Des (bio)nano-composites utilisés dans le traitement d’eaux contaminées par de l’arsenic/gentamicine ou pour des applications médicales

Jing He

To cite this version:

HAL Id: tel-00988092
https://tel.archives-ouvertes.fr/tel-00988092
Submitted on 7 May 2014

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
THÈSE

Pour obtenir le grade de

DOCTEUR DE L’UNIVERSITÉ DE GRENOBLE

Spécialité : Terre, Univers, Environnement

Arrêté ministériel : 7 août 2006

Présentée par

« Jing / HE »

Thèse dirigée par « Laurent/CHARLET »

préparée au sein du Institut des Sciences de la Terre
dans l’École Doctorale « Terre – Univers – Environnement »

Des (bio)nano-composites utilisés dans le traitement
d'd'eaux contaminées par de l'arsenic/gentamicine ou pour
des applications médicales

Thèse soutenue publiquement le « 02 décembre 2013 »,
devant le jury composé de :

Professeur, David, POLYA
Fonction et lieu de la fonction, rôle (Président, Rapporteur)

Professeur, Ewen, SILVESTER
Fonction et lieu de la fonction, rôle (Rapporteur)

Professeur, Pilar, ARANDA
Fonction et lieu de la fonction, rôle (Membre)

Professeur, Rachel, AUZELEY-VELTY
Fonction et lieu de la fonction, rôle (Membre)

Professeur, Laurent, CHARLET
Fonction et lieu de la fonction, rôle (Directeur de thèse, Membre)
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Extended Abstract</td>
<td>i</td>
</tr>
<tr>
<td>Résumé</td>
<td>ix</td>
</tr>
<tr>
<td>Chapter 1</td>
<td>1</td>
</tr>
<tr>
<td>Arsenic as emerging contaminant in the environment</td>
<td>1</td>
</tr>
<tr>
<td>1.1. Occurrence of arsenic in the environment</td>
<td>2</td>
</tr>
<tr>
<td>1.2. Arsenic speciation and toxicity</td>
<td>3</td>
</tr>
<tr>
<td>1.3. High arsenic water distribution all around the world</td>
<td>5</td>
</tr>
<tr>
<td>1.4. Arsenic decontamination: techniques and challenges</td>
<td>7</td>
</tr>
<tr>
<td>1.5. Objectives - Arsenic decontamination technique and material for house-hold set-up</td>
<td>10</td>
</tr>
<tr>
<td>Chapter 2</td>
<td>12</td>
</tr>
<tr>
<td>A review of arsenic presence in China drinking water</td>
<td>12</td>
</tr>
<tr>
<td>2.1. Introduction</td>
<td>13</td>
</tr>
<tr>
<td>2.2. Source of arsenic to surface and groundwater</td>
<td>14</td>
</tr>
<tr>
<td>2.2.1. Minerals</td>
<td>14</td>
</tr>
<tr>
<td>2.2.2. Rocks, sediments, soils and air</td>
<td>15</td>
</tr>
<tr>
<td>2.3. Arsenic mobilization processes</td>
<td>20</td>
</tr>
<tr>
<td>2.3.1. Geogenic factors</td>
<td>20</td>
</tr>
<tr>
<td>2.3.2. Anthropogenic factors</td>
<td>23</td>
</tr>
<tr>
<td>2.4. High-As content in China waters - geogenic cases</td>
<td>23</td>
</tr>
<tr>
<td>2.4.1. Overview</td>
<td>23</td>
</tr>
<tr>
<td>2.4.2. Different types of geogenic high-As waters</td>
<td>28</td>
</tr>
<tr>
<td>2.4.3. Prediction of geogenic potential As-affected groundwater</td>
<td>32</td>
</tr>
<tr>
<td>2.5. High-As content in China waters - anthropogenic cases</td>
<td>33</td>
</tr>
<tr>
<td>2.6. Conclusions and recommendations</td>
<td>36</td>
</tr>
<tr>
<td>Chapter 3</td>
<td>39</td>
</tr>
<tr>
<td>Novel Chitosan Goethite Bionanocomposites Bead for Arsenic Remediation</td>
<td>39</td>
</tr>
<tr>
<td>3.1. Introduction</td>
<td>40</td>
</tr>
<tr>
<td>3.2. Experimental Section</td>
<td>42</td>
</tr>
<tr>
<td>3.2.1. Chemicals</td>
<td>42</td>
</tr>
<tr>
<td>3.2.2. Synthesis of CGB</td>
<td>42</td>
</tr>
<tr>
<td>3.2.3. Characterization</td>
<td>43</td>
</tr>
</tbody>
</table>
Extended Abstract

Bionanocomposites represent an emerging group of nano-structured hybrid materials. They are formed by the combination of natural polymers and inorganic solids and show at least one dimension on the nanometer scale. These hybrid materials retain the structural and functional properties of nano-structured materials. Meanwhile, the presence of biopolymer can reduce the public health and environmental risks of nano-sized materials. Properties inherent to the biopolymers, notably, biocompatibility and biodegradability, open new prospects for these hybrid materials particularly in regenerative medicine and in environmental engineering (Darder et al., 2007). Fabrication of large-sized bionanocomposites, rather than nano-sized particles, can prevent possible harmful nanoparticle (NP) intake by humans and other living things. Synergistic assembling of biopolymers with inorganic nano-sized solids leads to multifunctional bionanocomposites which can be synthesized and applied in several areas for designed purposes.

This thesis focuses on (i) the presence of toxic arsenic and antibiotics in Chinese drinking water sources; (ii) evaluation of a novel tailored bionanocomposite, namely chitosan goethite bionanocomposite (CGB), as a removal agent for inorganic arsenic species from water; (iii) using clay minerals as an adsorbent for removing gentamicin, an aminoglycoside antibiotic, from water, and assembling gentamicin-loaded clay with biopolymer hydroxypropyl methyccellulose leading to a bionanocomposites film, namely gentamicin-montmorillonite-hydroxypropyl methyccellulose (Gt-Mt-HPMC), to be used as a burn wound dressing.
A large number of people worldwide are exposed to elevated As concentrations in groundwater – many of them in developing countries and with no available alternative water resources. Aquifer systems with high levels of arsenic, elevated by natural processes or anthropogenic activities, have been reported in different environments from all continents. Some of the best-documented and most severe cases of arsenic contaminated groundwater have been found in aquifers in Asia (e.g. parts of Bangladesh, China, India, Nepal) and South America (e.g. Argentina, Mexico) (Aureli, 2006). Estimates of the rural population exposed to unsafe As levels by drinking untreated groundwater in India, China, Myanmar, Pakistan, Vietnam, Nepal, and Cambodia has grown to over 100 million (Ravenscroft et al., 2009).

Inorganic forms of arsenic: arsenite [As(III)] and arsenate [As(V)] are the two dominant species found in groundwater. Long-term drinking water exposure to arsenic may cause skin lesions (Tondel et al., 1999), peripheral vascular disease (Engel et al., 1994), hypertension (Chen et al., 1995), black-foot disease (Chen, 1990), and high risk of cancers, etc (Bates et al., 1992).

Arsenic was released to subsurface water bodies due to natural processes, such as arsenic mobilization from minerals and sediments. It is not possible to eliminate these sources. Therefore groundwater containing high level of arsenic has to be treated before use as drinking water. Common techniques for arsenic removal from water include oxidation/precipitation, coagulation, sorption, ion-exchange and membrane filtration.

In rural areas of developing nations where local population face economical – traditional – political constrains, a low-cost and practical set-up for removing arsenic from drinking water is necessary. Sorption and coagulation/precipitation are more realistic techniques than high
cost and high-tech operation techniques (i.e. ion exchanges and membrane processes). To simplify the As removal processes, a promising adsorbent which can efficiently adsorb both As(III) and As(V) is more practical than coagulation/precipitation processes, in which case pre-oxidation of drinking water for converting As(III) to As(V) is needed.

In this study, we employed a novel method to synthesize a chitosan-iron hydroxide composite, namely chitosan goethite bionanocomposites (CGB) beads. CGB beads were characterized by Mössbauer Spectroscopy and Field Emission Scanning Electron Microscopy (FE-SEM). Batch sorption and kinetic experiments were performed to assess the sorption of As(III) and As(V) onto CGB. The mechanism of As(III) and As(V) uptake onto CGB was investigated by Synchrotron Radiation X-ray Absorption Spectroscopy (SR-XAS). The diffusion of As(III) and As(V) from solution into the porous solid phase was monitored by micro X-ray fluorescence (μXRF) and micro X-ray Near Edge Spectroscopy (μXANES).

Wet Chemistry

Isotherms for the sorption of As(III)/As(V) onto CGB beads were studied at different pH values and data were found to be best described by the Freundlich and Redlich-Peterson equations. The kinetics study indicated that As(V) was adsorbed faster than As(III), and a pseudo-equilibrium was reached in both cases within 2000 min. The effect of CGB mass used in adsorption on residual As levels was studied. For 1 liter of water containing 1 mg/L of As(V) or As(III), only less than 0.5 g and around 2 g respectively of the CGB bead is needed to decontaminate the water to reach the 10 μg/L standard.

Mechanism study
The As oxidation state and binding environment were examined by synchrotron X-ray absorption spectroscopy. Results showed that As was adsorbed mainly onto goethite nanoparticles in the CGB composite material, although As can be adsorbed by chitosan as well. As(III) was partly oxidized to As(V) under an aerobic environment while As(V) species remained unchanged under both aerobic and anaerobic environments.

Diffusion pattern

As-loaded CGB samples collected from kinetics experiments at 1.5 h and 72 h were cut into 40 μm thick cross-sections. The distribution and co-localization of Fe and As in cross-sections of As-loaded CGB were studied by high resolution synchrotron radiation micro X-ray fluorescence mapping. The distribution of As reveals that, during the first 1.5 h, As(III) penetrated for 70-80 μm in the beads, while the penetration of As(V) was slightly faster, reaching 100-110 μm. After 72 h, both As(III) and As(V) diffuse in the whole CGB section, their concentration being higher at the borders and diminishing in the center of the beads in a typical U shape profile. This suggested that the arsenic adsorption took place more rapidly than the diffusion process. Effective diffusivities of arsenic were calculated: $D_{\text{eff}} \text{(AsIII)} = 6.69 \times 10^{-14} \text{ m}^2/\text{s}$ and $D_{\text{eff}} \text{(AsV)} = 1.34 \times 10^{-13} \text{ m}^2/\text{s}$. The estimated effective diffusivities of As(III) and As(V) are similar. The higher estimated diffusivity of As(V) could be due to the electrostatic attraction between As(V) and the interior of the beads which accelerates the movement of As(V) towards the core of the beads.

The novel material – chitosan goethite bionanocomposites (CGB) that this thesis presents show several outstanding properties:
(i) **High efficiency**: it can efficiently remove both the inorganic As species As(III) and As(V), without a pre-oxidation process,

(ii) **Low difficulty and cost in filtration process**: the large-scale bead (1 mm) is more easily to be removed than fine nanoparticle powders.

(iii) **Low health risk**: goethite nanoparticles are stabilized by the chitosan matrix, so there are no NPs released from the sorption process during its use. No toxic chemical was used during the fabrication of the material compared to conventional methods, in which the use of toxic cross-linking reagents is common.

(iv) **High mechanical property**: Compression mechanical property test reports the crushing strength to be 34.9 ± 6.5 N, compared to chitosan hydrogel beads (1.87 N) and that of the chitosan hydrogel beads impregnated with carbon nanotubes (7.62 N).

These properties highly reduce the cost and complexity of the water remediation process. It could be a promising material particularly for developing nations, which suffer a diversity of socio-economical-traditional constraints for water purification and sanitation.

The risk and occurrence of antibiotics in water

As with other dangerous pollutants that spread in the environment and threaten human health, there is a need for environmental scientists and engineers to help address the critical problem of antibiotics. An antibiotic is an agent that inhibits or kills bacteria. Despite decades of high usage for human medicines and veterinary purposes, the occurrence and effects of antibiotics in the environment have been little studied until very recently. Antibiotics presence has now become a focus of research efforts due to different adverse effects, especially the contribution to antibiotic resistant bacteria in the environment. The powerful killing and growth inhibitory
effects of antibiotics have reduced the numbers of susceptible strains, leading to the propagation of resistant variants (Levy, 2008). Such resistant bacteria can cause an infection both in humans and animals and may not respond to regular antibiotic treatments (Regassa et al., 2008). The presence of antibiotics, even in low dose, also potentially harm aquatic environment and pose risks to public health.

Gentamicin removal by clay mineral and synthesis of Gt-Mt-HPMC bionanocomposites film for burn wound dressing

Gentamicin (Gt.), an aminoglycoside antibiotic produced by fermentation of *Micromonospura purpurea*, is a mixture of basic, water soluble compounds containing aminocyclitol 2-deoxystreptamine and 2 additional amino sugars (MacNeil and Cuerpo, 1995). Gentamicin is used to treat many types of bacterial infections, particularly those caused by Gram-negative organisms (Moulds and Jeyasingham, 2010). The main toxic effects of the aminoglycoside antibiotics are nephrotoxicity and ototoxicity. Furthermore, fetotoxicity was observed for gentamicin (Gehring et al., 2005). Although application of Gt. in human medicine has declined, its use in veterinary and agriculture is still intense. Gentamicin can enter the environment via pharmaceutical factories, hospital waste water and animal droppings.

The sorption of Gt. onto Na\(^+\)-montmorillonite

The amino groups of the sugar rings of gentamicin exhibit variable pKa values which range from 5.6 to 9.5. Thus, gentamicin carries a net positive charge under acidic conditions when all or parts of amino groups are protonated. It offers the possibility of gentamicin intercalation in Na\(^+\)-montmorillonite by means of cationic exchange processes.
In order to investigate the adsorption isotherm, three equilibrium isotherm models were applied: the Langmuir, the Freundlich, and the Redlich-Peterson isotherms. The Langmuir and the Redlich-Peterson isotherms best fitted the data for the adsorption of gentamicin on Na+-montmorillonite at 294 K.

XRD results confirmed intercalation of the gentamicin in the clay interlayers, indicated by the decrease of 2\(\theta\) values. As the gentamicin/clay ratio increases, the \(d_{001}\) spacing reaches 1.4 nm when the clay reaches saturated adsorption. The increase of clay \(d_{001}\) spacing was due to the thickness of gentamicin molecule sheet. The orientation of gentamicin in the interlayer of the clay was studied.

Gentamicin-montmorillonite-HPMC film

Gentamicin-loaded montmorillonite, the solid waste from the gentamicin adsorption process, can be used to synthesize gentamicin-montmorillonite-HPMC (Hydroxypropyl Methyl Cellulose) (Gt-Mt-HPMC) film which can be potentially used as a burn wound dressing. The antimicrobial effect of Gt-Mt-HPMC against the skin infection-causing bacteria *Staphylococcus aureus* was examined according to ASTM E2149 (Standard Test Method for determining the antimicrobial activity of immobilized antimicrobial agents under dynamic contact conditions). The reinforcing clay mineral and HPMC afford the necessary mechanical strength to the dressing, and the combined binding matrix was aimed at providing adequate moisture control and release of antibiotics to protect the wound bed from infection and to promote healing.

Gt-Mt-HPMC and Gt-HPMC showed high antimicrobial properties compared with the control tube with peptone water. The samples HPMC or/and montmorillonite which were free of
gentamicin showed no detectable antimicrobial effect. The result showed that Gt-Mt-HPMC retained the antimicrobial capability of gentamicin. The efficiency of the antimicrobial effect of the bionanocomposites was not weakened by the supporting material montmorillonite nor the HPMC.
Résumé

Les composés dits 'bionano' (bionanocomposites) apparaissent comme un nouveau groupe de matériaux hybrides nano-structurés. Ils sont issus de la combinaison de polymères naturels et de solides inorganiques et sont de l'ordre du nanomètre dans au moins une direction (Darder et al., 2007). Ces matériaux hybrides conservent les structures et les propriétés fonctionnelles des polymères et matériaux inorganiques dont ils sont composés. Parallèlement, la présence de biopolymères permet de diminuer les risques environnementaux et de santé publique liés aux nano-matériaux. Les propriétés inhérentes aux biopolymères (biocompatibles' et biodégradables) ouvrent des perspectives intéressantes pour ces matériaux hybrides en particulier dans les domaines de la médecine régénérative et en génie de l'environnement (Darder et al., 2007). La production de bionanocomposites de taille plus importante, que les nanoparticules qu'ils renferment, permet d'éviter les effets nocifs potentiels des nanoparticules (Nps) pour les organismes vivants et plus particulièrement pour l'homme. L'association de biopolymères et de nano-solides inorganiques permet la conception de bionanocomposites multifonctionnels qui peuvent être synthétisés et utilisés pour des applications dans des domaines variés.

Cette thèse se propose d'étudier principalement (i) ma présence d'arsenic et d'antibiotiques dans les sources d'eau potable en Chine; (ii) l'évaluation d'un nouveau bionanocomposites, à savoir le CGB (chitosan goethite bionanocomposite), dans la décontamination des eaux contenant des espèces inorganiques d'arsenic; (iii) l'évaluation d'argiles comme adsorbants de
dénomination de la gentamicine (un antibiotique aminoglycoside) présent dans l'eau de même que celle de bionanocomposés fait d'argiles riches en gentamicine de polymères de methycelluloses hydroxypropyles Gt-Mt-HPMC (gentamicin-montmorillonite- hydroxypropyl methycellulose) utilisés comme pansement contre les infections qui ont lieu suite à des brûlures.

Une part importante de la population mondiale est exposée à des concentrations élevées d'arsenic à travers les ressources en eau présentes dans le sous-sol – principalement dans les pays en développement où il n'existe pas de sources d'eaux alternatives. Les systèmes aquifères présentant des concentrations en arsenic élevées résultant de processus naturels ou de l'activité humaine ont été observés sur l'ensemble des continents et dans différents environnements. C'est en Asie (e.g. Bangladesh, Chine, Inde, Népal) et en Amérique du Sud (e.g. Argentine, Mexique) que les cas les plus spectaculaires de contamination à l'arsenic via les aquifères ont été répertoriés (Aureli, 2006). On estime que le nombre de personnes exposé à un taux d'arsenic posant des problèmes sanitaires dans les régions rurales d'Inde, de Chine, du Pakistan, du Vietnam, du Népal et du Cambodge dépasse aujourd'hui 100 millions (Ravenscroft et al., 2009). Les formes inorganique d'arsenic majoritairement présentent dans les aquifères sont l'arsénite [As(III)] et l'arséniate [As(V)]. La consommation prolongée d'eau contaminée à l'arsenic peut conduire entre autres à des lésions cutanées (Tondeal et al., 1999), à de l'artériopathie oblitérante des membres inférieurs (Chen, 1990; Engel et al., 1994), à de l'hypertension (Chen et al., 1995) et à des cancers du poumon, de la peau et du foie (Bates et al., 1992).
L'arsenic dans les aquifères provient des minéraux présents dans les sédiments suite à des mécanismes biogéochimiques de mobilisation. Il n'est pas possible d'éliminer ces sources naturelles. L'eau issue des aquifères doit donc être traitée avant d'être consommée. On peut citer parmi les techniques couramment employées l'oxydation/précipitation, la coagulation, la sorption, l'échange d'ions et la filtration par membrane.

Les contextes sociaux-économiques des zones rurales des pays en voie de développement nécessitent le développement de méthodes de décontamination peu onéreuses et faciles à mettre en place. Les techniques basées sur les mécanismes de sorption ou de coagulation/précipitation apparaissent comme plus réalisables au contraire des techniques plus avancées et plus cher comme l'ozonation, les échanges d'ions ou la filtration par membrane. Dans l'optique de simplifier les techniques de décontamination, il est probablement plus intéressant d'envisager un composé capable d'absorber à la fois l'arsenite et l'arséniate que de développer les mécanismes de coagulation/précipitation où une opération de pré-oxydation de l'eau est nécessaire afin de convertir As(III) en As(V).

Dans l'étude présentée, nous décrivons une nouvelle méthode permettant de synthétiser des billes d'hydroxyde fer-chitosan, le CGB (Chitosan Goethite Bionanocomposites). Ces billes de CGB ont été caractérisés à l'aide de la spectrométrie Mössbauer et de la microscopie électronique à balayage (FE-SEM). Des expériences de sorption et de leur cinétique ont été conduites afin d'estimer la diffusion et l'immobilisation de As(III) et As(V) sur les billes de CGB. Le processus de fixation de As(III) et As(V) a été étudié à l'aide de la spectroscopie d'absorption des rayons X au Synchrotron (SR-XAS) et la diffusion de As(III) et As(V) dans
Résumé

les billes de CGB a été suivies en utilisant la micro spectrométrie de fluorescence X (μXRF) et la micro spectroscopie proche bord des rayons X (μXANES).

Chimie des solutions

L'étude de la sorption de As(III)/As(V) sur les billes de CGB a été effectuée pour différentes valeurs de pH et les données ont été interprétées à l'aide des équations de Freundlich et Redlich-Peterson. L'étude cinétique a montré que As(V) était adsorbé plus rapidement que As(III) et que le pseudo-équilibre était atteint pour les deux espèces en moins de 2000 min. L'impact de la quantité de billes CGB utilisés pour l'adsorption des résidus d'arsenic a également été étudié. Respectivement moins de 0.5 g et 2 g de billes de CGB dans un litre d'eau contaminée à 1 mg/L de As(V) ou As(III) est nécessaire pour obtenir une eau avec moins de 10 μg/L d'arsenic.

Etude des mécanismes

L'état d'oxydation et les interactions de l'arsenic ont été examinés en utilisant la spectroscopie d'absorption des rayons X. Les résultats montrent que l'arsenic est principalement adsorbé sur les nanoparticules d'oxyhydroxyde de fer composant les billes de CGB bien que l'arsenic puisse également être adsorbé par la matrice de chitosan. As(III) est partiellement oxydé en As(V) dans un environnement anaérobie alors que As(V) reste inchangé dans un environnement aérobie ou anaérobie.

Diffusion

Des sections de 40 μm d'épaisseur de billes de CGB soumises aux expériences d'adsorption ont été étudiées après 1.5 h et 72 h d'exposition. La distribution et la co-localisation du fer et de
l'arsenic sur ces sections ont été analysés en utilisant la micro spectrométrie de fluorescence X. La distribution d'arsenic a mis en évidence qu'en 1.5h, As(III) pénètre de 70-80 µm dans les billes alors que As(V) pénètre de 100-110 µm. Après 72h, les deux espèces ont diffusés dans la totalité de la bille avec un gradient de concentration tel que la concentration au cœur des billes est moindre que sur les bords. Les résultats indiquent que le temps caractéristique de l'adsorption est plus court que celui de la diffusion. Les coefficients de diffusion effectifs des deux espèces ont été calculé et les valeurs obtenues sont du même ordre de grandeur pour les deux degrés d’oxydation de l'arsenic = 6.69×10^{-14} m2/s et = 1.34×10^{-13} m2/s. La valeur plus élevée pour le coefficient de diffusion de As(V) peut être expliquer par l'attraction électrostatique qui a lieu entre As(V) et l'intérieur des billes (chitosan négativement chargé) accélérant ainsi la migration de As(V) vers le cœur des billes.

Le nouveau matériaux (CGB) étudié présente donc des propriétés remarquables:

(i) Efficacité : il permet d'absorbé les espèces d'arsenic As(III) et As(V) sans oxydation au préalable.

(ii) Facilité de mise en place et peu onéreux: les billes de CGB étant de taille importante (1mm), il est plus facile de les récupérer que les poudres à base de nanoparticules.

(iii) Pas de risque sanitaire : les nanoparticules de goethites sont stabilisés via la matrice de chitosan prévenant ainsi la présence de Nps lors de l'utilisation du procédé. De plus il faut noter que la synthèse des billes de CGB ne nécessite pas l'utilisation de produit toxique contrairement aux méthodes conventionnelles qui utilisent par exemple le glutaraldéhyde.

(iv) Propriétés mécaniques : Les tests sous les contraintes de compression ont indiqués des ruptures à 34.9 ± 6.5 N. Ces résultats sont à comparer avec 1.87 N obtenu avec les
billes d'hydrogel de chitosan et 7.62 N obtenu avec des billes d'hydrogel de chitosan contenant des nanotubes de carbone.

Ces propriétés réduisent considérablement les coûts et la complexité des techniques de décontamination. Ce matériaux offre donc des perspectives intéressantes pour les pays en voie de développement qui souffrent de problèmes sociaux-économiques récurrents qui limitent les possibilités de purification et de traitement des eaux.

