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Résumé en français

Introduction

Ce manuscrit s’inscrit dans le domaine du calcul intensif. Nous allons donc, en guise
d’introduction, voir en quoi consiste le calcul intensif et quelles sont problématiques sur
lesquelles nous allons nous efforcer d’apporter notre contribution.

Calcul scientifique et calcul intensif

La simulation numérique ou, plus généralement, le calcul scientifique occupe une place
de plus en plus importante dans divers domaines scientifiques. Par exemple, en ingénierie,
la simulation permet de réduire les coûts de développement en réalisant des prototypes sur
ordinateur avant de réaliser de vraies maquettes à tester en conditions réelles. La simulation
numérique est également le seul recours dans le cas où des expériences ne peuvent pas être
réalisées pour valider un modèle physique (c’est le cas par exemple en astrophysique), ou
pour faire des prévisions (par exemple en météorologie).

La simulation numérique demande une importante puissance de calcul. En effet ces
simulations reposent souvent sur une représentation discrète des objets modélisés. Ainsi,
afin d’augmenter la précision des modèles, les scientifiques sont amenés à augmenter la
finesse du maillage ou la résolution de discrétisation des simulations. Mais ce gain en
précision s’accompagne d’une augmentation drastique du nombre d’opérations nécessaires
pour achever la simulation. D’autre part, l’objet de certaines simulations est l’étude de
l’évolution d’un système dans le temps. Dans ce cas, réduire le temps de calcul permet
d’étudier le système sur une plus grande durée. Le calcul intensif est la discipline qui
cherche à apporter les moyens matériels et logiciels nécessaires au calcul scientifique.

Les super-calculateurs

Afin de délivrer la puissance de calcul nécessaire à la simulation numérique, des or-
dinateurs sont construits spécifiquement. Ce sont des super-calculateurs ou cluster. Ces



2 Résumé en français
ordinateurs sont généralement des ordinateurs standards connectés entre eux par un réseau
rapide. Aussi les constructeurs peuvent jouer sur deux paramètres pour augmenter la puis-
sance de calcul de ces clusters : le nombre d’ordinateurs intégrés dans le cluster et la
puissance propre à chacun de ces ordinateurs.

Mais l’utilisation efficace des super-calculateurs est également un élément clé des perfor-
mances. Or, la complexité de l’architecture des clusters rend leur programmation difficile.
D’autre part, l’évolution rapide du matériel utilisé dans les clusters nécessite d’adapter rapi-
dement les codes de simulation aux nouvelles architectures afin d’en tirer la quintessence.

La modélisation des performances

Pour simplifier l’utilisation des super-calculateurs et déporter au maximum l’optimi-
sation dans les outils, la modélisation des architectures est souvent utilisée. Elle vise à
créer des modèles représentant les capacités de calcul des ordinateurs. Ces modèles peuvent
ensuite être intégrés dans des outils pour réaliser automatiquement des optimisations de
code.

L’intérêt de modéliser les performances des architectures matérielles est de permettre
la réalisation d’outils capables d’optimiser automatiquement, donc rapidement les codes.
Cette rapidité d’optimisation est d’autant plus importante que le matériel évolue fréquem-
ment.

Architecture multi-cœurs

Dans ce manuscrit, nous nous intéressons principalement à la modélisation des archi-
tectures multi-cœurs, c’est à dire le processeur d’un ordinateur ainsi qu’aux performances
des mémoires associées.

Généralement, la modélisation des performances repose sur la lecture extensive de la
documentation fournie par les constructeurs. Or, cette documentation est souvent incom-
plète et parfois même erronée. D’autre part, certains modèles de performances existants
sont trop simplistes pour permettre l’optimisation de codes complexes. Les constructeurs
proposant régulièrement de nouveaux processeurs, il est important de les modéliser rapide-
ment, afin d’être en mesure de proposer des outils efficaces et adaptés à ce nouveau matériel
le plus tôt possible.

L’objectif de ce manuscrit est de présenter comment l’utilisation de mesures de per-
formance de petits fragments de code permet de pallier le manque d’informations sur le
matériel et comment automatiser la modélisation des architectures matérielles. Ces ex-
périences, appelées micro-benchmarks, permettent de comprendre les performances des
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architectures modernes sans dépendre de la disponibilité des documentations techniques.
Par ailleurs, l’étude menée tout au long de ce manuscrit montre que l’utilisation de données
issues de mesures de performances réelles permet d’une part la modélisation des perfor-
mances des architectures modernes, d’autre part de simplifier leur modélisation. Enfin,
l’utilisation de ces benchamrks pour la modélisation des performances permet de calibrer
automatiquement les modèles pour une architecture donnée. Ce gain en productivité dans
la modélisation n’est pas négligeable du fait de la fréquence avec laquelle les construc-
teurs développent de nouvelles architectures. L’utilisation de micro-benchmarks dans la
modélisation du matériel permet donc une modélisation rapide et précise des architectures
modernes.

Plan du manuscrit

Ce manuscrit est organisé en quatre chapitres. L’introduction présente le cadre général
des recherches qui ont mené à la rédaction de ce manuscrit. Elle explique pourquoi la
simulation numérique nécessite une puissance de calcul grandissante et comment les con-
structeurs ont adapté le matériel pour soutenir cette demande croissante en ressources de
calcul.

Chapitre 1

Le premier chapitre présente l’architecture matérielle des processeurs modernes, plus
particulièrement, les caractéristiques rendant la modélisation des performances complexe.
Cette présentation commence par une description des principaux éléments des processeurs
modernes, ainsi que leurs impacts sur les performances des programmes. Le chapitre
présente également certaines optimisations des programmes permettant une meilleure util-
isation de ces diverses caractéristiques. Cette description de l’interaction entre le logiciel et
le matériel montre à quel point, d’une part l’optimisation de code et d’autre part la mod-
élisation des performances sont complexes. Cette complexité vient en particulier du fait
qu’une optimisation logicielle particulière a un impact sur diverses parties du matériel. Par
exemple, le déroulage d’une boucle permet d’un côté une meilleure utilisation du pipeline
d’instruction, mais peut également réduire l’efficacité du cache de micro-instructions. Ainsi
une optimisation sur une partie d’un programme peut déplacer le goulot d’étranglement
des performances d’une partie du matériel à une autre et au final ne pas augmenter les
performances du programme entier. De plus, les optimisations faites au niveau matériel
sont automatiques, et donc invisibles du point de vue du programmeur. De ce fait, une
connaissance approfondie de l’architecture matérielle est importante avant de pouvoir es-
pérer optimiser efficacement un programme. La seconde partie de ce premier chapitre
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présente le parallélisme présent à divers niveaux dans les processeurs. La troisième par-
tie de ce chapitre donne une description de l’architecture mémoire des ordinateurs. Les
caches mémoires introduisent de la redondance de données : une adresse mémoire peut
être stockée dans différents niveaux de caches et dans les caches de différents processeurs
de l’ordinateur. Il devient donc important de proposer un mécanisme permettant de con-
server la cohérence mémoire. La méthode la plus utilisée est l’introduction de protocoles
de cohérence de caches. Ces protocoles sont implémentés matériellement au niveau des
processeurs et ont un impact sur les performances mémoire. La description faite dans ce
chapitre motive le besoin de modéliser les hiérarchies mémoire en prenant en compte le
protocole sous-jacent pour prédire avec précision les temps d’accès à la mémoire.

Chapitre 2

Le deuxième chapitre propose une méthode novatrice de modélisation des performances.
L’idée fondamentale derrière cette méthodologie est d’utiliser exclusivement des mesures de
performance par des micro-benchmarks pour modéliser les performances des ordinateurs.
Cette utilisation de benchmarks au sein même de modèles de performances permet d’éviter
de devoir compter sur la documentation technique fournie par les constructeurs. Cette
idée est illustrée par la description détaillée d’une méthodologie automatique de mesure
des performances des instructions arithmétiques. Afin de prédire le temps d’exécution
d’un fragment de code sur un processeur moderne, il est important de connaitre plusieurs
métriques sur chacune des instructions disponibles. Ces informations sont : le temps
d’exécution de l’instruction elle même, le nombre d’instructions que le processeur peut
exécuter en même temps et les unités fonctionnelles utilisées par chacune des instructions.
En effet deux instructions utilisant la même unité fonctionnelle ne pourront jamais être
exécutées en même temps, même sur un processeur super-scalaire. Ce chapitre propose une
méthode automatique permettant la mesure de chacune de ces métriques. Cette méthode
permet donc de trouver les informations permettant de développer des modèles de calcul
capables de prédire le temps d’exécution de fragments de codes arithmétique. Ce chapitre
présente également comment de tels modèles peuvent être utilisés pour optimiser l’efficacité
énergétique, en prenant pour exemple le processeur SCC. La dernière partie de ce chapitre
motive le fait de réaliser un modèle mémoire prenant en compte la cohérence de cache pour
prédire le temps d’accès aux données. Les forces de cette approche sont, d’une part, d’éviter
d’avoir besoin de recourir à la documentation des constructeurs et, d’autre part, permettre
une modélisation rapide des nouveaux processeurs, permettant ainsi la réactivités exigée
par la sortie régulière de nouveaux processeurs.

Chapitre 3

Le troisième chapitre présente l’environnement de développement de micro-benchmarks
utilisé pour caractériser les hiérarchies mémoire dotées de cohérence de cache. Une étude
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des paramètres importants de l’étude des architectures matérielles est faite dans la pre-
mière partie ce chapitre. Pour chacun des paramètres nécessaires, une explication détaillée
est donnée sur la manière dont le paramètre est géré dans l’environnement. Le chapitre
présente en particulier le langage créé pour permettre de simplifier l’écriture de benchamrks
destinés à mesurer les performances des hiérarchies mémoire et des protocoles de cohérence
associés. Ce chapitre présente également un algorithme permettant de produire automa-
tiquement une liste de benchmarks capables de tester la vitesse des divers types d’accès aux
données dans les caches parallèles et hiérarchiques dotés de cohérence de cache. Cet algo-
rithme prend en entrée la description du protocole de cohérence sous la forme de l’automate
le régissant et produit en sortie un benchmark capable de mesurer les performances de cha-
cune des transitions de l’automate. Les benchamrks produits en sortie par cet algorithme
sont exprimés dans le langage présenté précédemment. En outre, ce chapitre présente une
étude comparative des performances mémoire de différentes architectures et l’impact sur
les performances du choix du protocole de cohérence. Cette étude est basée sur les mesures
effectuées automatiquement grâce à l’environnement décrit dans ce chapitre.

Chapitre 4

Le quatrième chapitre présente un modèle mémoire permettant la prédiction du temps
d’accès aux données pour des applications régulières de type OpenMP. Ce modèle est
décomposé en trois sous-modèles. Le premier permet d’abstraire l’interaction d’un pro-
gramme avec la mémoire. Le deuxième donne une vision simplifiée de l’architecture mé-
moire de la machine modélisée. Cette représentation simplifie la vue par le modèle de
la hiérarchie mémoire en proposant de considérer l’organisation des caches de la machine
uniquement comme des caches distribués de taille supposée infinie. Le lien entre cette
vision simplifiée de l’architecture et le vrai matériel est fait grâce à une liste d’expériences
permettant de retrouver les performances des accès à la mémoire en fonction de divers
paramètres. Les paramètres qui caractérisent un accès mémoire sont : la taille des don-
nées accédées, le type d’accès (lecture ou écriture), ainsi que le nombre de processeurs
accédant simultanément à la mémoire de l’ordinateur. Par ailleurs l’état des données ac-
cédées dans le protocole de cohérence fait également partie des caractéristiques des accès
mémoire. Les performances associées aux accès pour tous ces paramètres sont mesurées
à l’aide de l’environnement décrit en chapitre trois. La dernière partie de ce modèle per-
met la prédiction de temps d’une application donnée sur une architecture donnée. Cette
prédiction est faite en étudiant l’évolution de l’état (dans le protocole de cohérence) des
données durant l’exécution du programme. Chacun de ces changements d’état correspond
donc à une transition dans l’automate de cohérence et pour chacune de ces transitions,
une fonction de coût y est associée. Cette fonction est directement dérivée des résultats
des expériences faites dans le troisième chapitre et permet de prédire le temps d’accès à
la mémoire. Dans la suite de ce chapitre, une démonstration de la fiabilité de ce modèle
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est apportée, d’une part sur les applications d’algèbre et d’analyse numérique, d’autre part
sur les performances des communications MPI en mémoire partagée.

Conclusion

La conclusion présente la synthèse du travail effectué dans le cadre des recherches qui
ont mené à la rédaction de ce manuscrit. Une partie de cette conclusion est également
dédiée aux perspectives de ces travaux ainsi que la manière dont les probables évolutions
du matériel vont affecter l’approche de leurs modélisation dans l’avenir.



Introduction

Need for Speed

The need for intensive computation is growing fast as more and more scientific fields
rely on numerical simulation. Simulation is used in many domains in order to reduce
production costs. For instance in the car industry it is cheaper to run crash simulations
instead of crashing a real car. It is used in numerous areas such as aerospace or car industry,
meteorology or geology etc.

Simulation has many advantages, among other the price, over real experiments. As,
it is ran by a computer, it allows to record every information needed by scientists. One
can easily change parameters of the experiments and run it again. We can also easily run
simulations in conditions where the experiment could not be done. For instance because
these conditions cannot be reproduced easily for a real experiment, or for security.

But all these strengths have also a drawback: simulation needs a lot of computational
power. This means that simulation results can be very long to obtain. To overcome this
problem, we need to build fast computers to shorten computation time. This explains why
computer speed is crucial to science.

Computer Architecture

In order to fulfill this need for computation, hardware has to evolve as fast as the
need for fast computation grows. For a period of time, speeding-up processor clock rate
allowed to increase computer computational power. However, heat and power consumption
of processors grow with the square of the processor frequency. Thus we have reached the
limits of processors frequency with thermal resistance of processors. Central Processing
Unit (CPU) designers had to find other ways to increase processors computational power.
More and more architectural features have been added to computers in order to make them
more powerful. Allowing, for instance, CPU to issue more than one instruction per cycle,
this is called instruction parallelism. Another commonly used mean to increase processor
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computational power is to allow it to perform the same operation on several data at the
same time, this is data parallelism. But the urge for computational power grows faster
than architecture improvement. In order to keep up with growing needs for computational
power, processor vendors had to go parallel. The area of single processor is now over and
even general purpose computers, workstations and now even cell phones embed multi-core
CPUs.

Hardware models and Software

The ever growing complexity of processors leads to numerous research topics for soft-
ware optimization. Indeed, software has to be well adapted to the underlying architecture
in order to benefit from all hardware features. Moreover we need to find a way to exploit
all the parallelism available on the hardware. Expressing or finding parallelism in applica-
tions can be one tough research theme. New programming paradigms have been released
in order to be able to express as much parallelism as algorithms have. However one has to
be careful when writing software for High Performance Computing (HPC) since keeping
all functional units busy in order to achieve good performance can be tricky due to depen-
dencies. In order to be able to attain good efficiency on a machine, one has to know the
architecture deep details. This can be a long task as computer architecture are becoming
more and more complex. Moreover as processor vendors release new architectures very
often, learning new architecture capabilities can become a big overhead for programmers.

In order to reduce this overhead, people build hardware models. These models are
an abstraction of the architecture that helps understanding computer behavior. This also
permits better adaptation of software to the machine. Building architecture models can
still be burdensome. Even if one does not have to rebuild it from scratch for each new
coming architecture, understanding how to use efficiently every new feature can be quite
time consuming.

Goals and Contributions

In the race for better performance, computer architectures are becoming more and
more complex. Therefore the need for hardware models is crucial to i) tune software to
the underling architecture, ii) build tools to better exploit hardware or iii) choose an
architecture according to the needs of a given application.

In this dissertation, we aim at describing how to build a hardware model that targets all
critical parts of modern computer architecture. That is the processing unit itself, memory
and even power consumption. We believe that a large part of hardware modeling can be
done automatically. This would relieve people from the tiresome task of doing it by hand.
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Our first contribution is a set of performance models for the on-core part of several dif-

ferent CPUs. This part of an architecture model is called the computational model. The
computational model targeting the Intel SCC chip also includes a power model allowing
for power aware performance optimization. Our other main contribution is an auto-tuned
memory hierarchy model for general purpose CPUs able to i) predict performance of mem-
ory bound computations, ii) provide programmer with programming guidelines to improve
software memory behavior.

Dissertation Organization

This dissertation is organized in 4 chapters. The first chapter is dedicated to a state of
the art while the three others present our contributions.

Chapter 1 describes some existing computer architectures, hardware concepts and fea-
tures. This is the basis for understanding both the motivations of research in the HPC
field and motivations for our contribution.

Chapter 2 presents our contribution to help building computational models by auto-
matically measuring instructions latencies and detecting instruction parallelism. It also
presents a power aware performance model built for the Intel SCC.

Chapter 3 presents how to build benchmarks to model a memory architecture. Es-
pecially how to control the environment for representative and reliable benchmarks. We
will also present a language we developed to ease the process of writing memory hierarchy
benchmarks.

Last, Chapter 4 presents how to use benchmarks in order to build a performance model.
And what choices have to be made to model memory. This model is evaluated by predict-
ing the run-time of real codes running on the real hardware and is also applied to MPI
communications.
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Chapter

1

Hardware Architecture
“Welcome to the machine”

— Pink Floyd

As the need for intensive computation grows fast with the need for simulation, processor
vendors had to find alternatives to increase CPU computational power.

In this chapter we will describe some important hardware features that increase the
processor performance. The chapter is divided into three sections, one focuses on the
core architecture itself: it explains how single processor architectures can be upgraded
to deliver better performance. This section also explains how to optimize code in order
to benefit from the hardware features presented. The second section presents why and
how computer architectures are becoming parallel. It also describes several parallelism
paradigms available in general purpose computers or clusters dedicated to high performance
computing. The third section focuses on memory performance. We will present some
features used to increase memory bandwidth as well as how to tune software to make
better use of the memory.
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1.1 Core Architecture

The core part of the processor is the one responsible for computation. It is a critical
part of CPU design since it is responsible for executing all the instructions of a program
running on the machine. In order to execute an instruction, the processor needs to read,
decode, execute the instruction, and eventually write the result back.

1.1.1 Pipeline

The Instruction Pipeline

One way to increase instruction throughput consists in devising the instruction execu-
tion into several stages. This allows a better usage of all functional units of the CPU. Since
for a n stage pipeline, n instructions can be executed in the pipeline at the same time,
each instruction being in a different stage. A pipeline does not reduce time to execute one
instruction, but it allows to issue instructions while still executing others, which increases
the instruction throughput. A common image to illustrate pipeline is to compare it to
an assembly line. The classical pipeline is decomposed into the five following stages. A
graphical representation of this pipeline is shown in Figure 1.1:

Instruction fetch: The stage is responsible of reading the instruction from memory and
bringing it to the processor. In the stage, the instruction fetched for execution is
pointed out by the Program Counter (PC). This stage is therefore also responsible
for updating the PC to the next instruction to be executed.

Instruction decode: This stage is responsible for decoding the instruction, i.e. reading
the instruction and its operands. The instruction is decomposed into the opcode, the
operation to be executed, and its operands ,e.g., registers or memory.

Execute: In this stage instructions are executed: for instance arithmetic instructions are
dispatched to the Arithmetic and Logic Unit (ALU).

Memory: In the memory stage access to the main memory are performed.

Write back: The write back stage is responsible for writing the instruction results to the
registers.

Real world processors are composed of many more stages, Intel Core2 pipeline counts
14 stages while Nehalem has 16 stages. But the trend is toward shorter pipelines: the
latest NetBurst micro architecture called Prescott has up to 31 stages.
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Instruction

Fetch
Instruction
Decode Execute Memory Write Back

Instruction execution

Figure 1.1: A classical five stage Pipeline.

While this description of a pipeline is simplified, it shows the basic operation of a
pipelined processor. But even this small example allows us to illustrate several performance
issues that can happen in pipelines. For instance the instruction pipeline is only able
to increase hardware performance if every stage of the pipeline is kept busy during the
computation. This means being able to issue1 one instruction at every cycle. For instance
if several consecutive instructions have data dependences, meaning that some instructions
need the result of others to be issued, the pipeline cannot be fed with one instruction at
every cycle. Figure 1.2 shows a pipeline stall, consequence of data dependency between
two instructions in the code. As we can see, if there is a data dependency between two
consecutive instructions, the second instruction cannot be executed before the first writes
its result into registers. On an n stages pipeline, this stalls the pipeline for n− 1 cycles.
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Figure 1.2: A Stall in a simple Pipeline without forwarding: the second instruction cannot
be executed before the first one is retired, stalling the pipeline for 4 cycles.

Programs contain instructions controlling its execution flow, i.e. jump or conditional
branching instructions. This can also lead to poor performance by stalling the pipeline.

1Issuing an instruction consists in starting its execution by feeding it to the first stage of the pipeline.
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Branch Prediction

In order to overcome stalls, branch prediction and speculative execution were added
into processor pipeline [48, 72, 74]. When a conditional branch instruction is executed,
the instruction pipeline cannot issue another instruction before this instruction is retired2.
Indeed, the next instruction to be executed depends on the result of a condition. And
the result of the conditional will only be available after the end of the execution of the
condition.

As conditional jumps are used to implement loops, they are critical to achieve good
performance. The 90/10 law says that programs spend 90% of their time in only 10%
of the code. This portion of the code is therefore critical: this is usually loops. Branch
prediction avoid stalling the instruction pipeline by deciding which way of the branch will
be taken before the condition is retired. The next instruction can therefore be issued
without stalling the pipeline. If the branch prediction was wrong, instructions that were
issued when they should not have to be discarded. This is called speculative execution.
Mispredictions present the same problems as pipeline stalls since the instructions executed
after the branch will be discarded. Yet if branch prediction is correct this greatly improves
branching performance. The longer the pipeline, the higher misprediction penalty and
pipeline stalls.

Instruction Loop Buffer

As previously said, loop performance is critical. To improve loop efficiency some pro-
cessors feature an instruction loop buffer. When the processor enters a loop, decoded
instructions goto this buffer. This allows the bypass of the first stages of the pipeline:
within a loop, instructions are decoded once and for all during the first iteration.

Register Forwarding

In order to reduce the penalty of pipeline stalls due to instruction dependences, a
register forwarding mechanism can be added to the pipeline. This mechanism allows stages
of the pipeline to provide a previous stage with data that has just been computed. This
reduces the penalty of pipeline stalls by allowing the execution of instructions carrying
dependence with an instruction already in the pipeline right after the execution stage
instead of waiting for the result to be written back.

2An instruction is said to be retired when its execution completely over.
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1.1.2 Superscalar processor

To further improve instruction throughput, processors were enhanced with superscalar
capability. This mechanism is another form of instruction parallelism. It allows processors
to issue more than one instruction per cycle. This processor optimization can lead to great
computational power enhancement if one is able to bring several independent instructions
to the processor per cycle. Indeed a superscalar processor with two pipelines will be
able to issue two Instructions Per Cycle (IPC) leading to a twice higher theoretical peak
performance.

To benefit from this feature, software have to present enough instruction parallelism and
independent instructions. Otherwise the multiple execution ports will not be used. Modern
processor such as the Sandy Bridge micro-architecture have six specialized execution ports.
Specialized execution ports can only execute a subset of all available instructions. On
the Sandy Bridge micro-architecture, three ports are dedicated to arithmetic and logical
operations, two for memory reads and one for memory write. Leading to a maximum of
three computations and three memory access during one clock cycle.

1.1.3 Out-of-Order Execution

We saw that control hazards due to branching instructions can be overcome by an ef-
ficient branch predictor. However pipeline stalls due to data hazards such as instruction
dependences have not been tackled yet. This is the task dedicated to the out-of-order
engine. The out-of-order engine allows the execution of other instructions when an in-
struction has to wait for its operands to be ready. Instructions are therefore not executed
in the initial order given by the program. Out-of-order pipelines also reduce the cache miss
penalty by avoiding stalling the pipeline when miss occurs [73]. We will discuss in more
details cache in Section 1.3.3

In order to implement an out-of-order engine, processor pipelines are extended with an
instruction queue, a retire stage3, and a register renaming mechanism to avoid unnecessary
dependence.

Instruction Queue

After decoding an instruction is dispatched to one of the execution ports. The instruc-
tion will stay in the queue until all its operand are ready. Therefore instructions will be
executed as soon as its operands are available, even if older instructions are still waiting

3Also known as ROB: Re-Order Buffer.
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in the queue for their operands to be available. Instruction are said to be executed in data
order instead of program order.

Figure 1.3 illustrates the execution of the program represented in Table 1.1 on an out-
of-order pipeline. Figure 1.3a represent the pipeline with all four instructions waiting to

Table 1.1: Example of a Program executed by an Out-Of-Order Engine.

Program:
i0: r0 ← 1
i1: r1 ← 2
i2: r2 ← r0 × r1
i3: r3 ← 3

be executed. Figure 1.3b shows the state of the pipeline after instruction i0 is retired
and instruction instruction i1 is in the pipeline. In Figure 1.3c we see that instruction
i3 is issued before instruction i2 because instruction i2 depends on instructions i0 and i1.
Instruction i3 is thus issued right after i1 is issued. But i2 has to wait for its operands r0
and r1 to be ready after i0 and i1 retire.

i3
i2
i1
i0

P0

(a) Instructions is dispatched
to the queue in program or-
der.

i3
i2

i1

i0

(b) Instruction i0 has been is-
sued and is now retired. i1
has been issued and is being
executed: i2 cannot be issued.

i2

i3

i1
i0

(c) The processor issues i3. i1
had time to finish: i2 will be
issued the next cycle.

Figure 1.3: An Instruction Queue Example.

Register renaming

The register renaming mechanism is used to avoid false data dependences. False data
dependences are due to the name of the registers used (instead of being caused by real data
dependences). If we take a look and the code shown in Table 1.2, instruction i2 and i3
cannot be executed at the same time since the variable B is both an operand of instruction
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Table 1.2: Anti-dependence avoided by register renaming. Anti-dependence is also called
Write after Read (WAR).

Before renaming After renaming
i1: B ← 1 B0 ← 1
i2: A ← B + 2 A ← B0 + 2
i3: B ← 2 B1 ← 2

i1 and the output of instruction i2. However we can rename B into B0 and B1, the code
still computes the same thing but the instructions i2 and i3 can be executed at the same
cycle since there is no dependence anymore between the Anti-dependences are called name
dependences, if we can rename variables, or in the case of computer architecture, registers,
we can avoid such dependences.

Another kind of name dependence can be avoided through register renaming: it is the
output dependence. An output dependence happens when the same register is used as the
result of several instructions, e.g., in the code shown in Table 1.3 we cannot change the

Table 1.3: Output-dependency avoided thanks to register renaming. It is also known as
Write after Write (WAW) dependency.

Before renaming After renaming
i1: B ← 1 B0 ← 1
i2: A ← B + 2 A ← B0 + 2
i3: B ← X + 1 B1 ← X + 1

instruction order nor can we execute any instruction in parallel since B is an operand of
instruction i2 and the output of instruction i3. However if we rename B into B0 and B1,
as shown in the right hand side of the table, we still compute the same thing, but we can
now reorder instruction i3 before instruction i2 or perform both of them at the same time.

The goal of the register renaming mechanism is to avoid these name dependencies. Only
a subset of all the physical registers of the processor are exposed to the programmer. When
an instruction is executed, the register renaming mechanism chooses one physical register
to use among the physical registers corresponding to the logical register provided by the
instruction. Having several physical registers available for each logical register allows the
processor to rename registers in order to avoid name dependencies.
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Reorder Buffer

The register renaming mechanism used together with out-of-order execution engine
avoids unnecessary stall in the pipeline by keeping the pipeline fed with instructions with
satisfied dependencies. However as we saw in Section 1.1.1 dedicated to the instruction
pipeline, because of the speculative execution and branch miss-prediction, the processor
might have to discard some instructions. If instructions are not executed in program order,
discarding the instructions speculatively executed after a branching instruction can become
messy. In order to reorder instructions after they retired, a stage is added to the pipeline.
This stage is called ROB for Re Order Buffer.

The ROB is a queue, as soon as an instruction enters the renaming stage, before
dispatched to an instruction queue, an entry is reserved for this instruction in the ROB.
Thus entries in the ROB are in program order. Instructions can only leave the ROB when
they are retired and are at the head of the ROB. Hence instructions leave the ROB in
program order, and the CPU is able to easily decide which instruction to discard when a
branch miss-prediction occurs.

1.1.4 Vector Instructions

We saw several mechanisms used to leverage processor performance by increasing in-
struction throughput via instruction parallelism. But processors can even do better: they
can use data parallelism to increase their computational power. Indeed, compute intensive
code often expose data parallelism, i.e. the same operation is applied to several indepen-
dent data. Multimedia applications and linear algebra codes are good examples of compute
intensive software. For instance when computing the sum of two vectors, multiple sums of
corresponding elements of the vectors can be performed at the same time.

For this reason, processors now feature vector registers. A vector register can hold
several values. Instructions operating on it perform the same operation at the same time
on every element. Figure 1.4 illustrates a vector instruction.

The MMX, SSE, and AVX extensions are actually vector instructions added to the x86
instruction set. PowerPC architectures feature AltiVec instruction that are vector instruc-
tion too. MMX instructions operate on 64 bits wide registers, SSE on 128 bits and AVX on
256 bits registers. Depending on the size of one element, one single instruction can per-
form up to 32 arithmetic operations at the same time (e.g., an AVX addition will perform
8 operations on 32 bits wide elements, but only 4 if the elements of the vector are 64 bits
wide).
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a0 a1 a2 a3

+

b0 b1 b2 b3

a0 + b0 a1 + b1 a2 + b2 a3 + b3

Figure 1.4: A vector instruction performing 4 additions at the same time on 4 elements of
two distinct vectors.

1.1.5 Low level Code Optimization

In order to exploit the hardware computational power, software have to be well adapted
to the architecture. Code optimization allows to perform the same computation faster by
better tuning the software to the underlying hardware. The compiler is responsible for
producing efficient machine code from its input in a higher language. For the compiler to
produce fast code, a large range of optimizations are available. These optimizations can be
combined to achieve mode efficient code. Combining optimization methods is also used in
other domains where performance matters [58]. But finding the right set of optimization
to apply to a particular program is non-trivial, and numerous research have be led on this
particular topic [1, 18, 33, 82]. The instruction scheduling phase of compilation is respon-
sible for scheduling machine instructions after the instruction selection phase. Instruction
scheduling assigns an order to instructions in such a way that i) dependencies between
instructions are not broken, ii) optimization constraints. These optimization constraints
can be to provide faster code, lower register pressure, etc. In order to provide faster code,
instruction latencies have to be overlapped. Therefore instruction latencies is a key infor-
mation to provide to compilers. It is known that, with enough hardware information the
optimal instruction scheduling can be achieved [10, 53, 84].

Therefore, instruction performance is an important information for compiler to produce
efficient code. Information about hardware feature of the CPU can be found in hardware
documentation [44]. However execution ports used by instruction, their latencies, through-
put and execution port are harder to find out. Agner Fog provides a large amount of
information about instruction performance [31]. He discovers this information by running
experiments: benchmarks for each instruction to provide information about instruction
performance to the community. Framework dedicated to benchmark writing can also help
retrieving such information [80]. Until now no fully automatic method is available to get
these information. The goal of one of our contributions is to provide insight to auto-
matically obtain critical information to build hardware model. This will be discussed in
Section 2.2.
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Instruction scheduling is usually made at the basic block level of the program. A basic

block is a piece of program where only the first instruction can be the target of a branching
instruction: there is no other entry point into a basic block than the first instruction. A
basic block does not contain any jump or conditional branch expects for the last instruction.
In the execution flow of a program, a basic block is thus always either entirely executed, or
not executed at all. Hence instruction scheduling is limited by the scope of a basic block
and they are only a few alternatives for shifting instructions in small basic blocks. Small
loops (with only a few instructions) usually leads to small basic blocks. In order to provide
more search space for the compiler to select a better instruction scheduling, loop unrolling
can be used to transform loops with a small body.

Loop Unrolling

Unrolling a loop consists in executing several loop iterations as a single one with a
bigger body. Table 1.4 shows an example of loop unrolling. We can see on the right hand

Table 1.4: Loop Unrolling example. For brevity we omitted the tail code when N is not a
multiple of 4.

Before Loop Unrolling After Loop Unrolling

s = 0;
for(i=0; i<N; i=i+1) {

s = s + t[i];
}

s = 0;
for(i=0; i<N; i=i+4) {

s = s + t[i];
s = s + t[i+1];
s = s + t[i+2];
s = s + t[i+3];

}

side of the table that one single execution of the loop computes the sum of four elements of
the array t. The loop is unrolled by a factor of 4. The machine code corresponding to the
unrolled loop will therefore contain 4 times more instructions than the initial code. This
will give more freedom to move instructions around to avoid stalls due to dependences.

