S. Y. Chou, Y. Liu, W. Khalil, T. Y. Hsiang, and S. Alexandrou, Ultrafast nanoscale metal???semiconductor???metal photodetectors on bulk and low???temperature grown GaAs, Applied Physics Letters, vol.61, issue.7, p.819, 1992.
DOI : 10.1063/1.107755

Y. Wey, l108-GHz GaInAs/InP p-i-n photodiodes with integrated bias tees and matched resistors, IEEE Photon. Technol. Lett, vol.5, p.82, 1993.

N. Shimizu, InP-InGaAs uni-traveling-carrier photodiode with improved 3-dB bandwidth of over 150 GHz, IEEE Photonics Technology Letters, vol.10, issue.3, p.412, 1998.
DOI : 10.1109/68.661427

S. Giboney, Travelling-wave photodetectors with 172-GHz bandwidth and 76-GHz bandwidth-efficiency product, IEEE Photonics Technology Letters, vol.7, issue.4, p.412, 1995.
DOI : 10.1109/68.376819

S. Ho-jin, Microwave Photonics Mixer Utilizing an InGaAs Photoconductor for Radio over Fiber Application, IEICE Trans. Electron, pp.90-457, 2007.

J. Shi, High-speed and high-power performances of LTG-GaAs based metal-semiconductor-metal traveling-wave-photodetectors in 1.3-/spl mu/m wavelength regime, IEEE Photonics Technology Letters, vol.14, issue.3, p.363, 2002.
DOI : 10.1109/68.986814

P. Febvre, Superconducting Photosensitive Interfaces for Triggering RSFQ Circuits, IEEE Transactions on Applied Superconductivity, vol.17, issue.2, p.530, 2007.
DOI : 10.1109/TASC.2007.898682

URL : https://hal.archives-ouvertes.fr/hal-00392844

R. Delord, . Coutaz, F. John, and . Whitaker, Study of Optoelectronic Sampler Linearity References References Optoelectronic applications of LTMBE III-V materials, Materials Science and Engineering: B, vol.22, issue.1, p.61, 1993.

J. Lochtefeld, M. R. Melloch, and J. C. Chang, The role of point defects and arsenic precipitates in carrier trapping and recombination in low???temperature grown GaAs, Applied Physics Letters, vol.69, issue.10, p.1465, 1996.
DOI : 10.1063/1.116909

F. W. Smith, A. R. Calawa, C. L. Chen, M. J. Manfra, and L. J. Mahoney, New MBE buffer used to eliminate backgating in GaAs MESFETs, IEEE Electron Device Letters, vol.9, issue.2, p.77, 1988.
DOI : 10.1109/55.2046

D. David and . Nolte, Semi-insulating semiconductor heterostructures: Optoelectronic properties and applications, J. Appl. Phys, vol.85, p.6259, 1999.

J. Hwang, H. Cheng, and J. F. Whitaker, Photoconductive sampling with an integrated source follower/amplifier, Applied Physics Letters, vol.68, issue.11, p.1464, 1996.
DOI : 10.1063/1.116255

G. Sargsjan, K. Hempel, B. Altmann, and H. Bergner, On-wafer testing of ICs using free-running optoelectronic sampling and capacitive coupling, Microelectronic Engineering, vol.34, issue.2, p.187, 1997.
DOI : 10.1016/S0167-9317(97)00003-8

B. Kolner and D. Bloom, Electro-optic sampling in GaAs Integrated Circuits, IEEE Journal of Selected Topics in Quantum Electronics, vol.22, p.765, 1985.

D. Krökel, D. Grischkowsky, and M. B. Ketchen, Subpicosecond electrical pulse generation using photoconductive switches with long carrier lifetimes, Applied Physics Letters, vol.54, issue.11
DOI : 10.1063/1.100792

D. R. Frankel, G. A. Dykaar, T. Y. Mourou, and . Hsiang, Picosecond GaAs-based photoconductive optoelectronic detectors, Appl. Phys. Lett, vol.54, p.890, 1989.

]. H. Lee, Picosecond optics and microwave technology, IEEE Transactions on Microwave Theory and Techniques, vol.38, issue.5, p.596, 1990.
DOI : 10.1109/22.54928

[. Shi, High Speed and High Power Performances of LTG-GaAs Based TWPDs in Telecommunication Wavelength (-1.3 µm), 2002.

. Juodawlkis, Impact of Photo detector Nonlinearities on Photonic Analog-to Digital Converters, p.11, 2002.

]. G. Eesley, J. Heremans, and M. S. Meyerand, Relaxation time of the order parameter in a high-temperature superconductor, Physical Review Letters, vol.65, issue.27, p.3445, 1990.
DOI : 10.1103/PhysRevLett.65.3445

]. B. Bennett and R. A. Soref, Carrier-induced change in refractive index of InP, GaAs and InGaAsP, IEEE Journal of Quantum Electronics, vol.26, issue.1, p.113, 1990.
DOI : 10.1109/3.44924

]. Roux, J. Coutaz, and A. Krotkus, Time-resolved reflectivity characterization of polycrystalline low-temperature-grown GaAs, Applied Physics Letters, vol.74, issue.17, p.2462, 1999.
DOI : 10.1063/1.123881

S. Cho and J. Lyou, Generation of Ultrafast Electrical Pulses on Semiconductor Photoconductive Switches, Journal of the Korean Physical Society, vol.42, p.272, 2003.

