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DAMAGE EVALUATION OF
CIVIL ENGINEERING STRUCTURES

UNDER EXTREME LOADINGS

SUMMARY

In many industrial and scientific domains, especially in civil engineering and

mechanical engineering fields, materials that can be used on the microstructure scale,

are highly heterogeneous by comparison to the nature of mechanical behavior. This

feature can make the prediction of the behavior of the structure subjected to various

loading types, necessary for sustainable design, difficult enough. The construction of

civil engineering structures is regulated all over the world: the standards are more

stringent and taken into account, up to a limit state, due to different loadings, for

example severe loadings such as impact or earthquake.

Behavior models of materials and structures must include the development of these

design criteria and thereby become more complex, highly nonlinear. These models are

often based on phenomenological approaches, are capable of reproducing the material

response to the ultimate level.

Stress-strain responses of materials under cyclic loading, for which many researches

have been executed in the previous years in order to characterize and model, are defined

by different kind of cyclic plasticity properties such as cyclic hardening, ratcheting and

relaxation.

By using the existing constitutive models, these mentioned responses can be simulated

in a reasonable way. However, there may be failure in some simulation for the

structural responses and local and global deformation. Inadequacy of these studies can

be solved by developing strong constitutive models with the help of the experiments

and the knowledge of the principles of working of different inelastic behavior

mechanisms together.

This dissertation develops a phenomenological constitutive model which is capable of

coupling two basic inelastic behavior mechanisms, plasticity and damage by studying

the cyclic inelastic features. In either plasticity or damage part, both isotropic and

linear kinematic hardening effects are taken into account. The main advantage of

the model is the use of independent plasticity versus damage criteria for describing

the inelastic mechanisms. Another advantage concerns the numerical implementation

of such model provided in hybrid-stress variational framework, resulting with much

enhanced accuracy and efficient computation of stress and internal variables in each

element.

The model is assessed by simulating hysteresis loop shape, cyclic hardening,

cyclic relaxation, and finally a series of ratcheting responses under uniaxial loading

responses. Overall, this dissertation demonstrates a methodical and systematic

development of a constitutive model for simulating a broad set of cycle responses.

Several illustrative examples are presented in order to confirm the accuracy and

efficiency of the proposed formulation in application to cyclic loading.
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DİNAMİK YÜKLER ALTINDA
MÜHENDİSLİK YAPILARINDA

HASAR ANALİZİ

ÖZET

Bir çok endüstri ve bilimsel alanda, özellikle inşaat mühendisliği ve makine

mühendisliği alanlarında, malzemeler mekanik davranışı itibariyle mikro ölçekte son

derece heterojen bır yapıya sahiptirler. Bu özellik nedeniyle, sürdürülebilir tasarım

için gerekli olan çeşitli yükleme türleri altında yapının davranışı hakkında tahmin

yapmanın yeterince zor, hatta imkansız olduğu söylenebilir.

İnşaat mühendisliği yapılarının davranış kontrolü de maruz kaldığı yükleme

çeşitliliği nedeniyle çok karmaşıktır. Yapıların analizi tüm dünyada standartlar

ile düzenlenmiştir. Standartlar limit durumlar için deprem, darbe veya kimyasal

reaksiyonlar gibi fiziksel etkileri dikkate alan farklı yüklemeleri hesaplara katar.

Malzeme ve yapıların davranış modelleri bu tasarım kriterlerinin geliştirilmesini

içermelidir ve bu şekilde daha karmaşık, doğrusal olmayan hale gelir. Bununla birlikte,

davranış modeleri genellikle çok ölçekli yaklaşımlara dayalıdır ve fiziksel olaylar

dikkate alınır. Davranış yasaları ne kadar hassas ve karmaşık ise, yapıların davranışının

sayısal simülasyonun kullanımı sınırlı kalır. Bu modeller genellikle fenomonolojik

yaklaşımlara dayanmakta olup, nihai bir seviyeye kadar malzemenin yüklemelere tepki

üretme yeteneğine sahiptir.

Tekrarlı yükleme altında malzemelerin gerilme-şekil değiş tirme tepkilerini karakterize

etmek ve modellemek iç in önceki yıllarda yapılan birçok araştırmanın yapılmıştır. Bu

tepkiler döngüsel pekleşme, şekil değ itirmelerin toplanması (ratcheting) ve ortalama

gerilme gevşemesi (relaxation) gibi farklı türde döngüsel plastisite özellikleri ile

tanımlanır.

Çevrimsel plastisite, tekrarlayan dış yüklemelere maruz kalan malzemelerin doğrusal

olmayan gerilme şekil değiştirme tepkileri ile ilgilidir. Çevrimsel plastik şekil

değiştirme, hizmet ömürleri sırasında çeşitli yüklemelere maruz kalan yük taşıyan,

yük aktaran birleşimlerde kullanılan mühendislik malzemeleri için genellikle

kaçınılmazdır. Çeşitli çevrimsel plastik deformasyonları incelemek mühendislikte

kullanılan malzemelerin davranışlarını kavrayabilmek adına yararlı olabilir.

Simetrik şekil değiştirme kontrollü çevrimsel plastikleşme düşük çevrimli yorulma

ve asimetrik şekil değiştirme kontrollü çevrimsel plastikleşme ortalama gerilme

gevşemesi (mean stress relaxation) gibi malzeme davranışlarını doğurur. Şekil

değiştirmelerin birikmesi (ratcheting) gerilme kontrollü asimetrik çevrimsel plastik

yükleme sonucudur.

şekil değiştirmelerin birikmesi malzeme ve yapının genelinde ayrı ayrı ortaya çıkabilir.

Malzemedeki birikme, yapı üzerine etkiyen gerilme homojen ise veya laboratuvar

ortamında incelenen malzeme gibi kusursuz ise ortaya çıkabilir. Bunun dışında,

yapıdaki şekil değiştirme birikmesi, malzemede birikme olmaması durumunda dahi

xvii



çevrimsel yükleme altında mazleme doğrusal olmayan davranışı dolayısıyla ortaya

çıkar. Bu tip şekil değiştirme birikmesi yapıdaki gerilme durumunun homojen

olmaması nedeniyle meydana gelir. Bu modellerin genelliğini doğrulamak için şekil

değiştirmelerin birikmesi (ratcehting)ile ilgili geniş bir yelpazede tepkilere karşı test

edilir. Sonuç olarak, bu bünye modellerin çoğu malzemelerdeki şekil değiştirmelerin

birikmesi durumuna dair tepkileri oldukça iyi tahmin edebilir, ama yapılardaki birikme

durumunda başarısız olabilir.

Ortalama bir gerilme esas alınarak etkitilen çevrimsel şekil değiştirme için, erken

evre yorulma ömrü ortalam gerilme gevşemesi sonuçları ile belirlenir. Bu nedenle

yorulma ömrü, simetrik çevrimsel şekil değiştirme ile karşılaştırıldığında ortalama

şekil değiştirme tanıtımının sunulması ile kayda değer şekilde etkilenmez.

Farklı tipteki yorulma yüklemeleri altında malzeme şekil değiştirmelerinin birikimi,

özelliklerinin bozulması ve dayanımlarının düşmesi ile ilgili kapsamlı bilgi

mühendislik yapılarının etkili tasarım için gereklidir.

Gevşeme (relaxation) testleri, yükleme koşulları hizmet yüklerinin düzensizliğine

yaklaştığı zaman, değişken büyüklükte yüklemeler için ortalama gerilmelerin

çevrimsel gevşeme özellikleri hakkında bilgi edinmek amacıyla yapılmaktadır. Çeşitli

plastisite modelleri, gözelenen davranışı elde etmek için incelenenir. Simülasyonlar

ömür tahmini için geliştirilen yazılımların uygulaması için karşılaştırılırlar.

Çevrimsel plastisite tpkilerinin modellemesi oldukça karmaşıktır. Deneysel

çalışmalar plastik yüklemeler ile akma yüzeylerinin büyüdüğü ve şekil değiştirdiğini

göstermiştir.Plastik yükelem sırasında bazı metaller pekleşir, bazıları yumuşar (soften).

Bununla birlikte, çevrimsel plastik tepkileri yükleme geçmişine bağlıdır. Mevcut

bünye modellerinin çoğu, idealize edilmiş akma yüzeyleri ve pekleşme kuralları gibi

bu karmaşık olayları simüle etmekte başarısızdır. Buna ek olarak, şekil değiştirmelerin

birikmesi (ratcehting) simülasyonları için çevrimsel plastisite modelleri sınırlı veya

basit deneyler verileri kullanılarak doğrulanır ve geliştirilir.

Mevcut bünye modellerini kullanarak, bu bahsedilen tepkiler makul bir şekilde

simüle edilebilir. Ancak, yapısal tepkiler, yerel ve toplam deformasyon için bazı

hesaplamalarda baş arısızlık olabilir. Bu çalışmaların yetersizliğ i deneyler ve farklı

elastik olmayan davranış mekanizmalarının birlikte ç alış ma ilkelerine iliş kin bilgiler

yardımıyla güçlü bünye modelleri geliştirerek çözülebilir.

Bu çalışmada, iki temel inelastik davranış plastisite ve hasar mekanizmalarını çift

olarak çalıştığı bir fenomenolojik bünye modeli sunuyoruz. Bu model tekrarlı yükleme

uygulamalarını hedeflemektedir. Böylece, plastisite veya hasar davranışı için, hem

izotropik hem doğrusal kinematik pekleşme etkileri dikkate alınır. Modelin en büyük

avantajı, elastik olmayan mekanizmaları tarif etmek için plastikleşme davranışına karşı

hasar ölçütlerinin bağımsız olarak kullanılmasıdır. Diğer bir avantajı, her eleman

için hibrid-gerilme varyasyonel hesaplamalar çerçevesinde elde edilen, gerilmelerin

ve iç değişkenlerin doğru ve etkili hesaplanması ile sonuçlanan, bu modelin sayısal

uygulaması ile ilgilidir.

Çevrimsel diyagramlar, geleneksel yöntem olan izotropik pekleşme parametreleri

kullanılmasına ek olarak, kinematik pekleşme parametreleri ile plastik davranışa

eklenen hasar izotropik pekleşmesi de dahil edilerek oluşturulur. Model, tek eksenli

yüklemeler altında çeşitli çevrimsel diyagramlar elde edilmesiyle değerlendirilir.

Genel sistematik geliş tirilmesini göstermektedir. Çeşitli örnekler tekrarlı yükleme
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olarak, bu çalışma çevrimsel davranışların bir dizi geniş simülasyonu için bünye

modelinin metodik ve için önerilen formülasyonun doğruluğu ve verimliliğini teyit

etmek amacıyla sunulmaktadır.
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DAMAGE EVALUATION OF
CIVIL ENGINEERING STRUCTURES

UNDER EXTREME LOADINGS

RESUME

Dans de nombreux domaines industriels et scientifiques, en particulier dans les

domaines du génie civil et de génie mécanique, des matériaux à l’échelle de la

microstructure, un très hétérogène par rapport à la nature du comportement mécanique.

Cette fonctionnalité peut faire la prédiction du comportement de la structure soumise à

différents types de chargement, nécessaires pour la conception durable, assez difficile.

Le contrôle du comportement des ouvrages de génie civil est très complexe en raison

de la diversité de la charge à laquelle ils sont soumis. La construction est maintenant

réglementée partout dans le monde: les normes sont plus strictes et pris en compte,

jusqu’à un état limite, en raison de différentes charges, par exemple des charges sévères

tels que l’impact ou tremblement de terre.

Modèles de comportement des matériaux et des structures doivent inclure l’élaboration

de ces critères de conception et deviennent plus complexe. Ces modèles sont souvent

basées sur des approches phénoménologiques, sont capables de reproduire la réponse

du matériau au niveau ultime.

Réponses de contrainte-déformation des matériaux sous sollicitations cycliques, dont

de nombreuses recherches ont été exécutées dans les années précédentes afin de

caractériser et le modèle, sont définies par différents types de propriétés de plasticité

cycliques tels que l’ écrouissageue, l’effet rochet et de de relaxation.

En utilisant les modèles de comportement existants, ces réponses mentionnées peuvent

être simulés d’une manière raisonnable. Cependant, il peut y avoir échec dans

certains simulation des réponses structurelles et la déformation locale et globale.

Insuffisance de ces études peut être résolu par le développement de solides modèles

de comportement à l’aide d’expériences et de la connaissance des principes de

fonctionnement des différents mécanismes de comportement inélastique ensemble.

Dans ce travail, nous présentons un modèle phénoménologique constitutive qui

est capable de coupler deux principaux mécanismes de comportement inélastique,

plasticité et endommagement. Le modèle vise les applications de chargement

cycliques. Ainsi, dans une partie de plasticité ou de dommages, les effets de

durcissement isotropes et linéaires cinématiques à la fois sont pris en compte. Le

principal avantage de ce modèle est l’utilisation de la plasticité indépendante contre

les critères de l’endommagement pour décrire les mécanismes inélastiques. Un

autre avantage concerne la mise en œuvre numérique d’ un tel modèle fourni en

hybride-stress variationnel, obtenu avec une précision très améliorée et calcul efficace

du stress et des variables internes dans chaque élément. Plusieurs exemples sont

présentés afin de confirmer l’exactitude et l’efficacité de la formulation proposée en

application à un chargement cyclique.
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1. INTRODUCTION

1.1 Problem Statement

Design of structures for various cyclic loading conditions that may cause inelastic

behavior, such as earthquake ground motion, rotating machinery, etc. requires full

understanding of inelastic phenomena of material, such as plasticity and damage,

which may give correct interpretation of material failure. Persistent slip bands,

rearrangement of dislocation system void nucleation etc. are the examples of changes

that occur within the material which can be represented by plasticity model. Given our

special interest in for cyclic loading, two main features of plasticity model ought to

be represented. The first one is isotropic hardening, which is chosen to represent the

saturation type behavior, and the second is the kinematic hardening, which is selected

to capture the strain cycling effects.

For mechanical components subjected to asymmetric cyclic loading leading to plastic

strain, most materials exhibit the phenomenon of either mean stress relaxation or strain

ratchetting, or a combination of the two, depending on the applied load and structure

geometry. If the maximum and minimum strains are fixed, then stress relaxation

will occur. The initially non-zero mean stress will progressively shift towards zero

as cyclic loading is applied, as sketched in Figure 1.1a. This is analogous to stress

relaxation under monotonic loading with fixed strain, except it is induced by the cyclic

loading rather than the elapsed time. On the other hand, if the maximum and minimum

stresses are controlled, then the so called strain ratchetting will take place, as shown

schematically in Figure 1.1b.

Again, this is similar to creep under constant monotonic stress, but it is caused by the

cyclic straining and the existence of a non-zero mean stress. Both strain ratchetting

and mean stress relaxation are characterised by unclosed hysteresis loops, and plastic

shakedown refers to the steady state reached after a certain number of cycles. For

a component with geometrical discontinuities, such as holes, cut-outs, notches and

fillets, neither the stress nor the strain at the notch root is under control. Instead, the

1



Figure 1.1: Cyclic behavior models.

remote stress or strain is prescribed, while the local stress and strain are governed

by the geometry of the discontinuity and the behaviour of the material. In this case

both strain ratchetting and mean stress relaxation occur simultaneously. As ratchetting

depends on the existence of a nonzero mean stress, it can be anticipated that the local

mean stress will gradually relax, and that eventually the stress-strain loop will stabilize

with a zero mean stress [1].

1.2 Background and Literature Review

The plasticity models of this kind are presented in classical works of [2], [3] and [4].

In these works, the typical one of yield criteria, which defines the domain where the

elastic response does not change in elastic loading and unloading, is the criterion of von

Mises. This kind of criterion pertaining to deviatoric part of stress provide a plasticity

that is suitable for metals and alloys. However, if we also want to account for gradual

reduction of the elastic stiffness due to cyclic loading, we need a damage model. The

continuum damage model is presented in detail in literature (e.g. see [5] or [6]). Elastic

response is changed by damage model without residual deformation upon loading.

The response of porous metals and alloys, as well as the cracking of concrete are

phenomena that can be represented by using the damage model. Damage phenomenon

is a irreversible process that occurs in material microstructure and its presence affects

the material constitutive response at meso/macro scale. Damage accumulation occurs

as a result of micro-cracking induced plastic deformation and this cyclic accumulation

results in failure of the material.
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Researchers are developing advanced constitutive model in order to define complex

behavior of materials in cyclic loading. A constitutive model that is capable of coupling

both basic types of inelastic behavior, plasticity and damage, is presented by [7]

and [8]). These two basic constitutive models can be coupled into a single model,

which can be used for metals with voids by [9], concrete compaction by [10] and plain

concrete by [11]. There are two independent associated flow rules for plasticity and

damage in the previous works done by [12] and [13].

Many oher recent works deal with the different facets of this complex problem,

of providing the consititutive behavior characterized by damage and plasticity for

different types of material (e.g. see [14]; [15]; [16]; [17]; [18]; [19]; [20]; [21]; [22];

[14]).This kind of models have not been extended to cycling loading.

Some have developed the constitutive models of plasticity under cyclic loading

conditions which are also taken into account in this paper. The complicated behavior

of material, such as plastic strain accumulation (ratcheting) or progressive relaxation

of the stress, has been explained (e.g. [23] and [24]).

Cyclic behavior and its governing mechanims were also observed in recent years (e.g.

see [25]; [26]; [27]; [28]; [29]; [30]; [31]; [32]; [33]; [34]).

In this work, we further extend these models to add a damage component, so to be able

to account for elastic stiffness reduction. Strain energy is chosen as quadratic form

with state variables, which are total strain, elastic strain, damage strain and strainlike

variables. Yield criterion is also constructed as a quadratic form with dual variables,

which are stress-like variables for both plasticity and damage. For this purpose, the

principle of maximum plastic dissipation is used. The equations of evolution for

plastic and damage internal variables are obtained by using the implicit backward Euler

scheme. This model hypothesis was first presented in the study of [8].However, this

presentation is here slightly modified to allow for using stress as one of the other state

variables.

Contrary to this mentioned paper A. Ibrahimbegovic, D. Markovic and F. Gatuingt

(Revue europeenne des elements finis [2003]) paper, we here proposed the direct

stress interpolations and not the classical FE displacement interpolations presented

previously by [8], AI, DM and FG [2003]), which allows us to remove the local
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iterative procedure in computing the stress and internal variable of plasticity and

damage. Hence, the proposed formulation is more efficent computationally, and for

that reason we have also provided the details of the computational procedure.

Whereas, some researchers have employed the plasticity criteria on the effective stress

obtained by damage model (e.g. [35] and [36])

Stress-based formulation of coupled damage-plasticity in the study of [37] is chosen

herein,since it is very useful for solving simultaneously the equations at each numerical

integration point.Once the values of internal variables are obtained the equilibrium

equations are solved for the whole structure. Hellinger-Reissner type mixed variational

type is constructed in which the interpolation functions are elaborated for displacement

and stress fields independently. The first presentation of this kind is given in [37] for

1D problem. Here in this study, we target two-dimensional problems for membrane

structure made of metallic materials and also the corresponding applications for cyclic

loadings. Thus, the Pian-Sumihara finite element formulation is used in order to define

the stress field.