An other reason why loop unrolling improves software performance is that for each
loop iteration a condition has to be checked. Instruction used to perform this versification
are just an overhead: they are only needed to control the program flow but not for real
output computation. As an n-unrolled loop will perform n times less iterations than the
unrolled version, it will reduce the overhead due to conditionals by a factor of n as well as
the number of branch taken.
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Loop unrolling is very well handled by compilers since it is a really simple code transfor-

mation. However the hard part of automatic loop unrolling consists in finding the optimal
unroll factor of a loop. Indeed several factor affect loops performance: if the loop is not
unrolled enough, the compiler might not find the best instruction scheduling due to the
lack of instruction in the loop body. But unrolling too much a loop can lead to too big
loop body preventing the processor to use its instruction loop buffer. Automatic methods
exist to overcome this issue: for instance auto-tuning based optimization will solve this
problem by generating several loops with different unroll factors and compare all of their
execution. However one has to be careful when using auto-tuning to select the unroll factor
of loops. Since nested loops can be unrolled and jam the combinatorics of auto-tuned nest
loop optimization can become very high.

Loop unrolling helps the compiler to better schedule instructions, but it can also help
the compiler optimize even further the code: since an unrolled loop will present more
arithmetic operations, the compiler can even try to use vector instructions to perform all
of them at once. This is called code vectorization.

Code Vectorization

Code vectorization is a compiler optimization that tries to replace scalar operations with
vector operations. In the code example shown in Table 1.4, since we perform 4 additions at
the same iteration we can try to vectorize this 4 operations. Yet the 4 add instructions are
not independent since they are all reduced to a single scalar. In order to perform all these
adds at once we have to make these instructions independent. To do this we can split the
sum of the array t into 4 partial sums. This is the code exposed is Table 1.5 After splitting

Table 1.5: Vectorization example.

Before vectorization After vectorization

s = 0;
for(i=0; i<N; i=i+4) {

s = s + t[i];
s = s + t[i+1];
s = s + t[i+2];
s = s + t[i+3];

}

s0 = 0; s1 = 0;
s2 = 0; s3 = 0;
for(i=0; i<N; i=i+4) {

s0 = s0 + t[i];
s1 = s1 + t[i+1];
s2 = s2 + t[i+2];
s3 = s3 + t[i+3];

}
s = s0 + s1 + s2 + s3;

the sum into 4 partial sums, the 4 adds do not carry dependencies between them anymore.
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Thus we can use a single vector instruction to perform all the operation at the same time.
As all the 4 arithmetic instructions can be performed with one single instruction, we can
further unroll the loop to let more space for the compiler to schedule instructions.

This section ends the description of single core architecture. We saw several hardware
features allowing great performance gains. But single processor machines do not provide
enough computational power to sustain compute intensive numerical simulation, architec-
tures have switched from single core processors to multi-core processors to increase even
further their performance.

1.2 Towards Parallel Architectures

This section briefly describes parallel computer architectures. In a first section we
describe the main motivations for increasing hardware parallelism to achieve better per-
formance. The next sections present several different levels of parallelism within computer
architectures. We present parallel designs by growing granularity. Starting from parallelism
embed on the CPU itself, with multi-processor and simultaneous multithreading. Then we
present parallelism available outside of the processor itself with accelerators. Eventually
we present coarse grain parallelism with architectures dedicated to HPC such as clusters.

1.2.1 The Energy Wall

When aiming at increasing processor computational power one has two alternatives:
either increasing the processor speed (i.e. frequency) or increasing the number of instruc-
tions that it can execute in one clock cycle. Both these methods have a drawback: they
increase CPU power consumption.

To add new features to the hardware processor vendors have to increase the number of
transistors on the die. Since each new transistor has to be powered, it increases the chip
electrical needs.

In the same manner, boosting the processor frequency raises its consumption. But
worse with heightening the frequency: it increases heat dissipation. The heat produced by
a processor is proportional to its frequency: increasing its frequency by a factor two leads
to doubling power dissipation. And worse: when processor frequency increases, the voltage
has to be increased too. This avoids hardware errors by augmenting the electric signal
strength. And the power dissipation is proportional to the square of the voltage. The
power consumption P of a CPU is approximately: P = c× f × V 2 where c is a constant,
f the frequency and V the voltage of the CPU.
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In order to keep the processor cool, we have to set up cooling systems. These systems

need a lot of space since heat transfer depends on the surface. Up to half of the space of
many machines is therefore actually dedicated to cooling.

For these reasons, single processor performance could not be further enhanced. A new
way to improve performance is build computer with several processing units. The following
sections will describe some parallel architectures featuring multiple CPUs.

1.2.2 Multi-Processor

Multi-Processors systems are computers equipped with several identical processors.
Processors are connected by the mean of a bus on the motherboard to the same shared
main memory. Each of these processors can be dedicated to different tasks. This is called
SMP for Symmetric Multi Processor.

Another kind of Multi-Processors systems are CMP for Chip Multi-Processors. On this
kind of hardware systems, processors sharing the same chip also share some resources such
as a level of cache. This is a more complex hardware hierarchy than SMP systems since it
can lead to contention when cores are trying to access the same shared resource. However
this can also increase communication efficiency between cores sharing a level of cache. This
can spare some resources and space on the chip, allowing processors to have more cores.

Figures 1.5 and 1.6 illustrate the concept of SMP and CMP. We can see that CMP
systems are more hierarchical than SMP ones. One has to be careful when writing programs
targeting CMP architecture since communications costs is not the same between two cores
located on the same chip and two distant cores. We should emphasis that things have moved
to some private resources and some shared. For instance on most modern processors some
caches are privates and others are shared.

P0
Cache

P1
Cache

P2
Cache

P3
CacheMemory

Figure 1.5: A SMP Multi-Processor System: 4 processors connected to their shared mem-
ory.
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Chip 0 Chip 1

Figure 1.6: A CMP: 2 chips, each chip made of 2 cores sharing hardware resources such as
a cache level.

1.2.3 Simultaneous Multithreading

To even further spare hardware resources one can extend feature sharing to lower levels
(i.e. closer to processor). This is the called Simultaneous MultiThreading (SMT): the
hardware threads are processing units located on the same core. But all functional units are
not duplicated. Only registers (both general purpose and special registers) are duplicated.
But the pipeline, the Arithmetic and Logic Unit (ALU), etc are shared.

Hardware threads can execute independent instruction flows, or programs. Therefore
it does not improve hardware peak performance since different threads sharing the same
functional units cannot perform arithmetic operation at the same time. Still it can im-
prove the pipeline utilization by filling the bubbles inserted into the pipeline by one of the
thread with instruction from the other thread. Simultaneous Multithreading only increases
hardware sustainable performance.

Schedulers can be aware of the hardware threads (and in particular that they shared
some functional units) and can therefore better balance the load across the system [14].

1.2.4 Accelerators

In the last section we described several ways to improve general purpose processor
performance. In order to perform more specific tasks, specialized processors can be used.
Specialized processors are called accelerators.

Chips dedicated to one single kind of task can skip all features not compulsory to carry
out their job. This makes room on the die for more functional units dedicated to the task
of the accelerator. Since accelerators are becoming more and more present in the HPC
field, which is the area of the dissertation, we decided to describe some on them that are
often seen in published work. However accelerators architectures are beyond the scope of
the contribution of this dissertation since we do not try to model them.
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Graphics Processing Units

Graphics Processing Units (GPU) were initially designed for graphics rendering. Yet
GPUs are very efficient for SIMD computation. Since HPC heavily rely on this kind of
computation, GPUs are used in many super-computers dedicated to simulation. GPUs
are composed of many simple processors dedicated to arithmetics. GPUs are therefore
very efficient for embarrassingly parallel computation: every processor executes the same
instruction, but each of them on different piece of data. They can embed their own memory
(e.g., discrete graphic cards), data can be transferred to and from the GPUmemory through
a Peripheral Component Interconnect (PCI) bus. Compute intensive tasks can be offloaded
to the GPU, freeing the CPU from this task, and letting it executing some other tasks.

Cell

The Cell processor was initially released by IBM, Sony, and Toshiba for the The
PlayStation 3 game console (PS3) [21]. It features a general purpose CPU: a PowerPC
processor called the Power Processor Element (PPE). This PPE is surrounded with be-
tween six and eight accelerators, Synergistic Processing Elements (SPE). The PS3 feature
six SPEs while Cell processors released for HPC platforms feature eight. SPEs feature
vector instructions for fast arithmetic processing. They have a private fast memory and
are connected to other SPEs by a ring bus.

Single-chip Cloud Computer

The Single-chip Cloud Computer (SCC) released by Intel is a many core architecture.
It features 48 cores embed on the same die. These cores are organized on 24 tiles connected
through a 2 dimensional mesh. Cache coherency of the SCC is handled by software. Intel
provides an Application Programming Interface (API) to program the SCC that handles
cache coherence automatically. This is an interesting approach since, as we will see later in
this dissertation, hardware managed caches can present some difficulties for performance
modeling as well as scalability issues. The SCC is not designed to be an accelerator, a
Linux kernel runs on each of the cores4. It is more of a distributed platform embed on a
chip. Common distributed platforms will be presented later and focus on large scale. We
choose to present the SCC in the section dedicated accelerator because of the scale of its
architecture, that is closer to accelerators than to clusters.

4Yet, a bare-metal mode can be used run software on the cores without a running operating system.
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Xeon Phi

Intel recently released a new kind of accelerator: the Xeon Phi. The Xeon Phi processor
family that was released in 2012. This processor implements the idea of integrating many
core on the same chip. This board can be connected to the motherboard via a PCI bus.
The Xeon Phi is a massively parallel chip embedding up to 61 processors with large vector
registers and instructions (512 bits). As for GPUs, compute intensive tasks can be offloaded
to the Phi processor.

1.2.5 Clusters

Until now we presented features raising performance of a single computer, either by
leveraging core throughput or by increasing parallelism. In order to run large compu-
tations, one single machine is usually not enough. To deliver more computational power,
computers can be bound together by networks and perform massively parallel computation.
Computers linked together to perform scientific computation are called clusters.

Most of the top500 [79] machines are actually clusters. Because general purpose ma-
chines are cheap, one can interconnect many of them together to increase the computational
capability of a system. For these system to work properly, each computer has to be able to
communicate with the others. The more nodes5 are present in the cluster, the more com-
munications have to be efficient. Since network is much slower than memory, waiting for
data to be transferred between node can dramatically decrease performance of parallel ap-
plications. In order to improve communication efficiency high performance networks such
as InfiniBand [39] were developed. Efficient communication strategies as well as placement
are often investigated to improve communications efficacy [30].

1.3 Memory Architecture
We saw several methods to increase computational power of modern architecture. But

for the computation to carry out, it needs data to operate on. As CPUs do not have
enough registers to store all the accessed data inside the processor, they are connected to
the memory where data can be stored when no instructions is using it. Memory is much
slower than the processor. Therefore, accessing it is critical to keep CPUs fed with data
to operate on. Since arithmetic instructions usually have a relatively small latency, with
an efficient instruction scheduling, either by the compiler or thanks to the out-of-order
engine, compute intensive programs are usually able to utilize the pipeline very efficiently.
But memory accesses will stall the pipeline even with an efficient instruction scheduling.

5In the context of clusters, nodes refer to computers.
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A load instruction that brings a piece of data from memory to the processor can be up to
200 times longer than an arithmetic instruction[59].

This section is dedicated to the memory organization of computer architecture. We
will describe which features were added to existing hardware in order to speed up memory
access or to hide memory latencies. We will first present how software and the operating
system access physical memory in Section 1.3.1. Section 1.3.2 focuses on modern processor
memory organization. Section 1.3.3 presents caches, a hardware feature designed to hide
memory latency. Finally, Section 1.3.4 presents a few caches architecture without hardware
managed coherency.

Memory hierarchy is a critical part of computer architecture, especially in the context
of HPC. Indeed improving processor performance is useless if memory performance is not
increased at the same time: how fast a processor can compute does not matter if it con-
stantly has to wait for memory. The memory wall is a concept explaining why memory
performance is so critical to computer performance.

The Memory Wall This concept was formalized in 1995 [86]. It explains why memory
performance is becoming such critical parameter for performance. Considering a cache
hierarchy with a perfect cache with a tc cycle latency and a RAM memory module with
a latency of tm, the average access time to memory is: tavg = p × tc + (1 − p) × tm, with
p the probability of a cache hit. Also since the cache is often on core tc is close to 1 (1
clock cycle). Since memory performance grows slower than CPU performance, tc and tm
diverge. This means that tavg grows at the same time. No matter how fast caches and
processors are, the average access time to main memory will grow.

As long as memory performance cannot match the processor performance, accessing
memory will be remain critical to performance. Moreover with the appearance of vector
instructions and the increasing number of core, an increasing pressure is put on the memory.
Before going through some hardware features designed to increase memory performance,
we have to explain how programs and the Operating System (OS) access memory.

1.3.1 Virtual Memory and Translation Lookaside Buffer

When software needs to access memory, instructions have to provide the memory ad-
dress they want to access. In modern operating systems, physical memory is virtually
divided into separate address spaces. Each program – or process – running on the machine
has an address space dedicated by the operating system for storing its data. This allows
several interesting features such as memory protection: a process can only access its own
address space separating it from the other programs. Also virtual memory can virtually
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extend memory available on the machine: if the machine runs out of memory (physical
memory) the operating system can choose to write physical pages to the hard drive to
free them and allow other processes to use newly available memory pages. Of course read-
ing and writing memory pages to the disk is slow and should be avoided, yet it allows
computers to work on larger data sets than the physical memory.

When accessing memory, the software provides the CPU with the virtual addresses they
want to access. The processor and the system are then responsible for the translation of
the virtual addresses to the corresponding physical addresses. Figure 1.7 illustrates virtual
to physical memory mapping. The system keeps a page table for each process where it

Virtual Address Spaces Physical Memory

P0

P1

P2

. . .

. . .

. . .

. . .

Figure 1.7: Virtual and Physical memory mapping.

stores the mapping between the process virtual memory pages and physical memory frames.
Since this table is stored in memory, translating virtual memory would be very inefficient
if no hardware would speed this translation. In order to speed up this translation process,
the Translation Lookaside Buffer (TLB) is a very fast memory location where address
mappings are kept after each translation. Since this is a limited memory, the operating
system – or whatever piece of hardware – has to choose what mapping to store in the
TLB. When an address translation is needed and the translation is already in the TLB
the mapping stays in the TLB. If no translation can be found in the TLB the system or
the hardware Memory Management Unit (MMU) has to do the translation by reading the
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page table. The translation that has just been performed is stored in the TLB. If the TLB
is full, a translation has to be evicted out of the TLB to make room for the new entry, the
Least Recently Used (LRU) entry is usually selected for eviction.

We briefly saw how the operating system and the hardware collaborate to access mem-
ory, we can now go back to our main concern: optimization, focused on memory perfor-
mance. We will describe features that are important for understanding the contribution of
this dissertation, but more details about memory hierarchy can be found in literature [28].

1.3.2 NUMA Architectures

In order to build parallel architectures one has to be able to sustain high memory
bandwidth to avoid stalling processors by waiting for data. The main problem in accessing
memory is contention on the shared bus when several processors or core are reading or
writing to memory. Figures 1.5 and 1.6 illustrating multi processor systems show the
problem: each processor needing memory access has to use the same bus as the others.
This leads to contention and each processor has only access to a fraction on the full memory
bandwidth of the architecture.

NUMA architectures address this issue by partitioning memory in several chunks called
memory banks. Each bank is directly linked to a subset of processors. A memory bank
and its connected processors is called a NUMA node. NUMA nodes are interconnected
through an efficient interconnection bus. Since processors access memory on their own
NUMA node faster than memory on external NUMA nodes, the access to memory is said
to be not uniform: memory latency depends on the memory bank that has to be accessed
to fulfill the memory request. This is why these memory architecture are called NUMA for
Non Uniform Memory Access. Figure 1.8 illustrates a NUMA memory architecture.

When processors access memory on their node, no traffic has to go through the intercon-
nect, this can reduce the traffic on the interconnect. However poor data placement among
memory banks can lead to contention on the interconnection bus. One has to carefully
allocate data on local memory banks to minimize the traffic outside of the socket.

1.3.3 Caches

If one is careful with data allocation, high memory bandwidth can be achieved thanks to
NUMA architecture. Yet this is not enough to reduce instruction latencies due to memory
accesses. Fast memories were added into memory architectures to speed up data access.
One fast memory used in almost all general purpose CPUs are caches. Since the main
contribution of this dissertation focuses on modeling memory hierarchies, the next section
will present cache architectures in details.
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Figure 1.8: A NUMA Memory Architecture.

Caches are very fast memories that can be embedded onto the CPU die. However to
keep caches fast and to limit the cost of CPUs, these memory have to be small, much
smaller than the computers main memory. Therefore the entire data set of software cannot
fit in cache, and one has to wisely choose what to put into the cache to achieve better
performance. Also most caches are completely implemented in hardware, and software has
no control over it. Choices made in cache design are therefore critical: it has to be efficient
– or at least avoid degrading program performance – for all kinds of code. The next section
will describe caches architecture and hierarchy.

Cache Architecture

Caches can be seen as a large array. Each line of this array is called a cache line. Cache
lines are usually relatively small (64 bytes on most of x86 architectures). A cache line
contains a copy of a piece of data from main memory, a tag containing information about
the address of the data stored in the cache line, and some flags. When the processor needs
to access memory, it first asks the cache if the address to be read or written is already in
the cache. If it is in the cache, then there is no need to go to memory. The cache provides
the CPU with the data it requested, this is called a Cache hit. But is the cache does
not hold the data requested – this is a Cache miss – main memory has to be accessed to
retrieve the piece of data requested.
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Figure 1.9: A cache illustration.

Spacial and Temporal Locality When a program accesses a data it will usually access
it again soon. It is called temporal locality. When a cache miss occurs (i.e. an address not
present in the cache is requested by the processor) the cache chooses a cache line where to
store the data, fetches is from main memory and stores it in the selected cache line. Hence
the next time the same data will be requested it will already be in the cache: this is a
cache hit. If the cache is already full it has to free a line. Usually the LRU cache line is
flushed out of the cache. When data is read from memory it goes into a cache line. Since a
cache line is larger than one single element, some other elements next to the requested one
are loaded in the cache as well (the granularity of all transfers to and from the cache are
a cache line). This helps taking advantage of what is called spacial locality. This concept
says that when software access a piece of data it will also access data located close to it.
Therefore when a full cache line is loaded because of the access to a single element of the
cache line, we can expect to soon access the other elements of the cache line. Hence we
avoid cache miss by loading a full cache line instead of a single element.

Cache Associativity In order to keep accesses to the cache fast, we need an efficient
way to check if an address is or is not present in the cache. If every address can go into
every line of the cache, the cache will have to check for every line if the address stored in
the line is the one requested. These caches are said to be fully-associative. But checking
whether an address is present in a full-associative cache is expensive.

Cache designers usually build a hash function based on the address giving the exact
cache line number where the data should be – or go if not yet in the cache. Hence there is
only one single location to check to know if the address requested is in the cache or not.
Cache where each address can go to a single cache line are called direct mapped. But it
might happen that a program accesses many addresses that all go to the same cache line,
in this case the cache will not be able to use all its cache lines and a lot of space would
be wasted. This kind of cache misses are called conflict miss: every address is competing
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to get into the same cache line flushing the former one that will have to be fetch from
memory again after. In order to avoid this problem one as to choose a good hash function
that will dispatch addresses into all cache line avoiding conflict miss. However such a hash
function cannot be found for all possible programs. A trade-off is to build associative (but
not fully-associative) caches. A n-way associative cache is a cache where every address can
go to n different cache lines. When a checking if an address is in an n-associative cache,
there is only n locations to check. It is slower than for a direct mapped cache but it reduces
conflict misses.

Cache Hierarchy Since smaller caches are fast, small caches are a great way to speed
up memory access in case of many cache hits. But smaller caches mean more cache misses
since less data fit in it. If we choose bigger caches, we can achieve better hit/miss ratio
because more data can fit in the cache, but the cache will be slower. We can get the best of
both worlds by building cache hierarchy. A smaller (thus faster) cache can be connected to
a larger one, itself connected to another bigger one. When reading memory, the processor
can check if the address is in the first cache (called L1 cache), if it is, then the access will
be fast. For instance the L1 cache of Sandy-Bridge processor are 32 kB wide and the time
needed to access it is 1 to 2 CPU cycles. If the address is not in L1, it will check if the
address is in L2 (the second cache, which is larger) etc until the address is found in a cache
level or that all cache levels have been checked. The L2 cache on Sandy-Bridge processors
are 256 kB wide and the latency is 12 cycles. And the L3 is shared among all processor of
the same socket, it is 20MB wide and its latency is 26 to 31 CPU cycles6. In hierarchical
caches when a cache line is loaded from memory for the first time it goes to the first level
of cache. Depending on the cache design it can also be written in higher cache level or not.
A cache level is said to be inclusive if all data in lower caches are also in this cache. It is
said to be exclusive if a data in a cache level is not present in lower cache levels. And it is
said to be non-inclusive otherwise. Cache hierarchies can be complex: for instance Intel’s
Nehalem and Sandy Bridge cache architecture feature a inclusive L3 cache (it includes all
data in L2 and L1 caches) and the L1 and L2 caches are non-inclusive: data in L1 may
or may not be in L2. In these two micro-architectures, the L2 is a victim cache of the L1.
This means that a cache line only goes to L2 when it is flushed out of the L1.

Cache Flags The flags of a cache line contain information about the state of the cache
line. We will see more details about it in a later section dedicated to cache coherence.
For now, we will only keep in mind that these flags tell whether the cache line is clean
i.e. the copy in main memory is the same as the one in the cache, or if the line is dirty:

6The shared L3 cache of the Sandy-Bridge processor is organized slices connected through a ring. De-
pending on the location of cache line accessed the latency and the core requesting it, the latency can
vary.
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the cache line holds a version of the data that is different from the one in main memory.
This happens when the processor writes data: it is written into the cache but not in main
memory to save memory bandwidth. But the cache line will have to be written to memory
as soon as the cache line is flushed out of the cache. Yet this still saves memory bandwidth
since data can be written several times into the cache before having to be written back
to main memory. This strategy is called write-back, since data are only written back to
memory when needed. In contrast write-through caches write data into the cache and into
main memory as soon as the write occurs.

Section 1.3.1 has presented virtual and physical memory addresses. Also we saw that
for caches to work we need to keep in every cache line the address of the data stored in it.
Cache design has to choose either to put the physical or the virtual address in the cache line
information. The great advantage of tagging cache lines with virtual addresses is that it
does not require to wait for address translation to know if a cache access is a hit or a miss.
However when the OS switches the process being executed on the processor, it has to flush
the entire virtually tagged cache. In order to keep the cache requests fast and avoid flushing
the cache after context switch, cache can be virtually indexed and physically tagged. This
means that the cache line (or set) where a virtual address should go is determined by its
virtual address, but the tag in the cache line is the physical address the virtual address
maps to. In this cache design, looking for an address in the cache can be done in parallel
with the address translation. But the cache will only decide if it is a hit or a miss after the
virtual to physical address translation. Since the tag holds the physical address, there is
no need to flush the cache after a context switch: if the two process have the same virtual
address mapping to different physical pages, the cache will make the difference between
them thanks to the tag that will be different.

However in such caches if several virtual addresses map to the same physical address,
the same data can be stored in several location of the cache. This is called cache aliasing.
In order to keep memory consistency, explicit cache flushing has to be done when such
cases happen. This cache aliasing problem is avoided in Linux kernel by carefully choosing
the virtual address of shared pages: all the aliased addresses are given to the user so that
they all will go to the same set. Therefore the cache is tagged with the physical address
which is the same, even aliases of the same physical memory will go the same cache line.

Instruction Cache Since programs are stored in memory, reading the instructions can
be slow and lead to poor performance if the processor has to wait for memory to decode
the instruction. In order to avoid memory latencies not only for data access but also when
reading instructions, program code can be in caches. Cache design for instructions can
be simpler than for data: we do not need tags to know if a cache line is dirty or not:
the instruction of a program are not supposed to change after being loaded to memory.
Therefore in an instruction cache all caches line are always clean: we can save the tags
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bits. In most of the general purpose processors, they are two L1: L1d for level one cache
for data and the L1i the first cache level for instruction. And the other cache levels are
unified: they contain both data and instructions.

Cache Coherence

We saw in Section 1.2.2 that modern architectures feature several cores or processors.
On a parallel processor several processes or threads can access the same data set, these
data sets are said to be shared. Since each processor has a private cache it is important
to keep memory consistent when several execution threads access shared memory. For
instance if a data cell is updated by a thread and then read by another is it important
that the latter access provides the CPU with the correct value for the variable. In order
to maintain memory consistency, cache coherence protocols were added in to cache.

These protocols are a set of rules to be applied when read or write to the cache occur.
The next section will describe some cache coherence protocols. Figure 1.10 illustrates a
cache hierarchy with several cores sharing some caches and with other caches that are
private. Each core has its own level 1 cache, the level 2 caches are shared by pair of cores
and the last level of cache is shared by all 4 cores on the chip.

P0 P1 P2 P3

L1 L1 L1 L1

L2 L2

L3

Figure 1.10: A parallel cache hierarchy.

Cache coherence protocols

In order to maintain coherence, the common solution is to add some bits to the cache
line flags. These bits are used to represent the state of the cache line, i.e. if it is clean or
dirty and information about. A protocol defines the actions to be taken when cache events
occur. We will now present some coherence protocols to illustrate the idea.
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MSI The simplest coherence protocol is the MSI protocol. In this protocol cache lines
are tagged with one of the M, S or I tags. The meaning of this tags are:

M for Modified: this means the cache line has a newer version of the data than the memory.
Only one cache can hold this address in the cache.

S for Shared: the line is clean. Several caches can hold the same address, all of them will
have the corresponding cache line S state.

I Invalid: no valid data is stored in the cache line.

The protocol defines actions to be performed on cache events. Cache events can be local
read or write and requests posted on the bus connecting caches. The MSI protocol can be
implemented as a snooping protocol. This means that caches have to monitor traffic on
the bus. Figure 1.11 is a graphical representation of the MSI protocol that can be defined
with the following actions:

• When a cache hit happens the cache can satisfy the request itself. If the request is a
write to a shared cache line, an invalidation request is broadcasted on the bus. All
other caches holding the same address will discard their copies, and the cache writing
the cache line will set the cache line state to modified.

• When a read miss occurs th processor checks if the line requested is present in another
cache.

– If another cache holds the requested data in a shared state, it will send the cache
line over the bus.

– If another cache holds the data in modified state, the remote cache writes its line
back to memory and either sets the line in shared or invalid state (this depends
on the design). The cache that issued the bus request gets the cache line either
from the bus or from the memory, the state of the cache line is shared.

– If no other cache has the data, it has to be brought into the cache from the main
memory. The cache line will be set in the shared state.

• When a write miss occurs, the cache has to issue a Request For Ownership (RFO) for
this address on the bus. Caches snooping an RFO on the bus will have to invalidate
their cache lines that hold the address. If a cache holds the address in the M state it
has to write it back to memory before invalidating its cache line.
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Figure 1.11: The MSI protocol.

MESI One of the weaknesses of the MSI Protocol is that when a single cache holds a
cache line in the S state, it still has to broadcast an invalidation request to write to this
cache line. An optimization would be to avoid this broadcast by knowing that the cache
is the only one holding the given address. The MESI protocol brings this optimization
to the MSI Protocol. It was developed at the University of Illinois [64]. It adds a state
called Exclusive (E) which means that the cache line is clean and is the only copy in the
cache hierarchy. It is like the S state of the MSI Protocol excepts that the cache holding a
cache line in the E stats does not have to broadcast an invalidation before writing to this
cache line. When an address is brought to the cache from memory (and not from another
cache) the cache line is set to state E. This is a very useful optimization because writing
to exclusive data happens very often in software. The most common usage is for instance
incrementing a variable.

MESIF Another weakness of the MSI and MESI protocols is that when several caches hold
the same address (therefore in S state) all of them will respond to a bus request asking for
this cache line. This leads to redundant traffic on the bus. The goal of the MESIF Protocol
is to avoid this unnecessary traffic bus by adding the Forward state (F). A cache line in
the F state will behave almost like in the S state. The only difference is that only the
cache with the line tagged F will respond to the requests, not the ones with the S state.
This is the protocol used in many Intel processors such as the Nehalem and Sandy Bridge
processors.
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MOESI In coherence protocols such as MSI, MESI, and MESIF protocols, a lot of time can
be lost when reading remotely modified cache lines since, in these protocols, modified cache
lines have to write to memory before being read by another cache. Some cache coherence
protocols allow sharing of a dirty data. In the MOESI Protocol the states M, E and I have
the same semantics as in the MESI protocol but the shared state can be dirty. If every
cache holding the same cache line are in the S state, then the data is clean. But if one
cache has this line in the O state (which is specialization of the S state meaning Owned),
then the data is dirty. The cache holding the copy tagged O is responsible for responding
to bus read request in this cache line. Modification to the MESI protocol to benefits from
the O state are the following:

• A cache is responsible for responding to bus read request on cache lines in M and O
states. After a response to such a bus request the state of the cache line is set to O
state (unchanged if it already was in O state).

• Only a cache line tagged O can respond to bus read request, this is one drawback of
this protocol: clean shared cache lines cannot be shared through the bus but have to
be fetch from memory.

• In order to write to a Shared line the cache has to broadcast an invalidation for this
cache line to all other caches. After writing to the cache line it will be in the M state
(since all other copies were invalidated).

• Cache lines in O state are responsible for writing their content back to memory when
they are flushed.

The MOESI Protocol is used in some AMD processors such as Bulldozer architecture.

Firefly Until now we only saw cache coherence protocols with a write-back policy, mean-
ing update to the memory is only performed when necessary. But some coherence protocols
use a write-through policy meaning that when a data is written to a cache, it also goes
to memory. On the one hand write-back policy allows for easier coherence protocol design
since memory is alway updated with the last write. On the other hand each write on such
coherence protocols have to go to memory which increases memory usage. The Firefly
protocol use both write-through and write-back policy to avoid too much overhead due to
using write-through policy on every write. In the Firefly protocol each cache line can be
in one of the following states:

• Valid-Exclusive: this is same meaning as Exclusive in the MESI protocol. The line is
clean and only the cache holding this cache line has this address in its cache.
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• Shared: the cache line is clean and several caches may hold the address contained in

the cache line. This is the same state as S in the MESI protocol.

• Dirty: the cache lines is dirty and is the only copy of the data (same as state M in
the MESI protocol).

The goal of the Firefly model is to avoid as much of cache line invalidation as possible.

• On a load hit, the cache provides the requested data.

• When a load miss occurs, the request for this address is sent over the bus.

– If another cache can respond, it will provide the cache line.

∗ The cache providing the cache line has to write the cache line back to
memory if it was dirty (by writing the data to memory it makes it clean).

– If no cache has the requested cache line, it has to be fetched from memory, the
cache line will be set to the Valid-Exclusive state.

• On a store hit:

– if the cache line is in Valid-Exclusive state, it is updated and the state goes to
Dirty.

– if the cache line is in Dirty state it can be updated and the state of the cache
line does not have to change.

– if the cache line is shared, the cache updates the cache line and also writes the
data to memory (write-through). It also has to broadcast the new value of the
cache line on the bus for others cache to update it. Since the cache made a
write-through the memory is also updated and the data is not dirty.

Dragon The Dragon protocol is similar to the Firefly protocol except that it allows
sharing of dirty cache lines. This avoids the write-through when a store to a shared cache
line happens. In order to achieve this, a state is added to the three states of the Firefly
protocol: the shared-dirty state. Cache lines are set to this state after they are updated
by a broadcast on the bus due to a store hit on a shared cache line (either shared-dirty or
shared-clean). This avoids the compulsory write-through of the Firefly protocol.
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Summary We saw that many coherence protocols can be used to maintain memory
coherence, these mechanisms are implemented into the hardware. Most of them involve non
scalable communication such as broadcasts. This means that maintaining cache coherence
becomes harder and harder as the number of processors and cores in the system increases.
In order to reduce the number of unnecessary coherence messages, directories can be added
into cache hierarchies to keep track of which caches have a given line [3, 20]. Some say
that cache coherence does not present such a big overhead – especially thanks to directory
based coherence mechanisms [54]. More room for optimization regarding memory access
can be achieved by delegating this task to the programmer. Moreover, since this hardware
coherence is all done automatically by the chip, programmers – even those who are aware of
cache coherence performance problems – have a restricted control over it. Some instructions
allow controlling caches. For instance non-temporal instruction can be used to bypass
some cache level, or explicit flush allow programmers to evict a particular cache line.
Architectures without hardware cache coherence were released to provide the programmers
with more control. The Intel’s SCC and the Blue Gene/L chips are examples of such non-
coherent cache architectures [22, 35].