J. Delord, J. Roux, J. Coutaz, and N. Breuil, Study of Optoelectronic Sampler Linearity for Analog-to-Digital Conversion of RF Signals, IEEE Photonics Technology Letters, vol.21, issue.19
DOI : 10.1109/LPT.2009.2026912

URL : https://hal.archives-ouvertes.fr/hal-00991808

J. Roux, J. Delord, and J. Coutaz, High speed photoswitching: from material properties to device performances, physica status solidi (c), vol.6, issue.12, p.2843, 2009.
DOI : 10.1002/pssc.200982541

URL : https://hal.archives-ouvertes.fr/hal-00597606

E. Arifin, T. L. Goldys, and . Tansley, Monte Carlo simulation of electron drift velocity in low-temperature-grown gallium arsenide in a Schottky-barrier model, Physical Review B, vol.52, issue.8, pp.5708-5713, 1995.
DOI : 10.1103/PhysRevB.52.5708

N. Zamdmer, Q. Hu, K. A. Mcintosh, and S. Verghese, Increase in response time of low-temperature-grown GaAs photoconductive switches at high voltage bias, Applied Physics Letters, vol.75, issue.15, p.2313, 1999.
DOI : 10.1063/1.125008

M. Bieler, M. Spitzer, K. Pierz, and U. Siegner, Improved Optoelectronic Technique for the Time-Domain Characterization of Sampling Oscilloscopes, IEEE Transactions on Instrumentation and Measurement, vol.58, issue.4
DOI : 10.1109/TIM.2008.2009916

M. Ma, H. Ma, P. Gong, C. Yang, K. Feng et al., Ultrafast optoelectronic technology for radio metrology applicationsImpulse response of photoconductors in transmission lines, Journal of Systems Engineering and Electronics Recent Progress in References REFERENCES IEEE Journal of Quant. Electro, vol.58, issue.19, pp.1065-461, 1983.

W. J. Getsinger, Circuit Duals on Planar Transmission Media, MTT-S International Microwave Symposium Digest, p.154, 1983.
DOI : 10.1109/MWSYM.1983.1130841

. Jean-marie, Delord doctoral thesis Echantillonnage photoconductif de signaux Radio- Fréquence, 2010.

E. A. Bahaa, M. C. Saleh, and . Teich, Fundamentals of Photonics, p.660, 1991.

M. Takazato, T. Kamakura, J. Matsui, Y. Kitagawa, and . Kadoya, Detection of terahertz waves using low-temperature-grown InGaAs with 1.56??m pulse excitation, Applied Physics Letters, vol.90, issue.10, p.101119, 2007.
DOI : 10.1063/1.2712503

M. Suzuki and M. Tonouchi, Fe-implanted InGaAs photoconductive terahertz detectors triggered by 1.56??m femtosecond optical pulses, Applied Physics Letters, vol.86, issue.16, p.163504, 2005.
DOI : 10.1063/1.1901817

O. Hatem, J. Cunningham, E. H. Linfield, C. D. Wood, A. G. Davies et al., Terahertz-frequency photoconductive detectors fabricated from metal-organic chemical vapor deposition-grown Fe-doped InGaAs, Applied Physics Letters, vol.98, issue.12, p.121107, 2011.
DOI : 10.1063/1.3571289

J. Sigmund, C. Sydlo, H. L. Hartnagel, N. Benker, H. Fuess et al., Structure investigation of low-temperature-grown GaAsSb, a material for photoconductive terahertz antennas, Applied Physics Letters, vol.87, issue.25, p.252103, 2005.
DOI : 10.1063/1.2149977

J. Mangeney, T. Laurent, M. Martin, J. C. Harmand, L. Travers et al., Picosecond carrier lifetimes in dilute GaInNAs grown on InP substrate, Applied Physics Letters, vol.99, issue.14, p.141902, 2011.
DOI : 10.1063/1.3644954

S. Francoeur, M. Seong, A. Mascarenhas, S. Tixier, M. Adamcyk et al., Band gap of GaAs1???xBix, 0<x<3.6%, Applied Physics Letters, vol.82, issue.22, p.3874, 2003.
DOI : 10.1063/1.1581983

]. V. Pacebutas, Molecular-beam-epitaxy grown GaBiAs for terahertz optoelectronic applications, Journal of Materials Science: Materials in Electronics, vol.43, issue.S1, p.363, 2009.
DOI : 10.1007/s10854-008-9625-1

T. J. Jones, B. Rainsford, D. Fischer, and . Abbott, Towards T-ray spectroscopy of retinal isomers: A review of methods and modelling, Vibrational Spectroscopy, vol.41, issue.2, p.144, 2006.
DOI : 10.1016/j.vibspec.2005.12.005

Y. S. Lee, Principles of Terahertz Science and Technology, 2009.

M. Koeberga, THz dielectric relaxation of ionic liquid:water mixtures, Chemical Physics Letters, vol.439, issue.1-3, p.60, 2007.
DOI : 10.1016/j.cplett.2007.03.075