1.3 Scope and Objectives

The cyclic constitutive behavior of mild steel under elastoplastic-damage deformation

has been investigated in this research. Numerical simulations were performed under

strain- controlled and stress-controlled cyclic loading, respectively, with a view

to quantify the phenomena of mean stress relaxation and strain ratchetting. To

mathematically describe the observed cyclic stress-strain behaviour, the framework

of constitutive theory for rate-independent plasticity has been reviewed. A detailed

discussion has been presented for a class of constitutive models which uses nonlinear

differential equations to describe the isotropic hardening and also the kinematic

hardening, using a back stress. A comparison to the experimental result shows that

the model can provide very good representation of the material stress strain behavior

under cyclic loading.

Responses under cyclic loading, e.g. cyclic hardening/softening, ratcheting, relaxation,

and their dependence on strain range determine the stress-strain responses of materials

under cyclic loading. Numerous efforts have been made in the past decades to

characterize and model these responses. Many of these responses can be simulated
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reasonably by the existing constitutive models, but the same models would fail in

simulating the structural responses, local stress-strain, or global deformation. One

of the reasons for this deficiency is that the constitutive models are not robust

enough to simulate the cyclic plasticity responses when they interact with each other.

This deficiency can be understood better or resolved by developing and validating

constitutive models against a broad set of experimental responses and two or more

of the responses interacting with each other. This dissertation develops a unified

constitutive model by studying the cyclic plasticity features in an integrated manner

and validating the model by simulating a broad set of cyclic plasticity responses.

1.4 Outline

The thesis outline is as follows. In Chapter 2, we describe the basic concepts of the

inelastic phenomenon. A discussion is given from the elastic limit state througout

the inelastic behavior, e.g. plasticity at first. The most common material inelastic

behaviors are described. Also, control of the behavior from the elastic to plastic state

are explained.

Chapter 3 gives the thermodynamically consistent theoretical formulations for the

coupled damage-plasticity phenomenon. Internal variables which determines the

material behavior are introduced by using the dissipation law and free strain energy.

Hardening rules, which are important for the cyclic behavior are defined.

In Chapter 4, the finite element formulation is described. Pian Sumihara stress

interpolation function beside the displacement shape function are used for the

discretization of the problem. Computational algorithm (Operator Split Method) is

presented, along with the numerical implementation and the corresponding variational

formulation. The results of numerical examples are also given in order to further

illustrate a very satisfying performance of the proposed solution scheme. Computer

codes that describes the hardening models with the internal variables are implemented

into the FEAP (Finite Element Program Analysis) in order to obtain hysteresis

diagrams.

The results and conclusion are presented in Chapter 5.
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2. FUNDAMENTAL CONCEPTS

2.1 Observations Elastic Limit

Assuming, we have a prismatic rod made of a ductile material, subjected to a uniaxial

tensile stress, for which loading is quasi-static. A problem arises in order to determine

the elastic limit: it is only when the limit is overleapt that we can determine where the

limit was. So in theory, a certain level of stress should br applied, returned to zero,

the deformation is measured. As the deformation at the end of the cycle is zero, the

behavior of the material is said to be elastic. When the final deformation is measured as

non-zero value for the maximum applied stress level, we get out of the elastic domain:

the elastic limit is between the last two levels of imposed stress during the test. This

procedure is very long and the precision of the limit depends on the difference between

two successive levels of stress. It is not known that stress level corresponds to the limit,

it is seen a posteriori that there is an irreversible deformation and it is deduced that the

elastic domain of the material is quitted.

In practice, we proceed differently. Monotonic loading is performed at a given speed

and the stress-strain curve is plotted. The elastic limit is determined by a suitable

treatment of the points of this curve. Determining this limit is difficult and depends

on the accuracy of measurement instruments. The conventional use of elastic limit

is resorted; the most used idea is that the value which corresponds to a permanent

deformation of 0,2. If the material had never been subjected to this level of stress,

the yield (elastic limit) is called initial. If we continue to increase the stress on

the specimen beyond the elastic limit, there is material hardening: its elastic limit

increases. This is why we have introduced earlier the initial yield. All stress levels

between the initial yield and limit at failure are out elastic limits. The theory of

plasticity is the mathematical theory of irreversible deformations independent of time.

If loading-unloading cycles are carried out by imposing in each cycle a stress exerted

greater than in the previous cycle, the same curve is obtained as have been obtained

without such intermediate unloading and loading.
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The slope for these intermediate unloading and loading is constant up to a certain

stress level and equal to the initial slope at the origin, that means that the modulus does

not change while the structure plasticize and that the material hardens. The modulus

of elasticity decreases beyond this stress called damage threshold. The deformation

of the structure under loading, total deformation, called ε t , is the sum of the elastic

deformation εe and plastic deformation ε p. The elastic deformation is determined

from both the current point and the modulus of elasticity, which is equal to the ratio

of stress modulus of elasticity. The plastic deformation is determined from both the

total deformation and the elastic deformation. When the specimen was hardened in

tension, and then it is compressed enough to reach the limit in compression, we see

that for some materials, this limit has been reduced by hardening: it is the Bauschinger

effect. For others, the increase in yield tensile is accompanied by an increase in

the compression limit. Plastic deformations are, for most materials, incompressible:

plastic flow occurs without volume change. Since the variation in volume associated

with plastic deformations is zero, the modulus is infinite so Poisson’s ratio is equal to

1
2

for the plastic deformations.

V −V0

V0
≈ (εεε t

xx + εεε t
yy + εεε t

zz) = 0

⇒ κ =
σxx +σyy +σzz

3(εεε t
xx + εεε t

yy + εεε t
zz)

=
E

3(1−2ν p)

⇒ ν p =
1

2

(2.1)

When a tensile test is performed on a specimen made of a ductile material,

for sufficiently small values of the deformation, it is not useful to specify what

kind of measurement is used to characterize the stress and strain: the curves are

superimposables whatever the kind of measure is chosen. But when we leave this

field, it may be important to make a difference in Figure 2.1.

On the conventional curve, peak point corresponds to the maximum load and the

maximum stress, which the structure and the material can withstand. On the rational

curve, the maximum stress does not appear at the peak but at the rupture. It is therefore

important to specify on which curve is referred to the maximum or rupture stress. The

peak point is characterized by the peak point coefficient.
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 peak point

Figure 2.1: Curves in tension, ductile material. At left side, conventionel ( nominal)

curve At right side rational (real) curve.

Z =
S0−Srupture

S0
(en%) (2.2)

At the necking point, the abrupt decrease of the section is no longer compensated by

hardening: the conventional curve passes through its maximum and the stress has no

derivative with respect to the stretching (deformation). On the rational curve, there

is a pinch point when the Cauchy stress is equal to its derivative with respect to

deformation. σC is the Cauchy stress, γ is the deformation (stretching), Π is the stress

PK1(Piola-Kirshoff 1), εC the Cauchy deformation , we write:

σC = γΠ→ dσC

dγ
=

dΠ

dγ
γ +Π

εC = Ln(γ)→ dεC =
1

γ
dγ → dγ

dεC
= γ

dσC

dεC
=

dσC

dγ

dγ

dεC
= (

dΠ

dγ
λ +Π)γ = (0+Π)γ = σC

(2.3)

Unless the deformations are the order of 2 or 3 %, there is no difference between the

various steps of the deformation. A steel bar subjected to tension is out of the elastic

range when its deformation is the order of 0.1 %. Deformation of 3 % is already high,

few structural studies have been realized for the determination of metal behavior until

failure. Consider now a test sample which is hardened in traction and hardened in

compression, hardened again in tension and is subjected finally to a discharge elastic

until the applied stress is zero in Figure 2.2. At point D, the plastic deformation is the

same as the one going on during the first discharge or the second. However, the yield is

not the same as it has been hardening between the two pathways through the point D.

A law relating strain and stress is not conceivable. One of the difficulties of plasticity

is the history effect(integration of all previous states) related to the irreversibility of
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certain phenomena, so that there is no more simple and direct relationship between

stress and strain. Thus, plasticity requires incremental laws dependent to parameters

describing the hardening and parameters describing the state of plastic deformation

from the current state. The laws of variation are infinitesimal and are taken into account

in comparison to the current state. They provide the relationship between infinitesimal

increase in deformation dε and infinitesimal increase in stress dσ associated.

E

Figure 2.2: Stress-Strain curve for uniaxial loading.

In this study, we are interested in the macroscopic aspect of the plasticity, in models

that represent this aspect and in numerical problems related to these models in

commercial programs for calculation of structure [2]. During the calculation of the

internal forces and tangent matrix, what is needed is to be able to calculate the stresses

and tangent constitutive law from the state of deformation and internal variables

of material. For plasticity, material nonlinearities are independent of time. This

means that the nonlinear effects are instantaneous: deformation and stress have a

simultaneous development; there is no delay of one with respect to the other. Creep

and relaxation are not taken into account by standard plastic models. To calculate

the behavior of a structure that plastifies, it reveals the concept of time. This is an

auxiliary variable, which can give the chronology of events and study the behavior of

the structure for a series of quasi-static equilibrium.

10



2.2 Materials and Behavior Models

A metal bar is subjected to a uniform uniaxial tension, the load gradually increases.

Depending on the materials, there are various behavior models to represent the

experimental curve. Material has an elastoplastic behavior if we can represent the

experimental stress strain curve by a first segment that is straight line and then by

a curve possibly rectilinear in Figure 2.3. If a discharge is performed in a point, the

discharge is carried out by the initial Young’s modulus.

Figure 2.3: Model of elastoplasticity behavior.

There is hardening of the material, that means, variation in its yield with its plastic

deformation. As the applied stress is less than the elastic limit σe, the behavior is

elastic. When the applied stress reaches the yield stress and the loading is continued to

increase, the plastic deformation and the elastic limit increase. When the plastic strain

increases, the elastic range is enlarged, the length of the slope segment E increases.

But more the yield increases more the material becomes brittle because the increase in

the field of elasticity decreases the field of plasticity and increases sensitivity to stress

concentrations due to small manufacture defects, the cavities caused by small one-off

shocks. In the case of uniaxial tension, we can directly compare the applied stress on

the elastic limit as the stress field has a nonzero component in the loading direction.

Material has a perfect elastoplastic behavior if the experimental stress-strain curve can

be represented by a first straight segment whose slope is the modulus of elasticity, and

a horizontal segment. As the applied stress is less than the elastic limit σe, the behavior

is elastic. When the applied stress reaches the elastic limit and the loading continues

to increase. The total deformation increases but not the stress; there is no hardening
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of the material in Figure 2.4. When the plastic strain is increased, the elastic field

cannot grow; the length of the slope segment E is constant. If a discharge is performed

in a point, it is carried out with the initial Young’s modulus. This model of perfectly

elastoplastic behavior is adapted in the stretching bearing area for materials such as

mild steel.

Figure 2.4: Model of perfectly elastoplasticity behavior.

2.3 Control of Plasticity

Assuming that a point in stress space represents the stress state in a material point of

the structure. It is within the volume delimited by the surface plasticity. The material

has an elastoplastic behavior, the viscosity is not taken into account. Three cases can

occur during a load increment in Figure 2.5a.

• The point representing the new state of stress is in the volume defined by the surface

plasticity,

• The point representing the new stress state is on the surface of plasticity,

• The point representing the new stress state is outside the volume limited by the

surface of plasticity.

In the first case, the behavior was elastic and it still is. For the second, the behavior

was elastic and he became plastic. For the third, the behavior was elastic and

became inadmissible. The plasticity surface must evolve so that the new point is

on a new surface: this is the work hardening of the material. Assume now a point

of the stress space representing the stress state in a material point of the structure.

It is on the surface in Figure 2.5b.
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• The point representing the new stress state came back to the volume delimited by

the surface plasticity,

• The point representing the new stress state remains on the plasticity surface,

• The point representing the new stress is outside the volume delimited by the surface

plasticity.

Figure 2.5: Representation of the possible configurations for a loading.

For the first case, we have an elastic discharge. For the second, loading is neutral. For

the third, the behavior was plastic and it became inadmissible. The plasticity surface

must evolve so that the new point is on a new surface: this is the work hardening of the

material. Three types of data are needed to treat elastoplasticity:

• The plasticity criterion,

• The flow rule,

• The hardening rule

The plasticity criterion allows determining the value of the equivalent stress from the

components of the stress tensor. If the elastic limit is exceeded by the value of the

equivalent stress, the stress state is inadmissible. Plasticity came up or it has developed.

A criterion allows determining when the plasticity appears but provides no information

about the nature of the plastic behavior. To describe the plasticity surface and its

evolution when there is hardening, it is necessary to know the flow law which expresses

the relation between increased plastic deformation and increased stress. In the case of

plasticity associated, hypothesis of the elastoplasticity theory generally well suited to
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represent the behavior of metals, the function F, which describes the equation of the

plasticity surface, is also called the plastic potential, plastic potential and plasticity

surface being identical. The flow law is the relationship between the strain increment

and increased stress. The hardening law gives the variation of plasticity with the stress

state.

In practice, the current yield is compared to the equivalent stress that is evaluated for

the current loading. When viscoplasticity is not taken into account, a point representing

a stress state cannot be outside the volume defined (delimited) by the plasticity surface.

If the estimated stress during a calculation of iteration is beyond this envelope, the

stress state is not physical. The hardening is not involved to exceed the limit but to

push it so that the stress reaches the new limit and is therefore admissible. In stress

space, work harden a material is to modify its surface plasticity. Surface plasticity φ

or intrinsic surface is written in the general form:

f (σi j,αi j)−σy(ε̄
p) = φ(σi j,αi j, ε̄

p) = 0 (2.4)

σy is the yield limit of the material which depends only on the equivalent plastic strain.

f is the equivalent stress. αi j are the coordinates of the center of the plasticity surface

in the stress space. φ > 0 is an unacceptable condition. If φ < 0, the material has

an elastic behavior in the vicinity of considered material, loading may continue until

φ = 0, the material in the vicinity of the considered material point has plastic behavior

under the loading. In order that there is flow, the loading must be continued and is such

that in Figure 2.6.

Figure 2.6: Plasticity Surface.

φ = 0
∂φ

∂σ
dσ 0 (2.5)
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This relationship expresses that the projection of increased stress is in the direction of

the outward normal at the current point of the plasticity surface, gradient
∂φ
∂σ giving

the direction and the direction of the maximum increase of the function φ . When there

is flow, the starting point satisfies φ = 0, the end point also: plasticity surface evolves

but φ continues to be zero regardless the loading that produces the flow. The rule of

consistency is deduced:

dφ = 0 (2.6)

If φ = 0 and
∂φ
∂σ dσ < 0, the projection of increased stress on the gradient is negative,

we return to the inside of plasticity surface, we are dealing with an elastic unloading.

If φ = 0 and
∂φ
∂σ dσ = 0, the projection of increased stress on the gradient is zero, we

stay on the plasticity surface, we are dealing with a neutral loading.

When plasticity increases, increased plastic deformation is orthogonal to the plasticity

surface at the considered point, it is the normality rule. It is written, dγ being a scalar

to be determined is called plastic multiplier:

dε
p
i j = dγ

∂φ

∂σi j
(2.7)

In other words, we know how to evaluate the plastic deformation, but not how much.

Whatever increase in stress σ , which expand the plasticity, it is accompanied by an

increase in plastic deformation which is always orthogonal to the plasticity surface

at the point where it is situated. The dγ depends on the increase in loading, but the

direction of change of plastic deformation does not depend on it, it depends on where

it is located on the plasticity surface. In the case where the Von Mises criterion is used

to define the equivalent stress, plasticity surface is given by:

φ =

√

1

2
[2σ2

I +2σ2II +2σ2
III−2σIσII−2σIIσIII−2σIIIσI]−σe

= f −σe = 0

(2.8)

One can calculate the change in volume due to plastic deformation.

∂φ

∂σI
=

1

2 f
(2σI−σII−σIII)

∂φ

∂σII
=

1

2 f
(−σI +2σII−σIII)

∂φ

∂σIII
=

1

2 f
(−σI−σII +2σIII)

(2.9)
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The use of von Mises criterion involves the confirmation of experimental results

obtained for metals, namely that plastic deformations are incompressible.

dε
p
ii = dε

p
I +dε

p
II +dε

p
III

= dγ(
∂φ

∂σI
+

∂φ

∂σII
+

∂φ

∂σIII
) = 0

(2.10)
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2.4 The Criterion of Plasticity

Various tests with different stress states are performed and it is determined for each of

them when the plasticity appears, which is arranged after a test of points cloud in the

plane of the two principal stresses (σI,σII). We can then look for what is the equation

of the curve that goes best with this scatter plot, or the equation of the surface in the

stress space. This equation can always be put in the form, σ representing the principal

constraints or constraints [3] as follows:

f (σ) = σy or f (σ ,σy) = 1 (2.11)

The function f defines the equivalent stress which is nothing other than a scalar

obtained by more or less complicated mixing of components of the stress tensor, scalar,

which has the advantage of being easily compared to the elastic limit. Mixing rule is

called plasticity criterion. For a given material, a criterion passes better through the

experimental points than others, but there is not a criterion better than another, suitable

for all materials. It was only after development of material and mechanical tests that

we are able to say which plasticity criterion is the most appropriate for this material.

In the case of a uniform tension, which is the simplest mechanical test to perform and

therefore the most common, the equivalent stress must be equal to the tensile stress

applied to the specimen. σy is the yield strength of the material. The curve or surface

equation is called plasticity surface.

f −σy = 0 (2.12)

In the space of principal stresses, principal stresses are conventionally arranged in

descending algebraic order, the surface of plasticity defined by the criterion Tresca

(1864) is a right cylinder whose axis has equation σI = σII = σIII , and whose

cross section is independent of hydrostatic stress. In a plane deviator, which is a

perpendicular plane to the axis of equation σI = σII = σIII , all points on the surface

of plasticity for a yield given is a regular hexagon. Projected in a plan of principal

stresses, this set of points is a hexagon non regular in Figure 2.7 This is simply the

intersection of a right hexagonal cylinder whose axis has equation σI = σII = σIII

with a plane nonorthogonal to this axis. One difficulty with this criterion in terms
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Figure 2.7: Representation of the plasticity surface defined by the Tresca criterion.

of numerical modeling is that the surface of plasticity, which this criterion defines, is

not differentiable, important property for the representation of hardening. Equivalent

stress of Tresca, based on the maximum shear stress that the material can withstand, is

defined by the following equation.

σeqT = σI−σIII (2.13)

When the stress is reduced to a nonzero component σI , the equivalent stress is equal

to the applied stress or to its opposite when the applied stress is negative. A material

has an elastic behavior according to the criterion Tresca as the equivalent stress is less

than or equal to the yield point.

