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Foreword

This PhD was supported by a CJS INRA leading to a two years post-doctoral
contract. My research work was carried out in two INRA mixt unit research “EcoFog”
(Ecology of Forests of French Guiana) and “EEF” (Forest Ecology and Ecophysiology) and
supported by MEDD ECOFOR ‘Ecosystémes tropicaux’, PO-FEDER ‘ENERGIRAVT and
‘CEBA’ (Labex) research programs.

This manuscript was written as a global synthesis containing the state of the art, the
main results and a general discussion. I tried to link ecology and population evolution in a
global ‘ecological genetics’ approach. Particular theoretical notion and methods were
included into ‘green’ and ‘purple’ boxes respectively. A synthetic summary of each main
result was integrated in the synthesis through a topic sentence, a short description of the
experiment and the main figures.

Complete methods and results are described in research articles, and given a part
from the global synthesis. For more readability, figures and tables were included in the main
text of research articles rather than giving them a part.

For more simplicity and to avoid redundancies, I merged the bibliographies of

synthesis and research papers into a single bibliography.
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INTRODUCTION - Evolution in Amazonia

1. Short overview of the Amazonian rainforest

Climate:

The Amazon’s climate is influenced by its tropical location: the temperatures are

globally stable (27°C in average), precipitations are abundant (2000-4000mm/year), and

relative air humidity is high (80 to 9oo% of saturation). The seasonality is influenced by the

latitudinal movements of the inter-tropical convergence zone (the belt of low pressures

where the northeast and southeast winds come together causing cumulonimbus) with two

main seasons: the dry season (July to
November in Guiana), and the rainy season
(November to July interspersed by a short dry
season during March in Guiana). The intensity
of the dry season in Amazonia varies across
years, and cyclic intense drought events (due to

‘El nino events’) occurred every 4 to 8 years

(Figure 1).

Carbon storage and biodiversity:
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The tropical rainforest of Amazonia is one of the most important wilderness areas

of the world (Cincotta et al. 2000, Anhuf et al. 2006, Figure 2). Spread over 7.3 million km?2,

Amazonia is home for a luxurious tropical rainforest that covers 9 countries (Brazil, Peru,

Bolivia, Colombia, Ecuador, Venezuela, Guyana, Suriname, and French Guiana plus parts
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Figure 1 : Annual global temperature anomalies and El nino
events (1950-2012). From http://www.ncdc.noaa.gov.



of Venezuela, Brazil and Columbia), figure 3. The Amazonian Basin is composed of 43
ecoregions (figure 3), in which the Guiana shield (French Guiana, Suriname and Guyana)
corresponds to the ‘Guianan moist forest’ ecoregion.

Tropical rainforests constitute an important store of carbon (about 40% of the total
carbon store in the terrestrial biomass, Anhuf et al. 2006, ter Seege et al. 2006). The total
carbon stored by tropical rainforests is estimated to 247 PgC (with an annual net primary
production of 17.8 PgC, Field et al. 1998, Figure 4). Moreover, the tropical rainforest of
Amazonia is one of the world’s greatest stores of biodiversity (ter Seege et al. 2006, Hoorn
et al. 2010), including insects, mammals, amphibians, and plants (Figure 5). In particular, the
tropical rainforest of Amazonia is home for ~50000 vascular plant species, among which
~12500 tree species (Hubbell et al. 2008). Moreover, in undisturbed forests, tree species

diversity may easily reach 100 tree species /ha, as currently observed in French Guiana

(Figure 6).

[l Apure-Villavicencio dry forests [l Maranhdo Babagu forests
Bolivian montane dry forests  [B Maraiion dry forests

Bolivian Yungas Bl Mato Grosso seasonal forests
queta moist forests B Monte Alegre varzea
atumbo moist forests B Napo moist forests

faria Valley dry forests Il Negro-Branco moist forests
Geral a Valley montane forests [l Orinoco Delta swamp forests
Saracuri B Chiquitano dry forests B Patia Valley dry forests

B Cordillera Orient montane forests [ll Peruvian Yungas
t Cordillera montane forests [l Purus varzea
Highland moist forests [l Purus-Madeira moist forests

fresh swamp forest Il Rio Negro campinarana
moist forests Il Solimdes-Japurd moist forests
piedmont-low forests [l Southwest Amazon moist forests
jurupa varzea Tapajés-Xingu moist forests
Iquitos varzea Wl Tocantins/Pindare moist forests
-J:.pur.'x Solimoes-Negro forests [ Uatuma-Trombetas moist forests
Jurua-Purus moist forests B Ucayali moist forests

adeira-Tapajos moist forests [l Venez. Andes montane forests
Magdalena Valley dry forests [l Xingu-Tocantins-Araguaia forests
B M na Valley montane forests

J

500 2500 500 250 0
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|
B 150-300
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Figure 2 : Major Biodiversity hotspots (red) and wilderness areas (green). From Cincotta et al. 2000
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Figure 4: Net primary production (in grams of C per square meter per year). Form Field et al. 1998.
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Figure 5: Global diversity of mammal (left) and amphibian (right) species (in number of species). From Olson et al. 2001 and the ITUCN
Red List 2000.
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Figure 6: Tree species diversity (number of tree species/ha) in several plots of two
experimental devices of French Guiana (Nouragues and Paracou). Data from Paracou and

Nouragues inventories (UMR EcoFoG).
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2. The building of biodiversity in Amazonia

Triassic

Jurassic

Cretaceous

Paleocene

Eocene

Paleogene

Oligocene

251My

199My

145My

65My

56My

3aMy

23My

5.3My

2.6My

11700y

present

The building of biodiversity in Amazonia through
geological ages has been studied for a long time, and both
geological and climatic histories of the Amazonian region allow
understanding the present diversity. In particular, tectonic
events (Andean Uplift during the Tertiary) and climatic changes
(quaternary glaciations) had a crucial role in species

diversification in Amazonia.

90oMy 270My

Figure 7: Continental drift. (from http://www.geopedia.fr/derive-

continents.htm)

Tertiary - Andean Uplift: (Hoorn et al. 2010)

Andes formations began when continents broke-up (from -135 to -100 My before

present, figure 7). From -65 to -23 My (paleogene), tectonic events in the ‘pan-Amazonian’

region (the region corresponding to modern Amazonia) formed a sub-andean river system.

North and Nort-West of pan-amazonia were submitted to the alternance of fluvial and

marine conditions (due to marine introgressions), figure 8.

Figure 8: Geologic history of Amazonia from -65sMy to -23My (from Hoorn et al. 2010)
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During this period, South America was colonized by xenarthrans, reptilians, and

plant groups through the gondwana connection with Australia and Antartica (figure 9A),

and floral diversity varied with temperatures (with decreases in plant diversity during cool

periods).
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Figure 9: Biotic changes in Amazonia through time (from Hoorn et al. 2010).

The first peak of the Andean mountain
appeared around -23 My, and coincides with the
diversification of modern montane plant and birds
genera (figure 9B and figure 10). During Neogene,
the coupling of tectonic and climatic processes
strongly affected the biodiversity in Amazonia. As
mountain raised, rainfall increased along the
eastern flank. In parallel, a large wetland of lakes
and swamps developed in Western Amazonia
(figure 1C).

Lake formation was accompanied by mollusk
and reptilian diversification (figure 9). The
Amazonia was thus composed by a wetland and a

diverse forest comparable with the modern forest.
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2010)



Pollen recorded revealed a peak of plant diversity at -13My at the end of the middle Miocene
climatic optimum (-20 to -10 My). From 10 My, Andean uplift phases accelerated and
Andean sediments reached the Atlantic (figure D). Western Amazonia changed from a
lacustrine to a fluvial system that corresponds to modern Amazonia river. Accelerations in
Andean building induced spectacular radiations of highland plants, and flood-plains became
covered by grasses. Moreover, the Andes became a barrier for tropical rainforest trees,
because many lowland organisms were unable to disperse across the mountain (Cavers &
Dick 2013). The transition from lake to fluvial conditions also affected the diversity of
endemic marine animals (mollusks) unable to adapt to new conditions (figure 9).

From -7 to -2.5 My, Andean sediment supply created terrestrial conditions in west

Onset of
Amuzon Fan
- ¢ 10 Ma

Figure 11: Geologic history of Amazonia from -23My to -7My (from Hoorn et al. 2010)

Amazonia (figure 12). Until the Pliocene, bats and plants (Malpighiaceae, Fabaceae,
Annonaceae, Rubiaceae ...) migrated from boreotropical regions. 3.5 My ago, the closure of

the Panama isthmus allowed migration and diversification of taxa from North America.

Adentic C
Increase in e Detan

k. Andoan-derived
— sodiments
6.8 Ma

Figure 12: Geologic history of Amazonia from -7My to present (from Hoorn et al. 2010)

17



Quaternary ice ages:

The Pleistocene was characterized by repeated glacial periods, in which the last

glacial maximum occurred (LGM) at -20 ooo years (figure 13). Glacial periods were

associated with a decrease in temperature in Amazonia, ranging from 2 to 6°C during the

LGM (Broccoli 2000, Anhuf et al. 2006), figure 14. Cooler periods were also associated with

a decrease in precipitations (between 20 and 309 during the LGM, Stute et al. 1995, Cowling

et al. 2001, Anhuf et al. 2006), leading to a drier climate in Amazonia.

Species evolution in Amazonia through ice ages has been strongly debated. Two

main hypotheses have emerged: the ‘refuge hypothesis’ and the ‘species re-association

hypothesis’.

Composite CO2 record (0-800 kyr BP)
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Figure 13: Glacial and interglacial cycles of

Pleistocene (from Wikipedia).
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Figure 14: Map of annual mean surface air
temperature difference between LGM and
modern integrations, in Kelvin (from
Broccoli 2000).



The ‘refuge hypothesis’ suggests that the tropical rainforest was fragmented into
refuge islands during dry periods: the Amazonian basin changed into savanna punctuated
with isolated patches of tropical rainforest (i.e. movements of the whole plant
communities). LAI was probably lower in a large area of the Amazon Basin than today
(Cowling 2001). Anhuf et al. (2006) used pollen records to map South America and Africa
vegetation during the LGM (figure 15). They suggest that Amazon evergreen forest was
located 200km further south and 300 km further north than the modern forest. More
recently, Mayle & Power (2008) described sites that show signs of transition from forest to
Savannas during the mid-Holocene. Isolation between these islands would have led to high
rates of allopatric speciation and is supposed to be responsible for spatial patterns of species

diversity and endemism (Haffer 1969).
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Figure 15: Vegetation map during the LGM (from Anhuf et al. 2006): evergreen forests (black),
semideciduous forests (dark grey), dry forest or savannah (grey).

The ‘species re-association’ hypothesis suggests that cooling induced changes in
species compositions but not in biomes: because species respond individually to
physiological constraints (Collinvaux et al. 2000), climate change would have impacted the
abundance of species (and species distributions), leading to species re-associations (Bush &
De Oliveira 2006). For example, the abundance of mountain taxa would have decreased,
while lowland pollen taxa have increased in Peruvian Andes during the LMG (Bush et al.
2004). However, this hypothesis suggests that tree cover remained stable. In particular,
pollen records show a continuum of forest pollen through the LGM (figure 16; Colinvaux
et al. 2000, Da Silveira Lobo Sternberg 2001), even with an increasing abundance of grass in
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many areas that not necessarily traduces a drier climate (Colinvaux et al. 2000).

BOth hypotheses agree that the forest was different from today, because it

experienced transformations in floristic composition during the glaciations.

Much of Neotropical diversity was primarily influenced by Tertiary (Andean
Uplift) and Quaternary (climatic changes) events. However, the actual triggers of
speciation are probably more complex, involving factors such as adaptation to habitat

heterogeneity and biotic interactions.
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Figure 16: Pollen diagram from a lowland tropical forest in Brazil (from Colinvaux et al. 2000).
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3. The maintenance of diversity in Amazonia: a subtle combination of chance and

determinism

Two main theories are evoked to explain community assembly and the maintenance
of high diversity across tropical rainforest landscapes: Neutralism and Determinism. The
contrast between the neutralist and the determinist theories of community assembly is quite
comparable to the contrast between neutral and adaptive (molecular) evolution of
populations.

Under the unified neutral theory of biodiversity (Hubbell 2001), meta-community
dynamics is governed by the speciation-extinction equilibrium in which the size of
populations changes randomly (‘ecological drift’), eventually leading to extinction, and
populations exchange individuals according with dispersal distance between them (Ricklefs,
2006). Thus, species assemblages are random subsets of the available pool of species able to
spread in a given area (Tuomisto & Ruokolainen 1997). Even if this model is often
unrealistic (Ricklefs, 2006), it accounts for most of the observed patterns of species
abundance in tropical communities, suggesting that neutral process play a crucial role in
community assembly (Chaves et al., 2003). From an evolutionary point of view, populations
may evolve neutrally (under the combination of random mutation, migration, genetic drift
and demographic events). In theory, populations may diverge into separate species if gene
flow is restricted, either by a biogeographic barrier, or by the geographic distance between
populations (also called isolation-by-distance). In such cases of allopatric speciation, the
probability to observe a given species in a given area is thus a function of the dispersal
abilities of the neighborhood populations of this species (Latimer et al. 2005). The great
diversity observed in Amazonia, by comparison with temperate forests, is commonly
explained by differences in speciation-extinction rates that are themselves dependent on the
size of the climatically similar area. The main hypothesis is that there is a positive
relationship between an ecoclimatic zone and the geographic range size of a species.
Subsequently, two main hypotheses could explain the great diversity of the tropics:
‘museum’ and ‘cradle’ (Chown & Gaston 2000, Mittelbach et al. 2007, Arita & Vazquez-
Domingez 2008). The ‘museum’ hypothesis postulates that there is a negative relationship
between the geographic range size of a species and its likelihood of extinction. This is
because large ranges should buffer species against extinction by reducing the probability of
range wide catastrophes and because large population sizes would minimize the chance of

extinction due to stochastic reasons. Because large species range sizes are typical of the
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tropics, tropics should act as a museum of diversity with low extinction rates with older
taxa by comparison with temperate zones. The ‘cradles’ hypothesis postulates that there is
a positive relationship between the geographic range size of a species and the likelihood of
its speciation. This is because species with larger ranges are more likely to undergo allopatric
speciation resulting from isolations-by-distance or isolations by biogeographic barriers.
Tropic may thus be viewed as cradles of diversity, with high speciation rates.

In the ‘environmental filtering’ theory, species assemblages are controlled by
determinist factors involving abiotic and biotic interactions (Wright 2002). In particular,
habitat heterogeneity (Terborgh et al. 2002) and local interactions (mainly competition and
predation) are commonly evoked as important drivers of diversity in tropical landscapes.
Environmental filtering exerted by both abiotic and biotic factors would have led to niche
partitioning and habitat specialization in tropical rainforest trees. From an evolutionary
point of view, the evolution of populations and the divergence between species may have
been driven by selective pressures exerted by environmental heterogeneity (sympatric
speciation). Moreover, habitat heterogeneity is associated to disturbance gradients
(particularly logging, and tree-fall gaps). Under the disturbance hypothesis, species
diversity is enhanced by intermediate levels of disturbance, as observed in French Guiana
(Molino et al. 2001). Another determinist hypothesis evokes density-dependant mortality
around mother trees. This hypothesis was formulated by Janzen (1970) who observed a
decrease in seedlings mortality with the distance to the mother trees, probably due to
allelopathic chemical compounds or to density-dependent predation. This process leads to
‘gaps of regeneration’ around mother trees, allowing the installation of other tree species
and preventing mono-specific assembly. However, this process remains poorly understood
and documented.

Neutrality and determinism probably act in pair in governing species evolution and
assembly structuring (Gravel et al. 2006, Jabot et al. 2008), and their relative effects probably
vary across geographical scales and study areas (Gravel et al. 2006, Jabot et al. 2008). In the
following section, I will focus on spatial heterogeneity in tropical landscapes (and
particularly that observed at local scales) without, however, excluding the existence of

neutral processes.
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4. Spatial heterogeneity in the Amazonian rainforest

Environmental heterogeneity across forests landscapes

At continental and regional scales, both precipitations and the intensity of the dry
season are the main causes of climatic variations across the Amazonian forest landscape:
while temperatures are quite homogeneous, precipitations show large variations among
regions (ranging from 1000 to 3000 mm per year, figure 17) with a precipitation gradient that
increases from Southeast to Northwest Amazonia (Mayle & Power 2008). Moreover, the
intensity of the dry season is more pronounced at the extreme of the gradients, where
precipitations are the most abundant. French Guiana also exhibits a large gradient of

precipitations that increases from west to east, figure 18 (Wagner 2011).
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Figure 17: Annual precipitations and precipitations during the driest three months in the Amazonian basin, in
mm. From Mayle & Power 2008.
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At local scale, large environmental variations are caused by soil factors related to
topography (figure 19). Despite its apparent homogeneity, the tropical landscape of
Amazonia displays complex habitat patchiness due to the alternation of water-logged
bottomlands and terra-firma. Local topography causes strong differences in environmental
factors (including water, light, and nutrient availability) among local micro-habitats.