Since legacy codes cannot be easily modified, software developed with the assumption
that the hardware features a hardware coherent cache cannot be ported to architecture
featuring software managed cache. Hardware cache coherence is therefore compulsory for
legacy code.

1.3.4 Non-Coherent Caches

The main problems of hardware maintained cache coherence are that it cannot be
adapted to the application. For instance one might want a coherence protocol for an
application and another one for a different one: this can only be achieved by software
coherence. To give an example, a parallel application with heavy communication would
probably benefit from a cache implementing a broadcasting strategy when writing to shared
cache line: the communication would be performed through the bus connecting caches
instead of through main memory. However this same protocol would lead to high overhead
with an application where data produced by a thread are not read by others.

Also on most applications just a few amount of data are actually shared: only these
data need to be carefully maintained coherent between computing threads. For this purpose
hardware coherence is too costly. Getting rid of hardware cache coherence can help reducing
hardware cost. As well as allowing for larger number of cores on chip.
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Maintaining Memory Consistent by Software

In order to maintain cache coherence on caches without hardware coherence the pro-
grammer has to add some instructions into the code to keep memory consistent. These
instructions are responsible for invalidating stale data, or more generally handle the coher-
ence traffic. It would be a mistake to think that it is deporting a piece of hardware into the
software. Since the programmer knows what to keep coherent and what are the data sets
used by every computing threads, it can reduce coherence traffic to the minimum actually
required.

Software cache coherence can be almost transparent to the programmer – and thus
enhance its efficiency – it is handled by a library or inside a compiler. For instance, Intel
released the Single-chip Cloud Computer (SCC) in 2010 [22]. This architecture feature
non coherent caches where the software coherence is ensured by a message passing library,
avoiding programmers to get into too low level details [56].

Scratchpad

Another kind of fast memories can be used to reduce memory latencies: scratchpads.
Scratchpad memories are fast memory modules where processes can store frequently used
or critical data. It can achieve high bandwidth like cache memories, but software has
control on what data to put into the scratchpad, contrary to traditional caches where all
accessed data go automatically. Scratchpads can therefore avoid problems such as cache
pollution. Cache pollution means storing into the cache data that will never be reused, they
use cache space but the program never benefits from it. Another strength of scratchpads is
that Direct Memory Access (DMA) engine are usually used to transfer data between main
memory and the local scratchpad, which frees the CPU from this task. This is comparable
to prefetching excepts that once a DMA transfer is initialized the CPU does not have to
execute any extra instruction. While with prefetching special instructions are executed
by the CPU to perform the memory transfer. Also interesting optimizations can be done
thanks to DMA, one can overlap memory transfers with computations or realize prefetching
in a very efficient manner. The Cell processor developed by Sony, Toshiba, and IBM [21] is
an example of computer architecture using scratchpads called local store. Each SPU has its
own private 256kB wide local store and data can be moved to and from these local stores
thanks to DMA engines.

The Cyclops64 project developed by the United States Department of Energy, the U.S.
Department of Defense, IBM and the University of Delaware is another architecture using
scratchpads to speed up memory access [40].
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1.4 Summary

We looked over some architectural features of modern processors allowing for fast and
parallel computations. But challenges await programmers with high performance needs
since the more complex hardware is, the more difficult its efficient use.

Computer architectures in the HPC field trend to more and more parallelism as well as
a growing heterogeneity: several different architectures can have to work together to carry
out a computation. The appearance of GPU in clusters dedicated to intensive scientific
computation is an example among other illustrating heterogeneity. Challenges for pro-
grammers are therefore, being able to produce efficient sequential code, express parallelism
to utilize all computing cores available or even different machines connect via a network.

The contribution of this dissertation is help the understanding of modern hardware ar-
chitecture through benchmarking. Modeling the core architecture requires knowing hard-
ware features available on the processor pipeline (availability of a register forwarding mech-
anism, of an out of order execution engine etc), the number of execution ports and the
latency of instructions. Hardware information are usually available in processor documen-
tation, but instruction latency and throughput are harder to find. We will try to address
this issue in Chapter 2.

Chapter 2 will present an automatic method to retrieve critical informa-
tion to build hardware models. These hardware models can help automatic
code optimization or code quality analysis.

Modeling memory hierarchy is even harder since because of some undocumented fea-
tures – especially regarding cache coherence – that are included in the memory archi-
tectures. Cache coherence involves lots of automatic message exchanges that are hard
to predict. Moreover the timings – or overhead – of these coherence messages are not
documented and are hard to measure since these mechanisms are transparent to the pro-
grammer. Numerous automatic mechanisms embed in modern memory hierarchies are very
efficient for general purpose usage. But less for fine tuned HPC applications, also taking
this mechanisms into account when model hardware performance is difficult.

Chapter 3 will focus on bringing knowledge about memory architecture
to programmers by mean of micro-benchmarking.

However we will see that even with a large amount of information about memory ar-
chitecture, it is too complex to build a theoretical model that matches the reality precisely.
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We found an alternative in order to build memory models, it is to bring benchmark data
into the model and build the model upon the output of benchmarks.

Chapter 4 aims at building a memory model for cache coherent architec-
tures that is based on benchmarks instead of building a theoretical model
based on hardware parameters.
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Chapter

2

Performance Modeling

“The purpose of science is not to analyze or describe
but to make useful models of the world. A model is

useful if it allows us to get use out of it.”
— Edward de Bono

Through the two last chapters we presented the state of the art of HPC field and
identified several research challenges we chose to focus on. The next three chapters will
now focus on the contribution of this dissertation.

The last chapter presented how HPC applications are developed and optimized. We saw
that hardware modeling gives insight to the programmer about the hardware and therefore
helps matching software to the underlying hardware. Also, precise hardware models allow
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automatic code optimization if they can be brought to tools such as compilers, runtime
systems, or libraries.

Since new computer architectures are released at a high frequency to fulfill the growing
need for computational power, hardware models have to be update very frequently too.
The issues encountered when modeling hardware are mostly: i) getting enough information
about the architecture and ii) understanding how each hardware component interacts with
each other. Since hardware is becoming more and more complex, hardware modeling is
becoming a real challenge.

The contributions of this chapter are: a methodology to automatically measure instruc-
tion performance: latency, throughput and execution ports, this is described in details in
Section 2.2. A performance model of the SCC architecture allowing power performance
optimization, described in Section 2.3. And a study of the important parameters to be
taken into account when trying to model cache coherent memory hierarchies, in Section 2.5.

2.1 Propostion
The difficulty to deeply understand modern hardware leads to building performance

models to abstract the complexity of computer architectures to better utilize it. The con-
tribution presented in this chapter aims at providing tools and methods to get information
about hardware in order to ease building hardware models.

We choose to divide hardware models into two different parts: on-core and un-core
model. We choose this classification because software are often also divided into 2 cate-
gories: compute-bound or memory-bound. Compute-bound software execution time de-
pends on the speed on computation while memory performance is only marginal. On
the contrary, memory performance is critical for memory-bound software. The on-core
model section is related to features located on the core itself: the ALU, the instruction
pipeline, etc. These models are important for understanding and optimizing performance
of compute-bound software. The un-core part is related to features outside of the core:
mainly memory and caches. Although level 1 and 2 caches are often physically on the core,
we choose to include the modeling of the full memory hierarchy (i.e. all levels of cache
and main memory) in the un-core model. Un-core models are used to predict or optimize
memory-bound software.

We try to respond to the lack of architecture knowledge by presenting automatic meth-
ods to retrieve important data about hardware. This chapter is divided into on-core and
un-core hardware modeling methodologies.

The on-core method aims at presenting opportunities to automatically retrieve instruc-
tion latencies and execution ports to build computational models. Section 2.5 presents
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the first steps towards memory modeling: it shows that several undocumented information
about hardware can be discovered through experimentation. We also presents the essential
parameters needed to build memory hierarchy models and what factors are influencing
memory performance.

2.2 On-core Modeling: Computational Model

We saw that it is important to know the latency of instructions as well as the execution
port each instruction can be executed on. This enables scheduling instructions for increas-
ing the pipeline utilization or to give feedback to programmer about which optimizations
to use to speedup software performance. By knowing the latency of each instruction of the
instruction set of a given architecture, we are able to know the time elapsed between when
instruction issue and it is retired. This allows predicting the pipeline utilization and time
needed for a given block of instructions to be executed.

But instruction latencies are not documented on many general purpose processors.
Since the trend is to have architectures with more and more instructions, bringing all
instruction latencies to a model can be a tedious task. To move towards automatic hardware
modeling, we are going to see how the information can be found automatically.

2.2.1 Related Work

In order to perform the instruction performance measurement presented in this sec-
tion, we used the benchmarking framework that will be presented more thoroughly in
Section 3.3.2. The basic idea of this framework is to allow users to write their own bench-
mark function. User defined benchmark function can then be called from the framework
that handles the time measurement, and repeats the experience several time to achieve
best performance. The only user input needed is, the code to benchmark and the number
of instruction in the code1. In this chapter we will therefore mainly focus on generating
the correct code to measure a particular performance metric.

Other existing tools are designed to perform low level hardware benchmarks. Micro-
Tools is a framework that fits exactly our needs because because it allows user to write
their own benchmarks [11]. It handled register renaming at source code level as well as
loop unrolling in order to select the best code version. However at the time we did this
work it was not yet released as an open source software. Therefore we could not use it
to carry out our work. LIKWID is a performance-oriented toolbox [80]. One of the tools

1The user can also provide the number of bytes of memory accessed during the benchmark. This is used
to measure memory performance, but this will be the subject of Chapters 3 and 4.
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embed in this project is called likwid-bench that eases micro-benchmark writing. It al-
lows prototyping benchmarks by passing several options to the likwid-bench tool. Several
benchmarks are provided out of the box. User can also extend the framework by writing
their own functions. A strength of LIKWID is that user can define function with a meta
language translated into assembly. This meta-language allow easier kernel writing because
it avoids to the user the task to manipulate and manage registers. We could have used this
framework to perform our analysis, however we had already developed framework allow-
ing this prior to the work described in this section. Therefore we choose to use our own
framework. The kind of benchmarks we needed to build for the study in Chapter 3 and
Chapter 4 could not be handled with LIKWID. But we will elaborate on these reasons in
Chapter 3.

Agner releases performance numbers of every new released architecture [31]. He pro-
vides the community with a great number of performance data of a wide range of architec-
tures. In the work presented in this section, before the actual numbers we are interested
in the methodology. We want to show how critical performance parameters can be au-
tomatically retrieved by mean of micro-benchmarks. This is why we will fist present our
methodology and then we will evaluate the result we had by comparing them with Agner’s
data.

The work presented in this section was lead with Mathieu Audat and James Tombi A
Mba, two students doing an internship under our supervision. The results of instruction
performance measurement made with our methodology and framework were used to build
the MAQAO [9] static performance model for the Xeon Phi processor.

2.2.2 A methodology to measure Latency, Throughput, and to detect
Execution Port assignations

Instruction latency is the time elapsed between an instruction is issued and it is retired.
For a memory instruction, it cannot be predicted in processors featuring cache hierarchy
or NUMA architectures: the latency depends on the location of the memory data ac-
cessed. But memory performance will be covered later, for now we only focus on latency
of arithmetic and branching instructions.

Measuring x86 Instruction Latencies Instruction latency is the number of cycles it
needs to be executed completely. In order to measure it, we have to measure the number
of CPU cycles needed to execute a large number of them and divide the time found by
the number of instruction executed. However when running this experiment on a pipelined
processor, several instructions can be executed at the same time (see Section 1.1.1). This
would lead to undervaluing the latency of instruction. To avoid this error, we try to cheat
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the pipeline by filling it with instructions depending on other. This will force the processor
to execute only one instruction at the same time. Yet register forwarding (see register
forwarding in Section 1.1.1 on page 14) in the pipeline can still happen, but avoiding it is
much harder. However this not a big issue. Indeed, we need the real time elapsed between
the execution of two instructions depending on each other to predict the run-time a given
code. Since in real code the register forwarding will be used, it is not a problem if it also
happens in the measurement of instruction latency.

Instruction Syntax The syntax for operand is a comma separated list of the type of
the operands. Immediate value are represented with imm, SSE registers are represented
with xmm and general purpose registers with r64. We can see the syntax of several x86
instruction in Listing 2.1. For instance, on the first line, we see that instruction ADD took
two operands: the first one can be either an immediate value or a general purpose register
and the second operand is a general purpose register. In order measure the instruction
latency of x86 code we need an instruction listing as well as the instruction syntax.

addpd xmm , xmm
add imm/r64 , r64
insertps imm , xmm , xmm

Listing 2.1: Instruction Syntax examples: the ADDPD instruc-
tion takes two SSE registers as argument. The ADD instruc-
tion can take either an immediate value or a 64 bit register as
as first operand and a 64 bi. register as a second argument.

The syntax of an instruction represents: the instruction name (ADDPD in the example in
Listing 2.1), and its operands (two SSE registers in example in Listing 2.1). As we can see
in Table 2.2, operands can be, immediate values (represented with the imm symbol), SSE
registers (represented with xmm), general purpose registers (r64 for 64 bit registers, r32
for 32 bit registers, etc). Since we only target non memory instruction, we do not need to
represent memory reference syntax.

From a list if instruction with their syntax, as depicted as in Listing 2.1, we can auto-
matically generate several code patterns:

1. A code pattern with instruction dependency between every instruction and its pre-
decessor (an example can be seen in Listing 2.2). This code will allow us to measure
the instruction latency.
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2. We can also automatically generate a code with no dependency that will allow us to

measure the maximal instruction throughput (an example can be seen in Listing 2.4).

The code generated to measure the latency of the ADDPD instruction is shown in List-
ing 2.2. This code is the body of the loop used to perform the measurement.

ADDPD XMM0 , XMM0
ADDPD XMM0 , XMM0
ADDPD XMM0 , XMM0
ADDPD XMM0 , XMM0
ADDPD XMM0 , XMM0
ADDPD XMM0 , XMM0
ADDPD XMM0 , XMM0
ADDPD XMM0 , XMM0

Listing 2.2: x86 code used to measure ADDPD
instruction latency.

We can see in Listing 2.2 that every ADDPD instruction depends on the previous one: only a
single instruction can be issued at each cycle. The previous instruction has to retire before
a new one can be issued. This code is put into the body of a loop and the loop is run
several times. Since the loop is unrolled (i.e. ADDPD instruction is replicated 8 times in the
loop body), the overhead of the loop condition and branching is small. In order to further
decrease this overhead, we can unroll the loop by a higher factor. But unrolling the loop
too much might end up lowering performance by exceeding the capacity of the instruction
loop buffer (see section named Instruction Loop Buffer in Section 1.1.1, on page 14). We
observed this effect for instance on the throughput measurement of the ADD instruction.
With a loop unrolled by a factor of 64 we obtained a throughput of 0.33 while with an
unroll of 1024 we recorded a throughput of only 0.5 instruction issued per cycle.

Table 2.1 shows the influence of the unroll factor on loop performance. We can see that,
even with a low unrolling factor the performance of the loop are close to peak performance:
a latency of three cycles. Only when the loop is unrolled by a factor of one – i.e. not
unrolled – the loop performance decrease. This observation comes from the efficiency of
the branch predictor and the speculative execution of the pipeline.

As long as we have a listing of the instructions we need to measure and their syntax
we can automatically generate x86 code to measure instruction performance. The only
problems are with instruction referencing memory and branching instruction. Instruction
referencing memory will be coverer in Section 2.5. Measuring the latency of branching
instruction is still important to predict the loop performance. Since branching instructions
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Table 2.1: Influence of the Loop Unroll factor on Loop Performance.

Unroll factor Latency
1 4.01
2 3.01
4 3.01
8 3.01

affect the instruction flow, we have to be careful to avoid leaving the benchmark loop before
the measurement is over. In order to do this we can build a code pattern that goes through
branching instruction one after another. This code pattern is shown in Listing 2.3.

asm( "i0: JMP i1;
i1: JMP i2;
i2: JMP i3;
i3: JMP i4;
i4: JMP i5;
i5: JMP i6;
i6: JMP i7;
i7: JMP i8;")

i8: if(n>N) goto end;

Listing 2.3: Code pattern used to measure
branching instruction latency.

Checking conditional branches can be done the same way, by using a conditional instruction
to set the condition register to true and by going though a code code full of conditional
branch that will all be taken.

2.2.3 Detecting Instruction Parallelism

On super-scalar processors, several instruction ports can execute the same instruction.
For instance, on the Sandy-Bridge micro-architecture, three ports are dedicated to arith-
metics. This allows several instructions of the same type to be issued and executed at
the same time. To build a full computational model we need to know the number and
the kind of instructions the CPU can issue within the same cycle. For this purpose, the
throughput is an important metric. The throughput is the average number of cycles elapsed
between two instructions can be issued. By measuring the throughput of instructions, we
can deduce the number of execution ports dedicated to a given instruction. For instance if
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the throughput of an instruction is 0.33 cycle, this means that 3 instructions of this kind
can be issued at the same cycle. Thus we can conclude that the processor has at least 3
ports that can be used to execute this instruction.

Instruction Throughput

To measure the maximal instruction throughput, we have to produce a code pattern
that allow as much instructions as possible to be filled in the pipeline at the same time.
Unlike when measuring latency we have to remove as much dependence as we can. In
order to measure the throughput of the ADDPD instruction we can use the code shown in
Listing 2.4.

MOV $1 , R8D
MOV $1 , R9D
MOV $1 , R10D
MOV $1 , R11D
MOV $1 , R12D
MOV $1 , R13D
MOV $1 , R14D
MOV $1 , R15D

Listing 2.4: Code pattern used to measure in-
struction throughput.

This way no instruction depends on the other and the maximal instruction throughput can
be achieved.

Code Generator Overview The algorithm used to generate the code dedicated to
latency measurement aims at producing code with a dependency between every consecutive
instructions. In order to achieve this, the register written by an instruction has to be read
by the next instruction to be generated. We have two register allocator that can be used to
build such a decency chain. The first always returns the same register when a register name
is to be generated. The other register allocator generates a new register name for each new
instruction to be written, saves this name to use it as the source of the next instruction, and
use the new allocated register as the destination register of the instruction. The algorithm
used to generate code for latency measurement is described in Listing 2.5.
reg_list_sse = [xmm0 , xmm1 , xmm2 , .., xmm15 ];
reg_idx_sse = 0;
reg_list_r64 = [rax , rbx , rcx , .., r8d , ...];
reg_idx_r64 = 0;
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reg_list = [ reg_list_sse , reg_list_avx , reg_list_r64 , ...];

alloc_reg ( reg_type ) {
i = reg_idx ( reg_type );
reg = reg_list [ reg_type ][*i];
*i = (*i + 1)% sizeof ( reg_list [ reg_type ]);
return reg;

}

write_latency_code ( instruction_syntax ) {
first_reg = 0;
for (i=0; i< loop_unroll ; i++) {

write( instruction_syntax .instr );
for (o=0; o< instruction_syntax . noperands ; o++) {

op = instruction_syntax . operand [o];
if( is_reg_operand (op)) {

if (! first_reg || is_dest_operand (op)) {
reg = alloc_reg (op. reg_type );
first_reg =reg;

}
if( is_dest_operand (op) && i == loop_unroll -1) { // last

write( first_reg ); // instruction in the loop body:
// write to the first register
// allocated to forward
// the decency chain to
// the next loop iteration

}
else {

write(reg );
}

}
else if ( is_imm_operand (op)) {

write_immediate_value ();
}
else {

...
}

}
}

}

Listing 2.5: Code generator pseudo-code.

For the register allocator to always generate the same register when building the decency
chain, we have to provide a list of registers containing the single register we want to use.
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Note: we have to outline that, for instructions having a single register in their operands,
no matter how many registers we provide to the code generator, just a single one will be
used.

Code Generator for Throughput measures Only minor changes have to be made
to generate code able to measure instruction throughput rather than latency. To measure
throughput we need a code with no dependency, but name dependencies. These dependen-
cies that will be removed by the register renaming mechanism. In order to avoid instruction
dependencies, we allocate a new register for every register operand.

Porting the code generator to other architectures Porting this code generator to
other architectures is easy since the algorithms used are generic. The changes to be done
are to provide to the register allocator with the information it needs about the hardware:
the register lists and types.

Table 2.2 presents some of the result we obtained on several instructions. The second
column specifies the operand of the instruction. This is especially important for instruction
that can take several operands. For instance the MOVAPS instruction we measured is a copy
from one SSE register to another because is takes two registers as operand. But the same
instruction can also take a memory location and a register as parameter in this case it
would be a memory access. Columns three and four compare the instruction throughput
we found with our method and the throughput provided in Agner’s document. Columns
five and six show the latency measured with our method and Agner’s data.

The results presented in Table 2.2 were run on an Intel Xeon E5-2650 CPU running
at 2.00GHz. In order to achieve reproducible and stable results we fixed the processor
frequency by disabling frequency scaling and Turbo Boost. The benchmarks were written
in inline assembly code and compiled with Intel ICC compiler version 13.0.1. The code
was run on Linux kernel version 3.2.0-3. We use the RDTSC instruction to access the time
stamp counter to perform high resolution time measurement. The loops measuring the
instruction latency and throughput are unrolled by a 64 factor and are executed 1024
times. We unrolled the loops by a large factor to minimize the overhead due to the loop
end condition checking and induction variable update: a sub instruction and a conditional
branch jnz. The framework we used automatically runs the benchmarks 10 times and
reports the performance of the best measurement.

We can see from Table 2.2 that our measurements are very close the performance
reported by Agner: the difference is at most 3%.
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Table 2.2: Comparison of Instruction Performance measured with our method and Agner’s
data on the Sandy-Bridge Architecture.

Instruction Operand Throughput Latency
Our Agner Our Agner

ADD imm/r64, r64 0.34 0.33 1.00 1
MOV imm/r64, r64 0.34 0.33 1.00 1

INSERTPS imm, xmm, xmm 1.01 1 1.02 1
SHUFPS/D imm, xmm, xmm 1.01 1 1.02 1
ADDPS/D xmm, xmm 1.02 1 3.00 3
ANDPS/D xmm, xmm 1.01 1 1.02 1
MOVAPS xmm, xmm 1.01 1 1.02 1
ORPS/D xmm, xmm 1.01 1 1.02 1

MAXPS/D xmm, xmm 1.02 1 3.00 3
MINPS/D xmm, xmm 1.02 1 3.00 3

HSUBPS/D xmm, xmm 2.01 2 5.00 5
MOVQ xmm, xmm 0.34 0.33 1.00 1

MOVSS/D xmm, xmm 1.01 1 1.02 1
MULPS/D xmm, xmm 1.02 1 5.00 5

PADDB/W/D/Q xmm, xmm 0.51 0.5 1.01 1
PAND xmm, xmm 0.34 0.33 1.00 1

Impact of Register on Performance Table 2.3 presents the throughput we measured
for several code version of the benchmark measuring the throughput of the ADDPD instruc-
tion. The code measuring throughput is made of independent instructions. Therefore they
operate of different registers, as it was shown in Listing 2.4. But we can choose to build
code version with more or less registers, Listing 2.4, show a code version with eight different
registers. But Listing 2.6 shows the same code pattern only using 4 registers, still with an
eight-unrolled loop.
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ADDPD XMM0 , XMM0
ADDPD XMM1 , XMM1
ADDPD XMM2 , XMM2
ADDPD XMM3 , XMM3
ADDPD XMM0 , XMM0
ADDPD XMM1 , XMM1
ADDPD XMM2 , XMM2
ADDPD XMM3 , XMM3

Listing 2.6: Code pattern used to measure in-
struction throughput with only four registers.

The performance summarized in Table 2.3 presents the performance of such code version
with a number of registers varying between one and eight. The code version with a single
register used is code used to measure the instruction latency since there is a dependence
between every instruction of the code. It is not surprising to find that the performance
of this code corresponds to the latency of the ADDPD instruction. If we use two registers,
the pipeline is able to issue two ADDPD instructions per cycle. Then stalls for three cycles
waiting the dependence to be resolved. After the three cycles two instructions retire and
two new can be issued. This leads two instruction executed every three cycles, this explains
the throughput of about 1.5. When we use three registers, the processor should be able
to issue three instructions per cycle, wait for three cycles to resolve the dependences and
issue again three new instructions. However, as we can see this is not true since the
throughput measured for this code version is 1.13. We think that this comes from small
delays sometimes happening in the front-end of the pipeline. These delays can sometime
avoid delay an instruction issue preventing the throughput to be exactly 1. If we increase
further the number of registers used in the code, we release the stress on the instruction
issue because four instruction can be executed every 3 cycles. Therefore even if one among
them is delayed, another can take the spot. This explains the throughput of about 1
observed when using from four to eight registers.

Instruction Execution Port

The last critical information for predicting accurately code performance is to know what
instruction can be executed at the same time as others, i.e. which instructions use the same
execution port as others. To check whether two instructions use the same execution port,
we can build a benchmark that interleaves the two kinds of instructions. If the execution
time of the kernel with the two kinds of instruction is the maximum of the run time of
the kernel with only one kind of instruction, this means that the instruction be issued at
the same time and are executed by different execution ports. However if the run time of
the interleaved kernel is the sum of the run time of the kernels with a single instruction
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Table 2.3: Comparison of several code versions of the ADDPD benchmark.

Registers Throughput
1 3.01
2 1.51
3 1.13
4 1.02
5 1.02
6 1.02
7 1.02
8 1.02

Table 2.4: Comparison of execution time of two code versions to deduce if two instructions
share an execution port.

With mov instruction only utilizing one
execution port.

With mov instruction using all available
execution ports.

MOV R8D , R9D; // port 0
FADD EAX; // port 1
MOV R10D , R11D; // port 5
FADD EBX; // port 1
MOV R12D , R13D; // port 0
FADD ECX; // port 1
MOV R14D , R15D; // port 5
FADD EDX; // port 1

MOV R8D , R9D; // port 0
MOV R10D , R11D; // port 1
MOV R12D , R13D; // port 5
FADD EAX; // port 1
MOV R8D , R9D; // port 0
MOV R10D , R11D; // port 5
MOV R12D , R13D; // port 0
FADD EBX; // port 1

kind, then the instructions were issued one after the other and we can deduce that they
use the same execution port. When an instruction can be issued on several execution port,
it is important to fill all execution ports with independent instructions. For instance on
Sandy Bridge micro-architecture, the mov instruction can be used to copy the content of
a register to another register. This instruction can be executed by ports 0, 1 and 5. And
the fadd instruction performing a floating point addition can only be executed in the port
1. Table 2.4 illustrates what would happen if not all execution ports were used and how it
would lead to mistakes.

On the left hand side of Table 2.4 it would take 4 cycles to issue the 4 mov and the
4 fadd instructions. If there were only the 4 mov instructions, it would take 2 cycles to
issue. And with only the 4 fadd, it would take 4 cycles. Since executing the full block of
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8 instructions takes the same time as the maximum of executing the different instructions
separately we deduce that mov and fadd instruction do not share any execution port. But
if we look at the right hand side of Table 2.4, issuing the 8 instructions takes 3 cycles while
issuing only the mov instruction would take 2 cycles, and issuing only the fadd would also
take 2 cycles. Since interleaving these instruction is slower than executing them separately,
we can deduce that these instructions share an execution port. We can also understand
that they do not share all execution port (otherwise the interleaved code would take 4 CPU
cycles to issue the 8 instructions).

In order to know the exact number of execution ports shared by two instructions, we
can generate all interleaved code versions with a number of instruction of each kind from 1
to the number of execution port it uses. For instance, with the example shown in Table 2.4,
we can build a code with only 2 movs and 1 fadd. This code would run in 2 cycles: and
we can deduce that these instructions share less than 2 execution ports.

The code generator used to generate interleaved code to test is a couple of instruction
share an execution port is simple: we concatenate the code used to measure the throughput
of the two instructions into the same loop body.

However, with the short period of time of the internship we did not had time to build
a full automatic framework to retrieve instruction latency and execution port shared by
every instruction pair. Yet we presented a method that can be automated to get these
information from real hardware. We ran several measurements on real processors to check
if this method is able to retrieve value found in literature. We showed that we were able
to measure instruction latency and throughput with a good precision since the difference
between our measurements and data found in literature is at most 3%.

2.3 Case Study: Power Aware Performance Prediction on
the SCC

The work presented in this section was presented in depth in paper [A1]. It is a good
example of combining several models into a larger one able to model the behavior of several
pieces of a real hardware. In this work we built a computational model, a memory model
and a power consumption model that, combined all together are able to predict the runtime
of regular code and the power consumption of the underlying SCC chip in order to let end
users optimize either runtime of the application or power efficiency depending on their own
needs.

As power is becoming one of the biggest challenge in high performance computing,
we have created a performance model on the Single-chip Cloud Computer in order to
predict both power consumption and runtime of regular codes. This model takes into
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account the frequency at which the cores of the SCC chip operate. Thus we can predict
the execution time and power needed to run the code for each available frequency. This
allows to choose the best frequency to optimize several metrics such as power efficiency or
minimizing power consumption, based on the needs of the application. Our model only
needs some characteristics of the code. These parameters can be found through static code
analysis. We validated our model by showing that it can predict performance and find
the optimal frequency divisor to optimize energy efficiency on several dense linear algebra
codes.

2.3.1 Related Work

Power efficiency is a hot topic in the HPC community and has been the subject of
numerous studies, and the Green500 List is released twice a year. Studies carried out at
Carnegie Mellon University in collaboration with Intel [25] have already shown that the
SCC is an interesting platform for power efficiency. Philipp Gschwandtner et al. also per-
formed an analysis of power efficiency of the Single-chip Cloud computer in [67]. However,
this work focuses on benchmarking, while our contribution aims at predicting performance
according to a theoretical proposed model.

Performance prediction in the context of frequency and voltage scaling has also been
actively investigated [24, 50, 70], and the model usually divides the execution time into
memory (or bus, or off-chip) [37, 52], instruction and core instruction, as we did in this
paper.

2.3.2 The SCC Architecture

Before going into the details of our models of the SCC chip we will briefly describe
the key feature of the SCC architecture. By key features, we mean what is important to
understand about this particular hardware to be able to understand our models. More
details about the SCC chip can be found in [55].

The Intel Single-chip Cloud Computer (SCC) is a good example of possible next gen-
eration hardware with easy way to control power consumption. It provides a software API
to control core voltage and core frequency. This opens promising opportunities to optimize
power consumption and to explore new trade-offs between power and performance.

The SCC chip feature 24 dual core tiles. This tiles are connected through a 2 dimen-
sional mesh. An overview of the chip organization is presented in figure 2.1.

The SCC chip feature a novel memory organization. Several memory level are available:
a shared off-chip DRAM memory module that can be addressed by all core of the chip.
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Figure 2.1: Overview of the SCC chip Architecture. The Chip is organized in 24 dual core
tiles connected through a two dimensional mesh. L1 and L2 caches are private and embed
on the tile.

Private of-chip DRAM: chunks of memory that are only addressable by a core. Each core
on the die feature a private 16 kB level 1 cache and a private 256 kB level 2 cache. Also and
this is the very novel feature of the SCC chip a shared on-chip SRAM module called the
Message Passing Buffer (MPB) can be addressed by all cores. The MPB can be accessed
by every core of the chip but is distributed across all cores: cores access memory addresses
held in the MPB module of its own chip faster than others. The MPB module is used to
perform fast inter-core communication. Figure 2.2 illustrates the memory organization of
the SCC chip as seen from the programmer point of view.

Figure 2.2: The Memory organization of the SCC.
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2.3.3 Performance Model

In this section we provide a performance model in order to predict the impact of core
frequency scaling on the execution time of several basic linear algebra kernels on the SCC
chip. As we focus on dense linear algebra, we only need little data to predict a given code
performance. The considered datasets being too large to fit in cache, we need the execution
time of one iteration of the innermost loop of the kernel and the memory latency.

The performance model is divided in two parts: memory model and computational
model. Although our work on actual memory models will be presented later in this chapter
(see Section 2.5), a full performance model of the SCC chip is still required to evaluate
code performance. Since SCC caches are not coherent the memory model is simplified.

Memory model

To build the memory model, we assume that the application can exploit perfectly data
reuse and therefore we assume that each data is accessed only once. We do not take the
number of cache accesses into account in the prediction of the overall memory access time
because they are not actual memory accesses since the request does not have to go all the
way to DRAM. Moreover the cache is not coherent. Therefore there is no overhead due to
the cache coherence protocol.

According to Intel documentation, on the SCC, a memory access takes 40 core cycles
+ 4×n× 2 mesh cycles + 46 memory cycles (DDR3 latency) where n is the number of
jumps between the requesting core and the memory controller [78]. In our case, we are
only running sequential code, therefore we are assuming that the memory access time is
40× c+ 46×m cycles, where c is the number of core cycles and m the number of memory
cycles. Accessing memory takes 40 core cycles plus 46 memory cycles.