σeqT 6 σe (2.14)

The three basic invariants of the stress tensor from which all others can be written are:

I1 = σI +σII +σIII

I2 = σIσII +σIIσIII +σIσIII

I3 = σIσIIσIII

(2.15)

The stress tensor is separated into two parts. σ0 is the hydrostatic stress, the spherical

part (or hydrostatic part) and the deviatoric part of the stress tensor are respectively

defined by:

σ0 =
1

3
(σI +σII +σIII) (2.16)





σxx σxy σzx

σxy σyy σzy

σxz σyz σzz



=





σ0 0 0

0 σ0 0

0 0 σ0



+





σxx−σ0 σxy σzx

σxy σyy−σ0 σzy

σxz σyz σzz−σ0



 (2.17)

The principal directions of the deviator are parallel to those of the stress tensor, the

principal stress of the deviator are noted s1, s2, s3. We introduce the invariants J, with
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the same expression as I, but as the function of the deviatoric stress. The J2 invariant

can be expressed in terms of principal stress of deviator or function of the principal

stresses:

J2 =
1

2
(s2

1 + s2
1 + s2

1) =
1

6
[(σI−σII)

2 +(σII−σIII)
2 +(σIII−σI)

2] = I2 (2.18)

The most used and best known equivalent stress, suitable for most metallic materials

is the von Mises (1913). It is based on the invariant J2 and the fact that a finite amount

of material can only store a limited amount of distortion energy. In the principal

coordinate of stresses, the equivalent stress is expressed as:

σeqV M =
1√
2

√

(σI−σII)2 +(σII−σIII)2 +(σIII−σI)2 (2.19)

A material has an elastic behavior according to the von Mises criterion as long as the

equivalent stress is less than or equal to the yield point.

σeqV M 6 σe (2.20)

When the stress is reduced to a single non-zero component σI , the equivalent stress is

equal to the applied stress, or to its opposite when the applied stress is negative. In

the space of principal stresses, plasticity surface defined by the Von Mises criterion is

a right cylinder of constant radius, independent of the hydrostatic stress and the axis

has equation σI = σII = σIII . In a deviator plane, which is a plane perpendicular to

the previous axis, the set of points on the surface of plasticity for a yield limit given

is a circle whose radius is independent of hydrostatic stress. Projected in a plane of

principal stresses, this set of points is an ellipse whose major axis is the bisector of the

first quadrant in Figure 2.8. This is simply the intersection of a right circular cylinder

whose axis has equation σI = σII = σIII and a plane non-orthogonal to the mentioned

axis.

The von Mises criterion is based on three assumptions.

• It assumes the isotropy of the material because all stresses have the same symmetric

function.

• It is independent of the hydrostatic pressure, which makes it well suited for

isotropic crystalline materials deforming by slip. But under the effect of hydrostatic
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Figure 2.8: Representation of the plasticity surface defined by the von Mises criterion.

compression, the equivalent Von Mises stress is always zero and therefore, always

remains below the elastic limit of the materials: the von Mises criterion is not

suitable, among others, for the soil mechanics.

• If we replace the stresses by their opposite, the von Mises equivalent stress does not

change: the criterion does not differentiate the traction from the compression.

For an orthotropic material, the criteria are developed in the orthotropic coordinate

of material, which is directly related to the behavior of the material, rather than the

coordinate of the principal stresses. This is particularly the case for the criterion of

Hill and that of Tsai. F, G, H, L, M and N are the six parameters characterizing the

hardening of the material, the equivalent stress in the sense of [2], dimensionless, is

written:

F(σ11−σ22)
2 +G(σ22−σ33)

2 +H(σ33−σ11)
2

+2Lτ2
23 +2Mτ2

31 +2Nτ2
12 = σeqH

(2.21)

If the limits are equal in all directions of space, the criterion of von Mises and Hill are

identical. Material has an elastic behavior according to the criterion of Hill as long as;

σeqH 6 1 (2.22)

The limits are different according to the directions of orthotropy, the equivalent stress

is no longer compared with the yield limit but with the expression above, equal to

1. When the normalized equivalent stress σeqH reaches the tensile yield stress in

direction 1 and in direction 2 for another test, in the direction 3 for another test, there

are respectively:

Fσ2
e11 +Hσ2

e11 = 1

Fσ2
e22 +Gσ2

e22 = 1

Gσ2
e33 +Hσ2

e33 = 1

(2.23)
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This system gives the coefficients F, G and H, the functions of the elastic limits in

different directions. Shear tests allow the determination of the coefficients L, M and

N. This criterion is suitable for anisotropic materials, it is an extension of the von

Mises criterion. But this criterion is based on two assumptions: the hydrostatic stress

has no effect on the equivalent stress and there is no differentiation between tension

and compression.

The equivalent stress within the meaning of Tsai-Hill (1968), is written without

dimension in the orthotropic axes of material;

σeqT H = a(σ11−σ22)
2 +b(σ22−σ33)

2 + c(σ33−σ11)
2

+g(σ11−σ22)+h(σ22−σ33)+ i(σ33−σ11)

+dτ2
23 + eτ2

31 + f τ2
12

(2.24)

It takes into account linear terms, to differentiate tension from compression, but it does

not include the hydrostatic stress. Material has an elastic behavior according to the

Tsai-Hill criterion [38] as long as;

σeqT H 6 1 (2.25)

More expressions take part for coefficients, more mechanical tests are necessary to

identify them. The von Mises criterion is based on a decomposition of the deformation

energy, involving explicitly the spherical part and the deviatoric part of the stress

tensor: there is a physical approach behind this criterion. For glues and adhesives,

the behavior is generally different in tension and compression. One possible criterion

is the criterion of Raghava (1973) [39] which is defined by the relation:

σeqR =
I1(s−1)+

√

I2
1 (s−1)2 +12J2s

2s
6 σe (2.26)

I1 is the first invariant of the stress tensor, that is to say a simple function of the

hydrostatic stress. J2 is the second invariant of the deviatoric stress, thus independent

of the hydrostatic stress. C is the absolute value of the yield stress in compressive and T

is limit stress in traction; s is the ratio between C and T . For adhesives, the parameter s

is of the order of 1,3. This criterion implies the isotropy of the material but manages the

differences between tension and compression. It is suitable for modeling the behavior

of certain metal alloys, having the same limits of elasticity according to the direction
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of the load. There are other criteria in which the expression is more complex, taking

into account the anisotropy, the hydrostatic stress, defining distinguishable surfaces or

not. The plasticity surface is dependent on principal stress or components of the stress

tensor. The equation is in the form

f (σ) = σy ou f (σ ,σy) = 1 (2.27)

Is the limit surface that separate the admissible behavior (all set of interior points

of the volume delimited by the surface) from the inadmissible behavior (all set of

points outside the volume limited by the surface). For the points such as the stress

state satisfies the equation f (σ) < σy or f (σ ,σy) < 1 according to the criteria, the

material has an elastic behavior. For the points such as the stress state satisfies the

equation f (σ) = σy or f (σ ,σy) = 1 according to the criteria, the material has a plastic

behavior.
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3. COUPLED DAMAGE-PLASTICITY MODEL : THEORY

3.1 Introduction

Dislocation theory first studied by [40], [41], [42], can explain plastic deformation of

ductile materials. After the yield stress limit, which is the critical point for paasing

through the inelastic behavior, dislocations are generating, moving, storing. Thus,

hardening of material starts to occur with the moving dislocations, whose density in

the material begins to form, and therefore an increase in stress for additional plastic

deformation starts.

The accumulation of micro cracks and micro voids with loading can be caused the

change of damage surface. In order to describe the phenemenon, a damage material

model can be used by defining the evolution of a damage tensor through a damage

criterion. The change in size, shape, position of the damage are taken into account in

addition to damage surface. A J2 damage criterion is used with isotropic hardening

corresponding to the change in size of the damage surface.

The constitutive model is derived using consistent thermodynamics in this chapter for

a classical rate-independent continuum J2 coupled plasticity damage model. Based on

the first law of thermodynamics, the Helmholtz free energy , which is function of the

strain and the internal state variables under consideration, is introduced to describe the

current state of energy in the material [43] and [44].

3.2 Continuum Mechanics and Thermodynamics

3.2.1 Equations of states

In this section we present the main ingredients for the formulation of a coupled

damage-plasticity model in the framework of the thermodynamics of continuum

media. In order to describe evolution of elastic properties due to damage and hardening

of the material due to plasticity, we consider five different internal variables, namely:

εεεd is the plastic strain, ξ p a scalar that controls the isotropic hardening, κκκ ppp, a deviatoric
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second order tensor controlling the kinematic hardening, damage compliance tensor DDD

and ξ d , which is a scalar hardening like variable related to damage.

In order to derive governing equations of the model, we consider the following main

three groups of ingredients:

• additive decomposition of strain into elastic, damage and plastic strains:

εεε = εεεe + εεε p + εεεd (3.1)

where εεε p corresponds to the unrecoverable strain at zero stress, εεεe corresponds

to the recoverable part of strains when unloading with the initial elastic modulus.

Finally, εεεd corresponds to the additional recoverable part of strains due to the

evoloution of the elastic modulus during damage. A schematic representation is

given in Figure 3.1 for a 1D model.

Figure 3.1: Schematic representation of the involved strains for a 1D model.

Strictly speaking, the damage strain εεεd is not new internal variable, but rather a

vehicle of ensuring the coupling the plasticity on one side and damage on another

side in constructing the joint inelastic response of this kind of model.

• total strain energy with contribution of both plasticity and damage:

ψ(εεε,εεεd,DDD,ξ d,εεε p,ξ p,κκκ ppp) =ψe(εεεe)+ψd(εεεd,DDD)

+Ξp(ξ p)+Ξd(ξ d)+Λp(κκκ ppp)
(3.2)
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where Ξp(ξ p), Λp(κκκ ppp) and Ξd(ξ d) are the plastic and damage hardening functions.

The elastic strain energy is defined as:

ψe(εεεe) =
1

2
εεεe : CCCe : εεεe = σσσ : εεεe−χe(σσσ) (3.3)

and the term related to damage strain energy is given by using the Legendre

transformation (see [45]),

ψd(εεεd,DDD) = σσσ : εεεd−χd(σσσ ,DDD); χd(σσσ ,DDD) =
1

2
σσσ : DDD : σσσ (3.4)

• yield and damage criteria defining the elastic domain are final ingredients given as:

φ p(σσσ ,qp,ααα)≤ 0; φ d(σσσ ,qd)≤ 0 (3.5)

where qp, ααα and qd denote respectively the dual variables associated to ξ p, κκκ ppp and

ξ d defined previously:

qp =−∂Ξp

∂ξ p
=−K pξ p +(σ∞−σy)(1− e−bpξ p

)

ααα =−∂Λp

∂κκκ p
=−Hκκκ p

qd =−∂Ξd

∂ξ d
=−Kdξ d +(σ f ∞−σ f y)(1− e−bdξ d

)

(3.6)

where K p,Kd and H are the modulus for the relating inelastic behavior, also bp and bd

are the hardening parameters of plasticity and damage, respectively. Furthermore, σy

and σ∞ are the yield stress and saturation stress for the isotropic hardening behavior of

the plasticity. σ f y and σ f ∞ are the fracture stress and saturation stress of the damage

phenomenon.

3.2.2 Dissipation potential

Considering in addition the principle of maximum plastic/damage dissipation will

allow to obtain the internal variables evolution equations and constitutive equations.

Namely, the second principle of the thermodynamics imposes that the total dissipation

produced by the model remains positive [3], so that we can write:
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0≤ Ḋ = σσσ : ε̇εε− ψ̇

= σσσ : (ε̇εεe + ε̇εε p + ε̇εεd)− ∂

∂ t
[ψe(εεεe)+ψd(εεεd,D)+Ξp(ξ p)+Ξd(ξ d)+Λp(κκκ ppp)]

= ε̇εεe : (σσσ − ∂ψ

∂εεε

e

)− σ̇σσ : (εεεd− ∂ χd

∂σσσ
)

+σσσ : ε̇εε p− ∂Ξp

∂ξ p
ξ̇ p− ∂Λp

∂κκκ p
: κ̇κκ p

︸ ︷︷ ︸

Ḋ p

+
∂ χd

∂DDD
: ḊDD− ∂Ξd

∂ξ d
ξ̇ d

︸ ︷︷ ︸

Ḋd

≥ 0 (3.7)

For an elastic process with no evolution of plastic and damage variables and no plastic

or damage dissipation, the last equation gives the state equations for the stress and

damage strain:

σσσ =
∂ψe

∂εεεe
=CCCe : εεεe; εεεd =

∂Ξd

∂σσσ
= DDD : σσσ (3.8)

Assuming that the state equations (3.6) and (3.8) remain valid for a plastic process, the

total dissipation can be rewritten and decomposed into a plastic and a damage part, so

that we obtain the two following inequalities:

Ḋ
p = σσσ : ε̇εε p +qpξ̇ p +ααα : κ̇κκ p ≥ 0 (3.9)

and

Ḋ
d =

1

2
σσσ : ḊDD : σσσ +qd · ξ̇ d ≥ 0 (3.10)

The evolution equations of internal variables for such a process can be obtained by

appealing to the principle of maximum plastic dissipation. The latter can be defined as

the choice of both admissible stress and dual hardening variables (σσσ ,qp,ααα,qd) which

maximize the total dissipation. Finally, due to the separation of the total dissipation

into (3.10)and (3.9), we can treat separately the two behaviors and search for the

set (σσσ ,qp,ααα) maximizing the plastic dissipation and the variable qd maximizing the

damage dissipation. Those maximization problems can be recast as minimization

problems under constraint and treated by introducing Lagrange multipliers and

the corresponding Lagrangian. For such minimization problems, the Kuhn-Tucker

optimality conditions will provide the evolution equations and loading/unloading

conditions. The two following subsections detail all those procedures for the plastic

and damage part of the model, respectively.
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3.2.2.1 Plasticity model: yield criterion and consistency condition

The plastic internal variables evolution equations are obtained considering the plastic

part of the total dissipation and introducing the plastic Lagrangian and associated

plastic Lagrange multiplier γ̇ p. The maximization problem is then recast as a

minimization problem as:

max
γ̇ p>0

min
(σσσ∗,qp∗,ααα∗)

L
p(σσσ∗,qp∗,ααα∗, γ̇ p) (3.11)

where

L
p(σσσ ,qp,ααα, γ̇ p) =−D

p(σσσ ,qp)+ γ̇ pφ(σσσ ,qp,ααα)

=−σσσ : ε̇εε p−qpξ p−ααα : κ̇κκ p + γ̇ pφ(σσσ ,qp,ααα)
(3.12)

We obtain the associated Kuhn-Tucker optimality conditions as follows:

∂L p

∂σσσ
= −ε̇εε p + γ̇ p ∂φ p

∂σσσ
= 0→ ε̇εε p = γ̇ p ∂φ p

∂σσσ
∂L p

∂qp
= −ξ̇ p + γ̇ p ∂φ p

∂qp
= 0→ ξ̇ p = γ̇ p ∂φ p

∂qp

∂L p

∂ααα
= −κ̇κκ p + γ̇ p ∂φ p

∂ααα
= 0→ κ̇κκ p = γ̇ p ∂φ p

∂ααα

(3.13)

The evolution equations in (3.13) are also accompanied by the loading/unloading

conditions, which can be written as:

φ p(σσσ ,qp,ααα) =‖ dev(σσσ)+ααα ‖ −
√

2

3
(σσσ y−qp)≤ 0

γ̇ p ≥ 0 and γ̇ pφ p = 0

(3.14)

where φ p(σσσ ,ααα,qp) is here chosen as the von Mises criterion with isotropic and

kinematic hardening that is used to characterize the elastoplastic behavior of the

material, ααα is the back stress, a second order deviatoric tensor (tr(ααα) = 0), devσσσ =

σσσ − 1
3
tr(σσσ)I and ‖ • ‖=√• : •.

Taking into account the characteristic form of the von Mises yield criterion, the

derivative of the yield function φ p with respect to the stress and back stress are given

by:

∂φ p

∂σσσ
=

dev(σσσ)+ααα

‖ dev(σσσ)+ααα ‖ : (I− 1

3
1⊗1) = ννν (3.15)

∂φ p

∂ααα
=

dev(σσσ)+ααα

‖ dev(σσσ)+ααα ‖ = ννν (3.16)

27



where ννν is a second order tensor which is defined as the normal to the yield surface

φ p = 0. The explicit form of the evolution equations (3.13)are then readily obtained

as;

ε̇εε p = γ̇ pννν

ξ̇ p =

√

2

3
γ̇ p

κ̇κκ p = γ̇ pννν

(3.17)

During the plastic loading, γ̇ p > 0 has to be computed to obtain the evolution of internal

variables. This is reached by using the consistency condition in order to guarantee the

admissibility of the subsequent states:

γ̇ p > 0 , φ p(σσσ ,qp,ααα) = 0 , φ̇ p(σσσ ,qp,ααα) = 0 (3.18)

which gives:

φ̇ p(σσσ ,qp,ααα) =
∂φ p

∂σσσ
: σ̇σσ +

∂φ p

∂qp
q̇p +

∂φ p

∂ααα
: α̇αα = 0 (3.19)

By introducing equations (3.8)and (3.17)into the consistency condition we finally

obtain the Lagrange multiplier as:

γ̇ p =−
∂φ p

∂σσσ : σ̇σσ
∂φ p

∂qp
∂qp

∂ ξ̇ p

∂φ p

∂qp +
∂φ p

∂ααα : ∂ααα
∂κ̇κκ p :

∂φ p

∂ααα

(3.20)

This result can then be used to obtain the stress rate constitutive equations in the plastic

regime.

σ̇σσ =






CCCe−

CCCe ∂φ p

∂σσσ
∂φ p

∂σσσ CCCe

∂φ p

∂σσσ CCCe ∂φ p

∂σσσ + ∂φ p

∂qp
dqp

dξ p
∂φ p

∂qp +
∂φ p

∂ααα : ∂ααα
∂κκκ p :

∂φ p

∂ααα






(ε̇εε− ε̇εεd) (3.21)

3.2.2.2 Damage model: damage criterion and consistency condition

The procedure to obtain damage internal variables evolution is very similar to the one

presented for plasticity. We start by constructing the minimization problem by using

the damage dissipation already obtained in the previous section and γ̇d as Lagrange

multiplier.

max
γ̇d>0

min
(σσσ∗,qd∗)

L
d(σσσ∗,qd∗, γ̇d) (3.22)
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where

L
d(σσσ ,qd, γ̇d) =−Ḋ

d(σσσ ,qd)+ γ̇dφ(σσσ ,qd)

=−1

2
σσσ : ḊDD : σσσ +qdξ d + γ̇dφ(σσσ ,qd)

(3.23)

The Kuhn-Tucker optimality conditions for the damage behavior can then be written

as:
∂L d

∂σσσ
=−σσσ : ḊDD+ γ̇d ∂φ d

∂σσσ
= 0→ σσσ : ḊDD = γ̇d ∂φ d

∂σσσ
∂L d

∂qd
− ξ̇ d + γ̇d ∂φ d

∂qd
= 0→ ξ̇ d = γ̇d ∂φ d

∂qd

(3.24)

along with the loading/unloading condition for damage components:

φ d(σσσ ,qd) =
1

3
Tr(σσσ)− (σσσ f −qd)≤ 0, γ̇d ≥ 0 and γ̇dφ d = 0 (3.25)

We finally use consistency condition to obtain the damage multiplier needed to

compute the damage internal variables evolution and constitutive equations.

