numerous benefits of higher temperatures, in Gas-cooled nuclear reactors, 2006.

J. Bliaux, Generation IV: www .energethique.com. 3. NERAC and GIF, A Technology Roadmap for Generation IV Nuclear Energy Systems, 2002.

. Commissariat-À-l-'energie-atomique, The recent past and near future of gas-cooled reactors: HTRs, in Gas-cooled nuclear reactors, Imprimerie Nationale Edition Technique, pp.33-43, 2006.

K. J. Krompholtz, J. Ebberink, and G. Menken, Gas/Metal Interactions and depletion effects in helium-cooled process heat HTRs, Proc. of 8th Int. Congress on Metallic Corrosion, 1981.

K. G. Brenner and L. W. Graham, The development and application of a united corrosion model for high-temperature gas-cooled reactor systems, Materials, issue.66, pp.404-414, 1983.

H. J. Christ, High temperature corrosion of the nickel-based alloy Inconel 617 in helium containing small amounts of impurities, Materials Science and Engineering, vol.87, pp.161-168, 1987.
DOI : 10.1016/0025-5416(87)90374-0

W. J. Quadakkers and H. Schuster, Corrosion of high temprature alloys in the primary circuit helium of high temperature gas cooled reactors. - Part I: Theoretical background, Materials and Corrosion/Werkstoffe und Korrosion, vol.63, issue.4, pp.335-347, 1985.
DOI : 10.1002/maco.19850360402

G. E. Wasielewski, Materials for VHTR process heat applications. in Proc. of IAEA symposium "gas-cooled reactors with emphasis on advanced systems, 1975.

C. Cabet and F. Rouillard, Corrosion of high temperature metallic materials in VHTR Jounral of Nuclear Materials, pp.235-242, 2009.

L. W. Graham, Environmental conditions in HTRs and the selection and development of primary circuit materials. in Jülich symposium on Gas-cooled reactors with emphasis on advanced systems, 1976.

. Commissariat-À-l-'energie-atomique, Materials for Very High-temperature Reactors (VHTRs), in Gas-cooled nuclear reactors, Imprimerie Nationale Edition Technique, pp.77-83, 2006.

E. V. Kuznetsov, T. B. Tokareva, and A. V. Ryabchenkov, Promising materials for HTGR high temperature heat exchangers. in High temperature metallic materials for gas-cooled reactors, Cracow. 15. R. H. Cook, Creep properties of Inconel 617 in air and helium 800 to 1000°C. Nuclear Technology, pp.283-288, 1984.

W. Hosthoff, H. Schuster, and P. J. Ennis, Creep and relaxation behavior of Inconel 617, Nuclear Technology, vol.66, pp.296-307, 1984.

Y. Karuta, Creep rupture characteristics in the HTGR simulated helium gas environment and their relevance to structural design. in Workshop on structural design criteria for HTR, 1989.

F. Schubert, Creep rupture behavior of candidate materials for nuclear process heat applications, Nuclear Technology, vol.66, pp.227-240, 1984.

H. Breitling, W. Dietz, and H. J. Penkalla, Evaluation of mechanical properties of the alloy NiCr 22 Co 12 Mo (Alloy 617) for heat exchanging components of HTGRs. in High temperature metallic materials for gas-cooled reactors. 1988. Cracow. 20. P. J. Ennis and D. F. Lupton. The relationship between carburisation and ductility loss, Proc. of the Petten international conference on Behaviour of high temperature alloys in agressive environments, 1979.

P. S. Shankar and K. Natesan, Effect of trace impurities in helium on the creep behavior of Alloy 617 for very high temperature reactor applications, Journal of Nuclear Materials, vol.366, issue.1-2, pp.28-36, 2007.
DOI : 10.1016/j.jnucmat.2006.12.028

P. J. Ennis, K. P. Mohr, and H. Schuster, Effect of carburizing service environments on the mechanical propoerties of high temperature alloys, Nuclear Technology, issue.66, pp.363-368, 1984.

