
HAL Id: tel-00968069
https://theses.hal.science/tel-00968069

Submitted on 31 Mar 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Development of an energy efficient, robust and modular
multicore wireless sensor network

Hong-Ling Shi

To cite this version:
Hong-Ling Shi. Development of an energy efficient, robust and modular multicore wireless sensor
network. Other [cs.OH]. Université Blaise Pascal - Clermont-Ferrand II, 2014. English. �NNT :
2014CLF22435�. �tel-00968069�

https://theses.hal.science/tel-00968069
https://hal.archives-ouvertes.fr

N° d’ordre : D. U. 2435

EDSPIC : 641

UNIVERSITÉ BLAISE PASCAL - CLERMONT ІІ

ÉCOLE DOCTORALE DE

SCIENCES POUR L’INGÉNIEUR DE CLERMONT-FERRAND

Thèse

Présentée par

Hong-Ling SHI

Pour obtenir le grade de

DOCTEUR D’UNIVERSITÉ

Spécialité : INFORMATIQUE

Development of an Energy Efficient, Robust and Modular

Multicore Wireless Sensor Network

Soutenue publiquement le 23 janvier 2014 devant le jury :

Directeur de la thèse :

Prof. Kun Mean HOU

Membres du jury :

Prof. Bernard Tourancheau (University of Joseph Fourier, rapporteur)

Prof. Houda Labiod (ENST ParisTech, rapporteur)

Prof. Alain Quilliot (UBP, examinateur)

Dr. Jean-Pierre Chanet (IRSTEA, examinateur)

Prof. Jorge Garcia-Vidal (UPC, examinateur)

Dr. Jianjin LI (invité)

Dr. Christophe de Vaulx (invité)

 i

 i

Remerciements

First and foremost, I would like to thank my supervisor, Prof. Kun Mean HOU, who gave

me an opportunity to do this challenging and interesting research. He is a constant source of

inspiration and always helpful when I need help. I learned so such from him and I believe

these unforgettable experiences and valuable knowledge will be a great asset in my future

careers as well as in my personal life.

I would like to thank Conseil Régional d’Auvergne and Feder for their financial support.

I would also like to thank Laboratory LIMOS- UMR 6158 - Université Blaise Pascal/CNRS

for providing all necessary equipment to do the research.

I am very grateful to all the members of the jury for their valuable time and feedback. I

am very thankful to Prof. Hong SUN from Wuhan University (China) for her

recommendation and encouragement. I am very grateful to Dr. Jian-Jin LI and Dr. Christophe

DE VAULX for their kind help, patience and support. I am thankful to Prof. Haiying ZHOU

and Prof. XiaoZhong YANG from Harbin Institute of Technology (China) for the in-depth

discussions with them.

I would like to express many thanks to present and former team members of SMIR group

for their efficient cooperation and kind help. Thanks to XunXing DIAO, Hao DING, Xing

LIU, YiBo CHEN, Bin TIAN, Peng ZHOU, Khalid el GHOLAMI, Muhammad YUSRO,

Lizhong ZHANG, Zuoqin HU, Messaoud KARA, XinChen ZHANG and Jing WU. They

have all contributed to create a great work environment.

Finally, I would like to dedicate this dissertation, in loving memory, to my father. May

his soul rest in peace! I would also like to dedicate this dissertation to my mother for her

support, encouragement, and love over the years. I would also like to thank my sister, my

brother, and all my friends who have supported me. Last, but not least, my deepest gratitude is

towards my wife, Li-Li HUANG, for her love, patience, and support.

 iii

Table of Contents

Table of Contents ... iii

List of Figures ... ix

List of Tables .. xi

List of Acronyms ... xiii

Chapter 1. Introduction .. 1

1.1. Motivation and Problem Statement .. 1

1.2. Our Multicore Solutions ... 3

1.3. Contributions .. 5

1.4. Dissertation Structure ... 5

Chapter 2. General Purpose Dependable System 7

2.1. Introduction .. 7

2.1.1. Dependability Attributes ... 8

2.1.2. Dependability Threats ... 9

2.1.3. Dependability Means ... 9

2.2. Dependability Evaluation Techniques ... 10

2.2.1. Dependability Terms ... 10

2.2.2. Dependability model types .. 14

2.2.3. Dependability computation methods ... 15

2.3. Fault Tolerance and Redundancy ... 16

2.3.1. Space Redundancy .. 16

2.3.2. Time Redundancy ... 17

2.4. MTBF Values Evaluation .. 18

2.5. RAS of Computer System .. 20

2.6. Summary .. 22

Chapter 3. Dependability of Wireless Sensor Networks 23

3.1. Wireless Sensor Networks ... 23

3.1.1. Introduction ... 23

 iv

3.1.2. WSN Nodes ... 24

3.1.3. WSN Applications ... 29

3.2. Major Dependable Challenges ... 33

3.2.1. Application Requirement .. 33

3.2.2. Dependability Threats ... 33

3.2.3. Resource Constraint .. 34

3.3. Current Dependable Approaches ... 34

3.3.1. Current Approaches ... 34

3.3.2. TMS570 Safety MCU ... 35

3.4. Observations of Real World WSN Deployments 36

3.5. Summary .. 36

Chapter 4. Multicore WSN Node Architecture................................ 37

4.1. Introduction .. 37

4.2. Multicore WSN Node Architecture ... 38

4.2.1. Generalized Multicore Architecture .. 38

4.2.2. Functional Safety Mechanism ... 39

4.2.3. Fault-tolerant Mechanism ... 40

4.2.4. Resource-aware Mechanism ... 40

4.2.5. Dissymmetrical Multicore Structure ... 42

4.3. Different Type of Cores ... 43

4.3.1. IGLOO nano FPGAs ... 43

4.3.2. 4-bit NanoRisc ... 44

4.3.3. 8-bit ATMEGA1281 ... 44

4.3.4. 8-bit RISC core microcontroller AVRRF ... 45

4.3.5. 32-bit RISC core microcontroller AT91SAM7Sx .. 45

4.3.6. Raspberry Pi Board ... 45

4.3.7. PandaBoard ES Board ... 46

4.3.8. ARM Cortex
TM

-M3 Based Microcontroller .. 47

4.3.9. Summary ... 48

4.4. HSDTVI Interface .. 48

4.4.1. Introduction ... 48

 v

4.4.2. HSDTVI Architecture ... 49

4.4.3. Different Scenario of the HSDTVI Implementation ... 50

4.4.4. Summary ... 57

4.5. Summary .. 58

Chapter 5. High Reliability Design Process dedicated to Resource

Constraint Embedded System .. 59

5.1. Introduction .. 59

5.2. Traditional Design Process Models ... 59

5.2.1. Waterfall Model .. 60

5.2.2. V Model ... 60

5.2.3. Incremental Model .. 61

5.2.4. Spiral Model .. 62

5.2.5. RAD Model ... 63

5.2.6. Agile Model ... 64

5.2.7. Summary ... 65

5.3. High Reliability Design Process Based on Multicore Architecture 66

5.3.1. General Overview ... 66

5.3.2. Model-Driven Engineering ... 66

5.3.3. Model of Multicore WSN Architecture .. 68

5.3.4. Early Validation of Requirement .. 71

5.3.5. Design for Multicore Run Time Testability .. 74

5.3.6. Fault Injection ... 75

5.4. Summary .. 78

Chapter 6. Implementation of Multicore WSN Node 79

6.1. E²MWSN: High Reliability and High Performance Multicore WSN

Node 79

6.1.1. General Overview ... 79

6.1.2. Hardware Architecture .. 80

6.1.3. Key Features .. 82

6.1.4. Performance .. 82

6.2. iLive: High Reliability and Low cost Multicore WSN Node 86

 vi

6.2.1. General Overview ... 86

6.2.2. Hardware Architecture .. 87

6.2.3. End-Device Sleep & Wakeup Work Mode ... 88

6.2.4. Key Features .. 90

6.2.5. Performance .. 90

6.3. SIS: High Reliability Sensor Node in Smart Irrigation System 92

6.3.1. General Overview ... 92

6.3.2. Hardware Architecture .. 93

6.3.3. Key Features .. 94

6.3.4. Performance .. 95

6.4. iLiveEdge: High Reliability and Multi-Support Multicore WSN Edge

Router 97

6.4.1. General Overview ... 97

6.4.2. Hardware Architecture .. 98

6.4.3. Key Features .. 99

6.4.4. Performance .. 99

6.5. EPER: Highest Performance High Reliability and Multi-Support

Multicore WSN Edge Router ... 100

6.5.1. General Overview ... 100

6.5.2. Hardware Architecture .. 101

6.5.3. Key Features .. 102

6.5.4. Performance .. 103

6.6. RPiER: Higher Performance High Reliability and Multi-Support

Multicore WSN Edge Router ... 104

6.6.1. General Overview ... 104

6.6.2. Hardware Architecture .. 104

6.6.3. Key Features .. 105

6.6.4. Performance .. 106

6.7. Related Projects .. 107

6.7.1. Precision Agriculture ... 107

6.7.2. Smart Irrigation System .. 110

6.7.3. Smart Environment Explorer Stick ... 112

 vii

6.8. Summary .. 114

Chapter 7. Conclusion and Ongoing Work 117

7.1. Conclusion .. 117

7.2. Next Generation WSN node ... 118

7.2.1. Next Generation Multicore SoC for WSN node ... 118

7.2.2. Finite State Machine OS: FSMOS .. 124

7.3. Perspective ... 128

Bibliography .. 131

RESUME ... 139

ABSTRACT... 139

 ix

List of Figures

Figure 1-1 Overview of WSN applications(Yick et al., 2008) ... 2

Figure 1-2 Block diagram of DFT system.. 3

Figure 1-3 Block diagram of Multicore WSN node ... 4

Figure 1-4 Block diagram of Multicore WSN node with redundancy for application core 4

Figure 2-1 The dependability tree (Algirdas Avizienis, Laprie, & Randell, 2001) 8

Figure 2-2 Typical evolution of failure rate over a lifetime of a hardware system (Dubrova,

2013) ... 11

Figure 2-3 Typical evolution of failure rate over a lifetime of a software system (Dubrova,

2013) ... 11

Figure 2-4 MTBF versus Lifetime ... 13

Figure 2-5 Reliability block diagram of a two-component system: (a) Serial, (b) parallel 14

Figure 2-6 MTBF Estimates for Intel® Server System R1208RPMSHOR (Intel Corporation,

2013a) ... 19

Figure 2-7 Laptop three years Failure Rates (SquareTrade, 2009) .. 19

Figure 2-8 Three Years Laptop Malfunction Rates by Manufacturer (SquareTrade, 2009) 20

Figure 2-9 IBM server system RAS operations (IBM Corp, 2012) ... 21

Figure 2-10 Advanced RAS features of an IBM System x3850 X5 server (IBM Corp, 2012) 21

Figure 3-1 Circuit Board of MICAz ... 24

Figure 3-2 Circuit Board of MICA2 .. 25

Figure 3-3 Circuit Board of Telos B ... 25

Figure 3-4 Circuit Board of IRIS ... 26

Figure 3-5 Circuit Board of Cricket ... 26

Figure 3-6 Block diagram of TI TMS570 microcontroller (Texas Instruments Incorporated.,

2013) ... 35

Figure 4-1 Block diagram of TelosB .. 38

Figure 4-2 Block diagram of Multicore Architecture ... 39

Figure 4-3 Standby sparing system (Dubrova, 2013) .. 40

Figure 4-4 Block diagram of the Raspberry Pi Board .. 46

Figure 4-5 Block diagram of the PandaBoard ES Board (PandaBoard ES, 2013) 47

Figure 4-6 The HSDTVI Architecture.. 50

Figure 4-7 The HSDTVI Interface used for Debug Mode Scenario .. 51

Figure 4-8 Circuit Board of HSDTVI used for Debug Mode Scenario ... 52

Figure 4-9 The HSDTVI Debug Trace and Validate Process ... 52

Figure 4-10 The HSDTVI Interface used for real-time Fault Detection Mode Scenario 54

Figure 4-11 Timing diagram of AVR and NanoRisc Communication ... 55

Figure 5-1 Block diagram of Waterfall Model ... 60

Figure 5-2 The V-model of the Systems Engineering Process ... 61

Figure 5-3 The Incremental Model of Development.. 62

Figure 5-4 The Spiral model of the Systems Engineering Process .. 63

Figure 5-5 The Rapid Application Development (RAD) Model .. 64

Figure 5-6 The Agile Development Model .. 65

Figure 5-7 Overview of Model Driven Engineering .. 67

Figure 5-8 Example Multicore WSN Architecture Diagram.. 68

Figure 5-9 Early Validation Based on AADL .. 73

 x

Figure 5-10 Early Validation Based on Virtual Processor Emulator .. 74

Figure 5-11 Block diagram of the Fault Injection TestBed .. 76

Figure 5-12 Circuit Board of the Fault Injection TestBed .. 76

Figure 6-1 Block diagram of the E²MWSN ... 80

Figure 6-2 Hardware Architecture of E²MWSN .. 80

Figure 6-3 Circuit Board of the E²MWSN ... 81

Figure 6-4 Measure Schematics of the E²MWSN .. 83

Figure 6-5 Block diagram of iLive ... 86

Figure 6-6 Hardware Architecture of the iLive .. 87

Figure 6-7 Circuit Board of iLive .. 88

Figure 6-8 Timing Diagram of iLive .. 89

Figure 6-9 Measure Schematics of the iLive ... 90

Figure 6-10 Block diagram of the SIS ... 92

Figure 6-11 Hardware Architecture of the SIS ... 93

Figure 6-12 Circuit Board of the SIS ... 94

Figure 6-13 Measure Schematics of the SIS .. 95

Figure 6-14 Block diagram of the iLiveEdge ... 98

Figure 6-15 Hardware Architecture of the iLiveEdge .. 98

Figure 6-16 CircuitBoard of the iLiveEdge ... 99

Figure 6-17 Block diagram of the EPER ... 101

Figure 6-18 Hardware Architecture of the EPER ... 102

Figure 6-19 Circuit Board of the EPER ... 102

Figure 6-20 Block diagram of the RPiER .. 104

Figure 6-21 Hardware Architecture of the RPiER ... 105

Figure 6-22 CircuitBoard of RPiER ... 105

Figure 6-23 Outdoor Experiment in ISIMA Garden .. 108

Figure 6-24 Real world Experiment in Montoldre (Cooperation with Irstea) 108

Figure 6-25 Heterogeneous Architecture of the MiLive .. 109

Figure 6-26 Circuit Board of the MiLive ... 110

Figure 6-27 Demo Web page of the MiLive platform .. 110

Figure 6-28 Demo Web page of the SIS Platform .. 111

Figure 6-29 Real World Long Term Online Demo of the SIS Platform ... 111

Figure 6-30 Block diagram of the SEE-stick ... 112

Figure 6-31 SEE-Stick Prototype ... 113

Figure 6-32 SEE-Stick Remote Monitoring Demo Web page ... 114

Figure 7-1 Architecture of Next Generation Multicore SoC .. 119

Figure 7-2 Uniform NanoRisc based on the Multicore SoC .. 120

Figure 7-3 Different Common Risc based on the Multicore SoC .. 121

Figure 7-4 FSMOS Modules based the Multicore SoC ... 122

Figure 7-5 Intra-Chip Multicore Interconnection Networks .. 123

Figure 7-6 Cross Platform of the FSMOS Software Architecture ... 126

Figure 7-7 FSMOS running on a PC with the Remote Module ... 128

 xi

List of Tables

Table 3-1 Comparison of common available scalar WSN Nodes .. 27

Table 3-2 Key Features of Low performance WMSN nodes ... 28

Table 3-3 Key Features of Medium performance WMSN nodes ... 29

Table 4-1 Key features of Different Core ... 48

Table 4-2 the HSDVTI Pin connections between AVR and Raspberry Pi Board 51

Table 4-3 The HSDVTI Pin connections between NanoRisc and AVR ... 54

Table 4-4 Pseudo Code for Heart Beat Checking of Coordinator .. 55

Table 4-5 Pseudo Code for Error Handle of the coordinator ... 56

Table 4-6 Pseudo Code for Heart Beat Checking of End-device ... 56

Table 4-7 Pseudo Code for Error Handle of End-device.. 57

Table 5-1 Example Module List ... 69

Table 5-2 Example High-level Interface of cAVR Module .. 69

Table 5-3 Example High-level Interface of cEvDrv Module ... 70

Table 5-4 Sample Functional Specification of cEvDrv Module .. 71

Table 5-5 Fault Injection modes with contact .. 77

Table 5-6 Fault Injection modes without contact ... 78

Table 6-1 Operation modes of the E²MWSN ... 82

Table 6-2 Task Resource Required of the E²MWSN on single AT91SAM7Sx mode 83

Table 6-3 Task Resource Required of the E²MWSN on single ATMEGA1281mode 84

Table 6-4 Task Resource Required on AT91SAM7Sx plus ATMEGA1281 mode 84

Table 6-5 FIT of Each Core in the E²MWSN* ... 85

Table 6-6 MTBF/MTBCF of Each E²MWSN Operation Mode .. 86

Table 6-7 Default Timing Parameters of iLive ... 89

Table 6-8 Task Resource Required of iLive ... 91

Table 6-9 FIT of each core in the iLive* .. 91

Table 6-10 Task Resource Required of the SIS on Dry Soil * ... 95

Table 6-11 Task Resource Required of the SIS on Normal Soil .. 96

Table 6-12 FIT of Each core in the SIS* .. 97

Table 6-13 FIT of Each core in the iLiveEdge* ... 100

Table 6-14 FIT of Each core in EPER* .. 103

Table 6-15 FIT of Each core in RPiER* .. 106

Table 6-16 Related Ongoing IWoT Real World Projects in SMIR@LIMOS 107

Table 6-17 Key Features of Different Multicore WSN Nodes ... 114

Table 6-18 Reliability of Different Multicore WSN Nodes ... 115

Table 7-1 Different Core Architecture of Multicore SoC ... 122

 xiii

List of Acronyms

6LoWPAN IPv6 over Low power Wireless Personal Area Networks

BI Business Intelligence

CoAP Constrained Application Protocol

COTS Commercial off-the-Shelf

CRM Customer Resource Management

DMRTT Design for Multicore Run Time Testability

ECAM Efficient Context Aware Middleware

EPER Enhance PandaBoard Edge Router

ERP Enterprise Resource Planning

E²MWSN Energy Efficient and Fault Tolerant Multicore Wireless Sensor

Network

FIT Failures in Time Failure Rate in Parts per Billion Hours

HEROS Hybrid Event-driven and Real-time multitasking Operating System

HRDP High Reliability Design Process dedicated to High Resource

Constraint Embedded System

HSDTVI Hardware Support Debug Test and Validation Interface

IEC International Electrotechnical Commission

iLive First generation Intelligent Limos Versatile Embedded WSN

iLiveEdge Intelligent LImos VersatileEmbedded Edge Router

IWoT Internet of Things &Web of Things

IoT Internet of Things

LiveNode Limos Versatile Embedded wireless sensor NODE

MTBCF Mean Time between Critical Failure

MTBF Mean Time between Failure

NC Nano Controller

PGIS Parking Guidance and Information System

PSU Power Supply Unit

RAS Reliability, Availability, and Serviceability

RTC Real-time Clock

SIS Smart Irrigation System

SMIR Systèmes Multisensoriels Intelligents intégrés et Répartis

SPI Serial Peripheral Interface

UART Universal Asynchronous Receiver Transmitter

USART Universal Synchronous/Asynchronous Receiver Transmitter

VLSI Very Large Scale Integration

WN Wireless Sensor Node

WoT Web of Things

WSN Wireless Sensor Network

 xiv

Chapter 1. Introduction

 1

Chapter 1. Introduction

1.1. Motivation and Problem Statement

Wireless Sensor Network (WSN) has attracted more and more attentions from both

scientific community and governments around the world in recent years. It is considered as a

key technology of the 21
st
 century and as the foundation of Pervasive computing, Mobile

computing, Wearable computing (Body Area Network ‘BAN’ etc.) and Internet of Things

(IoT). WSN is composed of a set of WSN nodes (Wireless Sensor Network nodes) equipped

with different types of sensors and linked with each other by wireless access medium. These

WSN nodes can collaborate to perform distributed sensing tasks. The advances in Very Large

Scale Integration (VLSI) chip designs, wireless network and Micro-Electro-Mechanical

Systems (MEMS) enable the development of smarter, smaller, cheaper and low energy

consumption WSN nodes powered by battery.

The WSN nodes use battery as power supply source; connect each other through wireless

medium and form a network through self-organization methods (RPL). Therefore, WSN can

work without preinstalled wire or existent infrastructure. This key feature enable WSN to be

easily and cheaply deployed in areas of interest, which normally very difficult or impossible

to access such as inaccessible terrains, moving people and animal, disaster places, and so on.

The WSN can serve as an interface to the real world and fulfill the gap between real world

and information systems. The smart tiny nodes can sense the environment through different

type of sensors; gather information such as temperature, humility, distance, speed, pressure,

light, pollution, etc.; make local decisions based on the related information; transfer user

interested information to the center server; interact remotely with user through wireless link.

Some of them even have the capability to act on the environment through actuators such as

electro-valve, alarm speaker etc. These special WSN nodes make a special type of WSN:

Wireless Sensor and Actuator Network (WSAN). In this dissertation, WSAN will be

considered as a subset of WSN without specific distinction.

The wide varieties of user interest to real world make wide range of WSN applications. J.

Yick classifies them into two categories: monitoring and tracking in (Yick, Mukherjee, &

Ghosal, 2008). (see Figure 1-1). Monitoring applications include indoor/outdoor

environmental monitoring, health and wellness monitoring, power monitoring, inventory

location monitoring, factory and process automation, and seismic and structural monitoring.

Tracking applications include tracking objects, animals, humans, and vehicles (Yick et al.,

2008).

Chapter 1. Introduction

 2

Figure 1-1 Overview of WSN applications(Yick et al., 2008)

Nowadays there are many WSN nodes such as BTnodes, l’ESB/2 nodes, SmartTags,

EYES node, TinyNode, Mote, Mica2, Tmote Sky, Atlas and Imote (Akyildiz, Su,

Sankarasubramaniam, & Cayirci, 2002; Baronti et al., 2007; Basaran et al., 2006; Yick et al.,

2008) implemented to fulfill the huge amount of applications. Note that, all these WSN nodes

are quite similar in term of functionality. They are based on 8 or 16-bit RISC microcontroller,

such as Atmel AVR (Atmel-Corporation, 2012b), MSP430 (Texas-Instruments, 2012) etc.,

equipped with a unique Bluetooth or ZigBee wireless access medium having 200m LOS ‘Line

Of Sight’ range (Basaran et al., 2006), and enable to implement a simple wireless sensor

application. These WSN nodes have been designed with highly resource constraint, so the

fault tolerant is not highly considered during the design process.

Notice that in real world applications, WSN nodes will be deployed in open harsh

environment. They may suffer different faults such as physical damage, environmental

hazards, interference etc. Therefore based on these faulty sensor nodes, researchers have

developed many techniques to increase the reliability of the whole network. Redundant use of

WSN nodes, reorganization of sensor network, and overlapped sensing regions are few of the

techniques employed to increase the fault tolerance or reliability of the network (Gao, Xu, &

Li, 2007; Hsieh, Leu, & Shih, 2010; Khan, Daachi, & Djouani, 2012; M.-H. Lee & Choi,

2008; Nakayama, Ansari, Jamalipour, & Kato, 2007).

This dissertation focuses on developing a reliable WSN from the early stage. We want to

develop a more reliable WSN node comparing with the existing one. To achieve this goal, we

will introduce a new design process to develop and implement WSN node. The reliability of

Very Large Scale Integration (VLSI) is highly improved during recent decades. One of the

Chapter 1. Introduction

 3

most important reasons for the success of VLSI technique is that the whole industry makes

Design for Testability (DFT) as their industry standard. DFT makes it possible to assure the

detection of all faults in a circuit, reduce the cost and time associated with test development,

and reduce the execution time of performing test on fabricated chips.

Figure 1-2 shows the block diagram of a simple DFT system.

Design Under

Verification

Source Check

Reference Model

Test Bench

Figure 1-2 Block diagram of DFT system

As we expect our WSN node to be more reliable, and DFT exactly meets this requirement.

Therefore, our motivation is applied the DFT concept to our WSN design process in order to

improve its reliability.

1.2. Our Multicore Solutions

Figure 1-3 presents the block diagram of a multicore DFT solution for WSN. To

transplant the DFT concept to a new WSN node, first we put the center microcontroller,

application core, of tradition sensor node as Design under Verification (DUV) module. Then,

we add another core to run the Test Bench (TB) module. We name this core as Fault Detect

and Fault Recover Core (FD & FR Core). We use separate core to test and validate the

application core in order to avoid the intra-system interference.

Chapter 1. Introduction

 4

Application

Core

Source Check

Reference Model

FD&FR Core

Figure 1-3 Block diagram of Multicore WSN node

When faults show up in the application core, which is running the user application

software, the FD & FR Core can detect and identify the faults, similarly as TB module do in

module/chip validation process, then help the faulty node recover from these faults. The

multicore WSN node can tolerate these faults automatically. Because the test and validation

process in multicore WSN node is carried out in real-time, so we name this method as Design

for Multicore Run Time Testability (DMRTT). Moreover, the application core in DUV

module may have a redundancy for further improving reliability as shown in Figure 1-4.

Active Core
Source Check

Reference Model

FD&FR Core

Standby Core

Figure 1-4 Block diagram of Multicore WSN node with redundancy for application core

It is known to all that the energy constrain of WSN node is very high. Normal

microcontroller is too big in form factor and high in power consumption to be the FD & FR

Core. Therefore, we introduce Nano Controller (NC) to be the FD & FR Core. NC is a very

small and ultra-low power consumption controller. Because it is very small, so it will not

notably affect the cost and complexity of WSN node. Moreover, it is an ultra-low power

Chapter 1. Introduction

 5

consumption controller, which consumes only one percent energy of normal microcontroller,

so it can help WSN node to be more energy efficient when the application core is switched off.

DMRTT and NC together form our multicore architecture, which can greatly improve the

reliability and energy efficiency of WSN node without significant increase in cost and

complexity.

1.3. Contributions

The contributions of this dissertation are in the area of fault tolerance, specifically in the

field of system design and hardware platform design of fault tolerance WSN. Overall, the

main contributions of this dissertation are:

 We first present a novel modular multicore architecture that meets the strict

dependability and energy efficiency requirements of wireless sensor networks. The

multicore architecture can highly improve the reliability of WSN without sacrificing

simplicity.

 Then, we present a design process (High Reliability Design Process dedicated to

Resource Constraint Embedded System: HRDP) based on multicore architecture to

ease the development of dependable WSN. The HRDP can easily adjust to apply in

any resource constrained embedded system to improve the reliability.

 Finally, we demonstrate the flexibility of our multicore architecture on several

hardware platforms, E²MWSN, iLive, SIS, iLiveEdge, EPER, RPiER, etc. These

hardware platforms already form some WSN in different long-term, battery operated

real-world applications. They can meet the application requirements very well.

1.4. Dissertation Structure

This dissertation has seven chapters. The remainder of the dissertation is organized as

follows:

Chapter 2, General Purpose Dependable System, presents a survey of dependable system.

It tries to provide the necessary background for a general understanding of the issue discussed

in later chapters.

Chapter 3, Dependable Wireless Sensor Networks, provides a general overview of the

dependable WSN. By considering the needs of applications, this chapter describes the

shortcomings of traditional wireless architectures and current approaches motivates design

choices made later in this dissertation.

Chapter 4, Multicore WSN Node Architecture, presents the overall framework, multicore

architecture, to address the dependability of WSN. The designing goal of our multicore

Chapter 1. Introduction

 6

architecture is trying our best to improve the reliability of WSN without significant increasing

cost and complexity.

Chapter 5, High Reliability Design Process dedicated to Resource Constraint Embedded

System, discusses the design process (High Reliability Design Process dedicated to Resource

Constraint Embedded System: HRDP) that developers may carry out to make full use of

multicore architecture. The HRDP and multicore architecture are both technologies

independent, they both can easily adjust to any resource constrained embedded system to

improve the reliability.

In Chapter 6, Implementation of Multicore Wireless Sensor Node, we present several

hardware platforms, E²MWSN, iLive, SIS, iLiveEdge, EPER, RPiER, etc., and several real-

world applications based on these platforms. These hardware platforms will demonstrate the

flexibility of our multicore architecture. Additionally the applications will validate the real-

world performances of our architecture.

Chapter 7 summarizes the thesis and concludes with a prediction of future technological

trends.

Chapter 2. General Purpose Dependable System

 7

Chapter 2. General Purpose Dependable System

The dependability of computer system has been a challenge ever since computers first

appeared in the middle of the 20
th

 century. In those days, computers were built by using

unreliable components such as vacuum tubes, relays, and so on. They were expensive, and

used mainly by government and big corporations.

Nowadays, computers are built from more reliable components, such as semiconductor

components, and other components from more advanced technology. With the ever-increasing

circuit density, computers are more reliable and no longer expensive commodities thanks to

fault detections and corrections techniques (Blundell, 2007). They becoming an every-day

commodity, deeply embedded in practically every aspect of our lives, from visible desktops,

laptops, smart phones etc., to invisible vital components of cars, home appliances, medical

equipment, aircraft, industrial plants, and power generation and distribution systems.

As we are increasingly dependent on services provided by computer systems and our

vulnerability to computer failures is also growing. We would like these systems to be

dependable: they should still deliver an acceptable level of service in spite of faults. Notice

that how to design a low cost robust embedded system is still a challenge.

In this chapter, we will present a survey of the techniques dedicated to dependable system.

These techniques will be the fundamentals of our target fault tolerant wireless senor network.