γ̇d =−
∂φ d

∂σσσ : DDD−1 : ε̇εεd

∂φ d

∂σσσ : DDD−1 :
∂φ d

∂σσσ + ∂φ d

∂qd

∂qd

∂ ξ̇ d

∂φ d

∂qd

(3.26)

This result can be used to obtain the stress rate constitutive equation for damage

component.

σ̇σσ =






DDD−1−

DDD−1 ∂φ d

∂σσσ
∂φ d

∂σσσ DDD−1

∂φ d

∂σσσ DDD−1 ∂φ d

∂σσσ + ∂φ d

∂qd

dqd

dξ d

∂φ d

∂qd






ε̇εεd (3.27)

3.2.2.3 Coupling model: elasto-plastic-damage tangent modulus

In this section, the elasto-plastic-damage tangent moculus will be obtained by using

the incremental stress and the total incremental strain.

Enforcing the equality of stress computed from the coupled model components in

(3.21) and (3.27) , we obtain;

Cep(ε̇εε− ε̇εεd) = Ced ε̇εεd → ε̇εεd = [Cep +Ced]−1Cepε̇εε (3.28)

where

Cep =CCCe−
CCCe ∂φ p

∂σσσ
∂φ p

∂σσσ CCCe

∂φ p

∂σσσ CCCe ∂φ p

∂σσσ + ∂φ p

∂qp
dqp

dξ p
∂φ p

∂qp +
∂φ p

∂ααα : ∂ααα
∂κκκ p :

∂φ p

∂ααα

(3.29)
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Ced = DDD−1−
DDD−1 ∂φ d

∂σσσ
∂φ d

∂σσσ DDD−1

∂φ d

∂σσσ DDD−1 ∂φ d

∂σσσ + ∂φ d

∂qd

dqd

dξ d

∂φ d

∂qd

(3.30)

The latter provides the stress rate constitutive equation of the coupled model.

σ̇σσ =
CedCep

Cep +Ced
︸ ︷︷ ︸

Cepd

ε̇εε (3.31)

From (3.21) and (3.27) we can see the explicitly the consistent tangent modulus Cepd .

The graphic illustration for 1D case is shown in Figure 3.2.
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Figure 3.2: Stress-strain diagram for the coupled damage-plasticity model.

3.2.3 Hardening models

When there is hardening, plasticity surface changes. It can change the volume, change

position, change shape or any combination of these three evolutions. In this work, we

do not consider the change in shape of the plasticity surface, which is the case when

the experimental curves in different directions are not proportional. The hardening

is called isotropic if the center of the plasticity surface is not affected by hardening.

Plasticity surface changes by scaling (homothety); it retains the shape of the surface

and has uniform expansion in all directions: there is no Bauschinger effect. The

increase in the tensile elastic limit is equal to the increase of the yield in compression
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in Figure 3.3. In the case of the Von Mises criterion, the plasticity surface has, in

a deviatoric plane, a circle whose center does not change but whose radius increases

by work hardening. In terms of principal stresses, an expansion of the ellipse in all

directions has occured. The plasticity surface is defined by the relation:

f (σi j−σy(ε̄
p)) = φ(σi j, ε̄

p) = 0 (3.32)

Figure 3.3: Representation of isotropic hardening.

It is said that it’s kinematic hardening if only the center of the plasticity surface changes

during the hardening. There is no extension of the area in the plasticity surface but only

in the area of tensile stress space: there is then a Bauschinger effect in Figure 3.4.

Figure 3.4: Representation of kinematic hardening.

The increase in the tensile elastic limit strength is equal to the reduction of the elastic

limit in compression. The plasticity surface is defined by the relation:
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f (σi j,γi j)−σy = φ(σi j,γi j) = 0 (3.33)

According to Prager model of kinematic hardening, plasticity surface translates in the

direction of the normal to the considered point on this surface. Depending on Ziegler

model of kinematic hardening, translation is done in the direction which passes through

the updated center of the plasticity surface and the considered point on the surface in

Figure 3.5.

In the case of Von Mises criterion, the plasticity surface being a circle in the deviatoric

plane, the normal direction and the central direction are confused; there is therefore no

need to differentiate between these two models of kinematic hardening.

Figure 3.5: Displacement directions of the plasticity surface.

The difference between the isotropic and kinematic hardening only appears during

a loading cycle because it is the amplitude of the descent that changes depending

on the type of behavior. For a large number of tests, the specimen is subjected to a

monotonically increasing tensile loading until failure, or traction followed by a return

to zero load. It is not possible to know the type of hardening. Therefore, it is generally

assumed to be isotropic, which is easier to define than the kinematic hardening as the

center of the plasticity surface is then invariant. According to the extent of elastic area

compared to the plastic range, if the loading has an increase in stress and returns to

zero which does not induce a compression level which plasticize the material, it is not

possible to specify the model of hardening in the numerical model.

The hardening is called mixed if it is a combination of isotropic hardening and

kinematic hardening, in which case it is necessary to determine the proportion of each

type of hardening.
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3.2.4 Flow rule

The flow law is the relationship between increase in plastic deformation and increase

in stress. The behavior of many materials can be regarded as isotropic, in order to limit

the characterization tests necessary to determine the material properties, it reduces to a

uniaxial equivalent curve and scalar law, simple to use. The flow law of material is in

theory the link between the growth of components of the strain tensor and the growth

of components of stress tensor. In the case of isotropic hardening, the plasticity surface

changes according to a variable called the equivalent plastic strain. An equivalent stress

is a scalar that represents the state of triaxial stress at a point. An equivalent plastic

strain is a scalar that represents the state of triaxial plastic deformation at a point. The

variation of equivalent plastic strain can be defined in two ways. The first is to define a

simple relationship between the variation of equivalent plastic strain and plastic strain

tensor. This is the strain hardening. In this case, we define the increment of equivalent

plastic strain by:

dε̄ =

√

2

3
(dε

p
i jdε

p
i j) (3.34)

By definition, an increment of equivalent plastic strain is always positive or zero. The

second is to make equal the work dissipated by the triaxial state, and the equivalent

stresses and strains. This is called work hardening:

Wp(uniaxial) =Wp(multiaxial)→ Y dε̄ p = σi j = dε
p
i j (3.35)

In the case of a Von Mises criterion, the two definitions of the variation of equivalent

plastic strain are equivalent. Equivalent plastic strain is obtained by integration of the

variation of the equivalent plastic strain, regardless of the definition:

ε̄ p =
∫ ε

p
i j

0
dε̄ p (3.36)

This quantity is always positive or zero, it reflects the history of plastic deformation.

When the equivalent plastic strain is zero, the material did not plasticize at the point

where it was calculated. If it is positive, there were material plastification at the
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considered point. It only increases except during an elastic step on which it remains

constant. Any multidimensional evolution can be expressed more simply using the

work hardening curve between equivalent stress and equivalent plastic strain. In the

case of a uniaxial tensile test according to direction 1 performed on a specimen of

cylindrical section, knowing that plastic deformations are incompressible for metals

and Poisson’s ratio associated with plastic deformation is 1
2
, the equivalent plastic

strain is equal to the plastic deformation 2
3

which permit to find the result for the

hardening in deformation. The work hardening leads the same result.

dε
p
11 +dε

p
22 +dε

p
32 = 0→ dε

p
22 = dε

p
33 =−

1

2
dε

p
11 (3.37)

√

2

3
(dε p2

11 +dε p2
22 +dε p2

33) =

√

2

3

3

2
dε p2

11 = dε
p
11 (3.38)

3.3 Conclusion

In this chapter, a framework of the coupled damage-plasticity has been shown.

Thermodynamically consistent theoretical formulations have been constructed by

starting the Helmholtz free strain energy, which consists of two parts, one is for

plasticity and other is for damage. From that point, all the internal variables for

plasticity and damage component are described. It is defined at the end how to obtain

the elasto-plastic-damage tangent modulus, which is used to find the stress-strain

relationship.
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4. COUPLED DAMAGE-PLASTICITY MODEL : NUMERICAL ASPECTS

4.1 Integration Algorithm

The previous equations allow finding the variation of stresses as a function of an

increase in infinitely small deformations. In practice, during a finite element analysis,

on a computation step, the variation of deformation is not infinitely small. The previous

equations must be considered. In this section, we consider an integration point which

we know all the features (stress, strain, state variables ...) at step (n) and deformations

at the step (n+1) or variations of the total strain between the steps n and (n+1). At

this stage, we are looking for the stresses at the step (n+ 1) corresponding to these

new strains. The equilibrium is obtained by global iterations on the structure.

First solution for determining the stresses consist in calculating and using the tangential

material rule to at the step (n). The stress at the step (n+1) is calculated simply by:

σn+1 = σn +Ce
T,n∆ε (4.1)

If there was a flow at the step, the stresses at the point (n+1) does not obey the

plasticity criterion because increase in deformation is finite and not infinitesimal, and

the evolution of the tangential material rule has not been taken account at the step. The

stresses must be brought on the new surface whose actual equation is φ = 0. It may

be possible to cut the variation in deformation at different intervals in order to reduce

the error introduced by this scheme. Another commonly used scheme is the elastic

predictor / plastic corrector.

The first step (predictor) is to calculate test stress elastically under the assumption

that the behavior is elastic at the step: Ce is the matrix of Hooke of material (elastic

behavior), increase in total strain is an increase in elastic deformation.

σT R = σn +Ce∆ε (4.2)
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The second step (corrector) is to compare the stress calculated from these test stress at

the initial elastic limit if the material has not been hardened yet, at the current yield if

the material has been hardened:

φ = f (σT R−σy(ε̄
p
n )) (4.3)

If φ < 0, the step is elastic for the considered integration point and stresses at the step

(n+ 1) are equal to test stresses. If φ > 0, the plasticity criterion does not obey at

(n+1), there is plastic flow in order to check the criterion, accompanied by a change

in plastic deformation. Part of the variation in total strain is elastic, the other plastic

but at this stage we do not know yet their proportions.

Since there is the flow, increase in real stress is not equal to increase in estimeted stress

by assuming that the increase in total deformation is entirely elastic. Therefore the

stresses must be brought on the plasticity criterion.To do this, a plastic corrector is

used, the stress at the step (n+1) is given by:

σn+1 = σn +Ce(∆εe) = σT R−∆γCe ∂ f

∂σ
(4.4)

The variation of plastic deformation is calculated according to the stresses at the step

(n+1). It also requires that the plasticity criterion is respected at the step (n+1). This

leads to a system of nonlinear equations at each integration point, which is generally

solved by a Newton method at the integration point. 7 unknowns of this system of

seven equations are six components of the stress tensor and the scalar δγ which has

the same interpretation as dγ in the theoretical formulation but is not infinitely small:

σn+1 = σT R−∆γCe ∂ f

∂σn+1
(4.5)

f (σn+1)−σy(ε̄
p
n +∆ε̄ p) = 0 where ε̄ p =

1

σy
σ

∂ f

∂σ
∆γ (4.6)

In general, local convergence is achieved rapidly. It is an implicit integration. The

above relationships are used to determine the expression of the stress equation at the

step (n+1) as a function of increasing strain.
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The equations of the stress at (n+ 1) in accordance with the increase in deformation.

Differentiating these relations with respect to deformations, we obtain the tangent rule

which corresponds to the integration scheme used to calculate the stresses. We talk

about consistent tangent rule, it is different from the theoretical tangent rule. The use

of consistent tangent rule improves the convergence at the Newton-Raphson scheme

used for the equilibrium of the structure.

4.2 Tangent Matrice, Numerical Integration

In the case of a finite element whose material behavior is elastic and linear, Hooke

matrix that appears in the calculation of the stiffness matrix (or the tangent stiffness

matrix for nonlinear geometric analysis) is not only constant for any analysis, but it is

uniform in each element. With traditional notations, we can write integral form for the

element e:

Ke =
∫ ∫ ∫

BT HBdV (4.7)

This matrix is evaluated by numerical integration according to various rules: each term

ki j matrix is obtained by sampling the m integration points of the element

ke
i j =

∫ ∫ ∫

BT HNdV = ∑ [Bi]
T
mHm[B j]mωm (4.8)

Hm is the Hooke matrix at the point m: it is the same at any point. Wm is the weight

function associated with the integration point multiplied by the determinant of the

Jacobian matrix of the element. In the case of an analysis in which the plasticity

appears, the construction of the stiffness matrix is different. From that point of

integration, the equivalent stress is such that there is a plastification, Hooke’s law is

replaced by the material tangent law to integration point(s) having plasticity, the law

that evolves the level of hardening and stress state as shown The material tangent law

in an element is different in each integration point of the element as it depends on

the stress level of each integration point. The evaluation of the terms of the tangent

stiffness matrix is much more complex than in the case where the material has a linear

elastic behavior. The variation of the element terms to be integrated in the tangent

stiffness matrix is more important in plasticity than in elasticity. We can therefore

ask whether it is advantageous to increase the number of integration points on the
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element to get a better accuracy. If we increase the number of points, the integral

can be better evaluated, but it is a false precision. The plastic solution is less regular

than the elastic solution. If we want to increase the precision, it is better to increase

the number of elements, because increasing the number of integration points does not

change the degree of the deformation field that depends on displacements and not

stresses. However, the instant when plasticity begins will be better identified if the

number of integration points is increased. Indeed, a linear element with a large strain

gradient is considered. If only one point of integration is used, the plasticity begins

when the plasticity criterion is reached in the middle of the element. If two points are

used, it is when it is achieved about one-quarter of the element. More the number of

integration points are big, more they are near the end and the beginning of plasticity is

detected. To illustrate this point, there is a quadrangular membrane with an integration

rule of 2x2 points. Plasticity must arrive at point P in order to be detected and 1
4

of the

element is then plastic. Plasticity is in fact already appeared in the element, and when

the plasticity begins, it is possible that the plasticity is physically won over a quarter

of the element , or less than a quarter depending on how it advances into the element

as a function of the loading. With a rule 3x3 points for the same item, simply it arrives

at point P in order to be detected and ninth element is then plastic . The increase in

the number of integration points has significant influence on the cost of calculating the

tangent matrix and storage space. And experience shows that this increase does not

significantly change the global non-linear behavior. We must ask ourselves what is the

purpose of the plastic calculation: determining when the structure begins to plasticize

or know how to redistribute the stresses in the spread of plasticity. In the first case, an

elastic calculation with a good post-treatment may suffice. In the second case, provided

that the mesh is sufficiently fine and is accountable for the development of plasticity,

the number of integration points per element has little influence. Anyway, the mesh

is not a solution provider, but a developer solution. The calculation code user should

know what he wants and where and how the mesh used to represent what he wants.

In the case of an elastoplastic behavior, plasticity develops first on the surface. The

analytical integration performed for an elastic material is replaced by a numerical

integration for a plastic material because the stress is no longer a linear evolution

in the thickness of the element as soon as the plasticity appears. In addition to the
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surface integration scheme which has been explained, there is an integration scheme

on the thickness of the shell. Since we do not increase the number of items on the

thickness, the deformation field is linear on the thickness. It takes a sufficient number

of integration points on thickness to represent the inflectional behavior. Depending on

the type of scheme adopted, there may have or not integration points on the surface

of the shell. In general, we recommend between 5 and 7 points on the thickness,

regardless of the integration in surface. Less, the numerical solution dismiss many

physical behavior; in addition, it may risk to penalize the performance in terms of disk

space and memory to gain false precision.

4.3 Numerical Implementation and Operator Split Method for Coupled

Damage-Plasticity Model

We use three different levels of computation in order to solve the problem. These levels

are separated into global, element and local level. The operator split method (see e.g.

[46]) is employed in order to simplify the calculation of the three-level computational

task in which the nonlinear equations must be solved. Thus, the Newton iterative

procedure is applied until we reach a required convergent tolerance at each level.

4.3.1 Discretization of the problem

Firstly, we should define the variational formulation, which is based on

Hellinger-Reissner potential (e.g.see [47]) by putting aside the hardening effect to

simply notation, the latter can be defined as;

Π(σσσ ,uuu) =

=
∫

Ω
ψe(εεεe)+ψd(εεεd,DDD)dΩ−

∫

Γ
tuuudΓ−

∫

Ω
fff vvvuuudΩ

=
∫

Ω

{

σσσ : εεεe−χe(σσσ)+σσσ : εεεd−χd(σσσ ,DDD)
}

dΩ−
∫

Γ
tuuudΓ−

∫

Ω
fff vvvuuudΩ

=
∫

Ω






−χe(σσσ)−χd(σσσ ,DDD)+σσσ : (εεεd + εεεe)

︸ ︷︷ ︸

εεε−εεε p






dΩ−

∫

Γ
tuuudΓ−

∫

Ω
fff vvvuuudΩ

=
∫

Ω

{

−χe(σσσ)−χd(σσσ ,DDD)+σσσ : (∇suuu− εεε p)
}

dΩ−
∫

Γ
tuuudΓ−

∫

Ω
fff vvvuuudΩ

(4.9)

where the expressions of the elastic and damage strain energy in terms of dual variables

have been used (see (3.3) and (3.4)
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At equilibrium, the minimal free energy condition is valid for the potential stationarity

given by;

δΠ(σσσ ,uuu) =
∂Π

∂uuu
δuuu+

∂Π

∂σσσ
δσσσ = 0 (4.10)

We subsequently obtain the two following equations;

∂Π

∂uuu
δuuu =

∫

Ω
(σσσ∇sδuuu)dΩ−

∫

Γ
(tδuuu)dΓ−

∫

Ω
( fff vvvδuuu)dΩ = 0

∂Π

∂σσσ
δσσσ =

∫

Ω

{

−∂ χe

∂σσσ
− ∂ χd

∂σσσ
+∇suuu− εεε p

}

δσσσdΩ = 0

(4.11)

The first equation in (4.11) can be easily seen as the weak form of equilibrium equation.

The second equation in (4.11) leads us towards the weak form of the decomposition of

total strain εεε = εεεe + εεε p + εεεd .

We use a hybrid stress finite element method in order to approximate the unknown

fields, the displacement u and the stress σσσ . First, we introduce an operator L which

allows to take advantage of the symmetry and rewrite two symmetric second order

tensors components in more compact matrix notation.

σσσ = [σi j](i, j)∈[1,2]→L (σ) :=





σ11

σ22

σ12



 (4.12)

and

εεε = [εi j](i, j)∈[1,2]→L (ε) :=





ε11

ε22

2ε12



 (4.13)

Considering an element Ωe of the finite element mesh of Ω =
⋃

e=1 Ωe, we provide the

following approximation for the unknown fields.

uuuh|Ωe = N(x)ddde(t)L (σσσh)|Ωe = S(x)βββ e(t) (4.14)

where N is a displacement field interpolation function constructed from usual

isoparametric approximation for two dimensional element and S is the stress
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interpolation function proposed by Pian-Sumihara (eg. [48] and [49]). Detailed

explanation is done in the appendixe B.

