A. Agnoli, M. Bernacki, R. Logé, J. M. Franchet, J. Laigo et al., Understanding and Modeling of Grain Boundary Pinning in Inconel 718, Superalloys 2012 (Twelfth International Symposium), 2012.
DOI : 10.7449/2012/Superalloys_2012_73_82

URL : https://hal.archives-ouvertes.fr/hal-00879542

H. Akaike, A new look at the statistical model identification, IEEE Transactions on Automatic Control, vol.6, pp.716-723, 1973.

F. Alexandre, Aspects probabilistes et microstructuraux de l'amorçage des fissures de fatigue dans l'alliage INCO 718, 2004.

S. Asmussen and L. Rojas-nandayapa, Sums of dependent lognormal random variables : asymptotics and simulation, 2005.

C. Biernacki, G. Celeux, and G. Govaert, Choosing starting values for the EM algorithm for getting the highest likelihood in multivariate Gaussian mixture models, Computational Statistics & Data Analysis, vol.41, issue.3-4, pp.567-575, 2003.
DOI : 10.1016/S0167-9473(02)00163-9

A. Bussac and J. C. Lautridou, A PROBABILISTIC MODEL FOR PREDICTION OF LCF SURFACE CRACK INITIATION IN PM ALLOYS, Fatigue & Fracture of Engineering Materials and Structures, vol.2, issue.8, pp.861-874, 1993.
DOI : 10.1016/0142-1123(90)90002-V

H. Bomas, K. Burkart, and H. W. Zoch, Evaluation of S???N curves with more than one failure mode, International Journal of Fatigue, vol.33, issue.1, pp.19-32, 2011.
DOI : 10.1016/j.ijfatigue.2010.04.010

A. Brand, J. P. Flavenot, R. Grégoire, and C. Tournier, Données technologiques sur la fatigue, Senlis SETIM, 1999.

L. Breiman, J. Friedman, C. Stone, and R. A. Olshen, Classification and regression trees A unified statistical methodology for modeling fatigue damage, 2009.

G. Celeux and J. Diebolt, The sem algorithm : a probabilistic teacher algorithm derived from the em algorithm for the mixture problem, Computational Statistics Quaterly, vol.2, pp.73-85, 1985.

K. W. Chan, Roles of microstructure in fatigue crack initiation, International Journal of Fatigue, vol.32, issue.9, pp.1428-1447, 2010.
DOI : 10.1016/j.ijfatigue.2009.10.005

V. P. Chistyakov, A theorem of sums of independent positive random variables and its applications to branching processes. Theory of Probability and Its Applications, pp.640-648, 1964.

M. Crowder, Classical Competing Risks, 1999.
DOI : 10.1201/9781420035902

A. P. Dempster, N. M. Laird, and D. B. Rubin, Maximum Likelihood from Incomplete Data via the EM Algorithm, Journal of the Royal Statistical Society, vol.39, pp.1-38, 1977.

W. S. Desarbo and W. L. Cron, A maximum likelihood methodology for clusterwise linear regression, Journal of Classification, vol.39, issue.19, pp.249-282, 1988.
DOI : 10.1007/BF01897167

P. Embrechts and C. M. Goldie, On closure and factorization properties of subexponential and related distributions, Journal of the Australian Mathematical Society, vol.27, issue.02, pp.243-256, 1980.
DOI : 10.1214/aop/1176996893

L. F. Fenton, The Sum of Log-Normal Probability Distributions in Scatter Transmission Systems, IEEE Transactions on Communications, vol.8, issue.1, pp.57-67, 1960.
DOI : 10.1109/TCOM.1960.1097606

R. Fouchereau, Analyse de la tenue en fatigue despì eces en inconel 718, 2009.

D. Fournier and A. Pineau, Low cycle fatigue behavior of inconel 718 at 298 K and 823 K, Metallurgical Transactions A, vol.7, issue.24, pp.1095-1105, 1977.
DOI : 10.1007/BF02667395

D. G. Harlow, R. Wei, T. Sakai, and N. Oguma, Crack growth based probability modeling of S???N response for high strength steel, International Journal of Fatigue, vol.28, issue.11, pp.1479-1485, 2006.
DOI : 10.1016/j.ijfatigue.2005.05.019

S. Hanaki, M. Yamashita, H. Uchida, and . Zako, On stochastic evaluation of S???N data based on fatigue strength distribution, International Journal of Fatigue, vol.32, issue.3, pp.605-609, 2010.
DOI : 10.1016/j.ijfatigue.2009.06.001

S. K. Jha, R. Chandran, and K. S. , An unusual fatigue phenomenon: duality of the S???N fatigue curve in the ??-titanium alloy Ti???10V???2Fe???3Al, Scripta Materialia, vol.48, issue.8, pp.1207-1212, 2003.
DOI : 10.1016/S1359-6462(02)00565-1