Les antibiotiques et l'eau : état des lieux et risques

La présence d'antibiotiques dans le milieu naturels nécessite la mobilisation des scientifiques et ingénieurs comme cela se fait pour les autres polluants qui posent des problèmes sanitaires. Les antibiotiques sont des agents qui inhibent ou tuent les bactéries. Pendant des décennies, alors qu'une quantité importante été utilisé dans la médecine pour l'homme ou les animaux, leur distribution et leur impact sur l'environnement étaient peu étudiés et ce jusqu'à récemment. La répartition des antibiotiques dans les environnements naturels a fait l'objet d'études importantes suite à la découverte d'effets indésirables comme la résistance accrue aux antibiotiques de certaines bactéries dans l'environnement et nous avons passé en revue les données sur la Chine. L'utilisation massives des antibiotiques a réduit le nombre de souches en favorisant les souches résistantes (Levy, 2008). Ces bactéries peuvent être responsables d'infection chez l'homme ou l'animal que les traitements classiques ne peuvent régler (Regassa et al., 2008). La présence d'antibiotique, même à faible dose, peut également endommager les milieux aquatiques voir poser des problèmes de santé publiques.
Épuration de la gentamicine à l’aide d’argile et synthèse de pansements contre les brûlures à base de films de bionanocomposites Gt-Mt-HPMC

La gentamicine (Gt), un antibiotique de la famille des aminoglycosides issue de la fermentation de *Micromonospora purpurea*, est composé d'éléments solubles dans l'eau dont l'aminocyclitol 2-deoxystreptamine et deux sucres aminos (MacNeil et Cuerpo, 1995). La gentamicine est utilisée dans le traitement de nombreuses infections bactériennes, et plus particulièrement celles causées par des organismes à Gram négatifs (Moulds et Jeyasingham, 2010). Les principaux effets toxiques observés avec les antibiotiques de la famille des aminoglycosides sont des effets nephrotoxiques et ototoxiques. En outre, des effets fétotoxiques ont été rapportés lors de l'utilisation de la gentamicine (Gehring et al., 2005). Bien que l'utilisation de la gentamicine en médecine ait diminué, son utilisation en médecine vétérinaire et en agriculture est encore importante. La gentamicine peut être introduite dans l'environnement via les lieux de productions ou via les eaux usées des hôpitaux et les rejets de fermes d'élevage.

Sorption de la gentamicine sur Na⁺-montmorillonite

Les groupes amino des anneaux de sucres de la gentamicine présentent des valeurs de pKa qui varient entre 5.6 et 9.5. De ce fait, la gentamicine possède une charge positive nette dans des conditions acides quand l'ensemble des groupes amino sont protonés ce qui offre la possibilité à la gentamicine de s'intercaler dans Na⁺-montmorillonite au travers de mécanismes d'échanges de cations. Afin d'étudier l'adsorption isotherme, trois modèles d'équilibre isotherme ont été utilisés : le modèle de Langmuir, le modèle de Freundlich et le modèle de Redlich-Peterson. Les modèles de Langmuir et de Redlich-Peterson ont permis de
modéliser au mieux l'adsorption de la gentamicine sur la montmorillonite saturée en Na+ à 294 K ($r^2=0.978$).

Les résultats issus de DRX montrent l'inclusion de la gentamicine dans les inter-couches d'argile avec la diminution des valeurs 2θ lors de l'augmentation du ratio gentamicine/argile et l'espacement d_{001} atteint 1.4 mm dans l'argile saturée à la gentamicine. L'augmentation de l'espacement d_{001} est dû à l'épaisseur des molécules de gentamicine. L'orientation de la gentamicine dans les inter-couches d'argile a également été étudié.

Films de Gentamicin-montmorillonite-HPMC

La phase solide, la montmorillonite contenant de la gentamicine, résultant de l'adsorption de gentamicine peut être utilisée afin de synthétiser les films de gentamicin-montmorillonite-HPMC (Hydroxyl Propyl Methyl Cellulose) qui peuvent potentiellement être appliqués comme pansements suite à brûlures. Les propriétés anti-bactériennes de Gt-Mt-HPM pour contrer les infections cutanées de *Staphylococcus aureus* ont été étudiées suivant le protocole ASTM E2149 (test standard pour déterminer l'activité anti-bactérienne d'agents immobiles anti-bactériens sous contraintes dynamiques). L'argile et HPMC agissent alors comme une structure ayant les propriétés mécaniques nécessaires pour le pansement en même temps qu'une matrice capable de fournir un environnement humide et capable de délivrer lentement l'antibiotique protégeant ainsi la blessure d'une infection.

Gt-Mt-HPMC et Gt-HPMC ont démontrés leurs propriétés anti-bactériennes avec un tube de contrôle d'eau peptonée. Les échantillons HPMC et/ou montmorillonite sans gentamicine n'ont montré aucune efficacité anti-bactérienne. Les résultats montrent que Gt-Mt-HPMC conserve l'ensemble des capacités anti-bactériennes de la gentamicine sans que le support montmorillonite et HPMC n'en diminue ses effets.
Chapter 1

Arsenic as an emerging contaminant in the environment

Jing He, Laurent Charlet
1.1. Occurrence of arsenic in the environment

Arsenic-bearing minerals including arsenic-rich pyrite, arsenopyrite, orpiment, realgar and As-associated metal sulfides can release large amounts of arsenic when the chemical environment has been changed. O$_2$-enriched environments leads to oxidation of these minerals followed by As mobilization. Insoluble As-bearing minerals are rapidly oxidized by exposure to the atmosphere and then the released soluble As(III) is carried by runoff and groundwater flow into surface and ground waters.

Major natural processes responsible for observed concentrations of arsenic in surface and ground water include: mineral precipitation/dissolution, adsorption/desorption, chemical transformation, ion exchange, and biologic activity (Welch et al., 1988; Smedley and Kinniburgh, 2002). Ordinary solid phases containing arsenic at around the crustal abundance can give rise to high dissolved arsenic (0.05 mg/L) (Nordstorm, 2002).

Adsorption and desorption reactions between arsenic and Fe/Mn/Al oxides and hydroxides surfaces are particularly important controlling reactions because these oxides are widespread in the hydrogeologic environment and arsenate adsorbs strongly to oxides and hydroxides surfaces in acidic and near-neutral-pH water (Dzombak and Morel, 1990; Waychunas et al., 1993). However, arsenate adsorption rapidly decreases in basic media (Mamindy-Pajany et al., 2011). pH value plays an important role in the desorption of arsenic because of its effects on the species distribution of anions, the surface charge of the arsenic-bearing oxides and hydroxides, and subsequent electrostatic forces between arsenate and solids (Xu et al., 2012).
Anaerobic microbial respiration, utilizing either sedimentary or surface-derived organic carbon, is one important process contributing to the mobilization of arsenic from host minerals, notably hydrous iron oxides (Charlet and Polya, 2006). Many studies have given evidence of arsenic release under reducing environments in the presence of Fe-reducing bacteria. Burial of fresh organic matter, infiltration of fresh DOC and the slow diffusion of O$_2$ through the sediment lead to reducing conditions just below the sediment-water interface in lakes or in superficial groundwaters as abundantly described in SE Asia deltas (Charlet and Polya, 2006; Fendorf et al., 2010). This encourages the reduction of As(V) and desorption from Fe and Mn oxides, as well as the reductive dissolution of As-rich Fe oxyhydroxides.

1.2. Arsenic speciation and toxicity

Arsenic speciation is controlled by redox potential (Eh) and pH values. Arsenic can occur in the environment in several oxidation states (-3, 0, +3 and +5), being organic compounds or inorganic forms. In natural waters, arsenic is mostly present in its inorganic form as oxyanions of trivalent arsenite [As(III)] or pentavalent arsenate [As(V)] (Figure 1.1). Under oxidising conditions, arsenate occurs as anionic forms: H$_2$AsO$_4^-$ is dominant pHs less than about 6.9, while HAsO$_4^{2-}$ becomes dominant at higher pH values. Under reducing conditions, the uncharged arsenite species H$_3$AsO$_3^0$ is dominant at pH ≤9.2 (Smedley and Kinniburgh, 2002). An overview of arsenic species depending on the pH and Eh in the aqueous phase is given in the pH-Eh diagram (Fig. 1.2).
Inorganic As species are significantly more harmful than organic As species. In short, we only discuss the toxicity of inorganic forms of arsenic: arsenite and arsenate. Acute arsenic poisoning is associated initially with nausea, vomiting, abdominal pain, and severe diarrhea (Ratnaike, 2003). Long-term drinking water exposure of arsenic may cause skin lesions (Tondel et al., 1999), peripheral vascular disease (Engel et al., 1994), hypertension (Chen et al., 1995), black-foot disease (Chen, 1990), and high risk of cancers (Bates et al., 1992). High drinking water As concentration was found to elevate late fetal mortality and neonatal/postneonatal mortality (Hopenhayn-Rich et al., 2000). As exposure was also observed to impair cognitive development in school children and lead to children DNA
damage and immunodeficiency (Yanez et al., 2003; Vega et al., 2008). Some research findings from Chile link in utero and early life As exposure to cardiovascular, respiratory and lung cancer later in adult life (Smith et al., 2006; Yuan et al., 2007).

WHO’s recommendations for drinking-water quality go back to 1958. The International Standards for Drinking-Water established the maximum allowable level of arsenic in drinking water as 0.20 mg/L. In 1963 the standard was re-evaluated and reduced to 0.05 mg/L. The guideline value was provisionally reduced in 1993 from 0.05 mg/L to 0.01 mg/L. Many countries, including China, have kept the old guideline value of 0.05 mg/L as their water quality standard for several years, even up until now.

1.3. High arsenic water distribution all around the world

A large number of people worldwide are exposed to elevated As concentrations in ground water – many of them in developing countries and with no available alternative water resources. Aquifer systems with high levels of arsenic, elevated by natural processes or anthropogenic activities, have been reported in different environments from all continents. Some of the best-documented and most severe cases of arsenic contaminated groundwater have been found in aquifers in Asia (e.g. parts of Bangladesh, China, India, Nepal) and South America (e.g. Argentina, Mexico) (Aureli, 2006). Estimates of the rural population exposed to unsafe As levels by drinking untreated groundwater in India, China, Myanmar, Pakistan, Vietnam, Nepal, and Cambodia has grown to over 100 million (Ravenscroft et al., 2009). Bhattacharya et al. (2002) reported As concentrations of up to 700 ȝg/L in groundwater in the Bengal Delta Plain, Bangladesh; High arsenic concentrations up to 11,000 ȝg/L were found in some areas of Ontario, Quebec, New Brunswick, Nova Scotia and British Columbia (Health Surveillance, Alberta Health and Wellness, 2000); Arsenic concentrations up to
12,000 µg/L were measured in groundwater from an aquifer in the Fox River valley in eastern Wisconsin, USA (Schreiber et al., 2003); High arsenic levels in drinking water have been measured throughout the province of Cordoba, located in the centre of Argentina, often above 100 µg/L and reaching levels of over 2000 µg/L (Hopenhayn-Rich et al., 1998). Most of the contaminated aquifers are related to sediments of Quaternary age (Acharyya, 2005). Also known for As-enriched waters are geothermal areas, such as the Yellowstone National Park in the West of the United States, the Donargarh rift belt of Central India (Mukherjee, 2009), the Guide Basin of China (Shi et al., 2010) and Central Italy (Angelone, 2009). A comparison of occurrences in the Ganges–Brahmaputra, Mekong, and Red River basins shows that common geological characteristics include river drainage from the rapidly weathering Himalayas, rapidly buried organic bearing and relatively young (ca. Holocene) sediments, and very low, basin-wide hydraulic gradients (Charlet and Polya, 2006). Statistical models based on the statistical relationship of As concentrations and relevant explanatory variables such as geology, climate or topography have recently been developed (Amini et al., 2008; Rodriguez-Lado et al., 2008; Winkel et al., 2008). Amini et al. (2008) used a large database of measured arsenic concentration in groundwaters from around the world as well as digital maps of physical characteristics such as soil, geology, climate, and elevation to model probability maps of global arsenic contamination. Maps of modeled global probability of geogenic arsenic contamination in groundwater for reducing and high-pH/oxidizing conditions were delineated (Fig. 1.3).
1.4. Arsenic decontamination: techniques and challenges

With limited alternative drinking water resources, millions of people are affected by groundwater with elevated arsenic concentration. Arsenic was released to subsurface water bodies due to natural processes, such as arsenic mobilization from minerals and sediments. It is not possible to eliminate these sources. Therefore groundwater containing high level of arsenic has to be treated before used as drinking water. Table 1.1 summarized advantages and disadvantages of common techniques for arsenic removal from water.
Table 1.1: Arsenic removal technologies

<table>
<thead>
<tr>
<th>Technology</th>
<th>Advantages</th>
<th>Disadvantages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oxidation/precipitation</td>
<td>Relatively simple, Low-cost, in situ As removal, Slow process,</td>
<td>Toxic sludge, pH control is needed</td>
</tr>
<tr>
<td>Chemical oxidation</td>
<td>Rapid process, kill microbes at the same time</td>
<td>pH control is needed</td>
</tr>
<tr>
<td>Coagulation</td>
<td>Relatively low-cost, Common chemicals are available, wider range of pH</td>
<td>Toxic sludge, Low removal of As, Pre-oxidation may be required, Sedimentation, filtration needed, pH readjustment needed,</td>
</tr>
<tr>
<td>Sorption</td>
<td>Wide range of sorbents can be chosen, easy setup</td>
<td>Regeneration, replacement, toxic solid waste</td>
</tr>
<tr>
<td>Ion-exchange</td>
<td>High capacity, pH independent</td>
<td>High cost, high-tech operation and maintenance.</td>
</tr>
<tr>
<td>Membrane filtration</td>
<td>Green, less chemical consumption, several contaminants can be removed at once</td>
<td>High cost, high energy consumption</td>
</tr>
</tbody>
</table>

Oxidation

The purpose of oxidation is to convert soluble As(III) to As(V), which is followed by precipitation or sorption of As(V). As(V) is more easily adsorbed onto solid surface than neutral As (III) over a wide range of pH condition, thus oxidation of As(III) to As(V) is considered to be helpful for further treatment. Oxidation is essential for anoxic groundwater, since As(III) is the predominant form at near neutral pH (Masscheleyn et al., 1991).

Coagulation and Precipitation

By adding a coagulant to the contaminated water, flocs form and arsenic co-precipitates with or adsorbs on the surface of the coagulant, followed by settling of the aggregate or removal by filtration. Generally the best removal is achieved at the pH at which the precipitated species is
least soluble. The nature and size of the flocs are important as they adsorb the soluble As from water and finally transform it into an insoluble product. Among the various chemical coagulants used for As removal, Fe and Al based coagulants are mostly used (McNeill and Edwards, 1995).

Adsorption

Adsorption takes place on the surface of solid adsorbents. High abrasion resistance, high thermal stability and high exposed surface area are important properties of adsorbents for being practical and efficient in the removal of contaminants. Several adsorbents have been used to remove As from aqueous solution. Among all the adsorbents, iron oxides, oxyhydroxides and hydroxides, including amorphous hydrous ferric oxide, goethite and hematite, are the most promising adsorbents for removing both As(III) and As(V) from water. Most iron oxides are fine powders that are difficult to separate from the solution after treatment. Therefore, the EPA has proposed iron oxide-coated sand filtration as an emerging technology for arsenic removal at small water facilities (EPA, 2000; Thirunavukkarasu et al., 2003).

Ion exchange

By electrostatic attachment, many contaminants can effectively be removed from aqueous and solutions. Solid polymeric or mineralic ion exchangers, either cation exchangers or anion exchangers, are chosen depending on the contaminant and the chemistry of water. The resins need to be regenerated by rinsing with a solution of high resin-ion concentration after all the ions on the surface of the resin are exchanged with the contaminant ions. Arsenate is
predominantly removed by ion exchange techniques, whereas these are not effective for the uncharged arsenite species.

Membrane processes

Membranes are a selective barrier, allowing some constituents to pass while blocking the passage of others. The movement of constituents across a membrane requires a driving force (i.e. a potential difference between the two sides of the membrane) including pressure, concentration, electrical potential, or temperature. Pressure-driven membranes are frequently used for contaminant removal. Based on the pore size of the membrane, pressure-driven membranes are often classified into four categories: microfiltration (MF), ultrafiltration (UF), nanofiltration (NF), and reverse osmosis (RO). High-pressure processes (i.e., NF and RO) have a relatively small pore size compared to low-pressure processes (i.e., MF and UF) (EPA, 2000). Although high pressure processes can remove a broader range of contaminants than low pressure processes, the high energy consumption requirement of this technique constrains its use.

1.5. Objectives - Arsenic decontamination technique and material for house-hold set-up

In rural areas of developing nations where local population face economical – traditional – political constrains, a low-cost and practical set-up for removing arsenic from drinking water is necessary. Sorption and coagulation/precipitation are more realistic techniques than high cost and high-tech operation technique (i.e. ion exchanges and membrane processes). To simplify the As removal processes, a promising adsorbent which can efficiently adsorb both As(III) and As(V) is more practical than coagulation/precipitation processes, in which case pre-oxidation of drinking water for converting As(III) to As(V) is needed. Nanomaterials
which have high surface-to-volume ratio give hope for higher arsenic removal capacities than with convention materials (Theron et al., 2008). However, the high reactivity and small size of nanoparticles also come with higher potential risks due to a better uptake and interaction with biota (Auffan et al., 2009). Many metal nanoparticles have been found to cause chromosomal aberrations, DNA strand breaks, oxidative DNA damage, and mutations (Xie et al., 2011). The difficulty nanoparticles bring to filtration processes due to their nano-size constrains their application in water treatment as well. The goals of this work are to (i) design a novel nano-material which can efficiently remove inorganic As species As(III) and As(V), (ii) minimize the difficulty and cost in filtration process by the new properties of the material, (iii) lower the health risks of the material, and (iv) examine the mechanism of arsenic adsorption on to the material.
Chapter 2

A review of arsenic presence in China drinking water

Jing He, Laurent Charlet

Journal of Hydrology 492 (2013) 79–88
2.1. Introduction

WHO’s norms for drinking-water quality go back to 1958. The International Standards for Drinking-Water established allowable level arsenic in drinking water as 0.20 mg/L. In 1963 the standard was re-evaluated and reduced to 0.05 mg/L. The guideline value was provisionally reduced in 1993 from 0.05 mg/L to 0.01 mg/L. Many countries including China had kept the old guideline value 0.05 mg/L as water quality standard for several years. In 2006, Ministry of Health PRC gave a revision of the Standards of drinking water quality with allowable arsenic concentration as 0.01 mg/L instead of 0.05 mg/L, as used in the past decades (Ministry of Health of China and Standardization Administration of China, 2006).

Chronic endemic arsenicosis was found in Taiwan in 1968 and reported in Xinjiang Province in Mainland China in the 1970s. In the 1980s, more areas were reported to be affected by arsenicosis via drinking water. Up to year 2012, endemic arsenicosis distributed over 45 counties in 9 provinces, while 19 provinces had the problem that arsenic concentration in drinking water exceeded water standard level (0.05 mg/L). Even though China government has been working on building up water supply plants to ensure safe drinking water, the population at risk is still large: about 1.85 million according to the recent official data from Ministry of Health PRC et al. (2012) is drinking water with As level above 0.05 mg/L. Population exposed to drinking water with As level 0.01 mg/L - 0.05 mg/L was not included in that survey.

One goal of the present study is to draw a picture on arsenic sources of China and to know how the respective importance of each type of source is for elevating As concentration in drinking water. Secondly, we discuss some major documented hotspots that were well-known as As-affected areas. An additional goal is to summarize the features of environment where
different types of natural high-As waters and the reasons why acute poisoning incidents happen.

2.2. Source of arsenic to surface and groundwater

2.2.1. Minerals

Arsenic is a metalloid which exists in earth crust and ranks 14th in element abundance order. The background concentration varies from 1.8 mg/kg to 2.1 mg/kg according to different reviews. Arsenic occurs as a major constituent in more than 200 minerals, including elemental As, arsenides, sulphides, oxides, arsenates and arsenites (Smedley and Kinniburgh, 2002). However, most of those arsenic containing minerals are rare in nature and generally found as sulfides associated with Au, Cu, Pb, Zn, Sn, Ni, and Co in ore zones. The most dominant minerals exist in environment are arsenopyrite (FeAsS), realgar (AsS) and orpiment (As$_2$S$_3$).

China has large amount of arsenic reserves: The known arsenic reserves were reported to be 3977 kt, and 2796 kt preserved reserves, of which 87.1% existed in paragenetic or associated ores up to the end of 2003 (Xiao et al., 2008). In 2011, China was the top producer of white arsenic with almost 50% world share, followed by Chile, Peru, and Morocco. (U.S. Geological Survey, 2012). Xiao et al., (2008) reported the distribution of arsenic deposits in China (Figure 2.1). Documented arsenic ore reserves, as demonstrated in Fig. 2.1, are mostly located in southern and western regions of China. The sum of arsenic reserves locating in Guangxi, Yunnan and Hunan Province represents more than 60 percent of the total arsenic reserves explored in China. As reported, up to 87 percent of reserves are believed to be present in sulphide ores which are paragenetic or associated with transition metals ores.
2.2.2. Rocks, sediments, soils and air

2.2.2.1. Rocks

The arsenic abundance of China’s continental lithosphere (CCL) has been reported to average 1.2 mg/kg (Li and Ni, 1997). Compositions of rocks in eastern China were with higher arsenic levels, particularly in clastic rock (5.0 mg/kg), pelite (7.8 mg/kg) and carbonatite (3.2 mg/kg) (Yan et al., 1997).

Concentrations in coals are variable depending on the area. Wang et al. (2005) sampled and analyzed 297 coal samples and found that 16 percent of the samples have arsenic concentrations higher than 8 mg/kg, while concentration ranged from 0.24 to 70.83 mg/kg.
Other research reported much higher arsenic concentrations up to 32,000 mg/kg arsenic in coal sample (Ren et al., 1999). Guizhou province is well-known for its large amount of coal reserves, and these contain high arsenic concentration. In southwest of Guizhou, Emeishan basaltic rocks, which is believed to have close relationship with the forming of high-arsenic coal, contain 11 - 113 mg/kg of arsenic (Xie and Nie, 2007), although the basaltic rocks in earth crust are considered having low average arsenic concentration, around 2 mg/kg according to research of Turekian and Wedepohl (1961).

2.2.2.1. River and aquifer sediments.

Average As concentrations for sediments of water system in China is 9.1 mg/kg (Luo et al., 2010). This value is notably higher than world average river sediments which is 5 mg/kg (Martin and Whitfield, 1983). Changjiang River (Yangzte River) is the 3rd longest river in the world. The Changjiang River Basin drains an area of 1.8 million square km, 18.8% of China’s land area (CWRC, 2005-2013). Zhang et al., (1995) investigated 260 sediment samples from Changjiang River Basin and the average As concentration of raw sediments appears to be 7.6 mg/kg, while the fine grained parts (< 63μm) tends to be higher as 9.0 mg/kg. Huai River, another main river of China, has been reported to have an average As concentration in sediments of 12.6 mg/kg (9 - 21.8 mg/kg) (Luo et al., 2010). Studies carried out on the Yellow River have reported high arsenic abundance and notable cases of arsenic poisoning in various areas along the river. Fan et al. (2008) reported that As sediments concentrations in Shanyin (in Datong Basin area), Shanxi Province ranged from 3.09 to 26.25 mg/kg with the highest concentration found at depth of 28 - 34 m. Also within the Datong Basin, along Huangshui River and Sanggan River, Xie et al. (2008) collected aquifer sediment samples retrieved from 0 m to 50 m depths below ground level, and arsenic contents ranged from 4.9 to 118.2 mg/kg with mean value of 18.6 mg/kg. Hetao Plain located in the Great Bend of
Yellow River in Inner Mongolia is one of the representative arseniasis-affected areas in China. In Hangjinhouqi County, northwest of Hetao Basin, sediments contained As concentrations ranging from 6.8 to 58.5 mg/kg, reported by Deng et al. (2009). The As concentrations of sediments from the Huhhot Basin which locates close to Hetao Plain lie in the range 3 - 29 mg/kg (Smedley et al., 2003).

2.2.2.2. Soils and atmospheric input

Figure 2.2: Content distribution of arsenic in topsoil of Mainland China (from Weng et al. 2000, revised).
Baseline concentrations of As in soils are generally of the order of 5 - 10 mg/kg (Smedley and Kinniburgh, 2002). An average geochemical background level in world soils was set as 7.2 mg/kg by Boyle and Jonasson (1973). By analyzing 4095 soil samples from all over mainland China, Wei et al. (1991) investigated this geochemical background level for 61 elements. Table 2.1 shows As results in China compared with the As background levels for some other countries. Soil content for 95% of total samples was in the range of 2.5 - 33.5 mg/kg. Among different types of soil of China, regosol and mountain soils have relatively high As concentrations (around 16 mg/kg) and unsaturated siallitic soils have the lowest arsenic content 4 mg/kg. Based on the same dataset, Weng et al. (2000) studied the content distribution of As in Chinese topsoil (Figure 2.2). Arsenic content in soils tended to associate with calcium content in the north and with iron content in the south of China. While As correlation with Fe is well recognized due to the high affinity of secondary iron oxyhydroxides for arsenic oxyanion (Charlet and Poly, 2006; Charlet et al., 2011), the correlation with calcium is less frequent and could be linked to the substitution of As(III) in calcite (Roman-Ross et al., 2006; Bardelli et al., 2011). Compare Fig. 2.2 with Fig. 2.1, we found the content of distribution to be positively correlated to ore deposits.