It can be shown that, for A and B, which are two symmetric terms, A : B = L (A) ·
L (B). Moreover, we define B as the second order tensor that satisfies L (Ds(N) ·de) =

Bde, in which Ds represent the symmetric part of the displacement gradient.

Thus, equations (4.11) can be rewritten in an explicit form by using the interpolation

functions.

∫

Ωe
δdddeT BT Sβββ e

dΩe−
∫

Γe
σ

δdddeT NT tdΓe−
∫

Ωe
δdddeT NT fvdΩe = 0

∫

Ωe
δβββ eT ST (Bde− ε̂εε(βββ e))dΩe = 0

(4.15)

Because the equations (4.15)1 and (4.15)2 hold for any δde and δβββ e
, we obtain;

GT βββ e(t)−
∫

Ωe
NT fvdΩe−

∫

Γe
σ

NT tdΓe = 0

Gde(t)−
∫

Ωe
ST ε̂εε(βββ e)dΩe = 0

(4.16)

with

G =
∫

Ω
ST BdΩ (4.17)

The problem of finite element approach is governed by equation (4.16) . In the case of

an elastoplastic-damage material model, we have;

ε̂εε(βββ ) = L (C−1)(Sβββ )+L (εεε p)+ γ p
L (

∂φ p

∂σσσ
)+L (DDD)(Sβββ )+ γd

L (
∂φ d

∂σσσ
) (4.18)

where C and DDD are the fourth order elasticity tensor and compliance tensor,

respectively. Considering that Ci jkl = Ckli j and that Ci jkl = Ci jlk, we can define in

2D here for illustration, L (C) as;

L (C) =





C1111 C1122 C1112

C2222 C2212

sym C1212



 (4.19)

For a homogeneous isotropic material, L (C) is invertible.
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To solve the nonlinear set of equations in (4.16) , we use the Newton iterative procedure

and consequently define the following residuals.

re
d(d

e
n+1) = GT βββ e

n+1−
∫

Ωe
NT fvdΩe−

∫

Γe
NT tdΓe

re
β (βββ

e
n+1) = Gde

n+1−
∫

Ωe
ST

(

L (C−1)Sβββ e
n+1 +L (εεε p

n)+ γ
p
n+1L (

∂φ
p
n+1

∂σσσn+1
)

+L (Dn)(Sβββ e
n+1)+ γd

n+1L (
∂φ d

n+1

∂σσσn+1
)
)

dΩe

(4.20)

4.3.2 Global computation

Global equations are obtained by the finite element assembly procedure, which should

enforce the equilibrium of structure. Displacement field is given for stresses obtained

from the element level computation and the values of internal state variables provided

by the local iterative procedure described in the next subsections for both plasticity and

damage model in order to check the convergence.

The Newton equation for re
d is solved.

re( j+1)
d = re( j)

d +D( j)(re
d)∆de( j) = 0

D( j)(re
d)∆de( j) =

(
GT ∂βββ e( j)

∂de

)
∆de( j) = Ke( j)∆de( j)

(4.21)

To compute
∂βββ e

∂de

∣
∣
∣

( j)
, we derive re

β = 0 and obtain(see Eq. (4.20) );

∂re
β

∂βββ e
n+1

= G
∂dn+1

∂βββ n+1

−He
n−Ep

n+1−Ed
n+1 = 0 (4.22)

where

He
n =

∫

Ωe
ST (L (C−1)+L (Dn))SdΩe

Ep
n+1 =

∫

Ωe
ST

{

−L (
∂φ

p
n+1

∂σσσn+1
)Ĉ(1)

n+1L
T (

∂φ
p
n+1

∂σσσn+1
)+ γ

p
n+1L (

∂ 2φ
p
n+1

∂σσσ2
n+1

)

}

SdΩe

Ed
n+1 =

∫

Ωe
ST

{

−L (
∂φ d

n+1

∂σσσn+1
)Ĉ(2)

n+1L
T (

∂φ d
n+1

∂σσσn+1
)+ γd

n+1L (
∂ 2φ d

n+1

∂σσσ2
n+1

)

}

SdΩe

(4.23)

Here, we must define the values of Ĉ(1)
n+1 and Ĉ(2)

n+1, respectively.
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Ĉ(1)
n+1 =

{

∂φ
p
n+1

∂ααα
p
n+1

:
∂ααα

p
n+1

∂κκκ
p
n+1

:
∂φ

p
n+1

∂ααα
p
n+1

+
∂φ

p
n+1

∂q
p
n+1

dq
p
n+1

dξ
p
n+1

∂φ
p
n+1

∂q
p
n+1

}−1

Ĉ(2)
n+1 =

{

∂φ d
n+1

∂qd
n+1

dqd
n+1

dξ d
n+1

∂φ d
n+1

∂qd
n+1

}−1
(4.24)

Thus, we obtain:

∂βββ n+1

∂dn+1
=

{

He
n +Ep

n+1 +Ed
n+1

}−1

G (4.25)

Ke( j)
n+1 = GT

{

He
n +Ep

n+1 +Ed
n+1

}−1

G (4.26)

Finally, the structural tangent stiffness matrix and residual vector are obtained by the

classical finite element procedure.

4.3.3 Element computation

For de
n+1(t) given, the Newton equation for rβ ;

re(k+1)
β

= re(k)
β

+D(k)(re
β ∆βββ e(k)) = 0 (4.27)

is solved and the generalized stress vector is updated.

βββ e(k+1) = βββ e(k)+∆βββ e(k)

In (4.27) above, D(k)(rβ )∆βββ (k) = d
dζ

∣
∣
∣
ζ=0

rβ (βββ
e(k) + ζ ∆βββ e(k)) is the directional

derivative and takes the following expression for the elastoplastic problem.

D(k)(rβ )∆βββ (k) =
∫

Ωe
ST

(

− (L (C)−1 +L (DDD))S∆βββ e(k)

− γ p(k)
L (

∂ 2φ p(k)

∂σσσ (k)2
)S∆βββ e(k)−L (

∂γ p(k)

∂σσσ (k)
)L T (

∂φ p(k)

∂σσσ (k)
)S∆βββ e(k)

− γd(k)
L (

∂ 2φ d(k)

∂σσσ (k)2
)S∆βββ e(k)−L (

∂γd(k)

∂σσσ (k)
)L T (

∂φ d(k)

∂σσσ (k)
)S∆βββ e(k)

)

dΩe

(4.28)

Moreover, we have for the von Mises plastic criteria from the equations (3.20) and

(3.26) ,
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∂γ p

∂σσσ
=−∂φ p

∂σσσ

( ∂φ p

∂ααα p
:

∂ααα p

∂κκκ p
:

∂φ p

∂ααα p
+(

∂φ p

∂qp
)2 ∂q

∂ξ p

)−1

L (
∂ 2φ

∂σσσ∂σσσ
) = 0

(4.29)

∂γd

∂σσσ
=−∂φ d

∂σσσ

(∂φ d

∂σσσ
: DDD−1 :

∂φ d

∂σσσ
+

∂φ d

∂qd

∂qd

∂ ξ̇ d

∂φ d

∂qd

)−1

(4.30)

We finally obtain;

∆βββ e(k) =
[

He +
∫

Ωe
ST

L (
∂φ p

∂σσσ
)Ĉ(1)

L
T (

∂φ p

∂σσσ
)

+
∫

Ωe
ST

L (
∂φ d

∂σσσ
)Ĉ(2)

L
T (

∂φ d

∂σσσ
)SdΩe

]−1

re(k)
β

(4.31)

4.3.4 Local computation and implicit backward Euler scheme

The evolution equations of the internal variables are obtained in each time step by

using Backward Euler time integration scheme at the local material level, in each Gauss

integration point accordingly.

4.3.4.1 Plasticity computation

In order to compute γ̇
p
n+1 and εεε

p
n+1 = ε̂εε(σσσn+1) for a given displacement de( j+1) and a

given stress state σσσ (k+1), we first rewrite the evolution equations (3.13) and (3.14) in a

discrete form, appealing to the implicit backward Euler integration scheme;

εεε
p
n+1 = εεε p

n + γ̇
p
n+1∆tn+1

∂φ
p
n+1

∂σσσn+1

ξ
p
n+1 = ξ p

n + γ̇
p
n+1∆tn+1

∂φ
p
n+1

∂q
p
n+1

κκκ
p
n+1 = κκκ p

n + γ̇
p
n+1∆tn+1

∂φ
p
n+1

∂αααn+1

(4.32)

γ̇
p
n+1∆tn+1 ≥ 0, φ

p
n+1 ≤ 0, and γ̇

p
n+1∆tn+1φ

p
n+1 = 0 (4.33)

In order to simplify notation, we denote in the following, γ̇
p
n+1∆tn+1 = γ

p
n+1. The local

problem reduces then to the computation of γ
p
n+1. To that aim,

• We start with γ
p(l=0)
n+1 = 0 and compute φ

p(0)
n+1 = φ p

(
σσσn+1,q

p(ξ
p(0)
n+1 ),ααα

p(κκκ
p(0)
n+1)

)

• If φ
p(0)
n+1 ≤ 0, the loading/unloading conditions are satisfied and the local problem

is solved. Otherwise, we iteratively look for the value of γ
p
n+1 that would satisfy
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φ p
(
σσσn+1,q

p(ξ
p(l)
n+1),ααα

p(κκκ
p(l)
n+1)

)
= 0 (for instance with the Newton procedure) and

update the internal variables according to the expression in (4.32).

4.3.4.2 Damage computation

The calculation is very analogous to the plasticity.

In order to compute γ̇d
n+1 and εεεd

n+1 = ε̂εε(σσσn+1) for a given displacement de( j+1) and a

given stress state σσσ (k+1), we first rewrite the evolution equations (3.24) and (3.25) in a

discrete form, appealing to the implicit backward Euler integration scheme:

DDDd
n+1σσσn+1 = DDDd

nσσσn+1 + γ̇d
n+1∆tn+1

∂φ d
n+1

∂σσσn+1

ξ d
n+1 = ξ d

n + γ̇d
n+1∆tn+1

∂φ d
n+1

∂qd
n+1

(4.34)

γ̇d
n+1∆tn+1 ≥ 0, φ d

n+1 ≤ 0, and γ̇d
n+1∆tn+1φ d

n+1 = 0 (4.35)

In order to simplify notation, we denote in the following, γ̇d
n+1∆tn+1 = γd

n+1. The local

problem reduces then to the computation of γd
n+1. To that aim,

• We start with γ
d(l=0)
n+1 = 0 and compute φ

d(0)
n+1 = φ d

(
σσσn+1,q

d(ξ
d(0)
n+1 )

)

• If φ
d(0)
n+1 ≤ 0, the loading/unloading conditions are satisfied and the local problem

is solved. Otherwise, we iteratively look for the value of γd
n+1 that would satisfy

φ d
(
σσσn+1,q

d(ξ
d(l)
n+1)

)
= 0 (for instance with the Newton procedure) and update the

internal variables according to the expression in (4.34) .

4.4 Numerical Examples

In this section, several numerical simulations are presented in order to illustrate the

performance of the proposed constitutive model of inelastic behavior, taking into

account both plasticity and damage. The loading level is chosen so that both isotrope

and kinematic hardening phenomena are activated in the calculations of the material

response. Numerical simulations are performed by using two dimensional finite

element based on the variational formulation of Hellinger-Reissner type, which is

implemented into a research version of Finite Element Analysis Program [48]. The

45



following material properties of mild steel are chosen for all examples; the Young

modulus E = 210GPa, Poisson ratio is ν = 0.3, the yield stress σy = 235MPa, the

saturation stress is σ∞ = 360MPa, the modulus K p = 1.0x103MPa for linear isotropic

hardening and the parameter bp = 1.0x104 for saturation isotropic hardening and

H = 1.0x102MPa for the kinematic hardening, the fracture stress σ f y = 285MPa, the

saturation stress σ f ∞ = 360MPa, the damage modulus Kd = 1.0x103MPa, the damage

saturation parameter bd = 1.0x104.

4.4.1 Steel sheet in simple tension test under cycling loading

In the first example, we present the results describing the response of a plane

deformation membrane in Figure 4.1, which is made of mild steel, under different

types of cyclic loadings applied.

Figure 4.1: Simple tension test specimen with coupled plasticity-damage constitutive

model, clamped at the left side, submitted by different kinds of loading at

the right side.

First, a comparison of the number of finite elements will be done in Figure 4.2 to show

the model capability for representing appropriately the displacement, strain and stress

fields.

Secondly, another comparison with the the results of the experiments done by [50] is

shown in the Figure 4.3.

A cyclic loading history with symmetric cycles with respect to tension-compression

with the max/min values of imposed displacement ±0.07m as shown in Figure 4.4,

is applied on the element in order to illustrate the behavior of the proposed material

model.

The two hysteresis curves are shown in Figure 4.5, with marked difference of activated

mechanisms of the coupled model. While only the plasticity is activated for one,
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Figure 4.2: The number of finite elements considering coupled plasticity-damage

constitutive model.
.
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Figure 4.3: Cyclic test on a rectangular member (100*50 cm).

the coupled plasticity-damage behavior is activated for another. It is clearly shown

in the figure that the coupled behavior affects the tangent modulus of the material.

Furthermore, membrane element, for which the coupled behavior is taken into account

with the same imposed displacement interval, reaches smaller value of stress in

comparison to the one produced by only plasticity activation.
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Figure 4.4: Symmetrical cyclic loading conditions with respect to time.

Figure 4.5: Strain-stress diagrams for both proposed coupled damage-plasticity model

and plasticity alone.

In order to furher illustrate the contribution of damage mechanism in this model, we

carry on with a very large number of cycles in the same test. The corresponding

results for the strain-stress diagram are given in Figure 4.5 and the cumulative damage

contribution with respect to number of cycles in Figure 4.6.

With the effect of coupled plasticity-damage behavior at hand, we now go on with

an example, which shows the progressive relaxation effect for the inelastic behaviors

mentioned previously. The chosen time history of imposed displacement is pictured in

Figure 4.7.

It is observed in Figure 4.8 that the average of limiting stresses in the cycle relaxes

progressively and shift towards zero value under fixed strain limits, whose average is
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Figure 4.6: Damage Evolution during the loading process in Figure 4.4.

Figure 4.7: Loading conditions.

not zero. More precisely, in the Figure 4.8 the average value of stress at the A3, A4,

A5 and B3, B4, B5 tends to zero.

Another phenomenon that the proposed material model can represent the ratcheting

effect. The stress cycling between the fixed value in tension and compression, whose

average is not zero, is applied as seen in the Figure 4.9. It is important to note that in

each example the specimen is pushed well into the plastic range.

For more precise and clearer effect of ratcheting, we focus upon the end of response

time history shown in Figure 4.9.

In this particular example the ratcheting occurs with the average of the stresses that

remains positive, whereas minimum and maximum values of strain in each cycle

increase progressively (see Figure 4.11).
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Figure 4.8: Progressive relaxation to zero of the mean stress between A3-B3, A4-B4,

A5-B5, ...

Figure 4.9: Loading conditions.

This example with number of cycles, which allowed us to show that the coupled

plasticity-damage response can also lead to saturation in damage compliance, for the

case where the plasticity dominates for ratcheting effects as seen in Figure 4.12.

4.4.2 Steel sheet in bending and shear tests under cyclic loading

This example considers the tests under heterogeneous stress. In this example, we show

the chosen specimen geometric data and the applied loading conditions in Figure 4.13.

All the material properties characterizing the inelastic behaviors of mild steel are the

same as in the previous example. The two loading conditions are applied on the right

side of the element as a quasi-static load varying in the chosen the time interval. First,

we can thus illustrate the capabilities of the proposed model to describe quite well the

coupled damage-plasticity response under more complex loading program. Second,
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Figure 4.10: Ratcheting behavior reproduced by the proposed material model.

Figure 4.11: Ratcheting behavior of the material due to imposed forces.

Figure 4.12: Damage Evolution during the loading process in Figure 4.9.
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we can also illustrate a very satisfying performance of the developed finite element

model to handle in a robust way the finite element mesh.

Figure 4.13: Structure with mesh distortion, fixed at the left end, subject to the two

types of loading represented in the right side, and made of the proposed

coupled plasticity-damage constitutive model.

Contours of plasticity (qp) and damage (qd) are examined. First analysis is performed

on the element undergoing a pure bending deformation obtained by imposing the

displacement d =±0.05 as shown in Figure 4.13. The same example is used for studies

of mesh distortion effect; the chosen mesh distortion parameter is proportional to the

a = l/5. A comparison is done for both distorted and undistorted geometry. The finite

element mesh refinement is carried out in computations starting from the 2-element

mesh. We observe that by using fine mesh solutions there is not much difference in

the plastic (Figure 4.14) and damage (Figure 4.15) zones between the distorted and

undistorted geometry and the values qp and qd are very close.

4.4.2.1 Bending test

For the plastic zone in Figure 4.14 we find the strong spreading in the direction of the

top and bottom fibers of the structure, while the damage zone in Figure 4.15 the zone

is limited to the the bottom part.The results of this kind are due to the characteristics

of the chosen yield criteria taken for each behavior, plasticity and damage.

4.4.2.2 Shear test

The same example is repeated for another loading condition of shear force applied at

the right end of the structure. Values of shear stress due to shear shear force applied at

each node is calculated from V = 3.0x103N. As seen in the figures 4.16 and 4.17 the
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Figure 4.14: Yield contour of plasticity behavior qp due to imposed bending loading

for distorted and undistorted meshes.

plastic and damage zones are becoming very similar as the mesh refinement is carried

out. The zones of these two types are accumulated around the boundary points.

Both plastic and damage zones are concentrated near the built-in support, with the

spreading typical of plastic hinge. Moreover, we observe in Figure 4.16 and Figure

4.17 that the developed used stress based formulation considering the Pian-Sumihara

interpolation functions for the stress variable has a very efficient performance for the

distorted shape of mesh. Even in the plasticity or damage range, which generalizes

the similar findings for elastic response computation with hybrid-stress elements (eg.

see [51]).
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Figure 4.15: Yield contour of damage behavior qd due to imposed bending loading

           for distorted and undistorted meshes. 
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Figure 4.16: Yield contour of plasticity behavior qp due to imposed shear loading

           for distorted and undistorted meshes. 
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Figure 4.17: Yield contour of damage behavior qd due to imposed shear loading                         

for distorted and undistorted meshes. 

 



5. CONCLUSIONS

In the present research, a comparative analysis between different types of cyclic

loading has been performed by considering the coupled damage and plasticity

behavior. The stress-based finite element formulation is used for the numerical analysis

of the examples. Three basic effects: classical hysteresis curve, progressive relaxation

to zero of the mean stress and strain ratcheting, are observed due to different loading

types can be well captured by proposed model. Furthermore, plastic and damage zones

considering the bending and shear loads are observed for the distorted and undistorted

shape of mesh from coarse to fine size. We have presented that the developed model

is efficient in representing the hysteresis loops for three kinds mentioned before by

taking into account the coupled plasticity-damage behavior. In addition, we have

demonstrated that we obtain very good results for the distorted mesh comparable

the optimal results obtained with undistorted mesh of the structure undergoing the

bending and shear loadings. We have shown that the stress interpolation function of

Pian-Sumihara has a good performance for solving problems with dominant bending

behavior.