Frequency scaling only affects core frequency, the memory frequency is a constant (in
our case 800MHz). Therefore, changing frequency mostly impacts the code performance
if it is computation bound. The core frequency and the memory frequency are bound by
the formula:

mem_freq = f_div × core_freq
2

Therefore a memory cycle lasts 2
f_div = core_freq

mem_freq core cycles. Thus, the number of core
cycles to perform one DDR3 RAM access is:

40 + 46× core_freq
mem_freq = 40 + 46× core_freq

800

As we can see from the formula dividing the core frequency by 8 (from 800MHz to
100MHz) will only reduce the memory performance by 46%.
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As the P54C core used in the SCC supports two pending memory requests, we can

assume that accessing x elements will take x
2 (40 + 46× core_freq

800 ) core cycles.

Computational model

In order to predict the number of cycles needed to perform the computation itself we
need the latency of each instruction. Agner Fog measured the latency of each x86 and
x87 instruction [31]. We used his work to predict the number of cycles to perform one
iteration of the innermost loops of each studied kernel (several BLAS kernels). But, as we
saw in Section 2.2, we could also use the data collected with our computational model. The
computational model is very simple, as most of the instructions use the same execution
port, there is almost no instruction parallelism. We use such a tool to measure the execution
time of one iteration of the innermost loop. As most of the execution time of the codes
we consider is spent in inner loops, this performance estimation is expected to be rather
accurate.

From this computational model the impact of frequency scaling on the computation
performance is straightforward. The number of cycles to perform the computation is not
affected by the frequency. Thus, reducing the core frequency by a factor of x will multiply
the running time by x.

Power model

We use a simple power model to estimate the power saved by reducing the core fre-
quency. Table 2.5 shows the voltage used by the tile for each frequency, these data are
provided by the SCC Programmer’s guide [78].

The power consumption model used in this paper is the general model: P = CV 2f
where C is a constant, V the voltage and f the frequency of the core. As shown in Table 2.5
the voltage is a function of the frequency, thus, we can express the power consumption as
a function of the core frequency only.

We choose not to introduce a power model for the memory for two reasons: first we
have no software control on the memory frequency at runtime. We can change the memory
frequency by re-initializing the SCC platform but not at runtime. Thus, the memory
energy consumption is constant and we have no control over it. It is irrelevant to try to
model the memory consumption. The other reason is that until now we used models that
can be transposed to other architectures. As the memory architecture of the SCC is very
different from more general purpose architectures, its energy model would not fit for those
architectures. Therefore, instead of complicating the model, it was decided to maintain a
simplified form, which is relatively as precise as the full model and can be easily transposed
to other architectures.
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Table 2.5: Relation between voltage and frequency in the SCC chip.

Freq divisor Tile freq (MHz) Voltage (volts)
2 800 1.1
3 533 0.8
4 400 0.7
5 320 0.6
6 266 0.6
7 228 0.6
8 200 0.6
9 178 0.6

10 160 0.6
11 145 0.6
12 133 0.6
13 123 0.6
14 114 0.6
15 106 0.6
16 100 0.6

Overall model

In this section we describe how to use both the memory and computational models to
predict the performance of a given code.

As the P54C core can execute instructions while some memory requests are pending,
we assume that the execution time will be the maximum between the computation time
and the memory access time:

model(fc, size) = MAX

(
cyclescomp(size), cyclesmem(fc, size)

)

with fc the core frequency.

With this runtime prediction, we estimate how a code execution is affected by changing
the core frequency. Taking the decision to reduce the core frequency in order to save energy
can be done with a static code analysis.

As show in the description of the SCC memory model (on page 59) in Section 2.3.3
the memory access performance is almost not affected by reducing core frequency, while
reducing core frequency increases the computation time. From this observation we see that
reducing core frequency for memory bound codes is highly beneficial for power consumption
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because it will almost not affect performance while reducing energy consumption. However,
reducing core frequency for compute bound code will directly impact performance.

2.3.4 Model evaluation
In this section we compare our model with the real runtime of several regular codes in

order to check its validity. We used three computation kernels, one BLAS-1: the dotprod-
uct, one BLAS-2: the matrix-vector product, and one BLAS-3 kernel: the matrix-matrix
product.

First let us describe how we applied our model to these three kernels: In the following
formulas, fdiv denotes the core frequency divisor (as shown in Table 2.5) and power(fdiv)
the power used by the core when running at the frequency corresponding to fdiv (see
Table 2.5). An important point is that we used large data sets that do not fit in cache.
Thus, the kernel actually gets data from DRAM and not from caches. However, the matrix-
matrix multiplication is tiled in order to benefit from data reuse in cache.

Dotproduct Multiplication

For the dotproduct kernel, the memory access time in cycles is:

cyclesmem(fdiv, size) = size×
(

40 + 46× 2
fdiv

)
And the computation time in cycles is given by:

cyclescomp(size) = size×
(
body

unroll

)
,

where body is the execution time (in cycles) of the innermost loop body and unroll the
unroll factor of the innermost loop. In the case shown on Figure 2.3, body = 36, and
unroll = 4. Then the power efficiency is:

powereff (fdiv, size) = flop(size)
model(fdiv ,size)

freq × power(fdiv)
,

with power(fdiv) = freq(fdiv)2 × voltage(fdiv), with flop(size) = 2× size, the number of
floating point operations of the kernel, model(fdiv) the number of cycles predicted by our
model, and freq the actual core frequency (1600

fdiv
). In the case shown on Figure 2.3,

model(fdiv, size) = MAX

(
cyclesmem(fdiv, size), cyclescomp(size)

)
= cyclesmem(fdiv, size)
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(a) Dotproduct: the cycle count is shown ac-
cording to the core frequency divisor.

2 4 6 8 10 12 14 16

0e
+

00
4e

+
05

8e
+

05

Frequency divisor

T
im

e 
(m

ic
ro

se
co

nd
)

real time
memory model
computational model

(b) Dotproduct: runtime in microsecond de-
pending on the core frequency divisor.

2 4 6 8 10 12 14 16

0.
00

0.
05

0.
10

0.
15

Frequency divisor

E
ne

rg
y 

ef
fic

ie
nc

y

real code
model

(c) Dotproduct: power efficiency (in GFlops/W)
depending on the core frequency divisor.

Figure 2.3: Vector dotproduct model: sequential dotproduct on two vectors of 221 double
elements (16MB).

Figure 2.3a shows that the number of cycles for both the memory model and obtained
through benchmark decreases when frequency decreases. The reason is that frequency
scaling only affects core frequency. For memory bound codes such as dotproduct, reducing
the core frequency reduces the time spent in waiting for memory requests. However, the
code is not executing faster, as shown in Figure 2.3b.
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Matrix-vector product

Similarly the model for the matrix-vector product is:

cyclesmem(fdiv, size) = size

2 ×
(

40 + 46× 2
fdiv

)

cyclescomp(size) = size×
(
body

unroll

)

With size = 512× 1024 elements, body = 64 cycles, and unroll = 4 for the case shown on
Figure 2.4.

powereff (fdiv, size) = flop
model(fdiv ,size)

freq × power(fdiv)

In this case, again, the memory access time is more important than the time for the
computation, thus, the runtime is given by the memory access time (ie. model(fdiv) =
cyclesmem(fdiv))

Figure 2.4a shows that the number of cycles for both the memory model and obtained
through benchmarks decreases when frequency decreases. The reason is the same as for the
dotproduct: frequency scaling only affects the core frequency. Since this code is memory
bound, with slower core frequency the processor spends less time waiting for memory.
However the execution time in second is not affected.

Matrix-matrix product

The model for the matrix-matrix multiplication is:

cyclesmem(fdiv, size) = 3× size

2 ×
(

40 + 46× 2
fdiv

)

cyclescomp(size) = size
3
2 ×

(
body

unroll

)

powereff (fdiv, size) = flop
model(fdiv ,size)

freq × power(fdiv)
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With matrix_size = 160 × 160 elements (each matrix is 160 × 160 elements big),

body = 43 cycles, and unroll = 1 for the case shown on Figure 2.5. Since this is a BLAS-3
kernel the computation time is – as expected – bigger than accessing memory. And:

model(fdiv) = cyclescomp(fdiv)

2.3.5 Power efficiency optimization

Our objective in this section is to show that the performance model we presented is
able to help selecting the frequency scaling providing optimal power efficiency. Then the
higher performance version is chosen among the most power efficient versions.

We can see that the dot and matrix-vector products are memory bound while the
matrix-matrix product is compute bound. Power efficiency is measured through the ratio
of GFlops/W. The best frequency optimizing power efficiency of those two kind of code
are different. For the case of memory bound codes, the core frequency can be reduced by a
large divisor as performance is limited by memory bandwidth which is not very sensitive to
core frequency. On the contrary, for computation bound codes, the performance in GFlops
decreases linearly with the frequency.

Figures 2.3c, 2.4c and 2.5c represent power efficiency in GFlops/W for respectively
dot, matrix-vector and matrix-matrix products. They show that our performance model
is similar to the measured performance (from which we deducted power efficiency). Power
efficiency for matrix-matrix product is optimal from a frequency divisor of 5, to 16. Among
those scalings, the best performance is obtained for the scaling of 5 according to Figure 2.5a.
For the Dotproduct 2.3c, codes are more energy efficient using a frequency scaling of 5,
and their efficiency increases slowly as frequency is reduced. According to our performance
model, around 25% of GFlops/W is gained from a frequency divisor of 5 to a frequency
divisor of 16, and for this change, the time to execute the kernel has been multiplied by
a factor 2.33 (according to our model). In reality, these factors measured are higher than
those predicted by the model, but the frequency values for optimal energy efficiency, or
some trade-off between efficiency and performance are the same. Note that for divisor
lower than 5, energy efficiency changes more dramatically since the voltage also changes.

We choose to show how to optimize energy efficiency, but as our model predicts both
running time and power consumption for each frequency, it is easy to build any other
metric depending on power and runtime and optimize it. Indeed using this model allows
to compute the metric to optimize for each frequency divisor and then to choose the one
that fits the best the requirement. Even with a very simple model as we presented, we can
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predict the running time of simple computational kernels within an error of 38% in the
worst case.

Our energy efficiency model is interesting because it shows exactly the same inflection
points as the curve of the actual execution. This point allows us to predict what is the
best core frequency in order to optimize the power efficiency of the target kernel.

It is also interesting to see that even with a longer running time all the kernels (even
matrix multiplication which is compute bound) benefits from frequency reduction. This is
due to the fact that i) the run time of such kernels is proportional to the frequency; ii) the
power consumption is also proportional to the frequency. So the energy efficiency does not
depend on the core frequency. But the 3 first steps of frequency reduction also reduce the
voltage, which has an huge impact on power consumption.

2.3.6 Summary

We described a method to predict performance of some linear algebra codes on the
Single-chip Cloud Computing architecture. This model can predict the runtime of a given
code for all available frequency divisor and using the known relationship between frequency
scaling and voltage, it can also predict power efficiency. Based on this prediction we can
choose the frequency that best suits our needs: depending on the urgency of getting a
result we can chose to save or not some energy.

Our contribution is slightly different from usual approach as we do not use any runtime
information to predict the impact of frequency and/or voltage scaling on performance.
As we use static code analysis to predict performance of a kernel, this could be done at
compile time it and does not increase the complexity of runtime system. Static Performance
prediction has also been used in the context of auto-tuning. Yotov et al. [88] have shown
that performance models, even when using cache hierarchy, could be used to select the
version of code with higher performance. Besides, In [8], the authors have shown that a
performance model, using measured performance of small kernels, is accurate enough to
generate high performance library codes, competing with hand-tune library codes. This
demonstrates that performance models can be used in order to compare different versions,
at least for regular codes (such as linear algebra codes).

Our proposition is only a first step toward a full model of the SCC ship since it only
handles sequential regular code. Still, we showed that bringing power consideration into a
performance model can help reduce power consumption through chip frequency and voltage
control.
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2.4 Summary about On-core Modeling

The 2 last sections described how to model the on-core part of processors. We described
a general methodology able to automatically measure instruction performance. We applied
this model to the several x86 micro-architecture and retrieved measurements close to those
that can be found in literature. We difference of our approach compared to related work
such as Agner’s instruction listing [31] is that our methodology is detailed and we also
provide discussion and analysis of code performance depending of parameters such as loop
unrolling, and register usage. Also we developed a methodology to detect execution port
sharing while Agner only provides raw information about instruction performance.

We used these information to model the Intel SCC architecture. This model was used
provide information for power efficient optimization on the SCC. Also instruction perfor-
mance measured with our methodology and tools were integrated into the static perfor-
mance model of MAQAO [9] for the Intel Xeon Phi processor.

Yet a fully automatic tool to find instruction execution port sharing as to be developed.
While we described the method and tried it on small cases, we did not implement is yet
in our benchmarking framework. Supporting more architecture, i.e. other instruction set
architecture (ISA) would also make our method and framework more generic and enlarge its
use. The general approach to target other ISA would not change, only the code generator,
the list of instruction syntax and architecture representation in the code generator have to
be updated to match a new hardware.

2.5 Un-Core Model: Memory

In order to model the entire hardware architecture, the on-core part is not sufficient.
Especially since memory performance is becoming more and more critical to computer
performance (cf. paragraph about the memory wall on page 27 in Section 1.3). This
section is dedicated to memory hierarchy performance modeling.

2.5.1 Memory Hierarchy Parameters Needed to build a Memory Model

In order to build a memory model able to reflect behavior of multi-core system, we
have to investigate cache parameters affecting performance of cache hierarchy. Also we
have to keep in mind that we want our model to be effort-free for users – such as compiler,
performance tuning, or library developers. We will therefore investigate the availability
of each these parameters or how they can be automatically discovered. Different critical
parts of a memory model are studied in the following sections.
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Capacity Model The capacity model of a cache hierarchy aims at predicting why and
when capacity misses occurs. In order to build such a model it is crucial to know the size
of each cache level. As well as the replacement policy used to flush lines out if the cache
is full. Knowing the size of each cache level helps predict when the cache is full. When
the cache is full and software accesses memory references not in the cache it frees a line
for the new reference to get into the cache. Knowing the replacement policy used by the
cache allows tracking which cache line are evicted of the cache (leading to cache capacity
misses when later referenced). As well as the replacement policy, one needs to know where
a cache lines goes when it is flushed out of a cache level. For instance cache hierarchies
often feature victim caches. Memory references are only stored in victim caches when they
are evicted of a lower cache level (unlike in regular caches where data is stored after a cache
miss).

The size of each cache level is easy to get since it is documented by processor vendors
and available at run time thanks to tools abstracting the hardware architecture [13]. The
replacement policy is harder to get, especially in the case where lines are stored when
removed from one cache level. It also seems that newer cache architectures feature several
cache replacement policies and are able to select the best one depending on metrics recorded
at run-time such as the hit/miss ratio [46, 69].

Cache Associativity Conflict misses can be predicted and/or detected by embedding
cache associativity and the hash function into cache models. The hash function of a cache
is a function of the address requested that gives the line – or more precisely the set –
where an address should be stored in the cache. If one knows the cache line where each
accessed address goes, one can simulate memory accesses of a program and predict where
each address is stored to detect conflict misses.

The cache associativity of each cache level is well documented by processor vendors.
But the hash function is not. However cache simulators often use a formula that seems
reasonable and performs well [71, 83]. This formula specifies that the line is selected
depending on the bits M :(M +N − 1) of the address to be stored in the cache. Where the
cache line is 2M bytes wide and 2N = number of cache lines

cache assiciativity .

Cache associativity can be retrieved thanks to run-time measurement. Given a k-
associative cache of n lines: repeating accesses to a memory segment of size (n + 1) ×
cache line size leads to n−k hits and k+ 1 misses. Indeed the n first accesses load n lines
in the cache, the last access will evict a line from one set. If we assume the least recently
used line is flushed out, the oldest cache line from the set where line n + 1 should go is
evicted. This means that all memory accesses going to the set where (n + 1)th line goes
are misses: we do have k + 1 cache misses on this benchmark.
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Performance of each Memory Level Also to be able to predict real hardware behav-
ior, the model has to reflect the performance of each cache level, i.e. the access latency
and the available bandwidth.

These parameters of the cache hierarchy are highlighted by processor vendors. And
they can be easily verified thanks to benchmarks [57, 76, 81].

In order to reflect performance of a parallel software, modeling raw performance of each
cache level is not enough: contention has to be taken into account. Indeed when several
threads access shared memory resources, they have to share the available bandwidth. This
is called contention and can be the root of low performance. Cache contention can have
several sources, contention on the cache itself: computing threads compete for cache space
to store their data, leading to a virtually reduced cache size. This kind of contention
is already well modeled [87]. But contention can also happen on the memory bus. Some
research were lead by Ajmone Marsan et al. to understand the impact of bus contention [4].
However prediction of the impact of contention on modern computer architecture is still
unclear and performance prediction of parallel applications with bus contention is still an
open challenge. Yet some studies of Andersson et al. show that predicting an upper bound
of performance degradation due to contention can be achieved [5].

The prediction of bus contention is the first hint leading us to think that building a full
analytical model of memory modern CPU memory hierarchy is such a complicated problem
that we want to use other methods in order to keep the model simple.

2.5.2 Cache Coherence Impact on Memory Performance

Most of the parameters and models described until now can be found either in the
manufacturer’s documentation, published work or even discovered by experience (except
for bus contention). But the biggest deal is modeling cache coherence. Indeed the access
cost to a cache line not only depends on the cache level accessed but also on the state of
the cache line [38]. Depending on the hardware mechanisms involved in maintaining cache
coherence, the performance of memory accesses can vary widely. Figure 2.7 illustrates this
by presenting the write bandwidth available for several cache states (see Section 1.3.3) of
data. As we can see, cache coherence has a big impact on memory performance and can
not be ignored in memory modeling.

But the issue with cache coherence is that an important part of the protocol imple-
mented in hardware is undocumented. Especially we are not aware of the coherence mes-
sages transferred on every cache event. For instance the performance gap between loading
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a dirty or a clean2 cache line from a remote cache on Figure 2.8, can have several reasons
depending on choice in the implementation of the cache coherence protocol:

• the dirty cache line is written to memory and then fetched from memory to the cache
requesting it.

• or the cache line can be put on the bus for the requesting cache at the same time as
the line is written to main memory.

We presented an early version of this work in [C1] to illustrate how cache coherence can
affect memory and code performance.

2.5.3 Bringing Coherence into a Memory Model

In order to build an analytical model taking into account cache coherence issues high-
lighted in the previous section, we tried to add some extra parameters to the model.
These parameters are supposed to indicate the bandwidth used by each kind of coherence
messages. In order to keep the model abstracted enough to be applied to several cache
architectures, we choose a general enough coherence protocol that will capture the behav-
ior of more specialized ones that are implemented in real hardware. We choose the MESI
protocol (cf. Section 1.3.3) because general purpose processors built by Intel and AMD
use protocols based on this particular protocol. The coherence messages involved in this
protocol are:

Write Back
This coherence message is responsible for writing a cache line back to main memory.
It is triggered when a cache reads an address stored in another cache in a dirty state.

RFO
The Request For Ownership is a broadcast on the bus asking caches holding a par-
ticular cache line to put it on the bus and to invalidate this line after. It is caused
by write misses.

Invalidation
This coherence message asks remote caches to invalidate lines holding a particular
address. This event is triggered when a write hits the cache in a shared line.

2Modified cache lines are dirty: the value they hold is not consistent with main memory. Exclusive and
shared cache lines are clean: the value they hold is the same as main memory.
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Real Bandwidth and Effective Bandwidth

Our idea to build a coherence aware analytical model is to compute – by means of
benchmarks – the overhead of coherence messages. This overhead can be included in the
time prediction to access memory. However, we found that when predicting even simple
access patterns such as copies, the overhead of coherence is overlapped with other memory
access. It seems that some coherence messages can be performed in parallel with some
memory access, but not all kinds of them. We believe that these differences come from
the path used by coherence messages: if both coherence messages and memory accesses
use the same physical path (e.g., the bus connecting private caches together) they cannot
be performed in parallel, but when coherence and memory access use different path (e.g.,
coherence uses interconnect bus and memory access uses the memory channel) they can be
performed in parallel. However to build such a model we need to know the choice made by
hardware designers about the coherence protocol: and this model would not be portable
on different architectures, which is one of the hard specification of our model.

Figures 2.9 and 2.10 illustrate the issues we encountered. We can see on Figure 2.9 that
the cost of an RFO message does not only depend on the level of cache involved but also
on the state of the cache line requested. The bandwidth plotted in Figure 2.9 represents
the bandwidth used by coherence messages, in this case the RFO. This bandwidth is the
subtraction of the bandwidth of a store hit on exclusive cache lines and the bandwidth
of a store miss on cache lines in one of the modified, exclusive, and shared states. This
represents the bandwidth used by caches to maintain coherence. Since the cost of an RFO
depends is different when the cache lines accessed are dirty, we deduced that it is combined
with a write back: on a store miss on modified cache line, the cache line might be written
back to memory before being modified by the new request. But, as shown on Figure 2.10,
the cost of a write back is higher then the cost of the RFO. The performance of write
back messages was computed as the subtraction of the bandwidth of a load hit and the
performance of a load miss on modified cache lines.

To keep our model as generic as possible we choose another method to build the memory
model. Instead we built a memory model based on benchmarks. This idea is already used
to model memory access cost in NUMA architecture [63] but – to our knowledge – had not
yet been investigated for modeling cache performance. Benchmarks are designed to hide
hardware complexity and mechanisms hard to understand or model. This also keeps the
model generic since the same set of benchmarks can be run on several architectures and
be used as the basic blocks for predicting memory access performance.
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2.6 Conclusion

The contributions presented in this chapter are two-fold. We showed in a first section,
how to automatically retrieve instruction performance. We also provided a method to
detect instruction sharing execution ports in super-scalar pipeline. With a careful bench-
marking methodology all the parameters required to build an analytical model of the
on-core can be found by experience.

In a second part we presented how to use such performance data to build a power
aware performance model on the SCC chip. This model allows performance and power
consumption prediction for power aware performance optimization. It was presented in
a paper called Performance modeling for power consumption reduction on SCC and was
accepted at the 4th Many-core Applications Research Community (MARC) Symposium.

In a third section, we investigated how to model cache coherent memory hierarchies.
We presented the few experiments advocating the use of benchmarks directly in a memory
model rather than building a full analytical model for the memory. We analyzed the param-
eters that have to be taken into account for a fine modeling of cache hierarchies. By hiding
memory hierarchy complexity in benchmarks and by using the output of these benchmarks
as building blocks for the model we can build a generic memory model for cache-coherent
memory architectures. We will describe our benchmark based memory model in Chap-
ter 4. Understanding benchmark design and methodology helps apprehending our memory
model. We will therefore first present our benchmarking framework in Chapter 3.
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(a) Matrix-vector product: the cycle count is
given according to the core frequency divisor.
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(b) Matrix-vector product: the execution time
is given in microsecond depending on the core
frequency divisor.
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Figure 2.4: Matrix-vector multiplication model: sequential code on a 512 by 1024 elements
matrix.
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(a) After the first n memory
accesses, the cache is full.
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(b) The n + 1th access evicts
the first line of the cache (since
it was the LRU line of the set).
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(c) When the first address is
accessed again, it flushes addr
1 from the first set.

Figure 2.6: Illustration of a benchmark to measure cache associativity.
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Figure 2.8: Read miss Bandwidth measured on a Xeon X5650 Processor (Nehalem micro-
architecture) depending on the data size and state of data in the caches.
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Figure 2.9: Cost of an RFO message depending on the state of the cache line involved.
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Chapter

3

Designing Benchmarks for
Memory Hierarchies

“It seems perfection is attained not when there is
nothing more to add, but when there is nothing more

to remove.”
— Antoine de Saint-Exupéry

This chapter is dedicated to presenting a framework we developed to benchmark mem-
ory hierarchies of modern processors. Since we build a memory model upon the output of
the benchmarks, they have strong requirements.

Section 3.1 will present problem of building benchmarks for memory hierarchies, espe-
cially what are the critical components of memory architecture that needs to be bench-
marked. It also present the requirements of benchmarks in general and in the context of
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modeling. Section 3.2 presents the framework we developed and several implementation
details about how to achieve close to peak memory performance. Section 3.3 presents our
framework with an emphasis on the language we developed to ease benchmark writing
and how to automatically generate benchmarks for a protocol given its automaton. This
automatic generation of benchmarks can handle coherence protocols based on automaton,
i.e. MESI like protocols or firefly. And Section 3.4 illustrates some possible usages of the
output of our benchmarks.

3.1 Problem Formulation
This section introduces the methodology we use to benchmark memory hierarchies.

Since benchmarking requires usage of a framework, we will also collect the requirements
on the tool to be used to lead this study. We will also compare these requirements with
existing tools and justify our technical decisions.

3.1.1 Requirements of Benchmarks due to Cache Coherence
Chapter 2 showed us that cache coherence has to be taken into account when build a

memory model for cache coherent architectures. In this section, we are going to investigate
the specific requirements of benchmark tools to perform correct memory experience with
regards of cache coherence.

Setting Buffers in a Given State Since we aim at building a memory model taking
cache coherence into account we need of being able to control the state, with regards to
coherence protocol, of memory chunks involved in the benchmark. We can control the
state of memory, i.e. of the cache lines, by running memory operation prior to the start
the performance measurement. We need the framework to be able to only measure subset
of the full benchmark. This way we can write a prologue responsible for setting cache lines
of the system in a particular state. After what we can start the real experiment and record
its performance.

Parallel Benchmarks Memory architectures are parallel, e.g., several hardware threads
have private caches and several software threads can access memory at the same time.
Therefore, we have to be able to build parallel benchmarks. Also the location of data
is important and has an impact on cache performance. To be able to reproduce every
placement in the benchmarking tool-chain to chose, has to provide process placement
capability. This means that for a particular parallel benchmark we need to be able to
bind software threads or precess to hardware cores in different manner. This will allow us
to investigate the impact of process placement on performance.
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3.1.2 Building Reliable Benchmarks

We aim at building an accurate memory model upon this benchmark tool-chain, there-
fore we need accurate and reliable runtime measurements. To ensure this property we
need to perform statistic collection on different runs of the benchmark. This is not a hard
requirement of the tool-chain because it can be done by done by ourselves. But this feature
would be a plus.

We should say here that, for reliability matters, selecting one performance measurement
among a set of measures is a choice to make with particular care. If performance of several
runs are recorded, reporting statistics like average run time, standard deviation etc is
important. But to bring this information into a model, it is easier to select a single value.
In the methodology we developed, we chose to only select the best measured performance.
We choose to report only the best performance because, when modeling hardware, people
are usually interested in peak performance of the machine. Moreover the best performance
measurement is an actual measurement. It can be easier to explain than the average –
which is not a really observed performance – and can be a value that can never actually
be observed.

A benchmark with performance exhibiting a high standard deviation should not be
used as a reliable metric to model an architecture. Instead understanding what affects so
much performance should be understood to better control the hardware and/or the test to
find another way to capture a part of the architecture behavior.

A lack of stability in a benchmark often comes from system level issue. For instance
Intel processors have a Turbo Boost feature that allows CPU to increase their frequency
under sequential loads. Also, to save energy, most operating systems can change the
frequency of processors depending on run time activity, this is called frequency scaling
and can lead to performance difference between different runs. Since the goal of modeling
hardware is to understand and reproduce its behavior, reproducibility of the benchmarks is
a major concern. That is why we pay so much attention to keeping the standard deviation
of our benchmark output low. If a benchmark leads to non-stable results, i.e. have a high
standard deviation, we do not use it to model the architecture. We do not use benchmarks
with a standard deviation higher than 10% of the average value. Indeed, with such results
we would not be able to choose the correct data among the list: they would be too scattered.
A high standard deviation can betray either a uncontrolled experiment environment (e.g.,
Turbo Boost still enabled), or a parameter that can vary from a run to the other. It
can be the case if thread synchronization has net been handled to make the benchmark
reproducible.

An Extensible and Lasting Framework We did not know the number and the list
of benchmarks needed to model a memory architecture prior to building the model itself.
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Therefore we need a framework easily extensible, where adding more benchmarks can be
done easily and quickly.

We need a stable benchmarking framework so that it can be used to build a wide range
of hardware tests depending on the need of users. Since our approach relies on benchmarks
to abstract hardware complexity and ease memory modeling, we do not want having to
rewrite benchmarks every time an new architecture is released or when trying to model a
new architecture.

3.2 Framework and Technical Choices
With the requirements highlighted in the previous section, we investigated the existing

benchmarking frameworks available.

3.2.1 Related Work

LIKWID is a framework designed for rapid benchmarking [80]. It fits the need for an
extensible framework as well as precise performance recording. In order to characterize
performance features, a number of iteration can be specified on the command line to run
the benchmark several time. For instance, Listing 3.1 shows how to measure the bandwidth
of the L1 cache of a processor (assuming L1 cache is larger than 20 kB).

./ likwid -bench -t load -g 1 -w S1 :20 kB:1 -i 100

Listing 3.1: LIKWID usage example: Measuring L1 cache bandwidth by running the load
benchmark 100 times. With 1 thread pined on socket 1 reading a 20 kB buffer.

However synchronization cannot be handled: every run of a benchmark consists in a
call to a function. For this reason we cannot use LIKWID to set memory in a particular
state before performing time measurement.

The STREAM benchmark targets memory [57]. But, like LIKWID, synchronization
and benchmark preliminary cannot be handled with STREAM. Moreover the STREAM
benchmark is not easily extensible since and code modification have to be made for every
change we need to make in the benchmark set. For our purpose, a careful handling of
synchronization is important. As explained in Section 3.1.1, we need to be able to set
buffers in cache in a controlled state to measure the impact of cache coherence on memory
performance. This cannot be done with tools such as LIKWID or STREAM and this tools
are therefore not suitable to our needs.

The BenchIT benchmarking framework allows measuring a wide range of performance
metrics [49]. But the exact data we need are not in the default kernel released with
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BenchIT. BenchIT can be extended by adding more benchmark kernels into the tool-chain
but adding such kernel is very verbose. Both the kernel and thread synchronization have
to be handled with standard library calls.

MicroCreator, part of the MicroPerf Tools, allows designing of low level benchmarks [11].
It takes as an input an XML file describing the benchmark kernel to be generated. It can
produce a large number of kernels with a relatively small description. For instance, for
the input description shown in Listing 3.2, MicroCreator generates 512 kernels (all the
combination of 8 load or store).

<instruction >
<operation >movapd </ operation >

<memory >
<register >

<name >r1 </name >
</register >
<offset >0</ offset >

</memory >
<register >

<phyName >%xmm </ phyName >
<min >0</min >
<max >8</max >

</register >
<swap_after_unroll />

</ instruction >

<unrolling >
<min >1</min >
<max >8</max >
<progress >1</ progress >

</unrolling >

Listing 3.2: MicroCreator kernel description.

Using this tool to generate the kernels for our framework is an promising opportunity. By
adding calls to threading libraries in the prologue and epilogue, synchronization and thread
spawning can be achieved. But it was not released as an open source software at the time
we developed out framework, therefore we could not use it.

To our knowledge there is no existing software specifically dedicated to performance
measurement of cache coherence. Yet, tools such as P-Ray focus on memory hierarchies
and how to detect hardware specification through benchmarking [29]. While this approach
is quite close to ours, they do not take cache coherence into account. While our approach
is manly focused on cache coherence.

We will present our framework into mode details in the next section.
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3.2.2 Framework Overview

The framework we developed is made out of a language, a compiler and a library. We
will go into more details about it in Section 3.3. In this section we are going to show how
we fulfilled each of the requirements presented in Section 3.1.

Setting Buffers in a Given State We decided to add a keyword in the language
to specify what part of the benchmark has to be measured and what is the preamble.
Benchmark written with our language can call benchmarking functions. The call to spe-
cific memory function in the preamble can help controlling the state of memory prior to
performance measurement.

Parallel Benchmarks In order to build parallel benchmarks with our framework, the
code generated by our compiler is parallelized with the OpenMP runtime. Also, the lan-
guage features parallel construction: for each function call, the thread in charge to run
the function is specified. The binding between hardware and software threads is delegated
to the OpenMP runtime. Binding OpenMP threads can be done thanks to environment
variables.

Reliability For reliability purpose our framework automatically runs several time every
benchmark. For instance, for every execution of a benchmarks the performance of every
single run is recorded. The performance of each of these runs are reported into a csv file
with statistics such as average and standard deviation. Since this a spreadsheet format
every statistic that are relevant for the end user can be automatically computed. The
best performance recorded is also saved in a separated file for a quick overview of the
performance of the benchmark.