The deposition of atmospheric arsenic may increase the arsenic content in aqueous system and soils slightly. Volcanic activities and eolian erosion of arsenic-containing minerals are natural processes which can release arsenic into the atmosphere. However, human activities are believed to play a more important role as source of arsenic air pollution. Fossil-fuel combustion for energy generation, mining and agricultural operations, such as biomass waste combustion, cause national wide problem both in urban and countryside areas. Combustion of coal is the principle source of China’s outdoor air pollution (Sheldon et al., 1992). China
relies on coal for 70% to 75% of its energy needs, consuming 1.9 billion tons of coal each year (Millman et al., 2008). Tian and Qu (2009) estimated atmospheric arsenic emission from coal combustion reached 1500 tons by China for year 2005. Atmospheric particles (PM2.5 and PM10) were analyzed for As concentration in some cities. As concentration in the air was 43.36 ng/m3 (11.98 - 82.55 ng/m3) in Taiyuan, 24.4 ng/m3 in Guangzhou and 0.32 ± 0.17 mg/m3 (0.07 - 0.79 mg/m3) in Beijing (Xie et al., 2006; Huang et al., 2007; Yang et al., 2012).

Table 2.1: Comparison between background concentrations of arsenic in soils in Mainland China and some other countries (Wei et al., 1991).

<table>
<thead>
<tr>
<th>Country</th>
<th>Range (mg/kg)</th>
<th>AMa</th>
<th>GMb</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mainland China</td>
<td>0.01-626</td>
<td>11.2</td>
<td>9.2</td>
</tr>
<tr>
<td>USA</td>
<td><0.1-97</td>
<td>7.2</td>
<td>5.2</td>
</tr>
<tr>
<td>Japan</td>
<td>-</td>
<td>9.02</td>
<td>-</td>
</tr>
<tr>
<td>UK</td>
<td>-</td>
<td>11.3</td>
<td>-</td>
</tr>
</tbody>
</table>

a: AM-Arithmetic mean

b: GM-geometric mean
2.3. Arsenic mobilization processes

2.3.1. Geogenic factors

Major processes responsible for observed concentrations of arsenic in surface and ground water include: mineral precipitation/dissolution, adsorption/desorption, chemical transformation, ion exchange, and biologic activity (Welch et al., 1988; Smedley and Kinniburgh, 2002). Ordinary solid phases containing arsenic around crustal abundance can give rise to high dissolved arsenic (0.05 mg/L) (Nordstrom, 2002).

Evaporation

In arid or semi-arid areas, use of groundwater is widespread due to lack of surface water. Extensive use of groundwater combined with high evaporation rate and low recharge rate leads to concentration of arsenic in groundwater, especially in low-lying places and closed basin where arsenic can hardly be flushed away by water flow. Studies on arsenic uptake by calcite and gypsum demonstrated that arsenic can be kept by accumulated salt contents (calcite and gypsum) in soil in saline area (Roman-Ross et al., 2006; Fernandez-Martinez et al., 2007). Rainfall or irrigation can release arsenic from those salts and then carry arsenic down into the subsoil and groundwater.

High pH

Adsorption and desorption reactions between arsenic and Fe, Mn and Al oxides and oxides and hydroxides surfaces are particularly important controlling reactions because those oxides are widespread in the hydrogeologic environment and arsenate adsorbs strongly to oxides and hydroxides surfaces in acidic and near-neutral-pH water (Dzombak and Morel, 1990; Waychunas et al., 1993). However, arsenate adsorption rapidly decreases in basic medium
pH value plays an important role in the desorption of arsenic, because of its effects on the species distribution of anions, surface charge of the arsenic-bearing oxides and hydroxides, and subsequent electrostatic forces between arsenate and solids (Xu et al., 2012). The study of Bhattacharya et al. (2006) suggested the volcanic ash as the probable source of groundwater As. Locally, elevated pH values linked to carbonate dissolution, cation exchange, and dissolution of silicates promote release of adsorbed As. In high pH zones As remains dissolved in groundwater. Some studies also reported arsenic release from different iron-bearing minerals, soils and sediments by desorption process as pH values become alkaline (Appelo et al., 2002; Smedley and Kinniburgh, 2002; Breit and Guo, 2012).

Geothermal

The release of arsenic from geothermal systems into surface and ground waters have been reported from several parts of the world. Arsenic concentrations in geothermal well fluids generally range from <0.1 mg/kg to 10 mg/kg. However, As concentrations of >20 mg/kg are not uncommon, at the other extreme. Most reservoir fluids are undersaturated with respect to arsenopyrite and other arsenic minerals (Ballantyne and Moore, 1988) and hence As leaching, rather than As precipitation, is predicted to occur in the reservoir. Hot springs, geysers and steam features with high As contents drain unimpeded into the nearest catchment system and contaminate shallow aquifer systems by natural upward movement of geothermal fluid and some other anthropogenic activities (Webster and Nordstrom, 2003; Aksoy et al., 2009). Dissolution of As oxide and orpiment, relevant to pH value, redox condition and fluid temperature, plays an important role in regulating arsenic mobility. Secondary minerals that form after the dissolution of Fe-As sulphides such as Fe-hydroxides exert a greater influence
on the mobility of arsenic in the geothermal environment (Pascua et al., 2006). Study of Winkel et al. (2013) reveal that where Fe-(hydr)oxides are not sufficiently abundant to act as major scavengers for arsenic, arsenic can be closely associated with calcite matrix in a CO$_2$-enriched environment.

Sulfide Oxidation

Arsenic-bearing minerals including arsenic-rich pyrite, arsenopyrite, orpiment, realgar and As-associated metal sulfides can release great amount of arsenic when the chemical environment has been changed. O$_2$-enriched environment leads to oxidation of these minerals followed by As mobilization. Insoluble As-bearing minerals are rapidly oxidized by exposure to atmosphere and then released soluble As(III) is carried by runoff and groundwater flow into surface and ground waters.

Reductive dissolution

Anaerobic microbial respiration, utilizing either sedimentary or surface-derived organic carbon, is one important process contributing to the mobilization of arsenic from host minerals, notably hydrous iron oxides (Charlet and Polya, 2006). Many studies have given evidences of arsenic release under reducing environments in presence of Fe-reducing bacteria. Burial of fresh organic matter, infiltration of fresh DOC and the slow diffusion of O$_2$ through the sediment lead to reducing conditions just below the sediment-water interface in lakes or in superficial groundwaters as abundantly described in SE Asia delta (Charlet and Polya, 2006; Fendorf et al., 2010). This encourages the reduction of As(V) and desorption from Fe and Mn oxides, as well as the reductive dissolution of As-rich Fe oxyhydroxides.
2.3.2. Anthropogenic factors

As a by-product of some human activities, arsenic can be added to natural waters by chemical industry, mining operations, and agriculture. Arsenical pesticide, industrial sewage/sludge and mining tailing have been reported as sources of arsenic and had contaminated groundwater and surface water via natural processes (e.g. oxidation of mine waste) or direct human manipulations, such as rainwater infiltration, irrigation, runoffs and sewage discharge. In addition to the chemical conditions of the As sources, the composition and states of the primary materials, treatment methods, storage design are influential as well (Breit and Guo, 2012).

2.4. High-As content in China waters - geogenic cases

2.4.1. Overview

One of the most pervasive problem afflicting people in rural area in China is inadequate access to clean water. By the end of 2010, the rural population with safe drinking water was 670 million, and only 54.7% of rural population had tap water (Ministry of Water Resources, PRC, 2011). Before 1962, residents mainly relied on shallow well water and surface water (Sun, 2004). Deeper wells were drilled after shallow well water was discovered to induce fluorosis and after surface water was shown to be polluted. Since chronic endemic arsenicosis was found in Taiwan in 1968 and reported in Xinjiang Province in Mainland China in the 1970s, more areas have been identified to be affected by arsenicosis via drinking water. Up to year 2012, endemic arsenicosis distributed over 45 counties in 9 provinces, while 19 provinces had the problem that arsenic concentration in drinking water exceeded water standard level (0.05 mg/L). In total, the recent official data from Ministry of Health PRC et al.
(2012) showed the population at risk reached to 1.85 million, less than 2.34 million which was reported by Xia and Liu (2004). Moreover, a systemic research was carried out on endemic arsenicosis affected and suspicious areas by China government during 2004 and 2010. There were 12,835 villages with a total population of around 1.25 billion under investigation. The result showed 844 villages with 697,000 people were exposed to high-arsenic drinking water (>0.05 mg/L) (Sun, 2011). Sun also gave the distribution of villages with high-arsenic drinking water (Table 2.2). Although in 2006, Ministry of Health PRC gave a revision of *Standards of drinking water quality* with permitted arsenic concentration as 0.01 mg/L instead of 0.05 mg/L as used in the past decades, it was considered as target rather than requirement (Ministry of Health of China and Standardization Administration of China, 2006). However, the new standards started to be subject to enforcement in July of 2012, which means more population would be taken into account if they have been exposed to drinking water with As concentration of 0.01 - 0.05 mg/L. Summary of documented cases of geogenic high-As groundwaters of China is shown in Table 2.3. Figure 2.3 shows documented areas with groundwaters containing high-As content above 0.05 mg/L. As shown in the Fig. 2.3, high-As groundwaters mainly appear in Zone I- i.e. in the north of China under arid or semi-arid climate.
Figure 2.3: Water resource distribution in China and comparison of map of documented high-As groundwaters and modeled map of probability of geogenic high-As groundwater (See abbreviations in Table 2.2.) (from Shen et al., 2005; Yu et al., 2007; Amini et al. 2008; Courrier International, 2009; Zhang et al., 2010).
Table 2.2: The distribution of villages with high-arsenic drinking water in rural areas of China (from Sun, 2011, revised).

<table>
<thead>
<tr>
<th>Province (abbreviation)</th>
<th>As content 0.05-0.1 mg/L</th>
<th>0.1-0.15 mg/L</th>
<th>0.15-0.5 mg/L</th>
<th>>0.5 mg/L</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Village number</td>
<td>Population</td>
<td>Village number</td>
<td>Population</td>
</tr>
<tr>
<td>Xinjiang (XJ)</td>
<td>184</td>
<td>164,040</td>
<td>33</td>
<td>36,200</td>
</tr>
<tr>
<td>Inner Mongolia (IM)</td>
<td>137</td>
<td>11,544</td>
<td>29</td>
<td>3165</td>
</tr>
<tr>
<td>Bintuan, Xinjiang</td>
<td>61</td>
<td>62,723</td>
<td>7</td>
<td>4667</td>
</tr>
<tr>
<td>Shanxi (SX)</td>
<td>48</td>
<td>73,994</td>
<td>22</td>
<td>22,139</td>
</tr>
<tr>
<td>Jilin (JL)</td>
<td>46</td>
<td>16,153</td>
<td>8</td>
<td>2604</td>
</tr>
<tr>
<td>Shandong (SD)</td>
<td>26</td>
<td>30,642</td>
<td>5</td>
<td>7489</td>
</tr>
<tr>
<td>Anhui (AH)</td>
<td>24</td>
<td>32,390</td>
<td>9</td>
<td>16,952</td>
</tr>
<tr>
<td>Henan (HA)</td>
<td>20</td>
<td>27,612</td>
<td>2</td>
<td>1893</td>
</tr>
<tr>
<td>Shaanxi (SN)</td>
<td>10</td>
<td>12,826</td>
<td>1</td>
<td>1100</td>
</tr>
<tr>
<td>Yunnan (YN)</td>
<td>8</td>
<td>10,048</td>
<td>5</td>
<td>13,488</td>
</tr>
<tr>
<td>Qinghai (QH)</td>
<td>6</td>
<td>4166</td>
<td>2</td>
<td>538</td>
</tr>
<tr>
<td>Gansu (GS)</td>
<td>6</td>
<td>4756</td>
<td>4</td>
<td>4501</td>
</tr>
<tr>
<td>Hubei (HB)</td>
<td>4</td>
<td>5940</td>
<td>2</td>
<td>3202</td>
</tr>
<tr>
<td>Jiangsu (JS)</td>
<td>1</td>
<td>1500</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Heilongjiang (HL)</td>
<td>1</td>
<td>1713</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Sichuan (SC)</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Total</td>
<td>582</td>
<td>46,047</td>
<td>129</td>
<td>117,938</td>
</tr>
</tbody>
</table>
Table 2.3: Summary of documented cases of geogenic high-As groundwaters of China.

<table>
<thead>
<tr>
<th>Province/Region</th>
<th>Concentration ranges (µg/L)</th>
<th>Aquifer type</th>
<th>Groundwater conditions</th>
<th>reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Inner Mongolia (Including Hetao Plain and Hubao Plain)</td>
<td>Up to 1740</td>
<td>Holocene alluvial and lacustrine sediments</td>
<td>Strongly reducing conditions, neutral pH, high alkalinity.</td>
<td>Deng et al., 2008; Deng, 2009</td>
</tr>
<tr>
<td>Xinjiang (Tianshan Plain)</td>
<td>40-750</td>
<td>Holocene alluvial plain</td>
<td>Reducing, deep wells (up to 660m) are artesian</td>
<td>Wang and Huang, 1994</td>
</tr>
<tr>
<td>Shanxi (Datong Basin)</td>
<td>105-1932</td>
<td>Quaternary sedimentary basin</td>
<td>Reducing, high pH (8.09), high concentration of phosphate and organic matters</td>
<td>Guo et al., 2003; Guo and Wang, 2005</td>
</tr>
<tr>
<td>Jilin and Heilongjiang (Songnen Plain)</td>
<td>Up to 152.4</td>
<td>Quaternary sedimentary basin</td>
<td>Reducing, high pH(8.0-9.3), high concentration of organic matters</td>
<td>Zhang et al., 2010</td>
</tr>
<tr>
<td>Ningxia (Yinchuang Plain)</td>
<td><10-177</td>
<td>Holocene alluvial and lacustrine sediments</td>
<td>Reducing and oxidizing, highest As level exists in reducing environment, pH (7.18-8.58)</td>
<td>Han et al., 2010</td>
</tr>
<tr>
<td>Kuitun, Xinjiang</td>
<td>Up to 880</td>
<td>Quaternary alluvial and lacustrine sediments</td>
<td>Reducing and oxidizing. Some tubewells water contain mainly As(V).</td>
<td>Wang et al., 2004; Luo et al., 2007</td>
</tr>
<tr>
<td>Qinghai (Guide Basin)</td>
<td><112-318</td>
<td>Artesian aquifer, metamorphic rocks and volcanic</td>
<td>Geothermal water (18.5-34.6 °C), high pH (>8).</td>
<td>Shi et al., 2010</td>
</tr>
</tbody>
</table>
While high-arsenic content in drinking water is widespread problem, it occurs only under special natural circumstances relating to geochemical environment and hydrological features. At least, two conditions are necessary: i) Abundant source of arsenic and ii) Arsenic transportation from the source to water and accumulation. Not all the areas which locate near the arsenic-contained minerals or rocks have arsenic contaminated problem. It is quite usual that one village is discovered to be with high-As content in water from wells at the same time the neighboring village has extreme safe water. Below, we will discuss some examples which exist in different areas of China and the main characteristics of them.

2.4.2. Different types of geogenic high-As waters

2.4.2.1. Oasis-like reducing/oxidizing water

Xinjiang Province is a very arid region and it is the place where arsenicosis was first reported in Mainland China. Kuitun, one of the arsenicosis affected cities, has annual rainfall of 160 - 185 mm while annual evaporation of 1800 mm (Wang et al., 1985). The affected areas in Xinjiang involve Dzungaria Basin on the north side of Tianshan Mountains in the west to Mamas River in the east, a stretch of ca. 250 km (Wang and Huang, 1994). According to a recent report (Sun, 2011) and to the map given by Shen et al. (2005), the south side of Southern Tianshan Mountains and the south side of Altai Mountains were areas exposed to high-As drinking water. Wang (1984) found As concentrations up to 1.2 mg/L in groundwaters from this province. Most of arsenicosis areas in Xinjiang are low-lying lands with relatively low altitude. Although some researches believed in that the high-As groundwater was under reducing environment in Xinjiang, one research did analysis water samples which had As level above 0.6 mg/L and found only As(V) in these ground waters (Wang et al., 2004).
2.4.2.2. Geothermal waters.

Hot springs with elevated As concentration have been reported in several parts of China, including geothermal zones of Guide County of Qinghai Province, Rehai and Ruidian of Yunnan Province, Tibet and Taiwan.

Guide County of Qinghai is one of the areas which are suffering serious endemic diseases. Both fluosis and arsenicosis exist in Guide County, affecting around 590,000 population. Geothermal water (18.5 - 34.6 °C) contains 0.32 - 4.57 mg/L fluoride and 0.112 - 0.318 mg/L arsenic. It’s considered that the sources of arsenic are metamorphic as well as volcanic rocks in the north part of Guide Basin. The concentrations of arsenic were found to be positive associated with water depth and temperature of thermal water. The distributions of high-As and high-F groundwater had the same pattern as the abnormal geothermal regions (Shi et al., 2010).

Several water samples from hot springs in Rehe and Ruihai region of Yunnan were investigated. Almost all the hot springs water had pH value above 7.9 except one spring which had a pH of 3.5. The alkaline thermal waters contain arsenic ranging from 0.083 mg/L to 687 mg/L while the single acidic spring water had only 0.0436 mg/L of arsenic. Only inorganic arsenic had been found in those samples. The environment of those hot springs could be oxidizing and reducing as well. Four of eleven springs had As(V) as the dominant specie and other samples had considerable concentration of As(III) with the highest ratio up to 91% for As(III)/Total As (Liu et al., 2009).

2.4.2.3. Natural mineral waters

The arsenic contamination of mineral water in Hexigten Banner was first discovered in 1979, when more than 20 student campers who had done their intern exploration in the area ended
up getting sick because of toxic spring water they had drunk in mountain area. After they were diagnosed as acute arsenic poisoning cases, local disease control and prevention centers carried out sampling and analysis in surrounding areas. Arsenic concentrations up to 2.43 mg/L were found in mountain spring water and arsenic content in groundwater ranged from 19.8 to 82.2 µg/L. Most of arsenicosis-endemic villages were located within this mountain area in valleys. Arsenic was derived from large outcrops of FeAsS, Zn and Pb ores distributed throughout the mountains where large mine tailings were frequently found (Ministry of Health of Inner Mongolia, 2009; Zhang et al., 2010).

2.4.2.4. Reducing environments

Irrigated Hetao Plain and Hubao Plain in Inner Mongolia

The Hetao Plain with an area of 13,000 km² is located in the western region of Inner Mongolia, bounded by the Yin Mountain in the north, by the Yellow River in the south, by Ulan Buh (Wulanbuhe) desert in the west, and by Ulansuhai Nur Lake (Wuliangsuhai) in the east. In the late Jurassic, a fault basin located in the northwest of the Hetao plain was formed. Lacustrine sediments with highly reducing conditions were formed in the closed basin. This region has groundwaters with high dissolved concentrations of arsenic (Yang et al., 2008). Concentrations up to 1.74 mg/L have been found in the groundwater in Hangjinhouqi, a county locating in the west part of Hetao Plain (Deng, 2008). Deng et al. (2009) reported results on arsenic concentrations and speciation in water samples collected in Hangjinhouqi, with an arsenic concentration ranging from 0.076 mg/L to 1.09 mg/L and speciation dominated by As(III): the As(III) to the total soluble As ratio ranging from 84% to 99%.

Hubao Plain lays in the east side of Hetao Plain and has similar geological structure. 74 groundwater samples were collected from chronic endemic arsenic poisoning areas around
Hubao Plain in 1998 and 1999 respectively for water quality analysis. The results showed that high arsenic samples (>0.05 mg/L, As(III)/Total As = 82%) had low average levels of dissolved oxygen (0.0 mg/L) and low Eh value (39 mV) (Zhang et al., 2002). Lin and Tang (1999) also reported As-rich groundwater samples (As content: 0.42 mg/L), with 100% As(III) to total As ratio.

Datong Basin-Shanxi

Arsenicosis was revealed in early 1990s in Shanxi Province after local residents started to use water from deep wells (20 - 50m). The geochemical features of Datong Basin are close to those found in Hetao Plain. The analysis of 66 groundwater samples collected from Shanyin area of Shanxi Province showed that 23 of them had high-As content (0.105 - 1.932 mg/L) and they have relative high As(III) to total As ratio ranging from 50% to 80.4% (Guo et al., 2003). Xie et al. (2011) identified the sources of arsenic in the shallow aquifers of Datong Basin through a thorough mineralogical, geochemical and zircon U–Pb dating study. Instead of pyrite which had arsenic content <1 mg/kg, Fe oxides (with up to 2000 mg/kg of arsenic) were shown to be the major mineral phases of arsenic enrichment in Datong bedrocks. The sedimentary rocks including coals were the most probable sources of arsenic in aquifer sediments according to zircon ages and geochemical data. The same group (Xie et al., 2008) reported that the aqueous arsenic levels were strongly depth-dependent in the Datong Basin and that the high arsenic concentrations were found at depths between 15 m and 60 m, with a maximum concentration equal to 1.82 mg/L. The hydrochemical characteristics of high arsenic groundwater from the study area indicated that the mobilization of arsenic was related to reductive dissolution of Fe oxides/oxyhydroxides and/or desorption from the Fe oxides/oxyhydroxides at high pH (above 8.0).
2.4.3. Prediction of geogenic potential As-affected groundwater

Statistical models based on the statistical relationship between As concentrations and relevant explanatory variables such as geology, climate, topography or soil organic matter content have recently been developed (Amini et al., 2008; Rodríguez-Lado et al., 2008; Winkel et al., 2008). Some researchers started to use logistic regression to assess the probability that As concentrations exceed a pre-defined threshold (Lee et al., 2009; Twarakavi and Kaluarachchi, 2006; Winkel et al., 2011). Amini et al. (2008) used a large databank of groundwater arsenic concentration from around the world as well as digital maps of physical characteristics such as soil, geology, climate, and elevation to model probability maps of global arsenic contamination. The relative significance of the variables in the arsenic model showed: The occurrence of arsenic under reducing aqueous conditions was most closely correlated to climatic, geological, and drainage parameters while under high-pH/oxidizing aqueous conditions it was most closely correlated to soil parameters (clay and silt), and drainage condition. Maps of modeled global probability of geogenic arsenic contamination in groundwater for reducing and high-pH/oxidizing conditions were delineated respectively. Nearly all the areas with high probability of arsenic occurrence in China groundwater were found in oxidizing conditions. The China part of their maps is compared with published and documented As-affected area in Figure 2.3. Modeled map agreed well with the already established high As contaminated areas. However, documented high As regions such as Hetao Plain and Datong Basin were actually found to be under reducing conditions rather than predicted oxidizing conditions. Despite the moderate accuracy on the groundwater types, the map could still be used as a reference to investigate unknown areas, in order to prevent mass intoxication via groundwater with elevated As concentration.
Targeting the Shanxi Province, Zhang et al. (2012) applied stepwise logistic regression to analyze the statistical relationships of a dataset of As concentrations in groundwaters with some environmental explanatory parameters, where most of As investigations in this province focused on the Datong and Taiyuan Basins. They identified some environmental parameters are closely related to the distribution of high As concentrations, namely i) Holocene sediments; ii) Topographic Wetness Index; iii) hydrological characteristics; iv) Gravity and (v) Remote sensing information.

2.5. High-As content in China waters - anthropogenic cases

Table 2.4 gives a list of incidents of drinking waters polluted by industry in China in the last decade and three case studies were discussed below.

Table 2.4: Cases of drinking water source polluted by human activities in China.

<table>
<thead>
<tr>
<th>Province/Region</th>
<th>Polluted water type</th>
<th>Time</th>
<th>Contamination source</th>
<th>As level in polluted water (mg/L)</th>
<th>Notes</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dushan, Guizhou</td>
<td>Duliu River</td>
<td>2007</td>
<td>Sulfuric acid plant</td>
<td>Up to 14.2</td>
<td>65 poisoned</td>
<td>Chen et al., 2010</td>
</tr>
<tr>
<td>Chenxi, Hunan</td>
<td>Ground Water</td>
<td>2008</td>
<td>Sulfuric acid plant</td>
<td>Up to 19.5</td>
<td>17 poisoned</td>
<td>Chen et al., 2010</td>
</tr>
<tr>
<td>Hechi, Guangxi</td>
<td>Ground Water</td>
<td>2008</td>
<td>Smelter</td>
<td></td>
<td>15 poisoned</td>
<td>Chen et al., 2010</td>
</tr>
<tr>
<td>Yunan</td>
<td>Yangzonghai Lake, freshwater lake</td>
<td>2008</td>
<td>Chemical plants</td>
<td>> 0.1</td>
<td>26,000 threatened</td>
<td>Liu, 2009; EPA, Yunnan, 2008-2010; Wang et al., 2010</td>
</tr>
<tr>
<td>Henan</td>
<td>Dasha River,</td>
<td>2008</td>
<td>Sulfuric acid</td>
<td>Up to 2.56</td>
<td>Plant</td>
<td>Peoples Court of</td>
</tr>
</tbody>
</table>
Minsheng River plant discharge with As level up to 445mg/L Minquan County, 2010

<table>
<thead>
<tr>
<th>Location</th>
<th>Type</th>
<th>Year</th>
<th>Industry</th>
<th>Number Affected</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Xichang, Sichuan</td>
<td>Well water</td>
<td>2006</td>
<td>Copper Smelter</td>
<td>17 poisoned</td>
<td>Chen et al., 2010</td>
</tr>
<tr>
<td>Yingde, Guangdong</td>
<td>Water channel</td>
<td>2005</td>
<td>Mining industry</td>
<td>34 poisoned</td>
<td>Chen et al., 2010</td>
</tr>
<tr>
<td>Jiangsu and Shangdong</td>
<td>Picang flood-diversion channel</td>
<td>2009</td>
<td>Chemical plants</td>
<td>Up to 1.987</td>
<td>Ling et al., 2009</td>
</tr>
</tbody>
</table>

Mining and smelting activities

Arsenic is present in sulfide minerals associated with Au, Cu, Pb, Zn, Sn, Ni, and Co mineral ores and can be released in the water during the slow oxidation of As-rich pyrite waste tailings, or in the air during the smelting process. Up to 70% of total arsenic is abandoned as tailing by mine selections process. Only 10% of total arsenic is recovered while the remaining part is kept in intermediate material or found in solid waste residue and wastewaters (Wei and Zhou, 1992).