M. Nazarov, Surface plasmon THz waves on gratings, Comptes Rendus Physique, vol.9, issue.2, p.232, 2008.
DOI : 10.1016/j.crhy.2008.01.004

URL : https://hal.archives-ouvertes.fr/hal-00394114

D. F. Plusquellic, K. Siegrist, E. J. Heilweil, and O. Esenturk, Applications of Terahertz Spectroscopy in Biosystems, ChemPhysChem, vol.102, issue.17, p.2412, 2007.
DOI : 10.1002/cphc.200700332

T. Kobayashi, Phonon-polariton Based THz Spectroscopy, Proceedings of the 14th International Conference, p.254, 2005.

K. Kawase, Y. Ogawa, and Y. Watanabe, Non-destructive terahertz imaging of illicit drugs using spectral fingerprints, Optics Express, vol.11, issue.20, p.20, 2003.
DOI : 10.1364/OE.11.002549

B. L. Yu, Direct observation of coherent rotational excitation, dephasing and depopulation of methanol and its isotopes using THz pulse radiation, Applied Physics Letters, vol.86, issue.10, p.101108, 2005.
DOI : 10.1063/1.1882759

D. Bigourd, Multiple component analysis of cigarette smoke using THz spectroscopy, comparison with standard chemical analytical methods, Applied Physics B, vol.86, issue.4, p.579, 2006.
DOI : 10.1007/s00340-006-2495-4

]. Y. Ung, B. M. Fischer, H. Ng, and D. Abbott, Towards quality control of food using terahertz, BioMEMS and Nanotechnology III, 2007.
DOI : 10.1117/12.759825

]. Kemp, Security applications of terahertz technology, Terahertz for Military and Security Applications, p.44, 2003.
DOI : 10.1117/12.500491

]. Chan, J. Deibel, and D. M. Mittleman, Imaging with terahertz radiation, Reports on Progress in Physics, vol.70, issue.8, p.1325, 2007.
DOI : 10.1088/0034-4885/70/8/R02

]. R. Piesiewicz, Performance Analysis of Future Multigigabit Wireless Communication Systems at THz Frequencies With Highly Directive Antennas in Realistic Indoor Environments, IEEE Journal of Selected Topics in Quantum Electronics, vol.14, issue.2, p.421, 2008.
DOI : 10.1109/JSTQE.2007.910984

]. D. Grischkowsky, S. Keiding, M. Van-exter, and C. Fattinger, Farinfrared timedomain spectroscopy with terahertz beams of dielectrics and semiconductors, J. Opt

]. M. Van-exter and D. Grischkowsky, Optical and electronic properties of doped silicon from 0.1 to 2 THz, Applied Physics Letters, vol.56, issue.17, p.1694, 1990.
DOI : 10.1063/1.103120

]. J. Pedersen and S. R. Keiding, THz time-domain spectroscopy of nonpolar liquids, IEEE Journal of Quantum Electronics, vol.28, issue.10, p.2518, 1992.
DOI : 10.1109/3.159558

]. J. Whitaker, F. Gao, and Y. Liu, Terahertz-bandwidth pulses for coherent timedomain spectroscopy, SPIE, p.168, 1994.

]. D. Mittleman, R. H. Jacobsen, and M. C. Nuss, T-ray imaging, IEEE Journal of Selected Topics in Quantum Electronics, vol.2, issue.3, p.679, 1996.
DOI : 10.1109/2944.571768

]. B. Hu and M. C. Nuss, Imaging with terahertz waves, Optics Letters, vol.20, issue.16, p.1716, 1995.
DOI : 10.1364/OL.20.001716

]. D. Mittleman, T-ray tomography, Optics Letters, vol.22, issue.12, p.904, 1997.
DOI : 10.1364/OL.22.000904

. Koch, Recent advances in terahertz imaging, Appl. Phys. B, vol.68, p.1085, 1999.

]. M. Mittleman, R. H. Jacobsen, R. Neelamani, R. G. Baraniuk, and M. C. Nuss, Gas sensing using terahertz time-domain spectroscopy, Applied Physics B: Lasers and Optics, vol.67, issue.3, p.379, 1998.
DOI : 10.1007/s003400050520

]. L. Duvillaret, F. Garet, and J. Coutaz, Influence of noise on the characterization of materials by terahertz time-domain spectroscopy, Journal of the Optical Society of America B, vol.17, issue.3, p.452, 2000.
DOI : 10.1364/JOSAB.17.000452

J. F. Whitaker, Optoelectronic applications of LTMBE III???V materials, Materials Science and Engineering: B, vol.22, issue.1, p.61, 1993.
DOI : 10.1016/0921-5107(93)90224-B

]. D. Auston, K. P. Cheng, and P. R. Smith, Picosecond photoconducting Hertzian dipoles, Applied Physics Letters, vol.45, issue.3, p.284, 1984.
DOI : 10.1063/1.95174

. Inp-grenoble, Theoretical and experimental study of terahertz generation by photo switching components in low temperature GaAs, 2004.

