Propriété de Bogomolov pour les modules de Drinfeld à multiplications complexes

Hugues Bauchère 1
1 Théorie des nombres et géométrie arithmétique
LMNO - Laboratoire de Mathématiques Nicolas Oresme
Abstract : Denote by A := F q [T] and k := F q (T). Let φ be a Drinfeld A-module defined on the algebraic closure of k and h its canonical height. Let K/k be a finite extension and L/K a infinite Galois extension. By analogy with the terminology used by E. Bombieri and U. Zannier, we state that L has the property (B,φ) if exists a strictly positive constant which bound h on L except for torsion points of φ. S. David and A. Pacheco have proven that for all Drinfeld modules φ, the abelian closure of K has the property (B,φ). In this thesis we generalize this result, for the Drinfeld modules with complex multiplication.
Document type :
Theses
Complete list of metadatas

Cited literature [2 references]  Display  Hide  Download

https://tel.archives-ouvertes.fr/tel-00975587
Contributor : Hugues Bauchère <>
Submitted on : Tuesday, April 8, 2014 - 7:33:04 PM
Last modification on : Friday, June 28, 2019 - 4:38:37 PM
Long-term archiving on : Tuesday, July 8, 2014 - 12:31:06 PM

Identifiers

  • HAL Id : tel-00975587, version 1

Citation

Hugues Bauchère. Propriété de Bogomolov pour les modules de Drinfeld à multiplications complexes. Théorie des nombres [math.NT]. Université de Caen, 2013. Français. ⟨tel-00975587⟩

Share

Metrics

Record views

378

Files downloads

138