We could extend this model of coupled damage-plasticity towards the applications

whose accumulated damage might lead to softening as already done in 1D setting

in [37].
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APPENDIX A: Von Mises Criterion

To fix ideas, the formulas given above are applied to the case of an isotropic material

governed by Von Mises criterion with isotropic hardening. This is a particular case,

but commonly used. We detail the different formulas and traps due to the passage of

the indice notation to the vector notation of 6-component for the stresses. The Von

Mises criterion is not sensitive to hydrostatic pressure. To simplify the equations, we

decompose the stresses σ and deformations ε into two part; hydrostatic and deviatoric

components, the latter being denoted s and e:
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The module of volume change connects the hydrostatic stress to hydrostatic

deformation. Elastic law connecting deviatoric stresses can be written as:

κ =
σxx +σyy +σzz
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=
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The yield criterion is written in a non principal coordinate:

f =

√

1

2
(σxx−σyy)2 +(σyy−σzz)2 +(σzz−σxx)2 +6τ2

xy +6τ2
yz +6τ2

xz

=

√

3

2
[s2

xx + s2
yy + s2

zz +2(s2
xy + s2

yz + s2
xz)]

(A.3)

By using the indice notation, we write:

f =

√

3

2
si jsi j (A.4)

The question is to see why there is a factor of 2 associated with the term sxy which

does not appear in the index notation. In fact, in the indice notation, i and j vary from

1 to 3 and if we develop the terms, we have a term s12 squared and squared term in s21.

Given the reciprocity of tangential stresses, these two terms are equal, which explains

the factor 2. The variation of plastic deformation is given by:
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dε pl = dγ
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(A.5)

By using the indice notation, we have:

dε
pl
i j =

3dγ

2 f
si j (A.6)

We see the same factor of 2 over the terms xy. In indice notation, it is the angular

deformation εxy. Whie working with 6 components for stresses and strains, it is γxy,

which explains the factor 2. By using the fact that the trace of deviators is zero, we

deduce from these formulas the following result, in vector notation:

σi j
∂ f

∂σi j
= (σ0δi j + si j)

∂ f

∂ si j
= (σ0δi j + si j)

3si j

2 f
=

3si jsi j

2 f
= f

with
∂ f

∂σi j
=

∂ f

∂ si j

(A.7)

σ
∂ f

∂σ
=

1

2 f
[σxx(2σxx−σyy−σzz)+σyy(2σyy−σxx−σzz)

+σzz(2σzz−σxx−σyy)+6τ2
xy +6τ2

xz +6τ2
yz]

=
1

2 f
[(sxx + p)3sxx +(syy + p)3syy +(szz + p)3szz

+6s2
xy +6s2

xz +6s2
yz]

=
1

2 f
[3s2

xx +3s2
yy +3s2

zz +6s2
xy +6s2

xz +6s2
yz] = f

(A.8)

The equation of the surface plasticity allows connecting the previous relationship to

the current yield:

φ = 0→ f −σy = 0→ σ
∂ f

∂σ
= f = σy (A.9)

G being the shear modulus can be calculated as:
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(A.10)

We deduce the expression of the numerator appearing in the expression of the

tangential material law:

∂ f

∂σ
H

∂ f

∂σ
= 3G (A.11)

If we report these results in the expression of the tangential material theoretical law,

we obtain:

HT = H−
9G2

f 2

ssT

3G+H ′
sT = (sxx syy szz sxy syz sxz) (A.12)

Particularly, if the material has a negative hardening, which means, if the yield

decreases when the equivalent plastic strain increases, there is a limit on the module

H that cannot be less than −3G. There can also be an expression of the variation of

equivalent plastic strain which is obtained by the equivalence of plastic work:

Y dε̄ p = σi jdε
p
i j = σi jdγ

∂ f

∂σi j
= dγ f = dγσy → dε̄ p = dγ (A.13)

At the numerical integration, the first equation of the nonlinear system to be solved in

each integration point is:

σn+1 = σT R
−∆γH

∂ f

∂σn+1
(A.14)

It is divided between volumetric and deviatoric part:
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(A.15)

67



The criterion depends only on the deviatoric stress, the second equation to satisfy is

written:

f (sn+1)−σy(ε̄
p
n +∆ε̄ p) = 0 (A.16)

We deduce that the hydrostatic test stress is good, it is logical for a material whose

plasticity criterion of Von Mises since it does not occur. Taking into account this

equality, and the quadratic form of f as a function of s, we rewrite the first equation of

the form:

sn+1 = sT R
−

3G

fn+1
∆ε̄ psn+1 → sn+1 =

1

f rac1+3G∆ε̄ p fn+1
sT R

fn+1 =
1

1+3G∆ε̄ p

fn+1

f T R
→ fn+1 +3G∆ε̄ p = f T R

(A.17)

This relationship is introduced in the second equation:

f T R
−3G∆ε̄ p

−σy(ε̄
p +∆ε p) = 0 (A.18)

Finally, the system to be solved is reduced to a scalar equation. If hardening is more

linear, in other words if the hardening modulus is constant, this equation is linear. If

hardening is nonlinear and if the curvature of the curve Y as a function of the plastic

deformation is negative, the Newton resolution always converges. When we solve

with a Newton scheme, we see the factor (3G+H) appearing, which is also involved

in theoretical tangential law. If there is no hardening, there is no problem for the

integration of the constitutive law. This algorithm is known as the radial return [52]. In

the deviatoric plane, the Von Mises criterion is a circle. Test stress (elastic predictor)

gives a point outside the circle. The plastic corrector returns the point on the circle,

in a way perpendicular to the circle, giving the name of radial. If the criterion is

not Von Mises or if the material is not isotropic, elastic scheme predictor / plastic

corrector is no longer equal to the radial return. The equations were established in the

three-dimensional case. In stress state plane, it is a bit more complicated: the total

deformation is not known in the transverse direction but the stress must be nowhere.

The resolution of this case is beyond the scope of this work [53]. While the criterion is

Von Mises, plasticity surface is an ellipse in the plane (σIσII), the radial return is not

equivalent to a pattern elastic predictor/plastic corrector. For shells, layers are in stress

state plane, thus the form of the Von Mises criterion is an ellipse in a plane of principal

stresses. The algorithm elastic predictor - plastic corrector does not correspond to a

radial return which has no theoretical justification for being used.
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APPENDIX B:FEAP Codes

cId : sld2d2. f ,v1.12001/08/0117 : 16 : 18rltExp

subroutine elmt09(d,ul,xl,ix,tl,s,r,ndf,ndm,nst,isw)

c * * F E A P * * A Finite Element Analysis Program

c—–[–.—-+—-.—-+—-.—————————————–]

c Purpose: Pian-Sumiohara elasto-plastic-damage small deformation element c

c Inputs:

c d(*) - Element parameters

c ul(ndf,*) - Current nodal solution parameters

c u0 - Initial solution state

c xl(ndm,*) - Nodal coordinates

c ix(*) - Global nodal connections

c tl(*) - Nodal temp vector

c ndf - Degree of freedoms/node

c ndm - Mesh coordinate dimension

c nst - Element array dimension

c isw - Solution option switch

c Outputs:

c s(nst,*) - Element array

c r(ndf,*) - Element vector

c—–[–.—-+—-.—-+—-.—————————————–]

implicit none

include ’augdat.h’

include ’bdata.h’

include ’cdata.h’

include ’cdat1.h’

include ’comblk.h’

include ’dahi.h’

include ’elbody.h’

include ’eldata.h’

include ’elengy.h’

include ’elplot.h’

include ’eltran.h’

include ’fdata.h’

include ’hdata.h’

include ’iofile.h’

include ’laginf.h’

include ’macro.h’

include ’part0.h’

include ’pmod2d.h’

include ’prld1.h’

include ’tdata.h’
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include ’upointer.h’

integer ndf,ndm,nst,isw,i,i1,j,jj,j1,l,lint,nhi,nhv,nn,npm

integer ix(*)

real*8 augfp, epp, b1,b2, dv,dl,d1, third, xsj(25), type

real*8 dsigtr, mpress, dmass, dmshp, dtheta, cfac,lfac, fac

real*8 d(*), ul(ndf,nen,*), xl(ndm,*), tl(*), s(nst,*)

real*8 sg(3,25), r(ndf,*), xx(2) , shp(3,4,25)

real*8 bbd(2,7), aa(6,6,5,25), dd(7,7) , dvol(25)

real*8 sigm(9), sigl(16,25), bpra(3) , bbar(2,16,25)

real*8 al(2), ac(2), vl(2) , x0(2)

real*8 phi(6,25), theta(3,25), hh(6,6)

real*8 press(25),pbar(25),hsig(6),eps(6,25),gru(6,3,25)

real*8 irad(25), ta(25), epsd(4), epsv(25)

integer carama,uprm,mplus,k,pom1,ip,ii

real*8 rpo1,ss(4,4,4),x1(2),x2(2),rpom,lagv(4),xn(4),btan(5,5)

real*8 gp1,gp2,ap,tjac(2,2),bet(5),strsh(6,25),bsig(4,25)

real*8 tan1(4,4,25),peps(4,5),stb(5,ndf,nel),betdd(5,nst)

real*8 bres(5),btpg(5,25),btgg(25),brg(25),sig33(25),gama(25)

real*8 ep(25),ep1(25),yield,fisig,kapa,odf(4,25),brnom,tol

real*8 odkapa

real*8 pres(5),RP(7),peps2(4,5),peps3(5),odf2(4,4),rod,kdv

real*8 ksid(25),ksid1(25),dam(25),dml(2),dodf(4,25),dfisig

real*8 betn(5),dbet(4),sig33n(25),dama(25),peps4(5),bsign(4,25)

real*8 dep(4,25),dissp,dissd,td(20)

logical noconv,errck,pinput

integer ni

character wd(2),yyy*120

real*8 dalph

real*8 kappaP(4,25),kappaP1(4,25),alphaP(4,25),alphaP1(4,25)

real*8 ksip1, ksipn

real*8 q(2,4) !to plot the ksip and ksid

real*8 damq(4) !to obtain the D parameter

real*8 hpom(2,4)

save

data third / 0.3333333333333333d0 /

data nhi / 2 / , ni /5/ , kdv /0.81649658092772603273/

uprm = ndd-nud

c TEMPORARY SET OF TEMPERATURE

data ta / 25*0.0d0 /

data gp2 /0.78867513459481288225d0/

data gp1 /0.21132486540518711775d0/

c position to the beginning of ud() array

uprm = ndd-nud
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cccccccccccccccccccccccccccc ISW = 1 cccccccccccccccccccccccccccccccc

if(isw.eq.1) then

if(ior.lt.0) write(*,3000)

c call pintio(yyy,10)

errck = pinput(td,12)

do i = 1,12

d(uprm+i) = td(i)

enddo ! i

d(uprm + 1) = 2.0d0*d(uprm + 1)

nh1 = 2*8 + 5 + 2*8

return 11 print*,’ERROR IN ELMT09’ stop

cccccccccccccccccccccccccccc ISW = 2 cccccccccccccccccccccccccccccccc

c check the mesh

elseif(isw.eq.2) then

call ckisop(ix,xl,ap,ndm)

elseif(isw.eq.32 .or. isw.eq.30) then

call pzero(shp,3*4*25)

r(1,1) = (xl(1,1)+xl(1,2)+xl(1,3)+xl(1,4))/4.0d0

r(2,1) = (xl(2,1)+xl(2,2)+xl(2,3)+xl(2,4))/4.0d0

do i = 1,4

do j = 1,4

do k = 1,4

ss(k,j,i) = 0.0d0

enddo

enddo

enddo

c.......assuming 2 g.p. integration

do i = 1,nlag

x1(1) = xl(1,plag(i))

x1(2) = xl(2,plag(i))

x2(1) = xl(1,mplus(plag(i),1,nen))

x2(2) = xl(2,mplus(plag(i),1,nen))

rpom = (x2(1)-x1(1))*(x2(1)-x1(1))

rpom = rpom + (x2(2)-x1(2))*(x2(2)-x1(2))
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rpom = dsqrt(rpom)/2.0d0

xn(1) = gp1*(x2(1) - x1(1)) + x1(1)

xn(2) = gp1*(x2(2) - x1(2)) + x1(2)

xn(3) = gp2*(x2(1) - x1(1)) + x1(1)

xn(4) = gp2*(x2(2) - x1(2)) + x1(2)

c Lag. mult. fun. gp 1

call lagran_int(xn,lagi(1,1,i),lagi(1,2,i),lagv,2,ndm)

c Lag. mult. fun. gp 2

call lagran_int(xn(3),lagi(1,1,i),lagi(1,2,i),lagv(3),2,ndm)

c Disp. fun.

shp(1,1,i) = gp2

shp(2,1,i) = gp2

shp(1,2,i) = gp1

shp(2,2,i) = gp1

shp(1,3,i) = gp1

shp(2,3,i) = gp1

shp(1,4,i) = gp2

shp(2,4,i) = gp2

do k = 1,2

do j = 1,2

ss(2*j-1,2*k-1,i) = shp(1,2*j-1,i)*lagv(k )*rpom + shp(1,2*j ,i)*lagv(k+2)*rpom

ss(2*j ,2*k ,i) = shp(2,2*j-1,i)*lagv(k )*rpom + shp(2,2*j ,i)*lagv(k+2)*rpom

enddo ! j

enddo ! k

enddo ! i

pom1 = nst*nst ! 4x4x4

call cpmat(ss,s,pom1)

c endif

c Compute tangent stiffness and residual force vector

elseif(isw.eq. 3 .or. isw.eq. 4 .or. isw.eq. 6 .or.isw.eq. 8 .or. isw.eq.14) then

c Set element quadrature order

npm = 1

l = 2 ! prej

c l = d(5)

call int2d(l,lint,sg)
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nhv = 8 !kappaP(4)-kinematic variable

cccccccccccccccccccccccccccc ISW = 14 cccccccccccccccccccccccccccccccc

if(isw.eq.14) then

c damage parameter

do i = 1,lint

hr(nh1+ni + (i-1)*nhv + 3) = 1.0d0/9.0d0/d(uprm+1)

hr(nh2+ni + (i-1)*nhv + 3) = hr(nh1+ni + (i-1)*nhv + 3)

enddo ! i

endif

cccccccccccccccccccccccc END ISW = 14 cccccccccccccccccccccccccccccccc

c stress interpolation parameters

do i = 1,ni

bet(i) = hr(nh2-1+i)

betn(i) = hr(nh1-1+i)

end do

c sig33

do i = 1,lint

sig33(i) = hr(nh2+ni + (i-1)*nhv + 1)

sig33n(i) = hr(nh1+ni +(i-1)*nhv + 1)

enddo ! i

c plastic isotropic hardening parameter

do i = 1,lint

ep(i) = hr(nh1+ni + (i-1)*nhv )

ep1(i) = ep(i)

c write(iow,*)’hr(nh1+(i-1)*nhv = ’, ep(i)

enddo ! i

c damage hardening parameter

do i = 1,lint

ksid(i) = hr(nh1+ni + (i-1)*nhv + 2)

ksid1(i) = ksid(i)

c write(iow,*)’hr(nh1+(i-1)*nhv+2 = ’, ksid(i)

enddo ! i

c damage parameter

do i = 1,lint

dam(i) = hr(nh1+ni + (i-1)*nhv + 3)

c write(iow,*)’hr(nh1+(i-1)*nhv+3 = ’, dam(i)

enddo ! i

c plastic isotropic hardening parameter

do i=1,lint

q(1,i) = hr(nh1+ni + (l-1)*nhv ) !plasticity harden
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c damage hardening parameter

q(2,i) = hr(nh1+ni + (l-1)*nhv + 2) !damage harden

cccccccccccccccccc DAMAGE PARAMETER-IJP

c damq(l) = hr(nh1+ni + (l-1)*nhv + 3) !damage parameter

cccccccccccccccccc DAMAGE PARAMETER-IJP

enddo

cccccccc CHANGEMENT cccccccccccccccccccc

c get alphaP1 at g.p

c kinematic hardening variable

do i = 1,lint

do j = 1,4

kappaP(j,i) = hr(nh1+ni+(i-1)*nhv+3+j)

kappaP1(j,i) = kappaP(j,i)

enddo ! j

enddo ! i

ccccccc FIN

c get the Jacobian in the middle

call shp2d(x0,xl,shp(1,1,1),xsj(1),ndm,nel,ix,.true.)

call pzero(tjac,4)

do j = 1,2

do i = 1,2

do l = 1,nel

tjac(i,j) = tjac(i,j) + xl(i,l)*shp(j,l,1)

enddo ! l

enddo ! i

enddo ! j

c———-TEST

do i = 1,7

RP(i) = d(i)

enddo ! i

c———-TEST

do l = 1,lint

c Shape functions and derivatives

call shp2d(sg(1,l),xl,shp(1,1,l),xsj(l),ndm,nel,ix,.false.)

dvol(l) = xsj(l)*sg(3,l)

c strains

call strn2d_ps(d,xl,ul,shp(1,1,l),ndf,ndm,nel,xx(1),xx(2),gru(1,1,l))

c constants for stress shape functions calculations

strsh(1,l) = sg(2,l)*tjac(1,1)**2

strsh(2,l) = sg(1,l)*tjac(1,2)**2

strsh(3,l) = sg(2,l)*tjac(2,1)**2

strsh(4,l) = sg(1,l)*tjac(2,2)**2
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strsh(5,l) = sg(2,l)*tjac(1,1)*tjac(2,1)

strsh(6,l) = sg(1,l)*tjac(2,2)*tjac(1,2)

end do ! l

c Tangent and residual computations

if(isw.eq.3 .or. isw.eq.6 .or. isw.eq.14) then

cccccccccccccccccccccccccccc ISW = 3 or 6 ccccccccccccccccccccccccccccc

if(isw.eq.3 .or. isw.eq.6) then

noconv = .true.

ii = 0

do while(noconv)

ii = ii + 1

c put beta residual/tangent to 0

call pzero(bres,5)

call pzero(brg,lint)

call pzero(btan,25)

call pzero(btpg,5*lint)

call pzero(btgg,lint)

c BOUCLE SUR LES POINTS D’INTEGRATION

do l = 1,lint

c CALCUL DU RESIDU

c deformation projection ST̂ Eps(Sig)

c get Sig in g.p.

bsig(1,l) = bet(1)+strsh(1,l)*bet(2)+strsh(2,l)*bet(4)

bsig(2,l) = bet(3)+strsh(3,l)*bet(2)+strsh(4,l)*bet(4)

bsig(3,l) = sig33(l)

bsig(4,l) = bet(5)+strsh(5,l)*bet(2)+strsh(6,l)*bet(4)

c store strain and stress at NGP

do i = 1,4

tt(11*(l-1)+2*(i-1)+1) = gru(i,1,l)

tt(11*(l-1)+2*(i-1)+2) = bsig(i,l)

end do

do i = 1,2

tt(11*(l-1)+8+i) = q(i,l) !hardening param of plasticity and damage

enddo

tt(11*(l-1)+11) = dam(l) !D parameter

c get Sig in g.p. at the previous increment

bsign(1,l) = betn(1) + strsh(1,l)*betn(2) + strsh(2,l)*betn(4)

bsign(2,l) = betn(3) + strsh(3,l)*betn(2) + strsh(4,l)*betn(4)

bsign(3,l) = sig33n(l)
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bsign(4,l) = betn(5) + strsh(5,l)*betn(2) + strsh(6,l)*betn(4)

c correct elastic properties

dml(1) = 1.0d0/(1.0d0/d(uprm+1) + 9.0d0*dam(l))

dml(2) = d(uprm+2)

c get d sig in g.p.