J. C. Maxwell, A treatise on electricity and magnetism". London : Oxford-at the clarendon press, 1873.

T. W. Ebbesen, H. J. Lezec, H. F. Ghaemi, T. Thio, and P. A. Wolff, Extraordinary optical transmission through sub-wavelength hole arrays, Nature, vol.301, p.667, 1997.

H. F. Ghaemi, T. Thio, D. E. Grupp, T. W. Ebbesen, and H. J. Lezec, Surface plasmons enhance optical transmission through subwavelength holes, Physical Review B, vol.58, issue.11, p.6779, 1998.
DOI : 10.1103/PhysRevB.58.6779

]. L. Salomon, F. Grillot, A. V. Zayats, and F. Fronel, Near-Field Distribution of Optical Transmission of Periodic Subwavelength Holes in a Metal Film, Physical Review Letters, vol.86, issue.6, p.1110, 2001.
DOI : 10.1103/PhysRevLett.86.1110

URL : https://hal.archives-ouvertes.fr/hal-00084868

F. Miyamaru, Large polarization change in two-dimensional metallic photonic crystals in subterahertz region, Applied Physics Letters, vol.82, issue.16, p.2568, 2003.
DOI : 10.1063/1.1567458

F. Miyamaru and M. Hangyo, Finite size effect of transmission property for metal hole arrays in subterahertz region, Applied Physics Letters, vol.84, issue.15, p.2742, 2004.
DOI : 10.1063/1.1702125

]. C. Winnewisser, F. Lewen, J. Weinzierl, and H. Helm, Transmission features of frequency-selective components in the far infrared determined by terahertz time-domain spectroscopy, Applied Optics, vol.38, issue.18, p.3961, 1999.
DOI : 10.1364/AO.38.003961

]. F. Miyamaru, S. Hayashi, C. Otani, K. Kawase, Y. Ogawa et al., Terahertz surface-wave resonant sensor with a metal hole array, Optics Letters, vol.31, issue.8, p.1118, 2006.
DOI : 10.1364/OL.31.001118

]. F. Aquistapace, L. Duvillaret, F. Garet, J. F. Roux, and J. Coutaz, Photovariation of grating-assisted coupling of terahertz waves into a silicon waveguide, Journal of Applied Physics, vol.94, issue.12, p.7888, 2003.
DOI : 10.1063/1.1629387

L. S. Mukina, M. M. Nazarov, and A. P. Shkurinov, Propagation of THz plasmon pulse on corrugated and flat metal surface, Surface Science, vol.600, issue.20, p.4771, 2006.
DOI : 10.1016/j.susc.2006.07.046

D. C. Cook, Molecular epitaxy grown GaAs at low temperatures, Thin Solid Films, vol.231, p.61, 1993.

]. K. Nielsen, H. K. Rasmussen, A. J. Adam, P. C. Planken, O. Bang et al., Bendable, low-loss Topas fibers for the terahertz frequency range, Optics Express, vol.17, issue.10, p.8592, 2009.
DOI : 10.1364/OE.17.008592

M. Navarro, S. A. Kuznetsov, M. Aznabet, M. Beruete, F. Falcone et al., Route for Bulk Millimeter Wave and Terahertz Metamaterial Design, IEEE Journal of Quantum Electronics, vol.47, issue.3, p.375, 2011.
DOI : 10.1109/JQE.2010.2090512

]. C. Croenne, F. Garet, E. Lheurette, J. Coutaz, and D. Lippens, Left handed dispersion of a stack of subwavelength hole metal arrays at terahertz frequencies, Applied Physics Letters, vol.94, issue.13, p.133112, 2009.
DOI : 10.1063/1.3114411

URL : https://hal.archives-ouvertes.fr/hal-00471870

]. P. Weis, O. Paul, C. Imhof, R. Beigang, and M. Rahm, Strongly birefringent metamaterials as negative index terahertz wave plates, Applied Physics Letters, vol.95, issue.17, p.171104, 2009.
DOI : 10.1063/1.3253414

]. C. Jansen, S. Wietzke, V. Astley, D. M. Mittleman, and M. Koch, Mechanically flexible polymeric compound one-dimensional photonic crystals for terahertz frequencies, Applied Physics Letters, vol.96, issue.11, p.111108, 2010.
DOI : 10.1063/1.3341309

]. E. Perret, N. Zerounian, S. David, and F. Aniel, Complex permittivity characterization of benzocyclobutene for terahertz applications, Microelectronic Engineering, vol.85, issue.11, p.2276, 2008.
DOI : 10.1016/j.mee.2008.07.008

]. E. Peytavit, C. Donche, S. Lepilliet, G. Ducournau, and J. Lampin, Thin-film transmission lines using cyclic olefin copolymer for millimetre-wave and terahertz integrated circuits, Electronics Letters, vol.47, issue.7, p.453, 2011.
DOI : 10.1049/el.2011.0369

H. Arakawa and . Sakaki, Multidimensional quantum well laser and temperature dependence of its threshold current, Applied Physics Letters, vol.40, issue.11, p.939, 1982.
DOI : 10.1063/1.92959

J. Gosele and . Heydenreich, Low threshold, large T0 injection laser emission from (InGa)As quantum dots, Electron. Lett, vol.30, p.1416, 1994.

