. Autrement-dit,-si-le-brouillage-est-faible, le projecteur pour l'énergie nulle s'écrit comme la somme de deux gaussiennes, piquées en deux points bien distincts

Y. Aharonov and A. Casher, Ground state of a spin-?? charged particle in a two-dimensional magnetic field, Physical Review A, vol.19, issue.6, pp.2461-2462, 1979.
DOI : 10.1103/PhysRevA.19.2461

J. [. Alemany, E. Pouget, and . Canadell, Essential role of anions in the charge ordering transition of ? ? (bedt ? ttf ) 2 i 3, Quantal phase factors accompanying adiabatic changes. Proc, 1956.

A. Barelli and R. Fleckinger, Semiclassical analysis of Harper-like models, Physical Review B, vol.46, issue.18, pp.11559-11569, 0114.
DOI : 10.1103/PhysRevB.46.11559

. Bff-+-78a-]-f, M. Bayen, C. Flato, A. Fronsdal, D. Lichnerowicz et al., Deformation theory and quantization. i. deformations of symplectic structures, Annals of Physics, vol.111, issue.119, pp.61-110, 1978.

. Bff-+-78b-]-f, M. Bayen, C. Flato, A. Fronsdal, D. Lichnerowicz et al., Deformation theory and quantization. ii. physical applications, Annals of Physics, vol.111, issue.119, pp.111-151, 1978.

M. Bellec, U. Kuhl, G. Montambaux, and F. Mortessagne, Tight-binding couplings in microwave artificial graphene, Physical Review B, vol.88, issue.11, pp.115437-52, 2013.
DOI : 10.1103/PhysRevB.88.115437

URL : https://hal.archives-ouvertes.fr/hal-00843999

B. Bena, G. Montambauxbm10-]-r, A. H. Bistritzer, and . Macdonald, Remarks on the tight-binding model of graphene, New Journal of Physics, vol.11, issue.9, pp.95003-95051, 1925.
DOI : 10.1088/1367-2630/11/9/095003

URL : https://hal.archives-ouvertes.fr/cea-00442938

]. A. Con95, . Connes-12-]-r, J. De-gail, M. O. Fuchs, F. Goerbig et al., Noncommutative Geometry Manipulation of Dirac points in graphene-like crystals, Physica B Condensed Matter, vol.407, pp.961948-1952, 1995.

R. De-gail, M. O. Goerbig, G. A. Montambauxdir30-]-p, and . Dirac, Magnetic spectrum of trigonally warped bilayer graphene: Semiclassical analysis, zero modes, and topological winding numbers, Dir31] P.A.M. Dirac. Quantised singularities in the electromagnetic field. Proc. Roy. Soc, pp.45407-107, 1930.
DOI : 10.1103/PhysRevB.86.045407

F. [. Dietl, G. Piéchon, . Montambauxegh80-]-t, P. B. Eguchi, A. J. Gilkey et al., New Magnetic Field Dependence of Landau Levels in a Graphenelike Structure, Kohmoto, and B. I. Halperin. Zero modes, energy gap, and edge states of anisotropic honeycomb lattice in a magnetic field, pp.236405-94213, 1980.
DOI : 10.1103/PhysRevLett.100.236405

]. F. Fau93 and . Faure, Approche géométrique de la limite semi-classique par les états cohérents et mécanique quantique sur le tore, p.114, 1993.

]. B. Fed96 and . Fedosov, Deformation Quantization and Index Theory, p.89, 1996.

J. Fuchs, F. Piéchon, M. Õ. Goerbig, and G. Montambaux, Topological Berry phase and semiclassical quantization of cyclotron orbits for two dimensional electrons in coupled band models, The European Physical Journal B, vol.96, issue.3, pp.351-86, 2010.
DOI : 10.1140/epjb/e2010-00259-2

]. Fuc13 and . Fuchs, Dirac fermions in graphene and analogues : magnetic field and topological properties ArXiv e-prints, p.50, 2013.

