.. Proposed-solution-for-the-solver, 55 5.3.2 Yale's compressed matrix format, p.59

E. Anderson, Z. Bai, C. Bischof, S. Blackford, J. Demmel et al., Chapter Conclusion and Perspectives could be possible to eliminate the C++/FORTRAN JNI bridge and have a pure Java solution. Bibliography [ABB + 99, 1999.

. M. Cgh-+-96-]-r, G. H. Corless, D. E. Gonnet, D. J. Hare, D. E. Jeffrey et al., On the lambert w function, ADVANCES IN COMPUTATIONAL MATHEMATICS, pp.329-359, 1996.

R. M. Corless, D. J. Jeffrey, and D. E. Knuth, function, Proceedings of the 1997 international symposium on Symbolic and algebraic computation , ISSAC '97, pp.197-204, 1997.
DOI : 10.1145/258726.258783

D. Clamond, Efficient Resolution of the Colebrook Equation, Industrial & Engineering Chemistry Research, vol.48, issue.7, pp.3665-3671, 2009.
DOI : 10.1021/ie801626g

URL : https://hal.archives-ouvertes.fr/hal-00335655

]. R. Clé66 and . Clément, Calcul des débits dans les réseaux d'irrigation fonctionnant à la demande, pp.553-576, 1966.

J. [. Cheung, L. F. Van-zyl, and . Reis, Extension epanet for pressure driven demand modeling in water distribution system, Computing and Control for the Water Industry, pp.311-316, 2005.

W. Edsger and . Dijkstra, A note on two problems in connexion with graphs, Numerische Mathematik, vol.1, pp.269-271, 1959.

[. Eisenstat, M. C. Gursky, M. H. Schultz, and A. H. Sherman, Yale sparse matrix package, ii. the nonsymmetric codes, 1977.
DOI : 10.1002/nme.1620180804

R. W. Freund and N. M. Nachtigal, QMR: a quasi-minimal residual method for non-Hermitian linear systems, Numerische Mathematik, vol.10, issue.1, 1991.
DOI : 10.1007/BF01385726

O. Giustolisi, D. A. Savic, and Z. Kapelan, Pressure-Driven Demand and Leakage Simulation for Water Distribution Networks, Journal of Hydraulic Engineering, vol.134, issue.5, pp.626-635, 2008.
DOI : 10.1061/(ASCE)0733-9429(2008)134:5(626)

]. Y. Lab88 and . Labye, Design and optimization of irrigation distribution networks. Number 44- 45 in FAO irrigation and drainage paper, 1988.

R. [. Lawson, D. R. Hanson, F. T. Kincaid, and . Krogh, Basic Linear Algebra Subprograms for Fortran Usage, ACM Transactions on Mathematical Software, vol.5, issue.3, pp.308-323, 1979.
DOI : 10.1145/355841.355847

J. [. Lamaddalena and . Sagardoy, Performance Analysis of On-demand Pressurized Irrigation Systems, Food and agriculture organization of the United Nationsmikebydhi.com/Products/Cities/MIKEURBAN.aspx. [mtj11] Matrix toolkits java (mtj) website, 2000.

]. O. Pil95 and . Piller, Modeling the behavior of a network -Hydraulic analysis and sampling procedures for parameter estimation, PRES), 1995.

]. Y. Saa03 and . Saad, Iterative Methods for Sparse Linear Systems, Society for Industrial and Applied Mathematics, 2003.

R. Jonathan and . Shewchuk, An introduction to the conjugate gradient method without the agonizing pain, 1994.

E. Todini, Extending the global gradient algorithm to unsteady flow extended period simulations of water distribution systems, Journal of Hydroinformatics, vol.13, issue.2, pp.167-180, 2010.
DOI : 10.2166/hydro.2010.164

S. [. Todini and . Pilati, A gradient algorithm for the analysis of pipe networks, pp.1-20, 1988.

J. H. Wilkinson, C. Reinsch, and F. L. Bauer, Handbook for Automatic Computation: Linear Algebra, Grundlehren Der Mathematischen Wissenschaften, vol.186, 1986.
DOI : 10.1007/978-3-642-86940-2