F. Heinrichsdor, C. Ribbat, M. Grundmann, and D. Bimberg, High-power quantum-dot lasers at 1100 nm, Applied Physics Letters, vol.76, issue.5, p.556, 2000.
DOI : 10.1063/1.125816

R. V. Marinelli, I. H. Penty, V. M. White, A. E. Ustinov, Y. M. Zhukov et al., 35 GHz mode-locking of 1.3 m quantum dot lasers

P. Michler, A. Kiraz, C. Becher, W. V. Schoenfeld, P. M. Petro® et al., A Quantum Dot Single-Photon Turnstile Device, Science, vol.290, issue.5500, p.2282, 2000.
DOI : 10.1126/science.290.5500.2282

C. Santori, D. Fattal, J. Vu·ckovic, G. S. Solomon, and Y. Yamamoto, Indistinguishable photons from a single-photon device, Nature, vol.65, issue.6907, p.594, 2002.
DOI : 10.1016/S0038-1098(98)00461-X

S. Tiwari, F. Rana, H. Hana¯, A. Hartstein, E. F. Crabbe et al., A silicon nanocrystals based memory, Applied Physics Letters, vol.68, issue.10, p.1377, 1996.
DOI : 10.1063/1.116085

K. Koike, K. Saitoh, S. Li, S. Sasa, M. Inoue et al., Room-temperature operation of a memory-effect AlGaAs/GaAs heterojunction field-effect transistor with self-assembled InAs nanodots, Applied Physics Letters, vol.76, issue.11, p.1464, 2000.
DOI : 10.1063/1.126065

H. Kim, T. Noda, T. Kawazu, and H. Sakaki, Control of Current Hysteresis Effects in a GaAs/n-AlGaAs Quantum Trap Field Effect Transistor with Embedded InAs Quantum Dots, Japanese Journal of Applied Physics, vol.39, issue.Part 1, No. 12B, p.7100, 2000.
DOI : 10.1143/JJAP.39.7100

G. Yusa and H. Sakaki, -AlGaAs field-effect transistor structures, Applied Physics Letters, vol.70, issue.3, p.345, 1997.
DOI : 10.1063/1.119068

URL : https://hal.archives-ouvertes.fr/in2p3-01011976

]. Oh and J. Kim, Room-temperature Memory Operation of

. Gaas, GaAs High Electron Mobility Transistors with InAs Quantum Dots embedded in the Channel, Proceedings of the International Electron Device Meeting, p.106, 2000.

]. C. Balocco, A. M. Song, and M. Missous, Room-temperature operations of memory devices based on self-assembled InAs quantum dot structures, Applied Physics Letters, vol.85, issue.24
DOI : 10.1063/1.1831558

J. C. Campbell, D. L. Hu®aker, H. Deng, and D. G. Deppe, Quantum dot resonant cavity photodiode with operation near 1.3 [micro sign]m wavelength, Electronics Letters, vol.33, issue.15, p.1337, 1997.
DOI : 10.1049/el:19970906

]. L. Chu, A. Zrenner, M. Bichler, and G. Abstreiter, Quantum-dot infrared photodetector with lateral carrier transport, Applied Physics Letters, vol.79, issue.14, p.2249, 2001.
DOI : 10.1063/1.1408269

D. Ledentsov and . Bimberg, Distortion-free optical amplification of 20-80 GHz mode locked laser pulses at 1.3 µm using quantum dots, Electronics Lett, vol.42, p.697, 2006.

X. D. Huang, A. Stintz, H. Li, L. F. Lester, J. Cheng et al., Passive mode-locking in 1.3 µm two-section InAs quantum dot lasers

P. Zakharov and . Werner, Single-mode sub monolayer quantum-dot vertical-cavity surface-emitting lasers with high modulation bandwidth, Appl. Phys. Lett, vol.89, p.141106, 2006.

A. K. Toropov, A. K. Bakarov, and . Kalagin, Electrically driven single quantum dot polarised single photon emitter, Electronics Lett, vol.42, p.774, 2006.

]. C. Wu, An Investigation of Quantum States in Ultra-Small InAs/GaAs Quantum Dots by Means of Photoluminescence, Chinese Journal of Physics, vol.43, p.847, 2005.

D. A. Yarotski, R. D. Averitt, N. Negre, S. A. Crooker, and A. J. Taylor, Ultrafast carrier-relaxation dynamics in self-assembled InAs/GaAs quantum dots, Journal of the Optical Society of America B, vol.19, issue.6
DOI : 10.1364/JOSAB.19.001480

A. Nojeh, R. Fabian, and W. Pease, Field-Electron Emission from Single-Walled Carbon Nanotubes Lying on a Surface, 2007 Canadian Conference on Electrical and Computer Engineering, p.1294, 2007.
DOI : 10.1109/CCECE.2007.329

N. De-jonge, Y. Lamy, K. Schoots, and T. H. Oosterkamp, High brightness electron beam from a multi-walled carbon nanotube, Nature, vol.266, issue.95, p.393, 2002.
DOI : 10.1016/0304-3991(89)90278-7

S. Heinze, J. Tersoff, R. Martel, V. Derycke, J. Appenzeller et al., Carbon Nanotubes as Schottky Barrier Transistors, Physical Review Letters, vol.89, issue.10, p.106801, 2002.
DOI : 10.1103/PhysRevLett.89.106801

S. J. Tans, A. R. Verschueren, and C. Dekker, Room-temperature transistor based on a single carbon nanotube, Nature, vol.393, p.49, 1998.