P. [. Goerbig and . Lederer, La physique des effets Hall quantiques, pp.24-129, 2011.

B. O. Goerbig, Electronic properties of graphene in a strong magnetic field, Reviews of Modern Physics, vol.83, issue.4
DOI : 10.1103/RevModPhys.83.1193

S. [. Gusynin, ]. A. Sharapovhat01, and . Hatcher, Unconventional Integer Quantum Hall Effect in Graphene, Hei25] W. Heisenberg. Über quantentheoretische umdeutung kinematischer und mechanischer beziehungen. Zeitschrift für Physik, pp.146801-81, 1902.
DOI : 10.1103/PhysRevLett.95.146801

C. [. Hasan and . Kane, : Topological insulators, Reviews of Modern Physics, vol.82, issue.4, pp.3045-3067, 2010.
DOI : 10.1103/RevModPhys.82.3045

]. P. Hor05 and . Horava, Stability of fermi surfaces and k theory, Phys. Rev. Lett, vol.95, pp.16405-16449, 2005.

]. J. Hvmo-+-08, F. Hass, J. E. Varchon, M. Millán-otoya, N. Sprinkle et al., Why multilayer graphene on 4h-SiC(0001) behaves like a single sheet of graphene, Phys. Rev

]. J. Lettkai09 and . Kailasvuori, 60 [Ins00] Clay Mathematics Institute. The millennium prize problems Pedestrian index theorem à la aharonov-casher for bulk threshold modes in corrugated multilayer graphene, EPLEurophysics Letters), vol.100, issue.874, pp.12550447008-82, 2000.

G. [. Klitzing, M. Dorda, and . Pepper, New Method for High-Accuracy Determination of the Fine-Structure Constant Based on Quantized Hall Resistance, Physical Review Letters, vol.45, issue.6
DOI : 10.1103/PhysRevLett.45.494

A. [. Katayama, Y. Kobayashi, A. Suzumura, S. Kobayashi, Y. Katayama et al., Salt, Journal of the Physical Society of Japan, vol.75, issue.5, pp.54705-56034711, 2006.
DOI : 10.1143/JPSJ.75.054705

M. [. Katsnelson and . Prokhorova, Zero-energy states in corrugated bilayer graphene, Physical Review B, vol.77, issue.20, pp.205424-205448, 1937.
DOI : 10.1103/PhysRevB.77.205424

]. R. Lau83 and . Laughlin, Anomalous quantum hall effect : An incompressible quantum fluid with fractionally charged excitations, Phys. Rev. Lett, vol.50, pp.1395-1398, 1924.

]. J. Ldspcn07, N. M. Lopes-dos-santos, A. H. Peres, ]. Castro-neto, J. Lim et al., Graphene bilayer with a twist : Electronic structure Bloch-zener oscillations across a merging transition of dirac points, LK56] I. M. Lifshitz and A. M. Kosevich. Sov. Phys. JETP, pp.256802-67, 1956.

G. Li, A. Luican, J. M. Lopes-dos-santos, A. H. Castro-neto, A. Reina et al., Observation of Van Hove singularities in twisted graphene layers, Nature Physics, vol.94, issue.2, pp.109-63, 2009.
DOI : 10.1038/nphys1463

E. Y. Geim and . Andrei, Single-layer behavior and its breakdown in twisted graphene layers, Phys. Rev. Lett, vol.106, pp.126802-60, 2011.

]. J. Mcc57 and . Mcclure, Band structure of graphite and de haas-van alphen effect

K. S. Geim and . Novoselov, Interaction-driven spectrum reconstruction in bilayer graphene McCann and V.I. Fal'ko. Landau-level degeneracy and quantum hall effect in a graphite bilayer, Science Phys. Rev. Lett, vol.333, issue.60448, pp.860-863, 2006.

. Mgas-+-13-]-m, M. O. Monteverde, P. Goerbig, F. Auban-senzier, H. Navarin et al., Coexistence of dirac and massive carriers in ??(bedt-ttf) 2 i 3 under hydrostatic pressure, Phys. Rev. B, vol.87, pp.245110-56, 2013.