P. J. Ennis, W. J. Quadakkers, and H. Schuster, Effect of selective oxidation of chromium on creep of Alloy 617, Materials Science and Technology, issue.8, pp.78-82, 1992.
URL : https://hal.archives-ouvertes.fr/jpa-00252343

S. Nomura, Relation between gasification rates and gas desorption behavior with metallic impureties of carbon and graphite materials for the HTTR, International Atomic Energy Agency, vol.690, pp.159-168, 1991.

R. Nieder, Prediction on an HTR coolant composition after operational experience with experimental reactors. in Specialists meeting on coolant chemistry, plate-out and decontamination in gas cooled reactors, Juelich, 1980.

R. Nieder, Long-tern behavior of impurities in an HTR primary circuit, VGB Kraftwerstechnik, vol.88, pp.671-676, 1988.

R. D. Burnette and N. L. Baldwin, Primary coolant chemistry of the Peach Bottom and Fort St Vrain High Temperature Gas-Cooled Reactors. in Specialists meeting on coolant chemistry, plate-out and decontamination in gas cooled reactors, Juelich, 1980.

R. A. Simon and P. D. Capp, Operating experience with the Dragon High Temperature Reactor experiment, High Temperature Reactors. 2002. Petten (Netherlands)

K. G. Brenner, Ternary diagrams for the characterization of metallic corrosion in high-temperature reactors. 1982x. 30. K. Hilpert and H. Gerads, Mass spectrometrie studies of alloys proposed for high temperature reactor systems Inconel 617 and Nimonic PE 13, Journal of Nuclear Materials, vol.80, pp.126-131, 1979.

F. Rouillard, Thèse : Mécanismes de formation et de destruction de la couche d'oxyde sur un alliage chromino-formeur en milieu HTR, in ENSEM-SE, Thermodynamic and kinetics aspects of the corrosion of high temperature alloys in HTGR. Materials, pp.383-391, 1984.

L. W. Graham, Corrosion of metallic materials in HTR-helium environments, Journal of Nuclear Materials, vol.171, issue.1, pp.76-83, 1990.
DOI : 10.1016/0022-3115(90)90350-V

H. J. Christ, Mechanisms of high temperature corrosion in helium containing small amounts of impurities. Part II corrosion of the nickel base alloys Inconel 617, Oxidation of Metals, vol.1, issue.302, pp.27-51, 1988.

C. Cabet, High temperature corrosion of structural materials under gas-cooled reactor helium, Materials and Corrosion, issue.257, 2006.

F. Rouillard, Oxide-layer formation and stability on a nickel-base alloy in impure helium at high temperature. Oxidation of metals, pp.3-4, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00293992

H. J. Christ, L. Berchtold, and H. G. Sockel, Oxidation of Ni-base alloys in atmospheres with widely varying oxygen partial pressures, Oxidation of Metals, vol.11, issue.1-2, pp.45-76, 1986.
DOI : 10.1007/BF00664273

W. J. Quadakkers and H. Schuster, Corrosion of High Temperature Alloys in the Primary Circuit Helium of High Temperature Gas Cooled Reactors. Part II: Experimental Results, Materials and Corrosion/Werkstoffe und Korrosion, vol.66, issue.8, p.36, 1985.
DOI : 10.1002/maco.19850360802

T. Shikama, Corrosion behaviors of Inconel 617 in hydrogen base gas mixture. Metallurgical transactions, pp.1589-1598, 1980.

B. Huchtemann and P. Schüler, Gas-metal reactions of a new Fe???Ni???Cr???W alloy in helium with reactive components and in an H2???CH4???H2S atmosphere in the temperature range 700???950??C, Materials Science and Engineering, vol.87, pp.197-203, 1987.
DOI : 10.1016/0025-5416(87)90379-X

W. J. Quadakkers and H. Schuster, Corrosion behavior of high temperature alloys in impure helium environments, Journal of Nuclear Materials, vol.140, pp.94-105, 1986.

H. G. Bates, The corrosion behavior of high temperature alloys during exposures times up to 10 000h in PNP helium at 700 to 900°C, Nuclear Technology, issue.66, pp.415-428, 1984.