. Dai, Nanotube molecular wires as chemical sensors, Science, vol.287, p.622, 2000.

M. S. Dresselhaus, Applied physics: Nanotube antennas, Nature, vol.49, issue.7020, p.959, 2004.
DOI : 10.1016/S0038-1098(98)00588-2

G. B. Jung, Y. Myung, and Y. J. Cho, Terahertz Spectroscopy of Nanocrystal???Carbon Nanotube and ???Graphene Oxide Hybrid Nanostructures, The Journal of Physical Chemistry C, vol.114, issue.25, pp.11258-183, 2007.
DOI : 10.1021/jp1019894

K. S. Novoselov, Two-dimensional gas of massless Dirac fermions in graphene, Nature, vol.72, issue.7065, p.197, 2005.
DOI : 10.1103/PhysRevLett.79.3728

K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jian, M. I. Katsnelson et al., Two-dimensional gas of massless Dirac fermions in graphene, Nature, vol.72, issue.7065, p.197, 2005.
DOI : 10.1103/PhysRevLett.79.3728

Y. Zhang, Y. Tan, H. L. Stormer, and P. Kim, Experimental observation of the quantum Hall effect and Berry's phase in graphene, Nature, vol.93, issue.7065, p.201, 2005.
DOI : 10.1103/PhysRevB.69.075104

F. Rana, Graphene Terahertz Plasmon Oscillators, IEEE Transactions on Nanotechnology, vol.7, issue.1, p.91, 2008.
DOI : 10.1109/TNANO.2007.910334

V. Ya, Aleshkin et al THz laser based on optically pumped graphene: model and feasibility of realization, JETP Lett, vol.89, p.70, 2009.

]. D. Grischkowsky, Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors, Journal of the Optical Society of America B, vol.7, issue.10, p.2006, 1990.
DOI : 10.1364/JOSAB.7.002006

]. Gao, High frequency Surface Impedance and Penetration Depth of

S. A. Navarro-c-ia, M. Kuznetsov, M. Aznabet, F. Beruete, M. S. Falcone et al., Route for Bulk Millimeter Wave and Terahertz Metamaterial Design, IEEE Journal of Quantum Electronics, vol.47, issue.3, p.375, 2011.
DOI : 10.1109/JQE.2010.2090512

F. Croenne, E. Garet, J. Lheurette, D. Coutaz, and . Lippens, Left handed dispersion of a stack of subwavelength hole metal arrays at terahertz frequencies, Applied Physics Letters, vol.94, issue.13, p.133112, 2009.
DOI : 10.1063/1.3114411

URL : https://hal.archives-ouvertes.fr/hal-00471870

O. Weis, C. Paul, R. Imhof, M. Beigang, and . Rahm, Strongly birefringent metamaterials as negative index terahertz wave plates, Applied Physics Letters, vol.95, issue.17, p.171104, 2009.
DOI : 10.1063/1.3253414

S. Jansen, V. Wietzke, D. M. Astley, M. Mittleman, and . Koch, Mechanically flexible polymeric compound one-dimensional photonic crystals for terahertz frequencies, Applied Physics Letters, vol.96, issue.11, p.111108, 2010.
DOI : 10.1063/1.3341309

N. Perret, S. Zerounian, F. David, and . Aniel, Complex permittivity characterization of benzocyclobutene for terahertz applications, Microelectronic Engineering, vol.85, issue.11, p.2276, 2008.
DOI : 10.1016/j.mee.2008.07.008

M. Bothra, P. Kellam, and . Garrou, Feasibility of BCB as an interlevel dielectric in integrated circuits, Journal of Electronic Materials, vol.6, issue.4, p.819, 1994.
DOI : 10.1007/BF02651378

C. Peytavit, S. Donche, G. Lepilliet, J. Ducournau, and . Lampin, Thin-film transmission lines using cyclic olefin copolymer for millimetre-wave and terahertz integrated circuits, Electronics Letters, vol.47, issue.7, p.453, 2011.
DOI : 10.1049/el.2011.0369

I. Okagbare, J. M. Emory, P. Datta, J. Goettert, and S. A. Soper, Fabrication of a cyclic olefincopolymer planar waveguide embedded in a multi-channel poly(methyl methacrylate) fluidic chip for evanescence excitation, Lab Chip, vol.44, issue.1, p.66, 2010.
DOI : 10.1039/B908759A

A. Smith, O. Rebbert, and . Sternberg, Designer infrared filters using stacked metal lattices, Applied Physics Letters, vol.82, issue.21, p.3605, 2003.
DOI : 10.1063/1.1579115