S. K. Jha, M. J. Caton, and J. M. Larsen, A new paradigm of fatigue variability behavior and implications for life prediction, Materials Science and Engineering: A, vol.468, issue.470, pp.468-470, 2007.
DOI : 10.1016/j.msea.2006.10.171

S. K. Jha, J. M. Larsen, and A. H. Rosenberg, Towards a physics-based description of fatigue variability behavior in probabilistic life-prediction, Engineering Fracture Mechanics, vol.76, issue.5, pp.681-694, 2009.
DOI : 10.1016/j.engfracmech.2008.10.013

M. I. Jordan and R. A. Jacobs, Hierarchical Mixtures of Experts and the EM Algorithm, Neural Computation, vol.26, issue.2, pp.181-214, 1993.
DOI : 10.1214/aos/1176346060

L. Biavant-guerrier and K. , Etude de l'amorçage de fissures de fatigue dans le Ti-6A1-4V, 2000.

X. Li, A Novel Accurate Approximation Method of Lognormal Sum Random Variables, 2008.

W. Nelson, Applied life data analysis, 1982.
DOI : 10.1002/0471725234

P. Paris and F. Erdogan, A Critical Analysis of Crack Propagation Laws, Journal of Basic Engineering, vol.85, issue.4, pp.528-534, 1963.
DOI : 10.1115/1.3656900

F. G. Pascual and W. Q. Meeker, Estimating Fatigue Curves With the Random Fatigue-Limit Model, Technometrics, vol.25, issue.4, pp.277-290, 1999.
DOI : 10.1080/00401706.1984.10487964

B. Pittel, D. Schwerdt, and C. Bergerr, Very high cycle fatigue ??? Is there a fatigue limit?, International Journal of Fatigue, vol.33, issue.1, pp.49-58, 2011.
DOI : 10.1016/j.ijfatigue.2010.05.009

R. D. Pollak and A. N. Palazotto, A comparison of maximum likelihood models for fatigue strength characterization in materials exhibiting a fatigue limit Probabilistic Engineering Mechanics, pp.236-241, 2009.

R. Chandran, K. S. Chang, P. Cashman, and G. T. , Competing failure modes and complex S???N curves in fatigue of structural materials, International Journal of Fatigue, vol.32, issue.3, pp.482-491, 2010.
DOI : 10.1016/j.ijfatigue.2009.08.004

T. Sakai, H. Nakayasu, and I. Nishikawa, Establishment of JSMS standard regression method of SN curves for metallic materials. Safety and Reliability of Engineering Systems and Structures, p.643, 2005.

Y. Sakai, B. Lian, M. Takeda, K. Shiozawa, N. Oguma et al., Statistical duplex S???N characteristics of high carbon chromium bearing steel in rotating bending in very high cycle regime, International Journal of Fatigue, vol.32, issue.3, pp.497-504, 2010.
DOI : 10.1016/j.ijfatigue.2009.08.001

G. Schwarz, Estimating the Dimension of a Model, The Annals of Statistics, vol.6, issue.2, pp.461-464, 1978.
DOI : 10.1214/aos/1176344136

S. Schwartz and Y. S. Yeh, On the Distribution Function and Moments of Power Sums With Log-Normal Components, Bell System Technical Journal, vol.61, issue.7, pp.1441-1462, 1982.
DOI : 10.1002/j.1538-7305.1982.tb04353.x

C. Y. Sims, N. F. Stoloff, and H. W. , Superalloy II : High temperature materials for aerospace and industrial power, 1987.

K. Shiozawa, M. Murai, Y. Shimatani, and T. Yoshimoto, Transition of fatigue failure mode of Ni???Cr???Mo low-alloy steel in very high cycle regime, International Journal of Fatigue, vol.32, issue.3, pp.541-550, 2010.
DOI : 10.1016/j.ijfatigue.2009.06.011

S. Suresh, Fatigue of Materials, 1998.
DOI : 10.1017/CBO9780511806575

S. S. Szyszkowicz and H. Yanikomeroglu, Fitting the modified-powerlognormal to the sum of independent lognormals distribution, Proceedings of the 28th IEEE conference on Global telecommunications, pp.5823-5828, 2009.

E. Thieulot-laure, Méthode probabiliste unifiée pour la prédiction du risque de rupture en fatigue Phd thesis, 2008.

B. Tomkins, Fatigue crack propagation -An analysis Philosophical magazine, pp.1041-1066, 1968.

Y. Weixing and G. Sheijieng, VHCF test and life distribution of aluminium alloy LC4CS, International Journal of Fatigue, vol.32, pp.497-504, 2007.

J. Wu, N. Mehta, and J. Zhang, A Flexible Lognormal Sum Approximation Method, IEEE Global Telecommunications Conference, vol.6, pp.3413-3417, 2005.