Acute poisoning has often occurred in China because of mine tailings. For example, in 1961, 308 people were poisoned and 6 were killed in Xinhua, Hunan Province. Arsenic-containing (5% - 13%) tailings from antimony mine were disposed close to drinking water tube well and contaminated the water (Yang, 1992). More recently, i.e. in the latest decade, this type of disaster happened quite often as a result of booming mining and smelting activities. In Hechi, Guangxi Province, arsenic acute poisoning happened at least 3 times between 2001 and 2008, with an increasing number of smelters being built in this region, famous as a non-ferrous
Chapter 2

metal-rich-area. The contamination was usually triggered by heavy rains or floods which flushed the waste water from smelter treatment tanks directly into surface waters. On the other hands, too many plants have been running without or under poor supervision from government. The lack of waste treatment system led to several problems as well.

Pesticide use

Inorganic arsenicals, such as lead, calcium, magnesium and zinc arsenate, zinc/sodium arsenite, Paris green (acetoarsenite) or organic arsenicals have been used extensively as agricultural chemicals. Those chemicals are used as herbicides, desiccants, antiseptics, toxic rat poisons, oncomelania hupensis poisons and so on. Because of their highly toxicity, many pesticides including arsenical products have been banned by China government. Although arsenical pesticides mainly draw some concerns related to soil pollution, it could also affect the quality of drinking water directly. It was reported that well water had been contaminated by pesticide and the concentration of As was around 1.15 mg/L in Yangshan, Anhui Province (Li et al., 2006).

Zhang and Xiao (1993) revealed that arsenic concentration measured in tube well waters was positively related to rainfall. The tube well was believed that have been contaminated by pesticide waste disposed around the well. Tube well water samples contained 0.008 - 0.044 mg/L arsenic in dry seasons and 0.03 - 2.00 mg/L of arsenic in rainy seasons. Arsenic concentration in soils and vegetables were studied as well. Soils contain 2.5 - 49.5 mg/kg at 40 cm depth and 7 - 97.5 mg/kg at 80 cm depth. The highest level of arsenic (5 mg/kg) was found in roots of vegetables.
Chemical Industries

Sulfuric acid is produced by oxidation of sulfur rich ores. The use of As-bearing sulfide minerals as raw material in sulfuric acid manufactures is all-pervading in China chemical industries. Illegal use of low-class mineral ores that contain large amounts of arsenic, lack of safe waste treatment system and illegal discharge of waste waters into surface water made pollution incidents inevitable to happen. In the single year 2008, Heishui River of Guizhou, Groundwater of Chenxi, Hunan and Yangzonghai Lake of Yunnan were all polluted by sulfuric acid production plants. The Yangzonghai Lake is an exemplary case. Its waters had arsenic concentration less than 0.006 mg/L prior to September 2007. A contamination was noticed in April 2008 and resulted in arsenic concentration of lake water above 0.1 mg/L, according to analysis results of samples collected in July, September and October 2008 (Liu, 2009; EPA, Yunnan, 2008-2010; Wang et al., 2010).

2.6. Conclusions and recommendations

This review has attempted to list the current available information on the occurrence and distribution of As contamination in China drinking water. The current facts related to drinking water contamination by arsenic in China appear alarming: i) the problem is widespread throughout China; ii) a large population has been exposed to drinking water with high level of geogenic As; iii) an increasing number of sudden and accidental As pollution events is taking place due to human activities.

Geogenic high As water are mostly found in arid or semi arid North of China. It results from: i) use of groundwater as water supply is more common in the north, where As-rich groundwaters are more likely to be discovered, than in the south, and ii) climate, geochemical and hydrological conditions are favorable for formation of high-As water. Although natural
arsenic resource is abundant and high-As in drinking water is widespread in China, the problem only occurs when certain geochemical and hydrological conditions are met. There are some common features among those cases. High-As spring or groundwater are found in closed basins where As is hard to be flushed away or be diluted. Affected areas are usually low-lying zones with high pH value (≈8.5), which is favorable for As being released and exchanged from minerals or rocks (Charlet and Polya, 2006). Reducing type As-rich groundwater bodies are mainly found in the north of China, under arid or semi-arid climate.

In contrast, in south of China, arsenic existence in drinking water is mainly due to human activities. Large amount of As ore reserves and As-containing mineral mines are located in the south where extensive mining activities and chemical industries increase the likelihood of As pollution accidents. Surface water in the south are contaminated by industrial discharge or runoff containing high As content from industries, triggered by heavy rains and floods in those subtropical or tropical zones.

Almost all arsenic-contamination cases were discovered thanks to poisoning accidents. It can be foreseen that under the current situation of water scarcity people will exploit more and more natural water for drinking or other uses. In order to ensure water safety as well as to prevent further environmental disasters, the government needs to conduct effective water quality monitoring and management. For those areas which have been identified as As-affected, continuous water quality test should be carried out on-site. Arsenic level as well as arsenic speciation should be examined.

Previous investigations of a number of affected sites in China have given people a better understanding of the As-contamination problem. However, research focused mainly on heavily contaminated water bodies with water As concentrations above 0.05 mg/L, and areas
of groundwater with lower concentrations (0.01 - 0.05 mg/L) of arsenic will call out for
government and researchers attention in the near future. Low concentration of arsenic could
be dangerous if there’s a high ratio of As(III) to total As. Knowledge on the speciation of
arsenic is gaining increasing importance because toxicological effects of arsenic are
connected to its chemical form and oxidation states. To have a better view of the danger of
As-containing water and to give more comprehensive information to the exposed public, the
analyses should not be restricted on the determination of total As. Arsenic speciation is also
important and necessary to be measured.

Besides, more researches should focus on understanding the occurrence, origin and
distribution of arsenic. Government should pay more attention to industrial and agricultural
activities which lead to As pollution. More technical supports should be given to mining or
chemical plants to deal with sewage and sludge storage and waste treatment. Supervision
departments should increase the frequency of sampling and analyzing of the discharge from
industrial plants.
Chapter 3

Novel Chitosan Goethite Bionanocomposites

Bead for Arsenic Remediation

Jing He, Fabrizio Bardelli, Antoine Gehin, and Laurent Charlet

Under submission to Environmental Science & Technology
3.1. Introduction

One of the most pervasive problems afflicting people throughout the world - water scarcity - has increased people’s dependence on groundwater resources in many parts of the world. During the past two decades, arsenic poisoning via groundwater has become a worldwide issue (Nordstrom, 2002). Some of the best-documented and most severe cases of arsenic contaminated aquifers have been found in Asia (e.g. parts of Bangladesh, China, India, Nepal) and South America (e.g. Argentina, Mexico) (Aureli, 2006; He and Charlet, 2013; Ravenscroft et al., 2009). Among common possible oxidation states (-3, 0, +3 and +5) inorganic arsenate (As(V)) and arsenite (As(III)) pose the greatest threat to human health, since they are the main species occurring in natural waters and are the most toxic forms. In particular, arsenite is more toxic than arsenate, due to a higher mobility in the environment and possible passive cell uptake via aquaporins. To address this public health threatening problem, numerous methods have been developed focusing on As-rich water decontamination (Charlet and Polya, 2006; Mohan and Pittman, 2007).

Iron hydroxides have a high sorption affinity toward both As(V) and As(III) over a wide range of pH values (Dixit and Hering, 2003). They are important constituents of soils and sediments therefore they play an important role in regulating arsenic concentrations in natural waters. Consequently, many water treatment industries use iron oxides/hydroxides adsorbents. However, most reactive iron oxides/hydroxides are fine powders, and are difficult to separate from solution after completion of the adsorption process. To overcome this limitation, plenty of research has studied polymer - iron oxide/hydroxide hybrid compounds (Rorrer et al., 1993; Wang et al., 2009; Zou et al., 2012). The hybrid materials have macroscopically larger sizes so that it is less difficult to separate them by filtration procedures in water treatment
manipulation. Also, polymeric coating may stabilize the iron oxide/hydroxide by increasing repulsive forces to balance the magnetic and van der Waals attractive forces acting on the nanoparticles (Wu et al., 2008). Chitosan, being a low-cost, biodegradable and non-toxic biopolymer, has been used as one of possible coating polymers for fabricating iron oxide/hydroxide-polymer composites (Ngah et al., 2011). Besides the contribution of iron oxide/hydroxide, chitosan can function as arsenic adsorbent independently. The intrinsic pK of chitosan amine groups are close to 6.5, favoring their protonation and resulting in an enhanced affinity to arsenic anions in acidic solutions (Chassary et al., 2004). However, since the low “porosity” of chitosan polymer contributing to low ion diffusivities constrains the diffusion process of arsenic anions, most studies have made use of chitosan synthesized from the gel bead method, which allows an expansion of the polymer network, enhancing anion diffusion and improving access to the internal sorption sites (Guibal et al., 1998; Jin and Bai, 2002). To fabricate composite beads, some investigations treated chitosan beads with $\text{FeCl}_3\cdot 6\text{H}_2\text{O}$ solutions or hydrated ferric oxides suspensions, or conversely started with dispersing iron oxides into chitosan solution, followed by the bead formation step (Dias et al., 2011; Guo and Chen, 2005; Qiu et al., 2012; Rorrer et al., 1993). Chemical cross-linking of chitosan with glutaraldehyde is usually employed to enhance the mechanical properties of the polymer beads by exploiting a Shiff’s reaction between aldehyde and the amine groups (Nedelko et al., 2006).

In this study, we employed a novel method to synthesize a chitosan-iron hydroxide composite, namely chitosan goethite bionanocomposites (CGB) beads, making no use of toxic glutaraldehyde. Goethite nanoparticles and chitosan gel-beads were prepared simultaneously, leading to a homogenous distribution of goethite nanoparticles in the chitosan network.
Goethite and chitosan develop cross-links providing enhanced mechanical property in term of compressive strength, without need of further treatments by toxic chemical compounds. CGB beads were characterized by Mössbauer Spectroscopy and Field Emission Scanning Electron Microscopy (FE-SEM). Batch sorption and kinetic experiments were performed to assess the sorption of As(III) and As(V) onto CGB. The mechanism of As(III) and As(V) uptake onto CGB was investigated by Synchrotron Radiation X-ray Absorption Spectroscopy (SR-XAS). The diffusion of As(III) and As(V) from solution into the porous solid phase was monitored by micro X-ray fluorescence (μXRF) and micro X-ray Near Edge Spectroscopy (μXANES).

3.2. Experimental Section

3.2.1. Chemicals.

All solutions were prepared with Milli-Q water (resistivity: 18.2 Ω cm). High molecular weight chitosan (average MW: 342500 g·mol⁻¹), sodium meta-arsenite (NaAsO₂, 99%), sodium arsenate (Na₂HAsO₄·7H₂O, 98.5%), iron(III)-chloride hexahydrate (FeCl₃·6H₂O), sodium hydroxide (NaOH, 98%) and hydrochloric acid (HCl, 37%) were purchased from Sigma-Aldrich. Acetic acid (100%) was from Merck.

3.2.2. Synthesis of CGB.

Chitosan acetic acid solution, was prepared by adding 30 g of high molecular weight chitosan into 1L of acetic acid (1%, v/v). The solution was constantly stirred at 50 °C until chitosan powder was completely dissolved and then cooled down to room temperature. Ferric solution was prepared by dissolving 25.2 g of FeCl₃·6H₂O into 200 mL of acetic acid (1%, v/v). A ferric acetic acid mixture (200 ml) (c[FeCl₃] = 0.466 mol L⁻¹, 1% (v/v) of acetic acid) was gently poured into the chitosan solution, and the mixture was stirred until it became
homogenous. The resulting solution was pumped through a fixed pipette tip (1 ml) drop by drop into a chitosan casting bath containing 0.5 mol/L NaOH (Figure 3.1). The gel ferric chitosan beads were kept for 24 h in the NaOH bath and then washed with Milli-Q water until the residual water reached a neutral pH. Finally beads were separated from solution and air dried at 25 °C.

Figure 3.1: Apparatus for casting CGB beads.

3.2.3. Characterization.

The CGB beads size distribution was measured by a Mastersizer - 2000 (Malvern) and the pore volume was tested by mercury intrusion using PoreMaster® Series Porosimeters - Automatic Pore Size Analyzers. CGB mechanical properties were investigated with an ‘Adamel Lhomargy’ with a 500 N load cell. During the test procedure one CGB sample was placed between the specimen stage and upper punch and loaded at a constant rate of 1 μm/s until failure (Fig. 3.2). The force (crushing strength, FC) and the CGB deformation (DdC) were recorded until failure happened.
Figure 3.2: Experimental scheme of mechanical property test.

CGB iron (nano)particles were investigated (i) by zero-field 57Fe M"{o}ssbauer measurements at room temperature (RT, 300 K) and liquid nitrogen temperature (LNT, 77 K) using a bath cryostat in transmission mode with a constant acceleration driving unit using a 57Co/Rh γ-ray source. The spectrometer was calibrated using a standard Fe foil and the isomer shift values were expressed with respect to this standard at 300 K. The fitting of the spectra was performed using the MOSFIT program (MOSFIT: Teillet and Varret, unpublished program). This fitting model used a discrete number of independent quadrupolar doublets of Lorentzian lines where the full width at half maximum Γ (mm.s$^{-1}$), the isomer shift δ (mm.s$^{-1}$) and the quadrupole splitting ΔE_Q (mm.s$^{-1}$) were refined using a least-squares fitting procedure. The
relative uncertainty of the hyperfine parameters was assumed to be near 5%. The proportions of the different Fe species were estimated from the relative respective absorption area, assuming thus the same values of f Lamb Mössbauer recoilless factors; and (ii) by Field Emission Scanning Electron Microscopy (Nova™ NanoSEM 230) using an accelerating beam at a voltage of 5 kV (magnification: 80000×).

CGB solid samples (10.9 mg) were digested by 4 ml of HNO$_3$ and HCl (1:3) (aqua regia) in teflon digestion tube at 70 °C for 500 min in Mid Temperature Graphite Digestion Blocks, DigiPREP Block Digestion Systems (SCP SCIENCE, Canada). After digestion, the residue was diluted to 30 ml by Milli-Q water. The resulting solution was filtered through a 0.45 μm microporous membrane into a plastic bottle ready for ICP-OES analysis.

3.2.4. Batch Sorption Isotherm

CGB beads were added to (i) two arsenate solutions (prepared with Na$_2$HAsO$_4$) at pH 5 and pH 9 with initial As concentrations ranging from 0.069 to 0.84 mmol/L, and (ii) arsenite solutions (NaAsO$_2$) at pH 5 and pH 9 with initial As concentrations ranging from 0.093 to 1.2 mmol/L (2.5 g/L, CGB adsorbent to arsenic adsorbate ratio). The adsorption studies were performed at 298 K under a constant 200 rpm shaking for 120 h. Supernatants were collected by pipette prior to analysis. Three equilibrium isotherms, namely Langmuir, Freundlich, and Redlich-Peterson, were used to model the experimental data.

The theoretical Langmuir isotherm is often used to describe adsorption of a solute from a liquid solution onto a single type of surface site as (Ho et al., 2002; Langmuir, 1918)
\[q_e = \frac{q_m K_a C_e}{1 + K_a C_e} \] ; \hspace{1cm} (3.1)

where \(q_e \) is the equilibrium adsorption capacity (mmol/g), \(C_e \) is the equilibrium liquid phase concentration (mmol/L), \(q_m \) is the maximum adsorption capacity (mmol/g), \(K_a \) is adsorption equilibrium constant (L/mmol). The Freundlich isotherm (Freundlich, 1906) is an empirical isotherm that can be used to model the adsorption from dilute solutions and can be thought of as the result of a log-normal distribution of Langmuir parameters, \(K_a \) (Sposito, 1984). The ordinary adsorption isotherm is expressed by the “Freundlich” equation:

\[q_e = K_F C_e^{\frac{1}{n}} \] ; \hspace{1cm} (3.2)

where \(C_e \) is the equilibrium concentration in the solution, (mmol/L), \(q_e \) is the equilibrium adsorption capacity, (mmol/g), \(K_F \) and \(1/n \) are empirical constants. \(K_F \) is the adsorption value, the amount adsorbed at unit concentration (1 mmol/L). It is a characteristic of both the adsorbent and the adsorbate. The Redlich-Peterson isotherm contains three parameters and incorporates the features of both the Langmuir and the Freundlich isotherms (Redlich and Peterson, 1959). It is parameterized as follows:

\[q_e = \frac{A C_e}{1 + B C_e^g} \] ; \hspace{1cm} (3.3)

It has three isotherm constants, namely \(A, B, \) and \(g \) with \(0 < g < 1 \).

Due to the inherent bias resulting from linearization, alternative isotherm parameter sets were determined by non-linear regression. This provides a mathematically rigorous method for determining the isotherm parameters using the original form of the isotherm equation (Ho, 2004; Seidel and Gelbin, 1988). To compare the three isotherms, a trial-and-error procedure was applied to obtain the isotherm parameters. We used an optimization routine to maximize
the coefficient of determination r^2 between the experimental data and isotherms (Ho, 2006; Ho and Ofomaja, 2005).

The coefficient of determination r^2 is defined by:

$$r^2 = \frac{\sum (q_m - \overline{q_e})^2}{\sum (q_m - \overline{q_e})^2 + \sum (q_m - \overline{q_e})^2};$$ \hspace{1cm} (3.4)

where q_m is the equilibrium capacity obtained from the isotherm model, q_e is the equilibrium capacity obtained from experiment, and $\overline{q_e}$ is the average of q_e.

3.2.5. Kinetic Experiment.

For each experiment, 0.2 g of CGB beads were added into 0.1 L arsenate solution (Na$_2$HAsO$_4$, 0.066 mmol/L, pH=7) for 0 to 3000 min or into 0.1 L arsenite solution (NaAsO$_2$, 0.082 mmol/L, pH=7) for 0 to 10080 min, both at 298 K. At fixed time intervals, 2 ml of solution was collected using a syringe attached with a 0.2 μm pore size filter. Kinetics data from our experiments were fitted with a pseudo-second-order kinetic model to estimate the rate constants, initial sorption rates, and arsenic sorption capacities on CGB (Ho and McKay, 1999; Ho and McKay, 2000).

All the supernatant samples were analyzed by Inductively Coupled Plasma Optical Emission Spectrometers (ICP-OES) (Varian 720-ES, Varian, Inc.) to determine the arsenic and iron concentrations and evaluate the release of iron during the sorption process, respectively (detection limit: As: 1 μg/L; Fe: 0.1 μg/L). Further filtration by 0.45 μm microporous membrane or centrifugation did not induce changes in the total aqueous concentrations.

Second-order kinetics
The sorption was represented by the equation:

\[
\frac{dq_t}{dt} = k(q_e - q_t)^2; \tag{3.5}
\]

where \(k \) is the pseudo-second-order rate constant. For boundary conditions \(t = 0 \) to \(t = \tau \), and \(q_t = q_e \), where \(q_e \) and \(q_t \) are the sorption capacity at equilibrium and at time \(t \), respectively (mmol/g). The integrated form of the equation is:

\[
\frac{1}{q_e - q_t} = \frac{1}{q_e} + kt; \tag{3.6}
\]

which can also be written as:

\[
q_t = \frac{t}{(1/kq_e^2) + (t/q_e)}; \tag{3.7}
\]

or in the linear form:

\[
\frac{t}{q_t} = \frac{1}{h} + \frac{1}{q_e}t; \tag{3.8}
\]

where \(h = kq_e^2 \) can be regarded as the initial sorption rate as \(t \) approaches 0.

3.2.6. Effect of CGB dose on residue arsenic level

Different doses of CGB beads (0.5 g – 5.5g CGB/ 1L arsenic solution) were added to arsenate and arsenite solutions at pH 7 with two initial As concentrations 5 mg/L and 1 mg/L (0.067 mmol/L, 0.013 mmol/L), respectively. The adsorption processes were performed at 298 K under a constant 200 rpm shaking for 120 h. Supernatants were collected by pipette prior to analysis.
3.2.7. Leaching Test

Arsenic and iron concentration of all the aqueous samples (initial and final solutions) from the isotherm and kinetic study were measured by ICP-OES. All the calibration and sample solutions were prepared with 2% HNO$_3$. After the adsorption, no iron could be detected in the samples. The result shows that no iron/goethite was released into the solution during the adsorption.

3.2.8. Bulk XAS

Arsenic-loaded CGB samples for XAS measurements were prepared by introducing 1g CGB beads into 40 ml arsenic solution (7 mmol/L arsenate or 5.6 mmol/L arsenite solution at pH = 5 and pH = 9). After 72h of sorption process at 298K in an anaerobic glove box, the beads were separated from the solutions. The supernants of all solution were measured by ICP-OES to evaluate the adsorbed quantities of As onto CGB. The adsorbed quantities of the arsenate-adsorbed beads were 0.113 mmol/g, at pH=5 and 0.052 mmol/g, at pH=9, and that of the arsenite-adsorbed beads were 0.151 mmol/g, at pH=5 and 0.156 mmol/g, at pH=9. The As-loaded samples were dried and ground in the glove box, and were kept in liquid nitrogen until the measurements at the synchrotron facility. XAS measurements at the As K-edge (11.867 keV) were performed at the European Radiation Synchrotron Facility (ESRF, Grenoble, France) using the bending magnet French absorption spectroscopy beamline (FAME-BM30B) (Proux et al., 2005; Proux et al., 2006). An As(III) reference (As$_2$O$_3$) was placed behind the samples and measured along each energy scan for accurate energy calibration.
The XAS spectra were recorded in fluorescence mode using a high-throughput 30-elements solid state germanium detector (Canberra, St Quentin Yvelines, France). The spectra of the As reference compounds were acquired in transmission mode using two ionization chambers to measure the incoming and transmitted photons. The storage ring was operated with a ~200 mA current. Two Rh-coated mirrors for efficient harmonics rejection, collimation, and vertical focusing of the beam are located up and down stream the monochromator with respect to the beam direction. The beam energy was selected using a Si (220) double-crystal monochromator. A sagittal focusing system provided a beam intensity of 10^{10} photons·s$^{-1}$ at 12 keV, and a beam size on the sample of approximately $300 \times 200 \mu$m (H × V). At the working energy and conditions, the resolution, which was equal to the energy sampling, was of ~0.5 eV. XANES spectra were background subtracted, normalized, and then the absorption edge energy of each ‘internal’ As(III) reference spectrum was shifted to match the As$_2$O$_3$ absorption edge.

Structural parameters were obtained from shell fitting following standard procedures for data reduction and analysis (Lee et al., 1981). The FitEXA code (Meneghini et al., 2012; Monesi et al., 2005) was used for least square minimization. Fits were performed in the wave vector space up to $k = 12$ Å$^{-1}$, without Fourier filtering. Atomic clusters of the reference compound structures centered on the absorber atoms were calculated using the ATOMS code (Ravel, 2001), and were used as starting points for refinements. The FEFF8 code (Ankudinov et al., 1998) was used to calculate EXAFS theoretical amplitude and phase photoelectron scattering functions. Uncertainties on refined parameters were calculated using the MINOS subroutine from the MINUIT package (James and Roos, 1975), which takes into account the correlation between free parameters.
3.2.9. μXANES and μXRF

As-loaded CGB samples collected from kinetics experiments at 1.5h and 72h were cut into 40 μm thick cross-sections using a cryo-microtome (Shandon Cryotome™ SME Cryostat, Thermo Scientific). μXRF analyses were performed at the DiffAbs beamline at the Soleil synchrotron radiation facility (France). An excitation energy of 12.0 keV was selected using a Si (311) double crystal monochromator, and a beam spot size of 10 × 10 μm² was achieved using a Kirkpatrick-Baez mirror system. The X-ray fluorescence spectra were recorded with a Si (Li) detector. The μXRF maps were processed with PyMCA 4.4.6 software (Sole et al., 2007). Based on the distribution of As and Fe, points of interest were selected for μXANES analysis at the As K-edge in the 11.8-12.0 keV range with 3s integration time per energy point. NaAsO₂ and Na₂HAsO₄ · 7H₂O (Alfa Aesar) were also measured and used as As(III) and As(V) references. Background subtraction and normalization of the XAS spectra were performed using the IFEFFIT package (Ravel and Newville, 2005).