A. C. Tao, K. Strikwerda, C. M. Fan, W. J. Bingham, X. Padilla et al., Terahertz metamaterials on free-standing highly-flexible polyimide substrates, Journal of Physics D: Applied Physics, vol.41, issue.23, p.232004, 2008.
DOI : 10.1088/0022-3727/41/23/232004

S. Gupta, G. Tuttle, M. Sigalas, and K. Ho, Infrared filters using metallic photonic band gap structures on flexible substrates, Applied Physics Letters, vol.71, issue.17, p.2412, 1997.
DOI : 10.1063/1.120077

W. Li and J. Yao, Investigation of Photonically Assisted Microwave Frequency Multiplication Based on External Modulation, IEEE Transactions on Microwave Theory and Techniques, vol.58, issue.11, p.3259, 2010.
DOI : 10.1109/TMTT.2010.2075671

H. Song, N. Shimizu, T. Furuta, A. Wakatsuki, and T. Nagatsuma, Subterahertz noise signal generation using a photodetector and wavelength-sliced optical noise signals for spectroscopic measurements, Applied Physics Letters, vol.93, issue.24, p.241113, 2008.
DOI : 10.1063/1.3039819

S. Preu, Tunable, continuous-wave Terahertz photomixer sources and applications, Journal of Applied Physics, vol.109, issue.6, p.61301, 2011.
DOI : 10.1063/1.3552291

S. Yoshida, E. Kato, K. Suizu, Y. Nakagomi, Y. Ogawa et al., Terahertz Sensing of Thin Poly(ethylene Terephthalate) Film Thickness Using a Metallic Mesh, Applied Physics Express, vol.2, issue.1, p.12301, 2009.
DOI : 10.1143/APEX.2.012301

J. Garcia-vidal, L. Martin-moreno, T. W. Ebbesen, and L. Kuipers, Light passing through subwavelength apertures, Reviews of Modern Physics, vol.82, issue.1, p.729, 2010.
DOI : 10.1103/RevModPhys.82.729

R. Djordjevic´, R. M. Djordjevic´, . Biljic´, V. D. Biljic´, . Likar-smiljanic´ et al., Wideband frequency-domain characterization of FR-4 and time-domain causality, IEEE Transactions on Electromagnetic Compatibility, vol.43, issue.4, p.662, 2001.
DOI : 10.1109/15.974647

F. Duvillaret, J. L. Garet, and . Coutaz, A reliable method for extraction of material parameters in terahertz time-domain spectroscopy, IEEE Journal of Selected Topics in Quantum Electronics, vol.2, issue.3, p.739, 1996.
DOI : 10.1109/2944.571775

C. Kang, I. H. Maeng, and S. J. Oh, Characterization of carbon nanotubes utilizing terahertz electromagnetic waves Terahertz Spectroscopy of Nanocrystal-Carbon Nanotube and - Graphene Oxide Hybrid Nanostructures [3] See for example Sensing with Terahertz Radiation Far-infrared gaps in single-wall carbon nanotubes Terahertz absorption and dispersion of fluorine-doped single-walled carbon nanotube Terahertz optical and electrical properties of hydrogen-functionalized carbon nanotubes, Proceedings of ISAP 2005, pp.1173-1179, 1999.

E. P. Parrott, J. A. Zeitler, and J. Mc-gregor, The Use of Terahertz Spectroscopy as a Sensitive Probe in Discriminating the Electronic Properties of Structurally Similar Multi-Walled Carbon Nanotubes Localized and delocalized charge transport in single-wall carbonnanotube mats Analytical Modeling and Optimization of Terahertz Time-Domain Spectroscopy Experiments Using Photoswitches as Antennae, Advanced Materials Physical Review B IEEE J. Sel. Topics in Quant. Electron, vol.21, issue.7, pp.38-39, 2000.

L. Duvillaret, F. Garet, J. L. Coutazi, J. Jeon, G. H. Son et al., A reliable method for extraction of material parameters in terahertz time-domain spectroscopy Selected Topics in Quantum Electronics Characterization of carbon nanotubes by THz time-domain spectroscopy, IEEE Journal, vol.2, issue.311, pp.739-746, 1996.

T. I. Jeon, K. J. Kim, and C. Kang, Optical and electrical properties of preferentially anisotropic singlewalled carbon-nanotube films in terahertz region, Journal of Applied Physics Simulation Investigation on Optical and Electrical Properties of Carbon Nanotube in Terahertz Region Communications in Theoretical Physics, vol.95, issue.511, pp.5736-5740, 2004.

]. M. Naftaly and R. E. Miles, Terahertz Time-Domain Spectroscopy for Material Characterization, Proceedings of the IEEE, vol.95, issue.8, pp.1658-1665, 2007.
DOI : 10.1109/JPROC.2007.898835

L. Duvillaret, F. Garet, and J. L. Coutaz, A reliable method for extraction of material parameters in terahertz time-domain spectroscopy Selected Topics in Quantum Electronics, IEEE Journal, vol.2, issue.3, pp.739-746, 1996.

]. L. Dai, [Carbon Nanotechnology:Recent Developments in Chemistry, Physics, Materials Science and Device Applications, issue.5, 2006.