dbet(1) = bsig(1,l) - bsign(1,l)

dbet(2) = bsig(2,l) - bsign(2,l)

dbet(3) = bsig(3,l) - bsign(3,l)

dbet(4) = bsig(4,l) - bsign(4,l)

c get Eps (and Sig33) in g.p.

call epsig(dml,dbet,eps(1,l),tan1(1,1,l))

c constant part

bres(1) = bres(1) - eps(1,l)*dvol(l)

bres(3) = bres(3) - eps(2,l)*dvol(l)

bres(5) = bres(5) - 2.0d0*eps(4,l)*dvol(l)

c linear part

bres(2) = bres(2) - strsh(1,l)*eps(1,l)*dvol(l)

bres(2) = bres(2) - strsh(3,l)*eps(2,l)*dvol(l)

bres(2) = bres(2) - 2.0d0*strsh(5,l)*eps(4,l)*dvol(l)

bres(4) = bres(4) - strsh(2,l)*eps(1,l)*dvol(l)

bres(4) = bres(4) - strsh(4,l)*eps(2,l)*dvol(l)

bres(4) = bres(4) - 2.0d0*strsh(6,l)*eps(4,l)*dvol(l)

brg(l) = -eps(3,l)*dvol(l)

c ———– trial part

c constant part

bres(1) = bres(1) + gru(1,3,l)*dvol(l)

bres(3) = bres(3) + gru(2,3,l)*dvol(l)

bres(5) = bres(5) + 2.0d0*gru(4,3,l)*dvol(l)

c linear part

bres(2) = bres(2) + strsh(1,l)*gru(1,3,l)*dvol(l)

bres(2) = bres(2) + strsh(3,l)*gru(2,3,l)*dvol(l)

bres(2) = bres(2) + 2.0d0*strsh(5,l)*gru(4,3,l)*dvol(l)

bres(4) = bres(4) + strsh(2,l)*gru(1,3,l)*dvol(l)

bres(4) = bres(4) + strsh(4,l)*gru(2,3,l)*dvol(l)

bres(4) = bres(4) + 2.0d0*strsh(6,l)*gru(4,3,l)*dvol(l)

c plastic constitutive part
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c compute alpha

do i = 1,4

call alph(d(uprm+12),kappaP(i,l),alphaP(i,l))

enddo

yield = fisig(bsig(1,l),alphaP(1,l))+kdv*kapa(d(uprm+3),ep(l))

gama(l) = 0.0d0

if(yield.gt.0.0d0) then

write(iow,*) ’plastification’

write(iow,*)’ksip1 = ’, ep1(l)

call gamacomp(d(uprm+3),bsig(1,l),ep(l),ep1(l),kappaP(1,l),kappaP1(1,l),gama(l))

do i = 1,4

call alph(d(uprm+12),kappaP1(i,l),alphaP1(i,l))

enddo

yield = fisig(bsig(1,l),alphaP1(1,l)) + kdv*kapa(d(uprm+3),ep1(l))

call odfisig(bsig(1,l),alphaP1(1,l),odf(1,l))

c constant part

bres(1) = bres(1) - gama(l)*odf(1,l)*dvol(l)

bres(3) = bres(3) - gama(l)*odf(2,l)*dvol(l)

bres(5) = bres(5) - gama(l)*odf(4,l)*dvol(l)

c linear part

bres(2) = bres(2) - strsh(1,l)*gama(l)*odf(1,l)*dvol(l)

bres(2) = bres(2) - strsh(3,l)*gama(l)*odf(2,l)*dvol(l)

bres(2) = bres(2) - strsh(5,l)*gama(l)*odf(4,l)*dvol(l)

bres(4) = bres(4) - strsh(2,l)*gama(l)*odf(1,l)*dvol(l)

bres(4) = bres(4) - strsh(4,l)*gama(l)*odf(2,l)*dvol(l)

bres(4) = bres(4) - strsh(6,l)*gama(l)*odf(4,l)*dvol(l)

brg(l) = brg(l) - gama(l)*odf(3,l)*dvol(l)

endif

c damage constitutive part

yield = dfisig(bsig(1,l)) + kapa(d(uprm+8),ksid(l))

dama(l) = 0.0d0

if(yield.gt.0.0d0) then

write(iow,*) ’endommagement’

write(iow,*) ’ksid1= ’, ksid(l)

c write(iow,*) ’ksid1(2)= ’,ksid1(2)

c write(iow,*) ’ksid1(3)= ’,ksid1(3)

c write(iow,*) ’ksid1(4)= ’,ksid1(4)

call damacomp(d(uprm+8),bsig(1,l),ksid(l),ksid1(l),dama(l))
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yield = dfisig(bsig(1,l)) + kapa(d(uprm+8),ksid1(l))

call dodfisig(bsig(1,l),dodf(1,l))

c constant part

bres(1) = bres(1) - dama(l)*dodf(1,l)*dvol(l)

bres(3) = bres(3) - dama(l)*dodf(2,l)*dvol(l)

bres(5) = bres(5) - dama(l)*dodf(4,l)*dvol(l)

c linear part

bres(2) = bres(2) - strsh(1,l)*dama(l)*dodf(1,l)*dvol(l)

bres(2) = bres(2) - strsh(3,l)*dama(l)*dodf(2,l)*dvol(l)

bres(2) = bres(2) - strsh(5,l)*dama(l)*dodf(4,l)*dvol(l)

bres(4) = bres(4) - strsh(2,l)*dama(l)*dodf(1,l)*dvol(l)

bres(4) = bres(4) - strsh(4,l)*dama(l)*dodf(2,l)*dvol(l)

bres(4) = bres(4) - strsh(6,l)*dama(l)*dodf(4,l)*dvol(l)

brg(l) = brg(l) - dama(l)*dodf(3,l)*dvol(l)

endif

c BETA TANGENT

c initialize peps arrays

call pzero(peps,20)

call pzero(peps2,20)

call pzero(peps3,5)

call pzero(peps4,5)

c C(̂-1)*S dV

do i = 1,4

peps(i,1) = tan1(i,1,l)*dvol(l)

peps(i,3) = tan1(i,2,l)*dvol(l)

peps(i,5) = 2.0d0*tan1(i,4,l)*dvol(l)

peps(i,2) = peps(i,2) + strsh(1,l)*tan1(i,1,l)*dvol(l)

peps(i,2) = peps(i,2) + strsh(3,l)*tan1(i,2,l)*dvol(l)

peps(i,2) = peps(i,2) + 2.0d0*strsh(5,l)*tan1(i,4,l)*dvol(l)

peps(i,4) = peps(i,4) + strsh(2,l)*tan1(i,1,l)*dvol(l)

peps(i,4) = peps(i,4) + strsh(4,l)*tan1(i,2,l)*dvol(l)

peps(i,4) = peps(i,4) + 2.0d0*strsh(6,l)*tan1(i,4,l)*dvol(l)

enddo ! i

if(gama(l).gt.0.0d0) then

call odfisig2(bsig(1,l),alphaP1(1,l),odf2)

c d2̂ f/d sig2̂ * S * gama

do i = 1,4

peps2(i,1) = odf2(i,1)*dvol(l)*gama(l)

peps2(i,3) = odf2(i,2)*dvol(l)*gama(l)
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peps2(i,5) = odf2(i,4)*dvol(l)*gama(l)

peps2(i,2) = peps2(i,2) + strsh(1,l)*odf2(i,1)*dvol(l)*gama(l)

peps2(i,2) = peps2(i,2) + strsh(3,l)*odf2(i,2)*dvol(l)*gama(l)

peps2(i,2) = peps2(i,2) + strsh(5,l)*odf2(i,4)*dvol(l)*gama(l)

peps2(i,4) = peps2(i,4) + strsh(2,l)*odf2(i,1)*dvol(l)*gama(l)

peps2(i,4) = peps2(i,4) + strsh(4,l)*odf2(i,2)*dvol(l)*gama(l)

peps2(i,4) = peps2(i,4) + strsh(6,l)*odf2(i,4)*dvol(l)*gama(l)

enddo ! i

c d f/d sig S

peps3(1) = odf(1,l)

peps3(3) = odf(2,l)

peps3(5) = odf(4,l)

peps3(2) = strsh(1,l)*odf(1,l)

peps3(2) = peps3(2) + strsh(3,l)*odf(2,l)

peps3(2) = peps3(2) + strsh(5,l)*odf(4,l)

peps3(4) = strsh(2,l)*odf(1,l)

peps3(4) = peps3(4) + strsh(4,l)*odf(2,l)

peps3(4) = peps3(4) + strsh(6,l)*odf(4,l)

endif ! gama>0

if(dama(l).gt.0.0d0) then

c d f/d sig S

peps4(1) = dodf(1,l)

peps4(3) = dodf(2,l)

peps4(5) = dodf(4,l)

peps4(2) = strsh(1,l)*dodf(1,l)

peps4(2) = peps4(2) + strsh(3,l)*dodf(2,l)

peps4(2) = peps4(2) + strsh(5,l)*dodf(4,l)

peps4(4) = strsh(2,l)*dodf(1,l)

peps4(4) = peps4(4) + strsh(4,l)*dodf(2,l)

peps4(4) = peps4(4) + strsh(6,l)*dodf(4,l)

endif ! dama>0

c ST̂ * (C(̂-1)*S)

do j = 1,5

btan(1,j) = btan(1,j) + peps(1,j)

btan(3,j) = btan(3,j) + peps(2,j)

btan(5,j) = btan(5,j) + 2.0d0*peps(4,j)
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btan(2,j) = btan(2,j) + strsh(1,l)*peps(1,j)

btan(2,j) = btan(2,j) + strsh(3,l)*peps(2,j)

btan(2,j) = btan(2,j) + 2.0d0*strsh(5,l)*peps(4,j)

btan(4,j) = btan(4,j) + strsh(2,l)*peps(1,j)

btan(4,j) = btan(4,j) + strsh(4,l)*peps(2,j)

btan(4,j) = btan(4,j) + 2.0d0*strsh(6,l)*peps(4,j)

btpg(j,l) = peps(3,j)

enddo ! j

c elastic

btgg(l) = tan1(3,3,l)*dvol(l)

if(gama(l).gt.0.0d0) then

c ST̂ * d2̂ f/d sig2̂ * S * gama do j = 1,5 btan(1,j) = btan(1,j) + peps2(1,j)

btan(3,j) = btan(3,j) + peps2(2,j)

btan(5,j) = btan(5,j) + peps2(4,j)

btan(2,j) = btan(2,j) + strsh(1,l)*peps2(1,j)

btan(2,j) = btan(2,j) + strsh(3,l)*peps2(2,j)

btan(2,j) = btan(2,j) + strsh(5,l)*peps2(4,j)

btan(4,j) = btan(4,j) + strsh(2,l)*peps2(1,j)

btan(4,j) = btan(4,j) + strsh(4,l)*peps2(2,j)

btan(4,j) = btan(4,j) + strsh(6,l)*peps2(4,j)

btpg(j,l) = btpg(j,l) + peps2(3,j)

enddo ! j

btgg(l) = btgg(l) + odf2(3,3)*gama(l)*dvol(l)

c ST̂ d f/d sig d f/d sig S

rod = dvol(l)/(kdv*kdv*odkapa(d(uprm+3),ep1(l)) + dalph(d(uprm+12)) )

do j = 1,5

do i = 1,5

btan(i,j) = btan(i,j) - peps3(i)*peps3(j)*rod

enddo ! i

btpg(j,l) = btpg(j,l) - odf(3,l)*peps3(j)*rod

enddo ! j

btgg(l) = btgg(l) - odf(3,l)*odf(3,l)*rod

endif ! gama>0

c damage contribution

if(dama(l).gt.0.0d0) then

c ST̂ d f/d sig d f/d sig S

rod = dvol(l)/odkapa(d(uprm+8),ksid1(l))
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do j = 1,5

do i = 1,5

btan(i,j) = btan(i,j) - peps4(i)*peps4(j)*rod

enddo ! i

btpg(j,l) = btpg(j,l) - dodf(3,l)*peps4(j)*rod

enddo ! j

btgg(l) = btgg(l) - dodf(3,l)*dodf(3,l)*rod

endif ! dama>0

c compute directly the inverse of the g.p. submatrix

c elastic part

btgg(l) = 1.0d0/btgg(l)

c FIN DE LA BOUCLE SUR LES POINTS D’INTEGRATION

enddo ! l

call statcongg(btan,btpg,btgg,bres,brg,ni,lint)

c copy residual

do i = 1,ni

pres(i) = bres(i)

enddo ! i

c solve for the corrections of beta

call gaussj(btan,5,5,bres,1,1)

c residual energy bres*dbeta

brnom = 0.0d0

do i = 1,ni

brnom = brnom + abs(bres(i)*pres(i))

enddo ! i

do i = 1,5

bet(i) = bet(i) + bres(i)

enddo ! i

call getsig33(btpg,btgg,brg,bres,sig33,ni,lint)

tol = 1.0e-20

if(brnom.lt.tol) then

noconv = .false.

elseif(ii.gt.20) then

write(*,*) ’elmt08: main(isw=3,6): NO CONVERGENCE FOR LOCAL ITER.’

write(*,*) ’no. of iterations: ’,ii

read(*,*)

stop

endif

if(ii.eq.15) noconv = .false.
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c FIN DES ITERATION POUR ANNULER LE RESIDU EN CONTRAINTES

enddo ! while - iterations

c stress interpolation parameters

do i = 1,ni

hr(nh2-1+i) = bet(i)

end do

c sig33

do i = 1,lint

hr(nh2+ni + (i-1)*nhv + 1) = sig33(i)

enddo ! i

c plastic hardening parameter

do i = 1,lint

c isotropic hardening

hr(nh2+ni + (i-1)*nhv ) = ep1(i)

c kinematic hardening

do j = 1,4

hr(nh2+ni+(i-1)*nhv+3+j) = kappaP1(j,i)

enddo ! j

enddo ! i

c damage hardening parameter

do i = 1,lint

hr(nh2+ni + (i-1)*nhv + 2) = ksid1(i)

enddo ! i

c damage parameter

do i = 1,lint

rpom = bsig(1,i) + bsig(2,i) + bsig(3,i)

c for our dfisig dodf(1)=dodf(2)=dodf(3)

if(rpom.ne.0.0d0) then

rpom = dama(i)*dodf(1,i)/3.0d0/rpom

endif ! rpom ne 0

dam(i) = dam(i) + rpom

hr(nh2+ni + (i-1)*nhv + 3) = dam(i)

enddo ! i

c plastic strain increment

do i = 1,lint

do j = 1,4

dep(j,i) = gama(i)*odf(j,i)

enddo ! j

enddo ! i

cc AJOUTER ECROUISSAGE CINEMATIQUE DANS LA DISSIPATION PLAS-

TIQUE cc

c Dissipation calculations

c plastic dissipation

do i = 1,lint
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call dissincps(bsign(1,i),bsig(1,i),dep(1,i),ep(i),ep1(i),d(uprm+3),dissp)

delo(2) = delo(2) + dissp*dvol(i)

enddo ! i

c damage dissipation

do i = 1,lint

call dissdamps(bsign(1,i),bsig(1,i),hr(nh1+ni+(i-1)*nhv+3)

,dam(i),ksid,ksid1,d(uprm+8),dissd)

delo(3) = delo(3) + dissd*dvol(i)

enddo ! i

c return

call pzero(stb,ndf*nel*5)

c Compute the stiffness

do l = 1,lint

c int ST̂ B dV

do i = 1,nel

c bet 1

stb(1,1,i) = stb(1,1,i) + shp(1,i,l)*dvol(l)

c bet 2

stb(2,1,i) = stb(2,1,i) + strsh(1,l)*shp(1,i,l)*dvol(l)

stb(2,1,i) = stb(2,1,i) + strsh(5,l)*shp(2,i,l)*dvol(l)

stb(2,2,i) = stb(2,2,i) + strsh(3,l)*shp(2,i,l)*dvol(l)

stb(2,2,i) = stb(2,2,i) + strsh(5,l)*shp(1,i,l)*dvol(l)

c bet 3

stb(3,2,i) = stb(3,2,i) + shp(2,i,l)*dvol(l)

c bet 4

stb(4,1,i) = stb(4,1,i) + strsh(2,l)*shp(1,i,l)*dvol(l)

stb(4,1,i) = stb(4,1,i) + strsh(6,l)*shp(2,i,l)*dvol(l)

stb(4,2,i) = stb(4,2,i) + strsh(4,l)*shp(2,i,l)*dvol(l)

stb(4,2,i) = stb(4,2,i) + strsh(6,l)*shp(1,i,l)*dvol(l)

c bet 5

stb(5,1,i) = stb(5,1,i) + shp(2,i,l)*dvol(l)

stb(5,2,i) = stb(5,2,i) + shp(1,i,l)*dvol(l)

enddo ! i

enddo ! l

c Compute residual

do j = 1,nel

do i = 1,5

r(1,j) = r(1,j) - stb(i,1,j)*bet(i)

r(2,j) = r(2,j) - stb(i,2,j)*bet(i)

enddo ! i

enddo ! j

c return

cccccccccccccccccccccccccccc ISW = 3 ccccccccccccccccccccccccccccccccc
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c Compute mixed tangent stiffness matrix

if(isw.eq.3) then

call pzero(betdd,nst*5)

c compute d bet/d u = btan(̂-1) sgt

do j = 1,nel

do l = 1,ndf

do i = 1,5

do ii = 1,5

betdd(i,2*(j-1) + l) = betdd(i,2*(j-1) + l) + btan(i,ii)*stb(ii,l,j)

enddo ! ii

enddo ! i

enddo !l

enddo ! j

c K = stbT̂ d bet/d u call stiff_ps(stb,betdd,s,nst)

endif ! isw = 3

cccccccccccccccccccccccccccc END ISW = 3 ccccccccccccccccccccccccccccccc

endif ! isw = 3 or 6

cccccccccccccccccccccccccccc END ISW = 3 or 6 cccccccccccccccccccccccccc

c Output stresses.