J. L. Mañes, F. Guinea, and M. A. Vozmediano, Existence and topological stability of Fermi points in multilayered graphene, Physical Review B, vol.75, issue.15, pp.155424-72, 2007.
DOI : 10.1103/PhysRevB.75.155424

G. Montambaux, F. Piéchon, J. Fuchs, and M. O. Goerbig, Merging of Dirac points in a two-dimensional crystal, Physical Review B, vol.80, issue.15, pp.153412-56, 2009.
DOI : 10.1103/PhysRevB.80.153412

G. Montambaux, F. Piéchon, J. Fuchs, and M. O. Goerbig, A universal Hamiltonian for motion and merging of Dirac points in a two-dimensional crystal, The European Physical Journal B, vol.80, issue.4, pp.509-520, 2009.
DOI : 10.1140/epjb/e2009-00383-0

B. L. Naber, Topology, Geometry, and Gauge Fields : Foundations, p.19, 2006.

. S. Ngm-+-05-]-k, A. K. Novoselov, S. V. Geim, D. Morozov, M. I. Jiang et al., Two-dimensional gas of massless dirac fermions in graphene, Nature, vol.438, issue.24, pp.197-85, 1995.

. S. Nmm-+-06-]-k, E. Novoselov, S. V. Mccann, V. I. Morozov, M. I. Fal-'ko et al., Unconventional quantum hall effect and berry's phase of 2 pi in bilayer graphene, Nature Physics, vol.2, issue.99, pp.177-100, 2006.

T. Neupert, L. Santos, C. Chamon, and C. Mudry, Fractional Quantum Hall States at Zero Magnetic Field, Physical Review Letters, vol.106, issue.23, pp.236804-130, 2011.
DOI : 10.1103/PhysRevLett.106.236804

N. Tajima, M. Tamura, Y. Nishio, K. Kajita, and Y. Iye, under High Pressure - Discovery of a Novel Type of Conductor -, Journal of the Physical Society of Japan, vol.69, issue.2, pp.543-551, 2000.
DOI : 10.1143/JPSJ.69.543

D. M. Pellegrino and . Basko, Cyclotron motion in the vicinity of a lifshitz transition in graphite Interpretation of the de haas-van alphen effect, Phys. Rev. Lett. Philosophical Magazine Series, vol.108, issue.7344, pp.17602-431006, 1952.

M. Vitor, A. H. Pereira, . Castro, N. M. Neto, and . Peres, Tight-binding approach to uniaxial strain in graphene Pong and C. Durkan. A review and outlook for an anomaly of scanning tunnelling microscopy (stm) : superlattices on graphite, Phys. Rev. B Journal of Physics D : Applied Physics, vol.80, issue.21, pp.45401-51, 2005.

]. J. Per13, . M. Perrinpgn06-]-n, F. Peres, A. H. Guinea, . Castro et al., Les Atomes Librairie Félix Alcan Electronic properties of two-dimensional carbon Special Issue, Annals of Physics, vol.321, issue.7, pp.201559-1567, 1913.

]. H. Poi95, . A. Poincaré-]-s, R. Parameswaran, S. L. Roy, . Y. Sondhirk93-]-z et al., Analysis situs Fractional Quantum Hall Physics in Topological Flat Bands ArXiv e-prints Electronic effects in scanning tunneling microscopy : Moiré pattern on a graphite surface Condensed-matter simulation of a three-dimensional anomaly, Théorie des distributions. Hermann Sun, and L. Sheng. Fractional quantum hall effect in the absence of landau levelsSim83] B. Simon. Holonomy, the quantum adiabatic theorem, pp.1-123, 1950.

S. , P. San-jose, and E. Prada, Chiral networks in twisted graphene bilayers under interlayer bias. ArXiv e-prints, Phys. Rev. Lett, vol.51, pp.2167-2170, 1983.