3.3. Results and Discussion

3.3.1. Physicochemical Characteristics of CGB.

The dark red chitosan goethite bionanocomposites beads (Fig. 3.3) have an average diameter of 1018 ± 241 μm and a density of 1.447 g/cm³. The total pore volume is 0.024 cm³/g according to Mercury porosimetry test and thus a porosity 𝛱 of 3.5%.
CGB were characterized by combining two techniques FE-SEM and Mössbauer spectroscopy. The results indicate the presence of goethite nanoparticles in chitosan matrix. CGB consists of 20.33 wt.% of goethite particle and 79.67 wt.% of chitosan according to result of ICP-OES measurement of digested CGB by strong acids. To elucidate the size and morphology of the mineral/chitosan phases, we used FE-SEM (Fig. 3.4). The image shows that the CGBs are composed of goethite lath-like particles (average size: ~200-300 nm in length, ~50 nm in width, and ~10 nm in thickness) surrounded by chitosan network. Compression mechanical property test reports an average value for the crushing strength and deformation of CGB of 34.9 ± 6.5 N and 12.6 ± 4.6 %, respectively. The maximum endurable force is significantly higher than the breaking down forces of the chitosan hydrogel beads (1.87 N) and that of the chitosan hydrogel beads impregnated with carbon nanotubes (7.62 N) reported by (Chatterjee et al., 2009). The result proves that by impregnating 20.33 wt.% goethite into the chitosan matrix, the mechanical property of the gel bead was greatly improved. Therefore, CGB
material can be easily transported and used for water purification by water treatment plant or household set-up.

![Image](image.jpg)

Figure 3.4: FE-SEM photomicrograph of CGB at 80,000 X.

CGB Mössbauer spectra performed at RT and LNT are shown in Fig. 3.5a and Fig. 3.5b. The result of the fitting and the relative areas (RA) are summarized in Table 3.1. Both RT and LNT spectra display hyperfine magnetic and paramagnetic components characteristic of trivalent iron. There is a distribution of hyperfine magnetic field, \(S_{\text{distribution}} \), at RT whereas only one sextet (S) is present at LNT. Paramagnetic components (\(D_{77} \) and \(D_{300} \)) are also present. The magnetic and paramagnetic components have the same RA (within one percent) whatever the temperature, indicating two different iron environments: #1 and #2. For iron #1, fitting line shapes of the magnetic components, \(S_{\text{distribution}} \) and S, differ at RT and LNT. Hyperfine magnetic fields (290kOe at RT, and 495kOe at LTN, Table 3.1) are those of a stoichiometrically composed and well crystallized \(\alpha \)-FeOOH goethite. The presence of sextets is due to Fe antiferromagnetic order in goethite (\(T_{\text{Neel}} = 400 \text{K}, \) for goethite bulk). This component could correspond to the goethite lath particles observed by FE-SEM. For iron #2, the paramagnetic doublets (\(D_{300} \) and \(D_{77} \)) are characteristic of trivalent iron. That doublets RA
does not change with the temperature indicates these doublets are characteristic of the same iron environment, i.e. the same kind of particles. The doublets width tends to be larger at lower temperature (0.58 mm.s\(^{-1}\) at RT and 0.90 mm.s\(^{-1}\) at LNT, Table 3.1), which may indicate the beginning of the paramagnetic state to the ordered state magnetic transformation. This behavior is typically characteristic of nano-particles, whose size and shape influence the temperature of ordered magnetic state. Nano-ferrihydrite and nano-goethite both give rise to a paramagnetic doublet with very close hyperfine parameters, preventing determining their relative amount from Mössbauer measurements.

Figure 3.5: (a) 57Fe Mössbauer spectra of CGB at liquid nitrogen temperature (LNT = 77K); (b) room temperature (RT = 300K). Experimental values are shown as marked grey points; solid lines are fitted spectra components: \(S_{\text{distribution}}\) and \(S\) is respectively for a sextet distribution and one single sextet. \(D_{77}\) and \(D_{300}\) are paramagnetic doublets. The corresponding hyperfine parameters are given in Table 3.1.
Table 3.1: Mössbauer spectroscopy hyperfine parameters of CGB spectra at LNT (77 K) and at room temperature (RT = 300K), displayed in Fig 3.5a and 3.5b. Values in angle brackets are average values.

<table>
<thead>
<tr>
<th>Temperature of analysis</th>
<th>Component</th>
<th>δ (mm.s$^{-1}$)</th>
<th>Γ (mm.s$^{-1}$)</th>
<th>ΔE_Q (mm.s$^{-1}$)</th>
<th>2ε (mm.s$^{-1}$)</th>
<th>H (T)</th>
<th>RA (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>LNT</td>
<td>S</td>
<td>0.48 ± 0.01</td>
<td>0.38 ± 0.01</td>
<td>-0.22 ± 0.01</td>
<td>49.5 ± 0.2</td>
<td>88</td>
<td></td>
</tr>
<tr>
<td></td>
<td>D_{77}</td>
<td>0.42 ± 0.01</td>
<td>0.90 ± 0.01</td>
<td>0.74 ± 0.01</td>
<td>-0.25 ± 0.01</td>
<td>29.0</td>
<td>87</td>
</tr>
<tr>
<td>RT</td>
<td>$S_{\text{distribution}}$</td>
<td>$\langle 0.38 \rangle$</td>
<td>0.30 ± 0.01</td>
<td>$\langle -0.25 \rangle$</td>
<td>$\langle 29.0 \rangle$</td>
<td>87</td>
<td></td>
</tr>
<tr>
<td></td>
<td>D_{300}</td>
<td>0.32 ± 0.01</td>
<td>0.58 ± 0.01</td>
<td>0.64 ± 0.01</td>
<td>-0.25 ± 0.01</td>
<td>29.0</td>
<td>87</td>
</tr>
</tbody>
</table>

δ(mm.s$^{-1}$): Isomer shift;

Γ (mm.s$^{-1}$): Linewidth at half height;

ΔE_Q (mm.s$^{-1}$): Quadrupole splitting;

2ε (mm.s$^{-1}$): Quadrupole shift;

H (T): Hyperfine field;

RA (%): Relative area.

The formation of goethite chitosan bionanocomposites could occur through the following steps: (i) precipitation of Fe(III) occurs at low pH by formation of precursor particles in the Fe(III)-chitosan acetic acid mixture; (ii) when the drop of Fe(III)-chitosan acetic acid mixture reaches the NaOH casting bath, pH increases sharply and goethite forms by an adsorption of free Fe$^{3+}$ onto the already formed Fe(III) colloids (Charlet, 1994). At the mean time, the reaction of the acetic acid solvent with the non-solvent NaOH solution causes the chitosan to precipitate, forming the gel beads (Rorrer et al., 1993). The homogeneous distribution of
chitosan inside the ferric-chitosan acetic acid mixture offers the reaction support for the growth of the goethite nanoparticles, and prevents their aggregation during the beads casting procedure.

3.3.2. As adsorption: isotherm and mechanism (EXAFS)

The theoretical plots of each model are shown in Fig. 3.6a and 3.6b for As(V) and As(III) (panels a and b, respectively), together with the experimental data (obtained at pH 5 and pH 9) for adsorption of As(V) and As(III) on CGB at 298K. The graphs are plotted in the form of As(V) and As(III) adsorbed per unit mass of CGB, q_e (mmol/g), against the concentration of As(V) and As(III) remaining in solution, C_e (mmol/L). q_m. The maximum adsorption quantity at higher pH value (pH = 9) for adsorption of As(V) onto CGB is lower than the one at lower pH value (pH = 5); while the adsorption quantities of As(III) at pH 5 and at pH 9 are close to each other.

![Figure 3.6: Isotherms of arsenate (a) and arsenite (b) adsorption onto CGB at 298 K, at pH=5, 9.](image)

-56-
A comparison of coefficient of determination for three isotherms has been made and listed in Table 3.2. The Redlich-Peterson isotherm is found to be the most suitable model for describing both the adsorption equilibrium of As(V) and As(III) onto CGB. Comparing the Langmuir and the Freundlich isotherm, the Freundlich model better reproduces the sorption of As(V) and As(III) on CGB.

Table 3.2: Isotherm parameters obtained using the non-linear method for the adsorption of arsenate and arsenite onto CGB at 298K at pH 5 and pH 9.

<table>
<thead>
<tr>
<th>Isotherm</th>
<th>As(V)</th>
<th>As(III)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>pH=5</td>
<td>pH=9</td>
</tr>
<tr>
<td>Langmuir</td>
<td></td>
<td></td>
</tr>
<tr>
<td>q_m, mmol/g</td>
<td>0.146</td>
<td>0.0488</td>
</tr>
<tr>
<td>K_a, L/mmol</td>
<td>8.43</td>
<td>689</td>
</tr>
<tr>
<td>r^2</td>
<td>0.768</td>
<td>0.852</td>
</tr>
<tr>
<td>Freundlich</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$1/n$</td>
<td>0.193</td>
<td>0.104</td>
</tr>
<tr>
<td>K_F, (mmol/g)(L/mmol)$^{1/n}$</td>
<td>0.124</td>
<td>0.055</td>
</tr>
<tr>
<td>r^2</td>
<td>0.933</td>
<td>0.989</td>
</tr>
<tr>
<td>Redlich-Peterson</td>
<td></td>
<td></td>
</tr>
<tr>
<td>g</td>
<td>0.807</td>
<td>0.907</td>
</tr>
<tr>
<td>B, (L/mmol)g</td>
<td>138293</td>
<td>5053.4</td>
</tr>
<tr>
<td>A, L/g</td>
<td>17111</td>
<td>275</td>
</tr>
<tr>
<td>r^2</td>
<td>0.933</td>
<td>0.992</td>
</tr>
</tbody>
</table>
At pH 5, the maximum amount of adsorbed As(V) and As(III) equals to 0.151 mmol/g and 0.113 mmol/g, respectively, corresponding to a site density of 12.8 μmol/m² and 9.57 μmol/m².

Those values are higher than the theoretical maximum arsenic sorption capacity calculated from the site density of goethite (2.0 sites/nm², i.e. 3.33 μmol/m²) reported by Dixit and Hering (Dixit and Hering, 2003). This could be due to the size effect of goethite nanoparticles in CGB. The high surface area to volume ratio of nanoparticles provides more active edges for binding As. The estimated site density could be slightly higher than the true value since we have neglected the insignificant contribution of chitosan in As adsorption. The goethite particle cuboid geometrical assumption which is used to simplify calculation could cause error as well.

The adsorption mechanism of As on CGB is investigated by studying the As local environment by means of extended X-ray absorption fine structure (EXAFS) spectroscopy and compared with that of pure chitosan (batch experiments with As(V) and As(III) and pure chitosan were made at pH 5). The X-ray absorption near-edge spectroscopy (XANES) spectra on bulk samples (see Fig. 3.7a), indicate that the oxidation state of As is maintained after reaction with both pure chitosan and CGB. This is expected, because the samples were kept in an O₂-free glove box until measurement, brought to the synchrotron facility in liquid nitrogen, and measured at low temperature (20K) in helium atmosphere.
Figure 3.7: (a) XANES spectra of As(III)- and As(V)-loaded CGB and pure chitosan reacted at pH 5 and 9. The vertical lines indicate the position of the main adsorption peak of the As(III) and As(V) references; (b) Experimental EXAFS signal (points) and the fit curves (thick red lines); (c) Fourier Transforms (experimental = points, fit curves = thick red lines) of CGB and pure chitosan reacted with As(III) and As(V) at pH 5 and 9 (the FT are not corrected for the phase shift).

The Fourier transforms and fit curves of the EXAFS signals of As(III/V)-loaded CGB and As(III/V)-loaded pure chitosan are shown in Fig. 3.7c (the EXAFS signals are reported in Fig. 3.7b). As(V)-loaded CGB: the lack of coordination shells higher than the first (Table 3.3) indicates that As(V) is adsorbed as an outer-sphere complex on pure chitosan. On the other hand, the presence of As-Fe contributions in As-loaded CGB suggests that As is adsorbed mainly on the goethite phase, as inner-sphere complex (Fig. 3.8). The structural refinement of the As local environment reveal that CGB can adsorb both As(V) and As(III). This was expected, considering the high affinity of goethite, as well of Fe-oxides and oxyhydroxides in general, with As. As(III)-loaded CGB: structural refinements of As(III)-loaded pure chitosan reveal that, when in the 3+ oxidation state, As forms inner-sphere complexes on the chitosan
molecule. A possible sorption site for arsenite compatible with the EXAFS refinements is shown in Fig. 3.9. Conversely, in As(III)-loaded CGB, again As(III) is preferentially adsorbed onto the goethite phase as inner-sphere complex, as suggested the presence of an As-Fe contribution (Table 3.3).

Figure 3.8: Structural diagram of bidentate binuclear As(III)/As(V) surface complexes on the (110) plane of goethite (α-FeOOH) showing (a) the protonated bidentate surface species at 3.3 Å. Only the bidentate binuclear complex was used in surface complexation modeling.

Figure 3.9: 3D atomistic model of a possible sorption site of As(III) on pure chitosan (black: As atom; light grey: oxygen atoms; grey: carbon atoms; blue: nitrogen atoms). Hydrogen atoms have been omitted for clarity.
TABLE 3.3: Refined structural parameters of pure chitosan and CGB reacted with As(III) and As(V). The numbers within parenthesis represent the error on the last digit.

<table>
<thead>
<tr>
<th></th>
<th>1^{st} shell</th>
<th></th>
<th>2^{nd} shells</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CN</td>
<td>R</td>
<td>σ^2</td>
<td>CN</td>
</tr>
<tr>
<td></td>
<td>Å</td>
<td>($\text{Å}^2 \cdot 10^3$)</td>
<td>(Å)</td>
<td>($\text{Å}^2 \cdot 10^3$)</td>
</tr>
<tr>
<td>As(V)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chitosan</td>
<td>4 O</td>
<td>1.690(3)</td>
<td>2.2(4)</td>
<td>-</td>
</tr>
<tr>
<td>CGB (pH 5)</td>
<td>4 O</td>
<td>1.686(6)</td>
<td>3.1(5)</td>
<td>2.0(5) Fe</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>9.9(5) O</td>
</tr>
<tr>
<td>CGB (pH 9)</td>
<td>4 O</td>
<td>1.688(3)</td>
<td>2.8(4)</td>
<td>2.0(5) Fe</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8.0(5) O</td>
</tr>
<tr>
<td>As(III)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Chitosan</td>
<td>3 O</td>
<td>1.792(5)</td>
<td>2.0(6)</td>
<td>4 C</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2 C</td>
</tr>
<tr>
<td>CGB (pH 5)</td>
<td>3 O</td>
<td>1.780(6)</td>
<td>2.4(6)</td>
<td>2.0(5) Fe</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.0(5) O</td>
</tr>
<tr>
<td>CGB (pH 9)</td>
<td>3 O</td>
<td>1.787(6)</td>
<td>3.9(4)</td>
<td>0.8(7) Fe</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.3(8) O</td>
</tr>
</tbody>
</table>

CN: Coordination Number;
R: distance from the absorber;
σ^2: Debye-Waller factor
3.3.3. Effect of CGB dose

Figure 3.10 shows the residual arsenic concentration after adsorption treatment of different dose of CGB beads at 298 K. Reacting with high initial concentration (5 mg/L) of arsenic solution, 3.5 g of CGB beads are needed to decontaminate the solution in order to reduce arsenate/arsenite level to meet the 50 μg/L water standard. The residual arsenic level is decreasing with the increasing amount of CGB bead. For lower initial concentration (1 mg/L) of arsenic solution, the 10 μg/L water standard level can be reached by using 0.5 g and 2.5 g of CGB as adsorbent, respectively. CGB bead shows higher efficiency on removing As(V) than on As(III).

3.3.4. Kinetic study and diffusion pattern (μXRF and μXANES)

The results of kinetic experiments reveal that the sorption of As(III) and As(V) by CGB took less than 2000 min (33h) to reach equilibrium (Fig. 3.11). The adsorption of arsenate was more rapid than that of arsenite. The initial sorption rate usually increases with an increase in the initial concentration. However, the initial sorption rate of arsenate is higher than that of arsenite, although the initial concentration of arsenite was lower than that of arsenate. At 1.5h, 50.19% of the total amount of As(V) was removed from the solution, while 35.49% of the total As(III) was removed at the same time. Most of arsenic molecules were trapped by CGB in the first 24h (88.60% of arsenite and 97.64% of arsenate), and after this time, adsorption of As(V) and As(III) onto CGB tend to a plateau. A widely used parameter to compare reaction rate is the half-life, $t_{1/2}$, the time within which half of the initial concentration of arsenic has disappeared, that is $C/C_0=0.5$. In our experiments, half-life of As(V) and As(III) were 94 min and 166 min, respectively.
Figure 3.10: Effect of CGB dose on residual arsenic concentration (initial As concentration 5000 μg/L and 1000 μg/L, at pH 7, 298K).
Figure 3.11: Kinetics study of arsenite and arsenate adsorption onto CGB at 298 K, at pH=7.

Table 3.4: Kinetic parameters for the sorption of As(III) and As(V) on CGB at pH 7, at 298 K.

<table>
<thead>
<tr>
<th>Kinetic</th>
<th>As(III)</th>
<th>As(V)</th>
</tr>
</thead>
<tbody>
<tr>
<td>pseudo-second order</td>
<td></td>
<td></td>
</tr>
<tr>
<td>C_0, mmol/L</td>
<td>0.0817</td>
<td>0.0657</td>
</tr>
<tr>
<td>q_e, mmol/g</td>
<td>0.0317</td>
<td>0.0274</td>
</tr>
<tr>
<td>k, g/mmol min</td>
<td>0.224</td>
<td>0.438</td>
</tr>
<tr>
<td>h, mmol/g min</td>
<td>2.25×10^{-4}</td>
<td>3.26×10^{-4}</td>
</tr>
<tr>
<td>r^2</td>
<td>0.998</td>
<td>0.971</td>
</tr>
<tr>
<td>arsenic removal ratio</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$t=1.5$ h (90 min)</td>
<td>35.5%</td>
<td>50.2%</td>
</tr>
<tr>
<td>$t=24$ h (1440 min)</td>
<td>88.6%</td>
<td>97.6%</td>
</tr>
<tr>
<td>$t_{1/2}$, min</td>
<td>166</td>
<td>94</td>
</tr>
</tbody>
</table>

C_0, initial arsenic concentration; k, rate constant; q_e, equilibrium sorption quantity; h, initial sorption rate; r^2, coefficients of determination.; $t_{1/2}$, half-life of arsenic in solution.
Selected distribution maps of As and Fe of As(V) and As(III)-loaded CGB cross-sections (at 1.5h and 72h reaction time of kinetic experiment) are shown in Fig. 3.12. The distribution of Fe reveals the vacuolar nature of the CGB, which consists of spheres tending to be hollow or with uneven distribution of material at their inside. The hollow areas of CGB at 72h reaction time were larger than that of samples at 1.5h. This could be due to chitosan polymer swelling in solutions occurring during the experiment. The distribution of As reveals that, during the first 1.5h, As(III) penetrated for 70-80 μm in the beads, while the penetration of As(V) was slightly faster, reaching 100-110 μm. These value are consistent with the results of kinetics study data which show that As(V) adsorption onto CGB is faster than that of As(III). The profile distribution plots (Fig. 3.12) of As(III) and As(V) at 1.5 h indicate that the diffusion front is limited to a well defined ring at the beads surface, suggesting that the As adsorption is primary due to the formation of surface complexes.

μXANES spectra collected at the points of interest, highlighted in Fig. 3.12 by white numbered circles, are reported in Fig. 3.13. Spectra 1-4 indicate that As is mainly (or only), in the 5+ oxidation state, while spectra 5-8 indicate mixed (3+ and 5+) As oxidation states. The results reveal that arsenic remained in 5+ oxidation state in all As(V)-loaded beads, while in the As(III)-loaded beads, it was partly oxidized to As(V). Since the μXANES and μXRF measurements were conducted in air and at room temperature, the oxidation of As from the 3+ to the 5+ state is most probably due to the exposition to oxygen (bulk XANES performed in anaerobic environment and at low temperatures show no change in the oxidation state).

After 72h, both As(III) and As(V) diffuse in the whole CGB section, their concentration being higher at the borders and diminishing moving to the center of the beads in a typical U shape
profile. This suggests that the arsenic adsorption takes place more rapidly than diffusion process. At the beginning of the reaction, arsenic concentration in the bath drops sharply due to the rapid adsorption on the surface and rim of the CGB bead. Once the arsenic ions enter the porous CGB, local micro-scale adsorption occurs between the porous aqueous phase containing arsenic solution and solid goethite/chitosan phase. With the transport of arsenic from bath solution into CGB, part of arsenic ions are preferentially adsorbed on the goethite/chitosan, and the rest could diffuse further to the core of bead. The diffusion and sorption reaches equilibrium when the As concentration in all pores of the beads equals to the As concentration in bath solution. The distribution of As in As-loaded CGB at the equilibrium (Fig. 3.12b, 3.12d) shows shell-to-centre arsenic concentration gradients.

The observed inhomogeneous arsenic distribution can be ascribed to the decreasing concentration of the bulk solution. The kinetic experiments were performed in the finite bath sorption regime; i.e. the initial concentration in the solution outside the bead was not constant during sorptive equilibration process between the bath solution surrounding the beads and CGB particles themselves. The finite bath regime can be characterized by the nondimensional number (Schwarzenbach et al., 2005):

\[\gamma = K_d S_t \]

(3.9)

where \(K_d \) is the microscopic distribution coefficient that applies within the beads and \(S_t \) is the solid concentration per total volume. \(\gamma \) corresponds to the final ratio of the mass adsorbed on the solid to the mass dissolved in the solution when sorption equilibrium is reached. The solute concentration inside the aggregate pores, \(C_w' \), is always at equilibrium with the local adsorbed phase, \(C_s' \), which satisfies the condition:

\[C_s' = K_d C_w' \]

(3.10)
Figure 3.12: Distribution maps of As (green color) and Fe (red color). The pixel size is 10 x 10 μm2. The yellow to orange colors indicate the co-presence of As and Fe. The distribution of As(V) and Fe is reported in panels (a), after 1.5h reaction time, and (b), after 72h reaction time. Panels (c) and (d) show the distribution of As(III) and Fe, respectively after 1.5h and 72h reaction time. The plots below the distribution maps show the As and Fe concentration profiles calculated along the white thick lines superimposed with the distribution maps. The numbered white circles indicate the points where the μXANES spectra were acquired (Fig. 3.13).
According to Wu and Gschwend (Wu and Gschwend, 1988), for different values of γ, sorption proceeds as a function of the nondimensional time t^*.

$$t^* = \frac{D_{\text{eff}} t}{r_o^2} = \frac{D_{\text{pm}} t}{(1 + K_d r_{sw}) r_o^2}, \quad (3.11)$$

where,

D_{eff} is the effective intraparticle diffusivity;

D_{pm} is the diffusivity in the porous matter which is due to tortuosity or the Renkin effect;

$$r_{sw} = \rho_s \frac{1-\phi}{\phi}, \quad (3.12)$$

where r_{sw} is the solid-to-water-phase ratio of the particle aggregate, ρ_s is the density of dry solid and ϕ is the porosity of the particle.
\(r_o \) is the radius of the bead (m), and \(t \) is the exposed time (s).

The non dimensional number \(\gamma \) can be calculated by kinetics parameters and in our case \((\gamma_{\text{As(III)}} \approx 3.5, \text{ and } \gamma_{\text{As(V)}} \approx 5) \), the nondimensional time, \(t^* \), required to reach 50% equilibration (\(M_t/M_\infty = 0.5 \)), is about 0.00153 for As(III) and 0.00262 for As(V), which are obtained from the first-order sorption model and radial diffusion model at half-equilibration time for finite bath system according to Wu and Gschwend (Wu and Gschwend, 1988).

Hence,

for As(III) and As(V), we have, respectively:

\[
t_{0.5}(\gamma=3.5) = 0.00153 \times \frac{r_o^2}{D_{\text{eff}} (\text{AsIII})};
\]

\[
t_{0.5}(\gamma=5) = 0.00262 \times \frac{r_o^2}{D_{\text{eff}} (\text{AsV})};
\]

From the kinetics experiments we have: \(t_{0.5} \) (As(III))\(\approx 140.8 \) min and \(t_{0.5} \) (As(V))\(\approx 83.9 \) min and \(r_o = 5.09 \times 10^{-4} \) m, so we can calculate \(D_{\text{eff}}(\text{AsIII}) = 6.69 \times 10^{-14} \) m\(^2\)/s and \(D_{\text{eff}}(\text{AsV}) = 1.34 \times 10^{-13} \) m\(^2\)/s. The estimated effective diffusivities of As(III) and As(V) are similar. The higher estimated diffusivity of As(V) could be due to the electrostatic attraction between As(V) and the inner surface of the beads which accelerates the movement of As(V) towards the beads.
3.4. Practical applications.

This study demonstrates that CGB remove both As(III) and As(V) from water efficiently. Hence, manipulation of pre-oxidation of As(III)-contained water for enhancing As removal rate is not necessary. For 1 liter of high-arsenate/arsenite water (1 mg/L), 0.5g and 2.5g CGB beads, respectively, can eliminate arsenic level to meet the 10 μg/L water standard. The results of leaching test prove that little extra iron was released from CGB during adsorption process, which demonstrates that CGB doesn’t pose potential health risk by releasing nanoparticle or toxic element in application (compared other adsorbents like Mn/Al oxides or NPs). The mechanical property test shows that the material is very rigid and stable so that it can be easily stored, transported and used. The size and density of CGB beads allow for water decontamination without complicated or energy-consuming separation procedure, since those beads would precipitate at the bottom of the water container after their use for As removal or could be kept in permeable porous textile or plastic bags during the procedure. These properties highly reduce the cost and complexity of water remediation process. It could be a promising material particularly to developing nations, which suffer a diversity of socio-economical-traditional constraints for water purification and sanitation.