cccccccccccccccccccccccccccc ISW = 4 or 8 cccccccccccccccccccccccccccccc

elseif(isw.eq.4 .or. isw.eq.8) then

do i = 1,9

sigm(i) = 0.0d0

end do ! i

do i = 1,3

bpra(i) = 0.0d0

end do ! i

epp = 0.0d0

dtheta = 0.0d0

cccccccccccccccccccccccccccc ISW = 4 ccccccccccccccccccccccccccccccccccc

c Output stresses

if (isw .eq. 4) then

sigm(1) = bet(1)

sigm(2) = bet(3)

sigm(4) = bet(5)

sigm(3) = 0.0d0

do l = 1,lint

sigm(3) = sigm(3) + sig33(l)

enddo ! l

sigm(3) = sigm(3)/3.0d0
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write(iow,*) ’sig11 = ’,sigm(1),’ sig22 = ’,sigm(2),’ sig33 = ’,sigm(3),’ sig12 =

’,sigm(4)

if(ior.lt.0) then

write(*,*) ’sig11 = ’,sigm(1),’ sig22 = ’,sigm(2),’ sig33 = ’,sigm(3),’ sig12 = ’,sigm(4)

endif

cccccccccccccccccccccccccccc ISW = 8 ccccccccccccccccccccccccccccccccc

c Project stresses onto nodes

else do l = 1,lint

bsig(1,l) = bet(1)+strsh(1,l)*bet(2)+strsh(2,l)*bet(4)

bsig(2,l) = bet(3)+strsh(3,l)*bet(2)+strsh(4,l)*bet(4)

bsig(3,l) = sig33(l)

bsig(4,l) = bet(5)+strsh(5,l)*bet(2)+strsh(6,l)*bet(4)

hist(1,l) = hr(nh2+ni + (l-1)*nhv )

hist(14,l)= hr(nh2+ni + (l-1)*nhv + 2)

c plastic isotropic hardening parameter

q(1,l) = hr(nh2+ni + (l-1)*nhv ) !plasticity harden

c damage hardening parameter

q(2,l) = hr(nh2+ni + (l-1)*nhv + 2) !damage harden

cccccccccccccccccc DAMAGE PARAMETER-IJP

damq(l) = hr(nh2+ni + (l-1)*nhv + 3) !damage parameter

cccccccccccccccccc DAMAGE PARAMETER-IJP

enddo ! l

c q is added in order to plot ksip and ksid

call slcn2d09(ix,bsig,shp,dvol,r,s,r(nen+1,1),lint,nel,4,q)

endif

cccccccccccccccccccccccccccc END ISW = 8 ccccccccccccccccccccccccccccc

c Compute J-integrals and material forces

cccccccccccccccccccccccccccc ISW = 16 cccccccccccccccccccccccccccccccc

elseif(isw.eq.16) then

call pjint2d(d,ul,tl,shp,dvol,epsv,sigl,r,ndf,ndm,lint)

elseif(isw.eq.25) then

call stcn2z(xl,sigl,shp,dvol,lint,ndm,nel,16)

endif ! isw = 4 or 8

cccccccccccccccccccccccccccc END ISW = 4 or 8 cccccccccccccccccccccccccccccc

endif ! isw = 3 or 4 or 6 or 8 or 14 or 16

c Formats 1000 format(11f10.0)

2001 format(a1,20a4//5x,’Element Stresses’//’ Elmt Mat Angle’,

’11-stress 22-stress 33-stress 12-stress’,
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’1-stress’/’ 1-coord 2-coord 11-strain’,

’22-strain 33-strain 12-strain 2-stress’) 2002 for-

mat(i8,i4,0p,f6.1,1p,5e12.3/0p,2f9.3,1p,5e12.3/1x)

3000 format(’ Input: e, nu, rho, th, is (1=pl.stress,2=pl.strain)’/

1 3x,’mate>’,)

end

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

c define the material model eps = eps(sigma) subroutine epsig(d,sig,eps,tan1)

implicit none

real*8 d(*),sig(*),eps(*),psig(4),tre,trs

integer i,j

real*8 dvag,tan1(4,*),stis3,g,stig,c1,c2

call pzero(tan1,16)

call pzero(eps,4)

stis3 = 3.0d0 * d(1)

dvag = 2.0d0 * d(2)

stig = 4.0d0 * d(2)

g = d(2)

c1 = (stis3 + g)/(3.0d0*stis3*g)

c2 = 1.0d0/stis3/3.0d0 - 1.0d0/dvag/3.0d0

do j = 1,3

do i = 1,3

tan1(i,j) = c2

enddo ! i

enddo ! j

do i = 1,3

tan1(i,i) = c1

enddo ! i

tan1(4,4) = 1.0d0/stig

do j = 1,3

do i = 1,3

eps(i) = eps(i) + tan1(i,j)*sig(j)

enddo ! i

enddo ! j

eps(4) = eps(4) + 2.0d0*tan1(4,4)*sig(4)

end ! sub epsig

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

c strain subroutine strn2d_ps(d,xl,ul,shp,ndf,ndm,nel,xx,yy,eps)

implicit none
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include ’cdata.h’

include ’incshp.h’

include ’pmod2d.h’

integer ndf,ndm,nel, j

real*8 d(*),xl(ndm,*),ul(ndf,nen,*),shp(3,*)

real*8 eps(6,*), xx,yy

save

c Compute strains and coordinates

do j = 1,4

eps(j,1) = 0.0d0

eps(j,3) = 0.0d0

end do

xx = 0.0d0

yy = 0.0d0

do j = 1,nel

xx = xx + shp(3,j)*xl(1,j)

yy = yy + shp(3,j)*xl(2,j)

eps(1,1) = eps(1,1) + shp(1,j)*ul(1,j,1)

eps(2,1) = eps(2,1) + shp(2,j)*ul(2,j,1)

c eps(3,1) = eps(3,1) + shp(3,j)*ul(1,j,1)

eps(4,1) = eps(4,1) + 0.5d0*(shp(2,j)*ul(1,j,1) + shp(1,j)*ul(2,j,1))

c increment

eps(1,3) = eps(1,3) + shp(1,j)*ul(1,j,2)

eps(2,3) = eps(2,3) + shp(2,j)*ul(2,j,2)

c eps(3,3) = eps(3,3) + shp(3,j)*ul(1,j,2)

eps(4,3) = eps(4,3) + 0.5d0*(shp(2,j)*ul(1,j,2) + shp(1,j)*ul(2,j,2))

end do

c Strain at t_n

eps(1,2) = eps(1,1) - eps(1,3)

eps(2,2) = eps(2,1) - eps(2,3)

eps(3,2) = eps(3,1) - eps(3,3)

eps(4,2) = eps(4,1) - eps(4,3)

end ! sub strn2d_ps

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

c compute the stiffness

subroutine stiff_ps(stb,betdd,s,nst)

implicit none

integer nst,i,j,ii

real*8 stb(5,*),betdd(5,*),s(nst,*)

c call pzero(s,nst*nst)
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do j = 1,nst

do i = 1,j

do ii = 1,5

s(i,j) = s(i,j) + stb(ii,i)*betdd(ii,j)

enddo ! ii

enddo ! i

enddo ! j

c Compute lower part by symmetry

do i = 1,nst

do j = 1,i

s(i,j) = s(j,i)

end do ! j

end do ! i

end ! sub stiff_ps

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

c stress part of the yield function

real*8 function fisig(sig,alpha)

implicit none

real*8 sig(*),alpha(1,4),psig(4),trs,dsqrt

integer i

trs = (sig(1) + sig(2) + sig(3))/3.0d0

do i = 1,3

psig(i) = sig(i) - trs + alpha(1,i)

enddo ! i

psig(4) = sig(4) + alpha(1,4)

fisig = 0.0d0

do i = 1,3

fisig = fisig + psig(i)*psig(i)

enddo ! i

fisig = dsqrt(fisig + 2.0d0*psig(4)*psig(4))

end ! fun fisig

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

c stress part of the yield function

real*8 function dfisig(sig)

implicit none

real*8 sig(*)

integer i

dfisig = (sig(1) + sig(2) + sig(3))/3.0d0

end ! fun dfisig

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
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c 1. odvod

subroutine odfisig(sig,alpha,odf)

implicit none

real*8 sig(*),odf(*),trs,dsqrt,devn

real*8 alpha(4)

integer i

trs = (sig(1) + sig(2) + sig(3))/3.0d0

do i = 1,3

odf(i) = sig(i) - trs + alpha(i)

enddo ! i

odf(4) = sig(4) + alpha(4)

devn = 0.0d0

do i = 1,3

devn = devn + odf(i)*odf(i)

enddo ! i

devn = dsqrt(devn + 2.0d0*odf(4)*odf(4))

do i = 1,3

odf(i) = odf(i)/devn

enddo ! i

odf(4) = 2.0d0*odf(4)/devn

end ! sub odfisig

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

subroutine dodfisig(sig,odf)

implicit none

real*8 sig(*),odf(*)

integer i

do i = 1,3

odf(i) = 1.0d0/3.0d0

enddo ! i

odf(4) = 0.0d0

end ! sub dodfisig

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

c 2. odvod

subroutine odfisig2(sig,alpha,odf2)

implicit none

real*8 sig(*),alpha(4),odf2(4,*),trs,dsqrt,devn

real*8 psig(4),devn3

integer i,j

do j = 1,4

do i = 1,4
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odf2(i,j) = 0.0d0 enddo ! i

enddo ! j

trs = (sig(1) + sig(2) + sig(3))/3.0d0

do i = 1,3

psig(i) = sig(i) - trs + alpha(i)

enddo ! i psig(4) = sig(4) + alpha(4)

devn = 0.0d0

do i = 1,3

devn = devn + psig(i)*psig(i)

enddo ! i

devn = 1.0d0/dsqrt(devn + 2.0d0*psig(4)*psig(4))

devn3 = devn**3

do i = 1,3

odf2(i,i) = devn

enddo ! i

odf2(4,4) = 2.0d0*devn - 4.0d0*devn3*psig(4)*psig(4)

do j = 1,3

do i = 1,3

odf2(i,j) = odf2(i,j) - devn/3.0d0 - devn3*psig(i)*psig(j)

enddo ! i

enddo ! j

do j = 1,3

odf2(j,4) = - 2.0d0 * devn3 * psig(j) * psig(4)

odf2(4,j) = odf2(j,4)

enddo ! j

end ! sub odfisig2

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

c kinematic part of the yield criterion

subroutine alph(H1,kappaP,alphaP)

implicit none

real*8 kappaP,H1,kdv,alphaP

data kdv /0.81649658092772603273/

alphaP = -kdv*kdv*H1*kappaP

end

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

c derivee de la contrainte de rappel est ajoutee

real*8 function dalph(H1)

implicit none
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real*8 kdv,H1

data kdv /0.81649658092772603273/

dalph = -kdv*kdv*H1

end

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

c hardening part of the yield function

real*8 function kapa(d,ksip)

implicit none

real*8 d(*),ksip,dsqrt

c kapa = - dsqrt(2.0d0/3.0d0)

kapa = -(d(1) + (d(2)-d(1))*(1.0d0-exp(-d(3)*ksip)) + d(4)*ksip)

end ! fun kapa

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

c odvod

real*8 function odkapa(d,ksip)

implicit none

real*8 d(*),ksip,dsqrt

c odkapa = - dsqrt(2.0d0/3.0d0)

odkapa = -(d(3)*(d(2)-d(1))*exp(-d(3)*ksip) + d(4))

end ! fun odkapa

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

c static condensation

subroutine statcongg(btan,btpg,btgg,bres,brg,np,ng)

implicit none

integer np,ng,i,j,k

real*8 btan(np,np),btpg(np,*),btgg(*)

real*8 bres(np),brg(*)

do i = 1,np

do j = 1,ng

bres(i) = bres(i) - btpg(i,j)*brg(j)*btgg(j)

enddo ! j

enddo ! j

do j = 1,np

do i = 1,np

do k = 1,ng

btan(i,j) = btan(i,j) - btpg(i,k)*btgg(k)*btpg(j,k)

enddo ! k
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enddo ! i

enddo ! j

end ! sub statcongg

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

c get the sig33 component in each g.p.

subroutine getsig33(btpg,btgg,brg,bet,sig33,np,ng)

implicit none

integer np,ng,i,j

real*8 btpg(np,*),btgg(*),brg(*),bet(*)

real*8 sig33(ng),psig(ng)

do i = 1,ng

psig(i) = 0.0d0

do j = 1,np

psig(i) = psig(i) - btpg(j,i)*bet(j)

enddo ! j

enddo ! i

do i = 1,ng

psig(i) = btgg(i)*(brg(i) + psig(i))

enddo ! i

do i = 1,ng

sig33(i) = sig33(i) + psig(i)

enddo ! i

end ! sub getsig33

ccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

c get gama from the compatibility equation

subroutine damacomp(d,sig,ksidn,ksid1,gama)

implicit none

real*8 sig(*),ksidn,dfisig,h,ksid1,tol,dg

real*8 kapa,gama,d(*),odkapa,fiss

logical noconv

integer ii

tol = 1.0d-12

gama = 0.0d0

dg = 0.0d0

ksid1 = ksidn

noconv = .true.

fiss = dfisig(sig)

ii = 0

do while(noconv)

ii = ii + 1
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gama = gama + dg

ksid1 = ksidn + gama

h = fiss + kapa(d,ksid1)

if( abs(h) .le. tol*d(1) ) then

noconv = .false.

c write(*,*) ’ksid1= ’,ksid1

c read(*,*)

elseif(ii.gt.20) then

write(*,*) ’elmt09: damacomp: NO CONVERGENCE FOR GAMMA’

write(*,*) ’no. of iterations: ’,ii

write(*,*) ’residual = ’,h

write(*,*) ’tolerance= ’,tol,’ kapa= ’,kapa(d,ksidn)

read(*,*)

stop

else

dg = odkapa(d,ksid1)

dg = - h/dg

endif

enddo ! while

end ! sub damacomp

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

subroutine gamacomp(d,sig,ksipn,ksip1,kappapn,kappap1,gama)

implicit none

real*8 sig(*),ksipn,fisig,h,ksip1,tol,dg,iow

real*8 kappapn(4),kappap1(4),alphapn(4),alphap1(4)

real*8 kapa,gama,d(*),odkapa,fiss,kdv,odf(4),dalph

logical noconv

integer i,ii

kdv = dsqrt(2.0d0/3.0d0)

tol = 1.0d-12

gama = 0.0d0

dg = 0.0d0

ksip1 = ksipn

do i = 1,4

kappap1(i) = kappapn(i)

call alph(d(10),kappap1(i),alphap1(i))

enddo

noconv = .true.

call odfisig(sig(1),alphap1(1),odf(1))

fiss = fisig(sig,alphap1)

ii = 0

do while(noconv)

ii = ii + 1

gama = gama + dg

ksip1 = ksipn + kdv*gama
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do i = 1,4

kappap1(i) = kappapn(i) + gama*odf(i)

call alph(d(10),kappap1(i),alphap1(i))

enddo h = fiss + dalph(d(10))*gama + kdv*kapa(d,ksip1)

c print*,’h =’,h

if( abs(h) .le. tol*d(1) ) then

noconv = .false.

c write(iow,*)’kisp1 = ’, ksip1

elseif(ii.gt.20) then

write(*,*) ’elmt09: gamacomp: NO CONVERGENCE FOR GAMMA’

write(*,*) ’no. of iterations: ’,ii

write(*,*) ’residual = ’,h, ’ tolerance= ’,tol

write(*,*) ’alphap1(1)= ’,alphap1(1),’ kapa= ’,kapa(d,ksipn)

write(*,*) ’kappap1(1)= ’,kappap1(1),’ odf(1)= ’,odf(1)

write(*,*) ’kappap1(2)= ’,kappap1(2),’ odf(2)= ’,odf(2)

write(*,*) ’kappap1(3)= ’,kappap1(3),’ odf(3)= ’,odf(3)

write(*,*) ’kappap1(4)= ’,kappap1(4),’ odf(4)= ’,odf(4)

write(*,*) ’sig(1)= ’,sig(1)

write(*,*) ’sig(2)= ’,sig(2)

write(*,*) ’sig(3)= ’,sig(3)

write(*,*) ’sig(4)= ’,sig(4)

write(*,*) ’sig(5)= ’,sig(5)

write(*,*) ’sig(6)= ’,sig(6)

read(*,*)

stop

else

c print*,’dalph =’,dalph(d(10))

c ii = ii + 1 !ajoute

dg = kdv*kdv*odkapa(d,ksip1) + dalph(d(10))

dg = - h/dg

c print*,’dg =’,dg

c gama = gama + dg !ajoute

endif

enddo ! while

end ! sub gamacomp

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

c plastic dissipation

subroutine dissincps(sig1,sig2,dep,ksi,ksi2,d,diss)

implicit none

integer i,j

real*8 sig1(*),sig2(4),ka,mu,dot,dep(*),d(*)

real*8 trsig,trepse,sigp(6),diss,ksi,ksi2

real*8 sy,sinf,beta,rp,sig(4),kp,tt,kapa
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c average stress

do i = 1,4

sig(i) = (sig1(i) + sig2(i))/2.0d0

enddo !i

diss = dot(dep,sig,3) + 2.0d0*dep(4)*sig(4)

C TEST

tt = dsqrt(2.0d0/3.0d0)

rp = -tt/2.0d0*(kapa(d,ksi2) + kapa(d,ksi)+2.0d0*d(1))

rp = rp*(ksi2 - ksi)

diss = diss - rp

end ! sub dissincps

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc

c damage dissipation

subroutine dissdamps(sgin,sig1,damn,dam1,ksi,ksi2,d,diss) implicit none integer i,j

real*8 sgin(*),sig1(*),dot,damn(*),dam1(*)

real*8 trsig,sigp(4),diss,ksi,ksi2,kd,ddam

real*8 d(*),rp,ed(4),tred,kapa,sig(4)

do i = 1,4

sig(i) = (sig1(i) + sgin(i))/2.0d0

enddo !i

trsig = (sig(1) + sig(2) + sig(3))/3.0d0

ddam = dam1(1) - damn(1)

tred = 3.0d0*ddam*trsig

do i = 1,3

ed(i) = tred

enddo !i

ed(4) = 0.0d0

C TEST

diss = dot(ed,sig,3) + 2.0d0*ed(4)*sig(4)

rp = -(kapa(d,ksi2) + kapa(d,ksi) + 2.0d0*d(1))/2.0d0

rp = rp*(ksi2 - ksi)

c TEST

if(rp.gt.diss .and. rp.gt.0.0) then

endif

C TEST

if(rp.gt.0.0d0) then

diss = diss - rp

else

diss = 0.0d0

endif
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end ! sub dissdamps

cccccccccccccccccccccccccccccccccccccccccccccccccccccccccccccc
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APPENDIX C:Interpolation Function

Pian-Sumihara is the two-field elements interpolation of the full stress and

displacement fields. A four-node plane rectangular element where interpolations may

be given directly in terms of Cartesian coordinates is shown in Fig.B.1.
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Figure B.1: Displacement directions of yhe plasticity surface

Displacement interpolation is given by

u =
4

∑
i=1

Ni(x,y)ūi (A.1)

so that the shape functions are;
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(A.2)

where x0 and y0 are the cartesian coordinate of the element centre. From the Eq. A.2

the strains are obtained;
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εx = α1 +α2y

εy = α3 +α4x

εxy = α5 +α6x+α7y

(A.3)

Here, αi are expressed in terms of ū. We use 5β parameter as explained in [49].
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