In bottomlands, plant communities are established on hygromorphic soils submitted
to seasonal or permanent water-logging and frequent flooding events. As in temperate
ecosystems, water-logging is a major constraint for tree regeneration and growth. Water-
logging decreases the solubility and transfer of o2 in the soils. Due to root and soil microbial
respiration, oxygen quickly decreases in soils; leading to hypoxia and accumulation of CO2
(Ponnamperuma 1972, Kozlowski 1997) that in turn affects root and microbial respiration
(Epron et al. 2006). Moreover, water-logging leads to production of reactive oxygen species
by roots that causes oxidative stress (mainly, H202 is produced by mitochondria when
respiration slow down), Perata et al. 2011. In parallel, hypoxia causes a decreases in the root
permeability that subsequently affect water and nutrient uptake from the soil, causing
stomatal closure and a decrease in photosynthesis (Perata et al. 2011). On the contrary, terra-
firme (slopes and hilltops) are display ferralitic and well-drained soils allowing important
vertical and lateral drainage. Thus, terra-firme soils usually display lower water content
than bottomlands. Tree communities, particularly seedlings unable to directly uptake water
from the ground water table, may experience seasonal drought stress due to the depletion

of water from at least the upper soil layers (Bonal et al. 2000, Daws et al. 2002, figure 20).
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Moreover, soil fertility varies from hilltops to bottomland. Reductions in soil
respiration affect nitrogen cycling in bottomlands (Luizao et al. 2004) that commonly
contain less nitrogen than hilltops or slopes (figure 21) but frequently contain more
phosphorous than hilltops (Ferry et al. 2010). Last, topography gradients are associated with
variations in irradiance transmitted below the canopy. As the soil is instable in slopes and
water-logged soils, tree-fall gaps occur more frequently in slopes and bottomlands

(Marthews et al. 2008, Ferry et al. 2010), figure 22.
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Figure 21: Net nitrification during 10 days of soil incubation in Figure 22: Tree fall gap. From Matthews et al.
different soil types. From Luizao et al. 2004 2008

Consequences of spatial heterogeneity on plant communities:

At regional scale, the structure and composition of plant communities may vary
along rainfall gradients, as proposed by numerous studies (Givnish, 1999, Engelbrecht &
Kursar, 2003, Condit et al. 2004). However, discerning whether adaptive or neutral processes
are involved is a complex issue at such large scales. In the particular case of Amazonia,
rainfall is supposed to exert a small effect on species diversity, whereas a strong effect of
local patchiness is evident (ter Steege & Hammond 2001).

At local scale, large variations of plant community composition and diversity vary
along topographic gradients. The most obvious variation of plant communities is the large
increase in palm biomass in bottomlands (Kahn 1987, figure 23) and variations in tree species
composition. Indeed, numerous palm and tree species are significantly associated to a
particular habitat-type (Clark et al. 1999, Vormisto et al. 2004, Baraloto et al. 2007). This
statement is commonly invoked as a result of adaptive radiations caused by topography
leading to niche partitioning and habitat specialization. However, several studies suggested
that the majority of species is generalists regarding to local habitat (figure 24, Webb & Peart
2000, Valencia et al. 2004) and their distribution is probably constrained by dispersal without

being influenced by habitat heterogeneity.

26



' l
i ' ' " “l\,‘i e poks

"' \.‘ ,}‘ ;4‘4/[\.4’ ‘

n“' 1
K/\ ’l) L
’,
POORLY-DRAINED SDILS N WELL-DRAINED SOILS b
HYDRONORPHIC SIS HOK HYOROMORFHEG SOHS

Figure 23: Schematic representation of plant communities along Figure 2V di howi ati fe
: Venn diagram showing associations of tree

species to three local habitats (from Webb & Peart 2000).
Circle intercepts show species encountered in different

a topography gradient. From Kahn et al. 1987.

) habitats.
| RA
600 o
400 ,°.
[ | (%

200 SLOPE _.} R .
- OA - o
=
< M e
2 o oSBT sLe —rLAT | . iy
3] | sv s 4 . g0
3] sw ¥

-200 #-deep vertical drainage

o -ahterite ..
A& -uphill system
-400 £ & -uphill system with dry horizon -1+
ELEV - superficial lateral drainage
‘ G- downhill system with dry horizon
-600-—— ' —_— .
N T ® - downhill system
600 400 200 o 200 400 600 o I .

CCA Axis 1 r e

Figure 25: Left: Canonical correspondence analysis for environmental variables: soil types, topographical positions,
slope and elevation (from Clark et al. 1999); Right: Vegetation ordination after correspondence analysis: symbols
indicates different soil types differing in drainage and hygromorphy: (from Sabatier et al. 1997)

Several topographic and soil variables are however particularly relevant for
explaining tree community composition and structuring (ter Steege et al. 1993, Clark et al.
1999, Sabatier et al. 1997, Kanagaraj et al. 2011), including slope, elevation, soil water
availability, drainage, and water logging, figures 25.

Even if a majority of studies focus on one or several environmental factors or
topographic variables, the structure of plant communities probably results from a complex
superposition of factors (among which local irradiance, nutrient availability, water-logging
and drought). Thus significant habitat-associations are commonly explained by species
sensitivity to the underlying constraints: Engelbrecht et al. (2005, 2007) and Poorter et al.

(2008) proposed drought, Paliotto et al. (Palmiotto et al. 2004) suggested irradiance, Lopez et

27



al. (Lopez & Kursar 2003) proposed both flood and drought, whereas Baraloto et al. (Baraloto
et al. 2005) proposed both nutrients and light. For example, a field experiment revealed a
reversal of performance ranking among species between local situations (Baraloto et al.
2005), suggesting different degrees of sensitivity to constraints among species. Thus,
adaptation to a particular habitat may partly explain the differences in community
composition and species abundance among micro-habitat.

Local habitat patchiness is also associated with large variations of tree biomass and
functional traits. In bottomlands, tree biomass is lower than in terra-firma (Kahn 1987,
Ferry et al. 2010), probably because soil instability constrains a more superficial root
anchorage and limits tree growth. Moreover, Kraft et al. (Kraft et al. 2008) found a
significant structuring of functional traits at the community level in Ecuador, which is also
consistent with a role of habitat filtering, figure 26. Another kind of phenotypic structuring

commonly observed in tropical rainforest

is the ability of trees to develop 1000_—
morphological particularities, particularly

in bottomlands. For example, buttress or 290
stilt roots prevent constraints due to soil -
instability, whereas adventitious roots,
lenticels, and aerenchyma tissues allow  400-
partial maintenance of root respiration in
water-logged  habitats, by allowing o
oxygen uptake directly from the air and 01

oxygen transport to roots (KOZIOWSkI Figure 26: Distribution of SLA (expressed as a deviance

1997, Parelle 2010). from null distribu};irc::i Elrziaettic;? \:;i;; local topography.

The entire forest dynamics vary along topographic gradients: canopy opening events
created by frequent tree-fall gaps are also proposed as a driver of diversity in meta-
communities (Schnitzer 2001, Robert 2003), by allowing establishment of light-demanding
pioneer species and thus, creating patches of regenerations in the middle of mature
communities composed by a majority of shade-tolerant tree species (Denslow et al. 1987,

Schnitzer 2001, Ferry et al. 2010). Quesada et al. (2009) categorized forest dynamics according

to a function of disturbance from soils, see figure 27.
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Figure 27: Variations in forest dynamics in relation with soil type in Amazonia. From Quesada et al. 2009.

Consequences of spatial heterogeneity on population evolution & species divergence

As quickly evoked previously (‘3.The maintenance of diversity in Amazonia’),
population evolution is driven by a combination of neutral (mutation, recombination,
genetic drift, migration, reproduction, demography) and adaptive (natural selection)
processes. Populations may diverge into new species, either due to isolation-by-distance that
may be caused by populations isolation into refuges or biogeographic barriers (allopatric
speciation), or by local adaptation to habitat heterogeneity (sympatric speciation).
However, the drivers of populations evolution and speciation processes in tropical
rainforest trees are poorly known, partly because the boundaries of species are often
confused, and many species are organized in species complexes, with incomplete
reproductive isolation between species and cryptic species (Cavers & Dick 2013).

At regional scale, many phylogeographic analyses revealed patterns of genetic
divergence structured by the biogeographic history of the species, and mainly dispersal
constraints that occurred during tertiary and quaternary. For example, Jacaranda copaia is
widespread in the Amazon basin and comprises two sub-species: one subspecies widespread
from Central America to Bolivia and another one distributed in the Guiana shield. In a
recent study, Scotti-Saintagne et al. (2012) showed that the geographical patterns of genetic
diversity in these two Jacaranda copaia sub-species were largely shaped by Pleistocene
climatic changes that isolated ancestral species into refuges, with a center of diversification
in Central Amazonia probably due to a secondary contact zone. Moreover, the absence of
cross-Andean disjunction suggested that the Andean uplift was not a barrier to dispersal,
probably because Jacaranda copaia is a wind-dispersed pioneer species, favored by canopy

gaps and disturbances, and able to tolerate relatively dry conditions. Another example is
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provided by the Carapa species complex (Duminil et al. 2006, Scotti-Saintagne et al. 2012).
Scotti-Saintagne et al. suggested that the biogeographic history of two Carapa species was a
combination of tertiary and quaternary events, including Pliocene Andean uplifts, and then
late Miocene development of Amazon drainage, but was also influenced by hybridization

and introgressions during the Quaternary, figure 28.
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Figure 28: Bayesian clustering analysis for the tree Genus Carapa in the Neotropics (from Scotti-Saintagne et al. 2012).
Maps indicate the structuring of genetic diversity at continental and regional scales.

In an original study (Fine & Kembel
2010), Fine et al. evoked the large influence of
specialization to habitat type in driving the
phylogenetic divergence between species. They
analyzed the phylogenetic structure of

Amazonian communities involving 1972 taxa

across habitat types in Peru (white-sands that
were widespread before Andean uplift and terra-
firme forests composed by Cretaceous
sediments that were laid down during Miocene).

They compared the relative effects of habitat

type and geographic distances between

communities on the phylogenetic distances Figure 29: Phylogenetic tree linking 1972 taxa in

Amazonia. Thick lineages indicate lineages containing
between taxa. They conCIuded that bOth more descendant taxa associated to terra-firme (green)
and wite-sand (blue) habitats than expected by chance.

dispersal limitation and habitat specialization (Fine & Kembel 2010)

influenced species divergence in tropical forests,
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but the effect of habitat specialization was greater than distance between communities,
figure 29. They remained, however, cautious about the age of divergence: both
biogeographic history of habitat types and recent in situ adaptive radiations governed by

habitat heterogeneity would be involved in clade divergence.

Taken together, these results reveal that the biogeographic history of species is often
insufficient to catch all the processes that structured the genetic diversity and induced
speciation in Amazonian landscapes. In particular, more recent specialization to constraints

would also be involved in species evolution and divergence, particularly at local scale.

At local scale, several studies revealed strong evidence of habitat specialization
among closely related species. Baraloto et al. analyzed the distribution of four pairs of species
from the same genus and observed divergent local habitat-associations between closely-
related species (Baraloto et al. 2007). They proposed that specialization to local habitat may
explain patterns of adaptive radiation in many tree genera. Similarly, Tuomisto et al.
(Tuomisto 2006) observed strong evidence of niche specialization to local edaphic
constraints (soil texture, soil cation content, inundation) between species of the Polybotrya
genus in northwestern Amazonia.

Even if numerous studies evoked the influence of local variations in shaping the
genetic diversity of tropical plants and in driving sympatric speciation, no study yet
provided molecular evidences of local adaptation at intra-specific level in Amazonia. In
temperate and boreal plant communities, local adaptation has been largely investigated and
provides a wide range of examples: local adaptation to altitudinal gradients (Savolainen
2011), to water-logging (Parelle et al. 2010) etc... (see section ‘Molecular evolution’). In
tropical rainforests, however, the relative influence of local adaptation and neutral processes
in structuring the genetic diversity over short spatial scales remains largely misunderstood

and requires much attention, particularly in the current context of climate change.
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5. Tree species model, research questions and study sites

In this study, I address the question of population evolution at local scale within
continuous populations of a dominant tree species widespread in French Guiana: Eperua
falcata (a complete description of the species is given page 35). I addressed two main

questions:

1) How is the genetic diversity of Eperua falcata structured in the forest landscapes of
French Guiana?

2) Which evolutionary drivers are relevant to explain the structure of genetic diversity
at local scale?

3) Does local adaptation contribute to structure the genetic diversity at local scale

within continuous populations?

I analyzed the patterns of genetic diversity distribution within continuous forest
landscapes of French Guiana through a global approach integrating both ecophysiological
(phenotypic) and population genetics (molecular) approaches that are treated separately.

Figure 30 (page 34) provides a complete overview of the methods, the specific questions

and future prospects.

Molecular evolution:

The section ‘Molecular evolution’ aims at (i) analyzing patterns of genetic
differentiation among local habitats, (ii) identifying which evolutionary drivers structure
the local genetic diversity of Eperua falcata, and (iii) testing for local adaptation by (iiia)
detecting outlier loci under diversifying selection among local habitats and (iiib) estimating
the extent of (divergent) natural selection in the genome of Eperua falcata. This section
involves two main approaches:

- acandidate gene approach in which targeted genes of known function (potentially
involved in adaptive genetic differentiation among local habitats) were sequenced:
aquaporins, catalase, farnesyltransferase, etc...

- agenome-scan approach in which I genotyped a large number of (anonymous) AFLP
markers spread over the genome.

The candidate gene approach was developed during the PhD of Delphine Audigeos. I

participate to this work during my Master degree by developing genetic markers and by

contributing to genetic analyses. The AFLPs approach was set-up during this PhD.
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In parallel to population genetics, I worked on creating a large database of Eperua
falcata expressed sequences (cDNA) that were sequenced by 454-pyrosequencing prior to
this PhD. I realized the bioinformatics assembly and post-processed it to characterize genes
and identify polymorphism. Such a database will be useful for further high-throughput re-

sequencing or genotyping of candidate loci.
The different results obtained are detailed in the research articles, but the main
results are summarized into this synthesis (‘orange boxes’). The prospects of the study are

discussed in the section ‘Discussion’.

Phenotypic evolution:

In the section ‘Phenotypic evolution’, I analyzed (i) whether functional traits are
(inherently) structured by local habitats, and (ii) whether habitat patchiness may have
shaped tree sensitivity to environmental constraints (with a particular focus here on water
stresses, including drought and water-logging). This section involves three experiments:

1- aprovenance test under controlled and non-limiting conditions (‘common garden’),
2- aprovenance test under constraining conditions in which different water treatments
were applied (drought and water-logging),
3- areciprocal transplant experiment in natural conditions.
The two first experiments were designed, and their realization supervised by D. Bonal
& I. Scotti from 2006 to 2008. The reciprocal transplant experiment was set up in 2011 at the
beginning of this PhD. I designed and set up this third experiment (seed sampling, sowing,

and seedlings transplant), and followed seedling growth from 2011 to 2013.
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Figure 30: Complete overview of the methods with their specific questions and future opportunities (in grey boxes).
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Eperua falcata (Aublet.)

Taxonomy: Fam. Fabaceae, Subfam.

Caesalpinioideae

Continental distribution:

E. falcata is widespread in the

Guiana shield. Its native

distribution covers the whole

Guiana shield (French Guiana,

Successional status and physiology:

E. falcata is an evergreen canopy-dominant tree species which
Suriname, Guyana) plus the
often emerges above the canopy. It is a ‘fast-growing late
North of Brazil and Venezuela.

successional species’ (Bonal et al. 2007): it displays lower

carbon assimilation rates, leaf nitrogen and SLA than early-
successional species, but higher SLA and leaf nitrogen than
slow-growing late-successional species. As it emerges above
the canopy, it is considered as a shade hemitolerant species, a
group displaying higher water use efficiency than heliophilic
or shade tolerant species that is considered as an adaptive trait
to high evaporative demand prevailing in the emerging tree
crowns. Because emergent trees are commonly not shaded by
other trees and because E. falcata reaches large circumferences,
it displays high sapflow densities (Granier et al. 1996). It is
well tolerant to drought: assimilation balance of adult trees
remains positive under moderate to severe drought (Bonal &
Guehl 2001) and leaf physiology is not affected by seasonal
soil drought (Bonal et al. 2000). It displays an anisohydric
behavior in relation to soil drought: trees are deep rooted
(with tap roots below 3 m, Bonal et al. 2000) and the stomatal
conductance of seedlings diaplay a limited sensitivity to

drought (Bonal & Guehl 2001).