Figure 3.14: Proposed application of CGB in households for arsenic remediation.
Chapter 4

Antibiotics as emerging contaminants in the environment

Jing He and Laurent Charlet
4.1. Introduction

An antibiotic is an agent that inhibits or kills bacteria. Its discovery is considered as one of the greatest inventions of the 20th century since humankind could start to treat many bacteria-caused diseases which were often fatal. An overview of the most important classes and groups of antibiotics are listed in Table 4.1. Despite decades of the large rate of use for human and veterinary medicines, the occurrence and effects of antibiotics in the environment have been little studied until very recent times when it began to receive more notice and concern. Two reviews on antibiotics and related environmental issues published by Sarmah et al. (2006) and Kümmerer (2009) have highlighted the worldwide occurrence of antibiotics. Human and animal faeces, hospital effluents, pharmaceutical industries and municipal sewage influent that contain antibiotics result in antibiotic residues in surface water and ground water (Figure 4.1). The presence of antibiotics, even in low doses, gives rise to public concern due to a series of adverse effects to aquatic environment and potential risks to public health.

![Antibiotics in the water cycle](image_url)

Figure 4.1: Antibiotics in the water cycle.
Table 4.1: Important classes and groups of antibiotic compounds (Kümmerer, 2009).

<table>
<thead>
<tr>
<th>Class</th>
<th>Group</th>
<th>Subgroup</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>β-lactams</td>
<td>Penicillins</td>
<td>Benzyl- Penicillins</td>
<td>Phenoxy penicillin</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Isoxazolylpenicillins</td>
<td>Oxacillin</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Aminopenicillins</td>
<td>Amoxicillin</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Carboxypenicillins</td>
<td>Carbenicillin</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Acylaminopenicillins</td>
<td>Piperacillin</td>
</tr>
<tr>
<td></td>
<td>Cephalosporins</td>
<td>Cefazolin group</td>
<td>Cefazolin</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cefuroxim group</td>
<td>Cefuroxim</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cefotaxim group</td>
<td>Cefotaxim</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cefalexin group</td>
<td>Cefprozil</td>
</tr>
<tr>
<td></td>
<td>Carbpenems</td>
<td></td>
<td>Meropenem</td>
</tr>
<tr>
<td>Tetracyclines</td>
<td></td>
<td></td>
<td>Doxycycline</td>
</tr>
<tr>
<td>Aminoglycosides</td>
<td></td>
<td></td>
<td>Gentamicin 1c</td>
</tr>
<tr>
<td>Macrolides</td>
<td></td>
<td></td>
<td>Erythro-mycin A</td>
</tr>
<tr>
<td>Glycopeptides</td>
<td></td>
<td></td>
<td>Vancomycin</td>
</tr>
<tr>
<td>Sulfonamides</td>
<td></td>
<td></td>
<td>Sulfamethoxazole</td>
</tr>
<tr>
<td>Quinolones</td>
<td></td>
<td></td>
<td>Ciprofloxacin</td>
</tr>
</tbody>
</table>
4.2. Sources of antibiotics contamination

4.2.1. Pharmaceutical manufacturing

Discharge from basic drug manufacturing facilities (BDMF) and drug formulation facilities (DFF) have been considered of minor importance but recent studies have shown that they can be substantial point sources with levels much higher than any other route (Khan et al., 2013). Larsson et al. (2007) reported high levels of antibiotics found from effluent of drug manufacturers in Patancheru, India, with the concentration of ciprofloxacin, the most abundant drug found downstream the plant, reaching 31 mg/L. Several antibiotics (highest concentrations range from 1100-49000 ng/L for different drug residues) were detected from water samples near one drug formulation facility in Pakistan (Khan et al., 2013).

4.2.2. Hospital wastewater and municipal sewage

Another possible route for antibiotic agents entering into the environment is hospital wastewater. Due to the heavy use of antibiotics in hospitals, their concentrations are usually higher than those in domestic wastewater. About 0.7–124.5 mg/L of ciprofloxacin and 20–80 mg/L of β-lactams were found in effluents of a German hospital (Kümmerer 2003). Wastewater samples collected from a hospital in Girona, Spain were found to contain Ofloxacin and Ciprofloxacin at concentrations up to 10368 ng/L and 7494 ng/L, respectively (Gros et al., 2013). Elmanama et al. (2006) discussed the contribution of hospital wastewater to the spread of antibiotic resistance.

The presence and fate of antibiotics in municipal wastewater treatment plants (WWTPs) are becoming an emerging research topic in recent years. Extensive researches on antibiotics
occurrence have been reported mainly in East Asia, North America, Europe, and Australia, according to Zhang and Li (2011), who report the occurrence, transformation, and fate of antibiotics in WWTPs. This review summarized much literature work published over the previous 8 years and concluded that many antibiotics cannot be removed completely in wastewater treatment processes and would enter into environment via effluent and sludge (Zhang and Li, 2011). Hospitals are considered as major sources of pharmaceutical residues discharged to municipal wastewater (Reinthaler et al., 2003; Garcia et al., 2007), but some new research showed that the contribution of hospitals to the loads of selected, quantifiable pharmaceuticals in sewage treatment plant influents was limited (Guardabassi et al., 2002; Le Corre et al., 2013). The overall impact of discharging untreated hospital effluents into the sewer system is still under debate (Le Corre et al., 2013).

4.2.3. Animal farms and aquaculture

Animal farms are recognized as a major contributor to environmental pollution with antibiotic resistance genes. Although in the European Union, as well as in some other countries such as Switzerland, the use of antibiotics as growth promoters in animal farms has been banned, other countries still extensively use antibiotics in livestock. Over 84% of the antibiotics produced in the USA are still used in agriculture, with non-therapeutic livestock usage accounting for 70% of the total antimicrobial use (Mellon et al. 2001). China is the world’s biggest producer and consumer of antibiotics in the world. Antibiotics consumption on animal farms was estimated to be more than 970 kt per year in China, accounting for more than 46% of the total annual production of antibiotics (CAST, 2007, The Conversation, 2013). Antibiotics (antimicrobials at large) are extensively used in animal farming as well as
aquaculture for preventing/treating infections and promoting growth (Holmstrom et al., 2003; Smith et al., 2002). Many kinds of drugs with remarkable concentrations were ubiquitous in animal farms and aquafarms (Le and Munekage, 2004; Miranda et al., 2009). Several studies have revealed the veterinary/aquaculture antimicrobial compounds can lead to the contamination to the environment via animal feces or aquaculture discharge (Karci and Balcioglu, 2009; Hoa et al., 2011; Barkovskii and Bridges, 2012; Zhou et al., 2013).

4.3. Advert effects

4.3.1. Antibiotic resistance

Over the past five decades the increasing use of antibiotics, not only for people, but also for animals and in agriculture, has delivered a selection unprecedented in the history of evolution (Levy, 1992). The powerful killing and growth inhibitory effects of antibiotics have reduced the numbers of susceptible strains, leading to the propagation of resistant variants (Levy, 2008). Such resistant bacteria can cause an infection both in humans and animals and may not respond to regular antibiotic treatments (Regassa et al., 2008). Antibiotic resistant bacteria have been found in many hospital wastewaters and municipal sewage all around the world (Akter et al., 2012; Huang et al., 2012; Novo et al., 2013; Korzeniewska et al., 2013). In natural waters, antibiotic resistant bacteria were also detected worldwide (Hoa et al., 2011; Khan et al., 2013; Skariyachan et al., 2013; Coleman et al., 2013). Microbes circulate everywhere - resistance determinants and resistant bacteria can spread locally and globally, selected by widespread use of the same antibiotics in people, animal husbandry and agriculture (Levy, 2008).
4.3.2. Potential public health risks

The potential presence of antibiotics in drinking water sources is of concern due to the unknown health effects of chronic low-level exposure to antibiotics over a lifetime if the antibiotics survive drinking water treatment and are present in consumers’ drinking water (Ye et al., 2007). Pomati et al. (2006) reported that a complex mixture of therapeutic drugs (including four antibiotics) at environmentally relevant concentrations inhibits proliferation of human embryonic cells. (Kim and Aga, 2007). Chen et al. (2012) studied the potential toxicity of sulfanilamide antibiotic to human health. Results suggested the microenvironment and conformation of human serum albumin (HAS) were changed in the presence of sulfamethazine (SMZ). Hence, the abuse of antibiotics or excess ingestion of SMZ would affect the normal biological function of proteins, and cause potential human health risks.

4.3.3. Aquatic life poisoning

Thibaut et al. (2006) provided evidence of inhibitory effects of low levels of pharmaceuticals on the catalytic activities of different xenobiotic metabolizing enzymes in carp liver. Those pharmaceuticals might potentially impact aquatic life as well according to the study of Pomati et al. (2006). Doramectin (DOR), metronidazole (MET), florfenicol (FLO), and oxytetracycline (OXT), the four most widely used veterinary drugs in animal husbandry or in aquaculture, were have been investigated as to their aquatic toxicity to marine bacteria (*Vibrio fischeri*), green algae (*Scenedesmus vacuolatus*), duckweed (*Lemna minor*) and crustaceans (*Daphnia magna*). It was found that OXT and FLO have a stronger adverse effect on duckweed and green algae (Kolodziejska et al., 2013). Toxicities of amoxicillin, erythromycin,
levofloxacin, norfloxacin and tetracycline to cyanobacterium Anabaena CPB4337 and the green alga *Pseudokirchneriella subcapitata* have been examined. Results showed that erythromycin was highly toxic for both organisms; tetracycline was more toxic to the green algae whereas the quinolones levofloxacin and norfloxacin were more toxic to the cyanobacterium than to the green alga. Amoxicillin also displayed toxicity to the cyanobacterium but showed no toxicity to the green alga (Gonzalez-Pleiter et al., 2013).

4.3. Antibiotic contamination in WWTPs and natural waters of China

After being used, antibiotics are excreted into effluent and reach wastewater treatment plants or reach the environment directly. In this process, antibiotics can be partially metabolized. Since WWTPs can only eliminate antibiotics partially, the residual parts pass through WWTPs and then end up in the environment – surface water, ground water, sea water, soil or sediment.

As China is the largest producer and consumer of antibiotics in the world, it’s not surprising that antibiotics have been found to be widespread in WWTPs and the environment. Table 4.2 lists reports of the presence of antibiotics throughout China, in WWTPs, surface waters, ground waters, etc. A variety of antibiotics have been reported with considerable concentrations especially in some surface waters. Obviously, densely populated areas are particularly prone to antibiotics contamination. In some water bodies, the levels of antibiotics are in the same range as those in WWTPs. The level of antibiotics in tap water reached 697 ng/L in Macau and Guangzhou (Wang et al., 2010).
Table 4.2: Presence of antibiotics in WWTPs and natural waters of China.

<table>
<thead>
<tr>
<th>Sample type: wastewater treatment plant</th>
<th>Antibiotic</th>
<th>Level (ng/L) (influent)</th>
<th>Level (effluent)</th>
<th>Location</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>erythromycin-(H_2)O, etc</td>
<td>Up to 1978</td>
<td>Up to 2054</td>
<td>Pearl River Delta</td>
<td>Xu et al., 2007</td>
</tr>
<tr>
<td></td>
<td>(chloramphenicol, fluoroquinolone, sulfonamide and macrolide groups)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cefalexin, etc; Cefotaxim, etc</td>
<td>Up to 2900; Up to 1100</td>
<td>Up to 1800</td>
<td>Hong Kong</td>
<td>Gulkowska et al., 2008.</td>
</tr>
<tr>
<td></td>
<td>Ofloxacin etc; (eight fluoroquinolones, nine sulfonamides and five macrolides)</td>
<td>Up to 3100</td>
<td>Up to 1200</td>
<td>8 STPs in Beijing</td>
<td>Gao et al., 2012</td>
</tr>
<tr>
<td></td>
<td>Quinolones, etc; (eight quinolones, nine sulfonamides, and five macrolides)</td>
<td>Up to 4916</td>
<td>Up to 123</td>
<td>Beijing</td>
<td>Li et al., 2013</td>
</tr>
<tr>
<td></td>
<td>Sulfamethoxazole, etc; (sulfadiazine, ofloxacin and chloramphenicol)</td>
<td>Up to 7910</td>
<td></td>
<td>2 STPs in Guangzhou</td>
<td>Peng et al., 2006</td>
</tr>
</tbody>
</table>
Clotrimazole, Fluconazole, econazole, ketoconazole, and miconazole

<table>
<thead>
<tr>
<th>Antibiotic</th>
<th>Level (ng/L)</th>
<th>Location</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cefalexin, ofloxacin and etc.</td>
<td>Up to 5640 and 7900, respectively</td>
<td>Hong Kong</td>
<td>Leung et al., 2012</td>
</tr>
<tr>
<td></td>
<td>Up to 5070, 7870, respectively</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sample type: Natural Waters/Water supply

<table>
<thead>
<tr>
<th>Antibiotic</th>
<th>Level (ng/L)</th>
<th>Location</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>14 sulfonamides, 2 chloramphenicols and 4 tetracyclines</td>
<td>Up to 9.23</td>
<td>Seawater, Dalian</td>
<td>Na et al., 2013</td>
</tr>
<tr>
<td>eight quinolones, nine sulfonamides and five macrolides</td>
<td>Up to 1563</td>
<td>Baiyangdian Lake</td>
<td>Li et al., 2012</td>
</tr>
<tr>
<td>sulfonamides, fluoroquinolone, tetracycline and chloramphenicol</td>
<td>8.6, 11.6 in groundwater and in lake water (summer); 7.3, 11.7 in groundwater and in lake water (winter)</td>
<td>Groundwater, lake water near pig farm, Hubei Province</td>
<td>Tong et al., 2009</td>
</tr>
<tr>
<td>4 tetracyclines, 3 chloramphenicols, 2 macrolides, 6</td>
<td>Up to 623.27</td>
<td>Huangpu River, Shanghai</td>
<td>Jiang et al., 2011</td>
</tr>
<tr>
<td>Antimicrobial Agents</td>
<td>Concentration</td>
<td>Location</td>
<td>Reference</td>
</tr>
<tr>
<td>----------------------</td>
<td>---------------</td>
<td>----------</td>
<td>-----------</td>
</tr>
<tr>
<td>fluoroquinolones, sulfonamides and trimethoprim</td>
<td>Up to 218</td>
<td>Pearl River Estuary</td>
<td>Liang et al., 2013</td>
</tr>
<tr>
<td>Sulfamethazine, etc</td>
<td>Up to 50.4 and 663</td>
<td>Coast of Yellow Sea and river close to the sea</td>
<td>Zhang et al., 2013</td>
</tr>
<tr>
<td>dehydration, erythromycin, sulfamethoxazole and trimethoprim</td>
<td>Up to 50.9</td>
<td>Beibu Gulf</td>
<td>Zheng et al., 2012</td>
</tr>
<tr>
<td>Erythromycine-H$_2$O, sulfamethoxazole and trimethoprim</td>
<td>Up to 50.9</td>
<td>Beibu Gulf</td>
<td>Zheng et al., 2012</td>
</tr>
<tr>
<td>fluoroquinolones, macrolides, sulfonamides and trimethoprim</td>
<td>Up to 13,600 for trimethoprim</td>
<td>Laizhou Bay</td>
<td>Zhang et al., 2012</td>
</tr>
<tr>
<td>sulfonamides, macrolides, and trimethoprim</td>
<td>Up to 1336</td>
<td>Tributaries of Yongjiang River</td>
<td>Xue et al., 2013</td>
</tr>
<tr>
<td>Erythromycin-H$_2$O concentrations</td>
<td>Up to 460</td>
<td>Victoria Harbour of Hong Kong and the Pearl River at Guangzhou</td>
<td>Xu et al., 2007</td>
</tr>
<tr>
<td>norfloxacin, ciprofloxacin, lomefloxacin, and enrofloxacin</td>
<td>Up to 679.7</td>
<td>Tap water of Guangzhou and Macao</td>
<td>Wang et al., 2010</td>
</tr>
<tr>
<td>Sulfonanides</td>
<td>Up to 6800</td>
<td>Bohai Bay</td>
<td>Zou et al.,</td>
</tr>
<tr>
<td>Antibiotics</td>
<td>Concentration Range</td>
<td>Location</td>
<td>Reference</td>
</tr>
<tr>
<td>---</td>
<td>---------------------</td>
<td>----------------------------</td>
<td>--------------------</td>
</tr>
<tr>
<td>Fluoroquinolones, Macrolides and Tetracyclines</td>
<td></td>
<td></td>
<td>2011</td>
</tr>
<tr>
<td>dehydration, erythromycin, sulfamethoxazole, and trimethoprim</td>
<td>0.10-16.6 ng/L</td>
<td>Bohai Sea and the Yellow Sea</td>
<td>Zhang et al., 2013b</td>
</tr>
<tr>
<td>Sulfapyridine, etc</td>
<td>Up to 219 ng/L</td>
<td>Yangtze Estuary</td>
<td>Yan et al., 2013</td>
</tr>
<tr>
<td>Sulfadimidine, etc</td>
<td>Up to 475.8 ng/L</td>
<td>East River (Dongjiang)</td>
<td>Zhang et al., 2012b</td>
</tr>
<tr>
<td>Roxithromycin, etc</td>
<td>Up to 2260 ng/L</td>
<td>Pearl River System</td>
<td>Yang et al., 2011</td>
</tr>
<tr>
<td>Sulfonalanides, etc</td>
<td>24-385 ng/L</td>
<td>Haihe River Basin</td>
<td>Luo et al., 2011</td>
</tr>
</tbody>
</table>

4.4. Elimination

Since antibiotics are often complex molecules which may possess different functionalities, under different pH conditions antibiotics can be neutral, cationic, anionic or zwitterionic (Kümmerer, 2009). Antibiotics can be degraded by biotic processes - biodegradation by bacteria and fungi. Depending on their physico-chemical properties, sorption, hydrolysis, photolysis, oxidation and reduction can play a role in antibiotics elimination as well. These processes have been applied in removal of the antibiotics from water in industry and scientific research.
Clay minerals are widely considered as an active component of soils for the adsorption of polar xenobiotics (Boyd et al., 2001). Studying the adsorption of antibiotics onto clay minerals can help to understand the environmental fate of those antibiotics in soils, subsoils, aquifers and sediments. On the other hand, clay minerals can be used as low-cost materials as the removal reagent for treating water with antibiotic contaminants. The adsorption behavior of enrofloxacin onto smectite clay and mechanisms of adsorption has been discussed (Yan et al., 2012). The study of adorption of tetracycline on illite has also been reported (Chang et al., 2012). In the next chapter, montmorillonite, a member of the smectite family, was used to uptake gentamicin from water. The mechanism was studied and the solid waste produced in the adsorption process (gentamicin-loaded montmorillonite) was recycled and reused to fabricate an antimicrobial film which is potentially usable as a skin wound dressing for burn patients.
Chapter 5

Gentamicin adsorption on Na\(^+\)-montmorillonite and preparation of gentamicin-montmorillonite-HPMC films as a burn wound dressing

Jing He, Pilar Aranda, Margarita Darder, Laurent Charlet and Eduardo Ruiz-Hitzky
5.1. Introduction

The presence of antibiotics in natural waters is of concern for many reasons. First, antibiotic resistance can develop in bacteria with exposure to sub-inhibitory concentrations (Ash et al., 2002). Second, aquatic organisms such as algae, nitrifying bacteria and zooplankton, can be adversely affected by mixtures of antibiotics even at low concentrations (Flaherty and Dodson, 2005; Yang et al., 2008; Ghosh et al., 2009). And lastly, although the human health effects of sustained exposure to antibiotics at sub-therapeutic doses are currently unclear, there is increasing public awareness about the presence of antibiotics and other pharmaceutical compounds in drinking water supplies (Benotti et al., 2009). Thus there is interest in procedures to remove antibiotics and other pharmaceutical compounds from water supplies (Wunder et al., 2011). Antibiotics are not effectively removed via conventional water treatment (i.e. coagulation/flocculation/sedimentation/filtration) or lime softening (≤33%, Adams et al., 2002; Westerhoff et al., 2005; Wunder et al., 2011).

Gentamicin (Gt.), an aminoglycoside antibiotic produced by fermentation of *Micromonospora purpurea*, is a mixture of basic, water soluble compounds containing the aminocyclitol 2-deoxystreptamine and 2 additional amino sugars (MacNeil and Cuerpo, 1995). Its formula is shown in Figure 5.1 and the pKa of various functional groups are shown in Table 5.1. Gt. shares many structural and functional features with other antibiotics containing streptamin or its derivatives, such as streptomycin, meomycin and kanamycin (Butko et al., 1990). Gentamicin is used to treat many types of bacterial infections, particularly those caused by Gram-negative organisms (Moulds and Jeyasingham, 2010). The main toxic effects of the aminoglycoside antibiotics are nephrotoxicity and ototoxicity. Furthermore, fetotoxicity was observed for gentamicin (Gehring et al., 2005). Although application of Gt. in human
medicine has declined, its use in veterinary and agriculture is still intense. Gentamicin can enter the environment via pharmaceutical factories, hospital waste water and animal droppings.

Adsorption of Gt. onto Na\(^+\)-montmorillonite was investigated as a method to remove gentamicin-like positive charged antibiotics from water. Gentamicin-loaded montmorillonite, as the solid waste of the sorption process, can be recycled and reused in burn wound treatment.

Burn wound infections are among the most important and potentially serious complications that occur during the acute period following injury. Systemic treatment against infection is limited by inadequate wound perfusion, which restricts migration of host immune cells and the delivery of antimicrobial agents to the wound. In this case, the local concentration of the antibiotics may be insufficient and may lead to bacterial resistance (Elsner et al., 2011). The widespread application of a topical antimicrobial agent on the open burn wound surface can substantially reduce the microbial load and risk of infection (Murphy et al., 2003). The typical burn wound is initially colonized predominantly with Gram-positive organisms, which are replaced by antibiotic-susceptible Gram-negative organisms within 1 week after the burn injury. Gentamicin is accordingly used to treat many types of bacterial infections, particularly those caused by Gram-negative organisms and it can protect the recovering tissue from potential infection or re-infection, therefore gentamicin has been used for cure burn wounds (Moulds and Jeyasingham, 2010). Gentamicin-eluting collagen sponges have been found useful in both partial-thickness and full-thickness burn wounds (Elsner et al., 2011). A new concept of wound dressing, which is based on a polyglyconate mesh coated with a porous poly-(\(\text{DL}\)-lactic-co-glycolic acid) matrix loaded with gentamicin, are applied in burn wounds (Aviv el al., 2007; Elsner et al., 2011).
This study developed a gentamicin-loaded montmorillonite based on a hydroxypropyl methycellulose bionanocomposite, and which can be potentially used as a burn wound dressing. Hydroxypropyl methycellulose (HPMC, Figure 5.2) is the most important hydrophilic carrier material used for the preparation of oral controlled drug delivery systems (Doelker, 1987; Colombo, 1993). The reinforcing clay mineral and HPMC afford the necessary mechanical strength to the dressing, and the combined binding matrix is aimed to provide adequate moisture control and release of antibiotics to protect the wound bed from infection and to promote healing. Gt-Mt-HPMC films with different ratios of Gt-Mt to HPMC were synthesized and the mechanical properties and moisture adsorption behavior of several composite films examined. Antimicrobial effects against skin infection-causing bacteria *Staphylococcus aureus* of Gt-Mt-HPMC were also determined.

Figure 5.1: Gentamicin structures (Gentamicin C1: R1=R2=CH₃; Gentamicin C2: R1=CH₃, R2=H; Gentamicin C1a: R1=R2=H).

Figure 5.2: Molecule structure of hydroxypropyl methycellulose (HPMC), R=H or CH₃ or CH₂CH(OH)CH₃.
5.2. Experimental section

5.2.1. Materials

Gentamicin sulfate (48760) was supplied by Sigma-Aldrich. Montmorillonite, Cloisite® Na+ Nanoclay, with a cationic exchange capacity of 92.6 meq/100 g was obtained from Southern Clay Products (Rockwood Additives). Deionized water (resistance of 18.2 MΩ cm) was obtained with a Maxima Ultra Pure Water system from Elga.

5.2.2. Methods

5.2.2.1. Isotherm study

The Cloisite® Na⁺ Nanoclay obtained for this study was used without any purification. A series of gentamicin sulfate solutions were prepared by dissolving known weights of gentamicin sulfate directly into deionized water. Clay and gentamicin mixtures in air-tight bottles covered by aluminum film were shaken for 7 days at constant temperature (294 K). In the batch experiment, the clay weight/ gentamicin solution volume ratio was 10 g/L.

Table 5.1: pKa values of gentamicin C1a, C2, C1 (Lesniak et al., 2003).