Extensible Framework Building an extensible framework was the main goal we pur-
sued. This was the primary reason why we designed a framework based on a language.
Indeed, this helps user writing new benchmarks to understand a particular behavior. A
compiler is used to generate the machine code corresponding to the benchmark written by
the user. We also provide a library embedding functions often used in benchmarks. We
developed several benchmarking functions to help users achieve peak memory performance.
These functions are a variety of load and store operations. The different memory access
patterns performed by these functions are:

sequential access: every byte of memory within the range given by user are accessed.
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stride access: the stride is given by the user: only some bytes separated by the stride

parameter are accessed.

a specialization of the stride access: where the stride is chosen to be exactly the size
of the cache line. This is useful to measure the latency of a cache level because every
access are made to a different cache line.

The user can add benchmarking functions to the library in order to extend the memory
access pattern or operation the tool chain is able to perform. For instance we could
add functions performing non temporal memory operations in order to see the impact of
bypassing caches. User defined functions can be called from the benchmark description
just like standard functions.

3.2.3 Achieving Peak Memory Performance

Peak memory performance needs to be reached in order to give valuable feedback to
benchmarks users. In order to achieve such performance, we used several optimization al-
ready presented in Chapter 1: vector instructions, loop unrolling and avoiding TLB misses.
We call here peak memory performance the maximum sustainable memory bandwidth. It
mat vary depending on the cache level accessed, the spatial locality or any parameter
affecting a memory access performance.

SSE and AVX We use vector instructions to access memory because it allows putting more
stress on memory bandwidth by issuing larger memory access within one CPU cycle. Since
we target x86 architecture we used SSE (Streaming SIMD Extensions) instructions or AVX
instructions when the architecture supports it. It is interesting to note that on the Sandy-
Bridge architecture, on benchmarks solely composed of loads, using SSE or AVX instructions
does not increase performance. This can be explained because this micro-architecture L1
cache features two 128 bits ports for loads per cycle. Therefore a 256 bit AVX load uses the
two ports and only 1 AVX instruction can be serviced per cycles. While the L1 cache can
sustain 2 128 bit SSE instructions per cycle. This leads to the exact same performance.

Avoiding TLB misses TLB misses present a high overhead because they require a full
virtual-to-physical address translation by the Memory Management Unit (MMU) or by
the operation system, which involves the traversal of up to 4 levels of page table stored
in main memory. In order to avoid TLB misses several ways are available. The first is
to rearrange memory accesses to keep accesses to the same page close to each other to
avoid polluting the TLB with accesses to other pages. This can be achieved by changing
the data layout or the order of accesses to variables. Since we cannot change the order of



86 Chapter 3. Designing Benchmarks for Memory Hierarchies
memory accesses because it is defined by the user. The only way to avoid it in our case is
to reduce the number of pages accesses. To achieve this optimization, we try to map huge
pages (available since kernel 2.6.23 [68]), if huge pages are not available we use regular
sized pages.

Disabling Prefetchers An interesting question when benchmarking memory hierarchy
is to disable or not to disable prefetchers. Disabling it usually helps better understanding
of the cache behavior because prefetchers can hide some latencies. However when real
applications are running prefetchers are enabled and observations made on benchmarks
with prefetchers disabled can not be reproduced on real applications. Since we aim using
the output of our benchmarks to hide hardware complexity and build a memory model able
to reflect real hardware performance we choose to let prefetchers enabled when running the
benchmarks. Moreover if we need to understand a particular behavior of memory hierarchy,
we can still run benchmarks with hardware prefetchers disabled if we think this can help
our understanding. But for modeling purpose we use benchmarks with prefetchers enabled.

3.3 A Language to ease Benchmark writing

In this section we describe precisely the syntax of the language we developed and the
organization of the framework.

3.3.1 Language Description

Our benchmarking language allows rapid benchmark prototyping. It can be decom-
posed in three parts. The first one is used to declare streams. Streams are contiguous chunks
of memory of a size given by the user. It can be hard-coded in the description of the bench-
mark or with the keyword runtime meaning that the size will be given on the command line
of the binary. The syntax used to declare stream is described in listing 3.3. The name of
streams has to follow the regular expression: [a-zA-Z]+[a-zA-Z0-9_]* and the specifica-
tion of a constant sized stream should follow the regular expression [0-9]+(KB|MB|GB|ε)1.

name = runtime ; | // size will be given at run time
constant_size ; // hard -coded size

Listing 3.3: Stream Declaration Syntax.

1ε is the empty word.
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The second part of a benchmark describes action to be performed before the real bench-
mark. The syntax used to describe the preliminary of the benchmark is described in List-
ing 3.4. The regular expression describing thread that should run the benchmark function
is: [0-9]+(,[0-9]+)* | [0-9]+-[0-9]+. It is either a comma separated list of threads
(or a single thread) or a range a threads.

thread : threadset . benchmark_function ( parameters );

Listing 3.4: Benchmark Preliminary Syntax.

And the last part of a benchmark describes the piece of the benchmark that needs to be
timed. The syntax of the body of the benchmark itself is described in Listing 3.5 where
benchmark body follows the same syntax as the preliminary description.

TIME( benchmark body );

Listing 3.5: Benchmark Body Syntax.

An example of a full benchmark description is shown in Listing 3.6. The semantic of
this example is the following:

1. We declare 2 streams. The size of these streams will be given at runtime with a
command line argument.

2. Threads 0 to 1 load the first stream (named s0 ).

3. Thread 0 store stream s0.

4. Thread 1 stores stream s1.

5. Only the performance of the last step is recorded. This step consists in thread 0
loading the stream s1.

Note that there are only synchronizations between the benchmark preliminary and body
to ensure the preliminary is over before recording performance. This means that steps 3
and 4 are actually performed at the same time.
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s0 = runtime ;
s1 = runtime ;

thread :0 -1. load(s0);
thread :0. store(s0);
thread :1. store(s1);

TIME(
thread :0. load(s1);
);

Listing 3.6: A full Benchmark Example.

The benchmarking functions load and store are part of the default functions released
with our library. The functions used in benchmarks have to be in the library and a
benchmark only makes sense if users are aware of the meaning of the functions used in the
benchmark description. Listings 3.7 and 3.8 present the assembly code used to perform
the load and store memory operations. The code version presented are SSE versions.

_loop:
movaps (% rbx), %xmm0;
movaps 16(% rbx), %xmm0;
movaps 32(% rbx), %xmm0;
movaps 48(% rbx), %xmm0;
movaps 64(% rbx), %xmm0;
movaps 80(% rbx), %xmm0;
movaps 96(% rbx), %xmm0;
movaps 112(% rbx), %xmm0;
add $128 , %rbx;
sub $128 , %rcx;
jnz _loop;

Listing 3.7: Load Function written
in Assembly with SSE extension.

_loop:
movaps %xmm0 , (% rbx );
movaps %xmm0 , 16(% rbx );
movaps %xmm0 , 32(% rbx );
movaps %xmm0 , 48(% rbx );
movaps %xmm0 , 64(% rbx );
movaps %xmm0 , 80(% rbx );
movaps %xmm0 , 96(% rbx );
movaps %xmm0 , 112(% rbx );
add $128 , %rbx;
sub $128 , %rcx;
jnz _loop;

Listing 3.8: Store Function written
in Assembly with SSE extension.

User define micro-benchmarks can be added into the library and called from the bench-
mark description language with the same semantic as we showed with the load and store
micro-benchmarks. To call a user-defined micro-benchmarks from the language, the name
of the function defining the micro-benchmark has to be called within a thread with the
usual syntax:
thread:range.symbol(args).
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3.3.2 Benchmark Compilation Framework

In order to run a benchmark using our framework users have to first write it with
the language described in the previous section and compile it with the tools we provide.
Figure 3.1 is an overview of our framework. Our compiler reads the user benchmark
specification and generates the corresponding C code with OpenMP pragma. This regular
C code can be compiled with any C compiler supporting OpenMP and linked against our
library, this results in an binary than can be ran on the target machine. We also provide
a shell script embedding the compilation of the user specification, the C code compilation
and linking in a single command. This keeps the benchmark compilation as simple as it
should be by hiding long and tiresome compilation command lines.

Benchmark
Description

(.b)

C +
OpenMP

(.c)
Binary

Benchmark
library

Benchmark
compiler
(mbench_bc) C compiler

Link
er

Figure 3.1: Benchmark compilation framework.

The benchmarking library is composed of two kind of functions: i) helper functions
and ii) benchmarking functions. Users can add benchmarking functions to the framework,
this allow them to extend the library to run specific benchmarks.

In order to try to control as much as possible the state and the data present in the
cache of each processors, we flush all streams from the cache of the threads involved in the
benchmark. This is done by calling a function that walks through the whole stream and
use the x86 instruction clflush to evince every address of the stream from the cache of the
running thread. Therefore before every run of a benchmark, all caches are flushed from
the data used in the experience and noise due to residual data in caches is eliminated as
much as possible.

The code generated is parallelized with OpenMP directives. We chose this implemen-
tation of shared memory programming paradigm mainly because of its simplicity. But also
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because the binding of software threads to hardware cores can be controlled easily thanks
to environment variables.

The benchmarking framework we presented in the previous section is available for
download from https://github.com/bputigny/mbench.

3.4 Benchmarking Memory Hierarchy

Benchmarking memory hierarchy is not an end in itself, it is a tool to help understanding
software performance and find applications optimizations. Section 3.4.1 presents the output
of some benchmarks we ran on different architectures and exhibits counter-intuitive results.
Section 3.4.4 presents several guidelines to help avoiding coherence traffic from spoiling
memory performance. And Section 3.4.3 compares cache performance on several general
purpose processors. This section also illustrates that benchmarking can help understanding
poor performance of software due to poorly designed cache coherence protocols.

3.4.1 Motivating Example

In order to get peak cache performance we run the benchmark called load hit exclusive
(abbreviated lhe). This benchmark is described in Listing 3.9. It consists in bringing data
to the cache of a processor and then record the performance to access this chunk of memory
again.

s0 = runtime ;

thread :0. load(s0);

time( thread :0. load(s0 ););

Listing 3.9: The Load Hit Exclusive Benchmark

The performance of this benchmark allows us to check the number of cache available
on the hardware. It should be noted that we measure the runtime of the benchmark, but
we present the performance results as a bandwidth because Figures 3.2a and 3.2b show the
output of the lhe benchmark on two different x86 architectures: Intel Nehalem and AMD
Bulldozer. We can see that both these architectures feature 3 levels of cache. The size
of each level of cache can be found on these figures it is the data size where performance
drop.

https://github.com/bputigny/mbench
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(b) On a Bulldozer micro-architecture: the
AMD Opteron 6272 processor.

Figure 3.2: Load Hit Exclusive Benchmark results on two different Micro-Architectures.

The Nehalem architecture features a 32kB L1 cache delivering up to 45GB/s bandwidth,
a 256kB L2 cache with 28GB/s bandwidth and a 12MB L3. However on Figure 3.2a it
seem that cache are smaller. It is especially visible for the L3 cache. This can be explained
by conflict misses virtually reducing the real cache size.

The Bulldozer architecture feature a 16kB L1 cache with peak performance of 32GB/s
bandwidth, a 2MB L2 cache with up to 25GB/s throughput and a 6MB L3 cache with
a bandwidth of about 10GB/s. Unlike the Nehalem micro-architecture, the cache sizes
observed on Figure 3.2b are the same as values provided by the constructor. This probably
comes from the fact that Bulldozer’s L2 and L3 caches are 16-way associative while Nehalem
is 8-way associative. This can significantly reduce the number of conflict misses in the AMD
architecture.

While the lhe benchmark is a very simple benchmark it already allows understanding
the impact of hardware design choices on memory performance. But this benchmark does
not involve coherence, we can build more complex memory access patterns to gauge how
coherence impacts memory performance. An interesting memory access pattern consists in
loading an address that is present in another cache of the processor. We call this benchmark
load miss exclusive (abbreviated lme). Listing 3.10 shows the code of this benchmark.

s0 = runtime ;

thread :1. load(s0);

TIME( thread :0. load(s0 ););

Listing 3.10: The Load Miss Exclusive Bench-
mark Code.
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3.4.2 Automatic Generation of Coherence Protocol Benchmarks

The algorithm used to set memory chunks in a given state is described in Algorithm 1.
This algorithm is not MESI specific and can be applied to any automaton describing a cache
coherence protocol. The automaton describing such a protocol is defined by:

Q the set of all possible states for cache lines (e.g., Q = {M, E, S, I} is the MESI protocol.

Σ the set of cache events, e.g., for the MESI protocol Σ = {LocalRead, LocalWrite,
SnoopRead, RFO, Inv}

δ the transition function δ : Q×Σ→ Q×Σ. This is not the usual definition of transition
functions. We add an event in the return type of δ to express that transitions can
trigger other coherence messages (e.g., in the MESI protocol δ(S, LocalWrite) =
(M, Inv): when writing to a shared cache line, the local cache has to broadcast an
invalidation).

q0 the initial state a cache lines (e.g., I for invalid, in the MESI protocol).

From this protocol definition, we can 2-partition Σ in Σl and Σr where:

Σr = {e ∈ Σ|∃(s, e) ∈ Q× Σ, (s, e) ∈ δ(Q,Σ)}
Σl = Σ \ Σr

Σr represents the coherence messages, i.e. events that are triggered by a remote cache.
And Σl are local event (i.e. triggered on the local cache by load and store instructions).

The function writeCode should be provided for the target cache architecture (i.e. cache
coherence protocol). Listing 3.11 shows the pseudo-code implementation of the writeCode
function for the MESI automaton.
printLocalEvent (int e, int thread_id , char *chunk) {

switch (e) {
case LocalRead :

printf (" thread :%d.load (%s);", thread_id , chunk );
break ;

case LocalWrite :
printf (" thread :%d.store (%s);", thread_id , chunk );
break ;

case SnoopRead :
printf (" thread :%d.load (%s);", thread_id +1, chunk );
break ;

}
}

Listing 3.11: writeCode function implementation for the MESI protocol.
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Given the cache coherence protocol defined by: Q,Σ, δ, q0:

setChunk(st, t, chunk): ; // Sets chunk in state st for thread number t
Let (Q,Σ, δ, q0, F ) be an automaton, with F = {st} ; // The only final state
is st

if ∃w ∈ Σ∗|n ≤ |Q|, qn ∈ F ; // w: sequence of events to sets memory in
state st

then
foreach evnet e in the sequence w do

writeCode(e, t, chunk)
end

else
Error: st cannot be reached

end

writeCode(e, t, chunk):
if e ∈ Σl then

printLocalEvent(e, t, chunk)
else

if ∃(s0, s1, e0) ∈ Q2 × Σr|δ(s0, e0) = (s1, e) ; // transition δ(s0, e0), fires e
then

setChunk(s0, t+ 1, chunk)
writeCode(e0, t+ 1, chunk)

else
Error: remote event e cannot be triggered

end
end

Algorithm 1: Setting chunks in a particular state of a coherence coherence protocol.

Figures 3.3a and 3.3b present the output of this benchmark on a Nehalem and a Bull-
dozer architecture. We ran the benchmark with the two threads bound on different cores
of the same processor.

On both processors, the last level of cache is shared among all cores: this means that
when data fit in L3 there is actually a hit and not a miss. Since the L3 cache of the
bulldozer architecture is not inclusive, when the data set sizes between 2MB and 6MB it
goes to L3 cache (after being evicted from lower cache level) and the performance we see
are L3 cache hit. This explains why, on Figure 3.3b): performance is better when data fits
in L3 than in L1 or L2. On smaller data set sizes, the performance is a bit better than
memory performance: this means that the caches lines are probably retrieved from the



94 Chapter 3. Designing Benchmarks for Memory Hierarchies

12
14

16
18

20
22

8 16 32 64 128 256 512 2048 8192 32768

Data size (kB)

B
an

dw
id

th
 (

G
B

/s
)

(a) On a Nehalem micro-architecture: the Intel
Xeon X5650 Processor.

6.
5

7.
5

8.
5

9.
5

8 16 32 64 128 256 512 2048 8192 32768

Data size (kB)

B
an

dw
id

th
 (

G
B

/s
)

(b) On a Bulldozer micro-architecture: the
AMD Opteron 6272 processor.

Figure 3.3: Load Miss Exclusive Benchmark results on two different Micro-Architectures.

inter L2 bus rather than from main memory. On the Nehalem architecture, the L3 cache is
inclusive, this means that all cache lines present in all L1 and L2 caches of the socket are
replicated in the shared L3. This explains why for all sizes fitting in L3 the performance
is the same: it is the performance of the last level of cache. We can deduce that on a
cache miss in L1 or L2, the lines are brought from L3, not through the bus from the cache
holding it.

We presented the performance of a few memory access patterns to show how cache
coherence affects performance. Even with the small number of memory patterns presented
we saw different behavior on different hardware architectures. We also saw that even with
knowledge about the architecture some results of the benchmarks are not intuitive. This
emphasize the benefits from using benchmarks to both characterize hardware and build
performance models.

3.4.3 Comparing Cache Architectures and Coherence Protocols

In this section we are going to thoroughly benchmark several micro-architecture too
understand the implication of cache design in terms of performance. This can also be used
to determine the architecture that best suits the needs of an application in order to ease
the choice of the hardware.

In order to fully characterize a cache hierarchy we run the set of benchmarks defined
by the three following parameters:

the operation benchmarked: load or store. This allows getting read and write perfor-
mance of the memory hierarchy.
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cache hit or miss: When missing the cache the requested address can be brought to the

CPU by another cache holding it. Benchmarking cache misses allows refining the
model by getting the performance of such accesses rather than approximating it to a
memory access.

the state of the cache line accessed: Modified, Exclusive, Shared or Invalid. We al-
ready saw that the state of cache line implies different coherence messages. By
benchmarking all states of memory we can understand what memory access pattern
produce a large amount of overhead on a given architecture.

This makes 16 possible benchmarks, however the benchmark lhi (Load Hit Invalid) does
not make sense since hitting an invalid cache line is actually a miss. Moreover we do not
use benchmarks on invalid data: it would only result in benchmarking the memory itself
since it would never hit any cache on the processor.

We only chose to benchmark access to data in one of the three states Modified, Ex-
clusive and Shared (and not other states such as Forward or Owned) because it keeps the
benchmark set general enough to be applied to several hardware architectures without any
adaptation. Indeed including states that are specific to a particular architecture (such as
the Owned state that is only implemented in AMD cache architectures using the MOESI
Protocol).

Comparing several Target Architectures

We are now going to compare different hardware architectures. This illustrates how our
benchmarking tool-chain can be used to select an architecture for a particular task. We
are going to compare three x86 architectures, but we are going to see that despite the fact
that these architectures share the same Instruction Set Architecture (ISA), they display
significant cache behavior differences. Figures 3.4a, 3.4b 3.4c present the architecture
compared: Intel Nehalem, Intel Sandy-Bridge and AMD Bulldozer.

We ran the 12 memory benchmarks briefly presented earlier:

LHE: Load Hit Exclusive. Only one thread in involved. It loads a chunk of memory – or
a stream to used the same terminology as our benchmarking language – and measure
the performance to access it again.

LHM: Load Hit Modified. A single thread is also involved, but unlike the LHE benchmark
the thread stores the stream before recoding the time to read the whole stream again.

LHS: Load Hit Shared. In this benchmark, two threads are involved. Both the threads
load a stream after what the performance of one thread accessing it is recorded.
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LME: Load Miss Exclusive. Two threads are involved. One loads a stream, and the

second measures the time needed to access this very same stream.

LMM: Load Miss Modified. Two threads are involved, the first one stores a stream and
the second record the performance when reading this stream.

LMS: Load Miss Shared. Three threads are involved here. Two threads load a stream,
then the third one records the performance to access it.

And the 6 other benchmarks are the same except that they measure the performance of
writing the stream rather than reading it.

We do not aim at comparing the raw performance difference of the different hardware,
instead we aim at comparing the behavior of cache regarding the memory access pattern.
Therefore we will neither comment on peak cache performance nor on cache size but how
the cache coherence protocol and hardware design choices affect performance. For this
purpose we scaled the bandwidth presented in this section: we divided all measurements
we made by the best performance recorded for the benchmark on the architecture studied.
Therefore we do not present real bandwidth but a relative bandwidth comprised between
0 and 1. A relative bandwidth of 1 means that the corresponding size is where we got the
best performance.

The Load Hit Benchmark Figure 3.5 presents the output of the load hit benchmarks
(i.e. lhm, lhe and lhs benchmarks). Since all these load hit benchmarks do not involve
cache coherence mechanisms, the output of all these benchmarks are the same and we only
display the performance of one of them (lhe). Since no coherence traffic arises from these
kind of accesses, the behavior of all architecture is the same: we obtain better performance
when the data set fits in smaller cache level and the performance drops as soon as the data
set accessed is too large to fit in a cache level.

The Load Miss Benchmark The comparison of the Load Miss benchmark family is
displayed on Figure 3.6. We observed the same behavior for all three architectures on the
lme and lms benchmark: on both these benchmarks, caches line requested are present in
a clean state in another cache of the processor. Thus it is no surprise that they behave
the same way. The output of these 2 benchmarks is presented in Figure 3.6a. We present
separately the output of the lmm benchmark in Figure 3.6b because it differs from accessing
clean cache lines. Since cache accessed cache lines are dirty, it involves coherence traffic:
the dirty cache lines have to be written back to memory or fetched from the cache holding
the up to date value.
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It shows interesting behavior difference between the Intel architectures and the AMD

one. As we can see on Figure 3.6a when loading clean cache lines from a remote processor,
the Nehalem and Sandy-Bridge processor deliver a steady bandwidth2 when data fit in
L33. However, on the Bulldozer processor, the performance when loading data set that fit
in L1 or L2 cache are close to memory performance. We explain these differences by the
inclusive property of the last level of cache on Intel architectures. On these architectures,
data that are in L1 and L2 caches are replicated in the L3 cache. Thus when a load request
miss the level 1 or 2 of the cache hierarchy, the request goes to L3 which provides the cache
line. This is why we obtain L3 cache performance when missing L1 or L2 caches.

The Bulldozer architecture does not have the inclusive property of the last level of cache.
The argument for having inclusive caches is to speedup the inter-socket cache coherence
by removing the need to check for lower level of cache when a request comes from the
outside of the processor. But the drawback is that it wastes cache space because of the
data replication: fewer memory addresses can be stored in inclusive cache hierarchies than
in non-inclusive ones. However we can see that cache misses in L1 and L2 level are a bit
faster than accessing memory: this can be explained by the cache holding the requested
address suppling it to the processor through the bus.

If we now look at Figure 3.6b comparing performance of load miss on dirty cache lines
we can see that the hardware implementation choice have an impact on performance. The
Bulldozer processor shows exactly the same behavior when loading clean or dirty data.
The coherence protocol used in AMD processors is the MOESI Protocol (cf. section cache
coherence protocols in Section 1.3.3 on page 34) that allows sharing dirty cache lines. This
explain that there is no difference of performance between the load miss benchmarks on
this architecture. However on Intel architectures we can see that loading dirty data not
present in our cache involved a high overhead compared to accessing clean data. This is
due to the write back that happens in this event: the dirty cache line is written back to
main memory to keep memory consistent.

Store Hit Benchmark Figure 3.7 presents the result of the store hit benchmark. The
behavior of the store hit benchmark is the same as long as the cache performing the
benchmark is the only one holding the addresses stored, i.e. the performance recorded
for this benchmark are the same on the she and shm patterns. They are displayed in
Figure 3.7a. Since cache lines in the exclusive or modified state are aware that they are
the only cached version on the machine, the core can write directly to the cache without
involving coherence. This explains why on both these benchmark the performance are the

2This steady performance are equal the level 3 bandwidth, the relative scale of the plot do not allow
seeing it but on a with a regular scale it can be verified.

3We remind the reader that these benchmarks are ran on a single processor: since all cores share the L3
cache even if the benchmarks are built to perform misses, when data fit in L3 cache hit actually happen.
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same. However when writing to shared cache lines, a choice has to be made: either other
caches holding the address written have to invalidate their copies, or the value written has
to be broadcasted to all caches sharing this particular address.

As we can see on Figure 3.7b, the Intel and AMD architectures have different behav-
ior. This suggests that different hardware implementation choices were made. We can
see that the overhead due to writing to shared cache line is far more important on the
AMD architecture than on Intel architectures. In the MOESI Protocol (implemented in
the Bulldozer architecture) shared cache lines can be dirty and cannot be written directly:
before it has to transition to exclusive or modified state. In order to switch a cache line
from shared to modified or exclusive state, a cache has to broadcast an invalidation for the
address contained in the line. The caches holding the address respond to the invalidation
and inform the cache issuing the invalidation is their version was shared or owned. If a
cache had the line in the owned state, the line was dirty and the cache that issued the
invalidation broadcast has to set the line into modified state. But if no cache has the
line in owned state, then the line was clean and can be set to exclusive state. Thus, on
the Bulldozer architecture, when writing to a shared cache line, the processor has to wait
for other caches to respond to the invalidation, this explains the high overhead compared
to writing to exclusive or modified cache lines. Since on the Nehalem and Sandy-Bridge
architectures, cache lines are necessarily clean, writing to a shared cache line also involves
an invalidation but waiting for a response to the invalidation request is not necessary. This
explains why the overhead of writing to shared cache lines on Intel’s architecture is faster.

Another remark about the performance of this benchmark on the Bulldozer architecture
is that hitting the L1 cache is slower than hitting the L2 cache (which is intriguing since
the L1 cache should be faster than level 2). The only plausible explanation we found is that
when a store hits a shared cache line in the level 1 this cache broadcasts an invalidation to
all the L1 caches (i.e. 7 others). Which takes more time than when the cache line is in L2
because the cache has to broadcast only 3 invalidation requests (since they are only four
L2 caches on the processor).

Also we can explain that no matter cache line written are in exclusive or modified
states, the performance in L1 and in L2 are the same. This is due to the fact that on this
architecture the L1 is write through: this means that data written to L1 are also written
to L2.

Store Miss Benchmark Figure 3.8 presents the results of the store miss benchmark
on the 3 compared hardware architectures. Since the performance of the sme and sms
are pretty similar on all the compared hardware, we only present the results of the sme
benchmark on Figure 3.8a. We can see on this figure that the behavior the Bulldozer
architecture differs from the one of the others. Remembering that the L1 is write though
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on this processor explains why the performance of the benchmarks in L1 and L2 cache are
similar. However when the data set stored is wider than the last level of cache, performance
gets better: it is faster to write to addresses that are not cached than writing to addresses
hold in a cache on the processor. This can only be explained by the core writing to a
cached address (cached in another cache that the one attached directly to the core store
the stream) broadcasting the value it writes to the cache holding the same address. On the
Nehalem and Sandy-Bridge architectures, since shared or exclusive cache lines are clean,
writing to lines held in another cache only involves an invalidation request performance
are better in lower levels of cache.

However, as we can see on Figure 3.8b, the behavior is significantly different when
writing to dirty cache lines. The Bulldozer architecture however behaves identically when
writing to clean or dirty cache lines. Since the write is broadcasted the architecture per-
forms the same operation whatsoever the state of the lines are.

Intel Dunnington micro-architecture

The Dunnington micro-architecture features up-to 6 cores per socket, every core has its
own private level 1 cache of size 32 kB. The 3MB level 2 cache is shared by pair of cores
(one processor has therefore 3 separated L2 caches). And a 16MB large level 3 cache shared
among all the 6 cores. Figure 3.9 illustrates the architecture of a Dunnington processor.
This architecture is based on the Core 2 micro-architecture that only features two levels
of cache (and two cores per processor). The shared L3 cache has been added in order to
decrease the cost of maintaining coherence between 6 cores.

Figure 3.10 presents the results of the store hit benchmark on this architecture. We
can see that writing to exclusive is as slow as writing to shared caches lines. Of course this
should not be the case since writing to exclusive cache lines should not require coherence
while writing to shared cache lines requires an invalidation broadcast. This remark is true
for the level 1 and level 2 caches. We believe that the exclusive state on this platform
is managed just like the shared state. Indeed on the performance recorded by the whole
set of benchmarks, the performance of benchmarks on exclusive and shared memory are
always the same.

This example is a good illustration why modern complex hardware architectures should
be carefully benchmarked and another argument for building memory models upon param-
eters measured by experience: it is the only way to capture the real hardware behavior, or
achievable peak performance.
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Parallel Benchmarks and Capacity

In order to take into account the impact of multiple threads accessing the memory
hierarchy simultaneously, we also built parallel benchmarks. All threads involved in these
benchmarks run the same code, with the same access pattern as sequential benchmarks.

For a given memory access pattern, we analyze the ratio between the sequential band-
width multiplied by the number of threads, and the parallel bandwidth:

contention = nthreads × bandwidthsequential

bandwidthparallel

A ratio of 1 means that parallel accesses from multiple threads do not disturb each other,
i.e. each thread can use the same bandwidth as it would if it was running alone on the
machine. A ratio greater than 1 is the factor by which each thread sees its available
bandwidth divided by.

This ratio does not necessarily represent contention within caches or on the memory
bus. We actually observed no cache contention on the Intel Sandy Bridge micro-architecture
used for our tests (while the AMD Bulldozer micro-architecture shows some). However the
limited capacity of physical caches causes the ratio to increase when multiple threads try
to place too much data in the shared L3 cache. They cause some parallel capacity misses,
which look like cache contention on the benchmark outputs.

Listings 3.12, 3.13 show some code examples used to run the parallel benchmarks
presented in Figure 3.11.
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s0 = runtime ;
...
s7 = runtime ;

thread :0. load(s0);
thread :1. load(s1);
...
thread :7. load(s7);

time(
thread :0. load(s0);
thread :1. load(s1);
...
thread :7. load(s7);

);

Listing 3.12: Code used to
perform the load hit exclusive
benchmark in parallel.

s0 = runtime ;
...
s7 = runtime ;

thread :1. load(s0);
thread :2. load(s0);
thread :2. load(s1);
thread :3. load(s1);
...
thread :0. load(s7);
thread :1. load(s7);

time(
thread :0. load(s0);
thread :1. load(s1);
...
thread :7. load(s7);

);

Listing 3.13: Code used to
perform the load miss shared
benchmark in parallel.

As shown on Figure 3.11, there is almost no contention on private caches: every inde-
pendent cache can deliver the same bandwidth when it is accessed alone or when all private
caches are accessed at the same time. This is particularly interesting because no contention
appears even when coherence traffic is involved. However, as one would expect, contention
seems to appear in shared resources such as L3 and memory. As explained above, the L3
cache contention is actually caused by parallel capacity misses caused by multiple threads
sharing the overall L3 size.

More interestingly the ratio depends on the state of cache lines accessed: accessing mod-
ified cache lines (in L3) always leads to more parallel performance decrease that accessing
clean lines. Also, we can see on Figure 3.11c that there is more parallel issues when writing
to exclusive cache lines than writing to shared ones. We could not explain this behavior,
and it justifies further the idea to hide hardware complexity by using benchmarks: they
capture more such puzzling hardware behavior than more abstracted analytical models,
and we just use their outputs in our model.

3.4.4 Guidelines for Improving Coherence Behavior

We saw that different choices in hardware design lead to different behaviors, however
this report is not enough to help software engineers to better utilize hardware. Yet this
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can be used to detect what are the memory access patterns that lead to poor memory
performance. By avoiding these patterns one can speedup memory access and thus reduce
software runtime.

Patterns with poor performance are architecture dependent, and software has to be
tuned for the targeted hardware. However, as we could see in the previous section, it
seems that the overall behavior or a given memory hierarchy mainly depends on the cache
coherence protocol chosen to maintain memory consistent. For instance we saw that the
general behavior of the Nehalem and the Sandy-Bridge architectures are the same. This
is because they use the same cache coherence protocol. However the Bulldozer processor,
using a different cache coherence protocol behaves differently. Therefore, we can suppose
guidelines for better utilizing memory hierarchies can be applied to all the architectures
using the same cache coherence protocol.

In order to quantify the performance of memory access patterns between them, we
present in Figure 3.12 the real bandwidth measured on the Sandy-Bridge processor for all
benchmarks.

By looking at Figure 3.12b, we see that reading data modified by another core results
in lower bandwidth compared to reading clean cache lines from other caches. In order to
optimize an application using this kind of memory access, one can try to to change the
thread process binding. However on some algorithms this is not possible. For instance, on
a pipelined application or a producer consumer work-flow this communication pattern is
unavoidable. But we can see that the overhead due to coherence on this access pattern is
more important in lower cache levels. If the application is tiled it can be worth trying to
use larger tiles. Indeed, bigger data set will be more likely to stay in higher cache levels, it
can decrease the overhead of the coherence traffic.