Study sites:

Four study sites were used along the different approaches and experiments, figure 31.

Three were located on the coast of French Guiana (Laussat, Paracou and Regina), whereas

the site of Nourragues was the most continental. The study sites display large differences

in water-regime, with and annual mean precipitations ranging from 2500 (Laussat) to 4000

(Regina) mm/year.
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Figure 31: Location of the study sites.

p° Area Eperua falcata Coexistence with
Site Location
(mm/year) (ha) population density  other Eperua species
Laussat Coastal (W) 2500 4.3 48.1 No
Paraou Coastal (center) 2700 6.25 42.7 E. grandiflora
Regina Coastal (East) 4000 6.7 29.9 E. rubiginosa
Nourragues Continental (E) 3000 I NA NA

The different plots cover different habitat types, from bottomland to terra-firme, but

display several topographic differences. Laussat and Nourragues experimental plots are

composed by a permanently water-logged bottomland and a large plateau of low elevation

and low slope (at Laussat, elevation ranges between 20 and 60 meters). Paracou is composed

of a seasonally water-logged bottomland surrounded by two hilltops and separated by

moderate slopes. At Regina, topography is more complex, leading to a habitat patchiness
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composed by smaller patches more finely juxtaposed. Regina is composed by high and thin
hilltops bordered by important slopes, with elevations ranging from 40 to 100 meters. A
complex hydrological network carries water toward a seasonally water-logged bottomland
submitted to frequent flooding events during the rainy season. In spite of these differences,
the soil properties of local habitats are quite similar between sites: all bottomlands are
characterized by hydromorphic soils with a large accumulation of organic matter whereas
terra-firme are characterized by ferralitic soils undergoing important drainage due to their

sandy texture, probably leading to soil water deficits the dry season.
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PART 1 - Molecular evolution: population genetics and genomics

1. Population evolution

Evolution starts with the existence of genetic polymorphisms in the genome of
organisms due to mutations: substitution (“single nucleotide polymorphism” or SNPs),
insertions-deletions, copy number variation (“simple sequence repeat” or SSR). Mutations
occurred randomly during meiosis and are transmitted to the progeny by Mendelian
inheritance. Moreover, crossing over contributes to break linkage disequilibrium between
two physically linked loci, and creates new combinations of alleles (genotypes) considering
the two loci simultaneously.

In a population of infinite, and thus constant, size (i.e. no genetic drift, no
demographic changes), if reproduction is panmictic among individuals (i.e. mating is
random) and if there is no selection, the population is at the Hardy-Weinberg equilibrium:
allelic and genotypic frequencies remain stable across generations. For a bi-allelic locus,
homozygotes (A/A), (a/a) and heterozygotes (A/a) occur in proportion p2, q2, and 2pq
respectively; where p and q correspond to allelic frequencies for the alleles (A) and (a),
figure 32. The expected heterozygosity under Hardy-Weinberg equilibrium is thus equal to

2pq or 1-(p2+q2). This index is called Nei’s diversity index and may be extended to multi-

allelic loci, given:-h = 1 —
L
;N2
. f(allelic)“. 05 - f(AA)=p2?
On the contrary, the future of 0.8 - —f(Aa)=2pq
? i —f(aa)=q2
mutations in populations may vary g 07
g 0.6 |
across  generations, driven by |& os -
= o
evolutionary drivers: genetic drift, | & o4
S i
gene flow, and natural selection. [ also | § 3
O o2
include mating system as well as the o 1
demographic history of populations as o - . ‘ ‘ .
. . o 0.2 0.4 0.6 0.8 I
drivers of evolution. .
Allelic frequency (p)

Mating (selfing and inbreeding)

Figure 32: Genotypic frequencies as a function of allelic
frequencies in a population at the equilibrium. “p” and “q”
refer to allelic frequencies for the alleles (A) and (a)

respectively, where q=1-p.
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Mating between organisms within populations is an important point to understand

population evolution, particularly in plants in which selfing is common and because plants

are immobile and thus more
susceptible to be affected by

consanguinity.  Mating  affects
genotypic frequencies, by decreasing
heterozygosis (i.e. the proportion of
heterozygotes in the population),
without affecting allelic frequencies.
Selfing drastically affect genetic
diversity, by decreasing the
frequency of heterozygotes across
generations. In a population where
all individuals are 1009 selfing,

heterozygosis decreases in

proportion 1/2 each generation, figure 33.

Genotypic frequencies
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—£(A/a)

4 6 8 10

Generations

Figure 33: Variations in genotypic frequencies across

generations in a theoretical 100% selfing population of constant

population size (each organism produces one descendant each

generation).

Inbreeding also affects heterozygosis, depending on the inbreeding coefficient (Fis).

One definition of the inbreeding coefficient is the difference between the expected (under

Hardy Weinberg equilibrium) and the
observed heterozygosis divided by the
expected Fis =

(He — Ho)/He (Hartl & Clark 2007).

heterozygosis::

A positive Fis indicates a deficit in
heterozygotes due to inbreeding,

whereas a negative value indicates an

excess of  heterozygotes. In
populations, inbreeding affect
genotypic frequencies, given

f(A/A)=p2+pq*Fis, f(A/a)=2pq-
2pq*Fis and f(a/a)=q2+pq*Fis, figure

34.

Genotypic frequency

Fis=o (HW equilibrium)

= = = . Fiszo0.1

Allelic frequency (p)

Figure 34: Genotypic frequencies as a function of allelic

frequency under the HW equilibrium (Fis=0) and in

populations submitted to inbreeding (Fis=o.1 and Fis=o0.25).
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BOX 1 - THEORY
Apprehending genetic diversity from AFLP markers

“Amplified fragment length polymorphism” (AFLPs) is a powerful method to detect polymorphisms in
populations, by allowing the analysis of numerous markers spread in the genome very quickly with a limited
cost. The technique consists in digesting the genome with one or several enzymes (frequently two enzymes)
and by amplifying digested fragments by PCR. The amplification of a fragment produces a band by
genotyping, whereas the absence of band traduces a polymorphism that prevents enzyme clipping at this site
(Vos et al. 1995). Thus, AFLPs are poorly informative dominant markers: even if the absence of a band
necessary traduces a homozygote (o/0), the presence of a band confounds homozygotes (1/1) and
heterozygotes (1/0). Thus, estimating allelic and genotypic frequencies in populations from AFLPs requires
either the assumption that the population is at equilibrium, or a prior knowledge about the inbreeding
coefficient (Fis) in populations estimated from other kinds of molecular markers (such as SNPs).

For each marker j, the frequency of homozygotes (0/0) is estimated by:

f(00); = ¢* + pq * Fis

where p and q expresse the frequency of the allele (1) and (o) respectively, with p=1-q, leading to:
£(00); = (1 — Fis) * q} + (Fis * q;) < (1 — Fis) g7 + (Fis x q;) — £(00); = 0

Thus, q; = oV with A= Fis? — [4 + (1 — Fis) * (—£(00),)]

2%(1—Fis)
N(01); =2« N; xq; — 2+ N(00); where N; corresponds to the number of phenotypes available for this
marker (with removal of missing values).
This method was applied for estimating genotypic frequencies from the AFLP dataset obtained during this

PhD (Article n°2). A mean Fis was estimated from genes sequenced during the candidate gene approach

(Article n°1).

In the species-rich tropical rainforest, numerous tree species are monoecious and
occur at low population densities. This observation originally led botanists to predict that
tree species should be highly self-fertilizing and inbred. However, recent investigations
revealed that dioecy is consistently more frequent in tropical than in temperate trees (>20%
of tropical tree species, Ward et al. 2005, Dick et al. 2008), while estimates of outcrossing
revealed that tropical tree species are mainly outcrossing (Ward et al. 2005), figure 35. High
outcrossing rates, even in hermaphrodic species, may be a result of incompatibility
mechanisms preventing selfing, and inbreeding depression (i.e. the fitness of selfed seedling
is lower than the fitness of outbred seedlings, see the following paragraph on ‘natural
selection’). However, mixed mating remains frequent in several species. Outcrossing

depends on the balance between pollen dispersal (see paragraph on ‘gene flow’) and distance
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between crowns. Thus, selfing is favored in populations of very low density, whereas
outcrossing is favored by high population density. However, in species with an aggregative
distribution -as it is the case in Eperua falcata- mating would occur principally among

neighbors, leading to local inbreeding between trees (Dick et al. 2003).
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Figure 35: Estimated outcrossing rates (tm) in several tropical tree species (From Ward et al. 2005, Hardy et al. 2006, Dick et
al. 2008 and all references within).

Genetic drift

In a finite population, the random sampling of gametes causes variations in allelic
frequencies across generations. Genetic drift may be modeled by the Wright-Fisher model
in which each generation is constructed by random sampling from a pool of gametes. Alleles
frequencies vary randomly across generations, leading either to allele fixation (p=1) or to
allele loss (p=0). In small populations, allelic frequencies show strong variations across
generations, and allelic fixation or loss occurs more quickly than in large populations, figure
36. In general, trees are characterized by high fecundity (by comparison with animals)
leading to large population sizes (Petit & Hampe 2006). Thus, genetic drift is supposed to
be low in continuous tree populations. However, low population densities encountered in
numerous tropical trees, as well as frequent asynchronism of flowering among trees of a

given species, may reinforce genetic drift (Ward et al. 2005, Dick et al. 2008).
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Figure 36: Allelic frequencies (p) for 7 loci under the Wright-Fisher model simulated using the simulation engine
available at: http://darwin.eeb.uconn.edu/simulations/drift.html

Gene flow

Gene flow refers to the movements of genes within or between populations. In
plants, gene flow occurs through movements of haploid gametes (pollen flow), and diploid
zygotes (seed dispersal). Moreover, gene flow is not only a function of dispersal, but also
the success of migrants in different habitats (i.e. natural selection directly impacts the
‘realized’ gene flow). Gene flow is commonly estimated through paternity and maternity
tests or indirectly inferred from the analysis of the fine-scale genetic structure of
populations (see section ‘Neural genetic differentiation’). Trees display high levels of gene
flow in both temperate and tropical ecosystems (Petit et al. 2006, Savolainen et al. 2007), and

pollen flow is globally higher than seed dispersal in the latter (Dick et al. 2008), figure 37.
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Figure 37: Estimates of pollen flow and seed dispersal in several temperate and tropical tree species (realized
from Ward et al. 2005, Hardy et al.2006, Petit & Hampe 2006, Dick et al. 2008, and references within).

Pollen flow is high in tropical tree species, even in animal-pollinated species, and

ranges from 200m to 19km (Ward et al. 2005). Indeed, tropical tree species are mainly
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animal-pollinated (709 of the species), because
high air humidity and frequent precipitations
prevent wind-pollination. One of the rare
examples of wind-pollination is provided by
the pioneer species from the genus Cecropia,
able to disperse pollen to several kilometers (6-

14 km in C. obtusifolia, Kaufman et al. 1998),

figure 38. Other examples of long-distance G AY: =
pollen flow are provided by the bat-pollinated &% 3% Cecrobia obtusifolia (Urticaceae)
Ceiba pentandra, able to disperse pollen up to 18 km, and the wasp-pollinated species from
the Ficus genus able to spread pollen from 6 to 15 km (Nason et al. 1998). However, long-
distance pollen flow is not the norm for all tree species, and the extent of gene flow may be
modulated by population density and species behavior as evoked in the ‘mating’ paragraph.
Moreover, habitat fragmentation may increase pollen flow, suggesting that tropical tree
species would be more adaptable to forest fragmentation than expected. In Swietenia humilis,
White et al. (White et al. 2002) reported that pollen flow was 10 times larger in fragmented
habitats than previous results in undisturbed populations. In the same way, Dick et al. (Dick
et al. 2003) found strong differences in pollen dispersal between undisturbed (mean = 212 m)
and fragmented habitats (mean = 1509 m) in the African tropical tree Dizinia excelsia.
Contrary to pollen flow, seed dispersal
occurs principally at local scale in tropical
rainforests and is commonly below 100 m, with a
maximum at ~400 m in Simarouba amara (Hardesty
et al. 2006). Hardy et al. (Hardy et al. 2006) found a

relation between seed dispersers and total gene flow

(including both pollen and seed dispersal): tree

= v

species dispersed by monkeys or birds have more Figure 39: Ceiba pentandra (Malvaceae) called
‘fromager’ (literally ‘the cheese maker’) due

effective gene flow than trees dispersed by gravity to its soft wood.

(as it is the case for Eperua falcata and E. grandiflora), wind or rodents. They also suggested

that limited seed dispersal would indirectly affect pollen dispersal by increasing local

population densities. Moreover, rare events of extreme long-distance dispersal have already

been reported and, even if rare, such extreme dispersal may be involved in the colonization

of new areas. For example, a cross-Atlantic dispersal event would have allowed the
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colonization of Africa from the neotropics by Ceiba pentandra (Dick et al. 2007), figure 39.

Natural selection

Natural selection acts on genetic diversity through fitness-related phenotypic traits.
Contrary to genome-wide neutral processes, natural selection acts on targeted genes
involved in fitness-related traits, and affects the frequency of alleles in a population across
generations. Fitness may be defined as the property for a genotype to survive and produce
a fertile progeny. Mathematically, fitness is the ratio between the number of descendant
produced by a given genotype and that produced by the genotype with the greater fitness.
For a bi-allelic locus, fitness is called Waa, Wa. and W, for the genotypes (AA), (Aa), and

(aa). Genotypic frequencies at the following generation is thus (Hamilton 2009):

f(genotype) 1 XW(genotype)
f(genotype)e,s = e :

where W traduces the marginal fitness or the frequency-weighted relative fitness of
genotypes: W = f(AA); X W(AA) + f(Aa); X W(4a) + f(aa); x W (aa)

Thus, the future for an allele under selection may be easily guessed. Variations in
the frequencies of the allele (A) depend on the fitness of the different genotypes, figure 0.
The frequency of the allele (A) increases after selection if homozygotes (AA) are favored
but decreases if homozygotes (aa) are favored, figure 41. When heterozygotes have the
greatest or the lowest fitness, variations of allelic frequencies must be either positive or
negative, depending on allelic frequency before selection. If homozygotes have equal
fitness, selection will lead to equilibrating allelic frequencies around o.5 (if no drift).
However, natural selection may also impact neutral loci (leading any advantage or
disadvantage to the different genotypes) because of a physical linkage between them
(‘Hitchiking’).

(AR Bivored:

WAA > Waa =WAa

Homozygotes favored;

WAA = Waa > WAa

Figure 40: Variation in
the frequency of the
allele (A) after selection
(‘Delta p’) as a function

L2

Ap

p(aﬁer selection) - p(before selection)

Heterozygotes favored:

Of the frequency Of the Waa > WAA e Waa

allele (A) before selection
(‘p’) and the relative

(aa) favored:

=0,0. W =
R Allelic frequency before selection (p) Wiy Ah=\Vaa

fitness of the genotypes.
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Figure 41: Variations of allelic and phenotypic frequencies across generations under selection (without genetic drift)

Three kinds of natural selection may be distinguished. Positive selection favors an
advantageous allele that will increase in frequency across generations until fixation, figure
42. Under selection, allele fixation is expected to occur quickly than with drift only.
Negative (or purifying) selection eliminates deleterious mutations until their complete
disappearance. Both positive and negative selection leads to an excess of rare alleles at a
polymorphic locus by comparison with neutral expectations. Balancing selection favors
several alleles of equal contributions, leading to an excess of alleles in intermediate
frequencies than expected under neutrality. The figure 42 shows a conceptual allele
frequency spectrum at a single locus that represents the patterns of allelic frequencies at a
locus submitted to natural selection by comparison with the expected pattern under

neutrality of this locus.
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Figure 42: Conceptual allele frequency spectrum at a multi-allelic locus under neutrality and under selection.
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Traditionally, two main approaches allow searching for footprints of natural
selection: ‘candidate gene’ and ‘genome scan’ approaches. In the former, footprints of
natural selection are searched at individual loci using single-locus selection tests, classically
based on analyzing levels of diversity or allele-frequency-spectrums (for example Tajima’s
test), figure 43. Targeted genes are empirically chosen based on prior knowledge or
assumptions. These genes may either be quantitative trait loci (QTLs, i.e. loci involved in
variations of phenotypic traits) or genes encoding for proteins involved in a candidate
metabolic pathway or biological process (and eventually expressed in large amount in
response to particular constraints). The latter (genome scan) involves the analysis of
numerous molecular markers, with no necessary known function. It starts from the
hypothesis that the majority of polymorphisms in the genome is selectively neutral (box 2)
and that genetic diversity at a locus submitted to selection would be different from the
global genetic diversity apprehended overall genome. Tests for selection based on genome
scans allow identifying outliers by characterizing the (neutral) distribution of particular
statistics among loci, mainly linkage disequilibrium, synonymous/non-synonymous ratio
of mutations, or differentiation (Fst), figure 43. This approach is probably being the most
popular because it allows identifying footprints of natural selection free from neutral
processes with genome-wide effects (such as demographic changes). Moreover, next
generation sequencing, genotyping, and re-sequencing technologies are going to merge these
two approaches, as they provide genetic information about large numbers of loci of known

function (see part 3. ‘Next-generation sequencing, genotyping and new opportunities’).