<table>
<thead>
<tr>
<th>Amino group number (Fig. 5.1)</th>
<th>Gt-C1a</th>
<th>Gt-C2</th>
<th>Gt-C1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8.86</td>
<td>8.793</td>
<td>8.817</td>
</tr>
<tr>
<td>2</td>
<td>8.181</td>
<td>8.211</td>
<td>8.121</td>
</tr>
<tr>
<td>3</td>
<td>5.768</td>
<td>5.83</td>
<td>5.686</td>
</tr>
<tr>
<td>4</td>
<td>7.389</td>
<td>7.421</td>
<td>7.317</td>
</tr>
<tr>
<td>5</td>
<td>9.491</td>
<td>9.593</td>
<td>9.86</td>
</tr>
</tbody>
</table>
Figure 5.3: Ionization scheme of gentamicin C1, C2, C1a.
Table 5.2: Sample information for Isotherm experiments of gentamicin adsorption on Na+-montmorillonite.

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>(C_0) (gentamycin sulfate)-mg/L</th>
</tr>
</thead>
<tbody>
<tr>
<td>b</td>
<td>250</td>
</tr>
<tr>
<td>c</td>
<td>500</td>
</tr>
<tr>
<td>d</td>
<td>2000</td>
</tr>
<tr>
<td>e</td>
<td>5000</td>
</tr>
<tr>
<td>f</td>
<td>5974</td>
</tr>
<tr>
<td>g</td>
<td>7316</td>
</tr>
</tbody>
</table>

All the mixtures were centrifuged at the end of adsorption process and the supernatants were removed. The centrifuged precipitates (labeled as b, c, d, e, f, g, corresponding to the solution numbers) were air-dried at 40\(^\circ\)C in the dark.

5.2.2.2. Characterization

The resulting gentamicin-clay samples were characterized by chemical analysis: the amount of organic matter in the samples was determined by C, H and N elemental chemical microanalysis with a Perkin–Elmer 2400 analyzer; X-ray diffraction (XRD) patterns of clay and drug-loaded clay were obtained on a Bruker D8 Advance powder diffractometer using \(\text{CuK}_\alpha\) radiation with energy-discriminator and a scan speed of 0.02\(^\circ\)/s; The thermal behavior of the different materials (montmorillonite, gentamicin and gentamicin-loaded montmorillonite) were determined from simultaneously recorded thermogravimetric analysis
(TGA) and differential thermal analysis (DTA) curves with a Seiko SSC/5200 instrument in experiments carried out under an air atmosphere (gas flow rate of 100 mL min\(^{-1}\)) from room temperature to 990 °C at a heating rate of 10 °C min\(^{-1}\); FTIR spectra were measured in transmission absorption mode over the 4000-250 cm\(^{-1}\) region on a Bruker IFS 66v/S spectrophotometer, with the samples prepared in KBr pellets.

5.2.2.3. Photo-stability studies

Gentamicin sulfate and Gentamicin-Montmorillonite (sample d) were exposed under ultraviolet radiation for 24 hours (continuous 254-nm UV lamp), at ambient temperature (25 ±4°C). About 5 mg of each sample was collected and analyzed by ATR-IR (GladiATR 10, SHIMADZU) after 3h, 6h, 12h, 18h and 24h of UV exposure.

5.2.2.4. In vitro Gt. release from Gt-Mt.

Several tubes which were wrapped by aluminum film were prepared. Twenty milligrams of gentamicin-clay (sample d) and 2 ml of PBS (phosphate buffer solution pH 7) were added into these tubes. They were shaken in reciprocatory water bath (37°C) at 75 rpm. At given time intervals, one tube was taken out of bath and the mixture was filtered by filtration film. All the precipitation was collected was treated as those samples in isotherm study. After 24h of drying, they were characterized by chemical analysis.
5.2.2.5. Preparation of Gt-Mt-HPMC films.

Gentamicin-montmorillonite nanocomposites were prepared by the method we used to prepare sample f in the isotherm experiments. After 5 days of the adsorption process, the final mixture was centrifuged at 294 K at 4000 rpm for 20 min.

The HPMC solution (control film) was obtained by dissolving 2 g of HPMC in 100 mL distilled water under magnetic stirring for 12 h. A 2% (w/v) HPMC solution was used in film formulations. To study the effect of Gt-Mt hybrid concentration in the HPMC film matrix, different concentrations of Gt-Mt nanohybrid were mixed with the 2 % HPMC solution to obtain different film compositions. The wet precipitation hybrids (freshly synthesized) which contained 220, 250, 300, 350 mg of dry hybrid were relatively added into four separated 10 ml HPMC solution. Each mixture was stirred in an oil bath at 40 °C at 400 rpm for 4 hours. The suspensions were then dropped on plastic plates (10×10 cm) at room temperature for film preparation. Those plastic plates were placed in a ventilation box with a UV lamp. The box and the samples were sterilized by UV lamp for the first 15 min. The films were formed by evaporation of water from the samples in the ventilation box for 4 days. Obverse side and reverse side (contacting the plastic plates) of the film were named as the O side and R side respectively. Resulting films formed by the four different initial mixtures containing increasing amount of Gt-Mt hybrid are named as film a, b, c, d, respectively.

5.2.2.6. Film characterization

Field Emission - Scanning Electron Microscopy (FE-SEM)

A Field Emission - Scanning Electron Microscopy (FEI Nova™ NanoSEM 230) was used to study the morphology of the films. All the samples were deposited onto aluminum specimen
stubs using double-stick carbon tabs, and the morphology of both the O side and the R side of each sample were investigated. All samples were examined using an accelerating beam at a voltage of 7 kV. Magnifications of 3000× were used.

Moisture-Adsorption Isotherms

Moisture sorption was investigated by an Aquadyne DVS dynamic water-vapor sorption instrument from Quantachrome. Moisture-sorption isotherms were recorded at 25 ± 0.3 °C in the range of relative humidity from 0 to 95% by using amounts of samples of around 7 mg.

Mechanical Properties

Films used for tensile tests were conditioned at about 65% RH at 15 °C during the measurements. The sample films which were cut to have a rectangular shape (ca. 60 mm x 15 mm) were mounted between the grips with an initial separation of 50 mm. A Model 3345 Instron Universal Testing Machine (Instron Engineering Corporation Canton, MA, USA) was used to determine the maximum percentage (%) elongation at break, and elastic modulus E (or Young’s modulus) according to the ASTM standard method D 882-88. The cross-head speed was set at 5 mm min⁻¹. Three replicates were run for each film sample. The elastic modulus E was obtained as the ratio of stress to strain at the initial linear portion of the stress-strain curve. The percentage elongation at the breaking point was calculated by dividing the extension at rupture of the films by the initial length of the specimen and multiplying by 100.

5.2.2.7. Antimicrobial activity of Gt-Mt-HPMC film

Antimicrobial effectiveness was examined according to ASTM E2149 (Standard test Method for determining the antimicrobial activity of immobilized antimicrobial agents under dynamic contact conditions). 0.05 g film-c (3%) was introduced in test tubes containing 5 mL peptone
water. Pure montmorillonite and HPMC samples without gentamicin were used as controls. The samples were neutralized when required. Each tube was inoculated with 105 cells/mL of *Staphylococcus aureus* (CECT 86, ATCC 12600) in mid-exponential phase and incubated in a wrist action shaker (160 rpm) at 25ºC for 24h. For different samples and controls, bacterial counts were enumerated by sub-cultivation on TSA plates.

5.3. Result and Discussion

5.3.1. Preparation of Gt-Mt. nanohybrid and Isotherm study

The amino groups of the sugar rings of gentamicin exhibit variable pKa values which range from 5.6 to 9.8 as shown in Table 5.1. Thus, gentamicin carries a net positive charge under the experimental acidic conditions when all or parts of amino groups are protonated. All the initial pH values of gentamicin sulfate solutions for adsorption experiment were around 5.5, which made it possible that gentamicin intercalation in Na\(^{+}\)-montmorillonite by means of cationic exchange processes. Figure 5.4 shows the adsorption isotherm at 294 K from gentamicin sulfate solutions on Na\(^{+}\)-montmorillonite. The adsorbed amount of gentamicin was deduced from the CHN chemical analyses.

In order to investigate the adsorption isotherm, three equilibrium isotherm models were applied: the Langmuir, the Freundlich, and the Redlich-Peterson isotherms. The Langmuir adsorption isotherm is perhaps the best known of all isotherms describing adsorption (Langmuir, 1918). The theoretical Langmuir isotherm is often used to describe adsorption of a solute from a liquid solution as (Langmuir, 1918; Ho et al., 2002)

\[
q_e = \frac{q_m K_a C_e}{1 + K_a C_e}
\]

(5.1)
Where q_e is the equilibrium adsorption capacity, (mg/g), C_e is the equilibrium liquid phase concentration, (mg/L), q_m is the maximum adsorption capacity, (mg/g), K_a is adsorption equilibrium constant, (L/mg).

![Figure 5.4: Isotherm of gentamicin adsorption onto Na\(^+\)-montmorillonite.](image)

The Freundlich isotherm is the earliest known relationship describing the adsorption isotherm (Freundlich, 1906). This fairly satisfactory empirical isotherm can be used in adsorption from dilute solutions. The ordinary adsorption isotherm is expressed by the following equation:

$$q_e = K_F C_e^{1/n}$$ \hspace{1cm} (5.2)

where C_e is the equilibrium concentration in the solution, (mg/L), q_e is the equilibrium adsorption capacity, (mg/g), K_F and $1/n$ are empirical constants. K_F is the adsorption value, the
amount adsorbed at unit concentration, that is, at 1 mg/L. It is characteristic for the adsorbent and the adsobate adsorbed, and denotes multiple sorption site with varying Ka value (Sposito, 1984).

The Redlich-Peterson isotherm contains three parameters and incorporates the features of the Langmuir and the Freundlich isotherms (Redlich and Peterson, 1959). It can be described as follows:

\[q_e = \frac{AC_e}{1 + BC_e^g} \] \hspace{1cm} (5.3)

It has three isotherm constants, namely A, B, and g (0 < g < 1).

Due to the inherent bias resulting from linearisation, alternative isotherm parameter sets were determined by non-linear regression. This provides a mathematically rigorous method for determining isotherm parameters using the original form of the isotherm equation (Seidel and Gelbin, 1988; Ho, 2004). To compare the three isotherms, a trial-and-error procedure, was applied to obtain the isotherm parameters. The method is using an optimization routine to maximize the coefficient of determination \(r^2 \), between the experimental data and isotherms in the *solver* add-in with Microsoft’s spreadsheet, Microsoft Excel (Ho and Ofomaja, 2005, Ho, 2006).

The coefficient of determination \(r^2 \) was

\[r^2 = \frac{\sum (q_m - \bar{q}_e)^2}{\sum (q_m - \bar{q}_e)^2 + \sum (q_m - q_e)^2}; \] \hspace{1cm} (5.4)
Where \(q_m \) is the equilibrium capacity obtained from the isotherm model, \(q_e \) is the equilibrium capacity obtained from experiment, and \(\bar{q}_e \) is the average of \(q_e \).

The Langmuir and the Redlich-Peterson isotherms have best fitted for the adsorption of gentamicin on Na\(^+\)-montmorillonite at 294 K.

Thermodynamic considerations of an adsorption process are necessary to conclude whether the process is spontaneous or not. Gibb’s free energy change, \(\Delta G^\circ \), is the fundamental criterion of spontaneity. Reactions occur spontaneously at a given temperature if \(\Delta G^\circ \) is a negative value. Adsorption processes are calculated using the following equations:

\[
\Delta G^\circ = -RT \ln K_a; \tag{5.5}
\]

where \(R \) is universal gas constant (8.314 J/mol K) and \(T \) is the absolute temperature in K.

The thermodynamic parameters Gibb’s free energy change, \(\Delta G^\circ \), are calculated using \(K_a \) which in obtained from Langmuir Eq. (5.1) and is shown in Table 5.3.

The Gibbs energy of adsorption was -1.119 kJ mol\(^{-1}\). The negative values of Gibbs energy confirms the feasibility of the process and the spontaneous nature of adsorption of gentamicin on Na\(^+\)-montmorillonite.

It is assumed that the cationic exchange sites in the clay, 92.6 meq/100 g, can adsorb certain amout of charged gentamicin due to protonation of \(-\text{NH}_3^+\) and \(-\text{NH}_2^+\). The total charge depends on protonation state of hydroxyl group and amines at given pH. In the present work, the pH value in isotherm experiment was around 5.5. According to the study of Ganchev et al. (1973) and Lesniak et al. (2003), the ionic forms (Fig. 5.3) of gentamicin at our experimental pH should mainly be Gentamicin\(^{5+}\), with small amout of Gentamicin\(^{4+}\). The interlayer space
of smectites are known to be strongly acidic, thus it could be predicted that gentamicin were present only as Gentamicin$^{5+}$ in the interlayer of montmorillonite in strong acidic environment. As a result, the total amount of gentamicin could be retained by the clay we used was around 0.232 mmol/g, deduced by CEC of the clay. In the sorption isotherm study, it was considered that sample e, f and g have reached maximum adsorption, and the amounts of gentamicin adsorbed by them were in the range of 0.22~0.24 mmol/g. The value proved that Gr$^{5+}$ was the only ionic species of gentamicin intercalated into the clay interlayer.

Table 5.3: Isotherm parameters obtained using the non-linear method for the adsorption of gentamicin on Na$^+$-montmorillonite at 294 K.

<table>
<thead>
<tr>
<th>Isotherm</th>
<th>T (K)</th>
<th>294</th>
</tr>
</thead>
<tbody>
<tr>
<td>Langmuir</td>
<td>q_m, mg/g</td>
<td>184.2</td>
</tr>
<tr>
<td></td>
<td>K_a, L/mg</td>
<td>0.0022</td>
</tr>
<tr>
<td></td>
<td>r^2</td>
<td>0.978</td>
</tr>
<tr>
<td>Freundlich</td>
<td>$1/n$</td>
<td>0.375</td>
</tr>
<tr>
<td></td>
<td>K_F, (mg/g)(L/mg)$^{1/n}$</td>
<td>7.51</td>
</tr>
<tr>
<td></td>
<td>r^2</td>
<td>0.884</td>
</tr>
<tr>
<td>Redlich-Peterson</td>
<td>g</td>
<td>1.000</td>
</tr>
<tr>
<td></td>
<td>B_e, (L/mg)g</td>
<td>0.0024</td>
</tr>
<tr>
<td></td>
<td>A, L/g</td>
<td>0.435</td>
</tr>
<tr>
<td></td>
<td>r^2</td>
<td>0.978</td>
</tr>
</tbody>
</table>
We performed EDX measurement on starting montmorillonite (labeled as sample a), sample c, d and g. The EDX results indicate a decreasing Na\(^+\) ratio and increasing carbon ratio with the increasing amount of gentamicin adsorbed on the clay Wt(Na\(^+\)) \(a > c > d > g\) (Table 5.4).

Table 5.4: EDX result of sodium weight percentage in the clay and Gt-Mt samples.

<table>
<thead>
<tr>
<th>Sample No.</th>
<th>Wt(%) of Na to clay sample (EDX)</th>
<th>Wt(%) of C to clay sample</th>
<th>Gt. Uptake of the clay mmol/g</th>
<th>Wt(%) of Na to clay sample (estimated)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>2.94</td>
<td>2.6</td>
<td>0</td>
<td>2.94 (EDX)</td>
</tr>
<tr>
<td>c</td>
<td>1.34</td>
<td>12.3</td>
<td>0.056</td>
<td>2.2</td>
</tr>
<tr>
<td>d</td>
<td>0.55</td>
<td>6.8</td>
<td>0.141</td>
<td>1.2</td>
</tr>
<tr>
<td>g</td>
<td>0.41</td>
<td>14.5</td>
<td>0.219</td>
<td>0.37</td>
</tr>
</tbody>
</table>

If we assume that all the exchangeable cations are Na\(^+\), the weight percentage of Na\(^+\) to Gt-Mt clay samples could be estimated by the amount of Gt. adsorbed on different clay samples. One gentamicin\(^{5+}\) molecule can exchange five Na\(^+\) cations equivalently. Thus, the weight percentage of sodium of sample c, d and g can be estimated by:

\[
W_t(\%) = \frac{m_{Na(i)} - m_{Na(e)}}{m_{clay} - m_{Na(i)} + m_{Gt}} \times 100% = \frac{m_{Na(i)} - 5n_{Gt}M_{Na}}{m_{clay} - 5n_{Gt}M_{Na} + n_{Gt}M_{Gt}} \times 100% \quad (5.6)
\]

\(m_{Na(i)}, n_{Na(i)}\): initial mass and amount of substance of sodium in the clay (g);

\(m_{Na(e)}, m_{clay}\): mass lost of sodium due to exchange of gentamicin (g);

\(m_{clay}\): initial mass of pure Na\(^+\)-montmorillonite (g);
m_{Gt}, n_{Gt}: mass and amount of substance of gentamicin intercalated in the clay (mol);

M_{Na}, M_{Gt}: molecular weight of sodium and gentamicin (g/mol),

The calculation results are shown in Table 5.4. The estimation shows the same trend of decreasing sodium ratio to Gt-Mt samples and the values are similar to EDX results. In this way, the predominance of ion-exchange mechanisms driving the intercalation of the gentamicin into the phyllosilicate substrate is experimentally confirmed.

5.3.2. Characterization, degradation and in vitro release experiment of Gt-Mt composites.

XRD characterization.

Figure 5.5 shows the XRD patterns of clay and gentamicin-clay nanocomposites. The intercalation of the gentamicin in the clay interlayers was confirmed by the decrease of 2θ values while the gentamicin/clay ratio increases. Sample e, f and g were obtained when gentamicin adsorption on clay reached saturation, which means these samples should have the same d_{001} spacing value. As shown in XRD results, the d_{001} spacing reaches 1.4 nm when the adsorption reaches equilibrium. However, sample d, which contains less gentamicin compared to e, f, g has same d_{001} spacing as those full cation-exchanged samples. In a study by Darder et al. (2003), the intercalation of chitosan in montmorillonite increases clay basal spacing to 1.4 nm when there’s mono-layer of chitosan was uptaken by the clay. Because gentamicin molecule has similar structure as chitosan (both contain modified sugar rings), we believe that gentamicin intercalation has similar pattern as chitosan intercalation into clay shown in Scheme 4.1. The increase of clay d_{001} spacing was due to the thickness of gentamicin molecule sheet.
Figure 5.5: XRD patterns of a: starting montmorillonite; b, c, d, e, f and g, samples obtained in isotherm study, d_{001} basal space unit: nm.

Scheme 5.1: Intercalation of gentamicin into Na$^+$-Montmorillonite.
Doadrio et al. (2004) reported the lower energy configuration of gentamicin (Fig. 5.6), with two-dimension size of a gentamicin molecular was around $0.52 \times 1.53 \text{ nm}^2$. For sample e, f, g, distance between two consecutive smectite layers was about 0.47 nm, similar to the size of gentamicin molecule in one dimension (Scheme 4.1). The result showed that gentamicin molecule was intercalated as the configuration shown in Scheme 5.1, with the three ring chain of gentamicin molecule was positioned roughly parallel to the smectite layers.

In order to provide experimental confirmation of the optimal layer spacing, the fwhm profile as a function of d_{001} of Gt-Mt samples was examined (Figure 5.7). Changes in fwhm have been attributed previously to the evolution of different configurations of the intercalated molecules, whereby, in a profile of fwhm values as a function of d_{001}, an increase in fwhm typically indicateds interstratifications of different layer types. Similar to the hypothesis put forth in the case of the adsorption of lysine on montmorillonite, a minimum in fwhm would be reached when the clay interlayers are saturated with adsorbed gentamicin, and the corresponding layer spacing would be considered optimal for the binding of gentamicin in the interlayer (Parbhakar et al., 2007; Wang et al., 2009; Aristilde et al., 2013). With the increasing amount of gentamicin intercalated in the clay, the FWHM was decreasing. When
the clay was saturated with gentamcin, the FWHM value reached the minimum level, which was proposed to be due a gradual change in the interlayer configuration occurring homogeneously within all layers, wherein the molecules would change position or orientation, for instance, from being stretched to a relatively flat chain molecule with high energy to being stable molecule chains less distorted.

Figure 5.7: Changes in full-fixed width at half-maximum intensity (FWHM) as a function of d_{001} for Gt-Mt samples.

IR Spectroscopy

Besides the vibrational band characteristics of the silicate (νOH of Al, Mg(OH) 3633 cm^{-1}; νOH of H$_2$O 3451 and 3249 cm^{-1}; δHOH 1637 cm^{-1}; and νSiO of Si-O-Si 1045 cm^{-1}), the bands attributed to the intercalated gentamicin are also observed in the spectrum of gentamicin-clay composite (Figure 5.8). Also, vibrational bands (N-H in-plane deformation vibration of unprotonated amine group) of gentamicin overlap the bands (δHOH) of the silicate and a combination band is formed at 1632 cm^{-1} in gentamicin-clay composite. The frequency of vibrational bands at 1530 cm^{-1} in the gentamicin, which corresponds to symmetric deformation vibration (δNH$_3^+$) of the protonated primary amine group, is shifted to
1526 cm\(^{-1}\) after it is intercalated in clay. At about 1048 cm\(^{-1}\) of spectrum of gentamicin-clay sample, the vibration band for C-O-C of gentamicin overlaps band of Si-O-Si of the clay.

Thermal Stability

Thermal stability was investigated from DTA and TG curves recorded in the 30-990 °C range, under air flow conditions (Figure 5.9). Weight loss respected to water molecule desorption is completed at 87 °C and 160 °C for starting silicate and gentamicin-clay, respectively. Such a weight loss is about 4.6% in the starting silicate, while the gentamicin-clay composites show a slightly higher value 5.4%. This fact indicates the high water-retention capacity of gentamicin. A significant increase in thermal stability was observed by TG analysis for the gentamicin-clay nanocomposite respect to the starting gentamicin. The DTA curve of gentamicin-clay shows endothermic process of intercalated gentamicin started from around 237°C (melting point of gentamicin) and ended with an exothermic peak at ~600 °C when the combustion of gentamicin completed.
Figure 5.8: IR spectra (4000-350 cm-1 region) of the starting Na+-montmorillonite (a), Gentamicin-Clay composite (sample g) (g), and starting gentamicin sulfate (Gt. sulfate)
Figure 5.9: TG curves in the 30-990 °C temperature range (obtained under an air atmosphere) of Na⁺-montmorillonite (a), gentamicin-clay nanocomposite (sample g) (g) and starting gentamicin sulfate (Gt.). The DTA curve corresponds to gentamicin-clay nanocomposite (sample g).

Photo Stability

The spectra of gentamicin-clay are shown in Figure 5.10. In 24 hours, there’s no significant change on infrared spectrum. We can still see the same peaks that are assigned to vibration bands N-H and δNH$_3^+$ near 1600-1500 cm$^{-1}$. No new peak appears due to decomposition reaction. Kühn et al. (2008) studied stability of gentamicin in different antibiotic carriers. They indicated that the impurities and degradation products of gentamicin are garamin, 2-deoxy-streptamine and sisomicin with a background electrolyte containing 20 mM deoxycholic acid, 15 mM β-cyclodextrin and 100 mM tetraborate (pH 10.0). We presume that the photodegradation products in our study are the same as those considering no oxidation sign found in the infrared spectra. Another possibility is that degradation hadn’t occurred in
24h UV-light decomposition test, because clay shows its protective effect on drug stability in other studies.

Figure 5.10: ATR-IR spectra (4000-350 cm\(^{-1}\) region) of gentamicin-clay nanocomposites (sample d) after continuous photodegradation test (under 254 nm UV light).

In vitro drug release

Results from chemical analysis show that there’s no large amount of gentamicin had released from gentamicin-clay composite under our experimental condition in 72h. Gentamicin quantity adsorbed on clay slightly decreased from initial 0.17 mmol/g to 0.16 mmol/g 18 hours after the release experiment and gentamicin quantity of adsorption recovered to 0.17 mmol/g. It can be considered that re-adsorption occurred. At pH 7, gentamicin is protonated as mixture of gentamicin\(^{3+}\), gentamicin\(^{4+}\) and gentamicin\(^{5+}\), which makes gentamicin compounds be steadily trapped in the interlayer of montmorillonite because of high electrostatic attraction.
Figure 5.11: Release profile of gentamicin from gentamicin-clay (sample d) containing 50 mM PBS (pH=7) at 37 °C.

5.3.3. Gt-Mt-HPMC film

Morphology:

The morphology of the Gt-Mt-HPMC films containing nanocomposites was analyzed by FE-SEM. As shown in Fig 5.12, the morphologies of the films removed from the evaporation plastic plate are different on the two sides. Compared with the reverse R sides (toward the plates), Gt-Mt composites distribute more homogeneously in the obverse O sides of the films. Because the contents of Gt-Mt added to HPMC solution in film preparation vary from 2.2% to 3.5% (w/v), the void density of R sides of films decreases with increasing ratio of Gt-Mt to HPMC. The R sides contain more rough aggregated composites particles since larger particles having more mass than smaller particles (assuming that their density is the same) settle faster because of gravity. Through micrographs, we found the O sides of films have homogeneously distributed particles, as the matter of fact the O sides have clay-like coarse
touch while the R sides have plastic-like smooth touch since the HPMC component were formed against the plate. For the same reason, the R sides of the films are glossy while the O sides of films are dull by naked eyes observation.

Figure 5.12: FE-SEM graphs of film samples (R: reverse side, O: observe side).
Table 5.5: Effect of Gt-Mt amount added into 2% HPMC solution (w/v) on elastic modulus, and percent elongation of Gt-Mt-HPMC films produced by evaporation process.