2.1. Introduction

Dependability is defined in (A. Avizienis, Laprie, Randell, & Landwehr, 2004) as the

ability to deliver service that can justifiably be trusted. It also encompasses mechanisms

designed to increase and maintain the dependability of a system. Dependability covers the

availability performance and its influencing factors: reliability performance, maintainability

performance and maintenance support performance (including management of obsolescence).

The International Electrotechnical Commission (IEC), via its Technical Committee TC 56

develops and maintains international standards in the field of dependability (IEC, 2013).

Before giving more details on different technical methods for improving dependability,

we firstly discuss overview of dependability concepts.

Chapter 2. General Purpose Dependable System

 8

Figure 2-1 The dependability tree (Algirdas Avizienis, Laprie, & Randell, 2001)

Figure 2-1 shows a systematic exposition of the concepts of dependability (Algirdas

Avizienis et al., 2001), it can be broken down into three elements:

Attributes - A way to assess the dependability of a system;

Threats - An understanding of the things that can affect the dependability of a system;

Means - Ways to increase a system's dependability;

Dependability is a generic concept that is led by three groups of fundamental concepts: its

attributes, the threats to its attainment and the means to reach the desired dependability goals.

2.1.1. Dependability Attributes

The dependability attributes represent different aspects of the service delivery. They are

used to express and analyze the quality of the service delivered or expected from the

system. Based on the needs of the user(s), several kinds of attributes can be found,

but they are almost compositions or specializations of the following basic ones:

 Availability (A(t)): The probability that a system is operating correctly and is

available to perform its functions at the instant of time t.

Chapter 2. General Purpose Dependable System

 9

 Reliability (R(t)): The conditional probability that a system has functioned correctly

throughout an interval of time, [t0, t], given that the system was performing correctly

at time t0.

 Safety (S(t)): The probability that a system will either perform its functions correctly

or will discontinue its functions in a well-defined, safe manner.

 Confidentiality: absence of unauthorized disclosure of information

 Integrity: absence of improper system state alterations

 Maintainability (M(t)): The probability that an inoperable system will be restored to

an operational state within the time t.

2.1.2. Dependability Threats

The threats to dependability are faults, errors and failures. They are the circumstances at

the origin of an incorrect service delivery. Their effects deteriorate the level of satisfaction of

the dependability attributes.

 Fault: A physical defect, imperfection, or flaw that occurs in hardware or software; A

fault is the adjudged or hypothesized cause of an error. A fault is active when it

produces an error, otherwise it is dormant

 Error: The occurrence of an incorrect value in some unit of information within a

system; An error is that part of the system state that may cause a subsequent failure

 Failure: a deviation in the expected performance of a system; A failure occurs when

an error reaches the service interface and alters the service, i.e., system cannot

provide correct system function.

2.1.3. Dependability Means

The development of a dependable computing system calls for the combined utilization of

a set of four techniques:

 Fault prevention: A technique that an attempts to prevent the occurrence of faults; It

is more related to general engineering processes and is handled by quality control

techniques employed during design and development of systems.

 Fault tolerance: The ability to continue the correct performance of functions in the

present of faults; It is carried out via the implementation of error detection and

system recovery mechanisms.

Chapter 2. General Purpose Dependable System

 10

 Fault removal: A technique that deals with how to reduce the number or severity of

faults; It can be carried out both during the development phase, and during the use

phase of a system. In development phase, it consists of verification, diagnosis and

correction. In use phase, it consists in a corrective or a preventive maintenance.

 Fault forecasting: A technique that deals with how to estimate the present number,

the future incidence, and the likely consequences of faults. It is conducted by

carrying out an evaluation of the system behavior with respect to fault occurrence or

activation.

In order to improve the dependability, the combinations of those techniques are strongly

recommended. In this dissertation, the architecture of our WSN node is directly support fault

tolerance; we will use fault removal in the development phase to help verify each components

and whole system; fault prevention is handled thought out all the design process.

2.2. Dependability Evaluation Techniques

As Peter Drucker once said: “If you can’t measure it, you can’t manage it.” (Brown, 1982)

If we cannot estimate the dependability of present and the future candidate design, we cannot

make good decisions. Therefore, we need use dependability evaluation techniques in design

process to help to estimate the dependability of design, and then improve it.

2.2.1. Dependability Terms

2.2.1.1. Failure rate

A failure rate  is the expected number of failures per unit time. For example, if a

processor fails, on average, once every 1000 hours, then it has a failure rate 

failures/hour. (Dovich, 1990) (IEC, 2013)

The failure of a system is

1

N

i

i

 


 (2.1)

While i is the failure rate of sub system.

From failure rate , we can have Reliability (R(t)):

 () tR t e  (2.2)

The common used unit of failure rate is FIT (Failures in Time Failure Rate in Parts per

Billion Hours). One FIT equals one failure per billion (10
9
) hours (once in about 114,155

years). The FIT is especially good for the failure rate of individual components, since their

failure rates are often very low.

Chapter 2. General Purpose Dependable System

 11

Figure 2-2 and Figure 2-3 provide a typical evolution of failure rate over a lifetime of a

hardware system and a software system (Dubrova, 2013).

Figure 2-2 Typical evolution of failure rate over a lifetime of a hardware system (Dubrova, 2013)

Figure 2-3 Typical evolution of failure rate over a lifetime of a software system (Dubrova, 2013)

As shown in Figure 2-2, hardware failures rate can typically characterize by a bathtub

curve. The chance of a hardware failure is high during the initial life of the module (Phase I).

The failure rate during the rated useful life (Phase II) of the product is low. Once the end of

the life (Phase III) is reached, failure rate of modules increases again.

Software failures rate, however, does not show the same characteristics similar as

hardware. A possible curve is shown in Figure 2-3 if we projected software failures rate on

the same axes (Reliability Analysis Center, 1996). There are two major differences between

hardware and software curves. One difference is that in the last phase (Phase III), software

does not have an increasing failure rate as hardware does. In this phase, software is

approaching obsolescence; there is no motivation for any upgrades or changes to the software.

Therefore, the failure rate will not change. The second difference is that in the useful-life

phase (Phase II), software will experience a drastic increase in failure rate each time an

upgrade is made. The failure rate levels off gradually, partly because of the defects found and

fixed after the upgrades.

Chapter 2. General Purpose Dependable System

 12

2.2.1.2. Mean time to failure

Another important and frequently used measure of interest is mean time to failure defined

as follows. The mean time to failure (MTTF) of a system is the expected time of the

occurrence of the first system failure (Dubrova, 2013).

0

()MTTF R t dt



  (2.3)

 0

0

1 1
[]t tMTTF e dt e 

 



    
 (2.4)

2.2.1.3. Mean time to repair

The mean time to repair (MTTR) of a system is the average time required to repair the

system. MTTR is commonly specified in terms of the repair rate μ, which is the expected

number of repairs per unit time (Dubrova, 2013):

1

MTTR


 (2.5)

From the definition of MTTF and MTTR, we can have Availability:

 100%
MTTF

MTTF
Availability

MTTR
 


 (2.6)

2.2.1.4. Mean time between failures

The mean time between failures (MTBF) of a system is the average time between failures

of the system. The MTBF should be used as part of a model that assumes the failed system

will be repaired immediately (zero elapsed time) as opposed to mean time to failure (MTTF),

which measures average time between failures of non-repairable systems only. However, in

practice, MTBF is commonly used for both types of systems, repairable and non-repairable

(Reliability Information Analysis Center, 2005; Zzyzx Peripherals, 2001).

MTBF is a measure of how reliable a hardware product or component is. It describes the

flat, bottom of the bathtub curve of failure rate. MTBF is equal to the inverse of failure rate.

1

MTBF


 (2.7)

Note that many products with very low failure rates during "normal life" will wear out in

a few years, so that the Lifetime may be much less than MTBF. The Figure 2-4 shows the

relationship between MTBF and Lifetime.

Chapter 2. General Purpose Dependable System

 13

Figure 2-4 MTBF versus Lifetime

Unlike the hours from the MTBF calculations, lifetime indicates the operating hours

expected under normal operating conditions. The lifetime is the period of time between

starting to use the device and the beginning of the wear-out phase. This period of time is

determined by the life expectancy of the components used in the assembly of the unit. As with

any design, the weakest component with the shortest life expectancy determines what the life

of the whole product will be. For example in power supplies, the electrolytic capacitors have

the shortest lifetime expectancy.

So the lifetime is determined by the weakest component, so the redundancy cannot help

to improve the lifetime. Meanwhile the MTBF can be highly affected by the architecture

(redundancy e.g.). In case of Dual Modular Redundant (DMR) system with same component,

each component has MTBF1000 hours, the MTBF of the DMR system is 1,000,000 hours.

While in case of Triple Modular Redundant (TMR) system with same each component has

MTBF1000 hours, the MTBF of the TMR system will increase to 1,000,000,000 hours.

2.2.1.5. Mean time between critical failures

The mean time between critical failures (MTBCF) of a system is the average time

between critical failures of the system. MTBCF is a subset of MTBF because it only counts

those failures that result in a mission abort or mission failure. The reliability analyst needs to

be able to distinguish between those failures that are critical to the mission versus those that

are not (failures that are not critical to the mission will still need to be fixed and counted as

part of the MTBF calculation)(Reliability Information Analysis Center, 2005).

Chapter 2. General Purpose Dependable System

 14

2.2.1.6. Summary

In this dissertation, we mainly use MTBF and MTBCF to evaluation the dependability of

different WSN architecture. Therefore, we focus on the core and necessary external

components, the rest components such as PCB board, connectors, sensors, batteries, RF

antenna, etc. are not taken into account.

2.2.2. Dependability model types

There are mainly two common dependability models: reliability block diagrams and

Markov processes. Reliability block diagrams belong to a class of combinatorial models,

which assume that the failures of the individual components are mutually independent.

Markov processes belong to a class of stochastic processes, which take the dependencies

between the component failures into account, making the analysis of more complex scenarios

possible.

Combinatorial reliability models include reliability block diagrams, fault trees, success

trees and reliability graphs. Figure 2-5 show an example of serial and parallel two-component

system.

Figure 2-5 Reliability block diagram of a two-component system: (a) Serial, (b) parallel

First, reliability block diagrams assume that the system components are limited to the

operational and failed states and that the system configuration does not change during the

mission. Hence, they cannot model standby components, repair, as well as complex fault

detection and recovery mechanisms. Second, the failures of the individual components are

assumed to be independent. Therefore, the case when the sequence of component failures

affects system reliability cannot be adequately represented (Reliability Analysis Center, 1996).

Contrary to combinatorial models, Markov processes take into account the interactions of

component failures making the analysis of complex scenarios possible.

The WSN node is only a tiny design, so in this dissertation, we chose reliability block

diagrams as the dependability models of our design.

Chapter 2. General Purpose Dependable System

 15

2.2.3. Dependability computation methods

The computation methods of dependability are based on the model of dependability.

Therefore, in this dissertation, we mainly discuss the computation methods based on

Reliability block diagrams. Reliability block diagrams can be used to compute system

reliability as well as system availability.

2.2.3.1. Reliability computation

To compute the reliability of a system represented by a reliability block diagram, we need

first to break the system down into its serial and parallel parts. Next, the reliabilities of these

parts are computed. Finally, the overall solution is composed from the reliabilities of the parts.

Given a system consisting of n components with ()iR t being the reliability of the i
th

component. If the n components are serial parts, the reliability of the overall system is given

by (Dubrova, 2013)

 () ()n

serial i iR t R t (2.8)

Else, if the n components are parallel parts, the reliability of the overall system is given

by (Dubrova, 2013)

 () 1 (1 ())n

parallel i iR t R t   (2.9)

For example, if a serial system with 100 components is to be built, and each of the

components has a reliability 0.+999, the overall system reliability is 0.905.

In case of parallel system having 5 components, each component has a reliability 0.96,

the reliability of the system is 0.999999.

2.2.3.2. Availability computation

If we assume that the failure and repair times are independent, then we can use reliability

block diagrams to compute the system availability. This situation occurs when the system has

enough spare resources to repair all the failed components simultaneously. Given a system

consisting of n components with Ai(t) being the availability of the i
th

 component, the

availability if the overall system is given by (Dubrova, 2013)

 () ()n

serial i iA t A t (2.10)

 () 1 (1 ())n

parallel i iA t A t   (2.11)

Chapter 2. General Purpose Dependable System

 16

2.3. Fault Tolerance and Redundancy

As be mentioned before, in order to improve the dependability, the combinations of

different dependable means should be used in the development of WSN nodes. Beyond fault

removal in the development phase and fault prevention in all the design process, the ability of

fault tolerance of whole design should be most important feature. It is practically impossible

to foresee all the factors and run the system in a perfect environment. So the system is

requested to continue the correct performance of functions in the present of faults, support

fault-tolerance. Therefore, in this part, we will intro various redundancy approaches to

achieve fault-tolerance.

Redundancy is the provision of functional capabilities that would be unnecessary in a

fault-free environment. There are mainly two kinds of redundancy: space and time. Space

redundancy provides additional components, functions, or data items that are unnecessary for

a fault-free operation. Space redundancy is further classified into hardware, software and

information redundancy, depending on the type of redundant resources added to the system.

In time redundancy, the computation or data transmission is repeated and the result is

compared to a stored copy of the previous result (Dubrova, 2013).

2.3.1. Space Redundancy

2.3.1.1. Hardware Redundancy

Hardware redundancy is achieved by providing two or more physical instances of a

hardware component. For example, a system can include redundant processors, memories,

buses or power supplies. Hardware redundancy is often the only available method for

improving the dependability of a system, when other techniques, such as better components,

design simplification, manufacturing quality control, software debugging, have been

exhausted or shown to be more costly than redundancy.

There are three basic forms of hardware redundancy: passive, active and hybrid (Dubrova,

2013).

Passive redundancy achieves fault tolerance by masking the faults that occur without

requiring any action on the part of the system or an operator.

Active redundancy requires a fault to be detected before it can be tolerated. After the

detection of the fault, the actions of location, containment and recovery are performed to

remove the faulty component from the system.

Hybrid redundancy combines passive and active approaches. It can mask the fault like in

passive redundancy and reconfigure to recovery like in active redundancy. It is more reliable

but more expensive than previous methods.

Chapter 2. General Purpose Dependable System

 17

2.3.1.2. Software Redundancy

Reliability in software domain is still an open issue; it is not as well understood as fault-

tolerance in hardware domain. There are controversial opinions on whether reliability can be

used to evaluate software. Software failures are mostly due to the activation of design faults

by specific input sequences. This makes the reliability of a software module dependent on the

environment that generates input to the module over the time.

Many current techniques for software fault tolerance are trying to follow the same

schemes of hardware redundancy. They can be divided into two groups, single-version

techniques and multi-version techniques (Dubrova, 2013).

Single version techniques aim to improve fault-tolerant capabilities of a single software

module. It consists of fault detection, containment and recovery mechanisms. The recovery

processes use the concept of retrying the same operation in expectation that the problem is

resolved after the second try.

Multi-version techniques employ redundant software modules, developed following

design diversity rules. The software N-version programming closely resembles hardware N-

modular redundancy.

2.3.1.3. Information Redundancy

Information redundancy techniques add extra information to date to tolerate faults. They

can be divided into two types: error detecting codes and error correcting codes (Wikipedia,

2013).

Error detection is the detection of errors caused by noise or other impairments during

transmission from the transmitter to the receiver. Error detecting code is most commonly

realized using a suitable hash function (or checksum algorithm). A hash function adds a fixed-

length tag to a message, which enables receivers to verify the delivered message by

recomputing the tag and comparing it with the one provided.

Error correction is the detection of errors and reconstruction of the original, error-free

data. An error-correcting code (ECC) or forward error correction (FEC) code is a system of

adding redundant data, or parity data, to a message, such that it can be recovered by a receiver

even when a number of errors (up to the capability of the code being used) were introduced,

either during the process of transmission, or on storage.

2.3.2. Time Redundancy

Space redundancy techniques discussed so far impact physical entities like cost, weight,

size, power consumption, etc. In some applications, extra time is of less importance than extra

hardware, and then time redundancy will be a better solution. Time redundancy is achieved by

Chapter 2. General Purpose Dependable System

 18

repeating the computation or data transmission and comparing the result to a stored copy of

the previous result. If the repetition is done twice, and if the fault, which has occurred, is

transient, then the stored copy will differ from the re-computed result, so the fault will be

detected. If the repetition is done three or more times a fault can be corrected. Permanent

faults can also be detected by repeating computation several times using different coding

schemes.

Apart from detection and correction of faults, time redundancy is useful for

distinguishing between transient and permanent faults. If the fault disappears after the re-

computation, it is assumed to be transient. In this case, the hardware module is still usable and

it would be a waste of resources to switch it off the operation. Otherwise, if the fault is

permanent, the system of course should switch off or go to a safety state to avoid affect the

rest parts of other system.

2.4. MTBF Values Evaluation

The MTBF value of COST component (microcontroller e.g.) is calculated from failure

rate , which normally provided by manufacturer. The manufacturer (Atmel (Atmel-

Corporation, 2012c) e.g.) provides the FIT data of component under optimal conditions and

only related to hardware. According to Blue Max Technology, “Stressing a component

beyond normal usage conditions may reduce the actual MTBF to a point below the ‘predicted

MTBF’. Generally, reliability decreases as temperature increases, so components that are

operated in warm environments with poor air flow will tend to have a lower MTBF than those

operated in cool environments with good air flow.” According to Military & Aerospace

Technology, “For every 10ºC you increase temperatures on electronics, your MTBF will be

cut in half, so the hotter the electronics get, the lower the MTBF.” The temperature and the

humility are not only part of the parameters, which will affect the reliability of our design.

The reliability of system will also be affected by other parameters such as interference,

metastability, high-energy particles, software bug, misuse of the hardware and SRAM

transition fault (Autran et al., 2012). That is why the real experience of error free period is

always much shorter than the theoretical MTBF provided by the manufacturer.

For example, the MTBF of a standard PC is 30,000 hours or 3.4 years (Minicom

Advanced Systems Ltd., 2013). The MTBF estimates for the Intel® Server System is about

50,000 hours (Intel Corporation, 2013a). The Figure 2-6 shows the MTBF Estimates of sub

and total system of Intel® Server System R1208RPMSHOR.

Chapter 2. General Purpose Dependable System

 19

Figure 2-6 MTBF Estimates for Intel® Server System R1208RPMSHOR (Intel Corporation, 2013a)

From the Figure 2-6, we can find that the most robust sub system of Intel® Server

System R1208RPMSHOR is Front Panel board. Its MTBF is 8,272,282 hours, 944 years. The

server board S1200V3RPM’s MTBF is 371,523 hours, 42 years. As mentioned in Figure 2-4,

the MTBF/MTBCF is related to the failure rate (bottom of the bathtub curve) of the system,

not the product lifetime. Therefore, we cannot say that Front Panel board can work for 944

years or server board S1200V3RPM can work for 42 years. Of course, from our own

experience, we can easy to find out that server (with high MTBF) is normally more reliable

than the PC (with low MTBF) and demands less reboot requirements. The MTBF trend is

concurrent with our user experience.

Warranty firm Square Trade has released a research paper analyzing the failure rate for

30,000 laptops comparing brands and hardware categories in 2009 (SquareTrade, 2009). The

headline news of the report is that over three years, one out of three laptops will fail, and that

Asus and Toshiba laptops have the lowest failure rates, while Acer, Gateway, and HP have

higher than average failure rates. Additionally, two-thirds of those problems are hardware

malfunctions, while the final third are classified as accidental damage. The Figure 2-7 and the

Figure 2-8 show the results in this report.

Figure 2-7 Laptop three years Failure Rates (SquareTrade, 2009)

Chapter 2. General Purpose Dependable System

 20

Figure 2-8 Three Years Laptop Malfunction Rates by Manufacturer (SquareTrade, 2009)

From the Figure 2-7 and the Figure 2-8, we can know that the raw MTBF is concurrent

with the malfunction rates of design in product life. However, everyone has the experience to

reboot PC from time to time to fix some unknown problems. Those unknown problems make

the one-time useable period of PC much short than the raw MTBF. The laptops normally

work indoor with user-friendly interface for user to detect the running status and manually

reboot to recovery from fault. This manually fault detection and recovery mechanical enable

PC resume to work until it suffer malfunction.

Meanwhile, the WSN node is working in the outdoor environment, so even its raw MTBF

is relative high, and the node will not suffer malfunction in short period, but without recovery

mechanical, the one-time usable period will much shorter than the raw MTBF. In our

experiments, the unicore WSN network will lose 20% of its nodes in only two-week time.

Therefore, we proposed to use multicore architecture to enable to implement a WSN node,

which supports fault auto detection and auto recovery. By using this new multicore WSN

architecture, we want to improve greatly the usable period of WSN node. Furthermore, in

some of multicore WSN instances, by adopted space redundancy, we will improve both the

one-time usable period and the raw MTBF of WSN node at the same time.

2.5. RAS of Computer System

Reliability, availability, and serviceability (RAS) was originally introduced by IBM as a

term to describe the robustness of their mainframe computers (International Business

Machines Corporation, 1970). Different operational states of a IBM server based on RAS

concepts are illustrated by the Figure 2-9 (IBM Corp, 2012). This combination of hardware

and software self-recovery techniques are part of advanced RAS features that increase the

availability of services that must be 24x7.

Chapter 2. General Purpose Dependable System

 21

Figure 2-9 IBM server system RAS operations (IBM Corp, 2012)

For years, RAS already became a standard engineering term in computer system,

especially in computer system of mission-critical applications such as database, enterprise

resource planning (ERP), customer resource management (CRM), and business intelligence

(BI) applications. These applications require being available 24x7 on a wide area or global

basis. A failure affecting a single core business application can easily cost hundreds of

thousands to millions of dollars per hour. In order to improve RAS, many approaches are

adopted in different aspect of computer system. The IBM RAS server architecture is

illustrated by the Figure 2-10. Moreover similar RAS system, non-stop servers, is also

developed by HP (Hewlett-Packard Development Company, 2012).

Figure 2-10 Advanced RAS features of an IBM System x3850 X5 server (IBM Corp, 2012)

The RAS architecture is symmetric space (processor, system bus, memory, devices and

storage) and time redundancy (system recovery). The RAS concept used to implement very

Chapter 2. General Purpose Dependable System

 22

expensive IBM and HP servers are not energy efficient. Due to the resource constraint, these

approaches cannot directly use in WSN nodes. Thus, RAS concept cannot be applied to

implement energy efficient multicore, modular WSN node.

2.6. Summary

In this chapter, we discussed the dependability concepts, dependability evaluation

techniques, dependability terms, dependability model types, dependability computation

methods, various redundancy approaches to achieve fault-tolerance, etc. Notice that, how to

quantify the dependability of a real world system (HW and SW) is still an open question? The

MTBF provided by the VLSI chip manufacturer is a quality indicator but it does not reflect

the real world system MTBF.

In fact, a fault is a defect in hardware or software component. A manifestation of a fault,

resulting in deviation from accuracy and faults may cause errors. A failure is a non-

performance of expected action and errors may cause failures.

There are three types of fault: permanent, intermittent and transient. Intermittent faults

occur because of unstable or marginal hardware due to environmental changes (loose

connections, aging components, critical timing, interconnect coupling, resistive or capacitive

variations and noise in the system). Transient faults occur because of high energy particles,

temperature, humidity, pressure, voltage, power supply, vibrations, fluctuations,

electromagnetic interference, ground loops, cosmic rays, alpha particles, cross talk, and

electrostatic discharge. The error causes by non-permanent fault is a Soft Error ‘SE’.

Permanent faults reflect irreversible physical changes. The improvement of semiconductor

design and manufacturing techniques has significantly decreased the rate of occurrence of

permanent faults (A. C. S. Beck, Lisbôa, & Carro, 2012).

Intermittent and transient faults are expected to represent the main source of errors

experiences by VLSI circuits. Failure avoidance, based on design technologies and process

technologies would not fully control intermittent and transient faults.

Fault tolerant solutions, presently employed in custom design systems will become

widely used in off-the-shelf ICs (Mile Stojčev 2004). For the WSN outdoor application (harsh

environment), there are many soft errors. Consequently for the wide spread use of outdoor

WSN robustness is a main key feature.

In order to improve the dependability of our system, the following parts of this

dissertation will mainly detail on fault tolerance architecture based on active redundancy, fault

removal and fault prevention is the design process.

Chapter 3. Dependability of Wireless Sensor Networks

 23

Chapter 3. Dependability of Wireless Sensor

Networks

Unlike general-purpose computing systems, WSN nodes are not easily accessible for

inspection and maintenance. At the same time, the nodes have far more stringent uptime

requirements than general-purpose systems; 24/7/365 uptime is usually necessary. Moreover,

WSN node has high resource constraint (limited power supply, memory and CPU) and some

WSN nodes are working in mission critical applications. Therefore, these real world

requirements demand a great deal of research in fault tolerance and dependable wireless

sensor network. The following sections will discuss different WSN nodes, WSN application,

dependability threats and current approaches. The shortages of current approaches motivate

the need of multicore architecture presented in this dissertation.

3.1. Wireless Sensor Networks

3.1.1. Introduction

Wireless Sensor Network ‘WSN’ is an active research field, which explores many

technological challenges, while the WSN node design is one of the most challenging areas.

The main constraints of WSN are resource and energy consumption. Consequently, the

traditional embedded hardware and software solutions cannot be applied to WSN. For

example, the Intel Itanium (9100 series features clock speed of up to 1.66 GHz and 667 MHz

Front Side Bus (Intel Corporation, 2008)) consumes 104W. However, the energy content of a

pair of alkaline AA 1.5V 2000mAh batteries is only 21.6kJ (2 * 1.5 * 2000 * 10
-3

 * 3600 =

2.16 *10
4
 J). The power consumption of the WSN node is application dependent. It is relied

on the sensor type, sample frequency, duty-cycling system, sleeping period, wireless access

media, and so on. However, in order to achieve 5-years lifetime with a pair of alkaline

batteries, the average power consumption must less than 137µW (2.16 *10
4
 /3600/24/365/5 =

1.37*10
-4

 W). Furthermore, if takes into account discharge curve of the battery voltage, the

average power consumption should be even less. Thus, a WSN node should fulfill a task as a

PC but consume 1 million times less energy.

A wireless sensor network is composed of a set of WSN nodes deployed in a field of

interest to monitor specific phenomena. The WSN nodes can be equipped with a variety of

sensors, such as air temperature sensor, air humility sensor, light sensor, soil temperature

Chapter 3. Dependability of Wireless Sensor Networks

 24

sensor and soil moisture sensor. These WSN nodes sense specific environment phenomena,

perform simple signal processing, and then send data to a central server through sink node.

WSNs can be used for a wide variety of applications dealing with monitoring (precision

agriculture, environment data collection, etc.), control (disturbed sensing and controlling), and

surveillance (smart care, battle-fields surveillance, etc.).

The following part will briefly introduce currently existed WSN nodes and WSN

Applications.

3.1.2. WSN Nodes

Recent advances in Very Large Scale Integration (VLSI) chip designs, wireless network

and Micro-Electro-Mechanical Systems (MEMS) have led to the development of low-cost,

low-power, and small size WSN nodes. Different institutes or companies have developed

various kinds of WSN nodes. An exhaustive survey on WSN hardware has been done by

Tatiana Bokareva (Bokareva, 2013). The information on various sensors, WSN nodes,

processor, radio chipsets, sensor network operating system, protocols is available at Sensor

Network Museum (TIK WSN Research Group, 2013). Here we briefly introduce two types of

WSN nodes: Scalar WSN nodes and Multimedia WSN nodes.

3.1.2.1. Scalar WSN Nodes

The common available Scalar WSN nodes include:

 MICAz

The processor board of MICAz is MPR2400, which is based on Atmel ATmega128L.

The MICAz (MPR2400) IEEE 802.15.4 radio (ZigBee compliant) offers both high speed (250

kbps) and hardware network security (AES-128). Direct sequence spread spectrum radio

provides resistance to RF interference and data security. The 51-pin expansion connector

supports Analog Inputs, Digital I/O, I²C, SPI and UART interfaces. It provides 75-100 meter

of outdoor range line of sight communication (1/2 wave dipole antenna).

Figure 3-1 Circuit Board of MICAz

Chapter 3. Dependability of Wireless Sensor Networks

 25

 MICA2

The processor and radio board used in MICA2 is MPR400, which is based on Atmel

ATmega128L. The radio uses 868/916 MHz frequency band and supports data rate of

38.4kbps. A variety of sensors and data acquisition boards for the MICA2 mote is available

which can be connected to the standard 51 pins expansion connector. Apart from its basic

function as WSN node, it can also function as a base station when interfaced with MIB

510/MIB 520. The MIB510/MIB520 provides a serial/USB interface for both programming

and data communications. Theoretically, it supports 150 meter of outdoor range for line of

sight communication (1/4 wave dipole antenna).

Figure 3-2 Circuit Board of MICA2

 Telos B

The MICA2 and MICAz motes are found to be more suitable for field deployment

purposes. The Telos B motes have programming and data collection facility via USB and is

thus suitable for testbed deployment in lab for experimentation. It utilizes IEEE

802.15.4/ZigBee compliant radio (2.4-2.4835 GHz) which enables 250kbps of data transfer.

The Telos B is based on 8 MHz TI MSP430 microcontroller with 10kB RAM. It has 1MB

external flash for data logging, integrated onboard antenna and optional sensor suite including

integrated light, temperature and humidity sensor.

