ERF and scale-free analyses of source-reconstructed MEG brain signals during a multisensory learning paradigm

Nicolas Zilber 1
1 PARIETAL - Modelling brain structure, function and variability based on high-field MRI data
NEUROSPIN - Service NEUROSPIN, Inria Saclay - Ile de France
Résumé : Il existe deux façons d'analyser l'activité cérébrale acquise en magnétoencéphalographie (MEG) : soit en moyennant les réponses suscitées par la répétition d'un stimulus afin d'observer le « champ évoqué »; soit en décomposant le signal en bandes oscillatoires (tel que l'alpha, le bêta ou le gamma), chacune étant associée à différents rôles fonctionnels. Ces méthodes ne prennent cependant pas compte de la complexité de l'activité cérébrale dont l'essentiel est arythmique, notamment au repos. Pour pallier à cela, une autre approche consiste à analyser le spectre de puissance en 1/f observable dans les très basses fréquences, une caractéristique des systèmes dont la dynamique est invariante d'échelle. Pour savoir si cette propriété joue un quelconque rôle dans le fonctionnement cérébral et si elle a des conséquences sur le comportement, nous avons établit un paradigme d'apprentissage visuel permettant d'observer de la plasticité fonctionnelle au cours d'une session MEG. Pour avoir un entraînement optimal, nous avons développé de nouveaux stimuli audiovisuels (AV) (une texture acoustique associée à un nuage de points colorés en mouvement) permettant une intégration multisensorielle et de ce fait un meilleur apprentissage que celui apporté par un entraînement visuel seul (V) ou accompagné d'un bruit acoustique (AVn). Nous avons ensuite étudié les corrélats neuronaux de ces trois types d'apprentissage par l'analyse classique des champs évoqués. Une fois l'activité reconstruite sur la surface corticale de chaque individu à l'aide de MNE-dSPM, nous avons identifié le réseau impliqué dans la tâche au sein de chaque groupe. En particulier, la plasticité sélective observée dans l'aire hMT+ associée au traitement du mouvement visuel corrélait avec les progressions comportementales des individus et était soutenue en AV par un plus vaste réseau comprenant notamment des aires multisensorielles. Parallèlement, nous avons exploré les liens reliant le comportement et les propriétés d'invariance d'échelle de ces mêmes signaux MEG reconstruits sur le cortex. Tandis que la plupart des études se limitent à analyser l'auto-similarité (une caractéristique globale synonyme de longue mémoire), nous avons aussi considéré les fluctuations locales (c-à-d la multifractalité) au moyen de l'analyse WLBMF. Nous avons trouvé des modulations couplées de l'auto-similarité et de la multifractalité dans des régions similaires à celles révélées par l'analyse des champs évoqués. Plus surprenant, Le degré de multifractalité relevé dans chaque individu convergeait durant l'entraînement vers un même attracteur reflétant la performance comportementale asymptotique.
Type de document :
Thèse
Other [cond-mat.other]. Université Paris Sud - Paris XI, 2014. English. 〈NNT : 2014PA112040〉
Liste complète des métadonnées

Littérature citée [257 références]  Voir  Masquer  Télécharger

https://tel.archives-ouvertes.fr/tel-00984990
Contributeur : Abes Star <>
Soumis le : mardi 29 avril 2014 - 10:02:13
Dernière modification le : mardi 9 octobre 2018 - 17:21:06
Document(s) archivé(s) le : mardi 29 juillet 2014 - 11:30:12

Fichier

VA_ZILBER_NICOLAS_10032014.pdf
Version validée par le jury (STAR)

Identifiants

  • HAL Id : tel-00984990, version 1

Collections

Citation

Nicolas Zilber. ERF and scale-free analyses of source-reconstructed MEG brain signals during a multisensory learning paradigm. Other [cond-mat.other]. Université Paris Sud - Paris XI, 2014. English. 〈NNT : 2014PA112040〉. 〈tel-00984990〉

Partager

Métriques

Consultations de la notice

833

Téléchargements de fichiers

992