O. F. Kimball, W. R. Johnson, and G. Y. Lai, Thermal stability and environment compatibility of Inconel 617. in High temperature metallic materials for gas-cooled reactors Proceedings of a specialist meeting held. 1988. Cracow. 44 Interaction of Metals with Primary Coolant Impurities: Comparison of Steam-Cycle and Advanced HTGRs, Specialist Meeting on High Temperature Metallic Materials for Application in Gas Cooled Reactors, p.1, 1981.

W. Dietz, Structural materials in materials science and technology: A comprehensive treatment, Nuclear Materials, issue.10B, pp.150-165, 1994.

H. Tsuji, H. Nakajima, T. H. Kondo, R. Cook, L. W. Exner et al., Current status of studies on high temperature metallic materials for HTGR applications in JAERI. in High Temperature metallic materials for gas-cooled reactors Post-service environment of a 10MW helium-helium heat exchanger and comparison with long term behavior in laboratory tests, pp.129-135, 1982.

G. B. Gibbs, X. G. Zheng, and D. J. Young, Oxidation of Metals 7(n°3): p. 173. 49, High temperature corrosion of Cr2O3 forming alloys in CO-CO 2 -N 2 atmospheres. Oxidation of Metals, pp.42-163, 1973.

A. Atkinson, R. Taylor, and P. Goode, Transport processes in the oxidation of Ni studied using tracers in growing NiO scales, Oxidation of Metals, vol.11, issue.6, pp.519-543, 1979.
DOI : 10.1007/BF00812776

P. Kofstad, On the formation of porosity and microchannels in growing scales, Oxidation of Metals, vol.7, issue.5-6, pp.265-276, 1985.
DOI : 10.1007/BF00657061

P. Kosftad, Relationship of H 2 O and CH 4 supply rates in HTGR helium to the carburization of Hastelloy-X and Alloy 800H, Journal Electrochemical Society Nuclear Technology, vol.66, pp.265-53, 1984.

M. K. Loudjani, High temperature corrosion of Fe-Ni-Cr, Fe-Cr-Al adn Fe-Ni- Cr-Al alloys in controlled H 2 /H 2 O/CH 4 atmospheres. Corrosion science, pp.1075-1088, 1988.

Y. Shida and T. Moroishi, Effect of aluminum and titanium additions to Fe-21%Cr-32%Ni on the oxidation behavior in an impure helium atmosphere at high temperatures, Oxidation of Metals, vol.46, issue.5-6, pp.37-327, 1991.
DOI : 10.1007/BF00666623

J. Diximer, D. Leclercq, and P. Olivier, Etude du comportement des alliages à 35% de nickel en présence des impuretés de l'hélium caloporteur, 1983.

H. Schuster, Corrosion of high temperature alloys in the primary circuit gas of helium cooled high temperature reactors, Proc. 8th Int. COngress on Metallic Corrosion, 1981.

R. H. Cook, D. F. Lupton, and H. G. Bates, Behavior of materials for advanced high temperature reactors (DRAGON), 1976.

M. R. Warren, Rapid decarburization and carburization in high temperature alloys in impure helium environments, High Temperature Technology, vol.4, issue.3, pp.119-130, 1986.
DOI : 10.1080/02619180.1986.11753327

H. Grimmer, Corrosion behaviour of Incology 800 and Nimonic 75 in prototype nuclear process helium and in wet helium under special flow conditions, Materials Science and Engineering, vol.87, pp.189-196, 1987.
DOI : 10.1016/0025-5416(87)90378-8

M. Pykavy, Adsorption of CO on Cr 2 O 3, Surface Science, p.479, 2001.

Y. Maru, Kinetics studies of the reaction between Cr 23 C 6 particules and Cr 2 O 3 particules. Metallurgical transactions, pp.2591-2598, 1973.

T. Takahashi, Analysis of precipitated phases in heat treated Inconel alloy 617, pp.221-224, 1978.

Q. Wu, Microstructural evolution in advanced boiler materials for ultra-supercritical coal power plants Effects of thermal aging on the microstructure and mechanical properties of a commercial NiCrCoMo alloy. Metallurgical transactions A, pp.7-1951, 1976.

H. Kirchhofer, F. Shubert, and H. Nickel, Precipitation behavior of Hastelloy X and Inconel 617 after isothermal aging, Nuclear Technology, vol.66, pp.139-148, 1984.