Figure 3-3 Circuit Board of Telos B

Chapter 3. Dependability of Wireless Sensor Networks

 26

 IRIS

It has improved radio range as compared to MICA2, MICAz and TelosB motes. It has

outdoor range over 300 meters (1/4 wave line of sight dipole antenna) and indoor range of

more than 50 meters (1/4 wave line of sight dipole antenna). The radio used is IEEE 802.15.4

compliant (2.4 to 2.48 GHz) which is a globally compatible ISM band which enables 250kbps

of data transfer. Apart from its basic function as WSN node, it can also function as a base

station when interfaced with MIB 510/MIB 520. The MIB510/MIB520 provides a serial/USB

interface for both programming and data communications. It uses XM2110CA processor

board that is based on the Atmel ATmega1281. A single processor board (XM2110) can be

configured to run WSN application/processing and the network/radio communications stack

simultaneously. As in Mica2 and MICAz, IRIS has also a 51 pins expansion connector that

supports analog inputs, digital I/O, I²C, SPI and UART interfaces.

Figure 3-4 Circuit Board of IRIS

 Cricket

The MCS410CA, Cricket Mote, is a location aware version of the MICA2. The Cricket

Mote includes all of the standard MICA2 hardware and an Ultrasound transmitter and receiver.

By using ultrasound transmission, mobile devises can estimate distance.

Figure 3-5 Circuit Board of Cricket

Table 3-1 provides the detail features of these common available scalar WSN nodes.

Chapter 3. Dependability of Wireless Sensor Networks

 27

Table 3-1 Comparison of common available scalar WSN Nodes

Feature MICAz MICA2 TelosB IRIS Cricket

Microcontroller Atmel

ATmega128L

Atmel

ATmega128L

TI MSP430 Atmel

ATmega1281

Atmel

ATmega128L

Bus Width 8 8 16 8 8

Clock Speed

(MHz)

7.373 7.373 6.717 7.373 4

SRAM 4 K 4 K 10 K 8 K 4 K

SDRAM

EEPROM 4 K 4 K 16 K 4 K 4 K

Flash 128 K 128 K 48 K 128 K 128 K

Serial Flash 512 K 512 K 1024 K 512 K 512 K

Size (mm) 58 × 32 × 7 58 × 32 × 7 65 × 31 × 6 58 × 32 × 7 58 × 32 × 7

Battery 2 × AA 2 × AA 2 × AA 2 × AA 2 × AA

External power 2.7 V–3.3 V 2.7 V–3.3 V 2.7 V–3.3 V 2.7 V–3.3 V 2.7 V–3.3 V

Power

Consumption

Active (mW)

24 (3 V) 24 (3 V) 10 (3 V) 24 (3 V) 24 (3 V)

Power

Consumption

Sleep (μW)

75 75 8 24 75

User interface 3 LEDs 3 LEDs USB 3 LEDs 3 LEDs

Expansion

connector

51-pin 51-pin 6-pin and 10-

pin

51-pin 51-pin

Serial

communication

UART UART UART UART UART

Other interfaces Digital I/O,

I²C, SPI

DIO, I²C, SPI Digital I/O,

I²C, SPI

Digital I/O, I²C,

SPI

DIO, I²C, SPI

Transceiver chip CC2420 CC1000 CC2420 RF230 CC1000

Frequency band

(MHz) ISM band

2400–2483.5 868/916 2400–2483.5 2400–2480 868/916

Data Rate 250 Kbps 38.4 K Baud 250 Kbps 250 Kbps 38.4 K Baud

RF Transmit

power (dBm)

-24 to 0 -20 to + 5 -24 to 0 + 3 -20 to + 5

Receive (dBm)

Sensitivity

-94 -98 -94 -101 -98

From Table 3-1 we can find that those scalar WSN nodes have similar structure. They all

belong to single core node, which has only one microcontroller with small memory and small

computation resource. From the SRAM and Flash size and the clock speed of microcontroller,

we can understand more about the real meaning of high resource constrain.

3.1.2.2. Wireless Multimedia Sensor Network ‘WMSN’ Node

In fact, the requirements of diverse environmental data collection applications (precision

agriculture e.g.) become more complex. The scalar WSN cannot fulfill all the application

requirements such as insect and plant disease detections. Thanks to the advanced of low cost

CCD camera, a scalar WSN node may be equipped with a camera to implement low cost

Chapter 3. Dependability of Wireless Sensor Networks

 28

WMSN node. Due to the richness of the data generated by images and the advance image

processing techniques, insect and plant disease detections may be achieved. Nowadays

different academic and commercial WMSN nodes are available: MeshEye, WiCa, MicrelEye,

Cyclops, CITRIC, Stargate, CMUcam3, IMote2, eCAM, FireFly Mosaic. These WMSN

nodes can be classified into two types: Low performance WMSN node and Medium

performance WMSN node.

3.1.2.3. Low performance WMSN node

Low performance WMSN nodes, such as MeshEye, WiCa, MicrelEye, Cyclops,

CMUcam3, eCAM and FireFly Mosaic, are all based on low performance microprocessor

(CPU clock frequency < 100 MHz), low bandwidth wireless access medium and simple

operating system. Table 3-2 provides key features of all the low performance WMSN nodes

mentioned before.

Table 3-2 Key Features of Low performance WMSN nodes

Platform Processor RAM Flash Radio

Cyclops 8-bit ATmega128L MCU + CPLD 64 KB 512 KB IEEE 802.15.4

FireFly Mosaic
60MHz 32-bit

LPC2106ARM7TDMI MCU
64 KB 128 KB IEEE 802.15.4

eCam
OV 528 serial-bridge controller JPEG

compression only
4 KB (Eco) - RF 2.4 GHz 1Mbps

MeshEye

55 MHz 32-bit

ARM7TDMI based on ATMEL

AT91SAM7S

64 KB 256 KB IEEE 802.15.4

WiCa
84 MHz Xetal SIMD Processor

+ 8051 ATMEL MCU

1.79 MB +128KB

DPRAM
64 KB IEEE 802.15.4

MicrelEye
8-bit ATMEL FPSLIC (includes 40k Gate

FPGA)

36 KB +

1 MB external SRAM
- Bluetooth

CMUcam3
60 MHz 32-bit

ARM7TDMI based on NXP LPC2106
64 KB 128 KB -

From Table 3-2 we can find that most of these low performance WMSN nodes are also

based on one single microcontroller. Even WiCa has two cores, it still lack the mutual real

time checking and validation between cores.

3.1.2.4. Medium performance WMSN node

Medium performance WMSN nodes, such as CITRIC, Stargate and IMote2, have more

powerful microprocessor. Their CPU clock frequency can be higher than 400 MHz. They

have enough memory resource to run an embedded Linux operating system. Table 3-3

provides key features of medium performance WMSN nodes.

Chapter 3. Dependability of Wireless Sensor Networks

 29

Table 3-3 Key Features of Medium performance WMSN nodes

Platform Processor RAM Flash Radio

Imote2
416 MHz 32-bit PXA271

XScale processor

256 KB SRAM

+ 32MB SDRAM
32 MB IEEE 802.15.4

Stargate
400 MHz 32-bit

PXA255 XScale CPU
64 MB 32 MB

IEEE 802.11 and

IEEE 802.15.4

CITRIC
624 MHz 32-bit Intel XScale

PXA270 CPU
64 MB 16 MB IEEE 802.15.4

Note that most of the current WMSN is based on low bandwidth wireless access medium

(IEEE802.15.4), except the MEMSIC Stargate system may be equipped with multiple

wireless communication transceivers. The MEMSIC Stargate boards can have an operational

IEEE802.11 card along with an interfaced MICAz mote that follows the IEEE802.15.4

standard.

The number of channels, power restrictions, and channel structure are different in

IEEE802.11 and IEEE802.15.4. User must choose which of the several available transceiver

designs and communication protocol standards may be used to optimize the energy saving

and the quality of the resulting communication.

From Table 3-3 we can find that all the media performance WMSN nodes are still based

on one microcontroller. No other core in those nodes can help to make mutual real time

checking and validation between cores.

3.1.3. WSN Applications

WSN is an emergent and multidisciplinary science, which is very active and competitive

research field. WSNs have unlimited potential applications (air, underground and

underwater): environmental data collection, smart home, smart care etc. WSN is considered as

a key technology of the 21
st
 century and as the foundation of Pervasive computing, Mobile

computing, Wearable computing (Body Area Network ‘BAN’ etc.) and Internet of Things

‘IoT’. In fact, in spite of its short research history, WSN will change the service modes in the

fields of remote surveillance, control and assistance, and thus bring huge impacts on the

economic and social benefits. Here, we discuss some several particular kinds of applications.

3.1.3.1. Precision Agriculture

As projected in a report by United Nations, the population of the world will increase to

above 9 billion in the middle of the century, and will instead keep growing and may hit 10.1

billion by the year 2100 (United Nations, 2013). Due to the increased demand of food, people

are trying to put extra efforts and special techniques to increase the food production by

preserving environment. Precision agriculture, which is a farming management concept based

on observing and responding to intra-field variations, is one of such efforts.

Chapter 3. Dependability of Wireless Sensor Networks

 30

Precision agriculture is about whole farm management with the goal of optimizing

returns on inputs while preserving resources. Precision agriculture aims to optimize field-level

management with regard to:

 Crop science: by matching farming practices more closely to crop needs (e.g.

fertilizer inputs);

 Environmental protection: by reducing environmental risks and footprint of farming

(e.g. limiting leaching of nitrogen);

 Economics: by boosting competitiveness through more efficient practices (e.g.

improved management of fertilizer usage and other inputs).

Precision agriculture also provides farmers with a wealth of information to:

 build up a record of their farm;

 improve decision-making;

 foster greater traceability

 enhance marketing of farm products

 improve lease arrangements and relationship with landlords

 enhance the inherent quality of farm products (e.g. protein level in bread-flour wheat)

WSN nodes are used for collecting information about physical and environmental

attributes whereas actuators are employed to react on the feedback to have control over the

situations. Agriculture domain poses several requirements that are following:

 Collection of weather, crop and soil information

 Monitoring of distributed land

 Multiple crops on single piece of land

 Different fertilizer and water requirement to different pieces of uneven land

 Diverse requirements of crops for different weather and soil conditions

 Proactive solutions rather than reactive solutions.

Above requirements entail parallel and distributed application and processing. In addition,

wireless sensors and actuators are required to collect the requisite information and to react on

different situations. Decision support imposes the requirement to have processed information

rather than raw sensor data.

To cope-up with such requirements, wireless sensors, actuators and their networks

present themselves as a strong candidate for development of system for context acquisition,

presenting acquired data to remote decision support systems and thus providing a controlled

environment based on decision (Baggio, 2005; Kaemarungsi, 2012; Keshtgari & Deljoo, 2012;

N. Medrano & S. Celma, 2006; Sutar, Jayesh, & Priyanka, 2012).

Chapter 3. Dependability of Wireless Sensor Networks

 31

3.1.3.2. Smart Parking

Parking is a universal problem in most metropolitan areas that already suffers from heavy

traffic congestion and air quality degradation. Limited parking space and the lack of

information on parking availability make the parking search time unreasonably long. This

undesirable parking search traffic leads to additional congestion, air pollution and driver

frustration. Increasing parking space is discouraged by the limited land space and its high cost

in urban area. Therefore, Parking Guidance and Information System (PGIS) is introduced to

minimize the parking search traffic (Teodorović & Lučić, 2006).

In the PGIS, low-cost WSN nodes can be deployed into each parking slot to detect the

state of the parking slot. Beyond the free parking state, the WSN node can also collect other

information such as air pollution, environmental noise, etc. All the data will send to center

server through Edge Router. The real-time free parking slot maps can ease the citizens

parking their cars. The environmental information can great help to build a smart parking

place with better air condition. Furthermore, all the data can be stored for further study.

3.1.3.3. Smart Irrigation

The key resources for plant growing are water, soil, air, sunlight and temperature. In

many planting scenarios, water is indispensably controllable resource and it has a very

important impact on eco-environment. A suitable irrigation schedule improves plant growing

and minimizes resource consumption, while an over-irrigation induces the over-fertilizer and

over-pesticide that result in polluting groundwater. However, an existing problem for many

farmers (especially for those in third world) is a lack of correct knowledge and tools to

practice the suitable irrigation schedule.

Thus, a new irrigation technology needs to be developed, and it needs to be reliable,

adaptable, low-price and easy-to-used. Moreover, water is an increasingly scarce resource

because of climatic, polluted and politicized reasons. To have a better irrigation technology

that maximizes watering efficiency will be increasingly important for many countries to

achieve both environmental and economic sustainability.

3.1.3.4. Smart Care

The medical device in smart care can be divided into two types: wearable and implanted.

Wearable devices are used on the body surface of a human or just at close proximity of the

user. The implantable medical devices are those that are inserted inside human body. There

are many applications for different type of smart care, e.g. body position measurement and

location of the person, overall monitoring of elderly people and ill patients in hospitals and at

homes.

The wireless medical devices can provide real-time, long-term, remote monitoring for

elderly people and ill patients. Due to the small smart and wearable device, they can provide

similar safeguard as existing medical practices and technology with minimum distribution.

Chapter 3. Dependability of Wireless Sensor Networks

 32

Therefore, WSN architecture for smart care can greatly help to improve the everyday life

quality of elderly people and ill patients.

3.1.3.5. Industrial Control

Traditionally, applications in industrial environments are based on wired communication

solutions. However, recently, the industry has shown interest in moving part of the

communication infrastructure from a wired to a wireless environment, in order to reduce costs

related with installation, maintenance and scalability of the applications. In this context, WSN

actually represent the best candidate to be adopted as the communication solution for the last

mile connection in process monitoring and control applications in industrial environments.

Among many advantages, the absence of a wired infrastructure enables WSN to extract

information in a simpler way than traditional monitoring and instrumentation techniques

(Desai, Jain, & Merchant, 2010; Peng, Huijin, Lei, Zhi, & Anke, 2006).

3.1.3.6. Internet of Things and Web of Things

Thanks to 6LoWPAN (Y. Chen et al., 2011; Montenegro, Kushalnagar, Hui, & Culler,

September 2007), RPL (IETF, 2012) and HTTP, the interoperability of WSN nodes over

internet is solved. The 6LoWPAN/IPv6 allows native connectivity between WSN and Internet,

enabling smart objects to participate to the Internet of Things (IoT). The evolution of IoT - the

next huge opportunity - which will both attempt to connect these existing systems and then

augment that by connecting more things, thanks to wireless sensor networks (WSN) and other

technologies.

The Web of Things (WoT) is a vision inspired from the Internet of Things where

everyday devices and objects, i.e. objects that contain an embedded device or computer, are

connected by fully integrating them to the Web. Unlike in the many systems that exist for the

Internet of Things, the Web of Things is about re-using the Web standards to connect the

quickly expanding eco-system of embedded devices built into everyday smart objects. Well-

accepted and understood standards and blueprints (such as URI, HTTP, REST, Atom, etc.) are

used to access the functionality of the smart objects. These ensure the loose-coupling of

services provided by the smart objects, furthermore they offer a uniform interface to access

and build on the functionality of smart objects.

3.1.3.7. Summary

In this section, we discussed several kinds of WSN applications in different field. WSNs

have unlimited potential (huge applications: air, underground and underwater). WSNs will be

the next IT revolution. However, one of the main obstacles on the way of WSN spreading is

dependable. The next part will discuss some dependable challenges in designing of WSN.

Chapter 3. Dependability of Wireless Sensor Networks

 33

3.2. Major Dependable Challenges

Here we discuss several challenges we will meet in the process of designing a robust

WSN.

3.2.1. Application Requirement

Many WSN applications, such as smart care, industrial control, smart irrigation etc., have

stringent dependability (reliability and availability) requirements, as a system failure may

result in economic losses, put people in danger or lead to environmental damages. Moreover,

WSN nodes need to work in harsh environments twenty-four hours per day, seven days per

week. Therefore, these real world requirements demand a great deal of requirement on

dependability.

3.2.2. Dependability Threats

These are many threats can affect the dependability of real world WSN application.

These threats can be divided into two main classes:

 transient faults implicate that the sensor recovers its normal behavior when e.g., the

system is reset or the fault stimulus ceases,

 permanent faults inflect defects that have a permanently effect.

Here we introduce several threats to the dependability of the overall real world system.

 Degradation of the battery

 Different temperature responses in the processor and radio oscillator, which causes

numerous network failures

 Water infiltrations, which introduce degradations within the hardware

 Physical damage

 Communication faults (e.g., interference, multi-path fading, noises)

 Direct sunlight that swamps the sensor infrared signal

 High-energy particle that corrupts the memory (SRAM) of WSN node

 Software bugs, memory leaks, memory corruptions and pointer-initiated memory

violation

Chapter 3. Dependability of Wireless Sensor Networks

 34

3.2.3. Resource Constraint

The WSN nodes forming a network suffer from the limitations of several resources, such

as storage, CPU, bandwidth, communication, sensing, and battery power (or energy). In

particular, energy is the most crucial resource as it determines the lifetime of the sensors and

hence the lifetime of the entire network. Energy poses a serious problem for designers,

because in the real world deployment, it is very difficult some application may impossible to

access the sensors and recharge or renew their batteries. Furthermore, when the energy of the

sensors decreases to a certain threshold, they become unreliable (or faulty). They may not be

able to function properly. Consequently, the behavior of those faulty sensors will have a

major impact on the network performance. Thus, network protocols and algorithms designed

to be run by the sensors should be as energy efficient as possible to extend their lifetime and

hence prolong the network lifetime while guaranteeing good performance overall.

3.3. Current Dependable Approaches

3.3.1. Current Approaches

Current dependable approaches for WSN are based on faulty sensor nodes. Due to the

resource constraint, traditional dependable approaches such as processor instruction error

detection (Lipetz & Schwarz, 2011), processor instruction retry (Spainhower & Gregg, 1999;

Steve Bostian, 2012), ECC protection memory (Dell, 1997), memory sparing (Hewlett-

Packard Development Company, 2010), redundant I/O (Intel Corporation, 2013b; Oracle,

2010), I/O partitions (IBM, 2011) and RAID disk storage (P. M. Chen, Lee, Gibson, Katz, &

Patterson, 1994) cannot be directly applied in WSN field.

Therefore, currently dependable approaches mainly focus on improving the reliability of

the whole network. Their goals are trying to carry on the overall task of the network even

some WSN nodes are in fault status. These fault tolerant techniques are based on the spatial

redundancy (Gao et al., 2007; Hsieh et al., 2010) or spatial and time redundancy (Khan et al.,

2012; M.-H. Lee & Choi, 2008) of WSN network. They are implemented on MAC Layer (W.

L. Lee, Datta, & Cardell-Oliver, 2006), transport layer (Jones & Atiquzzaman, 2007;

Sankarasubramaniam, Akan, & Akyildiz, 2003), routing protocol (Akkaya & Younis, 2005;

Al-Karaki & Kamal, 2004) and middleware (Yan, Chang, Qin, Li, & Liu, 2013).

In all those approaches, the WSN nodes are still based on only one core, and they are not

reliable. This dissertation focuses on developing a more reliable WSN node by introducing

multicore architecture to improve the reliability of every single node. Through this

mechanical, the reliability of whole network is also involuntary improved.

Chapter 3. Dependability of Wireless Sensor Networks

 35

3.3.2. TMS570 Safety MCU

The TMS570 devices are the industry’s first Cortex™ ARM® R4 and Cortex™ ARM

M3 based MCUs, targeting safety critical and driver assistance automotive applications. TI

offers TMS570 with a patent pending implementation of the lock-step Cortex ARM R4 cores

on a single device as well as dual core offerings of Cortex ARM R4 plus Cortex ARM M3 on

a single device. The TMS570 multi-core devices offer performance, safety and rich peripheral

MCU integration such as timers, ADC, CAN, and FlexRay™ (Texas Instruments

Incorporated., 2013).

The Hercules™ TMS570 Safety MCU family enables customers to easily develop safety-

critical products for transportation applications.

Developed to meet the requirements of ISO 26262 ASIL D and IEC 61508 SIL 3 safety

standards and qualified to the AEC-Q100 automotive specification this ARM® Cortex™-R4

based family offers several options of performance, memory and connectivity. Dual core

lockstep CPU architecture, hardware BIST, MPU, ECC and on-chip clock and voltage

monitoring are some of the key functional safety features available to meet the needs of

automotive, railway and aerospace applications.

 Figure 3-6 Block diagram of TI TMS570 microcontroller (Texas Instruments Incorporated., 2013)

However, the TMS570 is design for safety critical application, but the power

consumption is not optimal enough. Therefore, the TMS570 is not the best microcontroller for

WSN node.

Chapter 3. Dependability of Wireless Sensor Networks

 36

3.4. Observations of Real World WSN Deployments

As far as we know, the single core WSN node in real world deployments is not reliable.

About 10% to 20% of nodes fail to join the network in first week. We met this type of

problem in our Hydrasol project and Single Core Module (SCM) deployment. Our

collaboration partner in Irstea also informed us similar result on the deployment of Libellium

WSN node. The WSN deployment on Great Duck Island by UC Berkeley also suffered about

50% node failure within 4 days (Joseph Polastre, Szewczyk, Mainwaring, Culler, & Anderson,

2004). The SensLAB project (SensLAB team, 2013) also suffered this type of fault in

SensLAB testbed. Kaemarungsi (2012) mention the same problem when they deploy WSN

node in sugarcane field in Thailand.

The failure of WSN real world deployment may due to many reasons. Somehow, the

high-speed ultra-low power CMOS technology adapted in WSN nodes also increased the

failure rate. When WSN implemented by lower power supply voltage, the power consumption

can be lower, but meanwhile, the MTTF of chip also decease (Maheshwari, Burleson, &

Tessier, 2004). The lifetime of chip decreases by a factor of 2.2 for every 10°C increase in

operating temperature (Zhang & Orshansky, 2008). The failure rate of chip significantly

increases when the technology node size decreased (Borkar, 2005). Nightingale, Douceur, and

Orgovan (2011) shows the crash probability will increase by a factor of 100 after a machine

has crashed once. In addition, the probability continues to increase with subsequent crashes.

Besides, at least in our Hydrasol project and SCM deployment, the watchdog is already

active. However, the observed results show that the watchdog did not make those lost nodes

rejoins the network. Therefore, we concluded that the single core node is not reliable and the

watchdog is not efficient to recovery from this type of fault. The causes of the WSN

(LiveNode and SCM) soft errors are unknown. My work will focus on the development of an

integrated multicore platform (WSN node, Hardware support, fault injection testbed) which

enables to implement energy efficient and robust multicore modular WSN node and to ease

the debug, test and validation. Moreover we hope that this integrated platform will enable to

understand precisely and accurately the reason of the soft errors and to recover from failure.

3.5. Summary

In this chapter, we discussed the different WSN nodes, WSN application, dependability

threats and current approaches. Current approaches adopt symmetric space and time

redundancies, which are not appropriate for high-energy constraint and resource context

aware concept. In this dissertation, we will investigate dissymmetric multicore WSN node

architecture, which will meet both energy consumption constraint and resource context-aware

concept to improve the robustness and the lifetime of WSN node.

Chapter 4. Multicore WSN Node Architecture

 37

Chapter 4. Multicore WSN Node Architecture

This chapter gives an overview of multicore WSN architecture and specifies some

interesting technical details.

To implement a long lifetime WSN node powered by standard battery, currently an ultra-

low power single core (8, 16 or 32-bit) is used. However this implementation solved partially

energy consumption problem but it still not meet WSN node robustness requirement. My

work focused on the research and development of a new WSN node architecture aiming to

increase at the same time the WSN node lifetime, modularity and robustness. If we can

achieve these objectives the new WSN node will meet the requirements of high constraint

indoor (smart care e.g.) and outdoor (precision agriculture e.g.) applications.

 Therefore, in order to fulfill the requirements, we will present a new energy efficient

multicore WSN architecture, which can highly improve the reliability and safety without

sacrificing simplicity. The rest part of this chapter will provide more detail on this new

architecture.

4.1. Introduction

As we mentioned in Table 3-1, Table 3-2 and Table 3-3 before, there are many

WSN/WMSN nodes, such as MICAz, MICA2, Imote2, TelosB, IRIS and Cricket are

available in the shelf. These WSN nodes are quite similar in term of functionality. They are

based on one microcontroller equipped with a unique wireless access medium having 200m

LOS range. Among these platforms, the most common WSN research software and hardware

platform are TinyOS (Berkeley, 2013; Levis, 2006) and Tmote Sky or TelosB (J. Polastre, R.

Szewcyzk, C. Sharp, & D.Culler, 2004; J. Polastre, Szewczyk, & Culler, 2005), developed by

UC Berkeley's teams. Figure 4-1 shows the diagram of TelosB. TelosB has a Texas

Instruments MSP430 microcontroller and a Chipcon AS (acquired by TI) IEEE 802.15.4-

compliant radio. The power consumption of TelosB is almost one-tenth of previous mote

platforms while providing greater performance and throughput. It eliminates programming

and support boards, while enabling experimentation with WSNs in lab, testbed, and

deployment settings.

Chapter 4. Multicore WSN Node Architecture

 38

Figure 4-1 Block diagram of TelosB

From Figure 4-1 we can find easily that if the microcontroller or radio transceiver suffers

some faults, nothing else can help to recover. Moreover, the outdoor environment is very

complex and some sensors need constant voltage power supply.

These existing WSN nodes are not designed to fit the requirements of outdoor

applications. They are not robust, configurable and flexible to meet the requirements of high

reliability. Therefore, we present a new first fault tolerant and configurable WSN node

architecture based on multicore with very low energy consumption. The new multicore

architecture provides high performance, more flexibility, while maintaining a small form

factor. It allows user to develop software to utilize the features of the multicore architecture to

improve the reliability of users’ application.

4.2. Multicore WSN Node Architecture

4.2.1. Generalized Multicore Architecture

Figure 4-2 presents the block diagram of multicore architecture. There are three types of

cores in the node.

 The Main App Core is a normal application core as same as in single core WSN node.

 The Auxiliary Core is optional core; the function of this core is depended on specific

application.

 The FD & FR Core is the key component in the multicore architecture. It coordinates

all components in the nodes, runs as a monitor of Main App Core, detects faults in

the Main App Core. It will isolate the faulty Main App Core and active the Auxiliary

Core to substitute the Main App Core if necessary. Through the switching of core,

multicore WSN node can provide seamless services even in the presence of faults.

Chapter 4. Multicore WSN Node Architecture

 39

Main App Core
Sensor

Input

Control

Output

FD & FR

Core
Safe Gate

Auxiliary Core

Sensor

Input

Control

Output

Input

Switch

HSDTVI

HSDTVI

I

O

C

O

I

I

OC

Sensor Control

Figure 4-2 Block diagram of Multicore Architecture

The Input Switch and Safe Gate are controlled by the FD & FR Core. So FD & FR Core

can isolate the fault Core from Sensor Input and Control Output. This can greatly help to

achieve a functional safety system.

4.2.2. Functional Safety Mechanism

Functional Safety is the part of the overall safety of a system or piece of equipment that

depends on the system or equipment operating correctly in response to its inputs, including

the safe management of likely operator errors, hardware failures and environmental changes.

In IEC 61508, Functional Safety’s definition is: Safety is the freedom from unacceptable

risk of physical injury or of damage to the health of people, either directly or indirectly as a

result of damage to property or to the environment. Functional Safety is part of the overall

safety that depends on a system or equipment operating correctly in response to its inputs.

In ISO 26262, Functional Safety’s definition is: Absence of unacceptable risk due to

hazards caused by mal-functional behavior of electrical and/or electronic systems

Multicore Architecture can greatly help to achieve functional safety through the active

FD & FR Core. When the FD & FR Core detects fault, it can control the Safe Gate to ensure

the safety of whole system.

The FD & FR Core is independently running aside APP Core, so the detection and

recovery or isolate process will never be interfered by the application. The separation can also

increase the reliability of detection and recovery or fault part isolation process.

Chapter 4. Multicore WSN Node Architecture

 40

4.2.3. Fault-tolerant Mechanism

For outdoor and reliable applications such as environmental data collection and smart

care, the robustness is a key constraint for large-scale WSN deployment. In multicore WSN

node, it is possible to implement Standby sparing (space redundancy) for fault tolerant

approaches.

Standby sparing is a scheme for active hardware redundancy as shown in Figure 4-3.

Only one of n modules is operational and provides the system’s output. The remaining n-01

modules serve as spares.

A spare is a redundant component, which is not needed for the normal system operation.

A switch is a device that monitors the active module and switches operation to a spare if an

error is reported by fault-detection unit FD.

Figure 4-3 Standby sparing system (Dubrova, 2013)

It is very easy to find that multicore architecture is a two modules standby sparing system.

Therefore, the multicore WSN node can continually provide service even one modules is in

the present of faults. Only until both modules meet fault, the system will stop operation. This

enables to implement robust WSN for critical applications.

4.2.4. Resource-aware Mechanism

In this section, we will show that multicore architecture is energy efficient. In general, a

WSN node will have the following components or layers:

 Application software

 Middleware

 Communication and administration protocols

 Real-time operating system

 Hardware

Since the boundary between middleware and communication & administration protocols

is not clearly defined, we may thus consider that a wireless sensor has only four main

Chapter 4. Multicore WSN Node Architecture

 41

components: application software, communication protocol, real-time operating system and

hardware.

The energy consumption (lifetime) is the key constraint of WSN. Thus to minimize

energy consumption, it has obviously to optimize the resource consuming of each component

of a WSN node, but this approach is still not efficient enough to meet the requirement of

WSN application lifetime. Consequently, the cross layering approach is generally adopted. To

have a one-year lifetime, a WSN node equipped with a cell battery must consume less than

100µW. In fact, the wireless communication is the energy consuming behavior, in some case,

which may consume 75% of total energy of an application. The wireless communication

energy consuming may be estimated approximately by (4.1):

)(**)(rbhs tnme   (4.1)

where sm : message size; ln : hop number; b : energy for sending 1 bit and)(rt : energy

for listening or receiving message (duration
rt).

For example, from (4.1) different approaches may be applied to minimize energy

consuming in different layers for the single core wireless node:

 Routing protocol:

 shortest (optimal) path to minimize the hop number,

 data fusion or data aggregation to minimize the message size,

 Operation mode: entering sleep &wakeup state to minimize the listen time. Notice

that with the current wireless access medium (e.g. IEEE802.15.4) the listening or

receiving message consumes more energy than sending message.