B. Shallcross, S. Sharma, and O. A. Pankratov, Quantum Interference at the Twist Boundary in Graphene, Physical Review Letters, vol.101, issue.5, pp.56803-60, 1951.
DOI : 10.1103/PhysRevLett.101.056803

P. [. Slonczewski and . Weiss, Band Structure of Graphite, Physical Review, vol.109, issue.2, pp.272-279, 1958.
DOI : 10.1103/PhysRev.109.272

. D. Sytw-+-12-]-j, T. Sanchez-yamagishi, K. Taychatanapat, T. Watanabe, A. Taniguchi et al., Quantum hall effect, screening, and layerpolarized insulating states in twisted bilayer graphene, Phys. Rev. Lett, vol.108, issue.103, pp.76601-128, 2012.

. Tgu-+-12-]-l, D. Tarruell, T. Greif, G. Uehlinger, T. Jotzu et al., Creating, moving and merging dirac points with a fermi gas in a tunable honeycomb lattice, Nature, vol.483, pp.302-51, 2012.

]. D. Tho97 and . Thouless, Topological Quantum Numbers in Nonrelativistic Physics, p.23, 1997.

]. D. Tkndn82, M. Thouless, M. P. Kohmoto, M. Nightingale, and . Den-nijs, Quantized hall conductance in a two-dimensional periodic potential Two-dimensional magnetotransport in the extreme quantum limit, Phys. Rev. Lett. Phys. Rev. Lett, vol.49, issue.48, pp.405-408, 1924.

. Tst-+-06-]-n, S. Tajima, M. Sugawara, Y. Tamura, K. Nishio et al., Electronic phases in an organic conductor ?-(bedt-ttf) 2 i 3 : Ultra narrow gap semiconductor , superconductor, metal, and charge-ordered insulator, Journal of the Physical Society of Japan, issue.5, pp.75051010-54, 2006.

. Tst-+-07-]-n, S. Tajima, M. Sugawara, R. Tamura, Y. Kato et al., Transport properties of massless dirac fermions in an organic conductor BIBLIOGRAPHIE ??(bedt-ttf) 2 i 3 under pressure, EPLEurophysics Letters), vol.80, issue.4, pp.47002-54, 2007.

A. Tejeda, W. Taleb-ibrahimi, C. De-heer, E. H. Berger, . Conrad-tajima et al., Electronic structure of epitaxial graphene grown on the c-face of sic and its relation to the structure Effects of uniaxial strain on transport properties of organic conductor ?-(bedt-ttf) 2 i 3 and discovery of superconductivity, Mathematische Grundlagen der Quantenmechanik, pp.125007-621832, 1932.

]. S. Wei05 and . Weinberg, Volume I Foundations, Topological orders in rigid states, pp.25-04239, 1990.

[. Wunsch, F. Guinea, and . Sols, Dirac-point engineering and topological phase transitions in honeycomb optical lattices, New Journal of Physics, vol.10, issue.10, pp.103027-51, 2008.
DOI : 10.1088/1367-2630/10/10/103027

X. Wan, A. M. Turner, A. Vishwanath, and S. Y. Savrasov, Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates, Physical Review B, vol.83, issue.20, p.205101, 1949.
DOI : 10.1103/PhysRevB.83.205101

H. Wang, Z. Yao, C. Gu, D. N. Gong, and . Sheng, Non-Abelian Quantum Hall Effect in Topological Flat Bands, Physical Review Letters, vol.108, issue.12, pp.126805-130, 2012.
DOI : 10.1103/PhysRevLett.108.126805

D. Xiao, M. Chang, Q. Niu-yang, and R. L. Mills, Berry phase effects on electronic properties, Reviews of Modern Physics, vol.82, issue.3, pp.1959-2007191, 1923.
DOI : 10.1103/RevModPhys.82.1959

Y. Zhao, P. Cadden-zimansky, F. Ghahari, and P. Kim, Magnetoresistance Measurements of Graphene at the Charge Neutrality Point, Physical Review Letters, vol.108, issue.10
DOI : 10.1103/PhysRevLett.108.106804