Demography

Test category

Level of diversity

Site frequency spectrum (SFS)
based-test

Linkage disequilibrium (LD)

Synonymous/nonsynonymous
mutations

Population differentiation

Signature detected

Unusually low or high genetic diversity around
the selected locus

Moadification in the relative proportions of low
and high frequency mutations in the selected
region

A rise in frequency of long haplotypes created
by the increased LD around the selected region

Differences between the ratio of nonsynonymous
to synonymous polymorphism and
nonsynonymous to synonymous divergence

Increased or decreased population differentiation
of a genomic region relative to the rest of the
genome

Limitations

High sensitivity to demographic assumptions

High sensitivity to demographic assumptions.
High rate of false positives

Spurious signal of selection created by population
structure. LD levels decrease rapidly after
selective sweep is complete

Cannot distinguish between past and current
selection. Slightly deleterious mutations inflate
polymorphism. Spurious signal of selection with
population expansion and bottlenecks if there
are slightly deleterious mutations

Hierarchical genetic substructure creates
false positives. Importance of the sampling
scheme

Figure 43: Overview of the methods for detecting selection (Siol, et al. 2010).
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The genetic structure of populations is also influenced by past (eg. ice ages), recent
(eg. pre-colombian occupation), or current demographic changes. In French Guiana,
Stephanie Barthe (2012) found large demographic changes concordant with past climatic
changes (figure 44), but she did not detect demographic variations concordant with pre-
colombian human occupation, Barthe 2012. She also found that several tree species may have
different demographic history among regions, as it is the case for Vouacapoua americaana.

Demography attracts a particular attention, not only in biogeographic but also in

Dg Sg Sspl Vm Je Va Cs Sa
Outest Est
2 . ®
s ® e, ':' e *e S ) Sod 6 oy Cod i 8
™ @ vy .
- T°) . o o™ e ® o .
° P ° o ° 2 © ° .
. = . . @ . ¢ o.
L
B o . o
e . Na .- -
B o2 I e . ~a . ~e = at B L LY

I & nd & &

Figure 44: Past demographic events in several species of French Guiana. From Stéphanie Barthe (2012). Maps indicate the
structuring of genetic diversity at regional scale, schemes indicate which demographic scenario were experienced by the
populations of different species (constant size, bottleneck, or expansion).
adaptation studies. Indeed, the demographic history of populations mimics the effects of
natural selection at a given locus. A population expansion commonly produces an excess of
rare alleles, and may be confounded with positive and purifying selection. On the contrary,
a population decrease (‘bottleneck’) produces an excess of alleles in intermediate frequencies
and may be confounded with balancing selection. That is why genome-scan approaches are
highly powerful to identify targets of natural selection, because they identify loci free from

genome-wide neutral processes such as past demographic changes.
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BOX 2 - THEORY

Adaptive and Neutral evolution: from Darwin to Kimura

Charles Darwin (1809-1882) was one of the first to accept that species can change, originally from the
observation that species phenotypic traits vary geographically in function of the environment they inhabit.
He was the first to propose that favorable variations tend to be preserved, whereas unfavorable ones tend to
be destroyed through selection. The hypothesis of adaptation was evoked by Darwin while Gregor Mendel
(1822-1884) was discovering the principles of inheritance, and Darwin’s theory lacked, at this time, a
satisfactory theory of heredity. During the 20" century, Ronald Fisher, J. Haldane and Sewal Wright showed
that natural selection operates through Mendelian inheritance, reconciling Mendelism and Darwinism in the
‘synthetic theory of evolution’ or ‘modern synthesis’. Neo-Darwinism became widely accepted, even if most
attention was focused on adaptation. Several authors, however, introduced other evolutionary forces as drivers
of evolution: The Wright-Fisher model of random fixation introduced the notion of genetic drift (figure 45),
while Dobzansky and Huxley introduced gene flow as they suggested that geographically separated
populations would evolve into new species.

At the end of the 20™ century (1983) Moto Kimura properly wrote the neutral theory of evolution
(Kimura 1983). He proposed that evolution is in majority driven by neutral processes, mainly mutation and
drift. His theory is based on the idea that the majority of polymorphisms are selectively neutral: while
deleterious mutations are quickly eliminated by purifying selection, numerous mutations affect un-coding
regions (introns) or numerous mutations affect coding regions without affecting the amino acid encoded
(silent mutation) or without affecting the protein function (conservative mutation).

However, he didn’t completely exclude the impact of natural selection, as he proposed that only several highly
deleterious mutations are eliminated by natural selection. This argument was used to explain why:

(1) Non-coding DNA regions (introns) generally accumulate mutations more easily than coding ones (exons).
(2) Proteins constitutive for cells never mutate and mutations rarely affect the active sites of proteins
(implying that natural selection prevents all deleterious mutations in genes encoding constitutive proteins or

in protein active sites).

Now, it is widely accepted that the majority of polymorphisms observed in the genome is selectively
neutral. However, it is not excluded that several loci would be modeled by natural selection. More, the
conciliation between adaptive and neutral theory has led to the emergence of a new method for identifying

selected loci and apprehending the extent of natural selection: the genome scan approach.
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Figure 45: Evolution according with Darwin and Wright. From Koonin & Wolf 2009.
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2. Population differentiation: the complex interplay between gene flow, selection, and

drift.

a

o

‘o

]

‘S

=}

9 Drift,

8 .
wy > | > Demographic changes
E-g migration +/- Selection
o

Z

Mating, pollen flow,
seed dispersal

c \

9 € = => >

E migration migration

g

Y
‘i-‘o
=
A Drift, Divergent selection

Demographic changes

Figure 46: Conceptual framework of population differentiation.

Genetic differentiation between populations (also called ‘demes’) results from the
subtle interplay between evolutionary drivers, mainly gene flow, drift, and natural
selection, figure 46. Migration (pollen flow and seed dispersal in the case of trees) tends to
homogenize the genetic diversity among populations (Lenormand 2002, Bolinick & Nosil
2007). Thus, populations connected by an extensive gene flow in the absence of strong
disruptive or directional selection are expected to be poorly differentiated: the entire
population is thus submitted to drift, demographic changes and stabilizing selection, and
these processes act similarly in the whole population, Ridley 2003, Hartl & Clark 2007,
Hamilton 2009.

When migration is restricted between demes, they may diverge into sub-populations
through the action of demographic events (if the sub-populations experienced different
demographic history) and genetic drift (depending on the effective size of each sub-
population): differentiation depends in this case on the couple migration-drift (see
following paragraph ‘Neutral differentiation’).

However, gene flow does not necessarily prevent differentiation. In the particular
case of divergent selection caused by habitat heterogeneity, natural selection may drive
genetic differentiation in spite of low distances between sub-populations, because

propagules from a particular habitat are unable to establish in others. This particular case is
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called local adaptation, and is widely documented in both animal and plant species, Kawecki
& Ebert 2004, Leimu & Fisher 2008, Savolainen 2007 b. Here, I define “local adaptation” as
the genetic divergence that occurs over shorter distances than potential gene flow due to
divergent selection among contrasted habitats.

To quantify the extent of population subdivisions, S. Wright (1921) defined the
fixation index (Hartl & Clark 2007). This index expresses the reduction in heterozygosity
expected (under Hardy-Weinberg equilibrium) at any level of a population hierarchy
relative to another. In a hierarchical model of population subdivision, let Hs define the
average Nei’s index (heterozygosity expected under Hardy-Weinberg) within sub-
populations, Hr the average Nei’s index within regions, and Hr the Nei’s index of the total
study area. Three different Wright’s F-statistics allow quantifying the extent of

differentiation, figure 47 (Hartl & Clark 2007, Excoffier et al. 2009).

Total

Region

:‘!‘ Lll" pl‘],)UlJl 10N

Figure 47: Wright’s F-statistics of differentiation.

o Fsr: Differentiation between sub-populations within regions relative to

[1]

Hgr—-Hg
HR

differentiation between regions: Fggp =

e Frr: Differentiation between regions relative to the diversity in the total population:

e Fst: Differentiation between sub-populations within regions relative to the diversity

Hr-Hg
ol E1

These three indexes are linked by the relation: (1 — Fsr) = (1 — Fsg)(1 — Fgr) [4]

in the total population: Fgy =

Comparing Frr and Fsgr allows assessing if there is more variation among regions (as

measured by Frr) than there is among sub-populations within regions (Fsr).
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3. Neutral differentiation

Neutral genetic differentiation is commonly modeled under the couple migration-

drift using migrations models (figure 48), among which the island model is probably the

most popular.

Figure 48: Classic models of population subdivision. (a)
Continent-island model, (b) island model, (c) and (d)
stepping-stone model in one or two dimensions. (From
Hamilton 2009)

In the island model, a large population is split into many sub-populations (demes),
and migration is assumed to be symmetrical between demes (the proportion of migrants
from each deme into each other is thus 1/d, where d is the number of demes). Under the
island model, the differentiation between sub-populations is explained as a function of Ne

(effective size of the meta-population) and m (the migration load between demes): Fg; =

1

Ao It is thus intuitive that FsT decreases as the migration rate (m) increases. Fsralso

increases when Ne decreases, as a result of genetic drift within sub-populations. To
illustrate the relationship between Fst, Ne and m, I simulated theoretical populations using
the ‘Easypop’ software (Balloux 2001), figure 49. In large populations, differentiation
decreases when migration increases, leading to an absence of differentiation for m=o.0s.

Small populations are differentiated even for m=o0.05 (Fst close to the Fst obtained without

Diploid, 5 populations, random mating, island model, 10 loci,

free recombination, u=c.av1, 15 allelic states, 100 gener

Ne metapop=1o00 Ne metapop=160

m=0.05 m=o m=0.05 m=o

&
£
=}
g
=3
z Figure 49: Differentiation between sub-
' UE populations obtained under different
%_ scenarios of effective population size and
5 : : : ¢ ’
5 56 o 6o 85 - migration rate using the program ‘Easypop
(Balloux 200r1).
Generations
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gene flow in large populations after 100 generations), and Fst bursts in the complete absence
of migration (close to 1 after 100 generations), because isolated sub-populations evolve
independently through strong genetic drift.

Dick et al. (Dick et al. 2008) reviewed the estimates of differentiation in both

temperate and tropical tree species and found that tropical tree species display a larger

genetic differentiation among
populations (mean Fst = 0.177) than their N : © Tomparals,
. ’ O Temperate,
counterparts in the temperate zone biotic
' @ Tropical,
. 0.4 bioti
(mean Fst = o.116). Strong genetic o ; —
.
differentiation in tropical trees is foige 0 @ .
o) o
. . .
probably the result of mixed mating ,|g $ o o o . . & 5
[ S b4
systems, restricted seed dispersal and o $ o0 ; o ; .
0.1 * o @
. ) ) 00 % ® ° b © o
high levels of local inbreeding. s g% ©%% o ¢ o * 2 S
°gQ s . 0! e & e 0
0.0 +
Moreover, they suggested that the 0 0 0 o % o0 70

Stature (m)
extent of differentiation is independent
Figure 50: Fst estimates in tropical and temperate zone trees
to the canopy stature of tree species (Dick, 2008).
(understory, canopy, emergent), figure 50.

At fine spatial scales, a restricted gene flow due to limited seed dispersal, as it is
frequently the case in tropical rainforest trees, may cause a spatial genetic structuring over
short geographical scales, even in populations of large size, because progenies are
geographically grouped (Dick et al. 2008, Hardy et al. 2006). Moreover, mating among

neighbors in aggregative tree species causes local inbreeding that reinforces the spatial
g ggreg p g p

structuring, leading to strong genetic divergence over short spatial scales figure s1, Hamilton

Random mating Mating among neighbors

Generation = 200

y dimension of population

10 20 30 40 50 60 80 90 100

x dimension of population x dimension of population
Figure 51: Mating among neighbors causes spatial clumping of genotypes and therefore clumping of allele
frequencies (from Hamilton 2009). Genetic structuring after 200 generations under random mating (left) and
mating among neighbors (right).
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2009. Thus, assessing fine-scale spatial genetic structure (SGS, box 3) is one of the most

popular methods to assess whether neutral processes drive the genetic differentiation in

continuous areas (Hardy et al. 2006).
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Figure 52: Method for analyzing fine-scale SGS and estimating gene flow.
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Significant fine-scale genetic structuring is common in both temperate and tropical
zones. In temperate tree populations for example, significant SGS had been reported in
Fagus crenata (Oddou-Muratorio et al. 2010), Fagus sylvatica (Vornamet al. 2004, Jump et al.
2006, Oddou-Muratorio et al. 2010, Jump & Penuelas 2012), Quercus petraea and Q. robur
(Streiff et al. 1998). The tropical zone also provides numerous examples of fine-scale genetic
structuring in both dominant and pioneer tree species. I presented an overview of the main
published papers in the following table. The most spectacular spatial structure was found in
Aucoumea klaineana (Gabon) populations that display a significant relatedness between
individuals up to 5 kilometers. A significant structure was also found in the insect-
pollinated Eperua grandiflora, for which gene dispersal was estimated to ~320 meters in spite

of its heavy seeds dispersed by gravity (Hardy et al. 2006).

Species Family Location SGS References
Auc:oumea Bursrseracea ~ Gabon * (skm) Born et al. 2008
klaineana
Carapa guianensis Meliaceae Brazil * (100m) Cloutier et al. 2006, Cloutier et al. 2007
. French .
Carapa procera Meliaceae Guiana low Doligez & Joly 1996, Hardy et al. 2006
Car.yf)car Caryocarace Brazil * (8m) Collevatti et al. 2001, Collevatti et al. 2010
brasiliense ae
Cecr'opn'z Moraceae Mexico * Kaufman et al. 1998
obtusifolia
Chryfophyllum Sapotaceae Fre.nch * Hardy et al. 2006
sanguino lentum Guiana
Dicorynia French Latouche-Hallé et al. 2004, Cavers et al.
. . Fabaceae . * (160m)
guianensis Guiana 2005, Hardy et al. 2006
Dipteryx alata Fabaceae Brazil ns Collevatti et al. 2010
French
* (20-
Eperua falcata Fabaceae Guiana (30-56m) THIS STUDY
. French %
Eperua grandiflora Fabaceae Guiana Hardy et al. 2006
Glyricidia sepium Fabaceae Gualtaema * (5om) Dawson et al. 1997
NeoblaTLO(fflrpus Dipterocarp Malaysia low Konuma et al. 2000
heimii aceae
French Cavers et al. 2005, Veron et al. 2005
. * b )
Sextonia rubra Lauraceae Guiana (400m) Hardy et al. 2006, Cloutier et al. 2007
Swietenia Meliaceae C(}sta * (100-110m) Lowe et al. 2003, Cavers et al. 2005
macrophylla rica
Symphonia . French % Aldrich & Hamrock 1998, Degen et al.
globulifera Clusiaceae Guiana (180-200m) 2004, Cavers et al. 2005, Hardy et al. 2006
Tibouchina Maleastoma Brazil * (3m) Collevatti et al. 2010
papyrus taceae
Vouacapoua French
. Fabaceae . * (100-300m) Dutech et al. 2002, Hardy et al.2006
americana Guiana

Several authors have already reviewed the processes of fine-scale genetic structuring
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due to gene flow in tropical forests (Hardy et al. 2006, Ward et al. 2005, Dick et al. 2008).
Taken together, it is now possible to draw a global scheme of the processes driving neutral
differentiation over short spatial scales in tropical rainforests, figure 3.