All these previous approaches are necessary to increase WSN lifetime. However, from

our point of view, it is essential to investigate context-aware particularly resource-aware issue

to minimize energy consumption. Thus it seems important to implement a multicore WSN

node, which having different computation capacities to be able to fully explore the resource-

aware approach. With a single core WSN node, it is not energy efficient because the node

system will run with the same frequency for any kind of tasks (time or not time constraint).

Therefore, as the unicore WSN node system, it is too powerful for a simple task application,

but not powerful enough for the complex one. Comparing with multicore system, the unicore

WSN node system has further execution time and higher energy consumption. Moreover, on

one hand, with more powerful CPU the message may be compressed to minimize its size. On

the other hand, more powerful computation resource (CPU and memory) enable to implement

environment estimator to decrease the sample frequency (minimize communication traffics).

The task computation energy may be quantified by (4.2):

 ta iii **  (4.2)

Chapter 4. Multicore WSN Node Architecture

 42

where t : execution duration, ia : is a set of instructions, i task constant which depends on

the size and the complexity of task and i is the necessary power to execute one instruction i.

For a unicore node the energy consumption of an application is:

  
1

N

i

i

A 


 (4.3)

where A is an application having N tasks.

In case of multicore node the energy consumption of an application is:

   1

1 1

K L
M P

i i

i i

A  
 

    (4.4)

where K L   N K L   is the task number of the application, P is the core

number and
1

1

K

i

i




 is the energy consumption of core 1having K tasks.

Thus in case of multicore sensor node, a task may be allocated to a core by taking into

account its energy consumption (allocation with energy efficient as objective function). If one

of the single core wireless task may be executed by another core consuming less energy than

the single core one, thus:

    MA A  (4.5)

For the multicore node, it needs to implement an efficient power management mechanism,

which enables to switch off the unused cores. In the following chapter, the detail of the

implementation will be presented.

4.2.5. Dissymmetrical Multicore Structure

In fact general-purpose fault tolerant system, such as high performance computer or

critical control system like fly-by-wire systems in aircraft, space and time redundancy are

based on symmetric cores because these systems do not have high resource constraint.

However, the space and time symmetric fault tolerant system concept is not appropriate for

implementing WSN node where energy consumption is one of the most important features.

Therefore, reducing power consumption and cost are increasingly across all segments of

product. Users want improved robustness, battery life, size, and cost for WSN nodes.

The robustness requires the fault detection, test and validation based on multicore. The

traditional symmetrical multicore structure may improve the robustness, but the total cost and

power consumption will significantly increase and beyond the acceptance range.

To meet these requirements, dissymmetrical multicore structure will be an essential

element that must to be adopted. In dissymmetrical multicore structure, comparing with Main

Chapter 4. Multicore WSN Node Architecture

 43

App Core, the FD & FR Core will be a smaller, lower cost, lower performance core that

consume much less power. Though dissymmetrical multicore structure will bring a little bit

software design complexity, it can help to improve the multicore architecture in all four of

these vectors: robustness, power, cost and size.

In this dissertation, we will evaluate different type of cores and build dissymmetrical

multicore structure based on these cores.

4.3. Different Type of Cores

There many technical decisions need to consider when we implement multicore

architecture. One of the main tasks is the choices of different cores. Here we briefly introduce

some microcontrollers used in our design.

4.3.1. IGLOO nano FPGAs

IGLOO® nano FPGAs is a low-power FPGA from Actel (acquired by Microsemi).

IGLOO® nano low-power FPGAs offer groundbreaking possibilities in power, size, lead-

times, operating temperature, and cost. Available in logic densities from 10,000 to 250,000

gates, the 1.2 V to 1.5 V IGLOO nano devices have been designed for high-volume

applications where power and size are key decision criteria. Priced competitively in the

market, IGLOO nano devices are perfect ASIC or ASSP replacements, yet retain the historical

FPGA advantages of flexibility and quick time-to-market in low-power and small footprint

profiles (Microsemi, 2013) (Actel-Corporation, 2009).

They Features of IGLOO® nano FPGAs are:

 Ultra-low power in Flash*Freeze mode, as low as 2 µW

 Variety of small footprint packages as small as 3x3 mm

 Zero lead time on selected devices

 Known good die supported

 Enhanced commercial temperature

 Reprogrammable flash technology

 1.2 V to 1.5 V single voltage operation

 Enhanced I/O features

 Clock conditioning circuits (CCCs) and PLLs

 Embedded SRAM and nonvolatile memory (NVM)

 In-system programming (ISP) and security.

Chapter 4. Multicore WSN Node Architecture

 44

We mainly use the IGLOO nano FPGAs as the configurable network connector for the

devices on board. With the configurable IGLOO, the circuit can change the connections

between cores; adjust work states of all cores without making any wired change. The IGLOO

family of flash FPGAs, based on a 130-nm flash process, offers the lowest power FPGA, a

single-chip solution, small footprint packages, reprogram ability, and an abundance of

advanced features. The Flash*Freeze technology used in IGLOO devices enables entering and

exiting an ultra-low-power mode that consumes nano power while retaining SRAM and

register data. Flash*Freeze technology simplifies power management through I/O and clock

management with rapid recovery to operation mode. The Low Power Active capability (static

idle) allows for ultra-low-power consumption while the IGLOO device is completely

functional in the system. This allows the IGLOO device to control system power management

based on external inputs (e.g., scanning for Passive Infrared Motion Detector output stimulus)

while consuming minimal power.

4.3.2. 4-bit NanoRisc

The NanoRisc is an ultra-low power 4-bit microcontroller coming in a small 8-pin SO

package and working up to 0.4 Million Instructions Per Second (MIPS). It consumes only 5.8

µA in active mode and 3.3 µA in standby mode. On the contrary, ATMEGA1281 needs 500

µA in active mode and 130 µA in standby mode (Atmel-Corporation, 2012b). Base on the

ultra-low power feature of NanoRisc, it can greatly help to improve the lifetime of WSN node

when node works in Sleep &Wakeup mode. Moreover, it requires no external component, so

it is very easy to integrate to a multicore WSN node design. The NanoRisc contains the

equivalent of 8 kB of Flash memory and a RC oscillator with configurable running frequency

from 32 to 800 kHz. It also has an integrated 4-bit ADC, a power-on reset, watchdog timer,

10-bit up/down counter, PWM and several clock functions. It has a sleep counter reset

allowing automatic wake-up from sleep mode. It is designed for use in battery-operated and

field-powered applications requiring an extended lifetime. A high integration level makes it

an ideal choice for cost sensitive applications.

4.3.3. 8-bit ATMEGA1281

The ATMEGA1281 is running at 8 MHz and delivering about eight Million Instructions

Per Second (MIPS) (Atmel-Corporation, 2012b). This 8-bit microcontroller has 128-Kbyte

flash program memory, 8-Kbyte static RAM, internal 8-channel 10-bit analog-to-digital

converter, 3 hardware timers, 48 general-purpose I/O lines, 1 external Universal

Asynchronous Receiver Transmitter (UART) and one SPI port.

Chapter 4. Multicore WSN Node Architecture

 45

4.3.4. 8-bit RISC core microcontroller AVRRF

The AVRRF is an IEEE 802.15.4 compliant single chip combines an industry-leading

AVR microcontroller and best-in-class 2.4GHz RF transceiver (Atmel-Corporation, 2012a). It

runs at 16 MHz and delivers optimal performance 16 Million Instructions Per Second (MIPS).

This 8-bit microcontroller has 128-Kbyte flash program memory, 16-Kbyte static RAM.

Comparing with ATMEGA1281, AVRRF is two times faster and has two times bigger SRAM.

These new features enable AVRRF to build a higher performance WSN node.

4.3.5. 32-bit RISC core microcontroller AT91SAM7Sx

The AT91SAM7Sx running at 48 MHz delivers about forty-three Million Instructions Per

Second (MIPS) (Atmel-Corporation, 2011). The AT91SAM7Sx 32-bit RISC microcontroller

has the following on chip devices: 512-Kbyte of flash program memory, 64-Kbyte of static

RAM, 8-channel 10-bit analog-to-digital converter, three hardware timers, thirty-two general-

purpose I/O lines, one USB 2.0 full speed (12 Mbps) device port, two external Universal

Synchronous/Asynchronous Receiver Transmitter (USART), one I²C interface and one

master/slave Serial Peripheral Interface (SPI) port.

4.3.6. Raspberry Pi Board

The Raspberry Pi Board is a credit-card-sized single-board computer developed in the

UK by the Raspberry Pi Foundation with the intention of promoting the teaching of basic

computer science in schools (Raspberry Pi Foundation, 2013). The Raspberry Pi board has a

powerful SoC integrating three cores: Low Power ARM1176JZ-F Applications Processor,

Dual Core VideoCore IV® Multimedia Co-Processor Graphics Processing Unit(GPU) and

Image Sensor Pipeline (ISP). The Raspberry Pi Board runs standard Linux operating system.

The Raspberry Pi Board supports different types of camera, USB and Camera Serial Interface

(CSI), and WiFi module.

The Figure 4-4 shows the block diagram of the Raspberry Pi Board.

Chapter 4. Multicore WSN Node Architecture

 46

Figure 4-4 Block diagram of the Raspberry Pi Board

4.3.7. PandaBoard ES Board

The PandaBoard ES Board is a low-power, low-cost single-board computer development

platform based on the Texas Instruments OMAP4460 system on a chip (SoC) (PandaBoard

ES, 2013). The PandaBoard ES Board has a Dual-core 1.2 GHz ARM A9 chip with 1GB

RAM. The Figure 4-5 shows the block diagram of the PandaBoard ES Board.

Chapter 4. Multicore WSN Node Architecture

 47

Figure 4-5 Block diagram of the PandaBoard ES Board (PandaBoard ES, 2013)

4.3.8. ARM Cortex
TM

-M3 Based Microcontroller

The ARM Cortex™-M3 processor is the industry-leading 32-bit processor for highly

deterministic real-time applications, specifically developed to enable partners to develop high-

performance low-cost platforms for a broad range of devices including microcontrollers,

automotive body systems, industrial control systems and wireless networking and sensors.

The processor delivers outstanding computational performance and exceptional system

response to events while meeting the challenges of low dynamic and static power constraints.

The processor is highly configurable enabling a wide range of implementations from those

requiring memory protection and powerful trace technology to cost sensitive devices requiring

minimal area (ARM Ltd., 2013).

Chapter 4. Multicore WSN Node Architecture

 48

The ARM Cortex™-M3 based microcontroller becomes more and more popular in

wireless networking field. Even though we did not use it in this dissertation, I think we will

use it in next design.

4.3.9. Summary

The Table 4-1 provides the key features of different cores used in this dissertation.

Table 4-1 Key features of Different Core

Feature IGLOO NanoRisc ATMEGA1281 AVRRF AT91SAM7x Raspberry

Pi Board

PandaBoard

ES

Bus Width 4 8 8 32 32 32

Clock Speed

(MHz)

Up to 250MHz 32kHz-

800kHz

8MHz 16MHz Up to 55MHz 700MHz 1.2GHz

SRAM/SDRAM 36*1024bit 80*4bit 8 KB 16KB 64 KB 512MB 1GB

Flash/SD 1Kbit 8KB 128 KB 128KB 512 KB Up to 32GB Up to 32GB

VCC 1.2 V–1.5V@Core

1.2V-3.3@IO

2.3-5.5 V 1.8 V–5.5 V 1.8V-3.6 V 1.8V@Core

3.3V@IO

5V 5V

Power

Consumption

Active

N/A 5.8µA 3.2mA@3V

4MHz

0.5mA@2V

1MHz

2.5mA@3V

8MHz

8.4mA@3.3V

8MHz

~335mA ~450mA

Power

Consumption

Idle

N/A 3.3µA 0.7mA@3V

4MHz

0.14mA@2V

1MHz

0.8mA

@3V 8MHz

1.06mA@3.3V

1MHz

~335mA ~450mA

Power

Consumption

Sleep

24µW

@ Flash*Freeze

0.32µA <5µA 1.65µA 34.3µA N/A N/A

FIT* 22.39 13.09 48.07 51.70 58.93 249.94 420.24

*The raw MTBF or FIT data is taken from manufacturers (Atmel-Corporation, 2012c; Kemet, 2012; Linear, 2009;

Microsemi-Corporation, 2011; Onsemi, 2012).

From Table 4-1, we can find that the high perform microprocessors normally consume

more energy meanwhile have higher fault rate. Therefore, we prefer to implement the FD &

FR Core with lower energy consumption, simpler functionality but higher reliability

microcontroller, such as NanoRisc.

4.4. HSDTVI Interface

4.4.1. Introduction

The multicore architecture is highly based on the fault detection of Main App Core and

Auxiliary Core. In order to enable the efficient fault detection, we implement a specific

Interface: Hardware Support Debug Test and Validation Interface (HSDTVI).

Chapter 4. Multicore WSN Node Architecture

 49

The HSDTVI Interface provides a new method to meet the basic requirements of

debugging, testing and validating the hardware and software of Main App Core and Auxiliary

Core. Unlike modern high performance microprocessors, which have powerful resource and

debug tools; resource constrain microcontroller has limited resource; the debugging methods

on microcontroller are relative simple. Historically, the following methods of debugging a

microcontroller application are following:

 Printf: using a debug serial port to output string to help developer gathers the inside

information. It is easy to use. However, printf through RS232 serial port is very slow,

maximum speed is only 115.2kbps. The overhead, such as code, time and stack

consumption of printf is heavy. Normally printf cannot use in IRQ handler.

Therefore, printf is not appropriate for the real-time operating development.

 JTAG: using a JTAG emulator to examine and modify registers and memory and

provide step-by-step execution. Need programmer to manually interact, very slow

owing to interact. Due to the JTAG emulator, it will be very difficult to use in real

world environment. Moreover, the JTAG is an efficient tool to debug sequential

program but not adapt to debug concurrent program.

So current debug method needs to be improved to ease the development of Robust WSN

application. New features are expected:

 Easy to use

 Can debug IRQ handler and concurrent program

 Light overhead (no side effect)

 High speed

 Can help to localize the dysfunction of an application

 Ease fail detection and recovery

Therefore, we present the HSDTVI to provide another way to debug trace and validate

the microcontroller running state.

4.4.2. HSDTVI Architecture

The Figure 4-6 presents the block diagram of the HSDTVI Interface. The HSDTVI is a

communication & control bus between two devices: HSDTVI Slave and HSDTVI Master.

 The HSDTVI Master receives the checkpoints from the HSDTVI Slave through the

HSDTVI Interface, analyzes and monitors the state of the HSDTVI Slave. If the

HSDTVI Master detects fault in the HSDTVI Slave, it can reset, reboot, or power off

the HSDTVI Slave. All the receiving, checking and reacting are running in real-time.

Chapter 4. Multicore WSN Node Architecture

 50

 DataBus is a set of GPIO between HSDTVI Slave and HSDTVI Master. If the

HSDTVI Slave and HSDTVI Master have enough GPIO resource, this port can use

as much GPIOs as possible to get maximum debug information. If the GPIO resource

is limited, this port also can decrease to only one pin.

 The Reset pin is the Reset pin of the HSDTVI Slave. If the HSDTVI Master detected

fault in DUT, this pin can be used to reset the HSDTVI Slave.

 The PowerEn pin is the power control pin of the HSDTVI Slave. If the HSDTVI

Master detected fault in the HSDTVI Slave, this pin can be used to power off and

power on the HSDTVI Slave.

 The WR pin is used to speed up the checkpoint send speed. It is the latch clock of

DataBus.

 The UART and JTAG is optional pin in the HSDTVI, reserved for the compatibility

with traditional debug methods.

HSDTVI

Port

HSDTVI

Interface

DataBus

WR

HSDTVI

MasterHSDTVI

Port

UART

Options

Components

Reset

PowerEN

JTAG

HSDTVI

Slave

}

Figure 4-6 The HSDTVI Architecture

4.4.3. Different Scenario of the HSDTVI Implementation

The HSDTVI is a configurable interface. It can be mainly divided into two types of

usages: Debug Mode and Real-time Fault Detect Mode (mutual debug and fault detection).

4.4.3.1. Debug Mode

The Figure 4-7 shows the HSDTVI interface used for Debug Mode Scenario. In this

mode, the HSDTVI Slave is an 8-bit AVR/AVRRF microcontroller with IEEE802.15.4

wireless access media; the HSDTVI Master is a powerful microprocessor, which is much

more powerful than the HSDTVI Slave. Therefore, the HSDTVI Slave can send checkpoints

Chapter 4. Multicore WSN Node Architecture

 51

frequently, and the HSDTVI Master is powerful enough to record the checkpoints and store

them for further analysis.

Raspberry Pi

Board
AVR

D[0..7]

WR

nPEN

UART

WiFi/ETH

PC

JTAG

Testbed
DUT JTAG ICE

USB

HSDTVI

Interface

HSDTVI

Master

HSDTVI

Slave

Figure 4-7 The HSDTVI Interface used for Debug Mode Scenario

Table 4-2 provides the detail pins of the HSDVTI between AVR and Raspberry Pi Board.

Table 4-2 the HSDVTI Pin connections between AVR and Raspberry Pi Board

HSDTVI

Pin

AVR/

AVRRF
Direction RASP

Databus[0] PE0  GEN0 GPIO17

Databus[1] PE1  GEN1 GPIO18

Databus[2] PE2  GEN2 GPIO27

Databus[3] PE3  GEN3 GPIO22

Databus[4] PE4  GEN4 GPIO23

Databus[5] PE5  GEN5 GPIO24

Databus[6] PE6  GEN6 GPIO25

Databus[7] PE7  GCLK GPIO4

WR PG2  CE1 GPIO7

nPEN To PSU  CE0 GPIO8

UART
TXD1

RXD1


RXD0

TXD0
UART

Figure 4-8 shows the Circuit Board of the HSDTVI used for Debug Mode Scenario. This

HSDTVI are connected between 8-bit AVR RISC in iLive
[Page 86]

 and 32-bit ARM11 SoC in

Raspberry Pi.

Chapter 4. Multicore WSN Node Architecture

 52

Raspberry Pi

Board

iLive

SensorJTAG

Antenna

Figure 4-8 Circuit Board of HSDTVI used for Debug Mode Scenario

Figure 4-9 shows the HSDTVI Debug Trace and Validate Process.

HSDTVI

TestbedDUT Host PC

Profile

Embed

Check Point

Check

Point

Record

&Rule

Check

USB/ETH

Analysis

Figure 4-9 The HSDTVI Debug Trace and Validate Process

The HSDTVI Slave is Design under Test (DUT). The HSDTVI Master is a testbed. DUT

will continually send checkpoints to testbed. Those checkpoints will reflect the running state

of DUT. Testbed then records checkpoints in real-time. Each record of checkpoints for a

period will form a profile for this given period. Through analysis of these profiles, DUT’s

state can be decoded. Therefore, these profiles can greatly help to detect and locate the bug in

DUT.

Chapter 4. Multicore WSN Node Architecture

 53

Because the DataBus is an 8-bit parallel GPIO Port, so the HSDTVI Interface can send an

8-bit checkpoint status with only three instructions. The ultra-low overhead eases the

placement of checkpoints, so they can put in IRQ handler without affecting the performance

of system.

In order to make full use of the HSDTVI interface, the software on iLive needs embedded

checkpoints into important running stage, such as starting/stopping sensing sensor,

starting/stopping transferring RF data, receiving a RF packet, receiving an external event, etc.

Then iLive can send these checkpoints to Raspberry Pi Boards through the HSDTVI in real-

time. Due to the light overhead of the HSDTVI operation, these checkpoints can be put in

anywhere in the program (system or application), even in IRQ handler.

These detailed and precise checkpoints log will form a profile of iLive related to a

specific period. Based on the profile, the run path and state of iLive can be easily decoded.

With necessary tool for analyzing and comparing profile, the HSDTVI can help user to build

a useful automated debug test and validate environment.

The software on Raspberry Pi Board can catch and store the checkpoints from iLive.

Beyond the checkpoint, the timestamp of checkpoint is also very important. Thanks to the

1MHz hardware system timer in Raspberry Pi, the timestamp can be accurate to one micro

second period.

The CPU of Raspberry Pi Board is a 700 MHz ARM1176JZF-S core (Broadcom.com,

2013), comparing with 8 MHz 8-bit AVR microcontroller in iLive, the Raspberry Pi Board is

over hundreds times more performance than iLive. The computation resource is enough for

the tracing and logging checkpoints from iLive.

4.4.3.2. Real-time Fault Detection Mode

Figure 4-10 shows the HSDTVI interface used for real-time fault detection mode scenario.

In this scenario, the HSDTVI Slave is an 8-bit AVR/AVRRF microcontroller with

IEEE802.15.4 wireless access media; the HSDTVI Master is only a low power NanoRisc,

whose power consumption is much lower than HSDTVI Slave, only 1 percent of AVR. This

low power consumption NanoRisc can greatly help to improve not only the reliability, but

also the lifetime.

Chapter 4. Multicore WSN Node Architecture

 54

AVRRFNanoRisc

AVRRst

App CoreFD & FR Core

AVREn

PmReq

PmReply

HSDTVI

Interface

HSDTVI

Master
HSDTVI

Slave

Figure 4-10 The HSDTVI Interface used for real-time Fault Detection Mode Scenario

Table 4-3 details related Pin between NanoRisc and AVRRF used for real-time fault

detection mode.

Table 4-3 The HSDVTI Pin connections between NanoRisc and AVR

Pin

Name
Direction Pin Description

Related Functions

On AVRRF On NanoRisc

PmReq AVRRFNanoRisc AVRRF informs

NanoRisc that it has

finished its job

(request to power

down, for end-device

node), High voltage

is active

SetPmReqOn

SetPmReqOff

PmReqIsOn

PmReqIsOff

PmReply AVRRFNanoRisc NanoRisc provide ACK

to AVRRF, High

voltage is active

PmRespIsOn

PmRespIsOff

SetPmReplyOn

SetPmReplyOff

AVRRst AVRRFNanoRisc NanoRisc use it to

reset AVRRF, longer

than 300ns low

voltage pulse can

reset AVRRF

N/A SendAVRRst

AVREn NanoRiscPSU NanoRisc use this pin

to control the power

supply of AVRRF, High

is active the Power

Source for AVRRF

N/A SetAVREnOn

SetAVREnOff

Chapter 4. Multicore WSN Node Architecture

 55

Due to different node types, the node functions differently. Therefore, the HSDTVI

communication protocol also needs to change a little bit to meet the different requirements.

Here we mainly discuss two main different node types: Coordinator and End-device.

In fact as coordinator, the AVR is always wakeup, so the AVR will use PmReq as heart

beat signal. AVR will send one PmReq pulse every circle. NanoRisc will reset or power

on/off AVR when the PmReq pulse has not occurred in time or the PmReq pulse is too longer.

Figure 4-11 shows the timing diagram of normal heart beat check of coordinator.

PmReq

Driven by AVR

PmReply

Driven by NanoRisc

A B C D

Step

Figure 4-11 Timing diagram of AVR and NanoRisc Communication

Table 4-4 and Table 4-5 show the pseudo code for this heartbeat checking process in

the coordinator.

Table 4-4 Pseudo Code for Heart Beat Checking of Coordinator

AVR Direction NanoRisc Comment

//Active PmReq

SetPmReqOn();

 //Wait PmReqIsOn

While(PmReqIsOff()

&& !Timeout());

Step A

//Wait PmReplyIsOn

While(PmReplyIsOff()

&& !Timeout());

 //Active PmReply

If(PmReqIsOn())

SetPmReplyOn();

Else

 goto Err;

Step B

//Deactive PmReq

If(PmReplyIsOn)

 //Wait PmReqIsOff

While(PmReqIsOn()

Step C

Chapter 4. Multicore WSN Node Architecture

 56

AVR Direction NanoRisc Comment

SetPmReqOff()

Else

Goto Err;

&& !Timeout());

//Wait PmReplyIsOff

While(PmReplyIsOn()

&& !Timeout());

If(PmReplyIsOn())

Goto Err;

 //DeActive PmReply

If(PmReqIsOff)

SetPmReplyOff();

Else

 goto Err;

Step D

Table 4-5 Pseudo Code for Error Handle of the coordinator

AVR NanoRisc

//Report Err Type to Local Server

Err:

 ReportErr();

 //Power Off Node & Reboot Node

Err:

SetAVREnOff();

Delay(2000ms);

SetAVREnOn();

SendAVRRst();

On End-device, sleep and wakeup mode is adopted. In fact to minize energy consuming

most of the time, the AVR of the End-device is powered off. AVR will be powered on only

when needed. This sleep and wakeup mechanical can greatly improve the lifetime of WSN

end-device node. In order to inform its work status to NanoRisc, AVR will send one PmReq

pulse after it finished sensing and sending job. If NanoRisc receives PmReq, it will power off

AVR gracefully. Otherwise, it may directly power off AVR without confirmation from AVR.

Table 4-6 and Table 4-7 shows the pseudo code for this heartbeat checking process.

Table 4-6 Pseudo Code for Heart Beat Checking of End-device

AVR Direction NanoRisc

//Active PmReq

SetPmReqOn();

 //Wait PmReqIsOn

While(PmReqIsOff() && !Timeout());

//Wait PmReplyIsOn

While(PmReplyIsOff() && !Timeout());

 //Active PmReply

If(PmReqIsOn())

SetPmReplyOn();

Chapter 4. Multicore WSN Node Architecture

 57

AVR Direction NanoRisc

Else

 goto Err;

//Save Data & Deactive PmReq

If(PmReplyIsOn)

{

 SaveInfoBeforePowerOff();

SetPmReqOff()

}

Else

Goto Err;

 //Wait PmReqIsOff

While(PmReqIsOn() && !Timeout());

//Wait PmReplyIsOff

While(PmReplyIsOn() && !Timeout());

If(PmReplyIsOn())

Goto Err;

 //DeActive PmReply

If(PmReqIsOff)

{

SetPmReplyOff();

SetAVREnOff();

}

Else

 goto Err;

Table 4-7 Pseudo Code for Error Handle of End-device

AVR NanoRisc

//Record Err Type

Err:

 RecordErr();

 //Power Off Node

Err:

SetAVREnOff();

4.4.4. Summary

The HSDTVI Interface provides a new basic method to debug, test and validate the

microcontroller running state in real-time. The main features of the HSDTVI Interface include:

 Light overhead: A checkpoint needs only three instructions. Sending 8-bit checkpoint

need less than 1µs using AVR while with the same function using UART (38400bps)

needs 260µs

Chapter 4. Multicore WSN Node Architecture

 58

 Easy to use, can debug interrupt handler and concurrent programs: The checkpoint

related codes can be placed at anywhere in the program including in interrupt handler

 Can help to localize the dysfunction of an application (real-time fault checking)

 Ease the detection fail and recovery

 Real-time debug trace & verify

 Real world debug trace & verify: the HSDTVI Master can be deployed in real world

environment embedded into the HSDTVI Slave. In this case, it helps user to locate

bugs show up only in physical environment

 Provide the key technology as Auto-Tester: the HSDTVI Master can run suitable

software to check real-time state of the HSDTVI Slave. The software can act

according to the result of fault detection on the HSDTVI Slave. Therefore, the

HSDTVI Master can help developer to check the program automatically, easy for

regression tests or long time monitor for transient error

 Force design-for-test way: Request developers to provide the profile of check points,

the check rules in profile will be used by the HSDTVI Master. This potentially help

to ensure the whole develop process following the design-for-test way

 Detect failure more quickly and more accurately: Checkpoint can be put in anyplace

in the program, and it also can be designed with the inside logic of SW, these extra

information in checkpoints can help to detect HW/SW failure more quickly and

accurately

 Fault injection support: Fault injections are necessary to test, validate and evaluate

the reliability of a system to short the test and validation time. The HSDTVI interface

can help to gather the results of fault injection.

 Support mutual debug, test, fault detection and fault recovery. The HSDTVI is a

bidirectional communication bus. So it can help to implement mutual real-time debug,

test, fault detection and fault recovery.

4.5. Summary

In this chapter, we discussed multicore WSN node architecture and the special HSDTVI

interface in the new architecture. The multicore WSN node architecture enables the

development and implementation of new dependable and energy efficiency wireless sensor

network.

Chapter 5. High Reliability Design Process dedicated to Resource Constraint Embedded

System

 59

Chapter 5. High Reliability Design Process dedicated

to Resource Constraint Embedded System

5.1. Introduction

The efficient and robust realization of the non-conventional multicore wireless sensor

network is a challenging algorithmic and technological task. The multicore architecture is

more complex than the single core architecture. Key features including high resource

constraints, high reliability requirements, various sensor types, dynamical wireless

environments, and huge numbers of WSN nodes in different autonomous group force us to

change every aspects of our design process.

Based on many years of real world project experiences, we propose a new design process

HRDP (High Reliability Design Process dedicated to High Resource Constraint Embedded

System) to guide our development. In HRDP, we will implement an integrated multicore

platform (WSN node, Hardware support, fault injection testbed) supporting run time testing

and validation. Furthermore, we will use fault injection technique to help to discovery the

reason of soft errors. Through the discovery and understood those soft errors and recovery

from failure, HRDP can greatly help to improve the overall system. We hope the new

integrated HRDP can allow both to simplify the testing and validation (hardware and software)

and to improve the reliability of WSN node. The rest part of this chapter will detail the

content of new design process.

5.2. Traditional Design Process Models

Many design process models have been developed in order to achieve different required

objectives. We briefly discuss some frequently employed models, e.g. Waterfall Model, V

Model, Incremental Model, Spiral Model Model-Driven Engineering, RAD Model and Agile

Model.