W. L. Mankins, J. C. Hosier, and T. H. Bassford, Microstructure and phase stability of INCONEL alloy 617, Metallurgical transactions, pp.2579-2590, 1974.
DOI : 10.1007/BF02643879

N. Scheer, Comparaison du Haynes 230 avec l'Inconel 617 Les mécanismes de la corrosion sèche : une approche cinétique (Coll. monographie de "matériologie, Stabilité microstructurale et comportement mécanique après vieillissement à 700°C n°5). Les Ulis : EDP Sciences, 2000. 71. Y. Wouters, Oxydation thermique des métaux dans la vapeur d'eau, cas du nickel et du titane Thèse de l'Institut National, 1993.

H. Gerischer, Models for the discussion of the photo-electrochemical response of oxide layers on metals, Corrosion Science, vol.29, issue.2-3, pp.257-266, 1989.
DOI : 10.1016/0010-938X(89)90034-6

H. Gerischer, Semiconductor electrodes and their interaction with light. NATO ASI Series, Series S: Mathematical and Physical Sciences, pp.39-106, 1985.

S. R. Morisson, The Chemical Physics of Surfaces, Electrochemistry of Novel Materials. Frontiers of Electrochemistry, issue.3, 1977.

G. P. Wagner and G. Simkowich, The oxidation of cobalt-chromium-titanium alloys at 1000°C. Oxidation of Metals, pp.139-155, 1986.

A. N. Blacklocks, An XAS study of the defect structure of Ti-doped alpha-Cr 2 O 3 . Solid State Ionics, pp.2939-2944, 2006.

A. Naoumidis, Phase studies in the chromium-manganese-titanium oxide system at different oxygen partial pressures, Journal of the European Ceramic Society, vol.7, issue.1, 1990.

F. H. Stott, F. I. Wei, and C. A. Enahoto, The influence of manganese on the High-temperature oxidation of iron-chromium alloys, Materials and Corrosion/Werkstoffe und Korrosion, vol.1, issue.4, pp.198-205, 2004.
DOI : 10.1002/maco.19890400403

R. K. Wild, High temperature oxidation of austenitic stainless steel in low oxygen pressure, Corrosion Science, vol.17, issue.2, pp.87-104, 1977.
DOI : 10.1016/0010-938X(77)90011-7

R. E. Lobning, Diffusion of cations in chromia layers grown on iron-base alloys, Materials Sciences, vol.37, issue.12, pp.81-93, 1992.

F. Macia, N. B. Pilling, and R. E. Bedworth, Etude de la corrosion d'alliages modèles dans une atmosphère d'hélium impur à hautes temépratures via un Microscope Electronique à Balayage (MEB) 2007: Rapport de Stage -Centre Technique Le Creusot -Dpt Corrosion The oxidation of metals in high temperature, Journal Institute of Metals, vol.87, issue.29, pp.529-591, 1923.

M. Heyrman and C. Chatillon, Thermodynamics of the Al???C???O Ternary System, Journal of The Electrochemical Society, vol.153, issue.7, pp.119-130, 2006.
DOI : 10.1149/1.2203091

URL : https://hal.archives-ouvertes.fr/hal-00141064

A. M. Huntz, Diffusion dans les couches d'oxyde en cours de crosisance, Journal de Physique III, issue.5, pp.1729-1757, 1995.
DOI : 10.1051/jp3:1995221

B. Delmon, F. I. Wei, and F. H. Stott, Introduction à la cinétique hétérogène The influence of aluminium on the oxidation of a Cr 2 O 3 forming nickel-chromium alloy. Reactivity of solids, pp.2-3, 1988.

F. H. Stott, Comparaison of the effects of small additions of silicon or aluminum on the oxidation of iron chromium alloys, Oxidation of Metals, pp.31-36, 1998.

F. Mège, Caractérisation par microscopie Photoélectrochimique de l'oxydation des alliages de nickel en milieux HTR, 2007.

S. Henry, Characterization of chromia scales grown on pure chromium in different oxidizing atmosphere, Materials High Temperature, vol.17, issue.2, pp.113-118, 2000.