During this PhD, I investigated the spatial genetic structure of Eperua falcata to
assess whether the genetic diversity in wild populations may be influenced by neutral
forces, mainly limited gene flow and local inbreeding. A synthetic summary of the main

results is presented in the following page, while complete results are given in the article n°2.
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Figure 53: Process of neutral genetic differentiation and local structuring in trees.
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Figure 54: Study sites locations,
local topography and Eperua falcata
distribution (red=sampled trees
from terra-firma, blue=sampled
trees from bottomland).
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Figure s5: Spatial autocorrelations using Kinship relatedness coefficients based on 1711 and
1810 tree pairs in Laussat and Regina respectively.
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Figure 56: Blinded analysis of genetic structuring in Regina. The most probable number of genetic clusters
was found for K=7 clusters (maximum deltaK) that probably corresponds to different progenies or clusters
of related trees. The different clusters are geographically clumped, suggesting the existence of neutral
structuring over short geographical scales due to restricted dispersal probably reinforced by local
inbreeding.
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4. Adaptive differentiation

Methodological considerations

In populations spread across contrasted habitats, natural selection may drive genetic

differentiation in spite of low distances between the sub-populations. Adaptation to local

environment has been observed experimentally in many organisms, but the genetic basis of

local adaptation remains pOOI‘ly known. TWO main approaches are commonly used to

identify molecular footprints of divergent selection:

‘Genetic-environment associations’ (GEAs) search for significant relationships
between (quantitative) environmental variables and allelic frequencies, often using
candidate genes (Bierne et al. 2011).

‘Fst-based methods’ uses genome scans to identify ‘outlier’ loci for which the
observed differentiation between (discrete) populations is different from the overall
(and supposed selectively neutral) genetic differentiation. A central tenet of Neo-
Darwinism is that evolution of adaptive traits involves allelic substitutions with
small effects for a large number of loci. However, experimental studies revealed that
the number, size and distribution of such genomic regions varies substantially
among studies: several studies have provided cases in which adaptation is
attributable to a small number of genes with large effects, while other studies
demonstrated adaptations for a large number of genes of small effects. Indeed, the
extent of natural selection is dependent on the genetic architecture of the selected
traits, and genome-scans at molecular levels allow assessing the extent of natural
selection without information about the phenotypic traits targeted by natural

selection (Storz 2005).

Because I used Fst-based methods for studying local adaptation in Eperua falcata, I devote

more methodological attention to Fst-based selection tests than to other methods such as

GEAs.

Two kinds Fst-based methods can be distinguished:

o Coalescent methods use coalescence to simulate populations and draw an
expected joint distribution of Fst vs. heterozygosity that may be directly
compared with observations (box 4).

o Bayesian methods partition observed Fst into a population- and a loci-specific
component (box 5). These coefficients are directly inferred through a

Bayesian modeling approach.
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Fst-selection tests of genome-scan data have several advantages, by comparison for
example with QTL mapping (Storz 2005): (1) Genome scans may be applied to natural
populations of any species (not restricted to species that can be crossed in the lab. (2) While
QTL mapping in crossed lines typically found loci with large effects, molecular genome
scans are capable of identifying loci that have experienced a weak selection (loci with small
effects), Stapley et al. 2010. Indeed, natural populations result from long-time selective
pressures. The cumulative effects of small selections over long times can produce a signal
detectable by genome-scans. (3) They allow identifying selected loci without having
information about the selected traits. (4) They are robust to a range of non-equilibrium
situations. (5) Even if the original coalescent method proposed by Beaumont & Nichols
(1996) is sensitive to bottlenecked populations, Bayesian methods (Beaumont & Balding
2004) are robust to many demographic scenarios (Beaumont 2005).

However, these methods have also several limits, mainly because they may detect
several false-positives (type I error), or fail to detect true-positive (false-negative or type II
errors). Type I errors (false-positive) -that is probably a more serious risk than type II
errors- may have different causes. First, correlated allele frequencies due to co-ancestry may
inflate the differentiation (Fst) under the island model. That is why, the Bayesian method
developed by Foll & Gaggiotti (Foll & Gaggiotti 2008) uses a model of genetic
differentiation with co-ancestry (inspired from Falush et al. 2003) that allows admixture
between lineages. Moreover, genetic incompatibility (i.e. the intrinsic incompatibility
between genetic groups) that constitutes an intrinsic barrier of gene flow may also inflate
differentiation. Last, the use of a classical island model in the case of hierarchically
structured sub-populations may also bias the analysis (because migration between demes of
a same region is expected to be larger than migration between regions). That is why,
Excoffier et al. (Excoffier et al. 2009, Excoffier & Lischer 2010) implemented the software
‘Arlequin’ with a hierarchical island model able to deal with such hierarchical designs.

Independently, Narum & Hess (2011) and Vilas et al. (Vilas et al. 2012) tested the
power of different methods by simulating populations with a known number of genes under
selection. They found that Bayesian methods (‘BAYESCAN’ software) perform more
efficiently than coalescent ones (‘FDITST’ and ‘DFDIST’ software), Vilas et al. 2012.
Moreover, ‘Arlequin’ (coalescent method under a hierarchical island model) produced more
type I and type II errors than ‘FDIST2’ (coalescence under an island model) and

‘BAYESCAN’, Narum & Hess 2011. Last, the Bayesian method produces the lowest number
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of Type I errors, Narum & Hess 2011. In spite of these limits, these methods remain the best

way to identify targets of divergent selection in wild populations, and crossing results from

different approaches is recommended.
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Figure 57: Principle of Fst-based selection tests using coalescent methods.
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Model of population differentiation (with co-ancestry)
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Figure 58: Principle of Fst-based selection tests using Bayesian
methods.
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Evidences of adaptation in temperate and tropical plant populations

All methods confounded, the literature provides numerous molecular evidences of

adaptive divergence in plant species, mainly across broad climatic gradients.

Geographic distribution of the  Difference (%) in relative contribution Difference (%) in relative contribution
climatic variable of the climate variable of the climate variable
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Figure 59: Influence of temperature and precipitation on the distribution of alleles linked to fitness
(Fournier-level et al. 2011).

In Arabidopsis thaliana, a genome-wide association study revealed that fitness-related loci
(growth and fruit production) exhibit signatures of local adaptation linked to climatic
variables across Europe (Fournier-level et al. 2011), figure s59. In black spruce (Picea mariana),
several genes involved in growth, response to constraints (cold and drought) show patterns
of differentiation concordant with diversifying selection among both climatic and
precipitation partitioning in Québec (Prunier et al. 2011). In Pinus pinaster, Eveno et al.
(Eveno et al. 2007) analyzed the structure of genetic diversity across the maritime pine range
for SNPs within genes candidates for drought stress tolerance. Several were identified as
‘outliers’ probably under diversifying selection. In Lobolly pine (Pinus taeda), several genes
involved in responses to biotic and abiotic constraints were structured by aridity in the
United States (Eckert et al. 2010). Similarly, Richardson et al. (Richardson et al. 2009) found
that 709 of the genetic variations (obtained from anonymous AFLPs) is explained by
climate in Pinus monticola inhabiting the west coast of USA.

Altitudinal gradients also provide molecular evidence of local adaptation. In white
spruce, Namroud et al. (Namroud et al. 2008) found patterns of genetic differentiation
concordant with divergent selection among populations of different elevations for genes
involved in flowering time, oxidative stress and nitrogen uptake. In the coastal Catalonian
montains, Jump et al. Jump & Penuelas 2006) detected significant variation in gene

frequencies related to temperatures in Fagus sylvatica.
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However, the question of plant adaptation to environmental conditions is highly
neglected in tropical rainforests: there is, up to now, few study dealing with adaptation in
tropical trees. Moreover, the great majority of studies that provides molecular evidence of
adaptation in trees of temperate zones are focusing on broad climatic gradients acting at
large spatial scales. On the contrary, only few studies have provided evidence of adaptation
to local constraints (such as edaphic constraints among micro-habitats or local biotic
constraints). Burgarella et al. (Burgarella et al. 2012) detected footprints of diversifying
selection for taxol-related genes (involved in defense against predators) in Taxus baccata in
Spain mountains. They suggested that local selective pressures exerted by predators and
host-enemy co-evolution would have led to genetic divergence among uplands. In an
original study, Manel et al. analyzed patterns of adaptation in a mountain plant (Arabis
alpina) across geographical scales (Manel et al. 2010). Surprisingly, they found a higher
proportion of loci of ecological relevance (Fst-based outliers) at local scale. At regional
scales, temperature and precipitations were identified as the major drivers of allele
distribution, but it was less clear at local scale in which environmental variations are
characterized by topography-related variations rather than climatic ones. They suggested
that there may be two different types of adaptive responses acting on A. alpina: a site-specific
local adaptation (caused by topography-related variations) and a more general adaptive
response at larger geographic scales (caused by large climatic gradient, including both
temperatures and precipitations).

In this study, I used both candidate genes (based on SNPs markers) and genome
scan (based on anonymous AFLPs markers) to test for adaptation in the neotropical tree
Eperua falcata over very short geographical scales (hundreds meters), see below and articles

n°1and 2.
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Summary of PhD results:
In Eperua falcata, both candidate genes and genom scan approaches revealed footprints of

divergent selection among local habitats (see articles n°1 and n°2).

During this PhD, two main approaches were carried out to identify footprints of
natural selection driven by local habitat heterogeneity in Eperua falcata. The candidate gene
approach involved trees inhabiting the sites of Paracou and Nourragues, whereas the

genome scan approach involved the sites of Laussat and Regina.

In the first approach (article n°1), a collection of candidate genes for divergent
selection combined with several genes of unknown function was sequenced to identify
Single nucleotide polymorphisms (SNPs). A coalescent method (under an island model)
revealed that several genes were probably submitted to divergent selection between water-
logged bottomlands and well-drained terra-firma, among which two genes encoding
proteins involved in plant response to stresses: a catalase that is involved in the response to
oxidative stresses frequently experienced during water-logging, and the farnesyl-
transferase which plays a role in the regulation of stomatal conductance, figure 60. On the
contrary, genes encoding aquaporins were either neutral (Paracou) or submitted to uniform

selection (Nourragues).

In the second approach (articles n°2), a large panel of anonymous markers (1196
AFLPs) was genotyped to estimate the extent of divergent selection in the genome of Eperua
falcata in the study sites of Laussat and Regina. Both Coalescent (hierarchical island model)
and Bayesian methods were used. Both methods revealed that global differentiation among
local habitats was very low (ranging between 0.02 and 0.04 depending on the method used)
but concordant with the average Fst estimated from candidate genes. The Coalescent
method detected 21 outliers under uniform selection, while the Bayesian procedure (which
is more stringent than coalescent methods, Narum & Hess 2011, Vilas et al. 2012) detected
from one to three outliers depending on the dataset used (all regions or by-site analysis).
Eleven of the detected outliers show similar patterns of genotypic frequency among local
habitats in the two study sites, and are concordant with the hypothesis some alleles are

favored or exclude by a particular habitat, figure 61.
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Figure 60: Fst Vs Heterozygosity distribution. Points indicate observed values whereas lines represents
95% neutral envelop estimated through coalescent method.
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data (from Laussat and Regina study sites)
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I performed a literature survey for a relationship between the geographical scale of
the different studies and the proportion of outliers detected through Fst-based methods, by
reviewing a number of published studies searching footprints of divergent selection using
Fst-based methods at both inter- and intra-specific levels across a large range of animal and
plant models. The following table summarizes them, with the following abbreviations:

For the column ‘Model’: A=animal, P=plant
For the column ‘Marker’: A=AFLPs, Al=Allozymes, M=microsatellite, S=SNPs
For the column ‘Method”: B=Bayesian, C=Coalescent, O=Other

Marker Metho  Outliers

Biological model Model Study scale Reference
d (o0)
Ovis aries A (mammal) 4300km M (©) 18.95 Joost et al. 2007
Ovis aries A (mammal) 4300km M C 28.57 Joost et al. 2007
Populus tremula P (tree) 4000km M C 17.14 De Carvalho et al. 2010
Hylobius abietis A (insect) 3800km A o 13.25 Joost et al. 2007
Hylobius abietis A (insect) 3800km A C 4.82 Joost et al. 2007
Picea abies P (tree) 3000km AM,S C 1.97 Achéré et al. 2005
Gasterosteus aculeatus A (fish) 2200km M B 8.77 Makinen et al. 2008
Phytomyza glabricola A (insect) 2100km A C 111 Scheffer & Hawthorne 2007
Pinus taeda P (tree) 2000km S C 0.78 Eckert et al. 2010
Pseudotsuga menziesii P (tree) 2000km S o 6.61 Eckert et al. 2009
Pinus monticola P (tree) 180ookm A C 12.12 Richardson et al. 2009
Heliantus annus, H. debilis P 1600km M C 3.41 Scascitelli et al. 2010
Cryptomeria japonica P 1400km S Cc 338 Tsumura et al. 2007
Heliantus amus, H. p 1300km M,S C 4.1 Yatabe et al. 2007
petiolaris
Heliantus annus, H. P 1300km S B 3.3 Strasburg et al. 2009
petiolaris
Neochlamisus bebbinae A (insect) 9sokm A C 10.51 Egan et al. 2008
Neochlamisus bebbinae A (insect) 950km A C 4.03 Egan et al. 2008
Neochlamisus bebbinae A (insect) 950km A C 515 Egan et al. 2008
Neochlamisus bebbinae A (insect) 9sokm A C L12 Egan et al. 2008
Neochlamisus bebbinae A (insect) 950km A C 8.72 Egan et al. 2008
Capra hircus A (mammal) gookm S C 1111 Pariset et al. 2009
P (tree) 750km S C 3.56 Namroud et al. 2008

Picea glauca
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Arabis alpina p 730km A 10 Manel et al. 2010
Picea mariana P (tree) 700km S 0.26 Prunier et al. 2011
Picea mariana P (tree) 700km S L.17 Prunier et al. 2011
Picea mariana P (tree) 700km S 0.13 Prunier et al. 2011
Picea mariana P (tree) 700km S 1.43 Prunier et al. 2011
Salmon Trutta A (fish) 60okm M 2.7 Meier et al. 201
Peromyscus maniculatus A (mammal) sookm Al 8.33 Storz & Dubach. 2004
Populus alba, P. tremula P (tree) sookm various 35.48 Lexer et al. 2010
Crassostrea virginica A 300km A, R 1.33 Murray & Hare 2006
Crassostrea virginica A 300km A, R o Murray & Hare 2006
Arabidopsis halleri P z00km A 3.99 Meyer et al. 2009
Arabis alpina p 1sokm A 2.95 Manel et al. 2010
Arabis alpina P 15okm A 9.45 Poncet et al. 2010
Arabis alpina P 1sokm A 7:39 Poncet et al. 2010
Arabis alpina p 15okm A 2.55 Poncet et al. 2010
Coregonus clupeaformis A (fish) 130km A 3.18 Campbell & Bernatchez 2004
Rana temporaria A 100km A 1.53 Bonin et al. 2006
Littorina saxatilis A 70km A 33 Galindo et al. 2009
Zostera marina P sokm M 12 Oetjen & Reusch 2007
Quercus robur, Q. petraea P (tree) 36km various 12.08 Scotti-Saintagne et al. 2004
Diabrotica virgifera A (insect) 32km A 119 Miller et al. 2007
Littorina saxatilis A 26km A 4.9 Wilding et al. 2001
Viola cazorlensis p 23km A 2.44 Herrera & Bazaga 2008
Arabis alpina P 20km A 2.55 Manel et al. 2010
Arabis alpina p 20km A 15.66 Manel et al. 2010
Arabis alpina P 20km A 17.18 Manel et al. 2010
Fagus sylvatica P (tree) 1okm A 0.39 Jump & Penuelas 2006
Howea belmoreans, H. P (palm) tokm A 1.46 Savolainen et al. 2006
fosteriana
Timema cristinae A (insect) skm A 14.61 Nosil et al. 2008
Eperua falcata P (tree) o.skm A 176 THIS STUDY (Article n°2)
Eperua falcata P (tree) o.skm A 0.26 THIS STUDY (Article n°2)
Eperua falcata P (tree) oakm S 3.51 THIS STUDY (Article n°1)
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This overview of literature suggests that the proportion of outliers is slightly higher
in inter-specific comparisons (involving closely-related plant species) than in intra-specific
ones, and revealed a large variability among biological models (all scales confounded),
figure 62.

The relationship between geographical distance and proportion of outliers is not
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Figure 62: Variations in the proportion of outlier between inter- and intra-specific levels and between
biological models (drawn from papers quoted in the table above).

clear and certainly non-linear. A regression with the logarithm of distances (figure 63, left)
suggests that the proportion of outliers is lower at intermediate geographical distances.
However, this trend disappeared when including Eperua falcata studies at very short spatial
scale (right). Last, Soto-Cerda et al. (2013) provided the most extreme case (not included in
the plots) as no outlier was detected in the plant species Linum usitatissum in a world-wide
analysis; suggesting thus the probable absence of relationship between geographical scales

and the extent of adaptation in the genome of organisms.
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Figure 63: Relationship between the proportions of outliers detected and geographical scales.