Chapter 5. High Reliability Design Process dedicated to Resource Constraint Embedded

System

 60

5.2.1. Waterfall Model

The Waterfall Model was the first design process model to be introduced. It is also

referred to as a linear-sequential life cycle model. The Waterfall Model is the most rigid one,

suggesting to move to a phase only when its preceding phase is completed and perfected.

Phases of development in the waterfall model are kept completely separated, and there is no

room for iteration or overlap (Benington, 1983). Figure 5-1 shows the diagram of the

Waterfall Model.

Figure 5-1 Block diagram of Waterfall Model

Waterfall Model is very simple and easy to understand and use. However, it is only

capable to model simple, clear, well known and fix requirements project. Due to the rigid one-

way rules, it will have high amounts of risk and uncertainty in the late stage. Therefore,

Waterfall Model is not a good model for complex and long projects (A. C. S. Beck et al.,

2012).

5.2.2. V Model

The V Model has the same strict serial structure as the waterfall model, but it suggests

that, before going to a more detailed design level, one should already test all the system

features and properties that can be tested at the current level of design abstraction

(BRUMMOND, CONGER, HART, OSBORNE, & ZAREAN, 2006). Figure 5-2 shows the

diagram of the V Model.

Chapter 5. High Reliability Design Process dedicated to Resource Constraint Embedded

System

 61

Figure 5-2 The V-model of the Systems Engineering Process

V Model is simple and easy to use. The test activities happen before implementation, so

the defects can be found in the early stage. This can greatly help to avoid the downward flow

of defects. It is still very rigid and least flexible. The system is developed during the

implementation phase, so no early simulation or prototypes of the system are produced.

Therefore, V Model is only good for small projects, which requirements need to be easily

understood (Nowka, 2007).

5.2.3. Incremental Model

The Incremental Model divides the whole requirement into various builds. Each build

passes through the requirements, design, implementation and testing phases. Each subsequent

release of the build adds function to the previous release. The process continues until the

complete system is achieved. Multiple development cycles make the Incremental

Model a multi-waterfall process (Larman & Basili, 2003; Pressman, 2010). Figure 5-3 shows

the diagram of the Incremental Model.

Chapter 5. High Reliability Design Process dedicated to Resource Constraint Embedded

System

 62

Figure 5-3 The Incremental Model of Development

Incremental Model can generate prototype quickly and early. It brings more flexible and

lower initial delivery cost. In addition, the increments can greatly help to manage the risk.

However, the Incremental Model requires a clear and complete definition of whole system

before it can be broken down and build incremental. Moreover, the total cost is higher due to

the multi increments (Nowka, 2007).

5.2.4. Spiral Model

The Spiral Model is similar to the incremental model, with more emphases placed on risk

analysis. The Spiral is visualized as a design process passing through some number of

iterations, with the four-quadrant diagram representative of the following activities:

 Formulate plans to: identify software targets, implement the program, clarify the

project development restrictions

 Risk analysis: an analytical assessment of selected programs, to consider how to

identify and eliminate risk

 Implementation of the project: the implementation of software development and

verification

The spiral model has four phases: Planning, Risk Analysis, Engineering and Evaluation.

A software project repeatedly passes through these phases in iterations (called Spirals in this

model) (Boehm, 1986). Figure 5-4 shows the diagram of the Spiral Model.

Chapter 5. High Reliability Design Process dedicated to Resource Constraint Embedded

System

 63

Figure 5-4 The Spiral model of the Systems Engineering Process

The Spiral Model pays more attention on the risk analysis. It has strong approval and

documentation control and early produced software to help to avoid risk. It is good for large

and mission-critical projects. However, it can be a costly model, and requires highly specific

expertise on risk analysis. It does not work well for smaller projects (Nowka, 2007).

5.2.5. RAD Model

Rapid Application Development (RAD) model is a type of incremental model. In RAD

model, the components or functions are developed in parallel as if they were mini projects.

The developments are time boxed, delivered and then assembled into a working prototype.

RAD model uses modeling concepts to capture information about business, data, and

processes. This can quickly give the customer something to see and use and to provide

feedback regarding the delivery and their requirements (Martin, 1991). Figure 5-5 shows the

diagram of the RAD Model.

Chapter 5. High Reliability Design Process dedicated to Resource Constraint Embedded

System

 64

Figure 5-5 The Rapid Application Development (RAD) Model

The RAD Model can reduce the development time, increase reusability of components,

provide quick initial reviews, encourages customer feedback, and integrate from very

beginning solves a lot of integration issues. However, RAD requires highly skilled

developers/designers and the cost of modeling and automated code generation is very high

(Nowka, 2007).

5.2.6. Agile Model

Agile development model is also a type of Incremental model. Software is developed in

incremental and rapid cycles. This results in small incremental releases with each release is

built on previous functionality. Each release is thoroughly tested to ensure software quality is

maintained. It is used for time critical applications. Extreme Programming (XP) is currently

one of the most well-known agile development life cycle model (K. Beck et al., 2001; Prolinx

Services, 2013). Figure 5-6 shows the diagram of the Agile Model.

Chapter 5. High Reliability Design Process dedicated to Resource Constraint Embedded

System

 65

Figure 5-6 The Agile Development Model

Agile development model can provide rapid, continuous delivery of useful software for

customer. In Agile development model, people and interactions are emphasized rather than

process and tools. Customers, developers and testers constantly interact with each other.

Agile development model can accept late changes in requirements. Continuous attention helps

to create technical excellence and good design. However, Agile development model lack of

emphasis on necessary designing and documentation. Only senior programmers are capable of

taking the kind of decisions required during the development process (Nowka, 2007).

5.2.7. Summary

Due to the rigid and least flexible rules, Waterfall Model and V Model is not good model

for the development of our multicore wireless sensor network. The cost of Incremental Model

or Spiral Model is too high. The RAD Model and Agile development model are mainly focus

on the software development. Therefore, we propose a new design process, High Reliability

Design Process dedicated to High Resource Constraint Embedded System (HRDP), in the

implementation of multicore WSN node.

Chapter 5. High Reliability Design Process dedicated to Resource Constraint Embedded

System

 66

5.3. High Reliability Design Process Based on Multicore

Architecture

The design process can be viewed as a sequence of steps that transforms a set of

specifications described informally into a detailed specification that can be used for

manufacturing. All the intermediate steps are characterized by a transformation from a more

abstract description to a more detailed one.

In this part, we propose a new design process named as High Reliability Design Process

dedicated to High Resource Constraint Embedded System (HRDP) based on multicore

architecture. It tries to ease the development of multicore WSN node and improve the

productivity and system quality.

5.3.1. General Overview

The HRDP is a design process for a multicore WSN node. Therefore, it is assumed that

the top architecture of the node should be multicore architecture. It is also assumed that the

HSDTVI interface will be implemented.

Normally a project has four important Product Life Cycle (PLC) phases:

 Conception Phase: Collect product requirements

 Design Phase: Architecture design, implementation of hardware, software and

mechanical design, as well as test

 Realization Phase: Manufacture

 Service Phase: Installation, Operation & Maintain WSN

The following part will detail the HRDP in design phase, including architecture design,

early validation and test.

5.3.2. Model-Driven Engineering

Model-driven engineering (MDE) is a software development methodology which focuses

on creating and exploiting domain models (that is, abstract representations of the knowledge

and activities that govern a particular application domain), rather than on the computing (or

algorithmic) concepts (Frankel, 2003; Haan, 2009).

The MDE approach is meant to increase productivity by maximizing compatibility

between systems (via reuse of standardized models), simplifying the process of design (via

Chapter 5. High Reliability Design Process dedicated to Resource Constraint Embedded

System

 67

models of recurring design patterns in the application domain), and promoting communication

between individuals and teams working on the system (via a standardization of the

terminology and the best practices used in the application domain).

A modeling paradigm for MDE is considered effective if its models make sense from the

point of view of a user that is familiar with the domain, and if they can serve as a basis for

implementing systems. The models are developed through extensive communication among

product managers, designers, developers and users of the application domain. As the models

approach completion, they enable the development of software and systems.

Some of the better known MDE initiatives are:

 the Object Management Group (OMG) initiative model-driven architecture (MDA),

which is a registered trademark of OMG.

 the Eclipse ecosystem of programming and modeling tools (Eclipse Modeling

Framework).

Figure 5-7 shows the diagram of the MDE.

Figure 5-7 Overview of Model Driven Engineering

The HRDP is a specific MDE dedicated to multicore architecture. The HRDP follows the

MDE concept, which is an improved V-Model by supporting the test phases at each design

level by software models that simulate the system before real implementations exist already.

Chapter 5. High Reliability Design Process dedicated to Resource Constraint Embedded

System

 68

5.3.3. Model of Multicore WSN Architecture

5.3.3.1. Top Level Architecture

Top Level Architecture provides one or more diagrams depicting an overview of the

target solution architecture with supporting narrative text. Ensure that the diagram(s) depict

the major components of the solution and the relationships between the components, input

and output data flows, major processes, functions, and system tasks. Identify major

Commercial-Off-the-Shelf (COTS), infrastructure, and platform technology components.

Figure 5-8 below is an example of top-level multicore WSN architecture diagram.

AVR

9VBatt

LED[0..1]

Valve Driver

Buzzer

EV Ctrl from

AVR

Electro-valve

Current

Work mode

SPDT

1 watermark

sensors

1 decagon

sensor

Elect-

Valve

Power

Supply Unit

EV Monitor

(Base on 4bit RISC)

Battery

Voltage

1 Soil

Temperature

EV Ctrl

Req&Resp

SCM

Serial

Port
HSDTVI

Figure 5-8 Example Multicore WSN Architecture Diagram

5.3.3.2. Modules List

The Table 5-1 provides the modules list in the Figure 5-8.

Chapter 5. High Reliability Design Process dedicated to Resource Constraint Embedded

System

 69

Table 5-1 Example Module List

Module Name Module Description

cAVR AVR Micro-controller of SIS
cSCM SCM in SIS, support wireless access to SIS, also connects cAVR with

the HSDTVI, can support debug trace and validate software in cAVR.
cEvDrv Driver of Electrovalve
cEvMonRisc Electrovalve Monitor 4-bit RISC
cSisMod Work Mode Switch of SIS
cPSU Power Supply Unit of SIS
cSensor Soil Temperature and Soil Moisture Sensor
cLed 1 Green Led and 1 Red Led
cBuzzer 1 Buzzer

5.3.3.3. Module Interface Specification

Module Interface specification identifies all interfaces between high-level modules and

other modules or systems. Following are examples of module interface table for two different

modules.

5.3.3.3.1. Interface of Module with Software inside

Table 5-2 Example High-level Interface of cAVR Module

Pin Name Direction Pin Description
Related Functions

Function Name Comment

SisMod0 Input From Work Mode
Switch, Low mean SIS
is on Auto work mode

SisMode0IsOn
SisMode0IsOff

Low
voltage is
active

SisMod1 Input From Work Mode
Switch, Low mean SIS
is on Manual work
mode

SisMode1IsOn
SisMode1IsOff

Low
voltage is
active

AVRRst Input Low For Hardware
Reset AVR

N/A

AVREvCtlPlus Output To EV Driver, Low
Request Electrovalve
Open

SetAVREvCtlPlusOn
SetAVREvCtlPlusOff

Low
voltage is
active

AVREvCtlMinus Output To EV Driver, Low
Request Electrovalve
Close

SetAVREvCtlMinusOn
SetAVREvCtlMinusOff

Low
voltage is
active

EvCur Input Analogy Input from EV
Driver, Indicate the
current of EV

ReadEvCurData

EvCtlReq Output To cEvMonRisc, Low
Request Electrovalve
start work

SetEvCtlReqOn
SetEvCtlReqOff

Low
voltage is
active

Chapter 5. High Reliability Design Process dedicated to Resource Constraint Embedded

System

 70

Pin Name Direction Pin Description
Related Functions

Function Name Comment

EvCtlReply Input From cEvMonRisc,
Low for Response

EvCtlReplyIsOn
EvCtlReplyIsOff

Low
voltage is
active

GLed Output Green Led SetGLedOn
SetGLedOff

Low
voltage is
active

RLed Output Red Led SetRLedOn
SetRLedOff

Low
voltage is
active

BZ Output Buzzer SetBZOn
SetBZOff

Active is
2Khz PWM

SenEn Output Sensor Power Enable
Signal

SetSenEnOn
SetSenEnOff

AVR
already
have

SoilTemp Input 1-Wire Soil
Temperature Sensor

ReadSoilTempData

DeSoil Input Decagon Soil Moisture
Sensor

ReadDeData

WmSoil Input Watermark Soil
Moisture Sensor

ReadWmData

BatV Input Battery Voltage ReadBatVData
Hsdtvi Output Hardware support

debug trace and
validate interface,
output to cSCM

WriteHsdtviData

Uart I/O Serial communication
bus with cSCM

ReadUartData
WriteUartData

5.3.3.3.2. Interface of Module without Software inside

Table 5-3 Example High-level Interface of cEvDrv Module

Pin Name Direction Pin Description

SCMEvCtlPlus Input From cSCM, Low Request Forward Pulse for Electrovalve

SCMEvCtlMinus Input From cSCM, Low Request Reverse Pulse for Electrovalve

EmEvCtlPlus Input From cEvMonRisc, Low Request Forward Pulse for Electrovalve

EmEvCtlMinus Input From cEvMonRisc, Low Request Reverse Pulse for Electrovalve

EvPulse Output To Electrovalve, Forward Pulse will Open Electrovalve, Reverse Pulse

will Close Electrovalve, otherwise Electrovalve will remain current

Open/Close status.

EvCur Output Analogy Output, Indicate the current of EV

Chapter 5. High Reliability Design Process dedicated to Resource Constraint Embedded

System

 71

5.3.3.4. Functional Specification of Each Module

Functional Specification identifies the functionality of all high-level modules. For

complex module, the functional specification can use C/C++ language or other high-level

language to describe.

Following Table 5-4 is an example of a simple module functional specification.

Table 5-4 Sample Functional Specification of cEvDrv Module

SCMEvCtlPlus EmEvCtlPlus SCMEvCtlMinus EmEvCtlMinus EvPulse Comment

On On Off Off
Forward

Pulse

Remain 50ms,
Electrovalve
will open

Off Off On On
Reverse

Pulse

Remain 50ms,
Electrovalve
will Close

Off Off On Off
Reverse

Pulse

Remain 50ms,
Electrovalve
will Close

Off Off Off On
Reverse

Pulse

Remain 50ms,
Electrovalve
will Close

Off Off Off Off
No

Output

Electrovalve
will remain
current status

On Off Off Off
No

Output

Electrovalve
will remain
current status

Off On Off Off
No

Output

Electrovalve
will remain
current status

On On On Off
Not

Allowed
Waste power

On On Off On
Not

Allowed
Waste power

On On On On
Not

Allowed
Waste power

5.3.4. Early Validation of Requirement

The HRDP supports three types of early validation of requirement:

 Validate by designer

Chapter 5. High Reliability Design Process dedicated to Resource Constraint Embedded

System

 72

 Validate based on MDE

 Validate based on virtual processor emulator

The following part will detail these three types of early validation.

5.3.4.1. Validate by Designer

The simplest way to validate the requirement is directly checked and validated by the

design team. This method requires highly skilled developers/designers. Only senior designers

are capable of taking the kind of decisions required during the development process.

Therefore, the method is only good for redesign projects, which requirement has only

slightly modification.

5.3.4.2. Validate based on MDE

With suitable MDE Tool, such as AADL (Feiler & Gluch, 2012), UML (Lavagno, Martin,

& Selic, 2003), SysML (Holt, Perry, Engineering, & Technology, 2008), etc.. Notice that our

early architecture can directly run in Model-Driven Development Environment (MDDE).

Even though this method requires studying and learning MDE and MDDE, the formal

verification and automatic synthesis of implementations with MDE can greatly help to

guarantee robust and safety of our design.

The biggest shortage of MDE is that the cost of development tool. The free tool may lack

many mature models, while the commercial tool’s price is still expensive.

Figure 5-9 shows a block diagram for the early validation based on AADL. My colleague,

ZHOU Peng, in our SMIR team focuses on this direction.

Chapter 5. High Reliability Design Process dedicated to Resource Constraint Embedded

System

 73

Figure 5-9 Early Validation Based on AADL

5.3.4.3. Validate based on Virtual Processor Emulator

In this method, virtual processor emulator such as Cooja (Osterlind, 2006),

QEMU(Bellard, 2005), can be adopted to provide a virtual platform for simulating the

software.

The virtual processor emulator can run the software directly, so the validate process only

requires necessary adding new virtual hardware driver or modification on exist virtual

hardware driver for new requirements.

This method can formally verify the design without extra cost on MDE tool, such as

buying, studying or learning. Besides, most of the source code can directly reuse in later

design stage.

Figure 5-10 shows a block diagram for the early validation based on virtual processor

emulator. My colleague, de VAULX Christophe, in our SMIR team focuses on this direction.

Chapter 5. High Reliability Design Process dedicated to Resource Constraint Embedded

System

 74

Network Layer(NWK)

RF Physical Layer(PHY)

Hardware Abstraction
Layer(HAL)

Middleware Abstraction Layer

Sy
st

em
 S

er
vi

ce
s

Ap
pl

ic
at

io
n

Se
rv

ic
es

Application

Virtual Processor EmulatorVirtual Hardware
Driver

Figure 5-10 Early Validation Based on Virtual Processor Emulator

5.3.5. Design for Multicore Run Time Testability

Every design, hardware and software, should be tested. Kent Beck said, "Code that isn't

tested doesn't work - this seems to be the safe assumption." However, not all designs are easy

to test. More often than not, the effort invested into testing a specific area is in inverse

proportion to evaluate how it can be tested easily. Put simply, the easier parts of the system to

test, get tested a lot more than those that are harder to test. Testing is a major activity in any

development lifecycle - a large part of a project budget is spent on it. If we want to use

effectively it, user friendly testing environment should be addressed from the early stages of

system design.

While in multicore WSN architecture, the HSDTVI interface provides a hardware

supported to ease the testability not only in debug period, but also in real-world run time

period.

The Design for Multicore Run Time Testability (DMRTT) related to several parts:

 Can help to Detect and localize bug more Quickly and more Accurately

 Support Real-Time Fault Detection, help to improve the reliability of the system

 Force Design-For-Testability Way: The fault detection code in test bench of each

module is requested to run in the HSDTVI master. This potentially help to ensure the

Chapter 5. High Reliability Design Process dedicated to Resource Constraint Embedded

System

 75

whole develop process following the Design-For-Testability Way. When the

HSDTVI Master real-time using these rules to detect the state of HSDTVI Slave, the

method is working like DMRTT.

5.3.6. Fault Injection

As we mentioned before, in real world deployment, 10%-20% of single core WSN nodes

left the network in the first week with unknown reason. With the mutual real time checking

and validation between cores based on multi cores and HSDTVI, the multicore WSN node

can automatically recover from this type fault. However, we still do not understand the real

cause of the fault. That why we propose to use fault injection method into HRDP to discover

the reason of the fault, understand more about the fault and late help to improve the overall

system.

Figure 5-11 shows a block diagram for the fault injection testbed. Testbed mainly consist

four parts: Design Under Test (DUT), Fault Injection Board, PC and peripheral equipment.

 The DUT is the WSN node under test.

 The Fault Injection Board is a specification board for fault injection to WSN node

based on Raspberry Pi board.

 The PC controls the test and records/displays the results.

 The peripheral equipment includes off-the-shelf peripheral equipment Atmel AVR

JTAG MK-II and SuperPro USB Programmer to program the microcontroller on

DUT, EMI Burst-Generator and EMI-Probe, Californium-252 Source for Heavy-Ion

Radiation. The pre-validated WSN node is special peripheral equipment, which

running IEEE802.15.4 stack. Therefore, the DUT can test its RF link with this node

without expensive RF Wave Generator and Analyzer.

Chapter 5. High Reliability Design Process dedicated to Resource Constraint Embedded

System

 76

DUT

 (WSN node)

Pwr

Power Supply
Power Supply

Fault Injection

Analogy Source

Emulator

Analogy

Fault Injection

HSDTVI ADC

Digital

Fault Injection

Fault Inject

Board

Raspberry Pi

Board

Eth

Controller

WiFi

Digital Fault

Injection Ctrl

DIO

SuperPro USB
Programmer

Atmel AVR JTAG
MK-II

USB

JTAG for AVRRF
USB

JTAG for NanoRisc

Pre-Validated
WSN node

USB

IEEE802.15.4

RF Test Enclosure

Burst-Generator

Californium-252

EMI-Probe

Heavy-Ion
Radiation

Figure 5-11 Block diagram of the Fault Injection TestBed

The Figure 5-12 shows the circuit board of the Fault Injection TestBed.

Raspberry Pi

Fault

Injetion

Board

DUT

Figure 5-12 Circuit Board of the Fault Injection TestBed

The main features of Fault Injection Board are:

 Support Inject fault in Power supply of DUT

 Support Inject fault in Analog ADC port of DUT

Chapter 5. High Reliability Design Process dedicated to Resource Constraint Embedded

System

 77

 Support Inject fault in Digital I/O port of DUT

 Sample the power supply voltage and current of DUT.

 Independent Power supply (different from DUT board),

 HSDTVI port: Debug and trace interface, Raspberry Pi board can use this port to

trace and log all the checkpoints sending from DUT. According to the checkpoints,

RaspberryPi board can RESET or switch off the DUT.

 Features based on Raspberry Pi

 700 MHz ARM1176JZF-S core (ARM11 family)

 Up to 512MB SDRAM

 Ethernet interface.

 WiFi module supported.

 Support SD Card for Large data Storage.

The Table 5-5 provides the hardware fault injection with contact supported by Fault

Injection Board.

Table 5-5 Fault Injection modes with contact

Signal Type Fault Injection Method
Parameters

Period Duration Voltage Freq

Power Supply

Under shoot Adj Adj Adj

Over shoot Adj Adj Adj

Stuck-at GND Adj Adj

Stuck-at Voltage Adj Adj Adj

Open Adj Adj

Noisy Adj Adj Adj Adj

Analogy Signal

Stuck-at GND Adj Adj

Stuck-at Voltage Adj Adj Adj

Open Adj Adj

Noisy Adj Adj

Digital Signal

Stuck-at GND Adj Adj

Stuck-at VDD Adj Adj

Stuck-at H Adj Adj

Stuck-at L Adj Adj

Open Adj Adj

Flip Adj Adj

The Table 5-6 provides the hardware fault injection without contact supported by Test

Equipment, EMI Burst-Generator and Californium-252 Source, and Pre-validated WSN node.

Chapter 5. High Reliability Design Process dedicated to Resource Constraint Embedded

System

 78

Table 5-6 Fault Injection modes without contact

Signal Type Fault Injection Method
Parameters

Period Duration Voltage Freq Fluence

Electro

Magnetic

Interference

Burst (Transients) Adj Adj Adj Adj

ESD Adj Adj Adj

Surges Adj Adj Adj

PQT (Voltage Dips) Adj Adj Adj

Radiation Heavy-Ion Radiation Adj Adj Adj

RF RF Interference Adj Adj Adj

Of course, developer can also inject any software fault through the JTAG debugger.

Therefore, through the testbed in Figure 5-11, developer can injection any kind of fault,

hardware or software, to speed up the debug test and validate process. And the testbed will

also ease the development of the multicore software for it can greatly help to discover

unknown fault.

5.4. Summary

Adopting the HRDP methodology allows systems architects, software engineers, and

hardware designers to achieve the following objectives:

 The HRDP can provide an early prototype for the validation of requirement

 The HRDP enables higher abstract layer designing and verification

 With suitable tool support, the HRDP enables auto translation from design to

production implementation

 The models in the HRDP increase the reusability of engineering resource

 The models also can improve the flexibility of deployment (and redeployment) of

engineering resources

 The HRDP help to Detect and localize bug more Quickly and more Accurately

 The fault injection testbed can help to discover unknown fault and late improve the

overall system

All this benefit can help to improve productivity and system quality.

Chapter 6. Implementation of Multicore WSN Node

 79

Chapter 6. Implementation of Multicore WSN Node

We develop several hardware platforms to validate multicore WSN architecture, which is

technology and application independent. We name these platforms as E²MWSN, iLive, SIS,

iLiveEdge, EPER, RPiER, etc. These hardware platforms are instances of multicore WSN

architecture with varying degrees of hardware complexity. We will analyze each specific

implementation in the following sections.

6.1. E²MWSN: High Reliability and High Performance

Multicore WSN Node

6.1.1. General Overview

The E²MWSN is a complex instance of a multicore WSN architecture. The objective of

the E²MWSN is to implement a configurable and energy efficient multicore WSN node for

outdoor/indoor applications. Thanks to the configurability of multicore, the E²MWSN is able

to adapt to diverse applications domains, from simple data collecting application to complex

real-time control application.

Figure 6-1 shows the block diagram of E²MWSN. E²MWSN is built on three cores

architecture. The Main App Core in E²MWSN is a low power 8-bit RISC ATMEGA1281.

The Auxiliary Core in E²MWSN is a low power ARM7TDMI 32-bit RISC AT91SAM7Sx.

We choose an ultra-low power FPGA IGLOO to be the FD & FR Core. The Auxiliary Core

AT91SAM7Sx is more powerful than the Main App Core. So if the WSN application has

complex computational processes such as signal processing, data compressing, encryption,

decryption etc., AT91SAM7Sx can be activated to handle these computation when necessary.

The FD & FR Core IGLOO is the control center of the E²MWSN. It controls power supply

sources for all the cores and devices. The FD & FR Core also run as a monitor of Main App

Core. If it detected faults in the Main App Core, it will isolate the faulty Main App Core and

active the Auxiliary Core to substitute the Main App Core. Through the switching of core, the

E²MWSN can provide seamless services even in the presence of faults.

Chapter 6. Implementation of Multicore WSN Node

 80

Main App Core
ATMEGA1281

Sensor

Input

FD & FR Core

IGLOO

AT91SAM7Sx

Auxiliary Core

Sensor

Input

Input

Switch

HSDTVI

HSDTVI

I

O

C

O

Sensor

Figure 6-1 Block diagram of the E²MWSN

6.1.2. Hardware Architecture

Figure 6-2 presents the hardware architecture of E²MWSN. These three cores in the

E²MWSN share the I²C, UART and SPI bus. Each core can be activated to run as the master

of those communication buses. The AT91SAM7Sx and the ATMEGA1281 share the analog

ports, one of or both cores can turn on the ADC to sample the values from analog sensor such

as Decagon soil moisture sensor and battery voltage sensor. The circuit can independently

control the power supply of each core and device.

IGLOO

ATMEGA1281 AT91SAM7Sx

Power

Manager
Arbiter

PEN[6..0]

I²C

Sensor
ZigBee

UART

Dev
EN

Analog

Dev
ENEN ENPEN2 PEN4 PEN5 PEN6

EN PEN1PEN0 EN

I²C

Control

UART

Control

SPI Dev

ENPEN3

SPI

Control

PSURTC

Figure 6-2 Hardware Architecture of E²MWSN

Chapter 6. Implementation of Multicore WSN Node

 81

The most powerful Core in the E²MWSNis the AT91SAM7Sx running at 48 MHz and

delivering about forty-three Million Instructions Per Second (MIPS) (Atmel-Corporation,

2011). This 32-bit RISC has: 512-Kbyte flash program memory, 64-Kbyte static RAM,

internal 8-channel 10-bit analog-to-digital converter, three hardware timers, thirty-two

general-purpose I/O lines, one USB 2.0 full speed (12 Mbps) device port, two external

Universal Synchronous/Asynchronous Receiver Transmitter (USART), one I²C interface and

one master/slave Serial Peripheral Interface (SPI) port.

The ATMEGA1281 is running at 8 MHz and delivering about eight MIPS (Atmel-

Corporation, 2012b). This 8-bit microcontroller has 128-Kbyte flash program memory, 8-

Kbyte static RAM, internal 8-channel 10-bit analog-to-digital converter, 3 hardware timers,

48 general-purpose I/O lines, 1 external Universal Asynchronous Receiver Transmitter

(UART), and one SPI port.

The IGLOO mainly works as the configurable network connector for the devices on

board. With the configurable IGLOO, the circuit can change the connections between cores;

adjust work states of all cores without making any wired change. The IGLOO may be

configured to implement specific processing (image or signal processing e.g.) when need. The

IGLOO family of flash FPGAs, based on a 130-nm flash process, offers the lowest power

FPGA, a single-chip solution, small footprint packages, reprogram ability, and an abundance

of advanced features (Actel-Corporation, 2009). The Flash*Freeze technology used in

IGLOO devices enables entering and exiting an ultra-low-power mode that consumes nano

Power while retaining SRAM and register data. Flash*Freeze technology simplifies power

management through I/O and clock management with rapid recovery to operation mode. The

Low Power Active capability (static idle) allows for ultra-low-power consumption while the

IGLOO device is completely functional in the system. This allows the IGLOO device to

control system power management based on external inputs (e.g., scanning for Passive

Infrared Motion Detector output stimulus) while consuming minimal power.

Figure 6-3 shows the implemented board of the E²MWSN.

AT91SAM7Sx

ATMEGA1281

IGLOO

Sensor

PSU

RTC

Figure 6-3 Circuit Board of the E²MWSN

Chapter 6. Implementation of Multicore WSN Node

 82

6.1.3. Key Features

The major features of the E²MWSN are listed below:

 Ultra-low power consumption

 Dimension 85mm*54mm

 1 light sensor

 1 temperature sensor

 1 air humidity sensor

 1 Passive Infrared Motion Detector

 3 Decagon soil moisture sensors

 2 RS232 ports

 1 USB slave port

 1 Real-time Clock (RTC)

 SD Card

 IEEE802.15.4 ZigBee wireless access medium

6.1.4. Performance

6.1.4.1. Power Consumption

The circuit can controls independently the power supply of each core, so the E²MWSN

can work in several modes as presented in Table 6-1.