Y. Wouters, Oxygen and Water Vapour Oxidation of 15Cr Ferritic Stainless Steels with Different Silicon Contents, Materials Science Forum, vol.461, issue.464, pp.461-464, 2004.
DOI : 10.4028/www.scientific.net/MSF.461-464.839

URL : https://hal.archives-ouvertes.fr/hal-00417948

Y. Wouters and A. Galerie, Photoelectrochemical Characterisation of Chromia Scales Thermally Grown on Various Metal Substrates, High Temperature Corrosion and Protection of Materials, 2008.
DOI : 10.4028/www.scientific.net/MSF.595-598.1181

H. Nigai, Effect of TiO2 on the sintering and the electrical conductivity of Cr 2 O 3, Journal of the American Ceramic Society, issue.n°3, pp.72-400, 1989.

C. Wagner, Zeitschrift Für Physikalische, 1933.

D. Monceau and B. Pieraggi, Determination of parabolic rate constants from a local analysis of mass gain curves, Oxidation of Metals, vol.50, issue.5/6, pp.477-493, 1998.
DOI : 10.1023/A:1018860909826

J. Chapovaloff, Influence of Al on the High Temperature Corrosion Behaviour of Inconel 617 in VHTR Primary Coolant Atmosphere, Materials Science Forum, vol.595, issue.598, pp.595-598, 2008.
DOI : 10.4028/www.scientific.net/MSF.595-598.491

URL : https://hal.archives-ouvertes.fr/emse-00475703

D. Kaczorowski and J. Chapovaloff, Material degration in high temperature, the AREVA-NP corrosion loop. in 3rd Internation topical Meeting on high temperature reactir technology, 2006.

J. Chapovaloff, D. Kaczorowski, and G. Girardin, Parameters governing the reduction of oxide layers on Inconel 617 in impure VHTR He atmosphere, Materials and Corrosion, vol.80, issue.7, pp.59-584, 2007.
DOI : 10.1002/maco.200804141

C. Cabet, F. Rouillard, and J. Chapovaloff, Comparison of the High Temperature Surface Reactivity in Impure Helium of Two Materials for Gas Cooled Reactors, Materials Science Forum, vol.595, issue.598, pp.595-598, 2008.
DOI : 10.4028/www.scientific.net/MSF.595-598.439

URL : https://hal.archives-ouvertes.fr/emse-00475700

C. Cabet, High temperature reactivity of two chromium-containing alloys in impure helium, Journal of Nuclear Materials, vol.375, issue.2, pp.173-184, 2008.
DOI : 10.1016/j.jnucmat.2007.11.006

URL : https://hal.archives-ouvertes.fr/emse-00475697

M. Shindo and T. Kondo, Evaporation behavior of Hastelloy-X alloys in simulated very high temperature reactor environments, Nuclear Technology, vol.66, pp.429-438, 1984.

Y. A. Deskin, V. V. Kmilovskii, and S. L. Volodia, The role of manganese in the behavior of materials at high temperatures, pp.179-183, 1993.

L. Panas, Chromic acid evaporation upon exposure of Cr2O3(s) to H2O(g) and O2(g) ??? mechanism from first principles, Chemical Physics Letters, vol.383, issue.5-6, pp.549-554, 2004.
DOI : 10.1016/j.cplett.2003.11.079

H. Asteman, J. E. Svensson, and L. G. Johansson, Oxidation of 310 steel on H 2 O/O 2 mixtures at 600°C: the effect of waper-vapour-enhanced chromium evaporation, Corrosion Science, issue.44, pp.2635-2649, 2002.

H. Astemann, J. E. Svensson, and L. G. Johansson, Evidence for chromium evaporation influencing the oxidation of 304L : The effect of temperature and flow rate, Oxidation of MetalsNos, vol.3, issue.574, pp.193-216, 2001.