Even if comparing the number of outliers detected between studies becomes
common (Luikart et al. 2003, Nosil & Ortiz-Barrientos 2009, Strasburg et al. 2012), such
comparisons should be taken with caution. Indeed, the different studies use different kinds
of molecular markers, and we can expect that the proportion of outliers would be more
frequent in candidate genes approaches than in genome-scans involving anonymous

markers. Molecular markers also differed in their mutation rates, making the comparison
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between microsatellites and SNPs difficult, for example. Last, the method used for
detecting loci under selection may also bias the comparison, as Bayesian methods are known
to be more robust to demographic scenarios and to detect fewer false-positives (Narum &
Hess 2011, Vilas et al. 2012). Thus, the literature is, up to now, not sufficiently rich to properly
realize such surveys, but the current popularity of Fst-based methods will probably provide

sufficient examples in a close future.
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5. Next generation sequencing / genotyping and new opportunities

Modern evolutionary ecology is currently progressing rapidly because of advances in

genomics technologies (Stapley et al. 2010). Next-generation technologies refer to the panel

of new sequencing/genotyping technologies, such as Roche 454-pyrosequencing, Illumina

(High-Seq), [llumina micro-arrays etc...

Next-generation sequencing (NGS) attracts a particular attention because it is more

cost-effective than classical Sanger sequencing (Morozova et al. 2009), given the large

amount of DNA sequenced, such as transcriptomes and more recently, completes genomes.

Complementary DNA (cDNA synthetized from mRNA by reverse transcription) or

genomic DNA (gDNA) is sequenced by fragments of varying size depending on the

technologies (named ‘reads’). The sequenced fragments need to be assembled into contigs,

‘de

novo’

by

either using a

assembly  method or
mapping against a reference.
Next-generation  sequencing
proved to be useful for gene
characterization, gene
expression profiling and for
identifying  polymorphisms,
such as SNPs (Lister et al

and functional

the

2009). Blast

allow

of

annotations

characterization

(called

contigs
¢ : )
unigenes

Blast

once
characterized). allows
confronting assembled
sequences to public databases,

while

functional annotation
allow determining in which
biological processes the protein
encoded is involved. Gene
expression profiling allows a

of RNA

quantification

NGS data consists of many short
(<400bp) partially overlapping
3| sequences (reads) that are assembled
;| into longer continuous sequences

3

(contigs) or aligned against a
reference genome sequence. The
overlapping nature of NGS data
provides new opportunities to analyse
genetic variation as outlined below.
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expressed in organs and tissues. Last, and when next-generation sequencing allow a
sufficient depth (i.e. number of reads for a single site that equals to the number of
sequencing repetitions for this site), it is possible to identify polymorphisms, (such as
SNPs) giving valuable information for both evolutionary biologists and quantitative
geneticists (Ganal et al. 2009, Rafalski 2002, Picoult-Newberg et al. 2011, Tassel et al. 2008),
figure 64. For example, next-generation sequencing technologies allow selecting good
candidate genes for adaptations studies: polymorphic genes involved in biological processes
of interest or (possibly non-annotated) polymorphic genes expressed in high levels in
response to particular constraints. They enable to track genetic loci under selection for
adaptation in non-model organisms.

Candidate genes may be high-throughput sequenced or their polymorphisms genotyped,
as next-generation sequencing also allows the sequencing of targeted sequences (by-capture
sequencing, re-sequencing) and the simultaneous genotyping of large amounts of targeted
SNPs.

Thus, novel sequencing
technologies are going to extend
genome scan  approaches, by
providing  better = coverage of

transcriptomes or genomes, and

adaptation studies using ‘whole-

Relative popularity

genome scans’ will probably appear

in the next years. Moreover, NGS

FLPs
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with AFLPs that suffer from the ) S , ,
Figure 65: Subjective view of the importance of genotyping

ma]'or limitation that outliers are strategies for non-model organisms (Seeb et al. 2011).
anonymous, figure 6s.

However, next-generation technologies have several disadvantages (Stapley et al.
2010):

(1) The first limitation is informatics. Due to the large amount of data produced, data
manipulation is complicated and post-treatment requires automation of all steps of

analyses. However, the domain suffers from a lack of ‘user-friendly’ tools

(hardware, software, algorithms).
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(2) They are less accurate than Sanger sequencing as they produce more errors of base
calls that can result in false-positive polymorphisms (De Pristo et al. 2011). They
require a careful post-processing assembly and cleaning to be properly interpretable,
and the integration of individual base quality is required even if it is often neglected.

(3) Short-reads can be difficult to assemble ‘de novo’ (i.e. without reference), particularly
in whole genome sequencing of non-model organisms due to the large amount of
repeated DNA in the genome.

(4) Distinguishing a real polymorphism in a single gene versus a genetic variation
between two duplicated genes is challenging. Applying stringent assembly criteria
would limit the risk of false-positive discovery, but may result in an under-
estimation of the true diversity as several false-negative would be excluded.

(5) Obtaining complete coverage of the transcriptome can be difficult due to the
disparity in expression of different genes and between tissues.

(6) Population genomics uses pooled samples to minimize sequencing costs and directly
infer allelic frequencies (Futschik & Schlotterer 2010, Turner et al. 2010).

(7) Population genomics commonly involve population genetics models that gained
complexity over the past 10 years. However, the majority of the widespread
population genetics approaches (such as those involving genome scans) would be
complicated in the case of large datasets provided by NGS, as they are often time-
consuming even in small datasets (Nielsen et al. 2005).

During this PhD, I analyzed the transcriptome of seedlings of Eperua falcata (plus
three other species without interest in this manuscript) sequenced by 454-pyrosequencing,
providing the first example of NGS application to non-model tropical tree species. It
allowed the massive characterization of potential candidate genes (article n°3). I wrote a
complete suite of R scripts that deal with next generation data and facilitate their
manipulation and post-processing (including assembly cleaning and SNP detection). The
complete suite of R scripts is described in the section ‘PhD Results & Jobs’ and will be soon

packaged into R.
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Summary of PhD results:
High-throughput transcriptome sequencing allowed the massive characterization of

expressed genes and polymorphism (SNPs) discovery (see article n°3).

I analyzed the transcriptome of 4 neotropical tree species widespread in French
Guiana. Total mRNA were extracted from leaves, stems and roots of two vigorous seedlings
per species, and converted into cDNA. cDNA libraries were sequenced by 454-
pyrosequencing.

In E. falcata, 153,551 reads (out of (224554) were assembled into 23390 contigs. I
characterize 16159 unigenes that returned a blast result with an e-value below 10-25. After
contaminant removal (removal of contigs that never blasted into a green plant species
among their 10-top hits), 15664 unigenes remained and 11240 were annotated (i.e. the protein
encoded was associated to particular biological processes).

I analyzed transcription profiles within each organ (leaves, stems, roots) and I used
a permutation test to identify biological processes particularly relevant in a particular organ
(biological processes represented by contigs over-expressed in a particular organ, based on
the number of reads that brought specific organ-tagged within each contig). In E. falcata, I
identified between 7 (leaves) and 26 (roots) biological processes over-represented in that
organ, figure 66.

Prior to polymorphism detection, I cleaned the assemblies following a stringent
procedure:

-Individual bases were masked using several criterions, including minimum allele number,
minimum allele frequency, depth, and individual base quality, figure 67.

-Sites (assembly columns) composed by masked bases and deletions only were removed.
A total of 5713 SNPs were identified, among which

- 2657 high quality SNPs (substitutions of only two variants) for a transition/transversion
ratio Ti/tv= 1.66.

- 2992 insertion-deletion

- 64 SNPs with more than two variants

At last, 1283 contigs were polymorphic (only s5.5% of assembled contigs, mainly
because numerous contigs lacked a sufficient depth for searching SNPs), for a total SNP

density of 0.95 per 100 bp.
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Even if the true diversity that may be encountered in wild population is probably
higher than the polymorphism detected from two seedlings (4 gametes), this database
provides useful information for future investigations. In particular, it provides a large panel
of candidate genes (expressed genes of known function). Several of these candidates will be
high-throughput genotyped or re-sequenced in seedlings currently transplanted in wild
conditions (reciprocal transplants) and in their adult trees. It will allow extending the
present study by including pedigree analyses, association genetics studies, and by expanding
the genome scan approach for testing selection by including SNPs contained in genes of

known function (see ‘Discussion’).
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PART II - Phenotypic evolution and quantitative genetics

Studying adaptation based on (quantitative) phenotypic traits attracts a particular
attention because natural selection sorts phenotypic variations, thus optimizing the mean
fitness of populations. In wild populations, many traits show phenotypic variations among
individuals (genotypes) and among habitats, because both genetic factors and
environmental conditions affect the phenotype expressed by a genotype in a given

environment.

1. Causes of phenotypic variation

Even if several traits show discrete variations, most traits are continuously distributed
for two reasons: most traits have a complex genetic architecture involving more than one
locus, and they are also affected by other sources of phenotypic variations (environmental
variations, maternal effects). Phenotypic variations may thus be partitioned into genetic
and environmental factors, according to a classical linear model:

P=pu+G+E+Iggp+e
where G represents the global phenotypic differentiation among genotypes, E the global
effect of environment (i.e. phenotypic plasticity common to all genotypes), and IcxE the
genotype-by-environment interactions. Significant Igxg show that different genotypes are
differentially affected by the environment (i.e. genetic divergences among genotypes causes
variations in phenotypic plasticity), figure 68. Genetic factors may describe the genetic

divergence between genotypes, progeny arrays (families), provenances or species.
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1.1 Genetic variation:

Since the discovery of Mendelian inheritance, the genetic basis of phenotypic
expression is evident. Originally, Mendel discovered that the proportion of (discrete)
phenotypes after breeding may be predicted in the case of traits controlled by a limited
number of loci. Given a character controlled by a single locus, the crossing of two
homozygotes (A/A) produces 100% of homozygotes (A/A) with the same phenotype than
parents. The crossing of two heterozygotes (A/B) produces a progeny composed by 250 of
homozygotes (A/A) that display the same phenotype than the parental homozygote (A/A),
25% of homozygotes (B/B) that display the same phenotype than the parental homozygote
(B/B), and 509% of heterozygotes (A/B) that display either an intermediate phenotype
(additivity) or the same phenotype than one of the parent (complete dominance).

Numerically, phenotypic variations for quantitative traits in a given environment
may be expressed using a linear model restricted to genetic factors:

P=p+G+e.

Genetically-based phenotypic variations caused by one of the underlying genes may
thus be partitioned into additivity, dominance and epistasis effect: G = A + D + I, leading
to:P=p+A+D+1+e¢.

Considering two alleles (A)

. Additivity -a d +a
and (B) for a given locus, o
e . ) ) R
additivity simply describes how
A/A A/B B/B
allelic states may affect
Partial -a d +a
phenotypic values apprehended | dominance :
among homozygotes genotypes: it
may be numerically assessed by . a
the relation |a| = |PAA'Paa| / 2. Complete d
dominance o
Dominance refers to the i
interactions between alleles of the A/A B/B
locus that may influence the A/B
phenotypic value of heterozygotes: Over- -a a d
dominance o
in the case where there is no |
dominance, heterozygotes display A/A B/B  A/B
an intermediate PhenOtype Figure 69: Gene action on the phenotypic value expressed for a given

. trait: a=additivity, d=dominance.
corresponding to the mean

82



phenotypic value of the two homozygotes. In the case of dominance, on the contrary,

heterozygotes phenotype deviates from the intermediate phenotype, figure 69. Last,

epistasis corresponds to the interactions with other loci controlling the phenotypic trait.
Genetically-driven phenotypic variations are commonly quantified though heritability,

box 6.

BOX 6 - THEORY
Heritability

Heritability measures the proportion of observable differences in a trait between individuals that is
due to genetic differences. Many methods allow estimating traits heritability, among which parent-offspring
regression and variance partitioning.

Using parent-offspring regression, heritability is defined as the slope of the regression between mid-
parents (mean phenotypic value of the two parents) and offspring phenotypic values, figure 70. When the
slope is high, offspring have phenotypic value close to their parents’, suggesting that a high proportion of
phenotypic variance is passed down from parents to offspring (Fernandez & Miller 1995).

Heritability is also defined as the proportion of total phenotypic variance that is attributable to
variations in additive (narrow-sense heritability) or total genetic values (broad-sense heritability).
Heritability may also be estimated by partitioning total phenotypic variations into genetic and environmental
sources of variations using linear models.

Broad-sense heritability (h2g) is thus defined as the fraction of phenotypic variance attributable to
genetic factors without distinction between additive effects, dominance or epistasis, while narrow-sense
heritability is defined as the fraction of total variations attributable to additive genetic variance (h2y).
0°p = 0%+ 0°p + 0% g + 0%res = h’p = 0°/0%p
0%p = 0%, + 0%y + 6% + 0% + 0% + 0%y = W%y = 0%4/0%p

When using related individuals instead of clones of the different genotypes, additive genetic variance
may be estimated through the relation: : O'ZA = % * O'ZG where r is the relatedness coefficient (r) (Cotteril

o

1987). Thus, h?y =

2
ZG where r = 1/2 for full-sibs, and r = 1/4 for half-sibs.
P

T*0o

Variance component are thus estimated using classical variance analyses (ANOVA) that calculates

variance components as mean squares of each factor (sum of squares of each factor divided by the number of
degree of freedom) or directly inferred using Bayesian modeling.

It has to be noticed that there is not a unique value of heritability for a species and a given traits,

because heritability may vary among environments (additive variance estimated in a single environment may

vary between environmental conditions when gene-by-environment interactions are significant) and among

ontogenetic stages, figure 71.
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Figure 70: Parents-offspring regression for body size and plumage coloration in two bird
species (from Wiggins 1989, Roulin & Dijkstra 2003).
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radiata (from Zamudio et al. 2005).
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Tree species commonly display significant differences in phenotypic values between
genotypes and progenies, suggesting that many traits are commonly heritable (i.e. a
significant part of phenotypic variation is due to genetic factors). They commonly display
high heritability for morphometric traits (growth traits, wood properties, and leaf traits,
figure 72) but lower heritability for fitness-related traits (Cornelius 1994, Visscher et al.
2008), as natural selection negatively affects heritability by reducing additive genetic
variance (see section ‘Phenotypic evolution’). Cornelius (Cornelius 1994) reviewed 67
studies and found evidence of higher heritability for height and straightness than for

diameter and volume.
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Figure 72: Narrow-sense heritability estimates for fitness, growth, leaf and wood properties in several temperate
and tropical tree species. Orange stars indicate tropical tree species.
References: Hodge & White 1992, Haapanen et al. 1997, Weir & Borralho 1997, Hannrup et al. 1998, Brendel et al.
2002, De Souza Goncalves et al. 2005, Zamudio et al. 2005, Johnson & Gartner 2006, Baltunis et al. 2008, Callister
& Collins 2008, Ward et al. 2008, Scotti et al. 2010.

In this study, I investigated whether functional traits were divergent between
progeny arrays of Eperua falcata in controlled and non-limiting conditions, and I measured
the extent of phenotypic variations due to the relatedness between seedlings progenies. A
synthetic summary of the results is presented below; complete results and discussion are

described in the article n°4.
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Summary of PhD results:
A common garden experiment reveals large phenotypic variations among seedlings progeny

arrays for growth and leaf traits (see article n°4).

A common garden experiment was used to measure the extent of genetically-driven
phenotypic variations for growth (stems dimensions, biomass accumulation and allocation)
and leaf traits (leaf composition, leaf structure, leaf photosynthesis and carbon isotopic
discrimination) in two Eperua species: E. falcata and E. grandiflora. 44 progeny arrays
(harvested around mother trees) grew 24 months in a shade-house in non-limiting
conditions.

For all studied traits, significant differences between progenies were detected. Large
variations in seedlings growth between progeny arrays led to high 62G/62p for growth traits
(biomass accumulation, height, diameter), figure 73. Growth traits displayed higher
02G/02p than leaf trait, probably because they are complex traits that integrate all properties
of individual meristems, leaves and branches. We did not estimated narrow-sense
heritability for two reasons:

(1) we did not know the true proportion of full- and half- sibs in the progeny arrays,

(2) we were unable to exclude the fraction of 62G caused by (non-genetic) maternal effects.
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However, statistical quantitative genetics consider the genome as a ‘black box’ (it
does not require any information about the identity of the genes involved in the phenotypic
variations) and it cannot address important questions concerning the genetic architecture
of phenotypic traits: What genes affect a given trait? Where are they located in the genome?
What is the mode of gene action (additivity, dominance, epistasis)? A particular technique
of quantitative genetics, called ‘QTL mapping’ locates the genomic regions that affect
quantitative traits, by (1) creating a genetic map covering the entire genome by crossing
divergent populations, most often inbred lines, and (2) searching for associations between
allelic states at mapped loci and phenotypic values (‘Association genetics’). QTL mapping
often reveals the complex genetic architecture of many phenotypic traits. However, this

technique is out of the scope of this manuscript.