<table>
<thead>
<tr>
<th>Film No.</th>
<th>Gt-Mt portion in starting HPMC solution (w/v %)</th>
<th>Elastic modulus of films (GPa)</th>
<th>Elongation of films (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>2.2</td>
<td>1.97 ± 0.14</td>
<td>1.62 ± 0.81</td>
</tr>
<tr>
<td>b</td>
<td>2.5</td>
<td>1.93 ± 0.52</td>
<td>1.25 ± 0.43</td>
</tr>
<tr>
<td>c</td>
<td>3.0</td>
<td>2.46 ± 0.29</td>
<td>1.53 ± 0.40</td>
</tr>
<tr>
<td>d</td>
<td>3.5</td>
<td>2.27 ± 1.01</td>
<td>2.11 ± 0.36</td>
</tr>
</tbody>
</table>

Mechanical Properties

The suitable use of antibiotics-loaded film is also strongly dependent on its favorable mechanical properties. Elastic modulus and elongation are parameters that are related with mechanical properties of films and their chemical structures (Dufresne and Vignon; 1998). Elastic modulus indicates the stiffness of the material, whereas elongation represents the capacity of the film for stretching (Alcântara et al., 2012). The pure HPMC film (2% w/v) has an elastic modulus of 1.2 GPa and percentage of elongation of break of 7.5% approximately. Table 5.5 shows the effects of Gt-Mt contents on elastic modulus and elongation at break values of the obtained Gt-Mt-HPMC films. The incorporating of Gt-Mt in the HPMC matrix gives an increase in the elastic modulus values to pure HPMC film but decrease in the value of elongation at break. Elastic modulus and elongation at break values of film sample c and d are slight higher than sample a and b, which is consistent with the morphology results showing Gt-Mt nanocomposites distribute more homogeneously in sample c and d than in
sample a and b. The voids exist in the R sides of sample a and b could contribute to their weaker mechanical properties and become the point from where the Gt-Mt-HPMC films start to crack.

Water uptake under moisture

Given that a balanced moist wound bed plays a key role for promoting wound healing, the composites can be designed to have an optimum recipe according to the patient wound. We studied water-absorption tendency of film a and d which contain highest and lowest portion of Gt-Mt based on HPMC. Figure 5.13 shows the weight increase due to water uptake expressed as grams of water incorporated per 100 gram of dry sample of BNC-HPMC with Gt-Mt as a function of the relative humidity (%). Before relative humidity reaches 80%, the water uptake capability of film a and film d differ little, while film a starts to adsorb more water vapor than film d at 80% or higher RH. The result shows that incorporation of Gt-Mt decreases slightly the water uptake capability of HPMC. Because of the amounts of Gt-Mt embed in HPMC film a and d don’t vary largely, the difference of water uptake capability of two films is insignificant.

Antimicrobial activity of Gt-Mt-HPMC

Gt-Mt-HPMC and Gt-HPMC showed high antimicrobial properties compared with the control tube with peptone water. The samples HPMC or/and montmorillonite which were free of gentamicin showed no detectable antimicrobial effect. The result showed Gt-Mt-HPMC retained the antimicrobial capability of gentamicin. The efficiency of antimicrobial effect of the bionanocomposites was not weakened by the supporting material montmorillonite and HPMC.
Figure 5.13: Effect of water uptake on two Gt-Mt-HPMC films (film-a and film-d).

Table 5.6: Antimicrobial effectiveness of Gt-Mt-HPMC film.

<table>
<thead>
<tr>
<th>Sample description</th>
<th>CFU/mL</th>
<th>CFU/mL</th>
<th>Mean</th>
<th>% reduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control PW</td>
<td>9.40 × 10^6</td>
<td>9.80 × 10^6</td>
<td>9.60 × 10^6</td>
<td>-</td>
</tr>
<tr>
<td>Mt</td>
<td>1.20 × 10^7</td>
<td>1.06 × 10^7</td>
<td>1.13 × 10^7</td>
<td>-17.71%</td>
</tr>
<tr>
<td>HPMC</td>
<td>4.00 × 10^6</td>
<td>9.60 × 10^6</td>
<td>6.80 × 10^6</td>
<td>29.17%</td>
</tr>
<tr>
<td>Gt-HPMC</td>
<td>n.d.</td>
<td>n.d.</td>
<td>n.d.</td>
<td>100.00%</td>
</tr>
<tr>
<td>Gt-Mt-HPMC (3.0%)</td>
<td>n.d.</td>
<td>n.d</td>
<td>n.d</td>
<td>100.00%</td>
</tr>
</tbody>
</table>

*% reduction: (CFU/mL control-CFU/mL sample)/CFU/mL control *100

n.d. - not detectable

Related experiments are ongoing.
5.4. Conclusion

The adsorption of gentamicin onto Na\(^+\)-montmorillonite through cationic exchange mechanism is feasible, so montmorillonite can be used as removal reagent for decontaminating of high-gentamicin containing water in water treatment. The techniques employed in the characterization of the Gt-Mt (CHN chemical analysis, XRD, FTIR spectroscopy, EDX and thermal analysis) confirm the high affinity between the clay substrate and the gentamicin. The maximum \(d_{001}\) spacing of gentamicin-clay nanocomposite is 1.43 nm, which indicates that gentamicin orientation with the charged octahedral sheet is parallel to the basal surface and gentamicin molecules are not able to lap over each other but monolayer intercalation. The solid waste of the treatment – gentamicin loaded montmorillonite can be further incorporated with HPMC to form a bionanocomposites hybrid film for treating burn wound. Montmorillonite/HPMC offered better thermal stability and mechanical property for Gt-Mt (HPMC) nanocomposites than pure drug. Gt-Mt-HPMC and Gt-HPMC showed high antimicrobial properties compared with the control samples. The efficiency of antimicrobial effect of the bionanocomposites against Staphylococcus aureus was not weakened by the supporting material montmorillonite and HPMC. The releasing test of gentamicin from Gt-Mt preliminarily proved that clay mineral can counteract rapid release of antibiotics upon water uptake, which was one of the disadvantages of antibiotics-loaded natural polymer. The potential controlled-release mechanism of Gt-Mt-HPMC and anti-photodegradation behavior of Gt-Mt-HPMC will need to be further studied.
Chapter 6

Conclusions and perspectives
6.1. Conclusions

The importance of As removal from drinking water system

Drinking water contamination by arsenic in China is alarming. The problem is widespread throughout China - 19 provinces had been found to have As concentration in drinking water exceeding the standard level (0.05 mg/L) up to 2012.

A large population has been exposed to drinking water with high level of geogenic As which occurs mainly in the arid or semi-arid north of China. High-As spring or groundwaters are frequently found high pH value (≈8.5), reducing and located in low-lying areas. The climate, geochemical and hydrological conditions are favorable for As-rich water formation. Low precipitation-to-evaporation ratio leads to As-containing water becoming concentrated. High pH favors As being released and exchanged from minerals or rocks. In reducing conditions, As(III), which is more toxic and mobile than As(V), typically dominates. Low-lying closed basins make it hard for As to be flushed away. Because of surface water shortage, use of groundwater as water supply is more common in the North, where As-rich groundwaters are more likely to be discovered, than in the South.

As the same time, an increasing number of sudden and accidental As pollution events is taking place due to human activities. Those accidents usually happen in subtropical or tropical south of China where there are plenty of As-rich ores. Intensive chemical plants, smelting and mining activities increase the likelihood of pollution accidents. Contamination cases are usually triggered by heavy rains or floods which flushed the highly concentrated As-containing waste water/sluge directly into natural waters.
The synthesis and application of CGB in As removal

No matter for chronic endemic arsenicosis or for acute As poisoning cases, effective actions should be taken. High-As water need to be well treated according to water standard or guideline till its concentration reach the safe level. Adsorption - one of water treatment techniques - is used for excess arsenic contaminants removal from aqueous solution in our study. The most well-known adsorbents used in adsorption is activated carbon in modern times. However, its widespread use is restricted due to high cost. As such, numerous alternative materials have been investigated.

The novel material was synthesized in our study for removing arsenic from contaminated water: chitosan goethite bionanocomposite (CGB) bead.

CGB can adsorb both As(III) and As(V) efficiently. With initial arsenite and arsenate concentrations of 5.6 mmol/L and 7 mmol/L, the adsorbed quantities of the arsenate-adsorbed beads were 0.113 mmol/g, at pH=5 and 0.052 mmol/g, at pH=9, and that of the arsenite-adsorbed beads were 0.151 mmol/g, at pH=5 and 0.156 mmol/g, at pH=9. Isotherm study and pH effect on arsenic adsorption onto CGB reveal that pH value change is more significant for arsenate adsorption than arsenite, which could affect the surface charge of chitosan as well as goethite so that the electrical attraction between arsenate and material were weaken sharply while it has less effect on neutral arsenite molecule. Hence, manipulation of pre-oxidation of As(III)-contained water for enhancing As removal rate is not necessary. The kinetics study indicated As(V) was adsorbed faster than As(III), and pseudo-equilibrium to be reached in both cases within 2000 min. Diffusion of As(V) within the CGB beads was, according to
micro X-ray fluorescence, faster for As(V) than for As(III), and the later was partly oxidized, according to micro-XANES investigation. CGB beads are suitable to be used in rural areas for people don’t have tap water and advanced water treatment plants. The material is safe, easy and practical to use in daily life. The results of leaching test prove CGB doesn’t pose potential health risk by releasing nano-particle or toxic element in application. The mechanical property test shows that the material is very rigid and stable so that it’s easy for storage, transport and daily use. The size and density of CGB allow users to obtain decontaminated water without need of complicated or energy-consuming separation procedure, since the large-size CGB applied in remediation process would precipitate at the bottom of the water container or could be kept in permeable porous textile or plastic bags. These possibilities highly reduce the cost and complexity of As water treatment process especially for underdeveloped areas.

Antibiotics pollution in China waters

Antibiotics presence has become a focus of research efforts due to different advert effects it causes, especially the contribution to antibiotic resistant bacteria in the environment. Such resistant bacteria can cause an infection both in humans and animals and may not respond to regular antibiotic treatments. Human and animal faeces, hospital effluents, pharmaceutical industries and municipal sewage influent that contain antibiotics result in antibiotic residue in surface water and ground water.

As China is the largest producer and consumer of antibiotics in the world, antibiotics have been found widespread in WWTPs and environment frequently. Densely populated areas are prone to antibiotics contamination. The review of antibiotic presence in WWTPs and natural
waters in China shows the diversity of antibiotics in the water cycles with high concentration. In some water bodies, the levels of antibiotics are in the same range of that in WWTPs. Presence of antibiotics in tap water of two cities in China (concentration up to 697 ng/L) reflects the fact that public is exposed to potential risk by long-term intake of antibiotics via drinking water (Wang et al., 2010).

Removal of gentamicin by clay mineral and the synthesis of hybrid film by resulting composites

The adsorption of gentamicin onto Na\(^+\)-montmorillonite through cationic exchange mechanism is feasible. Gentamicin molecule can be intercalated into clay. The techniques employed in the characterization of the nanocomposites, CHN chemical analysis, XRD, FTIR spectroscopy, EDX, and thermal analysis, confirm the high affinity between the clay substrate and the gentamicin. Gentamicin-clay nanocomposites have better thermal stability than pure drug. The maximum d001 spacing of gentamicin-clay nanocomposite is 1.43 nm, which indicates that gentamicin orientation with the charged octahedral sheet is parallel to the basal surface and gentamicin molecules are not able to lap over each other but monolayer intercalation. In 24-hour photodecomposition test, nanocomposites had no distinct changes on structures of functional groups. In vitro release experiment confirmed the strong affinity between the clay and gentamicin also. Gentamicin rarely released from nanocomposite under neutral pH in 3 days.

Gt-Mt-HPMC (gentamicin-loaded montmorillonite based on hydroxypropyl methycellulose) hybrid film was prepared for the possible use of skin wound treatment. Fe-SEM results reveal
that obverse (O) and reverse (R) sides of the films show different morphology. Gt-Mt composites distribute more homogeneously in the obverse O side of the films than the other side. The R sides contain more roughly aggregated composites particles. The void density of R sides of films decreases with increasing ratio of Gt-Mt to HPMC.

Mechanical property tests show that the incorporating of Gt-Mt in the HPMC matrix gives an increase in the elastic modulus values to pure HPMC film but decrease in the value of elongation at break. Elastic modulus and elongation at break values of film sample c and d (3% and 3.5% Gt-Mt in HPMC solution) are slight higher than sample a and b (2.2% and 2.5% Gt-Mt in HPMC solution), which is consistent with the morphology results showing Gt-Mt nanocomposites distribute more homogeneously in sample c and d than in sample a and b. The voids exist in the R sides of sample a and b could contribute to their weaker mechanical properties and become the point where the Gt-Mt-HPMC films start to crack.

Result of water absorption tests indicates that this hybrid film shows water retention property. Since the concentrations of Gt-Mt in 4 different samples don’t vary largely, and both of HPMC and montmorillonite have water retention, the water absorption quantities of sample a and d are close, having a 30% mass change under 100% of RH at 25 ºC without big difference for two samples.

Gt-Mt-HPMC and Gt-HPMC showed high antimicrobial properties compared with the control samples. The efficiency of antimicrobial effect of the bionanocomposites against *Staphylococcus aureus* was not weakened by the supporting material montmorillonite and HPMC.
6.2. Further work

As presence in China

Previous investigations of a number of affected sites in China have given people a better understanding of the As-contamination problem. However, most information are mainly about heavily contaminated water bodies with water As concentrations above 0.05 mg/L. Future research should attach importance to contaminated water with As concentration of 0.01 mg/L-0.05 mg/L according to the WHO guideline for drinking water. Low concentration of arsenic could be dangerous if there’s a high ratio of As(III) to total As, thus knowledge on the speciation of arsenic is gaining increasing importance because toxicological effects of arsenic are connected to its chemical form and oxidation states. Arsenic speciation is important and necessary to be investigated for coming studies.

Besides, more researches should focus on understanding the occurrence, origin and distribution of arsenic. Government should pay more attention to industrial and agricultural activities which lead to As pollution, giving more technical supports to mining or chemical plants and managing supervision departments to carry out sampling and analyzing of the discharge from industrial plants.

Chitosan-geothite bionanocomposites (CGB) for arsenic removal

As contaminated groundwater which usually contains Ca, Mg, bicarbonate, phosphate, DOC and other components will need to be used in arsenic adsorption experiments in order to study the effect of these components on the As removal by CGB.
The recycling of As-loaded CGB will be studied. Two possible methods could be taken into consideration: i) regeneration of As-loaded by chemical reagents like NaOH; ii) possible means to transform As-loaded CGB into other phase or form to be reused into other industrial domains.

Since CGB beads, in our study, are designed for cleaning drinking water which is supposed to contain not very high concentration of As, after-use CGB beads might have not reached saturation and have capability to adsorb more contaminants in heavy polluted water, e.g. industrial waste waters. The regeneration of used CGB could be carried out after CGB material having been completely used and reached saturation. The sorption efficiency of regenerated CGB should be studied compared with primary CGB beads.

As a polymer-containing material with elasticity properties, there is possibility to apply CGB into road construction material. To be used as Solid Roads Polymer Soil Stabilizers, the incorporation of a polymer allows for a long lasting sub-base and wearing course while decreasing roll resistance and increasing performance. Increased surface elasticity will prohibit the formation of potholes, cracking and swelling due to traffic load or temperature change.

Different starting ratio of FeCl$_3$ reagent to chitosan could be tested to form beads with different composition. The ratio effect on resulting material will be studied. Magnetic field could be introduced into the fabrication process and the effect of the magnetic field could be interesting to investigate because goethite or other Fe-containing magnetic materials might be formed in the fabrication.
Antibiotics removal and medical film

The present study has demonstrated that gentamicin, as one kind of widely used antibiotics for the treatment of human and veterinary infectious diseases as well as animal feed additives, can be adsorbed by low-cost clay material montmorillonite. However, the gentamicin-containing solutions were prepared in the chemistry lab. To investigate the real-life application of montmorillonite in removing gentamicin, water samples from disposal of sewage, hospital wastewater, animal wastewater, etc. should be used in the future study. Besides wastewaters, antibiotic residues in natural waters with relative low concentration (less than 1000 ng/L) also draw public concerns since they can pose potential threats to public health and environment. Research related to gentamicin-containing water with low concentration should be carried out. This would require more sensitive instrument such as LC-MS/MS to be used for the examination of low concentration gentamicin. Furthermore, studies on application of montmorillonite in removing other kinds of antibiotic could be carried out, especially positive charged antibiotics due to probable electrostatic attraction between antibiotic and clay.

The Gt-Mt-HPMC film hybrid material can also be used as wound dressing. Besides *Staphylococcus aureus*, resistance or inhibition behavior of this film with other common bacteria, which cause skin infection such as *Pseudomonas aeruginosa*, etc. will be investigated. Clinical trials on this new drug could be carried out to assess its effect on skin wounds based on exudate amounts, wound tissue color and whether the wound become infected. The potential controlled-release mechanism of Gt-Mt-HPMC and anti-photodegradation behaviour of Gt-Mt-HPMC will need to be further studied.

Conversation, T., 2013. China's farms pose growing antibiotic resistance risk.

Reference

Ling, J.H., Lin, K., Su, W.M., 2009. Jiangsu was exposed to arsenic contamination again, Economic Information, Beijing.

Peoples Court of Minquan County, 2010. Criminal judgment and civil judgment, Min xing chu zi, No. 76.

Though only my name appears as the author on the cover of this dissertation, a great many people have contributed to its production. I owe my gratitude to all these people who have made this dissertation possible and because of whom my graduate experience has been one that I will cherish forever.

My deepest gratitude is to my advisor, Prof. Laurent Charlet at Université Joseph Fourier. I have been amazingly fortunate to have an advisor who gave me the freedom to explore on my own and at the same time the guidance to recover when my steps faltered. I am thankful to my supervisors Prof. Fuxing Gan, Prof. Dihua Wang and Prof. Song Hong at Wuhan University during my master-PhD program for their continued guidance, support and encouragement. I am grateful to Prof. Yuh-Shan Ho at Asia University, who has dedicated unselfish help and very enlightening guidance to my research. I would like to acknowledge Prof. Eduardo Ruiz-Hitzky, Prof. Pilar Aranda and Dr Margarita Darder at Instituto de Ciencia de Materiales de Madrid, who have advised me and given practical help on the research related to design and synthesis of gentamicin loaded film.

I am also thankful to my colleagues and friends, Dr Fabrizio Bardelli and Dr Antoine Gehin and Dr Yael Kirsch for their great contribution on my dissertation work, numerous discussions and lectures on related topics that helped me improve my knowledge in the area.

I am grateful to Delphine Tisserand and Lionel Rossetto at ISTerre; Denis Testemalle at the FAME beamline of ESRF; Dominique Thiaudiere and Cristian Mocuta at the DIFFABS beamline of the French synchrotron source (SOLEIL); Dr Christophe Martin, Charles Josserond and Xavier Bataillon from SIMaP lab of Grenoble; Andrés Valera Bernal, Carlos
Sebastián Checa and Javier Perez Carvajal from ICMM lab of Madrid, Pedro Vázquez and Patricia Fernández at Nanobiomatters, SL (Paterna, Valencia, Spain) for their invaluable help given during different measurements of the work.

Many friends at ISTerre and IPAG have helped me stay sane through these difficult years far from my family. Their support and care helped me overcome setbacks and stay focused on my graduate study. I greatly value their friendship and I deeply appreciate their belief in me. I am also grateful to Dr-to-be Yann Berquin, who helped to prepare the French version of this dissertation summary.

Most importantly, none of this would have been possible without the love and patience of my family. My immediate family, to whom this dissertation is dedicated to, has been a constant source of love, concern, support and strength all these years. I would like to express my heartfelt gratitude to my family. My extended family has aided and encouraged me throughout this endeavor. I have to give a special mention for from my uncle, who passed away in October, 2013. He was my guarantee of my scholarship agreement with China Government. Without his support and love I wouldn’t have made my PhD in France.

Finally, I would like to express my appreciation to China Government, who funded my PhD through State-Sponsored Study Abroad Program from Ministry of Education of the P.R. China. I would like to thank to Institut Universitaire de France and Rhône-Alpes Region of France who partly fund my research during the PhD research.
Curriculum Vitae

Date of Birth: 11th July, 1985
Place of birth: Wuhan, China
Email: jhe0711@gmail.com

EDUCATION

PhD
Environmental Geochemistry

Master
Environmental Science
Wuhan University, China (Sep. 2008 – Jun. 2010)

Bachelor
Material Chemistry
China University of Geosciences (Wuhan), China (Sep. 2003 – Jul. 2007)

RESEARCH INTERESTS
Waste/Drinking water treatment: Arsenic, fluoride, antibiotics and etc. removal from polluted water system.
(Bio)nanocomposites: Synthesis and modification of bionanocomposites and their application into water treatment and medical use.

RESEARCH EXPERIENCES

PhD Thesis:
(Bio)nanocomposites for water treatment of arsenic/gentamicin contaminated water or medicine use

Research Intern
Bionanocomposites synthesis and application in drug delivery systems
Instituto de Ciencia de Materiales de Madrid, Spain (Apr– Jun. 2012; Dec.– Feb. 2013)

Master Period:
1. Adsorption equilibrium and thermodynamic study of fluoride onto mineral material from aqueous solution.
2. Adsorption thermodynamics study of dyes onto mineral material (Bentonite and Rectorite).

Bachelor Thesis: Synthesis and infrared spectroscopy study of Schiff base coordination

TEACHING EXPERIENCE
Laboratory work for Master students at University of Grenoble I (2011 –2012)
1. Extraction of Pb^{2+} content from polluted soil
2. Geochemistry of soil: The Atomic Absorption Spectrophotometer AAS

WORKSHOP & CONFERENCE ATTENDANCE

2009 Sino-Japan International Conference on Resources & Environmental Sustainable Development, Wuhan China
2010 University Groups Conference on Yangtze River Water Environment, Shanghai, China
2011 The 21st Goldschmidt Geochemistry Conference, Prague, Czech Republic
2011 BIT’s 1st Annual World Congress of Nano-S&T (NANO-S&T2011), Dalian, China (oral presentation)
2011 Second International Conference on Selenium in the Environment and Human Health
2013 The 23rd Goldschmidt Geochemistry Conference, Florence, Italy (oral presentation)

AWARD AND HONORS

2011 Bourses de Mobilité ExploraDoc 2011, Région Rhône-Alpes
2010 State-Sponsored Scholarship from China Government
2006 Award Scholarships
2005 Award of Excellent Social Activities
2002 First Prize National Competition of Chemistry (in Wuhan)

SKILLS

Languages: Chinese (mother tongue), English (advanced); French (intermediate communication)
Computer: Windows, Microsoft WORD EXCEL POWERPOINT
Chemistry Instruments: Infrared Spectroscopy; X-ray Diffraction; ICP-OES; TC/TN; etc.
Referee of Basketball (1st Category)

PUBLICATIONS

Annex 1: Calculation of site density: arsenic on goethite

The site density for As adsorption onto goethite is calculated as following method.

(i). We assume that goethite nano-particles in CGB have a cuboid geometry with size of 250×50×10 nm, as observed by FE-SEM.

(ii). The adsorption of As onto chitosan in CGB is neglected (As adsorption onto chitosan gel beads were tested. The sorption quantity was very small compared with the As sorption quantity onto CGB (q_e(As-chitosan)<70μg/g while q_e(As-CGB)>7000μg/g).

(iii). Because of (ii), the maximum amount of adsorbed As(V) and As(III) onto goethite, q_m(goethite)=q_m(CGB)/w

w: mass fraction of goethite in CGB, w=20.33%,

q_{m1} (goethite) =0.74 mmol/g for As(V) and q_{m2} (goethite)=0.56 mmol/g for As(III).

For CGB material which contains 1g of goethite nanoparticles, the total volume of goethite NPs, V_{total} (nm3) can be calculated:

$$V_{total} = \frac{m}{d} \times 10^{21} = \frac{1g}{4.27g/cm^3} \times 10^{21}$$ \hspace{2cm} (A1.1)

Where,

m, mass of goethite (g), m=1g;

d, density of goethite (g/cm3),

For each goethite NP,

$$S_{NP} = [(a \times b) + (b \times c) + (b \times c)] \times 2$$ \hspace{2cm} (A1.2)

$$V_{NP} = a \times b \times c$$ \hspace{2cm} (A1.3)

Where

S_{NP}, surface area of each goethite NP (nm2);

V_{NP}, volume of each goethite NP (nm3);
a, b and c are three side-lengths of goethite NP. a = 250nm, b = 50nm, c = 10 nm,

Therefore, the number of goethite NP, N, in CGB which contains 1 g of goethite can be calculated:

\[N = \frac{V_{\text{total}}}{V_{\text{NP}}} \]

(A1.4)

So the total surface area, \(S_{\text{total}} \) (\(m^2 \)), is:

\[S_{\text{total}} = N \times S_{\text{NP}} \times 10^{-18} \]

(A1.5)

The site density of As(V) and As(III), \(d_{\text{ST}} \) (\(\mu \text{mol/g} \)) are calculated by:

\[d_{\text{ST}} = \frac{q_m(\text{goethite}) \times m}{S_{\text{total}}} \times 1000 \]

(A1.6)