On the writing side, if we look at Figure 3.12c, we can see that writing to shared
memory chunks is slower than writing to exclusive or modified data. This is due to the
invalidation request needed on this kind of access in the MESIF Protocol. Yet the worst
pattern when writing is writing to a memory location not present in the local cache as
we can see on Figure 3.12d This remark justifies the Owner-Computes Rule often used for
binding or scheduling in HPC software. This rule states that when computing the result of
an arithmetic expression, the computation should be performed by the thread holding the
left hand side of the expression (i.e. the variable that is stored). The key idea behind this
rule is to avoid storing to memory location that are cached by another core. This memory
access pattern also that happens with false sharing.

They are several intriguing observations about these plots: On Figure 3.12a and 3.12c,
the steep increase in bandwidth in L1 cache is due to an overhead of our measurement
function. This can also be observed on the 2 other figures but since the bandwidth are
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lower, it is less visible. On the miss benchmarks (Figure 3.12b and 3.12d) on modified cache
lines, the very slow transition between L1/L2/L3 performance comes from the remaining
dirty cache lines in lower cache levels that have to be written back to keep maintain cache
coherence. On Figure 3.12b when data sets accessed are 32 kB to 20MB wide, we failed to
explain why would it be slower to access exclusive cache lines than shared ones. Especially
since on the Nehalem architecture this performance gap does not exist. On Figure 3.12d,
writing to modified cache lines is slower than writing to exclusive caches lines in level 2
cache and in the beginning the L3. In the shm benchmark, if data set is larger than L1,
when starting the benchmark, the L1 is full of dirty cache lines (the last 32 kB of the
stream). Therefore when we start the benchmark, we write to the L1 a cache line that is
no longer in the cache (the beginning of the buffer has been flushed to L2) a line is freed
in order to hold the new address. Since the line freed is dirty it has to be written back
to maintain cache coherence, this explains the gap between the modified and exclusive
versions of this benchmark: on the exclusive version the lines are clean and do not have to
be written back.

This explanation is also true for the small gap observed on Figure 3.12a between the
modified and the exclusive states in L2 cache. On Figure 3.12d we did not find an expla-
nation why store miss to modified cache lines is faster in the end of the L3 than access to
clean cache lines. Again this gap is not present on the same benchmark ran on a Nehalem
architecture.

3.5 Conclusion

We presented a language and tool for memory benchmarking. The tool presented is
the first tool to our knowledge to measure on performance design choices for multi-core
memory hierarchies, such as the coherency protocol and the different bandwidths.

Our framework differs from existing frameworks such as LIKWID [80] and STREAM [57]
because we can select the part of benchmarks where performance measures have to be done.
This allow us to set buffers in a controlled state to measure precisely the impact of the
coherence protocol on cache performance. Because of this the benchmarks used in this
chapter to characterize memory architecture could not be written with these benchmark or
framework. We could have used BenchIT [49] or MicroPerf Tools [11] to write the bench-
marks we used in this chapter. Because they are very extensible we could have written the
micro-benchmarks we needed into these frameworks, and call them with careful synchro-
nization to set memory is the required state. But, as we saw a large through this chapter,
a large number of benchmarks have to be designed to fully characterize cache coherent
memory hierarchies. Using these tools to write the wide range of benchmarks we used
would take a lot of time and would be error prone.
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We used our language to write several benchmarks to characterize multi-core processor

memory hierarchy. The benchmarks presented in this chapter only use two hand-written
micro-benchamrks (load and store), but more complex micro-benchmarks can be written
and used in the benchmark description language.

By analyzing the output of memory benchmarks we can compare the choices made in
hardware design and the impact it has on memory performance. This can help selecting
the proper hardware for specific needs or it can guide future hardware designs. With a
set of representative benchmarks we are able to characterizing the behavior of a memory
hierarchy. And, with a careful analysis of this behavior we are able to provide guidelines
to help utilizing memory more efficiently. Also show showed unexpected cache behavior
on a particular cache architecture. This supports us in the benchmark-driven approach to
memory modeling we have because this behavior could not be predicted knowing the cache
coherence protocol used by the processor.
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(b) A Intel Sandy Bridge micro-architecture socket.
Machine (16GB)

Socket P#0 (16GB)

NUMANode P#0 (16GB)

L3 (6144KB)

L2 (2048KB)

L1d (16KB)

Core P#0

PU P#0

L1d (16KB)

Core P#1

PU P#4

L2 (2048KB)

L1d (16KB)

Core P#2

PU P#8

L1d (16KB)

Core P#3

PU P#12

L2 (2048KB)

L1d (16KB)

Core P#4

PU P#16

L1d (16KB)

Core P#5

PU P#20

L2 (2048KB)

L1d (16KB)

Core P#6

PU P#24

L1d (16KB)

Core P#7

PU P#28

(c) A AMD Bulldozer micro-architecture socket.

Figure 3.4: Micro-Architectures Compared.
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Figure 3.5: Load Hit Benchmark Comparison.
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(a) Load Miss Benchmark on clean data (Ex-
clusive and Shared states) for different architec-
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●
●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●
●

●●●●●●●
●●●●

●●●●●
●●●●●●●●●●●●●●●●●●●●●●●

●

●

●

●

●
●
●●

●●●●●●●●●●●●

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

8 16 32 64 128 256 512 2048 8192 32768

Data size (kB)

R
el

at
iv

e 
B

an
dw

id
th

● Nehalem Sandy−Bridge Bulldozer

(b) Load Miss Benchmark on Modified data for
different architectures.

Figure 3.6: Load Miss Benchmark Comparison.
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(a) Store Hit Benchmark on Non-Replicated
Data (Exclusive and Modified states).

●
●

●
●
●
●
●●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●

●
●
●
●●●●●●●●●●●●●●●●

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

8 16 32 64 128 256 512 2048 8192 32768

Data size (kB)

R
el

at
iv

e 
B

an
dw

id
th

● Nehalem Sandy−Bridge Bulldozer

(b) Store Hit Benchmark on Replicated Data
(Shared state).

Figure 3.7: Store Hit Benchmark Comparison.
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sive and Shared states).
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(b) Store Miss Benchmark on Modified data.

Figure 3.8: Store Miss Benchmark Comparison.
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Figure 3.9: A Intel Dunnington micro-architecture Socket.
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Figure 3.10: Output of the Store Hit Benchmark on the Dunnington Micro-Architecture.
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(a) Parallel Load Miss benchmarks.
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(b) Parallel Load Miss benchmarks.
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(c) Parallel Store Hit benchmarks.
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(d) Parallel Store Miss benchmarks.

Figure 3.11: Parallel bandwidth ratio for several benchmarks on Intel Sandy Bridge pro-
cessor with 8 threads running the code.
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(a) Load Hit.
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(b) Load Miss.
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Figure 3.12: Full Benchmark Set results on Sandy-Bridge Micro-Architecture.
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Chapter

4

Benchmark based
Performance Model

“The only source of knowledge is experience.”
— Albert Einstein

High performance computing requires proper software tuning to better exploit the hardware
abilities. The increasing complexity of the hardware leads to a growing need to understand
and to model its behavior so as to optimize applications for performance. While the gap
between memory and processor performance keeps growing, complex memory designs are
introduced in order to hide the memory latency. Modern multi-core processors feature deep
memory hierarchies with multiple levels of caches, with one or more levels shared between
cores.

Performance models are essential because they provide feed-back to programmers and
tools, and give a way to debug, understand and predict the behavior and performance of
applications. Therefore we tried to automatically build full analytical models of hardware.
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While we were able to retrieve automatically information allowing – or easing – hardware
modeling of the on-core, the complexity of modern memory hierarchies prevented us from
doing the same with cache hierarchy. In this chapter we try to circumvent this issue
by relying on benchmarks to provide performance information about the cache hierarchy
modeled.

The benchmarks presented in the previous chapter is a strong basis to isolate memory
performance and study it without noise from other software components. By analyzing
the performance achieved on several access pattern we can better understand and explain
performance of memory hierarchies.

Some works focus on how to model cache misses [2, 6, 75, 77] for multi-threaded codes,
or on how to model cache coherence traffic [51]. However, they do not consider simultane-
ously the impact of cache misses, of coherence and contention coming from shared caches.
A 5C model, accounting for Compulsory, Capacity, Conflict misses, Contention and Co-
herence remains to be found in order to help study the impact of factors such as the data
set size for each thread or the code scalability on multi-cores.

In this chapter we present a novel performance model that allows detailed performance
prediction for memory-bound multi-threaded codes. This differs from the previous ap-
proaches by predicting the cumulated latency required to perform the data accesses of a
multi-threaded code. The model resorts to micro-benchmarks in order to take into account
the effects of the hierarchy of any number of caches, compulsory misses, capacity misses
(to some extent), coherence traffic and contention. Micro-benchmarks offer the advantage
of making the approach easy to calibrate on a new platform and able to take into account
complex mechanisms. In addition these benchmarks can be used as hardware test-beds,
e.g., to choose between several architectures which one best suits the needs. Another usage
of this test-bed is to check if a computer architecture performs as expected, or even detect
some misbehavior as presented in Section 3.4.3.

This chapter is organized as follows: first, Section 4.1 presents the scope and an overview
of our work. Our model is later detailed in Section 4.2 as a combination of hardware and
software models. Section 4.3 details usage of our model to predict real world code perfor-
mance. Finally we will show how we applied our model to model MPI communications in
shared memory in Section 4.4.

4.1 Scope and Model Overview
Our model takes as input the source code to analyze. The code can be structured with

any number of loops and statements, and we assume the data structures accessed are only
scalars and arrays. Parallelism is assumed to be expressed in OpenMP parallel loops. The
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iteration count of the loops have to be known at the time of the analysis, and the array
indexes have to be affine functions of surrounding loop counters and of thread ids.

Predicting the time to access memory usually requires to build a full theoretical perfor-
mance model of the memory hierarchy. This work is however difficult due to the complexity
of all the hardware mechanisms involved in modern architectures. Instead we choose to
build a memory model that is calibrated thanks to benchmarks. These benchmarks are
used to capture the hardware behavior of common memory access patterns. The bench-
marks are used to recored the average latencies needed to access cache lines in on the
different states of the MESI protocol. We then combine these latencies to predict memory
access time of software.

The main difficulty with this approach is to find a set of benchmarks that characterizes
hardware precisely, and to keep this set as small as possible. Indeed, the easiest way to
build a model able to predict memory performance is to extract the memory access pattern
of an application, and run a benchmark that has this same access pattern. However the
combinatorics of such an approach is way too large to be effectively implemented. Instead
we choose a restricted set of benchmarks that provides us with information about read
and write latency of the targeted architecture under common circumstances. Then we
try to rebuild the application memory access pattern by combining the outputs of these
basic benchmarks. We found that in cache coherent architectures, the state of the target
cache lines has a large impact on performance. Concurrent accesses to shared data buffers
lead to cache-line bounces between cores due to the need to maintain coherence between
the existing data copies in their caches. Thus we build a set of benchmarks that gives us
insight about the read and write latency to cache lines for every of the state of the MESI
protocol [64]. Indeed most cache coherent processors use protocols that are based upon
MESI. Since we aim at building a model that can be applied to a wide range of architectures,
we do not want to embed in the model some states that are specific to a particular protocol
or architecture.

In order to predict the time needed to access memory on a given application, we de-
compose it into a memory access pattern. This pattern tells us the amount of memory
access and how it is accessed (i.e. reading or writing). If we suppose that we know the
full state of memory (i.e. the cached addresses and their locations), we can i) reconstruct
the state of memory after every access, and ii) read each access duration from the output
of our benchmarks. By taking memory events one after another we can track the state of
data in caches and construct a formula that will predict the time needed to access memory
for the whole application. Figure 4.1 illustrates how software and hardware are modeled
and how these models are combined to perform time prediction.
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Figure 4.1: Illustration of the interaction of the different components of our Memory Model.

4.2 Program and Memory Models

In Section 4.2.1 we present how programs are represented in order to be able to apply
the prediction. Then we detail the view of memory used in our work in Section 4.2.2.
Finally Section 4.2.3 describes how the model is used for predicting execution times.

4.2.1 Program Representation

In order to use our memory model on real application we had to find a representation
of software that reflects its interaction with memory. Since we aim at modeling memory
performance we do not need to represent computation performed by threads but only the
memory accessed. For each thread we model the chunks of memory accessed and how it is
accessed.

Input codes are OpenMP parallel codes, using only parallel for loop constructs. Our
model represents programs by only considering their memory access patterns since our
work focuses on memory-bound codes. A memory access pattern is characterized by the
addresses it accesses: i.e. the chunk and the access type, i.e. read or write. A memory
chunk is defined by its size and stride. OpenMP codes are translated into a simplified
representation, where statements are memory access steps, each step accessing a chunk of
memory. These steps are characterized by the number of threads involved and, for each
thread, the data read and written.

In this model, we define a chunk as the set of elements of a given array accessed by
a thread in an OpenMP parallel for loop. These elements are considered as an atomic
piece of memory, and a thread accesses either all the elements of a chunk or none of them.
Moreover the access type has to be the same over all the elements of the chunk (only read
or only write). Formally, we define a chunk as an array index region, defined by its size
and stride, and defined by the triplet notation as used in compilers (interval and stride).
For a given array, we assume the same chunks are used for all the analyzed code.



4.2 Program and Memory Models 115
Memory access steps are defined as read and write statements to arrays, with a mapping

associating threads from the set of threads T to chunks from the set C. For instance,
read(f,X) defines a read access to chunks of array X: For any thread t ∈ T for which f(t)
is defined, the thread t reads the chunk X[f(t)]. Since the same chunks are used for all
accesses to a given array within a step, this means we assume the same mapping function f
is used for all accesses to X. The following DAXPY computation with n threads illustrates
this definition. This code
double X[SIZE],Y[SIZE ];
# pragma omp parallel
for (int i=0; i<SIZE; i++) {

Y[i] = a * X[i] + Y[i];
}

Listing 4.1: DAXPY kernel in C + OpenMP language.

would be represented as:
double X[SIZE],Y[SIZE ];
read(f, X);
read(f, Y);
write (f, Y);

Listing 4.2: Representation of the DAXPY kernel with our formalism.

where

T = {0, 1, ...n− 1}
C = {f(0), f(1), . . . , f(n− 1)}
f : T −→ C

f(i) =
[
i ∗ SIZE

n
; (i+ 1) ∗ SIZE

n
; 8
]

(assuming out of simplicity that SIZE is a multiple of n).

The function f maps threads to triplets, where a triplet is defined by an interval of
values and a stride (here 8, corresponding to the size of a double). Note that all read
statements from the DAXPY code are replaced by two read statements, each accessing a
section of the array. Therefore the sequence of reads and writes, where initially one read
alternates with one write, has been replaced by a stream of read followed by a stream of
write accesses. The code in Listing 4.1 and Listing 4.2 are not semantically equivalent.
However we focus here only on performance, and the goal of the new code is to approach
the performance of the initial one while being simpler to model.
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For pipeline architectures, this abstraction provides an upper bound on performance

that can be obtained from the initial code. Similarly, for sequential loops, loop-carried
dependencies are in general not considered in our representation. Consider the following
code:
double X[SIZE],Y[SIZE],k;
for (int i=0; i<SIZE; i++) {

X[i] = k;
k = Y[i];

}

The first statement depends on the second statement of the previous iteration. However,
since the architectures we consider are pipelined, a read and a write can be issued at the
same iteration. This code will be represented as:
double X[SIZE],Y[SIZE],k;
write (f,X);
read(f,Y);

where f is defined by f(0) = [0;SIZE; 8] if only thread 0 executes this code.

Only parallel OpenMP loops with a static scheduling strategy can be analyzed. Defining
chunk sizes in OpenMP boils down to a tiling transformation, with the outer loop a parallel
loop, and the inner loop a sequential loop iterating within the chunks. Hence parallel loops
with constant chunks can be translated into our representation.

Memory accesses performed in a MASTER OpenMP construct correspond to read/write
involving only thread 0, with a direct representation in our formalism. Other keywords are
not handled so far.

4.2.2 Memory Model

Once an application is modeled, we need to be able to predict its memory behavior
with respect to caches and to the coherence protocol. To do so, we need to keep track of
the state (in the coherence protocol) and location of each chunk.

The memory hierarchy is entirely modeled as one level of coherent, private and infinite
capacity caches, with one cache per core, as depicted in Figure 4.2. We define a latency
function, giving the time to access a chunk of data as a function depending:

• On the size of the chunk and on its stride,

• On the state of this data in the caches,
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Figure 4.2: The memory hierarchy is modeled as one level coherent, private and infinite
capacity caches.

• On the number of threads that access data simultaneously.

We choose to build our model upon the MESI protocol since it is used as the basis for
most CPUs with hardware cache coherence. Real hardware processors resort to variants
of MESI, such as MESIF or MOESI, this protocols could be modeled likewise1. In the MESI
protocol, data present in caches are in one of the four states defined in MESI protocol:
Modified, Exclusive, Shared, Invalid. Since the programming model described in Section
4.2.1 uses data chunks as atomic blocks of data, the states used to maintain cache coherence
are defined for chunks, not for individual data. We associate to each data chunk of the
program a state corresponding to the MESI states, with the list of threads on the machine
that have it in their (virtually infinite) own cache. These chunk states can be:

M{t} This data chunk is in state modified in the cache of the thread t.

E{t} This chunk is only in the cache of the tth thread (in exclusive state).

SΩ The chunk is in shared state for all threads in Ω.

I This chunk is not present in any cache. At the beginning of the program, all chunks are
in this state.

Therefore, for any array X and any mapping function f associated to X, the state of a
chunk X[f(t)], for any t, is updated according to the accesses to the accesses to it. This
state will be denoted X[f(t)].state.

In terms of precision, this memory model takes into account some types of cache misses,
whatever the number of caches in the memory hierarchy. Compulsory misses correspond
to accesses to data in Invalid state (the I in MESI protocol). Capacity misses are not
explicitly supported since the modeled caches have infinite capacity. However the latency

1The protocols could be Forward state identifies the only shared copy that is responsible for replying to
requests from other caches. It reduces the traffic without changing the coherence model. Similar remarks
applies for the Owner state.
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function associated to read/write operations takes into account capacity misses by reporting
the performance of different cache levels depending on the size of the chunk. Indeed large
chunks result in data moving from L1 to higher levels of caches on the real platform.
Therefore capacity misses occurring while accessing a single chunk are handled (while
capacity misses due to the use of different chunks are ignored). Conflict misses are not
handled. Note in general that our memory model is not able to count the number of misses,
whatever their type, but their impact on the memory latency is handled. Contention
and the impact of coherence protocol result from the state of data and of the number
of threads accessing data simultaneously, and is also taken into account by the latency
function.

The micro-benchmarks are defined and run in order to define this latency for all its
possible values. The latency of a memory access depends on the chunk (its size and its
stride), on the number of threads accessing to memory simultaneously, on the state of the
chunk and the type of access (read or write). If considering a data chunk X[f(t)] read by
thread t with the statement read(f,X), the time to perform this read will be defined by
the latency function L (for load):

L(X[f(t)].state, |f |, f(t)) (4.1)

where |f | denotes the number of threads that read a chunk simultaneously, in the same
state. A similar latency function S (for store) is defined for write operations.

The state of a chunk has to be updated after each access to this chunk. Consider a
chunk read by threads with id in T . If state is the state of this chunk before the read, the
new state state′ is defined by a transition function δ as:

state′ = δ(state,L, T ),

where L denotes a load operation. When a read(f,X) statement is executed, for each
threads t involved in this step, the state of the chunk X[f(t)].state is updated according
to this transition. Similarly, when a chunk is written by a thread (only one thread at a
time) during a write(f,X) statement, the type of operation is denoted S.

Figure 4.3 defines how states change according to the type of access and the ids of the
threads accessing the chunk. Each chunk maintains its own state and each state keeps track
of the threads ids that have a valid copy of the chunk in their cache. The numbers associated
to each transition correspond to the name of the benchmark (and latency function) used
to predict the time to perform the access.

At the beginning of the program, each data chunk is in the initial state I, meaning it
is not in any of the cache of our modeled machine. Executing read and write steps in our
program model will change chunk states and the latencies for these transitions are defined
by micro-benchmarks.
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Figure 4.3: Automaton for tracking chunk’s states and for selecting the benchmarks that
represent each memory access step.

4.2.3 Time Prediction

To predict memory access time, we run the program description using read and write
steps, update the states of the different chunks accessed and sum-up the latencies for these
transitions. The associated time for each of these transition is read from the benchmark
measures presented in Chapter 3.

Table 4.1 gives for each of the transition the corresponding benchmark. In the following
we will call respectively lhm(n), lhe(n), lhs(n) the benchmark load hit modified, load hit
exclusive and load hit shared with n threads in parallel. And lmm(n), lme(n), lms(n) and
lmi(n) the benchmarks load miss modified, exclusive, shared and invalid with n threads in
parallel. Transition (1) is taken when a store (St) happens on a modified chunk and if the
chunk is already in the cache of the thread t performing the write: the benchmark to get
the cost of this transition is therefore the store hit modified benchmark. If the chunk is not
in the cache performing the store, transition (2) is taken and the corresponding benchmark
is store miss modified. For each of these benchmarks, latencies are defined according to
the number of threads executing a write, the size of the chunk and its stride, as shown in
the definition 4.1. In transition (4), if |T | > 1 and t ∈ T , one thread will incur cache hit
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and the |T | − 1 others will incur cache misses. We assume that the execution time of a
program running n threads will be the execution time of the slowest thread. Thus, even
if among n threads, one hits while the others miss, we assume the performance to be the
one of the slowest threads, i.e. the performance of threads incurring cache misses.

Table 4.1: Benchmark used for memory access time computation. Numbers in the left
column correspond to the transitions in the state transition automaton in Figure 4.3.

Transition Benchmark
(1) shm
(2) smm
(3) lhm
(4) lmm
(5) she
(6) sme
(7) lme
(8) lhe
(9) shs
(10) sms
(11) lhs
(12) lms
(13) smi
(14) lmi
(15) lmi

In order to predict performance, our model must match reality. The benchmark part
of the model is the first step toward this, but we also have to assemble benchmark results
in a way that reflects real hardware behavior. For instance the fact that loads and stores
can be performed at the same time on modern architectures has to be taken into account.
When computing the total duration that predicts the run-time of a sequence of memory
access steps, the maximum of the aggregated latency of all read accesses, and
of the aggregated latency of all write accesses is therefore considered.

Besides, all chunks may not be in the same state for a read or write operation, and
the memory access may not take the same time for all chunks. Indeed, some chunks are
in different states within a single pattern, they will take different transitions. We only
have parallel benchmarks where every chunk take the same transition (e.g., only pure
load hit exclusive). Fortunately, Zhang et al. showed that the sharing pattern of threads
on multi-threaded application are often very regular: every chunk of memory will have
the same behavior [89]. In order to ensure prediction even when different chunks are in
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different states, the latency for all chunk accesses is assumed to be the longest one among
all accesses.

When aggregating the overall duration time of the pattern, each individual read or
write steps is considered by computing the latency according to Algorithm 2 and updating
the states of the involved chunks. The set of all triplets for f are denoted f([0,∞[), and
enumerating these triplets lead to the enumeration of all the chunks accessed in the step.
Note that L and S are the functions obtained from the micro-benchmarks.

read(f,X) :
latencyL+ = maxt∈0..|f |−1 L(X[f(t)].state, |f |, f(t)) ;
forall the c ∈ f([0,∞[) do

X[c].state = δ(X[c].state,L, |f |) ;
end
write(f,X) :
latencyS+ = maxt∈0..|f |−1 S(X[f(t)].state, |f |, f(t)) ;
forall the c ∈ f([0,∞[) do

X[c].state = δ(X[c].state,S, |f |)
end

Algorithm 2: Definition of read and write steps. f is the function mapping threads
to triplets, |f | corresponds to the number of threads active in this step and X is an
array.

4.3 Experiments
In this section we present several memory-bound applications that we modeled in order

to predict their performance. This covers a wide range of HPC kernel types. Compute-
bound applications are not considered because memory accesses are overlapped with com-
putation and thus do not need to be optimized much.

One possible use of our model is to select the best working set size to achieve best
performance. Another would be to select the minimal number of threads to use for a
given computation without performance degradation. In order to illustrate these two ap-
proaches in the next sections, we will present comparison between our predictions and real
applications. We only selected a few graphs in order to show interesting or unexpected
results. After modeling several applications, we found that our model predicts performance
of applications with an average fitness higher than 80%.

Our model computes the execution time of application. However in the remaining of
this section we present the results in bandwidth because it fits better in plots and allows
better performance comparison for several data set sizes.
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4.3.1 MKL dotproduct

First we tried to predict performance of several BLAS subroutines. As our model
predicts an upper bound of achievable performance, we choose to compare our prediction
to one of the best available implementations, the MKL library.

The dotproduct computation can be modeled as shown on the following code. The
dotproduct computation only consists of the load of 2 different chunks.
double X[SIZE],Y[SIZE ];
read(f, X);
read(f, Y);

Listing 4.3: Representation of the dotproduct kernel with our formalism.

Before running the experiment, all chunks are written by the first thread (thread 0),
therefore all chunks are in state M{0}. We choose to initialize vectors this way because
it shows first, that the initialization phase can be critical for further performance, second
because that is what many users would do in the first place.

Let size be the size of each chunk, and n be the number of threads involved in the
computation. The latency prediction formula for dotproduct code is:

Tdotproduct = lmm(n)(size) + lmm(n)(size)

Since threads all perform the same memory operation on chunks in the same state the
execution time of each of them is the same and we simplified the MAX from the formula
given the model. lmm(n)(size) is the time needed for n thread to perform a load miss
modified on chunks of size in parallel. Also since there is no store involved in this pattern,
we also simplified the MAX between time to read and time to write.
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Figure 4.4: Dotproduct pattern performance prediction compared to MKL dotproduct on
Intel Sandy Bridge depending on the number of threads.
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We can see on Figure 4.4 that our model is able to predict the behavior of dotproduct

function calls from the MKL library. The model predicts performance changes near cache
sizes (32 kB, 256 kB and 20MB) while the experiment shows that the thresholds are actually
twice lower. This may be caused by our model not taking capacity-misses explicitly into
account as explained in Section 4.2.2. Aside from this shift, the graphs have very similar
shapes.

The figure also shows that the size of data sets has a big influence on performance.
When only using one thread, the dotproduct computation is faster when data set fits in
the L1 cache. However it is faster in L3 when using several threads. Again, this comes
from coherence overhead: with a single thread, there is no coherence to maintain, thus we
get better performance with faster memory. However with more threads, coherence gets
involved and performance is degraded. But when data only fits in the last level of cache,
which is shared between all cores, then no cache coherence is required anymore, and code
achieves better performance.

However, if we are careful with vector initialization (i.e. computing threads initialize
the chunks they read), the dotproduct kernel can exhibit super-linear speedup as show on
Figure 4.5 This super-linear speedup is due to the size of the chunks accessed by threads.
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Figure 4.5: Dotproduct kernel speedup with 1MB data set on Intel Sandy Bridge processor.

With a single thread, the chunks accessed are 512 kB wide (2 chunks of 512 kB) and it only
fits is L3 cache. However with more threads the chunk size becomes smaller and they fit
in lower cache levels, leading to better performance.

Yet, with very large chunks, the dotproduct kernel can have a poor speedup even with
a careful data initialization as shown on Figure 4.6. It increases up-to 4 with 6 threads
and then stagnates. The predicted speed-up is close to the measured one. As seen in



124 Chapter 4. Benchmark based Performance Model

●

●

●

●
● ● ●

●

1 2 3 4 5 6 7 8

0
2

4
6

8

Threads

S
pe

ed
up

● Predicted Speedup
Real Speedup

Figure 4.6: Dotproduct strong scalability on two 32MB vectors.

Section 3.4.3, parallel capacity misses appear when all threads use the same shared cache,
leading to poor scalability. Even with 8 threads running this kernel, each of them still
manipulates 8MB which does not fit in local caches. This is an example showing that our
model handles parallel capacity misses: when multiple threads competes for the memory
blocks of a shared cache, our performance model is able to take into account the capacity
misses that occur. Moreover, while this is not observed here, memory contention could be
predicted likewise.

4.3.2 MKL DAXPY

In Section 4.2.1, Listing 4.2 shows the representation of a DAXPY computation. The
time formula for DAXPY code is:

TDAXP Y = MAX
(
lmm(n)(size) + lmm(n)(size),

shs(n(size)
)

Figure 4.7 shows the performance of the DAXPY operation depending on the number
of threads. Again our model is able to predict the behavior of the MKL.

The figure also shows interesting facts about scalability and coherence overhead. First,
for small data sets (32 kB) DAXPY run with 2 threads is slower than with a single thread.
This comes from the fact that vectors are initialized out of any parallel section, therefore
only the first thread touches them before calling the DAXPY function. Thus, with one
thread, there is no overhead due to cache coherence. However with more threads, we have
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Figure 4.7: DAXPY-pattern strong scalability prediction compared to MKL DAXPY scal-
ability on Intel Sandy Bridge.

to pay the price of cache coherence. In order to optimize this application, one should be
careful when initializing vectors. This also explains why, even for larger data sets, this
code scales poorly: coherence overhead reduces effective memory bandwidth.

4.3.3 FFT Communication Pattern

Next, we tried to model more complex memory patterns. A part of the FFT computa-
tion is memory-bound, it is known as the butterfly pattern. The code performing a single
butterfly on an array of size 2N is shown in Listing 4.4.
# pragma omp parallel for private (i)
for(i=0; i<N; i++) {

j = A[i]
k = A[i+N]
B[i] = p(j, k);
B[i+N] = q(j, k);

}

Listing 4.4: The FFT twiddle or butterfly communication pattern written in C + OpenMP.

This communication pattern consists of reading 2 chunks performing computation on it
and storing the result in two other chunks. We can see on the following code how it is
modeled for our prediction:
read(f0 , A);
read(fN , A);
write(f0 , B);
write(fN , B);

Listing 4.5: The same FFT communication pattern written with our program representa-
tion.
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where f0 is the function mapping thread 0 to the first chunk of A, thread 1 to the second
chunk of A, etc, and fN the function mapping thread 0 to the (N + 1)th chunk, thread
1 to the (N + 2)th chunk, etc (using a modulo on the chunk number). Once again, the
initialization consists in thread 0 writing all chunks. Thus chunks are all in the M{0} state
before starting the computation.

Tfft = MAX
(
lmm(n)

(
size

2

)
+ lmm(n)

(
size

2

)
,

smm(n)
(
size

2

)
+ smm(n)

(
size

2

))
We compare the predicted bandwidth and the real code bandwidth on Figure 4.8, both
given per thread. The prediction curve is again a bit shifted on the right, but we still are
able to predict the overall behavior of this access pattern. We can see that the FFT com-
munication also presents a big cache coherence overhead: we get better performance when
data sets fit the shared cache if using several threads while it achieves better performance
in L1 cache with only 1 thread.
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Figure 4.8: FFT pattern performance prediction on Intel Sandy Bridge depending on
number of threads.

4.3.4 Conjugate Gradient

we applied our model to the Conjugate Gradient (CG) benchmark of the NAS parallel
benchmark [7]. We were able to predict the speedup of this benchmark for all data set sizes
(called class in the NPB configuration) as shown on Figure 4.9. The speedup of this bench-
mark is close to be ideal. This is due to the small amount of data sharing among threads.
The CG benchmark is composed of 8 steps some of these steps are represented in the follow-
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Figure 4.9: Speedup of the Conjugate Gradient (CG, class C) NAS benchmarks on an Intel
Sandy Bridge architecture, with respect to the number of threads used. The gap between
the predicted speed-up and the measured one is less than 12%.

ing codes 4.6 and 4.7.

while (..) {
write (f, q);
write (f, z);
read(f, x) ;
write (f, r);
read(f, r) ;
write (f, p);
.. // Steps 2-8 of CG

}

Listing 4.6: Conjugate gradient (CG) step 1.

while (..) {
.. // Steps 1-4
read(f, z) ;
read(f, p) ;
write (f, z);
read(f, r) ;
read(f, q) ;
write (f, r);
read(f, r) ;
.. // Steps 6-8

}

Listing 4.7: Conjugate gradient (CG) step 5.

Note that all mapping functions f are the same for all memory accesses. Steps 3 and 7
of the CG benchmark are matrix-vector products with variable length vector size, because
this does not exactly fit our model we recorded the average length of the vector for each
class and used it as a constant sized vector access. Still, our model was able to predict the
real scalability of this algorithm.

4.4 Application to Shared Memory Communications
The performance of MPI communication in parallel scientific applications is often a key

criteria for the overall software performance. Communication tuning has often been inves-
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tigated for achieving better performance. Indeed most MPI implementations adapt their
communication strategies to the underlying architecture and to the operation parameters.
For instance processes running on the same node communicate through shared memory
instead of through the network interface. In order to help understanding and tuning of
shared memory MPI communication we choose to analyze them through the use of the
memory model presented in Section 4.2.