1.2. Environmental variation:

Environmentally-driven phenotypic variations
Signal Relay

are closely related with the concept of phenotypic Environmental Signals

plasticity. Plasticity is defined as the ability of a \l/
genotype to produce different phenotypes (Pigliucci et

Receptors ¢
al. 2006). In other words, it refers to the ability of an

Ca” 2" Signalling __|
organism to alter its physiology, morphology, and life- \ Molecules
K

history traits in response to the conditions it Phosphoprotein

experiences (Nussey et al. 2007). Plasticity is also called Cascades

v

Transcnption Factors
reversibility and the kind of changes: acclimation is \1,

acclimation or accommodation depending on its

often used to describe reversible physiological changes Stress Responsive Genes

v

while accommodation often describes non-reversible . )
Responses in Physiology

morphological changes. The function describing the and Morphology

. ) .
change in a genotype’s phenotypic value across an Figure 74: Framework model for signal

transduction of stress in plants (from

environmental gradient is called ‘reaction norm’
Shao et al. 2007).

(Nijhout 2003, Sarkar & Fuller 2003, Nussey et al. 2007).

Two kinds of phenotypic plasticity may be distinguished: passive plasticity refers to
the passive reduction in growth due to environmental stresses, whereas active plasticity
requires a specific signal perception-transduction system allowing an organism to respond

by changing its development (Van Kleunen & Fischer 2005). Active plant response to
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stresses involves complex mechanisms with many signaling molecules, transcription
factors and stress-responsive genes and proteins, figure 74 & 75. Schliting & Smith
(Schlichting & Smith 2002) distinguished molecular and phenotypic plasticity: the former
refers to the ability of a genotype to produce different levels or isoforms of transcriptome
and proteome, while the latter is the ability of a genotype to produce different phenotypes

resulting from all molecular changes, figure 76.

Class of target

Examples

Possible mode(s) of action

Osmoprotectants

Reactive oxygen
scavengers

Strass proteins

Heat shock proteins

lon/proton transporters

Membrane fluidity

Water status

Signaling components

Control of transcription

Growth regulators

Amina acids (proline, ectoine)

Dimethyl sulfonium compounds (glycine betaine, DMSP)
Polyols {mannitol, p-ononitol, sorbitol)

Sugars (sucrose, trehalose, fructan)

Enzymatic (catalase, Fe/Mn superoxide dismutase,
ascorbate peroxidase; glutathione cycle enzymes:
glutathione S-transferase, glutathione peroxidase;
gamma-glutamyleysteine synthetase, alternative oxidase)
Non-enzymatic (ascorbate, flavones, carotenoids, anthocyanins)

Late embyogenesis abundant proteins

Various heat-, cold-, salt-shock proteins in several
subcellular compartments

High-affinity K* transporter; low-affinity K+ channels; plasma
membrane, pre-vacuolar, vacuolar and organellar proton
ATPases and ion transporters (H+/ATPase; Nat/H* antiporters)

Fatty acid desaturases

Aquaporins or water channels (solute facilitators: urea, glycerol,
CQy, possibly others and including ions}; GO, concentration

Homologs of histidine kinases (AtRR1/2);

MAP kinases (PsMAPK, HOG);

Ca?*-dependent protein kinases; SNF1/kinases; protein
phosphatases (ABI1/2); CNA/B signaling systems;

Ca®* sensors (SOS3); inositol kinases

Transcription factors: EREBF/AP2 (DREB, CBF);
zinc finger TF (Alfin 1); Myb (AtMyb2, CpMyb10)

Altered biosynthetic pathways or conjugate levels for
abscisic acid, cytokinins and/or brassinostercids

Osmotic adjustment; protein/membrane
protection; reactive (OH-) scavenging

Detoxification of reactive oxygen species

Unknown, protein stabilization, water binding/
slow desiccation rates; chaperones; protein/
membrane stabilization; ion sequestration

Reversal/prevention of protein unfolding;
translational modulation

K*/Ma* uptake and transport; establishment of
proton gradients; removal and sequestration of
{toxic) ions from the cytoplasm and organelles

Increased amounts of dienoic and fluidity;
chilling tolerance

Regulation of AQP amount differentially in
tonoplast and plasma membrane; regulation
of membrane location; stomatal behavior

Ca?*-sensors/phasphaorylation mediated
signal transduction

Upregulation/activation of transcription

Changes in hormone homeostasis

ABI, abscisic-acid-insensitive; AP2, APETELA2; AQF, aquaporin;
AMPIK1, AMP-activated protein kinase; AtMyb, Arabidopsis thaliana
myeloblastosis (helix-loop-helix) transcription factor; AtRR1, A, thaliana
two-component response regulators; CBF, C-repeat/ DRE binding factor;
CNAJB, calcineurin A/B; CpMyb, C. plantagineum myeloblastosis

(helix-loop-helix) transcription factor; DMSP, dimethylsulfoniopropionate;
DREB, dehydration-responsive element (DRE) binding protein;
EREBP, ethylene-rezpansive element binding protein; HOG, high
osmolarity glycerol; PsMAPK, Pisum sativum mitogen-activated protein
kinase; SNF1, sucrose non-fermenting 1; TF, transcription factor,

Figure 75: The hierarchy of gene expression underlying phenotypic plasticity (from Schlichting & Smith
2002).
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1.3. Gene-by-environment interactions:

In a set of individuals, the global effect of the environment (E) catches the mean
phenotypic change of the different genotypes, while gene-by-environment interactions
(Icxe) expresses that the different genotypes display different phenotypic plasticity. The
fact that different genotypes display different reaction norms in response to constraints
suggest that plasticity may be heritable. Figure 77 for example shows different effects of

flooding on net photosynthesis rates of 13 hybrid poplar clones.
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Figure 77: Net photosynthesis rates (umol.m™.s™) of 13 hybrid
poplar clones under control and flooding conditions (from Guo
et al. 2011).
Because proteins are encoded by genes, proteins involved in phenotypic plasticity may

potentially be mutated causing differences in the extent of morphological and physiological
responses between genotypes.

QTL mapping helps identifying such genes. For example, Parelle et al. (Parelle et al.
2010) reviewed the studies that located QTL involved in the tolerance to soil water-logging
in many plant species. In the same way, Street et al. (2006) identified numerous QTL
involved in the response to drought in Populus, figure 78.

At the population level, significant provenance-by-environment interactions are
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commonly interpreted as a result of local adaptation (see section ‘2. Phenotypic evolution

in populations’).

1.4. Maternal effects

Genetic variation must be distinguished from maternal effects that are defined as the
causal influence of the maternal genotype or phenotype on the offspring phenotype (Wolf
& Wade 2009). Maternal effects have themselves both genetic and environmental
components. For example, seed stored reserve compounds may influence growth of the
progeny. In trees, this maternal effect is influenced by environmental effects, such as
resource availability and successional status of mother trees (understory, emergent), but
also by genetic effects, as different mother trees may produce seeds of different quality.
Seed properties are also influenced by the ontogeny of mother trees, as seed production may
vary across lifetimes. That is why seed mass is commonly included as co-factor in linear
models of phenotypic value decomposition.

Epigenetic inheritance is also a major maternal effect. The term ‘epimutation’ refers to
the methylation of coding DNA that prevents its transcription into mRNA. Epigenetic
changes may be induced by particular environmental conditions and are transmitted from
mothers to their progeny. However, such changes in DNA structure have to be
distinguished to ‘true mutations’, as ‘epimutations’ do not affect the DNA sequence.

Because of their environmental control, maternal effects may be viewed as a trans-
generational phenotypic plasticity, or a reaction norm that extends across generations

(Mousseau & Fox 1998).
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2. Phenotypic evolution in populations

Contrary to neutral processes, natural selection affects genetic diversity by filtering
genotypes across generations according with their fitness that is modulated by the
phenotypic value of adaptive traits. An adaptive trait may be defined as being variable,
heritable and functional (Howe & Bruner 2005). A ‘Functional trait’ is any morphological,
physiological, or phenological trait that influences plant fitness (Geber et al. 2003). Thus, it
refers to a broad range of individual-level and organ-level traits, figure 79. In some cases,
phenotypic plasticity for fitness-related traits may also be adaptive. Indeed, phenotypic
plasticity is highly important in plants because they are immobile and migration toward a
more favorable environment requires the establishment of a new population (Shao et al.
2007). Phenotypic plasticity is thus primordial for plants to cope with environmental
heterogeneity and phenotypic plasticity for some traits may be linked with plant fitness
(Van Kleunen & Fischer 2005). However, the developmental cost of active responses to
stresses prevents the appearance of Darwinian monsters with infinite plasticity (Pigliucci
2001). Considering phenotypic plasticity as a functional trait underlies that the relationship
between plasticity and fitness is probably non-linear (increasing plasticity would be
beneficial until a limit above which increasing costs of the plasticity alter plant fitness). For
these reasons, the outcome of evolution is often a reduction in plasticity (called ‘genetic
assimilation’), except in changing environments in which phenotypic plasticity may be

selected for and conserved across generations.
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Figure 79: Short overview of major functional traits in plants.

The evolution of the distribution of phenotypic values in populations under selection
depends on the relationship between trait and fitness. Commonly, functional traits are
related to fitness through a polynomial model:

W; = aP? + bP; +c,
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where W represents the individual fitness and P the individual phenotype. The sign of ‘a’
determines the kind of selection: directional when a=o, stabilizing when a<o and
diversifying when a>o.
I simulated the evolution of population mean phenotypic values for a functional trait
under natural selection using a simplified model of phenotypic evolution: the functional
trait is controlled by a single locus (with 4 alleles) assuming no genetic drift and constant
population size (N=10000), figure 8o.
(1) Each genotype is characterized by a phenotypic value called ‘genotypic value’ (Gj).
The model assumes additivity without dominance between alleles.

(2) Individual phenotypic values (P;) are drawn from a normal law of sd=o.s:
P;~N(G;, 0%5), where 02%; is the residual variability, among which phenotypic
plasticity.

(3) Individual fitness is estimated according as: W; = aP? + bP; + c,
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(4) The next generation is produced according with the mean fitness of the different

genotypes.
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Figure 80: Phenotypic evolution under three kinds of natural selection: directional, balancing and diversifying. The first line
describes the relationship between the phenotypic value of a trait (P) and the fitness (W). The second line shows the
distribution of phenotypic value after 20 generations.

Despite its simplicity, the model is able to illustrate how natural selection would drive
the mean phenotypic value in populations. Directional selection shifts the population mean
toward low or high phenotypic values and reduces the phenotypic variance in the
population. Stabilizing selection results in a population with the same population mean than
the original population but with restricted phenotypic variance while diversifying selection

increases phenotypic variance by favoring genotypes with extreme phenotypic values.
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3. Phenotypic differentiation

Habitat 1~ Habitat 2
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Figure 81: Phenotypic divergence among habitats
submitted to divergent selection (i.e. different directional
selection within populations).

If the relationship between traits and
fitness varies among habitats, natural
selection drives the genetic structuring of
functional traits and results in an inherent
phenotypic differentiation between
populations  submitted to  divergent
selective pressures, figure 81.

Because natural selection commonly
structures phenotypic traits and because
current patterns of phenotypic
differentiation result from past evolution,
analyzing patterns of phenotypic trait
distribution in populations distributed
along environmental gradients is one of the
most efficient ways to study local
adaptation with phenotypic traits. It
requires however to distinguish the genetic

and environmental sources of phenotypic

variation through specific experiments such as provenance tests and reciprocal transplant

experiments (box 7) as a phenotypic differentiation between sub-populations observed in

situ may result from different plastic response without implying any genetic differentiation

(and then no local adaptation).

The structuring of phenotypic traits across natural landscapes is largely documented

in both woody and non-woody plant populations: the literature is rich with examples of

adaptations based on phenotypic traits that involve a wide range of environmental gradients

(altitude, latitude) or specific constraints (temperature, water availability, light, pathogens).
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BOX 7- THEORY
Studying patterns of phenotypic divergence from provenance tests and reciprocal transplant

experiment

Several experiments may help apprehending genetically-driven phenotypic variability. They consist
in submitting different genetic groups (mainly populations also called ‘provenances’ or ‘demes’) to common
conditions or to a panel of environmental conditions.

Provenance tests in common garden aim at quantifying the extent of genetically-driven phenotypic
variations in a single environment. In these experiments, phenotypic variation is attributable to genetic
variability among provenances, according with the model P=y+G+res. Common gardens are often realized
under non-limiting conditions that allow the expression of genetically-driven phenotypic divergence among
genetic groups, even if these conditions differ from the natural conditions encountered in the wild.

Even if provenance tests in common (often non-limiting) conditions allow inferring patterns of
genetically-driven phenotypic variations, they cannot conclude about the implication of local adaptation in
patterns of phenotypic differentiation among populations.

Both provenance tests in multiple conditions and reciprocal transplants aim at dissociating genetic
and environmental sources of phenotypic variations, according to the model: P=y+G+E+Igxe+res. These
experiments allow estimating the relative influence of environmental and genetic factors on total phenotypic
variability. Mainly, they allow distinguishing the global differentiation between genetic groups over all
environmental conditions (G) from the differentiation in the mean response to constraints (including both
passive and active plasticity) among the genetic groups (Igxe). ‘Genes-by-environment’ interactions are
particularly important when studying local adaptation, as we would expect significant Ixg for fitness-related
traits when different populations are locally adapted to the environmental conditions.

Provenance tests in multiple (and often constraining) conditions allow testing the sensitivity of
provenance to specific constraints by targeting one or several environmental constraints. However, these
experiments cannot test all environmental factors encountered in nature (with all their interactions), leading
to non-generalizable results. Reciprocal transplants, on the contrary, aim at testing local adaptation in situ,
even if identifying the environmental factors involved become highly difficult as natural gradients are
commonly associated with variations in numerous factors that may be inter-correlated.

Two main approaches are commonly involved for interpreting I(GxE) and to infer the contribution
of local adaptation:

- ‘Local versus Foreigner’ emphasizes the comparison between populations (or ‘provenances’) within habitats:
local populations are expected to show a higher fitness than foreign demes.

- ‘Home versus Away’ emphasizes the comparison of a population’s fitness across habitats.

However, these propositions are not equally relevant for testing local adaptation. Indeed, the ‘local vs
foreigner’ criterion addresses the efficiency of divergent selection relative to other evolutionary processes,
whereas ‘home vs away’ confounds the effects of divergent selection with environmental effects due to habitat

quality for example (Kawecki 2004).
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In the biological model Arabidopsis thaliana, Banta et al. (2007)
revealed significant differences among populations originating
from different latitudes in Europe for several vegetative traits
(bolting time, number of rosette leaves and rosette diameter).
Their results are largely consistent with adaptation as they found
an ordered gradient of phenotypic differentiation according with
the latitude of origin, figure 82. Moreover, they found a
significant gene-by-environment interaction (region of origin X
growth chamber differing in light photoperiod) for a fitness trait
(number of fruits). However, interactions patterns did not reveal
a clear adaptive advantage of seedlings that naturally experienced
a given photoperiod compared to others, making the result hard
to interpret ecologically. In Picea sitchensis, Mimura & Aitken

(2010) found

significant differences among provenances

originating from different latitudes of the Pacific coast of North

America for bud set, seedlings biomass and growth period, figure 83. They also found

significant gene-by-environment interactions (region of origin X growth chamber

simulating temperature and photoperiod of the different provenances sites) for height

increment and growth rate increment concordant with the ‘local VS foreign’ criterion.
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Adaptation across altitudinal gradients

Altitudinal gradients also provide great examples of local adaptation in small plants.
Gonzalo-Turpin & Hazard (2009) used a reciprocal transplant experiment to study local
adaptation in the mountain plant Festuca eskia. They found significant differences in
survival rate, growth traits (height, diameter), leaf traits (LDMC, SLA), and reproductive

traits (reproductive output allocation, spike

100 -
number, seed weight) among provenances 0.98 g <>
... . . 0.96 . 3 il ‘
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0.94 | . ,
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Figure 84: Effect of altitude in transplanted F. eskia
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plants to overcome constraints of short-growing season. Moreover, they found significant
gene-by-environment interactions for survival and seed weight: plants from middle and
high altitudes appeared well adapted to their environment according to ‘local vs foreign’
criteria for survival, figure 84, while plants from low altitudes growing at their home
altitude produced heavier seeds than the others.