]. Jeon, J. Son, and K. H. An, Terahertz absorption and dispersion of fluorine-doped single-walled carbon nanotube, Journal of Applied Physics, vol.98, issue.3, pp.34316-034316, 2005.
DOI : 10.1063/1.2001751

]. H. Lamela, E. Dadrasnia, and F. Garet, Carbon nanotube terahertz spectroscopy: study of absorption and dispersion properties of SWNT and MWNT, Carbon Nanotubes, Graphene, and Associated Devices IV, pp.8101-8117, 2011.
DOI : 10.1117/12.895221

]. A. Ugawa, A. G. Rinzler, and D. B. Tanner, Far-infrared gaps in single-wall carbon nanotubes, Physical Review B, vol.60, issue.16, p.11305, 1999.
DOI : 10.1103/PhysRevB.60.R11305

M. Liang, Z. Wu, and L. Chen, Terahertz Characterization of Single-Walled Carbon Nanotube and Graphene On-Substrate Thin Films Microwave Theory and Techniques, IEEE Transactions on, issue.10, pp.59-2719, 2011.

G. B. Jung, Y. Myung, and Y. J. Cho, Terahertz Spectroscopy of Nanocrystal???Carbon Nanotube and ???Graphene Oxide Hybrid Nanostructures, The Journal of Physical Chemistry C, vol.114, issue.25, pp.11258-11265, 2010.
DOI : 10.1021/jp1019894

Z. Wu, Z. Chen, X. Du, J. M. Logan, J. Sippel et al., Transparent, Conductive Carbon Nanotube Films, Science, vol.305, issue.5688, pp.305-1273, 2004.
DOI : 10.1126/science.1101243

URL : http://real.mtak.hu/6061/1/1170134.pdf

]. S. Bae, H. Kim, Y. Lee, X. Xu, J. Park et al., Roll-to-roll production of 30-inch graphene films for transparent electrodes, Nature Nanotechnology, vol.76, issue.8, pp.574-578, 2010.
DOI : 10.1038/nnano.2010.132

R. Saito, G. Dresselhaus, and M. S. Dresselhaus, Physical properties of carbon nanotubes, Imperial college press, 1998.
DOI : 10.1142/p080

L. Duvillaret, F. Garet, and J. L. Coutaz, A reliable method for extraction of material parameters in terahertz time-domain spectroscopy, IEEE Journal of Selected Topics in Quantum Electronics, vol.2, issue.3, pp.739-746, 1996.
DOI : 10.1109/2944.571775

M. Liang, Z. Wu, L. Chen, L. Song, P. Ajayan et al., Terahertz Characterization of Single-Walled Carbon Nanotube and Graphene On-Substrate Thin Films, Microwave Theory and Techniques, pp.59-2719, 2011.
DOI : 10.1109/TMTT.2011.2160197

L. Dai, [Carbon Nanotechnology:Recent Developments in Chemistry, Physics, Materials Science and Device Applications, 2006.

Y. Nakayama and S. Akita, Nanoengineering of Carbon Nanotubes and the Status of its Applications, MRS Proceedings, vol.49, 2002.
DOI : 10.1557/PROC-706-Z11.1.1

]. C. Seungnam, C. J. Han, B. Chan-wook, S. Hyung-bin, C. Joonhyock et al., Perspectives on Nanotechnology for RF and Terahertz Electronics, Microwave Theory and Techniques, pp.59-2709, 2011.

I. Maeng, S. Lim, S. J. Chae, Y. H. Lee, H. Choi et al., Gate-Controlled Nonlinear Conductivity of Dirac Fermion in Graphene Field-Effect Transistors Measured by Terahertz Time-Domain Spectroscopy, Nano Letters, vol.12, issue.2, pp.551-555, 2012.
DOI : 10.1021/nl202442b

H. Lamela, E. Dadrasnia, F. Garet, M. B. Kuppam, and J. L. Coutaz, Carbon nanotube terahertz spectroscopy: study of absorption and dispersion properties of SWNT and MWNT, Carbon Nanotubes, Graphene, and Associated Devices IV, pp.8101-8117, 2011.
DOI : 10.1117/12.895221

L. Kwang-su, L. Toh-ming, and X. C. Zhang, The measurement of the dielectric and optical properties of nano thin films by THz differential time-domain spectroscopy, Microelectronics Journal, vol.34, issue.1, pp.63-6969, 2003.

L. Kwang-su, L. Toh-ming, and X. C. Zhang, Tera Tool [terahertz time-domain spectroscopy], Circuits and Devices Magazine, pp.18-23, 2002.
DOI : 10.1109/MCD.2002.1175757

]. F. Smits, Measurement of Sheet Resistivities with the Four-Point Probe, Bell System Technical Journal, vol.37, issue.3, pp.711-718, 1958.
DOI : 10.1002/j.1538-7305.1958.tb03883.x

Y. Chun, J. Oh, J. Rho, Y. Ahn, H. R. Kim et al., Highly conductive, printable and stretchable composite films of carbon nanotubes and silver, Nature Nanotechnology, vol.30, issue.12, pp.853-857, 2010.
DOI : 10.1038/nnano.2010.232