Table 6-1 Operation modes of the E²MWSN

Operation Modes
Status of each Core

AT91SAM7Sx ATMEGA1281 IGLOO

single AT91SAM7Sx ON OFF OFF

single ATMEGA1281 OFF ON OFF

single IGLOO OFF OFF ON

AT91SAM7Sx plus ATMEGA1281 ON ON OFF

IGLOO plus ATMEGA1281 OFF ON ON

IGLOO plus AT91SAM7Sx ON OFF ON

AT91SAM7Sx plus ATMEGA1281 plus IGLOO ON ON ON

Chapter 6. Implementation of Multicore WSN Node

 83

Operation Modes
Status of each Core

AT91SAM7Sx ATMEGA1281 IGLOO

Deep sleep(RTC ON) OFF OFF OFF

Here we mainly compare single AT91SAM7Sx mode (ATMEGA1281 is closed), single

ATMEGA1281 mode (AT91SAM7Sx is closed), and AT91SAM7Sx plus ATMEGA1281

mode.

To evaluate the power consumption of the E²MWSN on different operation modes, the

total running current of the E²MWSN is measured as Figure 6-4.

AT91SAM7Sx

PSU

IGLOO

mA

ATMEGA

1281

E2MWSN

Devices

+3.0V

RTC

Figure 6-4 Measure Schematics of the E²MWSN

A DC power supply ELC AL936 provided a +3.0V output as emulator of two AA

Batteries. A Metrix MX53 in mA gear position measured the current of the E²MWSN when

the node handles various tasks including sensing, signal processing, data storage, and wireless

communication on the three modes mentioned previously. The results are recorded in the

Table 6-2, Table 6-3, and Table 6-4 as follow.

Table 6-2 Task Resource Required of the E²MWSN on single AT91SAM7Sx mode

Task
Resource Required Energy

Consumption(µJ) Current Time Used

Sensing 22.1mA 896ms 59405

Signal Processing 19.7mA 5.0ms 295

Data Storage 20.9mA 6.0ms 376

Wireless Communication* 21.8mA 140ms 9156

Sleep 0.2mA 178953ms** 107372

Total 176604

Chapter 6. Implementation of Multicore WSN Node

 84

Table 6-3 Task Resource Required of the E²MWSN on single ATMEGA1281mode

Task
Resource Required Energy

Consumption(µJ)
Current Time Used

Sensing 15.9mA 900ms 42795

Signal Processing 9.9mA 268ms 7919

Data Storage 16.3mA 10.1ms 494

Wireless Communication 21.8mA 140ms 9156

Sleep 40µA 178682ms** 21442

Total 81806

Table 6-4 Task Resource Required on AT91SAM7Sx plus ATMEGA1281 mode

Task
Resource Required Energy

Consumption(µJ)
Current Time Used

Sensing 15.9mA 900ms 42795

Signal Processing 19.7mA 5.0ms 295

Data Storage 20.9mA 6.0ms 376

Wireless Communication 21.8mA 140ms 9156

Sleep 1µA 178949ms** 537

Total 53159

*ATMEGA1281 is used for wireless access.

**Sleep time is determined by sample frequency. In this dissertation the sample frequency is 3 minutes per sample,

which is the same as the TelosB one (J. Polastre et al., 2004).

The total power consumption of each mode can be calculated by (4.3) and (4.4), we can

get:

  91 7 176604AT SAM SxA J  , (6.1)

  1281 81806ATMEGAA J  , (6.2)

  91 7 1281 53159M

AT SAM Sx ATMEGAA J   . (6.3)

The result is      91 7 1281 91 7 1281

M

AT SAM Sx ATMEGA AT SAM Sx ATMEGAA A A     , being

accordance with the estimation in (4.5).

Chapter 6. Implementation of Multicore WSN Node

 85

Since the E²MWSN mulitcore mode is more energy efficient, it can achieve longer

lifetimes than other mode. With a pair of AA Lithium/Iron Disulfide (Li/FeS2) 3000mAh

batteries and the sampling period is 3 minutes, the lifetime of the E²MWSN mulitcore mode is

1270 days. For comparison, the lifetime of single AT91SAM7Sx mode is 382 days, single

ATMEGA1281 mode is 825 days, and the TelosB is 945 days.

6.1.4.2. Reliability

The Mean Time between Failure (MTBF) and Mean Time between Critical Failure

(MTBCF) is calculated to evaluate the reliability of the E²MWSN. The methods used to

analyze the MTBF/MTBCF are MIL-HDBK-217 (US, 1997) and FIDES 2009 (DGA,

September 2010). MIL-HDBK-217 is considered to be the most common used reliability

prediction method, but it has not been revised since 1995 (issue F notice 2). Compare with

MIL-HDBK-217, FIDES is a newer reliability assessment method. The FIDES can take into

consideration new technologies, so the FIDES is more accurate with the new components,

such as Commercial off-the-shelf (COTS) components. Therefore, if manufacturer provides

the FIT data of component, we will use it first. Otherwise, if the component is COTS such as

microcontroller, we will use FIDES method. Finally, the rest parts will be analyzed by MIL-

HDBK-217 method.

Here, each core and related external components such as power supply unit, oscillator,

decoupling capacitor etc. are combined together to calculate. The Failures in Time Failure

Rate in Parts per Billion Hours (FIT) of each core are listed as following:

Table 6-5 FIT of Each Core in the E²MWSN*

Core FIT

ATMEGA1281 48.07

AT91SAM7Sx 58.93

IGLOO 22.39

*The raw MTBF or FIT data is taken from manufacturers (Atmel-Corporation, 2012c; Kemet, 2012; Linear, 2009;

Microsemi-Corporation, 2011; Onsemi, 2012).

Because single ATMEGA1281 mode and single AT91SAM7Sx mode do not have

redundancy, so the MTBF and MTBCF of these two modes are the same. However, in

AT91SAM7Sx plus ATMEGA1281mode, AT91SAM7Sx and ATMEGA1281 is parallel

backup of each other. So the MTBCF will much bigger than MTBF in this mode. The

MTBF/MTBCF of three work modes is listed as following:

Chapter 6. Implementation of Multicore WSN Node

 86

Table 6-6 MTBF/MTBCF of Each E²MWSN Operation Mode

Operation Mode
Overall MTBF/MTBCF

MTBF MTBCF

single ATMEGA1281 1.42E+07 1.42E+07

single AT91SAM7Sx 1.23E+07 1.23E+07

AT91SAM7Sx plus ATMEGA1281 7.73E+06 4.47E+07

From Table 6-6, we can know that the AT91SAM7Sx plus ATMEGA1281 mode is the

highest reliable mode among these three works modes. The MTBCF of this mode is 4.47E+07

hour, over 5000 years.

As mentioned in Figure 2-4 and 2.2.1.6, the MTBF/MTBCF is the failure rate (bottom of

the bathtub curve) of core components, and it is not the MTBF/MTBCF of the WSN node

board. It is also not the product lifetime of WSN node.

6.2. iLive: High Reliability and Low cost Multicore WSN

Node

6.2.1. General Overview

ILive is a simple and cheap instance of multicore WSN architecture. The objective of

iLive is to implement a low cost and high reliable multicore WSN node for environment data

collection and precision agriculture applications. It is a dissymmetric two cores architecture.

The Auxiliary Core is removed. Figure 6-5 shows the block diagram of iLive.

Main App Core
ATMEGA1281

Sensor

Input

FD & FR Core

NanoRisc

HSDTVI

Sensor

Figure 6-5 Block diagram of iLive

The Main App Core in iLive is a low power 8-bit RISC ATMEGA1281. The FD & FR

Core in iLive is an ultra-low power 4-bit RISC NanoRisc. The FD & FR Core runs as a

Chapter 6. Implementation of Multicore WSN Node

 87

monitor of ATMEGA1281. If it detected faults in the ATMEGA1281, it can generate reset

signal for ATMEGA1281 or directly power off ATMEGA1281 when necessary to fix most of

faults. Moreover, the NanoRisc consumes only one percent of energy of Main App Core, so it

can great help iLive to archive longer lifetime when iLive work in Sleep &Wakeup mode.

6.2.2. Hardware Architecture

The Figure 6-6 presents the hardware architecture of iLive. In order to ease the

development of environment data collection and precision agriculture application, iLive has

two types of soil moisture probes: watermark sensor and decagon sensor. It can directly

support four Watermark sensors and three Decagon sensors without adapter board. It

integrates on board one air temperature sensor, one air humidity sensor and one light sensor

based on I²C bus. It has a UART port, which can directly support USB-to-Serial converter

cable to connect with a PC.

ATMEGA

1281

On Board

I²C Sensor

iLive

I²C

Decagon Soil

Moisture Sensor

Probe

I²C

Bridge

Watermark Soil

Moisture Sensor

Probe

DeSoil BatV

WmSoil

PSU

VBAT

NanoRisc

Voltage

AVREn

PowerCtl

HSDTVI

USB_Serial UARTUSB

Sensors
LED[0..1]

JTAG for

AVR
JTAG

LED

HSDTVI

Figure 6-6 Hardware Architecture of the iLive

The ATMEGA1281 core in iLive is the same one in the E²MWSN, which has 128-Kbyte

of flash program memory, 8-Kbyte of static RAM and running at 8MHz. The NanoRisc is an

ultra-low power 4-bit microcontroller coming in a small 8-pin SO package and working up to

0.4 MIPS. It consumes only 5.8 µA in active mode and 3.3 µA in standby mode. On the

contrary, ATMEGA1281 need 500 µA in active mode and 130 µA in standby mode (Atmel-

Corporation, 2012b). Base on the ultra-low power feature of NanoRisc, it can greatly help to

improve the lifetime of iLive when iLive work in Sleep &Wakeup mode. Moreover, it

requires no external component, so it is very easy to be integrated in iLive. The NanoRisc

contains the equivalent of 8 kB of Flash memory and a RC oscillator, which is configurable to

oscillate from 32 to 800 kHz. It also has an integrated 4-bit ADC, a power-on reset, watchdog

timer, 10-bit up/down counter, PWM and several clock functions. It has a sleep counter reset

allowing automatic wake-up from sleep mode. It is designed for use in battery-operated and

Chapter 6. Implementation of Multicore WSN Node

 88

field-powered applications requiring an extended lifetime. A high integration level makes it

an ideal choice for cost sensitive applications.

Figure 6-7shows the implemented board of iLive.

U
S

B

JTAG

W
at

er
m

ar
k
1

W
at

er
m

ar
k
2

W
at

er
m

ar
k
3

W
at

er
m

ar
k
4

Decagon1

Decagon2

ATMEGA

1281

Extend

Port

Sensor

Decagon3

NanoRisc

Figure 6-7 Circuit Board of iLive

6.2.3. End-Device Sleep & Wakeup Work Mode

The End-Device iLive node has three running modes: Deep sleep mode, Sleep mode and

Active mode. In Active mode, the AVR RISC of iLive will gather the sensor data and transfer

data to coordinator through IEEE802.15.4 wireless access media. In Sleep mode, the AVR

RISC will power off sensors and RF components, and remain in sleep mode to decrease the

power consumption. In deep sleep mode, the AVR RISC will also be powered off to further

decrease the total power consumption of iLive. Thess features enable iLive achieve a very

long battery lifetime.

Figure 6-8 shows the timing diagram of iLive. Every time iLive be connected with power

supply source, it will continuously power on AVR for ON

InitT . During this period, the iLive will

switch only between Active mode (remain for ActiveT) and Sleep mode (remain for
SleepT).

Therefore, user can use JTAG or USB-to-Serial Convert cable to upgrade the firmware or

middleware of iLive without meeting power fail problem.

Chapter 6. Implementation of Multicore WSN Node

 89

ON

InitT
OFF

DeepsleepT OFF

DeepsleepT

SleepT ActiveT

ON

NormalT ON

NormalT

ON

NormalT

Figure 6-8 Timing Diagram of iLive

After ON

InitT , iLive will switch to deep sleep mode for OFF

DeepsleepT to save the energy. Because

the AVR is powered off, so iLive will not response to any event, such as JTAG, Serial port,

RF, etc.

When iLive will be powered on AVR again for ON

NormalT . The ON

NormalT running mode of iLive

is similar as in ON

InitT , iLive will switch between Active mode (remain for ActiveT) and Sleep

mode (remain for
SleepT). The OFF

DeepsleepT and ON

NormalT form the Sleep & Wakeup loop of iLive.

Table 6-7 provides the default timing parameters of iLive.

Table 6-7 Default Timing Parameters of iLive

Parameter Name Value Modification Comment

ON

InitT 15 min Fixed

OFF

DeepsleepT 1 Hour Fixed

ON

NormalT 1 min Fixed

SleepT 5 sec Define by Middleware

ActiveT 3 sec Related to the Sensor type and count

Chapter 6. Implementation of Multicore WSN Node

 90

6.2.4. Key Features

The main features of iLive are following:

 Ultra-low energy consumption, 2 AA standard batteries for 5 years*;

 Dimension 76mm*40mm

 4 Watermark sensors

 3 Decagon sensors

 1 temperature sensor

 1 air humidity sensor

 1 light sensor

 1 RS232/USB slave port

 IEEE802.15.4 ZigBee wireless access medium.

* 1 sample per day with 4 watermark sensors

6.2.5. Performance

6.2.5.1. Power Consumption

To evaluate the power consumption of the iLive, the total running current of iLive is

measured as shown by in the Figure 6-9, similar to the Figure 6-4.

PSUmA

iLive
Devices

+3.0V NanoRisc
ATMEGA

1281

Figure 6-9 Measure Schematics of the iLive

Chapter 6. Implementation of Multicore WSN Node

 91

The current of the iLive is also measured when the WSN node handles sensing, signal

processing, data storage, and wireless communication task independently. The results are

recorded in the Table 6-8 as follow.

Table 6-8 Task Resource Required of iLive

Task
Resource Required Energy

Consumption(µJ) Current Time Used

Sensing 15.9mA 900ms 42795

Signal Processing 9.9mA 268ms 7919

Data Storage 16.3mA 10.1ms 494

Wireless Communication 21.8mA 140ms 9156

Sleep 1µA 178682ms* 536

Total 60900

*Sleep time is determined by sample frequency. In this dissertation the sample frequency is 3 minutes per sample,

which is the same as the TelosB one(J. Polastre et al., 2004).

The total power consumption of iLive can be calculated by (4.3), we can get:

   60900iLiveA J  , (6.4)

The result is slightly bigger than  91 7 1281

M

AT SAM Sx ATMEGAA 
in (6.3). With a pair of AA

Lithium/Iron Disulfide (Li/FeS2) 3000mAh batteries and the sampling frequency is once

every 3 minutes, the lifetime of iLive is 1108 days, only 12.76% less than the E²MWSN.

However, iLive is much cheaper than the E²MWSN, so this result is acceptable.

6.2.5.2. Reliability

The FIT of NanoRisc is calculated based on datasheet of NanoRisc and FIDES 2009

(ALD, 2012; DGA, September 2010). The FIT of ATMEGA1281 and NanoRisc combine

with related external components are listed as follow:

Table 6-9 FIT of each core in the iLive*

Core FIT

ATMEGA1281 48.07

NanoRisc 13.09

*The raw MTBF or FIT data is taken from manufacturers (Atmel-Corporation, 2012c; Kemet, 2012; Linear, 2009).

From Table 6-9, we can get MTBF of iLive is 1.64E+07 hours or 1866 years. Because

iLive does not have redundancy core, so the MTBF and MTBCF of iLive are the same value.

Chapter 6. Implementation of Multicore WSN Node

 92

Even the MTBCF of iLive is smaller than the E²MWSN, it still big enough to fulfill the

requirement of most applications.

As mentioned in Figure 2-4 and 2.2.1.6, the MTBF/MTBCF is the failure rate (bottom of

the bathtub curve) of core components, and it is not the MTBF/MTBCF of the WSN node

board. It is also not the product lifetime of WSN node.

6.3. SIS: High Reliability Sensor Node in Smart Irrigation

System

6.3.1. General Overview

The Smart Irrigation System (SIS) is a low cost instance of multicore architecture. The

objective of the SIS is to implement a low cost, user-friendly and high reliable (safety)

multicore WSN node for green house application. It has only two cores of multicore

architecture. The Figure 6-10 shows the block diagram of SIS.

Main App Core
AVR/AVRRF

Sensor

Input

Control

Output

Safe Gate

HSDTVI

I

OC
FD & FR Core

NanoRisc

Sensor

Control

Figure 6-10 Block diagram of the SIS

SIS has two versions: standard version and low price version, the Standard version SIS

has IEEE802.15.4 ZigBee wireless access medium, can join WSN to form a bigger and more

powerful irrigation system. The low price version removes the IEEE802.15.4 ZigBee wireless

access medium in order to archive a lower price. The main different between these two

version is the Main App Core. The Standard version uses the same AVRRF as in iLive, and

low price version only uses a low cost 8-bit AVR microcontroller.

Chapter 6. Implementation of Multicore WSN Node

 93

6.3.2. Hardware Architecture

The Figure 6-11 presents the hardware architecture of the SIS. The SIS supports all

previous sensors related to soil such as watermark sensors, decagon sensors and soil

temperature sensor. It also supports an external UART port as iLive. Furthermore, it supports

an additional buzzer output and a SPDT work mode switch. The buzzer output can generate a

sound to inform user when something wrong with system such as battery voltage is too low,

water pipe has no water, soil sensor is damage etc. SPDT work mode switch will be used to

decide the running mode among Automatic mode, Manual mode, and OFF mode.

Sensors

USB_Serial
USB

AVR

/AVRRF

SIS

Buzzer

Work mode

DIP

1 watermark

sensors

1 decagon

sensor

1 Soil

Temperature

DeSoil

SoilTemp

WmSoil

UART

PSU

FD & FR Core
NanoRisc

AVREn

PowerCtl

HSDTVI

Voltage BatV

HSDTVI

9VBatt

Valve Driver
Elect-

Valve
Safe GateI O

C

LED[0..1]

JTAG for

AVR
JTAG

LED

Electro-valve

Current

SISMode

BZ

EvCur EvCtrl

9VBatt

On Board

I²C Sensor
I²C

Figure 6-11 Hardware Architecture of the SIS

The most important part in the SIS is the electro-valve driver part. Because the miss

control of electro-valve may cause waste of water and sometime flood (safety), so the safety

of electro-valve driver is very important. To achieve high safety, the SIS adds a safe gate

between normal valve driver and Main App Core AVR/AVRRF. The FD & FR Core

NanoRisc will supervise the control process of electro-valve. If any fault is detected during

the control process, NanoRisc will force the electro-valve back to close status. This method

can greatly improve the safety of the SIS and avoid flood when fault appears. The Figure 6-12

shows the photo of the SIS board.

Chapter 6. Implementation of Multicore WSN Node

 94

Figure 6-12 Circuit Board of the SIS

6.3.3. Key Features

The main features of the SIS are:

 Low Energy Consumption (1 year Lifetime)

 Reliability and Safety

 9-Volt Alkaline Battery

 Dimension 79mm*40mm

 1 DC-9V Electro-valve to control flow of irrigate water

 1 Buzzer

 1 Watermark sensors

 1 Decagon sensors

 1 soil temperature sensor

 1 RS232/USB slave port

 Optional

 1 air temperature sensor

 1 air humidity sensor

 1 light sensor

 IEEE802.15.4 ZigBee wireless access medium.

Chapter 6. Implementation of Multicore WSN Node

 95

6.3.4. Performance

6.3.4.1. Power Consumption

To evaluate the power consumption of the SIS, the total running current of the SIS is

measured as shown in the Figure 6-13, similar to the Figure 6-4.

PSUmA

SIS

+9.0V

AVR
/AVRRF

FD & FR Core
NanoRisc

Valve Driver
Elect-

Valve

HSDTVI

Figure 6-13 Measure Schematics of the SIS

The soil moisture condition may affect the work process of the SIS. When soil moisture

is in proper level, after sensing the soil moisture, the SIS will return to sleep without control

the electro-valve. While if soil moisture is dry enough (under fixed threshold), SIS will turn

on the electro-valve for a while to irrigate the garden. Therefore, the power consumption of

the SIS is measured separately based on the normal and dry soil moisture. The results are

recorded in the Table 6-10 and the Table 6-11as follow.

Table 6-10 Task Resource Required of the SIS on Dry Soil *

Task
Resource Required Energy

Consumption(µJ) Current Time Used

Sensing 6.3mA 900ms 51030

Signal Processing 4.6mA 268ms 11095

Data Storage 7.6mA 10.1ms 691

Wireless Communication 15.5mA 140ms 19530

Turn On Electro-valve 650mA 100ms 585000

Turn Off Electro-valve 650mA 100ms 585000

Chapter 6. Implementation of Multicore WSN Node

 96

Task
Resource Required Energy

Consumption(µJ) Current Time Used

Sleep 20µA 178482ms* 32127

Total 1284473

Table 6-11 Task Resource Required of the SIS on Normal Soil

Task
Resource Required Energy

Consumption(µJ) Current Time Used

Sensing 6.3mA 900ms 51030

Signal Processing 4.6mA 268ms 11095

Data Storage 7.6mA 10.1ms 691

Wireless Communication 15.5mA 140ms 19530

Sleep 20µA 178682ms* 32163

Total 114509

*Sleep time is determined by sample frequency. In this dissertation the sample frequency is 3 minutes per sample,

which is the same as the TelosB one(J. Polastre et al., 2004).

The total power consumption of the SIS can be calculated by (4.3), we can get:

  _ 1284473SIS DryA J  , (6.5)

  _ 114509SIS normalA J  . (6.6)

Therefore, if garden need irrigation twice a day, normally the irrigation frequency should

be lower than this, the overall power consumption of SIS will be:

      _ _

2 3 1440 2 3

1440 14
1 8

40
193 4SIS SIS Dry SIS NormalA A A J   

  
     . (6.7)

With a Zinc-Manganese Dioxide (Zn/MnO2) Alkaline 9V 500mAh battery and the

sampling frequency is once every 3 minutes, the lifetime of SIS sensor node will be 283 days.

However, with the same battery, if the sample frequency is lower, the lifetime of SIS will be

longer. If the sample frequency is 10 minutes per sample, the lifetime of SIS will be increase

to 577 days, which can exceed the 1-year lifetime requirement.

6.3.4.2. Reliability

The FIT of AVRRF and NanoRisc combine with related external components are listed

as follow:

Chapter 6. Implementation of Multicore WSN Node

 97

Table 6-12 FIT of Each core in the SIS*

Core FIT

AVRRF 51.70

NanoRisc 13.09

*The raw MTBF or FIT data is taken from manufacturers (Atmel-Corporation, 2012c; Kemet, 2012; Linear, 2009).

From Table 6-12, we can get MTBF of SIS is 1.54E+07 hours or 1762 years, big enough

to fulfill the requirement of greenhouse applications.

Besides, AVRRF and NanoRisc is parallel backup of each other in electro-valve control.

Therefore, the MTBCF of core components in SIS for electro-valve control is 1.48E+15 hours,

1.69E+11 years, which make the SIS especially safe.

As mentioned in Figure 2-4 and 2.2.1.6, the MTBF/MTBCF is the failure rate (bottom of

the bathtub curve) of core components, and it is not the MTBF/MTBCF of the WSN node

board. It is also not the product lifetime of WSN node.

6.4. iLiveEdge: High Reliability and Multi-Support Multicore

WSN Edge Router

6.4.1. General Overview

The iLiveEdge is a variation of original multicore WSN architecture. The objective of the

iLiveEdge is to implement a low cost and high reliable multi-support multicore WSN edge

router for all WSN applications. The iLiveEdge has three cores, the Main App Core in the

iLiveEdge is an AVRRF for local WSN access, the Auxiliary Core in the iLiveEdge is an

AT91SAM7Sx for Internet access, and the FD & FR Core is a NanoRisc. In the iLiveEdge,

AVRRF and AT91SAM7Sx are both always active; they collaborate to work as the bridge of

local WSN and global Internet server. The Figure 6-14 shows the block diagram of the

iLiveEdge.

Chapter 6. Implementation of Multicore WSN Node

 98

Internet App Core

AT91SAM7Sx

WSN App Core

AVRRF

HSDTVI

HSDTVI

FD & FR Core

NanoRisc

Figure 6-14 Block diagram of the iLiveEdge

6.4.2. Hardware Architecture

The Figure 6-15 presents the hardware architecture of the iLiveEdge. The WSN App

Core AVRRF will be the coordinator of local WSN. It exchanges data with other WSN nodes

through IEEE802.15.4. The Internet App Core AT91SAM7Sx supports different methods

such as Ethernet, WiFi, GPRS and 3G for Internet access. The AVRRF and AT91SAM7Sx

will exchange data through an UART. The FD & FR Core NanoRisc will run as a monitor for

both AVRRF and AT91SAM7Sx in order to improve the reliability of the iLiveEdge.

Public Access Part

USB

AT91SAM7Sx

Local WSN Part

WSN Coordinator

AVRRF

Sensors

Local

PC

Internet

Server

On Borad

Sensor
Ethernet

controller
UART

PSU
FD & FR Core

NanoRisc

Eth/WiFi/

GPRS/3G

HSDTVI HSDTVI

PowerCtrl

iLiveEdge

Figure 6-15 Hardware Architecture of the iLiveEdge

The Figure 6-16 shows the photo of the iLiveEdge board.

Chapter 6. Implementation of Multicore WSN Node

 99

Figure 6-16 CircuitBoard of the iLiveEdge

6.4.3. Key Features

The major features of the iLiveEdge are:

 Dimension 95mm*88mm

 1 light sensor

 1 temperature sensor

 1 air humidity sensor

 4 Watermark soil moisture sensors

 1 Decagon soil moisture sensor

 1 RS232 ports

 1 USB slave port

 Multi-Support for Ethernet, WiFi, Bluetooth and GPRS

 IEEE802.15.4 ZigBee wireless access medium

6.4.4. Performance

6.4.4.1. Power Consumption

The power consumption is not the key parameter of the iLiveEdge. For the Local WSN

part in the iLiveEdge is coordinator, normally this part cannot sleep. In order to provide

continuous services, the iLiveEdge requires continuous power supply such as AC-DC on

electricity grid or big rechargeable battery with renewable power generators.

Chapter 6. Implementation of Multicore WSN Node

 100

6.4.4.2. Reliability

The FIT of each core in the iLiveEdge combine with related external components are

listed as follow:

Table 6-13 FIT of Each core in the iLiveEdge*

Core FIT

AVRRF 51.70

NanoRisc 13.09

AT91SAM7Sx 58.93

*The raw MTBF or FIT data is taken from manufacturers (Atmel-Corporation, 2012c; Kemet, 2012; Linear, 2009).

Because the iLiveEdge does not have redundancy core, so the MTBF and MTBCF of the

iLiveEdge are the same. From the Table 6-13, we can get the MTBF of the iLiveEdge is

8.08E+06 hours or 923 years, big enough to fulfill the requirement of most applications.

As mentioned in Figure 2-4 and 2.2.1.6, the MTBF/MTBCF is the failure rate (bottom of

the bathtub curve) of core components, and it is not the MTBF/MTBCF of the WSN node

board. It is also not the product lifetime of WSN node.

6.5. EPER: Highest Performance High Reliability and Multi-

Support Multicore WSN Edge Router

6.5.1. General Overview

The Extend PandaBoad Edge Router EPER is also a variation of original multicore

architecture. It is an upgrade edge router for high performance application. The Internet core

of the iLiveEdge is a 32-bit RISC ARM7 AT91SAM7Sx, which runs at 48 MHz and only has

512-Kbyte of flash program memory and 64-Kbyte static RAM. This core is not powerful

enough; the storage is also not big enough. For some applications such as smart stick, inter

vehicle communication, the edge router is expected to handle multimedia data stream in real-

time. Therefore, we develop a new powerful edge router based on the PandaBoard, which has

a Dual-core 1.2 GHz ARM A9 chip with 1GB RAM. The Figure 6-17shows the block

diagram of the EPER.

Chapter 6. Implementation of Multicore WSN Node

 101

Internet App Core

PandaBoard

WSN App Core

AVRRF

HSDTVI

HSDTVI

FD & FR Core

NanoRisc

Figure 6-17 Block diagram of the EPER

6.5.2. Hardware Architecture

The Figure 6-18 presents the hardware architecture of the EPER. The WSN App Core

AVRRF will be the coordinator of local WSN. It exchanges data with other WSN nodes

through IEEE802.15.4. The Internet App Core is based on the PandaBoard, which supports

different methods such as Ethernet, WiFi, GPRS and 3G for Internet access. The AVRRF and

the PandaBoard will exchange data through an UART. The FD & FR Core NanoRisc will run

as a monitor for both the AVRRF and the PandaBoard in order to improve the reliability of

the EPER.

Chapter 6. Implementation of Multicore WSN Node

 102

PSU

VEXT VBAT

Ext Board For PandaBoard

PandaBoard

AVRRF

NanoRISC

PowerCtl

Coordinator

+3.3V

+5V

HSDTVI

HSDTVI

Internet

ZigBee

Figure 6-18 Hardware Architecture of the EPER

The Figure 6-19 shows the photo of the EPER board.

Figure 6-19 Circuit Board of the EPER

6.5.3. Key Features

The main features of the EPER are:

 High Reliability

Chapter 6. Implementation of Multicore WSN Node

 103

 Highest Performance

 Dual-core 1.2 GHz ARM® Cortex™-A9 MPCore™ with SMP

 1 GB low power DDR2 RAM

 Dimension 114mm*101mm

 1 light sensor

 1 temperature sensor

 1 air humidity sensor

 1x USB 2.0 HS OTG port

 2x USB 2.0 HS Host ports

 1 RS232 ports

 Multi-Support for Ethernet, WiFi, Bluetooth

 IEEE802.15.4 ZigBee wireless access medium

6.5.4. Performance

6.5.4.1. Power Consumption

For the same reason, the power consumption is not the key parameter of the EPER. In

order to provide continuous services, the EPER also need have continuous power supply such

as AC-DC on electricity grid, big rechargeable battery with renewable power generators, etc.