Communication inside nodes usually relies on two memory copies across a shared-
memory buffer. These copies involve cache coherence mechanisms that have an important
impact on the actual performance of memory transfers. Unfortunately MPI implemen-
tations tune shared memory communication strategies based on metrics that rarely take
caches into account, merely by considering their sizes. Tuning of shared memory commu-
nication actually requires understanding the performance implications of cache coherence.
Apprehending this impact can be cumbersome because modern memory architectures are
increasingly complex, with multiple hierarchical levels of shared caches.

Proper automatic tuning of intra-node MPI communication strategy is very difficult be-
cause it depends on many factors: Is the transfer running alone on the machine or is it part
of a large parallel communication scheme causing contention? Does the application want
overlap? Does the hardware efficiently support these needs? Depending on the answers to
these questions, the performance of a communication strategy may vary significantly.

We believe that cache coherence is the key to understanding these behaviors. Cache
effects are often used as the easy cause of complex behaviors in memory-bound codes, es-
pecially shared-memory communication, without actually explaining them for real. Indeed
the characteristics of caches (and of the cache coherence protocols that assembles them)
is hidden in the hardware and rarely fully documented. Therefore cache coherence causes
effects that cannot be easily modeled or even explained. Indeed we show later in this article
that even modeling basic data transfers such as memory copies is difficult.

We want to tackle this problem with the same approach as presented in Section 4.2.
We present in the next sections how we use it for analyzing and better understanding
shared-memory-based intra-node MPI communication.

4.4.1 Intra-node Communication Memory Model

Shared-memory MPI communication uses an intermediate buffer that is shared between
the sender and receiver processes. The sender process writes the message to the shared
buffer before the receiver process reads it. As described on Figure 4.10, every byte in the
transferred message therefore sees the following cache states:



4.4 Application to Shared Memory Communications 129
1. The sender reads the data from its memory. Temporal locality implies that it may

have been generated (written) recently. If so, this step is a Load Hit from a local
Modified cache-line. If not available in the local caches anymore, this is a Load Miss
that goes up to main memory.

2. The sender then writes the data to the shared buffer. That buffer was used by prior
transfers. It is therefore usually available in the local cache as well as in the cache
of another core. This is a Store Hit to a local Shared cache-line. The cache-line gets
evicted from the remote caches and goes to the Modified state in the local caches.

3. The receiver reads the shared-buffer from the sender core. This is a Load Miss from
a remote Modified cache-line. The remote cache line gets copied in the local caches
and both copies switch to the Shared state (this explain the state before step 2).

4. Finally the receiver writes the data to its receive buffer. If the target buffer was
recently used, this is a Store Hit (usually to a local Modified cache-line). Otherwise
it is a Store Miss to main memory.

M or I
Source buffer

Sender cache
Shared buffer
S    M    S

Receiver cache
Shared buffer
S    I    S

Destination

M or I

Sender Core Receiver Core

Load (1) Store (2) Load (3) Store (4)

(2) (2)(3) (3)

Figure 4.10: Cache state transitions for the source, and destination buffers of both sender
and receiver cores during the memory accesses involved in a shared-memory-based data
transfer.

Most modern MPI implementations follow this model. MPICH2 [15] and OpenMPI [34]
both allocate one large buffer shared between all local processes. It is then divided into one
set of fixed-size buffers (chunks) per sender. It means that each process always reuses the
same buffers for all transfers, even toward different destination processes. Other strategies
exist for various kinds of communication (for instance dedicating one larger buffer to each
directed connection, etc), but we will focus on this one when describing our model.

When the message is larger than fixed-size buffers, multiple ones are used and a pipeline
protocol makes sure the receiver can read previous buffers while the sender fills the next
ones. MPICH2 uses 64 kB cells while OpenMPI uses 32 kB fragments2 by default. As
depicted in Table 4.2, this pipelined model means that there may be 4 concurrent memory
accesses during a single transfer: Sender and receiver cores can execute their own copy in

2 OpenMPI uses a smaller first fragment so that the receiver can prepare the receiving of the next
fragments before they actually arrive.
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Table 4.2: Memory access parallelism during a pipelined transfer when the message is
divided into 3 chunks and the processor can execute one load and one store in parallel.

Time step Sender Core Receiver Core
1 Load + Store (chunk #1)
2 Load + Store (chunk #2) Load + Store (chunk #1)
3 Load + Store (chunk #3) Load + Store (chunk #2)
4 Load + Store (chunk #3)

parallel. Each copy involves loads and stores that can be executed in parallel by modern
cores. We will analyze the actual parallelism in Section 4.4.2. Each step translates into a
benchmark output as listed in Table 4.3.

Table 4.3: Transitions involved in our model for each transfer step.

Step Core State transition
1 Sender Load Hit Modified if recently generated,

Load Miss Modified otherwise
2 Sender Store Hit Shared
3 Receiver Load Miss Modified
4 Receiver Store Hit Modified if recently used,

Store Miss Modified otherwise

Given a message of sizeM and a maximal pipeline chunk of size C, there are n = bM/Cc
chunks of size Ci (usually the first and/or last chunks are smaller than C if M is not an
exact multiple of C). The overall transfer time is estimated to

T = S(C1) +
n∑

i=2
max

(
S(Ci), R(Ci−1)

)
+R(Cn)

where S and R are the times to copy a chunk on the sender and receiver side respectively.
When there is a single chunk, the sender and receiver times are added: the overall time is
a sequential aggregation of both sides. When there are many chunks3, the first and last
terms can be neglected, and the overall duration is the maximum of the sender and receiver
copy times.

Finally our model allows us to estimate S and R as we did for other kernels in Sec-
tion 4.3. The representation of copies in our model is shown in Listing 4.8.

3 A 1MB message uses 32 chunks in OpenMPI and 16 in MPICH2.
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read(f, SRC)
write(f, DEST)

Listing 4.8: Copy representation within our model.

Since the copy is performed by a single thread, f maps the thread performing the copy to
the whole buffer. For instance if the source and destination buffers have been used recently,
S and R are estimated to

S(Ci) = MAX(lhm(2)(M), shs(2)(M)) (4.2)
R(Cj) = MAX(lmm(2)(M), shm(2)(M)) (4.3)

where lhm(2), shs(2), lmm(2), and shm(2) are the benchmark-measured time for a Load
Hit Modified, Store Hit Shared, Load Miss Modified and Store Hit Modified respectively
when two processes access memory at the same time.

4.4.2 Evaluation

We now evaluate our model and use it to exhibit and analyze some possible opti-
mization hints based on the impact of cache-coherence protocols on shared-memory MPI
communication.

Our evaluation platform is summarized in Figure 4.11. It consists in two kinds of nodes.
The first contains two 8-core 2GHz Intel Xeon E5-2650 processors (Sandy-Bridge micro-
architecture, 16 cores total, a single Hyper-Thread used per core). The second kind is made
of four 16-core 2.1GHz AMD Opteron 6272 processors (Bulldozer micro-architecture, 64
cores total). CPU frequency scaling as well as Intel TurboBoost and AMD TurboCORE
technologies were disabled during tests so that the CPU and memory absolute performance
does not vary.

(a) Intel Xeon Sandy Bridge E5-2650. (b) AMD Opteron Bulldozer 6272.

Figure 4.11: One socket of each kind of node in the evaluation platform.
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To evaluate the model presented in Section 4.4.1 we compare its prediction with the

performance of an experiment. However our model only predict the performance of the
actual data transfer while MPI implementations add a lot of control code (such as eager
message management, rendezvous messages, synchronization) around it. We therefore
designed a synthetic experiment that only mimics the data transfer within the OpenMPI
1.7 implementation (32 kB pipeline chunks). The performance behavior is similar, but the
synthetic program gets higher performance thanks to the removal of the OpenMPI control
overhead.

Figure 4.12 presents the performance prediction of the model between 2 cores inside
the same Intel socket. The top line is the parallel prediction which means both sender and
receiver copies are executed fully in parallel. This is the asymptotic prediction for large
messages. The bottom line is the sequential prediction which means copies are performed
sequentially by the cores. This is the behavior for small messages when there is a single
chunk. The different predictions plotted in this figure were computed using performance
measurement of memory copies. The code of the experiment can be seen in Listing 4.9.
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Figure 4.12: Comparison of the benchmark-based prediction model, the sequential model,
the parallel model, and the actual shared-memory transfer. Intel platform.

if (rank == 0) {
MPI_Send (buf , SIZE , MPI_CHAR , 1, 0, MPI_COMM_WORLD );

}
else {

MPI_Recv (buf , SIZE , MPI_CHAR , 0, 0, MPI_COMM_WORLD );
}

Listing 4.9: MPI transfer Experiment Code.
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As explained in Section 4.4.1, the prediction model is a mix of these two cases transition-

ing from one to the other between 32 kB (single chunk) and 4MB (128 chunks) message
sizes. We observed that our model accurately predicts the performance except between
256 kB and 16MB where the actual experiment is slower. These sizes corresponds to
buffers that go into the L3 cache. We explain our misprediction by the fact that the L3 is
shared between the two involved cores. It causes contention and capacity misses that our
benchmark-based memory model does not really take into account accurately. However,
our model works well when the message fits in L1 and L2 cache and in main memory.

One thing that makes our model hard to apply is the difficulty to predict the perfor-
mance of memory copies that are involved on both sides and accumulated in the analytic
formula (S and R functions in Equations (4.2) and (4.3)). Figure 4.13 presents the pre-
diction of each of the individual memory copies involved in the data transfer. It questions
the presupposed ability of the processor to perform one load and one store in parallel as
explained at the end of Section 4.4.1. Up to 128 kB messages (inside the L1 and L2 private
caches), the observed throughput is the parallel bandwidth reduced by 20%. However, for
larger messages, in L3 and in main memory, we only measure only 10% above the sequen-
tial throughput while the parallel one would be twice higher. Again, this is related to
contention in the shared L3 cache and on the memory channels, which do not optimally
support heavy parallel loads and stores. As we can see, the performance of each memory
copy are very close to the sequential model, where the time prediction is the sum of the
time to perform the load and the time to perform the store.
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(a) Benchmark-based prediction of the
receiver-side memory copy performance. The
source buffer was recently written by another
core (Load Miss Modified) while the destina-
tion buffer was recently used locally (Store
Hit Modified).
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(b) Benchmark-based prediction of the
sender-side memory copy performance. The
source buffer was recently written by the lo-
cal core (Load Hit Modified) while the des-
tination buffer was recently read by the re-
ceiver (Store Hit Shared).

Figure 4.13: Benchmark-based prediction of the sender-side memory and receiver-side
memory copies performance. On an Intel platform: Sandy-Bridge micro-architecture.

To summarize, our memory model can predict the performance of data transfer, assum-
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ing memory copy performance is understood, except when the shared L3 and main memory
disturb parallel access performance. This shows why understanding shared-memory com-
munication performance is always difficult: current memory architectures cannot be easily
modeled, too many hidden hardware parameters are involved. Overall, we predict the per-
formance behavior but not the absolute value very accurately. Fortunately, this is enough
to analyze that behavior and discuss possible optimization hints in the next sections.

To increase precision of our prediction we chose to model OpenMPI transfers per-
formance with output of copy benchmark as a basic block. Yet we were able to model
OpenMPI shared memory communication and showed that benchmarking is an effective
way to quickly understand complex mechanisms.

4.4.3 Impact of Application Buffer Reuse

One common source of mis-understanding of shared-memory MPI communication per-
formance is the reuse (or not) of application buffers in multiple iterations. As explained in
Section 4.4.1, this changes the involved MESI cache states and causes individual memory
access performance to vary significantly. It makes performance comparison meaningless
when it is not clear whether the same buffers were reused multiple times. Some bench-
marks [62] always reuse the same buffer while others such as IMB [43] have options to
configure/avoid this reuse. We now look deeper at the actual impact of buffer reuse on the
overall transfer time.
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Figure 4.14: Impact of buffer reuse on IMB Pingpong throughput with OpenMPI 1.7.3.
IMB was modified to support buffer reuse on one side without the other. Intel platform.

Figure 4.14 compares the throughput depending on buffer reuse on both sides. We ob-
serve that the receiver buffer state is much more important than the sender. Unfortunately
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this result is not convenient for application tuning because locality is easier to maintain
on the send side: the application can usually send the data as soon as it is ready, while it
often does not receive exactly when it needs it immediately. The receiver buffer state is
more important than the sender because the receiver-side is slower. Therefore improving
the sender locality to improve its transfer side will not significantly improve the overall
transfer time. Indeed our micro-benchmarks reveal that the receiver side memory accesses
(steps 3 and 4 on Table 4.3) hardly pass 15GB/s for large messages, while the sender
side (steps 1 and 2) often achieves close to 20GB/s. This imbalance between send and
receive side copy durations could be a reason to switch to variable-size pipeline chunks
as previously proposed for InfiniBand communication [26]. Unfortunately existing MPI
implementations require deep intrusive changes before we could experiment this idea.
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Figure 4.15: Anatomy of a Load Miss Modified (step 3) in the MESI protocol.
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Figure 4.16: Impact of a flush of modified data on the performance of reading from another
core, on the Intel platform.
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We now focus on one of the transfer step that matters to the overall performance: when

the receiver loads data that was previously written by another core (Load Miss Modified,
step 3). The remotely-modified data have to be written back to memory before it can be
shared by both cores (see Figure 4.15). If a cache is shared between the cores, the write-
back is not actually required. If no cache is shared, for instance when processes run on
different sockets, the write-back is required, and Figure 4.16 confirms that it is expensive:
An explicit flush of the remote copy increases the local Load Miss Modified by 10% to
100%.
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Figure 4.17: Impact of non-temporal stores and manually flushing on the performance of
the sender write step 2, on the Intel platform.

One optimization would consist in moving this expensive remote write-back from the
receiver load (step 3) back to the sender store (step 2), by anticipating it using one of the
following ideas:
1) The sender could explicitly flush these cache-lines, e.g. with clflush x86 instructions.
Unfortunately, this severely slows down the sender copy as depicted on Figure 4.17.
2) The sender could use a larger number of buffers so that the first buffers are automatically
evicted when last ones are used. Unfortunately, current processors have very large caches
that would require hundreds of buffers for this to work4

3) The sender could use non-temporal store instructions to directly reach main memory.
This idea has often been considered in the past but very rarely used in production. Fig-
ure 4.17 shows that our custom copy with non-temporal writes is only about 30% slower
than the usual copy, so the idea looks indeed interesting. Thus we modified OpenMPI to
perform a non-temporal store during step 2. However Figure 4.18 reveals that it actually
divides the overall performance by a factor of 2. We could not explain this phenomenon.
Unfortunately the behavior of non-temporal instructions with respect to cache-coherence

4 640 and 192 buffers of 32 kB are needed on our Intel and AMD platforms respectively.
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protocol implementations is not widely documented.
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Figure 4.18: Impact of non-temporal stores in the sender write step 2 on the performance of
IMB pingpong between 2 cores on different sockets, on the Intel platform, with a modified
OpenMPI 1.7.3.

Still, one has to keep in mind that moving the write-back to the sender-side may have
the undesirable effect of moving the bottleneck from the receiver to the sender. It is
therefore important to make sure that we do not slow the sender down too much. One
idea to explore is to force the write-back only when the sender is waiting for the receiver
to progress: Once the sender filled all shared-buffers, it may have to wait until the receiver
gives some of them back, it may therefore start manually flushing with clflush in the
meantime.

Rewrite of Receiver-read data

S   I
Remote cache

S   M
Local cache

Core

(1) Write Req

(2) Invalidate

Figure 4.19: Anatomy of a Store Hit Shared (step 2) in the MESI protocol.

We now focus on the other critical transition, when the sender writes to a buffer that
was previously used (Store Hit Shared). The remote copy has to be invalidated before the
local copy can switch from Shared to Modified (see Figure 4.19). Fortunately some modern
processors such as Intel Xeon E5 feature a directory in their L3 cache so as to filter such
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invalidation requests when it is known that there are no other copies. So a former remote
flushing could reduce the overhead.
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Figure 4.20: Impact of remote flushing on the performance of a local Store Hit Shared on
the Intel platform.

Figure 4.20 shows that this idea could indeed improve performance by 5-10% for signif-
icant buffer size (larger than the 64 kB L1, we do not know why the graph is not smooth for
smaller buffers). So one could think of adding some flushing on the receiver side. However,
as discussed in the previous section, this would slow down the receiver bottleneck even
more.

Another problem to consider here is that flushing instructions such as clflush may
also flush lines out of other core caches that are below a higher-level inclusive shared
cache, which would further degrade performance. For instance it would flush out all copies
inside the entire Intel socket on our platform because the L3 is inclusive. On AMD, only
the L2 is mostly-inclusive. This idea should therefore only be considered when the MPI
implementation knows for sure that the involved cores do not shared an inclusive cache.

To summarize, optimizing the Store Hit Shared state (2) is hardly feasible in the context
of the MESI protocol. However we have to revisit this result in next section due to certain
characteristics of MESI variant implementations.

Shared-buffer Reuse Order and MOESI Protocol

AMD platforms use the MOESI protocol that was (notably) designed to ease sharing
of modified data. This feature looks very interesting in our study because step 3 needs to
read a remotely modified buffer. MOESI avoids the aforementioned write-back to memory
by allowing immediate sharing of these dirty cache-lines with other cores. The original
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modified lines switch to the new Owned state (that is responsible for doing the write-back
to memory eventually) while the shared copies go to Shared state. Unlike MESI where
both sender and receiver copies are in the same Shared state after step 3, MOESI therefore
introduces an asymmetry.
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Figure 4.21: Store Hit performance depending on Shared, Owned and Modified state, inside
a shared L3 cache, on AMD platform.

When a new transfer occurs through this shared-buffer, one of these asymmetric copies
switches to Modified again during step 2 while the other gets invalidated. Given that the
Modified state is similar to Owned (and not to Shared), one would expect that transi-
tioning from Owned to Modified would be at least as quick as transitioning from Shared
to Modified. Surprisingly Figure 4.21 shows the contrary: It is much faster (3x inside a
socket, and 4x between sockets) to write to the Shared copy rather than the Owned one.
We assume that a write-back always occurs when a cache-line leaves the Owned state and
raises a non-documented phenomenon in this MOESI implementation.

This unexpected behavior leads to another unexpected result on Figure 4.22: On our
AMD platform, data transfers are faster when shared-buffers are used in alternating direc-
tion (5 to 50% faster). This behavior seems very specific to AMD current micro-architecture
Bulldozer. Intel nodes and some older AMD hosts (Barcelona micro-architecture) do not
show such an asymmetric performance depending on buffer reuse direction5.

5 Intel nodes actually show a small performance difference as well, possibly because the MESIF protocol
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Figure 4.22: Performance of shared-memory data transfer depending on buffer reuse direc-
tion, inside a shared L3 cache, on AMD platform.

This result confirms the interest of our idea of hiding hardware complexity inside micro-
benchmark outputs: Extracting the performance behavior from this black-box is much
easier on modern platform that trying to formally understand and model the hardware.

We showed that tuning MPI shared-memory communications can be eased thanks to
cache coherence benchmarks. Indeed, the insight given by our benchmark set allows spot-
ting bottlenecks in memory transfers. This helps exploring new strategies and quantifying
the performance to expect .

4.5 Conclusion
Before concluding on the contribution we presented in this chapter we would like to

bring the attention to a particularity of our approach. With our approach no hardware
knowledge is needed to build the performance model but it is needed to build the bench-
marks used by the model. This issue is discussed in Section 4.5.1, we will see the positioning
of our model compared to related work in section 4.5.2, and conclude in Section 4.5.3.

4.5.1 Discussion

Our performance modeling aims at hiding hardware complexity. The key idea is to use
benchmarks as a black box to characterize processors with no need to fully understand

also breaks the symmetry between Shared copies (the Forward copy is the only one that replies to bus
requests).
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hardware. However in order to build a set of benchmarks able to reflect real hardware
behavior, understanding processor bottleneck is crucial. Therefore it seems that we just
shifted the problem of understanding hardware from the modeling part to the benchmarking
part of our approach. We are now going to explain why this is not a weakness in our
approach.

A good knowledge of the architecture is important to build the benchmarks used the
describe the hardware peak performance and to have the intuition on how to combine them
to produce a hardware model able to reflect real architecture behavior. However automatic
methods could be used to generate automatically micro-benchmarks. Tools allowing rapid
exploration of a wide range of code versions, such as X-Language [27] or MicroPerf tools [11]
could help writing the micro-benchmark. Therefore, writing the micro-benchmarks code is
not a problem and could be done without a deep knowledge of the target Architecture.

However, getting the intuition on how to compose benchmarks to build a performance
model is harder. Indeed human resources are involved. For the time being, there is no
other alternative but to do it by ourselves. However the way to compose the benchmark
black boxes seems to be the same with the same processor family. For instance we use the
same model to predict performance of all codes running on Intel processor, no matter if it
is a Core2, a Nehalem or a Sandy-bridge architecture. For this reason, using benchmarks
as the basis for architecture modeling is still interesting because it factorizes the modeling
effort.

4.5.2 Related Work

Several methods are commonly used to optimize software by observing and predicting
performance. One is to simulate the full hardware, for instance with cycle accurate sim-
ulators [23, 41]. Such predictions are very precise and permit collection of large amount
of performance metrics. However they are time consuming. Another problem is that it
requires a deep knowledge of the hardware in order to implement all architecture features,
including prefetchers or cache replacement policies, with enough precision to provide cy-
cle accurate simulation. Developing such simulation software is a long process for each
newly supported platform, and it highly depends on the hardly-available hardware doc-
umentation. Our approach hides this complexity in the benchmarks and tries to remain
portable by using a memory model that matches most widely-available modern processors
and coherence protocols.

One can also use profiling in order to record performance metrics aiming at tuning HPC
applications. Profiling has the same drawbacks as simulation since it slows down application
performance. Tools such as valgrind or cachegrind [61] can present an overhead up to 100
times the normal program execution time. Our approach relieves users from running the
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software. Indeed, given a representation of the software, we are able to model its behavior
on a particular architecture and help application tuning.

Another method for tuning software is to use hardware counters. Tools have been
developed in order to ease the use of hardware counters [47, 60]. The advantage of hardware
counters compared to simulators is that it is lightweight: there is no overhead in such
methods aside from the library initialization. However performance counters are not enough
to optimize software. Indeed once a bottleneck of the application is found (let say too
many TLB misses), one needs a way to link the information back to source code in order
to tackle the problem. Also, as discussed in Chapter 3, Section 3.4, the overhead of misses
significantly varies with cache states.

Daniel Hackenberg et al compared cache coherence of real world CPUs in [38]. They
show that cache coherence and cache data states are to be taken into account when model-
ing memory hierarchy Williams et al did an ingenious work in modeling both memory and
computation in order to predict best achievable performance of a given code depending on
its arithmetic intensity [85]. Aleksandar Ilic et al extended the model to support caches
and data reuse [42]. Compute-bound applications are handled while we are not able to
predict computation performance. However, our model is able to predict in a better way
applications with heavy coherence traffic. This also allows us to point out that bad perfor-
mance of some applications can come from a huge overhead due to cache coherence. The
references confirm the relevance of our approach for modeling memory access performance.

Concerning tuning MPI implementations, many configuration options are available and
some of them even target conflicting use cases with respect to point-to-point operations
vs collectives, blocking vs non-blocking, caching for intra-node communication, etc. When
predicting a good configuration is not feasible, auto-tuning may be used to adapt the
software to specific application needs. The OPTO framework [19] tests all possible config-
uration combinations so as to automatically find the best one. Machine learning was also
proposed as an alternative method [66]. A training tool finds out important characteristics
of the platform before matching them with specific application needs.

The only work that is really close to our research mostly focuses on Xeon Phi accelerator
cards [36]. However only synchronization issues (concurrent polling on shared receive
queues) and small messages (up to 8 kB) are modeled. Our feeling is that modern memory
architectures have a performance that is far too complex for such analytical models because
of heavy and hardly-understandable behaviors when switching from L1 to L2, L3 or even
main memory, or when looking at parallel accesses. This is why we hide this complexity
inside micro-benchmark outputs.

Our approach is rather a qualitative approach that tries to understand cache-related
issues instead of blindly finding the best tuning for specific applications. One common
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way to evaluate intra-node communication performance is to look at cache misses [65].
However we explained in Chapter 3 that this is hardly a reliable piece of information. In
this chapter, we gave some basic optimization hints to application developers.

Our approach differs from existing ones as it is based on benchmarks to build the mem-
ory model. Benchmarks, especially the ones focusing on memory, have been developed in
order to understand memory or application performance [45, 57, 81]. They are a great way
to understand architecture behavior, however they can not be directly used to optimize
software. As shown in Section 4.3, once our model is built for a given architecture, we are
able to predict both software scalability and achievable memory bandwidth. By under-
standing the memory model or predicted scalability, one can see if performance is limited
by memory contention or because of a cache coherence unfriendly memory access pattern.

4.5.3 Summary

As computer architecture and software become more and more complex, optimizing
software to get the best performance out of a given machine gets more and more challeng-
ing. Code simulation and performance prediction become critical to performance analysis
and software tuning. In Section 4.2, we presented an innovative model that predicts the
performance of memory-bound applications by composing the output of micro-benchmarks
based on the state of data buffers in hardware caches. In this model memory accesses are
considered on chunks with the same access type (e.g., only lead or store). These chunks are
in a given state to represent the state of cache lines in the coherence protocol. The caches
are not modeled with their hardware feature but with a latency function that depends on
chunks size and state.

We showed in Section 4.3 that the model successfully predicts the behavior of sev-
eral commonly-used application patterns without the need to understand and describe all
hidden complexity in the hardware mechanisms such as prefetchers and cache coherency
protocol implementations. We were also able to demonstrate the efficient use of micro-
benchmarks to understand performance of shared memory communication. As demon-
strated in Section 4.4, our micro-benchmarks are able to produce results for inter-socket
memory transfers that can be used to provide insight into shared-memory communication
performance.

One of the weaknesses of our model is that we do not handle capacity misses explicitly.
If an application loads a 32 kB buffer (that fits in L1) and then accesses a large amount
of data, the first buffer will be evicted from the cache, and further accesses to this buffer
will be slower than our prediction. This weakness can explain some of our mis-predictions,
for instance the horizontal shifting of prediction graphs such as in Figure 4.8. We are
working on extending the model in order to fix this problem: Modeling caches with a stack
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of chunks could help tracking record of the size of chunks accesses. When a thread accesses
a chunk it checks its stack, if the chunk accessed is in the stack, instead of using a size of
the chunk as parameter for the latency function, the sum of the size of all chunk between
the top of the stack and the chunk is used. And if the chunk is not in the stack, it is push
onto it. Therefore is thread 0 accesses chunk s0, s1, and s0 again, sequentially (with an
empty cache in the beginning), s0 will be pushed, then s1 will be pushed. Therefore, when
accessing s0 again, the size parameter for the average latency function will be the size of
s0 + s1. And we have to be careful to remove chunks from the stack when an coherence
message requires an eviction.

The model could also be enhanced for supporting some specific coherence issues such as
I/O DMA transfers or non-temporal processor instructions that cause unexpected eviction
of lines out of the caches.

Until now our model only predicts the performance of applications whose threads all
run on the same socket. While benchmarks are already ready for multiple sockets, we
need to plug them into the model. Another issue with multi-socket support is to avoid
the combinatorial explosion that could appear when the number of cores in the hardware
model increases and the topology is not flat anymore. Secondly, we are thinking of adding
automatic ways to detect coherence issues and their impact on performance. This idea
behind this is to run an application with hardware counter instrumentation to measure
the number of different cache events. For instance PAPI [60] can record the number of
requests for exclusive access to shared cache line. Our model could be used in this context
to provide a metric allowing prediction of performance for the same application if we could
discard these invalidation messages.



Conclusion

This dissertation fits into the High Performance Computing area. HPC is used in a growing
number of scientific areas where simulation requires a large amount of computation. The
most important point of HPC is definitively performance. Because of the limits of sequential
computation, more and more features were embedded into modern processors to increase
their computational power. This increasing complexity makes it increasingly harder to find
the code version that will lead to optimal performance.

Hardware models are used to take optimization decisions. But the growing number
of features in CPU chips and the frequent release of new hardware makes it tiresome to
understand and model every newly released hardware. Also architecture documentation
is not always available or complete. We present an innovative memory model based upon
benchmarks. The iteration of benchmarks into a hardware model allows capturing archi-
tecture behavior and peak performance. This information can then be used to predict
application behavior on the benchmarked architecture. Benchmarks can also be used to
find undocumented hardware characteristics.

Still designing specific benchmarks, running them, understanding the results and their
implications at the hardware level, and integrating them into hardware models is a long
and difficult task. The main contribution of this thesis is to show how benchmarks can
be directly integrated into performance models. With a small number of assumptions on
the target architecture we are able to use benchmark results as a black box representing
hardware performance. This abstraction of hardware performance allow us to combine
benchmark output to predict software behavior on a particular architecture. The assump-
tion we made about the hardware modeled are the usage of MESI based protocol to maintain
cache coherence. This allows us to target a large range of x86 processors.

Contributions of this Dissertation
This dissertation is organized around three main contributions that address these ques-

tions: i) how to automatically retrieve critical hardware parameters to build hardware
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models (Chapter 2), ii) how to build benchmarks that can capture hardware performance,
especially the performance of the memory hierarchy levels (Chapter 3), iii) how to inte-
grate benchmarks into a performance model that can predict complex application behavior
(Chapter 4).

We showed that information about the hardware can be extracted with a careful bench-
marking methodology. In particular the latency of instructions can be measured automat-
ically to feed a computational model – called on-core modeling in the dissertation. Yet
instruction latency is not the only input parameter needed to build an on-core model of
processors. We also need the number of execution ports available as well as the port used by
instruction be be able to judge the quality of a code version. We saw that these information
are harder to collect automatically but can be done with a proper methodology.

Cache coherence protocols were developed to keep memory coherent from the program-
mer point of view. These protocols are most of the time implemented in hardware and
involve memory traffic that is not visible to the programmer and that can lead to significant
overhead. Also the coherence protocol used in real hardware are not always extensively
documented – especially the interaction between the different memory components (e.g.,
how cache coherence between sockets is implemented). We presented a framework and
more generally a methodology to benchmark cache coherent memory systems. From the
results of the benchmark designed, we could extract guidelines to help better use of cache
coherent architectures. We also were able to find some unexpected poor cache performance
on the Dunnington architecture.

We also presented a memory model built upon benchmarks. This model allows us
to predict the behavior of programs running on cache coherent multi-core systems. To
be able to predict application behavior we had to combine several models together: A
software model representing how the program uses memory. And a, hardware model that
abstracts the view of the memory organization of multi-core systems. It helps tracking the
state of memory chunks accessed by the program. We validated our memory model by
being able to predict the scalability of several linear algebra codes as well as more complex
applications such as a Conjugate Gradient computation. The limits of our model lie in it
ability to reflect application memory behavior. The model presented in this dissertation
only handles regular OpenMP code. This model could be used to handle more complex or
irregular code with little effort. Indeed we can represent several threads performing different
memory operation. The hard part is to get the performance of heterogeneous parallel
memory access patterns. By heterogeneous parallel memory access pattern we mean where
every thread to not perform the same memory operation. To get performance of such
access, we need to run benchmarks with different threads performing different memory
operation. The other solution would be to combine the homogeneous access pattern we
already described to predict performance of more complex ones.
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Perspectives

The trend toward more and more complex hardware design seems to be unavoidable.
Software optimization will therefore still be a challenging research area for years. The more
can be achieved automatically, the more developer productivity will be improved. While
the contributions of this dissertation mainly focus on a restricted set of architectures, the
ideas behind it can be applied to a wide range of hardware.

Integration of the Model into existing Tools A short term perspective would be to
implement our cache coherence memory model into existing tools to automatically validate
our model on a wide range of software. Several approaches can be considered: the first
would be to implement a compiler pass to perform static OpenMP code analysis to build the
software representation needed by our model. This is the last step to have a fully automatic
tool able to model software to help its optimization. The advantage of this approach is
that it is based on static code analysis. Therefore it capture the general behavior of the
application: it is does not depend on a single run – unlike trace based approaches. But
the drawback is that only regular code with affine loops can be handled. Input dependent
application could not be modeled with static code analysis.

Another approach would be to use memory traces and build the memory access pat-
tern by replaying these traces. Some frameworks allow statistics collection during code
execution, these data could also be used to construct the software representation needed
in our model. The advantage of this approach is that it does not require any property
on the application to be modeled. However traces are collected for one single run of the
application. Therefore we cannot expect it to represent the application for every possible
input and/or run. There is a trade-off to make between these two approaches: code with
enough properties can be handled with static code analysis and provide a generic model,
and code input dependent have to be handled through trace collection, which is a more
specific approach.