L. Mikkelsen and S. Linderoth, High temperature oxidation of Fe???Cr alloy in O2???H2???H2O atmospheres; microstructure and kinetics, Materials Science and Engineering: A, vol.361, issue.1-2, pp.198-212, 2003.
DOI : 10.1016/S0921-5093(03)00527-6

E. J. Opila, Thermochemistry for Chromia Volatility Determined by the Transpiration Technique. www.grc.nasa.gov, 2005.

E. J. Opila and N. S. Jacobson, Volatile Hydroxide Species of Common Protective Oxides and their Role in High Temperature Corrosion. in Fundamental Aspects of High Temperature Corrosion, 1997.

C. Gindorf, I. Singheiser, and K. Hilpert, Chromium vaporisation from Fe,Cr base alloys used as interconnect in fuel cells, Steel Research, vol.93, issue.11, pp.11-12, 2001.
DOI : 10.1002/srin.200100163

H. Kurikawa, Chromium vaporization of bare and coated iron-chromium alloys at, 1073.

E. J. Opila, Volatility of Common Protective Oxides in High-Temperature Water Vapor: Current Understanding and Unanswered Questions, Materials Science Forum, vol.461, issue.464, pp.461-464, 2004.
DOI : 10.4028/www.scientific.net/MSF.461-464.765

A. Yamauchi, K. Kurokawa, and H. Takahashi, Evaporation of Cr 2 O 3 in atmospheres containing H 2 O, Oxidation of Metals, vol.59, pp.5-6, 2003.

D. Pop and K. Wolski, Surface segregation in HAYNES 230 alloy, Applied Surface Science, vol.253, issue.4, pp.2244-2250, 2006.
DOI : 10.1016/j.apsusc.2006.04.026

URL : https://hal.archives-ouvertes.fr/hal-00293184

F. Rouillard, Thermodynamic modelling of the destruction of the surface Cr2O3 on Alloy 230 in the impure helium atmosphere of a Gas Cooled Reactor Materials Science Forum, pp.595-598, 2008.

G. R. Holcomb and D. E. Alman, The effect of manganese additions on the reactive evaporation of chromium in Ni-Cr alloys, Scripta materialia, vol.54, pp.10-1821, 2006.

C. Jérôme and . Etude, Inconel 617 dans le circuit primaire des Réacteurs à Haute Température refroidis par hélium Spécialité: Science des matériaux Mots clefs : Réacteurs à Haute température, alliage nickel-chrome-molybdène

. Résumé, Inconel 617 est un alliage à base de nickel, de chrome et de molybdène et il se positionne comme l'un des matériaux candidats à la réalisation de l'échangeur thermique des Réacteurs à Haute Température (RHT) refroidis par hélium (réacteurs de Génération IV) Le retour d'expériences montre que l'hélium

. En-quantité-réduite, responsables de réactions d'oxydation, de carburation ou de décarburation entre 850°C et 1 000°C. La formation d'une couche d'oxyde protectrice est envisagée pour éviter la dégradation des propriétés mécanique de l'échangeur de chaleur. Dans le cadre de l'analyse des processus d'oxydation de l'Inconel 617, deux axes de recherche sont abordés. L'un est centré sur l

. Cette-Étude-spécifique-sur-le-rôle-de, Après avoir étudié l'ensemble de ces paramètres sur des essais de 20 heures à 850°C, les résultats sont les suivants. La vapeur d'eau est responsable à plus de 90 % de l'oxydation de l'Inconel 617 et elle inhibe dans certains cas la réaction entre le monoxyde de carbone et l'alliage. La couche d'oxyde formée est à base de chromine (Cr 2 O 3 ) et elle est enrichie en titane et en manganèse. Nous montrons que le dopage de la chromine par le titane favorise la formation d'une couche d'oxyde protectrice. Quant à la présence d'alumine à l'interface métal/oxyde, nous montrons qu'elle ralentit la vitesse de croissance de la couche d'oxyde

. Dans-les-deux-cas, processus d'adsorption à la surface de la couche d'oxyde. Cependant, l'intégrité de la couche d'oxyde est compromise lors de l'élévation de la température Au-delà d'une température critique, notée T A , nous observons la destruction de la couche d'oxyde. Nous montrons que la réaction de destruction qui se déroule à l'interface métal/oxyde met en jeu le carbone de l'alliage et la chromine pour produire du chrome dont une partie s'évapore et un dégagement de monoxyde de carbone