6.5.4.2. Reliability

The FIT of each core in EPER combine with related external components are listed as

following:

Table 6-14 FIT of Each core in EPER*

Core FIT

AVRRF 51.70

NanoRisc 13.09

PandaBoard 420.24

*The raw MTBF or FIT data is taken from manufacturers (Atmel-Corporation, 2012c; Kemet, 2012; Linear, 2009).

Because the EPER does not have redundancy core, so the MTBF and MTBCF of EPER

are the same. From Table 6-14, we can get MTBF of EPER is 2.06E+06 hours or 235 years,

big enough to fulfill the requirement of most applications.

Chapter 6. Implementation of Multicore WSN Node

 104

As mentioned in Figure 2-4 and 2.2.1.6, the MTBF/MTBCF is the failure rate (bottom of

the bathtub curve) of core components, and it is not the MTBF/MTBCF of the WSN node

board. It is also not the product lifetime of WSN node.

6.6. RPiER: Higher Performance High Reliability and Multi-

Support Multicore WSN Edge Router

6.6.1. General Overview

The Raspberry Pi Based Edge Router is also a variation of original multicore architecture.

It is a low cost edge router version comparing with the EPER one. The Internet core of the

RPiER is based on the Raspbery Pi Board, which has a 32-bit 700 MHz ARM1176JZF-S core

(ARM11 family) and 512MB of DRAM. This core is powerful enough to handle most of our

applications. The Figure 6-20 shows the block diagram of the RPiER.

Internet App Core

Raspberry Pi Board

WSN App Core

AVRRF

HSDTVI

HSDTVI

FD & FR Core

NanoRisc

Figure 6-20 Block diagram of the RPiER

6.6.2. Hardware Architecture

The Figure 6-21 presents the hardware architecture of the RPiER. The WSN App Core

AVRRF will be the coordinator of local WSN. It exchanges data with other WSN nodes

Chapter 6. Implementation of Multicore WSN Node

 105

through IEEE802.15.4 wireless access medium. The Internet App Core Raspberry Pi board

supports different methods such as Ethernet, WiFi, GPRS and 3G for Internet access. The

AVRRF and the Raspberry Pi board will exchange data through an UART. The FD & FR

Core NanoRisc will run as a monitor for both the AVRRF and the Raspberry Pi board in order

to improve the reliability of the RPiER.

PSU

VEXT VBAT

Ext Board For RaspberryPi

Internet App Core
Raspberry Pi Board

WSN App Core
AVRRF

NanoRisc

FD & FR Core

PowerCtl

Coordinator

+3.3V

+5V

HSDTVI

HSDTVI

Internet

ZigBee

Figure 6-21 Hardware Architecture of the RPiER

The Figure 6-22 shows the photo of the RPiER board.

Figure 6-22 CircuitBoard of RPiER

6.6.3. Key Features

The major features of the RPiER are:

Chapter 6. Implementation of Multicore WSN Node

 106

 High Reliability

 Higher Performance

 700 MHz ARM1176JZF-S core (ARM11 family)

 256/512MB low power DDR2 RAM

 Dimension 86mm*54mm

 1 light sensor

 1 air temperature sensor

 1 air humidity sensor

 2x USB 2.0 HS Host ports

 SD / MMC / SDIO card slot

 Composite RCA (PAL & NTSC), HDMI, LCD Panels via DSI

 Multi-Support for Ethernet, WiFi, Bluetooth

 IEEE802.15.4 ZigBee wireless access medium

6.6.4. Performance

6.6.4.1. Power Consumption

For the same reason, the power consumption is not the key parameter of the RPiER. In

order to provide continuous services, the RPiER also requires continuous power supply such

as AC-DC on electricity grid or big rechargeable battery with renewable power generators.

6.6.4.2. Reliability

The FIT of each core in the RPiER combine with related external components are listed

as following:

Table 6-15 FIT of Each core in RPiER*

Core FIT

AVRRF 51.70

NanoRisc 13.09

Raspberry Pi 249.94

*The raw MTBF or FIT data is taken from manufacturers (Atmel-Corporation, 2012c; Kemet, 2012; Linear, 2009).

Because the RPiER does not have redundancy core, so the MTBF and MTBCF of the

RPiER are the same. From Table 6-15, we can get the MTBF of the RPiER is 3.18E+06 hours

or 363 years, big enough to fulfill the requirement of most applications.

Chapter 6. Implementation of Multicore WSN Node

 107

As mentioned in Figure 2-4 and 2.2.1.6, the MTBF/MTBCF is the failure rate (bottom of

the bathtub curve) of core components, and it is not the MTBF/MTBCF of the WSN node

board. It is also not the product lifetime of WSN node.

6.7. Related Projects

Based on the previous WSN nodes, SMIR team has carried out several real world IoT and

WoT projects. The Table 6-16 provides a list of these projects.

Table 6-16 Related Ongoing IWoT Real World Projects in SMIR@LIMOS

Index Project Field Project Name Project Type Comment

1 Precision Agriculture iLive, MiLive
Scientific

Cooperation Project

2 Green House
Smart Irrigation

System
Innovative Project

3 Smart Care
Smart Environment

Explorer Stick
Innovative Project

We will discuss each project in following parts.

6.7.1. Precision Agriculture

There mainly two types of Precision Agriculture platform in our group: scalar WSN

platform and multimedia WSN platform.

6.7.1.1. Scalar WSN platform: iLive

As mentioned before, the iLive board is a scalar WSN node dedicated to environment

data collection and precision agriculture. The iLive directly supports many environmental

sensors: 4 Watermark soil moisture sensors, 3 Decagon soil moisture sensors, 1 air

temperature sensor, 1 soil temperature sensor, 1 air humidity sensor and 1 light sensor. It has

an ultra low power nano-controller and an 8-bit RISC AVR microprocessor. The iLive node is

a standard WSN node having embedded IEEE802.15.4 transceiver on board. A set of the

iLive nodes can work together and build a scalar WSN. The iLive has a RS232/USB slave

port which may be used to connect to a PC or a Raspberry Pi Board. The iLive has an

extension connector having I²C, SPI, ADC and GPIO interfaces which can be used to add

specific sensors or devices when necessary.

Chapter 6. Implementation of Multicore WSN Node

 108

You also can visit our long-term the iLive online demo on http://edss.isima.fr/. The demo

has been continuously operating for more than one year. The login username and password

are both "demo".

Following are some photos related to the iLive platform.

Figure 6-23 Outdoor Experiment in ISIMA Garden

Figure 6-24 Real world Experiment in Montoldre (Cooperation with Irstea)

http://edss.isima.fr/

Chapter 6. Implementation of Multicore WSN Node

 109

6.7.1.2. Multimedia WSN platform: MiLive

The MiLive is a multicore multimedia WSN node. It is built around 2 boards (size=

76mm*40mm): scalar WSN node (iLive) and Wireless Multimedia node based on credit card

format Raspberry Pi (MWiFi).

Figure 6-25 shows the heterogeneous architecture of the MiLive.

MWiFi
Camera

Uart

Raspberry Pi

WiFi

On Board I2C

Sensor

iLive
I2C

Decagon Soil

Moisture Sensor

Probe

Extend Port

I2C

Bridge

JTAG for

AVRRF

WaterMarker Soil

Moisture Sensor

Probe

AVRRF
DeSoil

Soil Temperature

Sensor
SoilTemp

WmSoil

PSU

VEXT VBAT

NanoRisc

AVREn

ARMEn
VDD

VDD

Com Bus

Figure 6-25 Heterogeneous Architecture of the MiLive

You can visit the demo for the MiLive platform on http://edss.isima.fr/demoforall/. The

login username and password are also both "demo".

Following are some photos related to the MiLive platform.

http://edss.isima.fr/demoforall/

Chapter 6. Implementation of Multicore WSN Node

 110

Decagon1

Decagon2

Decagon3

Antenna

Camera

&Microphone

WiFi

Sensor

W
at

er
m

ar
k
1

W
at

er
m

ar
k
2

W
at

er
m

ar
k
3

W
at

er
m

ar
k
4

(a)iLive

(b) MWiFi

Figure 6-26 Circuit Board of the MiLive

Figure 6-27 Demo Web page of the MiLive platform

6.7.2. Smart Irrigation System

The SIS (Smart Irrigation System) is a new irrigation technology based on remotely

configurable wireless embedded system. It is a total solution including from the low-cost

reliable sensor board to the user-friendly user interface.

It provides with a cooperative and automotive irrigating mechanism that helps less-

knowledge planters growing plants and save water resource. It is provided with the reliable

multi-support hardware components.

Chapter 6. Implementation of Multicore WSN Node

 111

With the hardware supports, the SIS can be customized to adapt to different network

scenarios such as small gardens, greenhouses, football fields and large farms.

Currently, the integration interface of the SIS is still in the development stage, but a

simple demo is available on http://edss.isima.fr/sites/smir/sis. You can try to control remotely

the watering devices through Internet.

Following are some photos related to the SIS platform.

Figure 6-28 Demo Web page of the SIS Platform

Figure 6-29 Real World Long Term Online Demo of the SIS Platform

http://edss.isima.fr/sites/smir/sis

Chapter 6. Implementation of Multicore WSN Node

 112

6.7.3. Smart Environment Explorer Stick

The Smart Environment Explorer Stick (SEES) is project to develop an enhanced smart

white cane, which assists the Visually Impaired Person or People (VIP)’s navigation. The

active multi-sensor context-aware concept is adopted to be implemented in the SEES to help

the VIP to move safely and easily in any places in the world (indoor or outdoor).

The Figure 6-30 shows the architecture of SEE-stick. The SEE-stick will use multicore

WSN architecture, which has two cores.

One core is the Raspberry Pi board, which will work as CPU (central processing unit) to

handle the complex tasks. The other core is an 8-bit RISC microprocessor AVRRF, which

will handle some scalar sensors. The two cores connect each other through a Hardware

Support Debug Test and Validate Interface (HSDTVI).

Through HSDTVI, the Raspberry Pi board and AVRRF can mutually check their running

status in real-time. When any critical fault occurred in one of two cores, the other core can

detect it, and handle it with appropriate actions, which can help SEE-stick to recover from

fault or generate alarm to inform VIP to stay in safe state.

Intelligent

Transportation System

HSDTVI

Figure 6-30 Block diagram of the SEE-stick

Besides, the SEE-stick supports many wireless access media, such as WiFi, 3G, and IEEE

802.15.4 etc. The IEEE 802.15.4 RF part, supported by AVRRF core, will provide the SEE-

stick to access local ITS ‘Intelligent Transportation System’, which can greatly help the SEE-

stick to provide more accurate and reliable mobility cues.

Chapter 6. Implementation of Multicore WSN Node

 113

The SEE-stick will run in a real word, unpredictable, physical environment, which makes

faults inevitable. In order to provide more reliable outputs (mobility cues), even in the

presence of faults, we have to improve dependable of our SEE-stick in every part. We expect

that the checking and recovering mechanism on multicore and multi-support wireless can

greatly help to build a robust SEE-stick.

Currently, the SEE-stick is still in development stage, but there is a remote monitoring

demo available on http://edss.isima.fr/sites/smir/sees. You can see the last navigation of SEE-

stick by this demo.

Following are some photos related to the SEE-Stick.

Figure 6-31 SEE-Stick Prototype

http://edss.isima.fr/sites/smir/sees

Chapter 6. Implementation of Multicore WSN Node

 114

Figure 6-32 SEE-Stick Remote Monitoring Demo Web page

6.8. Summary

We develop, test and validate several WSN nodes based on multicore architecture. The

Table 6-17 provides the key features of all multicore WSN nodes mentioned before.

Table 6-17 Key Features of Different Multicore WSN Nodes

Index Feature Name
Multicore WSN Nodes

E²MWSN iLive SIS iLiveEdge EPER RPiER

1 IEEE802.15.4 ★ ★ ★ ★ ★ ★

2 Air Temperature ★ ★ ★ ★ ★ ★

3 Air Humidity ★ ★ ★ ★ ★ ★

4 Light Sensor ★ ★ ★ ★ ★ ★

5 UART ★ ★ ★ ★ ★ ★

6 Decagon Soil
Moisture

★ ★ ★

7 Watermark Soil
Moisture

 ★ ★

8 Soil Temperature ★ ★

Chapter 6. Implementation of Multicore WSN Node

 115

Index Feature Name
Multicore WSN Nodes

E²MWSN iLive SIS iLiveEdge EPER RPiER

9 Elector-Valve ★

10 Passive Infrared
Type Motion

Detector
★

11 SD Card ★ ★ ★

12 USB Host Port ★ ★

13 USB Client Port ★ ★

14 Ethernet ★ ★ ★

15 WiFi ★ ★ ★

16 Bluetooth ★ ★ ★

17 GPRS Modem ★ ★ ★

18 3G Modem ★ ★ ★

19 Camera ★ ★

20 Microphone ★ ★

The Table 6-18 provides the reliability of all multicore WSN nodes mentioned before.

From the Table 6-18 we can find that the reliability of multicore WSN node is very good, the

MTBF/MTBCF of nodes can up to 5000 years. Even for complex edge router, the

MTBF/MTBCF of ER is also above 200 years, big enough for most of the applications.

As mentioned in Figure 2-4 and 2.2.1.6, the MTBF/MTBCF is the failure rate (bottom of

the bathtub curve) of core components, and it is not the MTBF/MTBCF of the WSN node

board. It is also not the product lifetime of WSN node.

Table 6-18 Reliability of Different Multicore WSN Nodes

Index
Multicore WSN

Nodes

FIT of Cores MTBF
(Hours)

MTBF
(Years)

MTBCF
(Hours)

MTBCF
(Years) AppCore AuxCore FD&FRCore

1 E²MWSN 48.07 58.93 22.39 7.73E+06 882 4.47E+07 5099

2 iLive 48.07 13.09 1.64E+07 1866 1.64E+07 1866

3 SIS 51.70 13.09 1.54E+07 1762 1.54E+07 1762

4 iLiveEdge 51.70 58.93 13.09 8.08E+06 923 8.08E+06 923

5 EPER 51.70 420.24 13.09 2.06E+06 235 2.06E+06 235

6 RPiER 51.70 249.94 13.09 3.18E+06 363 3.18E+06 363

Chapter 7. Conclusion and Ongoing Work

 117

Chapter 7. Conclusion and Ongoing Work

7.1. Conclusion

In this dissertation, we have presented a multicore architecture for the design of fault

tolerance wireless sensor networks. By introducing NanoRisc, HSDTVI, and standby sparing

fault tolerant mechanism, multicore architecture can highly improve the reliability of WSN

without significantly increasing cost and complexity. Multicore architecture is capable of

addressing the dependability and lifetime requirements of wireless sensor networks. The

developed hardware platforms and the real-world applications have already validated the

effectively of our multicore WSN architecture.

We also developed a design process (High Reliability Design Process dedicated to High

Resource Constraint Embedded System: HRDP) based on multicore architecture to ease the

development of high reliable embedded product. By applying HRDP in our real-world

projects, we show that HRDP can help us in every design stage: architecture design, early

validation, debugging and testing.

To validate the flexibility of our multicore architecture, we developed several hardware

platforms, such as E²MWSN, iLive, SIS, iLiveEdge, EPER and RPiER. These hardware

platforms are instances of multicore architecture with varying degrees of hardware complexity.

We show that the multicore architecture not only improves WSN node lifetime and robustness

but also enables to meet diverse application domains by exploring context-aware approach

(resource-aware) and local and distributed collaborative processing. These platforms have

proven themselves both in theory and through deployment in long-term, battery operated real-

world applications.

WSN is an emergent and multidisciplinary science, which is a very active and

competitive research field, and is considered as a key technology of the 21
st
 century . In spite

of its unlimited potential applications, currently it still works in non-mission critical

application. The main obstacle of applying WSN in mission critical applications, such as

smart care and real-time industrial process control is that those applications demand

extremely high levels of reliability and safety. The multicore architecture presented in the

dissertation is ready to meet the demands of real-world mission critical applications. We hope

that multicore architecture will contribute significantly to the progress of IoT and WoT

evolution.

Chapter 7. Conclusion and Ongoing Work

 118

7.2. Next Generation WSN node

7.2.1. Next Generation Multicore SoC for WSN node

In order to meet different requirements of different applications, we implemented many

hardware boards, such as E²MWSN, iLive, SIS, iLiveEdge, EPER and RPiER. These COST

solutions increase the complexity of both implementation and maintenance. The cost and size

of COST solution are also not optimal and flexible, which enable to implement easily black

box concept. Therefore, for the next generation WSN node, we suggest to implement WSN

node based on multicore SoC chip. This section will discuss the black box concept and some

technical schemes related to Multicore SoC chip, which is particularly optimized for WSN

platform.

7.2.1.1. Black box concept

As we mentioned before, in current COST solution, we need to implement many boards

for different projects, even these implementations adopt similar multicore architectures. We

want to simplify the new design of WSN based on SoC chip. Therefore, we propose to

implement black box concept in the SoC chip.

The black box concept means that the SoC chip will be highly configurable. It will be

very flexible that it can be used in different application with only one chip. The user just

needs download different configuration firmwares, the chip will change the running mode to

meet the application requirements.

The IoT applications are unlimited, so it is very important to ease the development of a

new project. Following black box concept, we can easily meet multi-project requirements to

decrease the Time to Market (TTM), lower the total cost, reuse the technical resource,

minimize the development cost for the new project, and ease the stock management.

Besides, if one application core is suffering from permanent fault, it is possible to

reconfigure the SoC to fix some permanent faults remotely. This can also greatly ease the

maintenance.

The Figure 7-1 shows the architecture of next generation multicore SoC for WSN nodes.

It’s similar as the COST multicore WSN architecture presented in the Figure 4-2. The

different between the Figure 7-1 and the Figure 4-2 is that in the SoC the key components will

have redundancy to enable the fault tolerant. These redundant cores will be active by the

configuration. If they are not active, the redundant cores will be totally power off, to lower the

total energy consumption.

Chapter 7. Conclusion and Ongoing Work

 119

Safe Gate
Input

Switch

FD & FR

Core

Auxiliary Core

Main App Core
Main App Core

Sensor

Input

Control

Output

FD & FR

Core
Safe Gate

Auxiliary Core

Sensor

Input

Control

Output

Input

Switch

HSDTVI

HSDTVI

I

O

C

O

I

I

OC

Sensor Control

SoC

Figure 7-1 Architecture of Next Generation Multicore SoC

7.2.1.2. Chosen of Core

The cores in the Figure 7-1 have several choices: Uniform NanoRisc Array, Different cell

(4-bit, 8-bit, 16-bit, 32-bit), or FSMOS Modules.

7.2.1.2.1. Uniform NanoRisc Array

In this method, the core processor of SoC is consisting by an array of NanoRisc. This

method eases the implementation of SoC, but increases the complexity of the configuration.

The software will also need to divide into pieces in order to run as distributed parts. The

minimum power control cell is a NanoRisc, so the power efficiency will be very high. The

architecture of this method is shown in the Figure 7-2.

Chapter 7. Conclusion and Ongoing Work

 120

Safe Gate
Input

Switch Safe Gate
Input

Switch
I

O

O

I

I

O

Sensor Control

SoC

C C

Nano

Risc

Nano

Risc

Nano

Risc

Nano

Risc

Nano

Risc

Nano

Risc

Nano

Risc

Nano

Risc

...

...

...

...

Figure 7-2 Uniform NanoRisc based on the Multicore SoC

7.2.1.2.2. Different cells (4-bit, 8-bit, 16-bit, 32-bit)

In this method, the core processor of the SoC is consisting by several different RISC

cores (4-bit, 8-bit, 16-bit and 32-bit). This method eases the implementation and the

configuration of SoC. The software can reuse current COST version. However, the power

control cell can be up to a 32-bit RISC, so the power efficiency will be not very high. The

architecture of this method is shown in the Figure 7-3.

Chapter 7. Conclusion and Ongoing Work

 121

Safe Gate
Input

Switch Safe Gate
Input

Switch
I

O

O

I

I

O

Sensor Control

SoC

C C

Nano

Risc

8-bit

Risc

16-bit

Risc

32-bit

Risc

Nano

Risc

8-bit

Risc

16-bit

Risc

32-bit

Risc

...

...

...

...

Figure 7-3 Different Common Risc based on the Multicore SoC

7.2.1.2.3. FSMOS Modules

In this method, the core processor of SoC is consisting by an array of special FSMOS

modules (Page 124). This method can optimize both the hardware and software of WSN node.

In this case, the hardware design will closely combine with the software design. Therefore,

this technique will achieve the best power efficiency. The architecture of this method is

shown in the Figure 7-4.

Chapter 7. Conclusion and Ongoing Work

 122

Safe Gate
Input

Switch Safe Gate
Input

Switch
I

O

O

I

I

O

Sensor Control

SoC

C C

Module_1

... ...

Module_1_bak

Module_2 Module_2_bak

Module_3 Module_3_bak

Module_N Module_N_bak

Module_4 Module_4_bak

Figure 7-4 FSMOS Modules based the Multicore SoC

7.2.1.2.4. Summary

Table 7-1Table 6-16 provides a summary list of different multicore architectures.

Table 7-1 Different Core Architecture of Multicore SoC

Core Architecture
SoC

Implementation
Software

Development
Energy

Efficient
Generalize Comment

Uniform NanoRisc
Array

Easy Hard High High

Different cell (4-bit,
8-bit, 16-bit, 32-bit)

Easy Easy Low High

FSMOS Modules Hard
Very
High

Low

7.2.1.3. Intra-Chip Multicore Interconnection Networks

The Intra-Chip Multicore Interconnection Networks is the key issue of Multicore SoC. To

enable the run-time fault detection and fault recovery, the network has to support HSDTVI.

To ease the connection between the different cores, the network should also directly support

Multi Point to Point (MP2P) communication, Point to Multi Point (P2MP) communication

and Point-to-Point (P2P) communication.

Chapter 7. Conclusion and Ongoing Work

 123

In order to achieve MP2P, P2MP and P2P communication mode, the Intra-Chip

Multicore Interconnection Networks needs to be redesigned. The design should consider all

the aspect such as speed, memory requirement, energy consuming, connection cost, and

robustness.

Safe Gate
Input

Switch Safe Gate
Input

Switch
I O

Sensor Control

SoC

Input

Switch
IEEE

802.15.4

Input

Switch
Other

Devices

Network for Devices

Module

Cell

Module

Cell

Module

Cell

Module

Cell

Module

Cell

Module

Cell

Module

Cell

Module

Cell

N
et

w
o

rk
 f

o
r

C
o

re
s

Safe Gate
PMU

VBAT VBAK

EN
EN

EN EN

ENEN

EN

EN EN

EN

ENEN

Figure 7-5 Intra-Chip Multicore Interconnection Networks

The Figure 7-5 proposed an Intra-Chip interconnection network with two ranks: Network

for Cores (connects all the core modules) and Network for Devices (connects cores with all

devices). Besides, the Off-Chip communication of Multicore SoC should also support

common interface such as I²C, SPI, and UART.

7.2.1.4. Integrated Devices

In order to support robust IEEE 802.15.4 connection, the SoC can directly support two

independent IEEE 802.15.4 transceivers for high redundancy.

The SoC also needs to integrate all the necessary sensor interface devices for different

type of sensors such as GPS on UART port, Decagon soil moisture Sensor on ADC port, and

watermark soil moisture Sensor on Timer Port. The device must support smart device running

Chapter 7. Conclusion and Ongoing Work

 124

mode, which means they can run independent and detect event while SoC core node is in

sleep mode.

We also need to add special multi HSDTVI devices to enable the run-time fault detection

and fault recovery.

7.2.1.5. Constant voltage core and non-constant voltage core

The power supply requirements of different core and different devices are also different.

In order to make full use of the high input range of non-constant voltage core that can directly

connect to battery, The Multicore SoC should support both constant voltage power input and

non-constant power input.

The constant voltage core or modules such as ADC can use the constant power input,

while the non-constant voltage core can directly use the battery voltage to go a step further to

decrease the power consumption.

7.2.1.6. Summary

The Multicore SoC is specially optimized for WSN sensor node; it can make full use of

the advance of multicore architecture. Through black box concept, it can support different

requirements with one chip, decrease the Time to Market (TTM), lower the total cost, reuse

the technical resource, minimize the development cost for the new project, and ease the stock

management. By using SoC approach, we can further decrease the size of the WSN nodes.

Higher integration of SoC need less extra components, so it can help to develop lower unit

price, smaller form factor and higher reliability WSN node.

7.2.2. Finite State Machine OS: FSMOS

Current existing OS such as Contiki and TinyOS are designed for unicore system. They

are not optimized for multicore architecture. Thus, those OS cannot make full use of the

advance of multicore architecture. The application needs to handle the inter-communication

between different cores from scratch; this will increase complexity and will duplicate work

for every application.

In order to ease the implementation and avoid duplicate work, we will develop a native

real-time operating system integrated with all the basic functionality related to every aspect of

multicore architecture, such as basic hardware driver, standard communication stack, resource

management, inter-core communication, power management, and remote process

communication. This OS is based on Finite State Machine, so it has been named as Finite

State Machine OS (FSMOS). It will be released with user-friendly tools for debugging, test

and validation. The section will discuss the concept and some key features of FSMOS.

Chapter 7. Conclusion and Ongoing Work

 125

7.2.2.1. FSMOS Concept

FSMOS is based on following concepts:

 The whole system can be divided into several modules. Each module should have it

own Local State. Finite State Machine can describe their running modes.

 FSMOS as a whole big module also has several Global States

 Those Local State and Global States can be easily used in Auto Fault Detection and

Fault Recovery

 FSMOS Directly supports Multicore Architecture, provide all the basic multicore

system service, such as inter-core communication, multicore power management, and

remote process communication.

 FSMOS directly supports IEEE802.15.4, eases the development of WSN application.

 The main source code of FSMOS is C Language, and these codes should directly

support cross compiler and can run on different platforms such as AVR, ARM7,

ARM11 and PC (WIN and Ubuntu).

 Based on FSMOS, an application can be ported through different platforms without

modification.

7.2.2.2. FSMOS High-level Architecture

The high-level architecture of FSMOS is presented on the Figure 7-6. The FSMOS is

separated into a number of logical modules each provides a set of APIs accessible for the user.

Chapter 7. Conclusion and Ongoing Work

 126

Network Layer(NWK)

RF Physical Layer(PHY)

Hardware Abstraction
Layer(HAL)

Middleware Abstraction Layer

Sy
st

em
 S

e
rv

ic
es

A
pp

li
c
at

io
n

Se
r
vi

ce
s

iLive

Application

Hardware Driver

MiLive PC/Win PC/Ubuntu

FSMOS

Figure 7-6 Cross Platform of the FSMOS Software Architecture

 Hardware Abstraction Layer (HAL) provides basic hardware dependent platform

independent functionality, like hardware timer, sleep control, GPIO access for the

radio interface

 Radio physical layer (PHY) provides functions for radio transceiver access. Some of

them are accessible only by the network layer (request to send data, data indication);

some of them can be used from the application (channel selection, random number

generation, energy detection, etc.)

 Network layer (NWK) provides network stack functionality, like Frame

Transmission, Frame Reception, and Acknowledgement, Routing, Security, etc.

 System services provide common functions for all layers, which are necessary for

normal stack operation. System services include basic types and definitions, software

timers, default configuration parameters, encryption module access, etc.

 Application services include modules that are not required by the stack, but are

common for most applications, such as Over-The-Air upgrade (OTA), etc.

 Middleware Abstraction Layer provides higher abstraction interface for application

development, like node configuration, etc.

 Hardware Driver provides basic hardware dependent platform dependent

functionality, like hardware timer, sleep control, GPIO access for the radio interface.

The driver included at least AVR, ARM7, ARM11 and PC platform.

Chapter 7. Conclusion and Ongoing Work

 127

7.2.2.3. Remote Modules Based on Remote Processor Call

Debug, test and validate WSN application is still a difficult job. The JTAG tool can help

to locate the internal information of WSN node. However, the JTAG tool is a little bit

expensive and requires more time for learning how to use it. The tool can only debug one

WSN node. If considering the distributed information in a set of WSN nodes, this task will be

an even more difficult problem.

There are many methods which have been developed to ease the implementation of WSN

application, such as Java Virtual Machine (JVM) (Xing, Xunxing, et al., 2012), Middleware

(Xing, Kun Mean, Honglin, & Chengcheng, 2012; Xing, Kun Mean, Hongling, Chengcheng,

& Haiying, 2011), etc. but those methods still focus on one single-core node, and real-time

debug issue remains uncovered. Here we introduce a FSMOS based debugging method to

archive real-time user-friendly debugging experience.

FSMOS is a cross platform design, so it can run on different platform such as AVR,

ARM7, ARM11, PC (WIN and Ubuntu), etc. The PC did not have same hardware as WSN

mode, in order to enable FSMOS and application over FSMOS running on PC can access real

hardware, FSMOS have special modules, remote module, to support hardware accessment.

The Figure 7-7 shows the block diagram of a FSMOS running on PC with remote module.

The remote module can provide the same service as real module. The only different between

remote module and real module is that remote module can’t directly handle the request. So it

will forward all the request to a real node in another place, then the request will be handled by

that real node. The response will then tranfer back to the remote module in the reverse

direction. Then up layer can get the response from remote module simlar as from real module.

The request and response transfer and remote execution are all based on Remote Processor

Call (RPC) mechanisms in FSMOS.