The strength of our memory model over other existing ones is its ability to bring
cache coherence into the heart of the memory model. For instance cache models based on
counting cache event, such as hit and miss for every cache level, miss the accurate time
cost of each of these events. Indeed in our model we are able to distinguish different misses
events depending on their latency.

Improving the Model A finer grain memory model could also improve the accuracy of
the time predicted by our model. Especially, designing a finer capacity model could help
with prediction accuracy. Another approach to predict memory performance could be to
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implement a cache simulator (in tools such as cachegrind). Results from our benchmark
could be used as a cost function to estimate the time needed for every cache hit or miss.

We saw that in order to extend the model to irregular applications (i.e. where com-
puting processes do not perform the same operation) we need to be able to associate a
time or cost function to irregular access memory access patterns. The solution to build
benchmarks to measure performance of all memory access pattern is not sustainable. As
the number of core per processors increases the combinatorics involved would become too
important. The idea to circumvent this problem is to find a realistic way to combine regu-
lar parallel benchmarks to predict performance of irregular codes. The simplest idea would
be to take the longest execution time of all threads involved in the heterogeneous access
pattern. However contention depends on the state of cache line accessed and it is unclear
if this approach could be realistic on many hardware architectures.

Software handled by our model follow the fork/join model. While most OpenMP ap-
plication can be modeled this way, other parallel paradigm lead to other software models.
For instance task parallelism without synchronization with all threads cannot be model
with our current software model. This brings two issues: first our software model has
to be restructured to handle task parallelism. This can be achieved with a task graph.
But the second issue is much harder to tackle: how to retrieve hardware performance we
can expect from a particular software pattern from a fixed-size benchmark set. Without
synchronization we are not able to deduce precisely the work performed by every threads.
Since performance of threads depends on the workload of others, we do not yet have an
answer to the issue of handling general task parallelism.

Application to Large Scale platforms and Applications In this dissertation, we
mainly focused on small and regular applications running inside the same node (i.e. com-
puter). But most HPC applications are much more complex, feature complex interaction
with hardware, and are distributed across nodes connected through networks. In order
to bridge the gap between the range of application handled by our model and real HPC
application we should be able to handle more complex kernels and extend the model to
inter-node communications. For now our approach has difficulty to model irregular appli-
cation or data dependent software. Modeling of such complex code can rely on simulation
platforms.

Simulation of large scale systems is used to predict application behavior of future HPC
platforms [17]. We are thinking about using our memory model to help simulation of large
platforms in the SimGrid simulation platform in the context of the SONGS ANR project6.
But for now the simulation is too high level for our low level model memory model to

6http://infra-songs.gforge.inria.fr/

http://infra-songs.gforge.inria.fr/
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be integrated easily. SimGrid currently allows simulation of clusters composed of several
mono-core nodes. We are studying how to integrate our model into this platform to extend
it be able to simulate nodes featuring CMP nodes.

Future of HPC Platforms
One of the big challenges of computer science has always been to control complex-

ity. This explains why code modularization and software development methodology (e.g.,
Agile) were investigated. Hardware design follow the same trend as software: more and
more features are added to the existing. The increasing complexity of hardware following
prevents clear overview of processor performance and makes code optimization complex.

Another issue with such complexity embedding in processors is that – unlike software –
hardware is fixed and therefore cannot adapt to application needs. Two approaches could
tackle this issue: with FPGA technology we could program hardware to behave differently
depending on software, or we could completely let software control the hardware. The
most striking example about the increasing complexity of hardware is cache handling:
cache architecture can feature very complex designs in order to adapt to several software
behavior [46, 69].

Cache Coherence As cache coherence is harder and harder to maintain as the number
of cores per node increases. Since it seems to be the trend for future computer architec-
tures, cache coherence scalability issue is often discussed. Some think that hardware cache
coherence can scale even with a large number of cores [54]. But since several architectures
without hardware maintained cache coherence were released, the opportunity to study
trade-offs of software versus hardware cache coherence is wide open. The choice to make
between hardware or software can be a great opportunity for memory benchmarks. Indeed,
benchmarks can be a great way to quickly prototype software cache coherence. This can
also be used adapt the coherence protocol to the needs of a particular application.

The advantage of hardware managed caches is that it is automatic: no intervention
from end user is needed to keep memory consistent. While keeping memory consistent
on software managed cache requires the addition of special instructions into software to
maintain the coherence. However maintaining cache coherence by software can avoid un-
necessary coherence traffic. For instance by avoiding invalidation of a cache lines that will
not be read any more in the future.

Even hardware without caches but scratchpads exists: scratchpads can be seen as fully
software managed cache, the Cell and Cyclops64 processors feature scratchpads memories.
Scratchpads are private fast memory but data that has to be explicitly stored into it (with
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caches – event software managed ones – memory is automatically caches). With scratchpad
based memory architectures, even more control is given to software. However the model we
presented in this dissertation is by far too complex to handle scratchpad based architecture.
Indeed on scratchpads, actions performed by hardware are explicit copies between local
storage and shared memory. Therefore the benchmarks needed to characterize memory
transfers is much more restricted. However we can imagine runtime systems or library
performing automatic data movement to store critical data in faster memories. In this
environment, using the exact same approach as we did can help modeling performance of
transfers made by the runtime. We can expect the caching strategy of such system as well
as the coherence protocol used to be similar to existing hardware cache. Therefore the
model itself could be used out of the box. But the benchmark design would have to be re
factored.

Letting the end user handle completely the memory hierarchy is not an alternative.
Most of the time end users of HPC applications are not computer science experts and
would not be able to write software using efficiently the underlying hardware. Even worse
with software managed cache coherence systems, forgetting instructions to keep memory
coherent between processes would lead to errors. But runtime systems or libraries can be
used to automatically perform cache coherence or to automatically bring reused data to
faster memories.

The advantage managing faster memories by software rather than by hardware is that
software can perform finer optimization than hardware since it is aware of data that will
benefits from being caches or not. This would avoid cache trashing and avoidable cache
coherence traffic.

Energy Memory will not be the only issue with future large scale systems. Power con-
sumption is now a major constraint of next generation platforms [12]. The out-of-order
front-end of the instruction pipeline is responsible for a significant fraction of power con-
sumption [16, 32]. Architectures targeting HPC applications were released with an in-order
pipeline in order to reduce the energy consumption of such chips. The Xeon Phi released
by Intel is an example. Since optimal instruction scheduling can be found by static code
analysis by the compiler [10, 53, 84], we can imagine that this hardware feature will tent
to disappear from processor dedicated to HPC.

The tend of hardware to become more and more complex seems carry one, HPC soft-
ware will therefore keep challenging software engineers and researchers for the years to
come in order to achieve fast computation. We believe that no matter how hardware and
software systems dedicated to HPC will evolve benchmarks will remain a relevant source
of knowledge.



Bibliography

[1] F. Agakov et al. “Using machine learning to focus iterative optimization”. In: In
Proceedings of the International Symposium on Code Generation and Optimization
(CGO). 2006, pp. 295–305 (cit. on p. 19).

[2] Agarwal, A. and Hennessy, J. and Horowitz, M. “An analytical cache model”. In:
ACM Trans. Comput. Syst. 7.2 (May 1989), pp. 184–215 (cit. on p. 112).

[3] Anant Agarwal et al. “An Evaluation of Directory Schemes for Cache Coherence”.
In: In Proceedings of the 15th Annual International Symposium on Computer Archi-
tecture. 1988, pp. 280–289 (cit. on p. 39).

[4] M. Ajmone Marsan et al. “Modeling Bus Contention and Memory Interference in
a Multiprocessor System”. In: Computers, IEEE Transactions on C-32.1 (1983),
pp. 60–72 (cit. on p. 69).

[5] Björn Andersson, Arvind Easwaran, and Jinkyu Lee. “Finding an upper bound on
the increase in execution time due to contention on the memory bus in COTS-based
multicore systems”. In: SIGBED Rev. 7.1 (Jan. 2010), 4:1–4:4 (cit. on p. 69).

[6] Diego Andrade, Basilio B. Fraguela, and Ramon Doallo. “Accurate prediction of the
behavior of multithreaded applications in shared caches”. In: Parallel Computing
39.1 (2013), pp. 36–57 (cit. on p. 112).

[7] D. H. Bailey et al. The NAS Parallel Benchmarks. Tech. rep. The Intl Journal of
Supercomputer Applications, 1991 (cit. on p. 126).

[8] Denis Barthou et al. “Loop Optimization using Adaptive Compilation and Kernel
Decomposition”. In: ACM/IEEE Intl. Symp. on Code Optimization and Generation.
San Jose, California: IEEE Computer Society, Mar. 2007, pp. 170–184 (cit. on p. 66).

[9] Denis Barthou et al. “Performance Tuning of x86 OpenMP Codes with MAQAO”.
In: Tools for High Performance Computing 2009. Ed. by Matthias S. Müller et al.
Springer Berlin Heidelberg, 2010, pp. 95–113 (cit. on pp. 46, 67).

[10] Peter van Beek and Kent Wilken. Fast Optimal Instruction Scheduling for Single-
issue Processors with Arbitrary Latencies. 2001 (cit. on pp. 19, 150).



152 BIBLIOGRAPHY
[11] J.C. Beyler et al. “MicroTools: Automating Program Generation and Performance

Measurement”. In: Parallel Processing Workshops (ICPPW), 2012 41st International
Conference on. 2012, pp. 424–433 (cit. on pp. 45, 83, 103, 141).

[12] S. Borkar. “The Exascale challenge”. In: VLSI Design Automation and Test (VLSI-
DAT), 2010 International Symposium on. Apr. 2010, pp. 2–3 (cit. on p. 150).

[13] François Broquedis et al. “hwloc: a Generic Framework for Managing Hardware
Affinities in HPC Applications”. In: Proceedings of the 18th Euromicro International
Conference on Parallel, Distributed and Network-Based Processing (PDP2010). Pisa,
Italia: IEEE Computer Society Press, Feb. 2010, pp. 180–186 (cit. on p. 68).

[14] James R. Bulpin and Ian A. Pratt. “Hyper-threading aware process scheduling
heuristics”. In: Proceedings of the annual conference on USENIX Annual Techni-
cal Conference. ATEC ’05. Anaheim, CA: USENIX Association, 2005, pp. 27–27
(cit. on p. 24).

[15] Darius Buntinas, Guillaume Mercier, and William Gropp. “Implementation and
Shared-Memory Evaluation of MPICH2 over the Nemesis Communication Subsys-
tem”. In: Recent Advances in Parallel Virtual Machine and Message Passing Inter-
face: Proc. 13th European PVM/MPI Users Group Meeting. Bonn, Germany, Sept.
2006 (cit. on p. 129).

[16] A. Buyuktosunoglu et al. “Energy efficient co-adaptive instruction fetch and issue”.
In: Computer Architecture, 2003. Proceedings. 30th Annual International Symposium
on. 2003, pp. 147–156 (cit. on p. 150).

[17] Henri Casanova, Arnaud Legrand, and Martin Quinson. “SimGrid: a Generic Frame-
work for Large-Scale Distributed Experiments”. In: Proceedings of the Tenth Interna-
tional Conference on Computer Modeling and Simulation. UKSIM ’08. Washington,
DC, USA: IEEE Computer Society, 2008, pp. 126–131 (cit. on p. 148).

[18] J. Cavazos et al. “Rapidly Selecting Good Compiler Optimizations using Perfor-
mance Counters”. In: Code Generation and Optimization, 2007. CGO ’07. Interna-
tional Symposium on. 2007, pp. 185–197 (cit. on p. 19).

[19] Mohamad Chaarawi et al. “A Tool for Optimizing Runtime Parameters of Open
MPI”. In: Proceedings of the 15th European PVM/MPI Users’ Group Meeting on
Recent Advances in Parallel Virtual Machine and Message Passing Interface. Dublin,
Ireland: Springer-Verlag, 2008, pp. 210–217 (cit. on p. 142).

[20] David Chaiken, John Kubiatowicz, and Anant Agarwal. LimitLESS Directories: A
Scalable Cache Coherence Scheme. 1991 (cit. on p. 39).

[21] T. Chen et al. “Cell Broadband Engine Architecture and its first implementation –
A performance view”. In: IBM Journal of Research and Development 51.5 (2007),
pp. 559–572 (cit. on pp. 25, 40).



BIBLIOGRAPHY 153
[22] Intel Corporation. SCC External Architecture Specification (EAS) Revision 1.1. http:

//communities.intel.com/docs/DOC-5852. 2010 (cit. on pp. 39, 40).
[23] R.G. Covington et al. “The Efficient Simulation of Parallel Computer Systems”. In:

International Journal in Computer Simulation. 1991, pp. 31–58 (cit. on p. 141).
[24] Matthew Curtis-Maury et al. “Prediction-Based Power-Performance Adaptation of

Multithreaded Scientific Codes”. In: IEEE Trans. Parallel Distrib. Syst. 19 (10 Oct.
2008), pp. 1396–1410 (cit. on p. 57).

[25] R. David et al. “Dynamic power management of voltage-frequency island partitioned
Networks-on-Chip using Intel’s Single-chip Cloud Computer”. In: Networks on Chip
(NoCS), 2011 Fifth IEEE/ACM International Symposium on. May 2011, pp. 257–
258 (cit. on p. 57).

[26] Alexandre Denis. “A High Performance Superpipeline Protocol for InfiniBand”. In:
Proceedings of the 17th International Euro-Par Conference. Lecture Notes in Com-
puter Science 6853. Bordeaux, France: Springer, Aug. 2011, pp. 276–287 (cit. on
p. 135).

[27] Sebastien Donadio et al. “A Language for the Compact Representation of Multiple
Program Versions”. In: Intl. Workshop on Languages and Compilers for Parallel
Computing. Vol. 4339. Lect. Notes in Computer Science. Hawthorne, New York:
Springer-Verlag, Oct. 2005, pp. 136–151 (cit. on p. 141).

[28] Ulrich Drepper. What Every Programmer Should Know About Memory. 2007 (cit. on
p. 29).

[29] Alexandre X. Duchateau et al. “Languages and Compilers for Parallel Computing”.
In: ed. by José Nelson Amaral. Berlin, Heidelberg: Springer-Verlag, 2008. Chap. P-
Ray: A Software Suite for Multi-core Architecture Characterization, pp. 187–201
(cit. on p. 83).

[30] Guillaume Mercier Emmanuel Jeannot and François Tessier. Process Placement in
Multicore Clusters: Algorithmic Issues and Practical Techniques. 2013 (cit. on p. 26).

[31] Agner Fog. Instruction tables Lists of instruction latencies, throughputs and micro-
operation breakdowns for Intel, AMD and VIA CPUs. http://www.agner.org/
optimize/. 2011 (cit. on pp. 19, 46, 60, 67).

[32] D. Folegnani and A. Gonzalez. “Energy-effective issue logic”. In: Computer Archi-
tecture, 2001. Proceedings. 28th Annual International Symposium on. 2001, pp. 230–
239 (cit. on p. 150).

[33] Grigori Fursin and Albert Cohen. “Building a Practical Iterative Interactive Com-
piler”. Anglais. In: International Workshop on Statistical and Machine Learning Ap-
proaches Applied to Architectures and C ompilation (SMART’07). Ghent, Belgium,
Jan. 2007 (cit. on p. 19).

http://communities.intel.com/docs/DOC-5852
http://communities.intel.com/docs/DOC-5852
http://www.agner.org/optimize/
http://www.agner.org/optimize/


154 BIBLIOGRAPHY
[34] Edgar Gabriel et al. “Open MPI: Goals, Concept, and Design of a Next Genera-

tion MPI Implementation”. In: Proceedings, 11th European PVM/MPI Users’ Group
Meeting. Budapest, Hungary, Sept. 2004, pp. 97–104 (cit. on p. 129).

[35] A. Gara et al. “Overview of the Blue Gene/L system architecture”. In: IBM Journal
of Research and Development 49.2.3 (2005), pp. 195–212 (cit. on p. 39).

[36] S. Ramos Garea and T. Hoefler. “Modeling Communication in Cache-Coherent SMP
Systems - A Case-Study with Xeon Phi”. In: Proceedings of the 22nd international
symposium on High-performance parallel and distributed computing. New York City,
NY, USA: ACM, June 2013, pp. 97–108 (cit. on p. 142).

[37] R. Ge and K.W. Cameron. “Power-Aware Speedup”. In: Parallel and Distributed
Processing Symposium, 2007. IPDPS 2007. IEEE International. Mar. 2007, pp. 1–
10 (cit. on p. 57).

[38] Daniel Hackenberg, Daniel Molka, and Wolfgang E. Nagel. “Comparing cache archi-
tectures and coherency protocols on x86-64 multicore SMP systems”. In: Proceedings
of the 42nd Annual IEEE/ACM International Symposium on Microarchitecture. MI-
CRO 42. New York, New York: ACM, 2009, pp. 413–422 (cit. on pp. 69, 142).

[39] Tsuyoshi Hamada and Naohito Nakasato. “InfiniBand Trade Association, InfiniBand
Architecture Specification, Volume 1, Release 1.0, http://www.infinibandta.com”.
In: in International Conference on Field Programmable Logic and Applications, 2005,
pp. 366–373 (cit. on p. 26).

[40] Ziang Hu et al. Programming Experience on Cyclops-64 Multi-Core Chip Architec-
ture. (Cit. on p. 40).

[41] C.J. Hughes et al. “Rsim: simulating shared-memory multiprocessors with ILP pro-
cessors”. In: Computer 35.2 (2002), pp. 40–49 (cit. on p. 141).

[42] Aleksandar Ilic, Frederico Pratas, and Leonel Sousa. “Cache-aware Roofline model:
Upgrading the loft”. In: IEEE Computer Architecture Letters 99.RapidPosts (2013),
p. 1 (cit. on p. 142).

[43] Intel MPI Benchmarks. http://software.intel.com/en-us/articles/intel-
mpi-benchmarks/ (cit. on p. 134).

[44] Intel. Intel® 64 and IA-32 Architectures Software Developer’s Manual Combined
Volumes:1, 2A, 2B, 2C, 3A, 3B, and 3C. http://www.intel.com/content/www/
us/en/processors/architectures-software-developer-manuals.html. 2013
(cit. on p. 19).

[45] W. Jalby et al. “Wbtk: a new set of microbenchmarks to explore memory system
performance for scientific computing”. In: Int. J. High Perform. Comput. Appl 18
(2004) (cit. on p. 143).

http://www.infinibandta.com
http://software.intel.com/en-us/articles/intel-mpi-benchmarks/
http://software.intel.com/en-us/articles/intel-mpi-benchmarks/
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html


BIBLIOGRAPHY 155
[46] Aamer Jaleel et al. “High performance cache replacement using re-reference interval

prediction (RRIP)”. In: SIGARCH Comput. Archit. News 38.3 (June 2010), pp. 60–
71 (cit. on pp. 68, 149).

[47] Sverre Jarp, Ryszard Jurga, and Andrzej Nowak. “Perfmon2: A leap forward in
performance monitoring”. In: J.Phys.Conf.Ser. 119 (2008), p. 042017 (cit. on p. 142).

[48] Daniel A. Jiménez. “Piecewise linear branch prediction”. In: In The 1st JILP Cham-
pionship Branch Prediction Competition (CBP-1). 2005, pp. 382–393 (cit. on p. 14).

[49] Guido Juckeland et al. “BenchIT - Performance Measurements and Comparison for
Scientific Applications.” In: PARCO. Ed. by Gerhard R. Joubert et al. Vol. 13.
Advances in Parallel Computing. Elsevier, Feb. 7, 2005, pp. 501–508 (cit. on pp. 82,
103).

[50] Georgios Keramidas, Vasileios Spiliopoulos, and Stefanos Kaxiras. “Interval-based
models for run-time DVFS orchestration in superscalar processors”. In: Conf. Com-
puting Frontiers. 2010, pp. 287–296 (cit. on p. 57).

[51] Janghaeng Lee et al. “Thread tailor: dynamically weaving threads together for ef-
ficient, adaptive parallel applications”. In: Proceedings of the 37th annual interna-
tional symposium on Computer architecture. ISCA ’10. Saint-Malo, France: ACM,
2010, pp. 270–279 (cit. on p. 112).

[52] Sang-jeong Lee, Hae-kag Lee, and Pen-chung Yew. “Runtime Performance Projec-
tion Model for Dynamic Power Management”. In: Asia-Pacific Computer Systems
Architectures Conference. 2007, pp. 186–197 (cit. on p. 57).

[53] Abid M. Malik. Optimal basic block instruction scheduling for multiple-issue pro-
cessors using constraint programming. Tech. rep. In: Proceedings of the 18th IEEE
International Conference on Tools with Artificial Intelligence, 2005 (cit. on pp. 19,
150).

[54] Milo M. K. Martin, Mark D. Hill, and Daniel J. Sorin. “Why on-chip cache coherence
is here to stay”. In: Commun. ACM 55.7 (July 2012), pp. 78–89 (cit. on pp. 39, 149).

[55] T.G. Mattson et al. “The 48-core SCC Processor: the Programmer’s View”. In:
High Performance Computing, Networking, Storage and Analysis (SC), 2010 Inter-
national Conference for. 2010, pp. 1–11 (cit. on p. 57).

[56] Tim Mattson and Rob van der Wijngaart. RCCE: a Small Library for Many-Core
Communication. http://communities.intel.com/docs/DOC-5628. 2010 (cit. on
p. 40).

[57] John D. McCalpin. STREAM: Sustainable Memory Bandwidth in High Performance
Computers. Tech. rep. A continually updated technical report. http://www.cs.
virginia.edu/stream/. Charlottesville, Virginia: University of Virginia, 1991-2007
(cit. on pp. 69, 82, 103, 143).

http://communities.intel.com/docs/DOC-5628
http://www.cs.virginia.edu/stream/
http://www.cs.virginia.edu/stream/


156 BIBLIOGRAPHY
[58] Gregoire P Millet et al. “Combining hypoxic methods for peak performance”. In:

Sports medicine 40.1 (2010), pp. 1–25 (cit. on p. 19).
[59] D. Molka et al. “Memory Performance and Cache Coherency Effects on an Intel

Nehalem Multiprocessor System”. In: Parallel Architectures and Compilation Tech-
niques, 2009. PACT ’09. 18th International Conference on. 2009, pp. 261–270 (cit.
on p. 27).

[60] Philip J. Mucci et al. “PAPI: A Portable Interface to Hardware Performance Coun-
ters”. In: In Proceedings of the Department of Defense HPCMP Users Group Con-
ference. 1999, pp. 7–10 (cit. on pp. 142, 144).

[61] Nicholas Nethercote and Julian Seward. “Valgrind: A program supervision frame-
work”. In: In Third Workshop on Runtime Verification (RV’03). 2003 (cit. on p. 141).

[62] OSU Micro-Benchmarks. http://mvapich.cse.ohio- state.edu/benchmarks/
(cit. on p. 134).

[63] R. Braithwaite P. McCormick and W. Feng. Empirical memory-access cost models
in multicore numa architectures (cit. on p. 71).

[64] Mark S. Papamarcos and Janak H. Patel. “A low-overhead coherence solution for
multiprocessors with private cache memories”. In: SIGARCH Comput. Archit. News
12.3 (Jan. 1984), pp. 348–354 (cit. on pp. 36, 113).

[65] S. Pellegrini, T. Hoefler, and T. Fahringer. “On the Effects of CPU Caches on MPI
Point-to-Point Communications”. In: Proceedings of the 2012 IEEE International
Conference on Cluster Computing. Beijing, China: IEEE Computer Society, Sept.
2012, pp. 495–503 (cit. on p. 143).

[66] Simone Pellegrini et al. “Optimizing MPI Runtime Parameter Settings by Using Ma-
chine Learning”. In: EuroPVM/MPI. Vol. 5759. Lecture Notes in Computer Science.
Espoo, Finland: Springer, Sept. 2009, pp. 196–206 (cit. on p. 142).

[67] Radu Prodan Philipp Gschwandtner Thomas Fahringer. “Performance Analysis and
Benchmarking of the Intel SCC”. In: Conference on Cluster Computing. 2011, pp. 139–
149 (cit. on p. 57).

[68] Debian project. https://wiki.debian.org/Hugepages (cit. on p. 86).
[69] Moinuddin K. Qureshi et al. “Adaptive insertion policies for high performance caching”.

In: SIGARCH Comput. Archit. News 35.2 (June 2007), pp. 381–391 (cit. on pp. 68,
149).

[70] B. Rountree et al. “Practical performance prediction under Dynamic Voltage Fre-
quency Scaling”. In: Green Computing Conference and Workshops (IGCC), 2011
International. July 2011, pp. 1–8 (cit. on p. 57).

[71] J. Seward, N. Nethercote, and J. Weidendorfer. Valgrind 3.3 - Advanced Debugging
and Profiling for GNU/Linux applications. Network Theory Ltd., 2008 (cit. on p. 68).

http://mvapich.cse.ohio-state.edu/benchmarks/
https://wiki.debian.org/Hugepages


BIBLIOGRAPHY 157
[72] André Seznec and Pierre Michaud. “A case for (partially) TAgged GEometric history

length branch prediction”. In: Journal of Instruction Level Parallelism 8 (2006),
pp. 1–23 (cit. on p. 14).

[73] André Seznec et al. About Effective Cache Miss Penalty on Out-of-Order Superscalar
Processors. 1995 (cit. on p. 15).

[74] André Seznec et al. “Design tradeoffs for the Alpha EV8 conditional branch pre-
dictor”. In: Computer Architecture, 2002. Proceedings. 29th Annual International
Symposium on. IEEE. 2002, pp. 295–306 (cit. on p. 14).

[75] J.P. Singh, Harold S. Stone, and D.F. Thiebaut. “A model of workloads and its use in
miss-rate prediction for fully associative caches”. In: Computers, IEEE Transactions
on 41.7 (1992), pp. 811–825 (cit. on p. 112).

[76] Carl Staelin and Hewlett-packard Laboratories. “lmbench: Portable Tools for Perfor-
mance Analysis”. In: In USENIX Annual Technical Conference. 1996, pp. 279–294
(cit. on p. 69).

[77] G. Edward Suh, Srinivas Devadas, and Larry Rudolph. “Analytical cache models
with applications to cache partitioning”. In: Proceedings of the 15th international
conference on Supercomputing. ICS ’01. Sorrento, Italy: ACM, 2001, pp. 1–12 (cit.
on p. 112).

[78] The SCC Programmer’s Guide. 2011 (cit. on pp. 59, 60).
[79] Top500. Top 500 Supercomputer Sites. http://www.top500.org/. 2010 (cit. on

p. 26).
[80] J. Treibig, G. Hager, and G. Wellein. “LIKWID: A lightweight performance-oriented

tool suite for x86 multicore environments”. In: Proceedings of PSTI2010, the First
International Workshop on Parallel Software Tools and Tool Infrastructures. San
Diego CA, 2010 (cit. on pp. 19, 45, 82, 103).

[81] Jan Treibig, Georg Hager, and Gerhard Wellein. “Performance patterns and hard-
ware metrics on modern multicore processors: best practices for performance engi-
neering”. In: Proceedings of the 18th international conference on Parallel processing
workshops. Euro-Par’12. Rhodes Island, Greece: Springer-Verlag, 2013, pp. 451–460
(cit. on pp. 69, 143).

[82] Spyridon Triantafyllis et al. “Compiler optimization-space exploration”. In: In Pro-
ceedings of the international symposium on Code generation and optimization. IEEE
Computer Society, 2003, pp. 204–215 (cit. on p. 19).

[83] J. Weidendorfer. http://valgrind.org/docs/manual/cg-manual.html (cit. on
p. 68).

http://www.top500.org/
http://valgrind.org/docs/manual/cg-manual.html


158 BIBLIOGRAPHY
[84] Kent Wilken, Jack Liu, and Mark He. “Optimal Instruction Scheduling Using In-

teger Programming”. In: Proceedings of the ACM SIGPLAN 2000 Conference on
Programming Language Design and Implementation. ACM Press, 2000, pp. 121–133
(cit. on pp. 19, 150).

[85] Samuel Williams, Andrew Waterman, and David Patterson. “Roofline: an insight-
ful visual performance model for multicore architectures”. In: Commun. ACM 52.4
(Apr. 2009), pp. 65–76 (cit. on p. 142).

[86] Wm. A. Wulf and Sally A. McKee. “Hitting the memory wall: implications of the
obvious”. In: SIGARCH Comput. Archit. News 23.1 (Mar. 1995), pp. 20–24 (cit. on
p. 27).

[87] Chi Xu et al. “Cache contention and application performance prediction for multi-
core systems”. In: Performance Analysis of Systems Software (ISPASS), 2010 IEEE
International Symposium on. 2010, pp. 76–86 (cit. on p. 69).

[88] Kamen Yotov et al. “A Comparison of Empirical and Model-driven Optimization”.
In: SIGPLAN Not. 38.5 (May 2003), pp. 63–76 (cit. on p. 66).

[89] Eddy Z. Zhang, Yunlian Jiang, and Xipeng Shen. “Does cache sharing on modern
CMP matter to the performance of contemporary multithreaded programs?” In:
SIGPLAN Not. 45.5 (Jan. 2010), pp. 203–212 (cit. on p. 120).



List of Publications

International Conference with Committee
[A1] Bertrand Putigny, Brice Goglin, and Denis Barthou. “Performance modeling for

power consumption reduction on SCC”. In: Proceedings of the 4th Many-core Ap-
plications Research Community (MARC) Symposium. Ed. by Peter Tröger and An-
dreas Polze. Technical Reports of University of Postdam Hasso Plattner Institute
55. Potsdam, Germany, Feb. 2012, pp. 21–26 (cit. on p. 56).

[A2] Bertrand Putigny, Benoit Ruelle, and Brice Goglin. “Analysis of MPI Shared-Memory
Communication Performance from a Cache Coherence Perspective”. In: Workshop
on Parallel and Distributed Scientific and Engineering Computing (PDSEC 2014).
Phoenix, USA, May 2014.

National Communications with Committee
[B1] Brice Goglin and Bertrand Putigny. “Idée reçue: Comparer la puissance de deux or-

dinateurs, c’est facile !” Français. In: Interstices (Apr. 2013). http://interstices.
info/idee-recue-informatique-26.

Non-Refereed National Communications
[C1] Bertrand Putigny, Denis Barthou, and Brice Goglin. Modélisation du coût de la

cohérence de cache pour améliorer le tuilage de boucles. Quatrième rencontres de la
communauté française de compilation, Saint-Hippolyte, France. Dec. 2011 (cit. on
p. 70).

http://interstices.info/idee-recue-informatique-26
http://interstices.info/idee-recue-informatique-26

	Table of Contents
	List of Figures
	List of Tables
	Résumé en français
	Introduction
	Hardware Architecture
	Core Architecture
	Pipeline
	Superscalar processor
	Out-of-Order Execution
	Vector Instructions
	Low level Code Optimization

	Towards Parallel Architectures
	The Energy Wall
	Multi-Processor
	Simultaneous Multithreading
	Accelerators
	Clusters

	Memory Architecture
	Virtual Memory and Translation Lookaside Buffer
	NUMA Architectures
	Caches
	Non-Coherent Caches

	Summary

	Performance Modeling
	Propostion
	On-core Modeling: Computational Model
	Related Work
	A methodology to measure Latency, Throughput, and to detect Execution Port assignations
	Detecting Instruction Parallelism

	Case Study: Power Aware Performance Prediction on the SCC
	Related Work
	The SCC Architecture
	Performance Model
	Model evaluation
	Power efficiency optimization
	Summary

	Summary about On-core Modeling
	Un-Core Model: Memory
	Memory Hierarchy Parameters Needed to build a Memory Model
	Cache Coherence Impact on Memory Performance
	Bringing Coherence into a Memory Model

	Conclusion

	Designing Benchmarks for Memory Hierarchies
	Problem Formulation
	Requirements of Benchmarks due to Cache Coherence
	Building Reliable Benchmarks

	Framework and Technical Choices
	Related Work
	Framework Overview
	Achieving Peak Memory Performance

	A Language to ease Benchmark writing
	Language Description
	Benchmark Compilation Framework

	Benchmarking Memory Hierarchy
	Motivating Example
	Automatic Generation of Coherence Protocol Benchmarks
	Comparing Cache Architectures and Coherence Protocols
	Guidelines for Improving Coherence Behavior

	Conclusion

	Benchmark based Performance Model
	Scope and Model Overview
	Program and Memory Models
	Program Representation
	Memory Model
	Time Prediction

	Experiments
	MKL dotproduct
	MKL DAXPY
	FFT Communication Pattern
	Conjugate Gradient

	Application to Shared Memory Communications
	Intra-node Communication Memory Model
	Evaluation
	Impact of Application Buffer Reuse

	Conclusion
	Discussion
	Related Work
	Summary


	Conclusion
	Bibliography
	List of Publications