Chapter 7. Conclusion and Ongoing Work

 128

Network Layer(NWK)

RF Physical Layer(PHY)

Hardware Abstraction
Layer(HAL)

Middleware Abstraction Layer

Sy
st
em
 S
er
vi
ce
s

Ap
pl
ic
at
io
n
Se
rv
ic
es

PC Hardware
Driver

Application

Hardware Driver

FSMOS

PC(WIN / Ubuntu)

WSN Node
(IEEE 802.15.4)

Remote Hardware
Driver

Hardware Diver
Remote

Processor Call
through UART/Wifi/Eth

Figure 7-7 FSMOS running on a PC with the Remote Module

Running the FSMOS on a PC can provide many advantages, such as user-friendly IDE,

more resource for complex application prototype, more resource for tracing and debugging,

etc. And remote modules enable program running on a PC directly access WSN hardware,

such as sending and receiving PHY layer packet, controlling GPIO, reading Sensor, etc.

Furthermore, gathering distributed information from a set of FSMOS running on a PC is also

much easier than directly from WSN nodes.

7.2.2.4. Summary

The FSMOS is optimized for multicore architecture. It can make full use of the advance

of multicore architecture. With cross platform and Remote Module, the debugging, testing

and validation of WSN application based on FSMOS will be much easier. This also will

greatly help to improve the reliability of whole system.

7.3. Perspective

While we have done much work, more work left. In order to provide the entire solution

for dependable WSN services, we still have much ongoing work. We think that the existing

operating systems such as TinyOS and Contiki are not adapted to multicore WSN node. Thus,

Chapter 7. Conclusion and Ongoing Work

 129

we will implement a Finite State Machine OS (FSMOS), which enables to implement more

user-friendly collaborative processing and fault tolerant applications.

In order to ease the implementation of user’s application without sacrificing efficiency,

we will design and implement an Efficient Context Aware Middleware (ECAM). The

middleware can bridge the gap between multiple applications running at application level and

FSMOS at system level. In order to archive effective resource utilization, the context aware

middleware will provide the entire necessary application interface to control the power states

of every core and every component in WSN node. To meet the requirements of differ

situation, the context aware middleware will support both knowledge base for static situation

and rule-based engine for dynamically changing situation. Furthermore, the context aware

middleware supports remote update their rules and knowledge base, which makes applications

even more flexible.

Thanks to 6LoWPAN (Y. Chen et al., 2011; Montenegro et al., September 2007), RPL

(IETF, 2012) and HTTP, the interoperability of WSN nodes over internet is solved. Therefore,

we will follow the IETF standard and work on IPv6 over Low power Wireless Personal Area

Networks (6LoWPAN) and Constrained Application Protocol (CoAP)(IETF, 2013) in order

to provide our WSN nodes with web service functionalities and to integrate WSNs with the

Web seamlessly. We will develop a 6LowPAN-based WSN integrating CoAP, which allows

user access WSN data directly from a Web browser. The hardware platform, FSMOS, ECAM,

6LoWPAN and CoAP all together will form the entire solution for dependable WSN services.

We can imagine the applications based on wireless sensor network in the near future.

Wireless sensors and control points will present in everywhere and form a lot of WSN. All

devices in home or in factory connect to IoT through these invisible wireless sensor networks.

These devices all have an IPv6 IP address that user can directly access to them and get any

services in anytime from anywhere. There is no cumbersome wiring between these devices

any more. The smart devices will interact with the physical world and influence every aspect

of our lives.

Nowadays, imagining a world without the Internet is nearly impossible. Do WSNs will

have more impacts than Internet for everyday living in the near future? That is an open

question.

Bibliography

 131

Bibliography

Actel-Corporation. (2009). IGLOO nano Low-Power Flash FPGAs with Flash*Freeze

Technology (pp. 1-120).

Akkaya, Kemal, & Younis, Mohamed. (2005). A survey on routing protocols for wireless

sensor networks. Ad hoc networks, 3(3), 325-349.

Akyildiz, I. F., Su, W., Sankarasubramaniam, Y., & Cayirci, E. (2002). Wireless sensor

networks: a survey. Computer Networks, 38(4), 393-422. doi: 10.1016/S1389-

1286(01)00302-4

Al-Karaki, Jamal N, & Kamal, Ahmed E. (2004). Routing techniques in wireless sensor

networks: a survey. Wireless Communications, IEEE, 11(6), 6-28.

ALD. (2012). Free MTBF Calculator. from http://www.aldservice.com/en/reliability-

software/free-mtbf-calculator.html

ARM Ltd. (2013). Cortex-M3 Processor. 2013, from

http://www.arm.com/products/processors/cortex-m/cortex-m3.php

Atmel-Corporation. (2011). AT91SAM ARM-based Flash MCU 6175L–ATARM–28-Jul-11

(pp. 1-781).

Atmel-Corporation. (2012a). 8-bit AVRMicrocontroller with Low Power 2.4GHz Transceiver

for ZigBee and IEEE 802.15.4 ATmega128RFA1 (pp. 1-568).

Atmel-Corporation. (2012b). 8-bit Microcontroller with 64K/128K/256K Bytes In-System

Programmable Flash 2549O–AVR–05/12 (pp. 1-448).

Atmel-Corporation. (2012c). Reliability Information. from

http://www.atmel.com/about/quality/reliability.aspx

Autran, Jean-Luc, Semikh, Sergey, Munteanu, Daniela, Serre, Sébastien, Gasiot, Gilles, &

Roche, Philippe. (2012). Soft-Error Rate of Advanced SRAM Memories: Modeling and

Monte Carlo Simulation.

Avizienis, A., Laprie, J.-C., Randell, B., & Landwehr, C. (2004). Basic concepts and

taxonomy of dependable and secure computing. Dependable and Secure Computing,

IEEE Transactions on, 1(1), 11-33. doi: 10.1109/TDSC.2004.2

Avizienis, Algirdas, Laprie, Jean-Claude, & Randell, Brian. (2001). Fundamental Concepts of

Dependability: Research Report No 1145, LAAS-CNRS.

Baggio, Aline. (2005). Wireless sensor networks in precision agriculture. Paper presented at

the ACM Workshop on Real-World Wireless Sensor Networks, Stockholm, Sweden.

Baronti, Paolo, Pillai, Prashant, Chook, Vince W. C., Chessa, Stefano, Gotta, Alberto, & Hu,

Y. Fun. (2007). Wireless sensor networks: A survey on the state of the art and the

802.15.4 and ZigBee standards. Computer Communications, 30(7), 1655-1695. doi:

10.1016/j.comcom.2006.12.020

Basaran, Can, Baydere, Sebnem, Bongiovanni, Giancarlo, Dunkels, Adam, M. Onur Ergin

(YTU), Laura Marie Feeney (SICS, editor), et al. (2006). Research Integration:

http://www.aldservice.com/en/reliability-software/free-mtbf-calculator.html
http://www.aldservice.com/en/reliability-software/free-mtbf-calculator.html
http://www.arm.com/products/processors/cortex-m/cortex-m3.php
http://www.atmel.com/about/quality/reliability.aspx

Bibliography

 132

Platform Survey: Critical evaluation of platforms commonly used in embedded

wisents research IST-004400 (pp. 1-109): Embedded WiSeNts.

Beck, A.C.S., Lisbôa, C.A.L., & Carro, L. (2012). Adaptable Embedded Systems: Springer.

Beck, Kent, Beedle, Mike, van Bennekum, Arie, Cockburn, Alistair, Cunningham, Ward,

Fowler, Martin, et al. (2001). Manifesto for Agile Software Development Manifesto

for Agile Software Development.

Bellard, Fabrice. (2005). QEMU, a fast and portable dynamic translator. Paper presented at

the Proceedings of the annual conference on USENIX Annual Technical Conference,

Anaheim, CA.

Benington, Herbert D. (1983). Production of Large Computer Programs. IEEE Annals of the

History of Computing, 5(4), 350-361. doi: 10.1109/MAHC.1983.10102

Berkeley. (2013). TinyOS, an open source, BSD-licensed operating system designed for low-

power wireless devices. 2013, from http://www.tinyos.net/

Blundell, B. (2007). Computer Hardware: Thomson.

Boehm, Barry. (1986). A Spiral Model of Software Development and Enhancement. ACM

SIGSOFT Software Engineering Notes, 11(4), 14-24.

Bokareva, Tatiana. (2013). Mini Hardware Survey. 2013, from

http://www.cse.unsw.edu.au/~sensar/hardware/hardware_survey.html

Borkar, Shekhar. (2005). Designing reliable systems from unreliable components: the

challenges of transistor variability and degradation. Micro, IEEE, 25(6), 10-16.

Broadcom.com. (2013). BCM2835: High Definition 1080p Embedded Multimedia

Applications Processor. 2013

Brown, P.L. (1982). Managing behavior on the job: Wiley.

BRUMMOND, J. ; , CONGER, S. ; , HART, R. ;, OSBORNE, L. ; , & ZAREAN, M. (2006).

Clarus: Concept of Operations.: Federal Highway Administration (FHWA).

Chen, Peter M, Lee, Edward K, Gibson, Garth A, Katz, Randy H, & Patterson, David A.

(1994). RAID: High-performance, reliable secondary storage. ACM Computing

Surveys (CSUR), 26(2), 145-185.

Chen, Yibo, Kun-mean, Hou, Haiying, Zhou, Hong-Ling, Shi, Xing, Liu, Xunxing, Diao, et

al. (2011, 23-25 Sept. 2011). 6LoWPAN Stacks: A Survey. Paper presented at the

Wireless Communications, Networking and Mobile Computing (WiCOM), 2011 7th

International Conference on.

Dell, Timothy J. (1997). A white paper on the benefits of chipkill-correct ECC for PC server

main memory. IBM Microelectronics Division, 1-23.

Desai, Uday B., Jain, B. N., & Merchant, S. N. (2010). Wireless Sensor Networks:

Technology Roadmap.

DGA. (September 2010). Reliability Methodology for Electronic Systems FIDES guide 2009

Edition A.

Dovich, R. A. (1990). Reliability Statistics. Wisconsin: ASQ Quality Press.

Dubrova, Elena. (2013). Fault-Tolerant Design: Springer.

http://www.tinyos.net/
http://www.cse.unsw.edu.au/~sensar/hardware/hardware_survey.html

Bibliography

 133

Feiler, P.H., & Gluch, D.P. (2012). Model-Based Engineering with AADL: An Introduction to

the SAE Architecture Analysis & Design Language: Pearson Education.

Frankel, David. (2003). Model driven architecture : applying MDA to enterprise computing.

New York Wiley.

Gao, J., Xu, Y., & Li, X. (2007). Online Distributed Fault Detection of Sensor Measurements.

Tsinghua Science & Technology, 12, 192-196. doi: 10.1016/s1007-0214(07)70108-6

Haan, Johan den. (2009, 04 February 2009). Roles in Model Driven Engineering. from

http://www.theenterprisearchitect.eu/archive/2009/02/04/roles-in-model-driven-

engineering

Hewlett-Packard Development Company. (2010). Memory technology evolution: an overview

of system memory technologies. from

http://h20000.www2.hp.com/bc/docs/support/SupportManual/c00256987/c00256987.

pdf

Hewlett-Packard Development Company. (2012). For businesses that run nonstop: HP

Integrity NonStop NS2100 Server. from

http://www8.hp.com/h20195/v2/GetDocument.aspx?docname=4AA4-2781ENW

Holt, J., Perry, S., Engineering, Institution of, & Technology. (2008). SysML for Systems

Engineering: Institution of Engineering and Technology.

Hsieh, Hui-Ching, Leu, Jenq-Shiou, & Shih, Wei-Kuan. (2010). A fault-tolerant scheme for

an autonomous local wireless sensor network. Computer Standards & Interfaces,

32(4), 215-221. doi: 10.1016/j.csi.2009.11.012

IBM. (2011). Virtual I/O Server logical partition. 2013, from

http://pic.dhe.ibm.com/infocenter/powersys/v3r1m5/index.jsp?topic=/iphb1/iphb1_vio

s_virtualioserverpartition.htm

IBM Corp. (2012). Reliability, Availability, and Serviceability Features of the IBM eX5

Portfolio. 2013, from http://www.redbooks.ibm.com/redpapers/pdfs/redp4864.pdf

IEC. (2013). Dependability, Reliability, Maintainability, Maintenance support, International

Electrotechnical Commission Technical Committee 56 from http://tc56.iec.ch/index-

tc56.html

IETF. (2012). RFC 6550: RPL: IPv6 Routing Protocol for Low power and Lossy Networks.

IETF. (2013). Constrained Application Protocol (CoAP) draft-ietf-core-coap-18.

Intel Corporation. (2008). Dual-Core Intel Itanium Processor 9100 Series., 2013, from

http://www.intel.com/content/dam/doc/product-brief/high-performance-computing-

itanium-9100-powering-mainframe-solutions-on-flexible-industry-standard-servers-

brief.pdf

Intel Corporation. (2013a). Intel® Server Board S1200V3RP Calculated MTBF Estimates

from

http://download.intel.com/support/motherboards/server/sb/s1200rpcalculatedmtbfesti

matesrev1_0.pdf

Intel Corporation. (2013b). PCI Express* Provides Enterprise Reliability, Availability and

Serviceability 2013, from http://www.intel.com/content/www/us/en/io/pci-

express/pci-express-architecture-devnet-resources.html

http://www.theenterprisearchitect.eu/archive/2009/02/04/roles-in-model-driven-engineering
http://www.theenterprisearchitect.eu/archive/2009/02/04/roles-in-model-driven-engineering
http://h20000.www2.hp.com/bc/docs/support/SupportManual/c00256987/c00256987.pdf
http://h20000.www2.hp.com/bc/docs/support/SupportManual/c00256987/c00256987.pdf
http://www8.hp.com/h20195/v2/GetDocument.aspx?docname=4AA4-2781ENW
http://pic.dhe.ibm.com/infocenter/powersys/v3r1m5/index.jsp?topic=/iphb1/iphb1_vios_virtualioserverpartition.htm
http://pic.dhe.ibm.com/infocenter/powersys/v3r1m5/index.jsp?topic=/iphb1/iphb1_vios_virtualioserverpartition.htm
http://www.redbooks.ibm.com/redpapers/pdfs/redp4864.pdf
http://tc56.iec.ch/index-tc56.html
http://tc56.iec.ch/index-tc56.html
http://www.intel.com/content/dam/doc/product-brief/high-performance-computing-itanium-9100-powering-mainframe-solutions-on-flexible-industry-standard-servers-brief.pdf
http://www.intel.com/content/dam/doc/product-brief/high-performance-computing-itanium-9100-powering-mainframe-solutions-on-flexible-industry-standard-servers-brief.pdf
http://www.intel.com/content/dam/doc/product-brief/high-performance-computing-itanium-9100-powering-mainframe-solutions-on-flexible-industry-standard-servers-brief.pdf
http://download.intel.com/support/motherboards/server/sb/s1200rpcalculatedmtbfestimatesrev1_0.pdf
http://download.intel.com/support/motherboards/server/sb/s1200rpcalculatedmtbfestimatesrev1_0.pdf
http://www.intel.com/content/www/us/en/io/pci-express/pci-express-architecture-devnet-resources.html
http://www.intel.com/content/www/us/en/io/pci-express/pci-express-architecture-devnet-resources.html

Bibliography

 134

International Business Machines Corporation. (1970). Data Processor: Data Processing

Division, International Business Machines Corp.

J. Polastre, R. Szewcyzk, C. Sharp, & D.Culler. (2004). The mote revolution: Low power

wireless sensor network devices. Paper presented at the Proceedings of the 16th

Symposium on High Performance Chips (HotChips).

Jones, Justin, & Atiquzzaman, Mohammed. (2007). Transport protocols for wireless sensor

networks: State-of-the-art and future directions. International Journal of Distributed

Sensor Networks, 3(1), 119-133.

Kaemarungsi, Kamol. (2012). Development and Deployment of ZigBee Wireless Sensor

Networks for Precision Agriculture in Sugarcane Field. Paper presented at the APAN

2012 : Asia-Pacific Advanced Network - 33rd Meeting, Chiang-Mai, Thailand.

Kemet. (2012). KEMET FIT Calculator Software. from

http://www.kemet.com/page/kemsoft#fit

Keshtgari, Manijeh, & Deljoo, Amene. (2012). A Wireless Sensor Network Solution for

Precision Agriculture Based on ZigBee Technology. Wireless Sensor Network, 4(1),

25-30. doi: 10.4236/wsn.2012.41004

Khan, Safdar Abbas, Daachi, Boubaker, & Djouani, Karim. (2012). Application of fuzzy

inference systems to detection of faults in wireless sensor networks. Neurocomputing,

94, 111-120. doi: 10.1016/j.neucom.2012.04.002

Larman, C., & Basili, V. R. (2003). Iterative and incremental developments. a brief history.

Computer, 36(6), 47-56. doi: 10.1109/MC.2003.1204375

Lavagno, L., Martin, G., & Selic, B.V. (2003). UML for Real: Design of Embedded Real-

Time Systems: Springer.

Lee, Myeong-Hyeon, & Choi, Yoon-Hwa. (2008). Fault detection of wireless sensor

networks. Computer Communications, 31(14), 3469-3475. doi:

10.1016/j.comcom.2008.06.014

Lee, W Louis, Datta, Amitava, & Cardell-Oliver, Rachel. (2006). FlexiMAC: A flexible

TDMA-based MAC protocol for fault-tolerant and energy-efficient wireless sensor

networks. Paper presented at the Networks, 2006. ICON'06. 14th IEEE International

Conference on.

Levis, P. A. (2006, 10-12 May 2006). TinyOS: An Open Operating System for Wireless

Sensor Networks (Invited Seminar). Paper presented at the Mobile Data Management,

2006. MDM 2006. 7th International Conference on.

Linear. (2009). Reliability Data. from http://cds.linear.com/docs/Reliability%20Data/r415.pdf

Lipetz, D., & Schwarz, E. (2011, 25-27 July 2011). Self Checking in Current Floating-Point

Units. Paper presented at the Computer Arithmetic (ARITH), 2011 20th IEEE

Symposium on.

Maheshwari, Atul, Burleson, Wayne, & Tessier, Russell. (2004). Trading off transient fault

tolerance and power consumption in deep submicron (DSM) VLSI circuits. Very

Large Scale Integration (VLSI) Systems, IEEE Transactions on, 12(3), 299-311.

Martin, James. (1991). Rapid application development: Macmillan Publishing Co., Inc.

http://www.kemet.com/page/kemsoft#fit
http://cds.linear.com/docs/Reliability%20Data/r415.pdf

Bibliography

 135

Microsemi-Corporation. (2011). Reliability Report. from

http://www.actel.com/documents/ORT_Report.pdf

Microsemi. (2013). Microsemi's Retrieved Nov, 2013, from

http://www.microsemi.com/products/fpga-soc/fpga/igloo-nano

Mile Stojčev , Teufik Tokić , Ivan Milentijević. (2004). The Limits of Semiconductor

Technology and Oncoming Challenges in Computer Microarchitectures and

Architectures. Ser. Electronics and Energetics, 17, 285-312.

Minicom Advanced Systems Ltd. (2013). Cost Ramifications of Player Placement in Digital

Signage Networks. from www.minicom.com/pdf/PlayerPlacement.pdf

Montenegro, G., Kushalnagar, N., Hui, J., & Culler, D. (September 2007). Transmission of

IPv6 Packets over IEEE 802.15.4 Networks RFC 4944.

N. Medrano, & S. Celma. (2006). Wireless sensors for agricultural applications. Paper

presented at the 3èmes Jornadas Hispano Francesas CMC2 - IBERNAM, San

Sebastián, Spain.

Nakayama, Hidehisa, Ansari, Nirwan, Jamalipour, Abbas, & Kato, Nei. (2007). Fault-resilient

sensing in wireless sensor networks. Computer Communications, 30(11-12), 2375-

2384. doi: 10.1016/j.comcom.2007.04.023

Nightingale, Edmund B, Douceur, John R, & Orgovan, Vince. (2011). Cycles, cells and

platters: an empirical analysisof hardware failures on a million consumer PCs. Paper

presented at the Proceedings of the sixth conference on Computer systems.

Nowka, evin. (2007). Circuits Design for Low Power. 201 , from

users.ece.utexas.edu/ adnan/vlsi-07/nowka-low-power-07.ppt

Onsemi. (2012). Reliability Data - Device MTBF/MTTF/FIT. from

http://www.onsemi.com/PowerSolutions/reliability.do

Oracle. (2010). Oracle White Paper— Best Practices for Data Reliability with Oracle VM

Server for SPARC. 2013, from http://www.oracle.com/technetwork/articles/systems-

hardware-architecture/vmsrvrsparc-reliability-163931.pdf

Osterlind, F. (2006). Cross-Level Sensor Network Simulation with COOJA.

PandaBoard ES. (2013). PandaBoard ES. 2013, from

http://pandaboard.org/content/pandaboard-es

Peng, Jiang, Huijin, Ren, Lei, Zhang, Zhi, Wang, & Anke, Xue. (2006, 0-0 0). Reliable

Application of Wireless Sensor Networks in Industrial Process Control. Paper

presented at the Intelligent Control and Automation, 2006. WCICA 2006. The Sixth

World Congress on.

Polastre, J., Szewczyk, R., & Culler, D. (2005, 15 April 2005). Telos: enabling ultra-low

power wireless research. Paper presented at the Information Processing in Sensor

Networks, 2005. IPSN 2005. Fourth International Symposium on.

Polastre, Joseph, Szewczyk, Robert, Mainwaring, Alan, Culler, David, & Anderson, John.

(2004). Analysis of wireless sensor networks for habitat monitoring. Wireless sensor

networks, 399-423.

http://www.actel.com/documents/ORT_Report.pdf
http://www.microsemi.com/products/fpga-soc/fpga/igloo-nano
http://www.minicom.com/pdf/PlayerPlacement.pdf
http://www.onsemi.com/PowerSolutions/reliability.do
http://www.oracle.com/technetwork/articles/systems-hardware-architecture/vmsrvrsparc-reliability-163931.pdf
http://www.oracle.com/technetwork/articles/systems-hardware-architecture/vmsrvrsparc-reliability-163931.pdf
http://pandaboard.org/content/pandaboard-es

Bibliography

 136

Pressman, Roger S. (2010). Software Engineering: A Practitioner's Approach. New York:

McGraw Hill Higher Education.

Prolinx Services, Inc. (2013). Agile Software Development. 2013, from

http://www.prolinxservices.com/agile.aspx

Raspberry Pi Foundation. (2013). Raspberry Pi. 2013, from http://www.raspberrypi.org/

Reliability Analysis Center. (1996). Introduction to Software Reliability: A State of the Art

Review: Reliability Analysis Center.

Reliability Information Analysis Center. (2005). System Reliability Toolkit: Reliability

Information Analysis Center.

Sankarasubramaniam, Yogesh, Akan, Özgür B, & Akyildiz, Ian F. (2003). ESRT: event-to-

sink reliable transport in wireless sensor networks. Paper presented at the Proceedings

of the 4th ACM international symposium on Mobile ad hoc networking & computing.

SensLAB team. (2013). Very large scale open wireless sensor network testbed. 2013, from

http://www.senslab.info/

Spainhower, L., & Gregg, T. A. (1999). IBM S/390 parallel enterprise server G5 fault

tolerance: a historical perspective. IBM J. Res. Dev., 43(5), 863-873. doi:

10.1147/rd.435.0863

SquareTrade. (2009). Who makes the most reliable laptops? Retrieved 2013, from

http://news.cnet.com/8301-17938_105-10400447-1.html

Steve Bostian, Intel Corporation. (2012). Intel® Instruction Replay Technology Detects and

Corrects Errors. from

http://www.intel.com/content/www/us/en/processors/itanium/itanium-9500-reliability-

mission-critical-applications-paper.html

Sutar, Shiv, Jayesh, Swapnita, & Priyanka, Komal. (2012). Irrigation and Fertilizer control for

Precision Agriculture using WSN: Energy Efficient Approach. International Journal

of Advances in Computing and Information Researches, 1(1).

Teodorović, Dušan, & Lučić, Panta. (2006). Intelligent parking systems. European Journal of

Operational Research, 175(3), 1666-1681. doi: 10.1016/j.ejor.2005.02.033

Texas-Instruments. (2012). CC430 Family User's Guide SLAU259D (pp. 1-781).

Texas Instruments Incorporated. (201). The Hercules™ TMS570 Safety MCU. 201 , from

http://www.ti.com/lsds/ti/microcontroller/safety_mcu/tms570_arm_cortex-

r4/overview.page

TIK WSN Research Group. (2013). The Sensor Network Museum. from

http://www.snm.ethz.ch/Main/HomePage

United Nations. (2013). World Population Prospects: The 2012 Revision. from

http://esa.un.org/unpd/wpp/index.htm

US. (1997). Reliability Prediction of Electronic Equipment Military Handbooks MIL-HDBK-

217.

Wikipedia. (2013). Error detection and correction. 2013, from

http://en.wikipedia.org/wiki/Error_detection_and_correction

http://www.prolinxservices.com/agile.aspx
http://www.raspberrypi.org/
http://www.senslab.info/
http://news.cnet.com/8301-17938_105-10400447-1.html
http://www.intel.com/content/www/us/en/processors/itanium/itanium-9500-reliability-mission-critical-applications-paper.html
http://www.intel.com/content/www/us/en/processors/itanium/itanium-9500-reliability-mission-critical-applications-paper.html
http://www.ti.com/lsds/ti/microcontroller/safety_mcu/tms570_arm_cortex-r4/overview.page
http://www.ti.com/lsds/ti/microcontroller/safety_mcu/tms570_arm_cortex-r4/overview.page
http://www.snm.ethz.ch/Main/HomePage
http://esa.un.org/unpd/wpp/index.htm
http://en.wikipedia.org/wiki/Error_detection_and_correction

Bibliography

 137

Xing, Liu, Kun Mean, Hou, Honglin, Shi, & Chengcheng, Guo. (2012, 25-27 June 2012).

Efficient middleware for user-friendly wireless sensor network integrated development

environment. Paper presented at the Wireless Advanced (WiAd), 2012.

Xing, Liu, Kun Mean, Hou, Hongling, Shi, Chengcheng, Guo, & Haiying, Zhou. (2011, 10-12

Oct. 2011). Efficient and portable reprogramming method for high resource-

constraint wireless sensor nodes. Paper presented at the Wireless and Mobile

Computing, Networking and Communications (WiMob), 2011 IEEE 7th International

Conference on.

Xing, Liu, Xunxing, Diao, Kun-mean, Hou, Hailun, Zhu, Xin, Liu, Yazhou, Wang, et al.

(2012, 4-7 Sept. 2012). Java Virtual Machine Based Infrastructure for Decent

Wireless Sensor Network Development Environment. Paper presented at the

Ubiquitous Intelligence & Computing and 9th International Conference on Autonomic

& Trusted Computing (UIC/ATC), 2012 9th International Conference on.

Yan, Lipeng, Chang, Fei, Qin, Weijun, Li, Bo, & Liu, Yan. (2013). Design and

Implementation of Testing Platform for Middleware of Wireless Sensor Networks

Advances in Wireless Sensor Networks (pp. 548-561): Springer.

Yick, Jennifer, Mukherjee, Biswanath, & Ghosal, Dipak. (2008). Wireless sensor network

survey. Computer Networks, 52(12), 2292-2330. doi: 10.1016/j.comnet.2008.04.002

Zhang, Bin, & Orshansky, Michael. (2008). Modeling of NBTI-induced PMOS degradation

under arbitrary dynamic temperature variation. Paper presented at the Quality

Electronic Design, 2008. ISQED 2008. 9th International Symposium on.

Zzyzx Peripherals, Inc. (2001). Mean Time Between Failure (MTBF) and Availability – A

Primer. 2013, from

http://agenda.linearcollider.org/getFile.py/access?subContId=0&contribId=s1t3&resId

=0&materialId=0&confId=desya0533

http://agenda.linearcollider.org/getFile.py/access?subContId=0&contribId=s1t3&resId=0&materialId=0&confId=desya0533
http://agenda.linearcollider.org/getFile.py/access?subContId=0&contribId=s1t3&resId=0&materialId=0&confId=desya0533

RESUME

Développement d’un capteur multicoeur sans fil à énergie efficient, robuste

et modulaire

Le réseau de capteurs sans fil est une technologie clé du 21ème siècle car ses applications

sont nombreuses et diverses. Cependant le réseau de capteurs sans fil est un système à très

forte contrainte de ressources. En conséquence, les techniques utilisées pour le développement

des systèmes embarqués classiques ne peuvent être appliquées. Aujourd’hui les capteurs sans

fil ont été réalisés en utilisant une architecture monoprocesseur. Cette approche ne permet pas

de réaliser un capteur sans fil robuste et à énergie efficiente pour les applications telles que

agriculture de précision (en extérieur) et télémédecine.

Les travaux menés dans le cadre de cette thèse ont pour but de développer une nouvelle

approche pour la réalisation d’un capteur sans fil en utilisant une architecture multicoeur pour

permettre à la fois d’augmenter sa robustesse et sa durée de vie (minimiser sa consommation

énergétique).

Mots-clés— Capteurs multicœur sans fil ; sensibles au contexte ; tolérance aux pannes ;

sûreté ; systèmes distribués ; systèmes embarqué ; Internet des Objets ; Web des Objets.

ABSTRACT

Development of an Energy Efficient, Robust and Modular Multicore

Wireless Sensor Network

The wireless sensor network is a key technology in the 21
st
 century because it has

multitude applications and it becomes the new way of interaction between physical

environment and computer system. Moreover, the wireless sensor network is a high resource

constraint system. Consequently, the techniques used for the development of traditional

embedded systems cannot be directly applied. Today wireless sensor nodes were implemented

by using only one single processor architecture. This approach does not achieve a robust and

efficient energy wireless sensor network for applications such as precision agriculture

(outdoor) and telemedicine.

The aim of this thesis is to develop a new approach for the realization of a wireless sensor

network node using multicore architecture to enable to increase both its robustness and

lifetime (reduce energy consumption).

Index Terms—Multicore Wireless Sensor Node; Context-aware; Fault Tolerance; Fail-

Safe; Distributed Systems; Embedded System; Internet of Things; Web of Things.