In a similar experiment, Byars et al. (2007) provided evidence of local adaptation in
Poa hiemata. They found significant differences among provenances for circumference and
leaf length, with larger stem circumference and shorter leaf lengths in plants originating
from high altitudes. They suggested that these traits have undergone past directional
selection even if the exact reason why shorter leaves and wider circumference were selected
for at high elevations is not obvious. They also found significant gene-by-environment
interactions for survival: genotypes tended to survive better at the same altitude from which

they originated, suggesting a fitness advantage for populations growing at their home site.
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Tree populations also
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Figure 8s5: Relationship between altitude of provenance and

assimilation using a common seedling growth in a common garden (from Oleksyn et al. 1998)

garden experiment, figure 85. Significant relationships were also found between these traits
and the mean annual temperature of the provenance sites, suggesting that the phenotypic
structuring may be partly adaptive and driven by temperatures.

Even if studies based on natural gradients provide clear examples of local adaptation,
the ecological interpretation of the observed variation in traits is often complicated as
natural gradients are complex and associated with changes in many biotic and abiotic factors
(moisture, temperature, exposure, wind, soil conditions, competition, predation etc...) that

cannot be isolated from each other.

Adaptation to drought

In Impatiens capensis, Heschel & Riginos (2005) revealed significant differences in
water use efficiency (WUE) as well as in stomatal conductance (gs) and leaf size among
provenances when submitted to drought: they found that populations originating from dry
sites decreased their stomatal conductance to a larger extent than populations from wet sites
when submitted to soil water deficit by comparison with a well-watered treatment.
Moreover, plants from dry sites had smaller leaves in well-watered conditions but equal leaf
size than plants from wet sites when submitted to soil water deficit. Last, plants from dry
populations flowered earlier and produced more flowers and fruits than plants from wet
sites whatever the soil water availability. They suggested that it may be adaptive for L.
capensis to maximize carbon assimilation through early-flowering for plants originating

from dry sites. Similarly, Rajakura et al. (2003) observed that races of Lasthenia californica
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from dry sites were able to maintain reproductive fitness under low water availability,
suggesting they were quite well adaptation to soil water deficits.

In the tree species Pinus pinaster, Nguyens-Queyrens & Bouchet-Lannat (2003) found
that the negative relationship between relative water content and osmotic adjustment in
needles varied between provenances originating from sites differing in annual rainfall,
figure 86. They suggested that the different populations probably developed divergent
strategies, some limiting water loss by stomatal closure (wet provenances), and others
favoring water circulation with the help of an integrated whole-plant strategy of which
osmotic adjustment represents one mechanism (dry provenances).

In Fagus sylvatica, Meier & Leuschner (2008) revealed that populations from drier

sites of Germany allocated more carbon to roots and displayed a larger fine root turnover.
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Figure 86: Osmotic adjustment of five provenances (left). Relationship between the slope of the second phase of the
osmotic adjustment curves and mean annual rainfall at the site of origin (right). From Nguyen-Queyrens &

Bouchet-Lannat 2003.

Adaptation to other constraints (licht, herbivores)

In the Mediterranean Fagaceae Quercus coccifera, Balaguer et al. (2001) revealed that
populations of the Iberian Peninsula differed in their phenotypic plasticity in response to
irradiance for nutrient content and partitioning, leaf size, leaf area ratio and for crown
architecture. These differences suggested ecotypic differentiation toward a lower
phenotypic plasticity in the most homogeneous irradiance environment (forest by
comparison with garrigue and rock provenances).

In Quercus rubra populations occupying a Missouri oak-hickory forest, seedlings

showed less herbivore damage when planted at the site of the maternal plant, figure 87 (Sork

et al. 1993).
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Adaptation in tropical rainforests?

The literature is however poorer in tropical A. PLANTING SITE: LW

than in temperate ecosystems. Several studies have e
7

.

777

Z %
NO

already reported a structuring of phenotypic traits

among trees originating from different areas

DAMAGE (%)

]
Lw sw
Calycophyllum spruceanum (Sotelo Montes et al. B. PLANTING SITE: SW

(Guazuma crinita (Rochon et al. 2007) and 0

2007) in Peruvian Amazon, Swietenia macrophylla

(Wightman et al. 2007) and Cedrela odorata (Ward

DAMAGE (%)

et al. 2008) in the Yucatan Peninsula of Mexico) but

the aim of these studies was mainly to select
varieties with interesting wood properties. By
contrast, only few studies addressed the question of
local adaptation in driving phenotypic divergence

across forest landscapes in tropical areas.

DAMAGE (%)

In  Eucalyptus  marginata  populations

Lw Sw ' NO
established in Australia, O’Brien et al. (2007) found SEED SOURCE

that trees from low rainfall sites had smaller stem Figure 87: Percentage of leaf damage
depending on population origin and
diameter. They suggested that lower growth may transplant sites (from Sork et al. 1993)
be a strategy to prevent drought stress. Moreover, they found that seedlings from high
rainfall sites had poorer survival in drier sites than seedlings originating from these sites,
suggesting that adaptation to drought may be involved. In Cedrela odorata established in
Costa rica, Navarro et al. found that seedlings from the dry areas were taller, had higher
diameter and had higher leaflets than those from wet sites. Rapid growth would facilitate
plant survival during the dry season after short wet periods. In the tree species
Parapiptadenia rigida established in Brazil, Silva et al. (2010) found evidence of ecotypic
differentiation in relation to flooding for root properties, aerenchyma formation, growth
recovery after flooding and leaf production. In the Lamiaceae Aegiphila sellowiana, Medri et
al. (2011) found that plant surviving to flood were genetically distinct from plant not
surviving.
In this study, I used provenance tests in both controlled (shadehouses) and wild

conditions (reciprocal transplants) to by decompose phenotypic variations into genetic and
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environmental factors and to assess whether growth and leaf traits were structured in
relation to local environmental patchiness in Eperua falcata (see below for an overview of

the main results, complete results and discussion are describe in the article n°4).
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Summary of PhD results:
Local habitat patchiness is associated with a strong genetic divergence for phenotypic traits

in seedlings growing in non-limiting conditions (see article n°4).

As described previously, we used a common garden experiment in non-limiting
conditions to study phenotypic differentiation within continuous populations occupying
different habitats for two congeneric, sympatric, and ecologically divergent tree species
(Eperua falcata and E. grandiflora, Fabaceae). We tested (a) whether conspecific populations
growing in different habitats diverge at functional traits and (b) whether they diverge in
the same way as congeneric species having different habitat preferences.

In both species, seedling populations native of different habitats displayed
phenotypic divergence for several traits (including seedling growth, biomass allocation, leaf
chemistry, photosynthesis and carbon isotope composition), figure 88. This may occur
through heritable genetic variation or other maternally inherited effects. Our results
indicate that mother trees from different habitats transmit divergent trait values to their
progeny, and suggest that local environmental variation selects for different trait optima
even at a very local spatial scale. Traits for which differentiation within species follows the
same pattern as differentiation between species indicate that the same ecological processes

underlie intra- and interspecific variation.

Seedling native from different native habitats are equally affected by drought and water-

logging constraints (see article n°s).

In parallel of the common garden experiment in non-limiting conditions, a set of
seedlings was submitted to six months of highly constraining hydric conditions: severe
drought and water-logging. We hypothesized that local heterogeneity may have driven a
divergence in seedlings sensitivity to hydric constraints between sub-populations coming
from different habitat types.

The results revealed a significant effect of provenance (as already observed in non-
limiting conditions) as well as strong effects of the treatment common to all provenances.
However, no differences between provenances were detected in constraining conditions for

any growth or leaf trait.
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For example, both constraints affected seedling growth (by decreasing seedlings
growth rate and total biomass in the case of drought), induced a shift in biomass allocation
to leaves by decreasing seedlings LMR, and induced a change in leaf mass per area that
increased in a greater degree in response to water-logging than in response to drought.
While drought induced no change in RMR, water-logging induced a significant decrease in
biomass allocation to roots, probably because of the death of the ancient root system that
was replaced by adventitious roots (figure 89).

However, no differences between provenances were detected in constraining
conditions for any recorded traits, thus revealing that the seedlings coming from different
habitat types were equally affected by drought and water-logging. These results suggest the
genetically-driven phenotypic differentiation between the provenances is not a result of
local adaptation to hydric conditions. This experiment does not allow, however, to
completely exclude the influence of local adaptation in driving the genetic structuring
between local conditions, as (i) micro-habitats differ not only in hydric conditions, but also
in a variety of other environmental factors including many abiotic and biotic factors and
(ii) the constraints exerted may have been too severe, and we lack information about the

reaction norm of the different provenance to each constraint.

Dissecting genetic and environmental sources of in situ phenotypic variations is going to be
assessed through a reciprocal transplant experiment (see ‘Preliminary results of reciprocal

transplants’).

In a third time, we realized a reciprocal transplant experiment involving the two
study sites of Laussat and Regina to test the local adaptation hypothesis in wild conditions.
We sampled seeds from two habitat types (bottomland and terra-firme) in the two study
sites and transplanted young seedlings in all sites and micro-habitat conditions. This
experiment was set up at the beginning of this PhD and will be followed until 2015.

Up to now, significant effects of provenances and transplant sites were detected on
seedling growth at both regional and local scales, but any provenance-by-transplant
interaction was detected. Subsequently, we detected any difference between local and
foreigners in the different transplant sites. However, the seedlings grow very slowly in the
wild by comparison with those placed in shade houses, and they are probably too young to

detect clear effects. It is thus too early to interpret properly this experiment and reciprocal
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transplant experiments classically require more than three years to provide sufficient

divergences and significant results.
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Figure 88: Phenotypic differentiation among habitat types for growth, biomass allocation and
leaf traits for two species sampled at Paracou. Bayesian departures of each group from the global
mean are shown as boxes; error bars show the 950 credible interval of the estimated parameters.

For each plot: left box=hilltop, middle box=slope, right box=bottomland.
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DISCUSSION

1. Neutralism and adaptation in Eperua falcata

The study of species evolution and genetic diversification in tropical rainforests
remain a vast and difficult topic. The combination of an immense diversity of species, the
few number of studies available and the difficulties in studying species and populations in
such diverse (and sometimes hostile) environment has largely limited the comprehension
of the mechanisms involved. However, more research efforts have been made during the
twenty past years and help understanding how species evolve in such particular
environments.

Recent biogeographic and phylogeographic studies have investigated the building of
biodiversity in Amazonia through geological ages, mainly through the study of past
processes of colonization of species from other continents and of species diversification
caused by orogenic and climatic (ice ages) changes (eg. Hoorn et al. 2010, Scotti-Saintagne
et al. 2012, Duminil et al. 2006). Moreover, several community ecology studies have observed
profound changes in forest community structure and compositions in relation to
environmental conditions (eg. Kahn 1987, Kraft et al. 2008); and have highlighted the
probable influence of adaptive radiation in speciation processes (eg. Baraloto et al. 2007). In
particular, many tree genera are composed by species differing in their ecological
preferences to particular environmental conditions, among which local habitat patchiness
caused by topography attracts a particular attention.

Even if the processes causing the spatial genetic structuring in tree populations are
well documented in temperate zones, tropical rainforests suffer from a lack of knowledge
about the process of populations evolution and the genetic structuring of tree populations at
intra-specific level (at a level of genetic differentiation more recent than the divergence
between species), Savolainen et al. 2007. Many studies have already provided evidence of
genetic differentiation in temperate plant populations caused by both neutral and adaptive
processes involving a large variety of environmental gradients and subjacent ecological
factors such as climatic factors (temperature, precipitation), edaphic factors (soil properties
among which soil water availability, nutrients), and biotic interactions (competition,
predation, mutualism etc...), Caisse & Antonovics 1978, Gonzalez-Martinez et al. 2006,

Savolainen et al. 2007, Leimu & Fischer 2008, Siol et al. 2008, Savolainen et al. 2011, Strasburg
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et al. 2011, Le Corre & Kremer 2012. In the tropical rainforest of Amazonia, many studies
have already addressed the question of neutral differentiation caused by restricted gene flow
and local inbreeding (Ward et al. 2005, Hardy et al. 2006, Dick et al. 2008), but no study has
yet integrated both neutral and adaptive aspects of populations evolution at intra-specific

level in Amazonia.

In this study, I used a common tree species of the Guiana shield (Eperua falcata) to
study how evolution has structured the genetic diversity in Neotropical forest landscapes.
Both molecular and phenotypic approaches provide evidence of a strong genetic structuring
over very local spatial scales (only several hundred of meters) due to a combination of
neutral (mainly limited seed dispersal and probably local inbreeding) and adaptive processes

(driven by environmental factors associated local habitat patchiness).

Based on more than one thousand AFLPs loci (article n°2), a genome-scan approach
revealed a strong fine-scale genetic structuring (SGS) with a strong relatedness between
adult trees closer than few dozens of meters to each other in the study sites of Laussat and
Regina. This result was corroborated by the blind analysis of genetic structuring within
sites, revealing that related trees are geographically grouped and the probable clumping of
progeny arrays, as it is the case in numerous Neotropical tree species (Ward et al. 2005,
Hardy et al. 2006, Dick et al. 2008). Moreover, gene dispersal distances were estimated to be
very low in these two populations (~46 and ~64 meters in Laussat and Regina respectively).
Thus, a combination of a restricted gene flow with high local densities may have driven
neutral genetic differentiation at very local scales (hundreds of meters) in these two
populations. We can also easily imagine that such clumping would be reinforced by local
inbreeding, as mating would occur mainly among neighbors in populations of high
population densities. This structuring of genetic diversity results in a significant, albeit
small, genetic differentiation among local habitat types in these two study sites (Fst~0.03 in
Regina and Fst~0.04 in Laussat).

Even if the major part of the genetic differentiation among local habitats
(bottomlands and terra-firme) may be attributable to neutral processes, the genome scan
approach revealed that several loci (between 0.3% and 1.8%) may be however structured by
selective processes associated with variations in topography and soil properties. In

particular, many outliers displayed similar patterns of band frequency variations among
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local habitats in the two study sites. Moreover, local adaptation may contribute to explain
the very low estimated gene flow, as all genotypes are not necessarily able to establish in all
micro-habitats. The proportion of outliers detected here is however very low, probably
because local adaptation has a minor contribution in governing the genetic differentiation
over short spatial scales. It is however possible that the footprints of natural selection
detected here do not catch the entire extent of divergent selection among local habitats. In
some cases, when many loci are involved in local adaptation, and when natural selection
models the genetic correlations between loci rather than fixing alleles at individual loci, the
differentiation at selected loci (‘FstqrL’) is close to the neutral genetic differentiation
estimated overall loci (Fst) and results in a lack of power to detect outliers using Fst-based
selection tests (Le Corre & Kremer 2012). Because local adaptation may act on complex traits
(i.e. traits controlled by a complex genetic architecture), it is possible that we fail to detect
many selected loci. However, the main limit of this approach is that the molecular markers
analyzed are anonymous and cannot provide any information about the genetic role
potentially played by outlier loci.

A candidate gene approach (article n°1) revealed that divergent selection among local
habitats affect SNPs within two genes of functional importance (a farnesyl-transferase and
a catalase) and within one locus of unknown function in the study sites of Paracou and
Nouragues (Audigeos 2010, Audigeos et al. 2013). The identity of the genes submitted to
divergent selection is an important piece of information for understanding which factors
are involved in the process of local adaptation. The farnesyltransferase gene is a negative
regulator of abscissic acid signal transduction in guard cell that is a major hormone involved
in stomatal closure during drought stress (Cutler et al. 1996, Schroeder et al. 2001). The
catalase, on the contrary, may be related to oxidative stresses induced by hypoxia
(Willekens et al. 1997, Mittler 2002, Blokhina et al. 2003): as soil aeration and root respiration
decrease during water-logging, and hydrogen peroxide is produced by mitochondria and
accumulated into root cells. The catalase contributes to detoxify the hydrogen peroxide
through the reaction: 2H,O, =& O,+2H,0. However, this study involved too few loci to
prove adaptation of Eperua falcata sub-populations to particular soil water constraints and
associated stresses (mainly drought and hypoxia), and would be completed by a study
including many other candidate genes.

Even if both genome scan and candidate gene approaches have several limits, they

converge toward the idea that local adaptation to constraints associated with topography
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and soil properties contributes to structure a fraction of the genome of Eperua falcata. These
results motivate further investigations in the genetics of divergence. The analysis of the
transcriptome by 454-pyrosequencing (article n°3) allowed the identification and the
characterization of thousands of expressed genes, among which some are suspected to be
polymorphic. This database provides a valuable source of candidate genes for developing a
genome-scan approach integrating a large panel of genes of known function using next-

generation sequencing or genotyping technologies.

The local genetic structuring in forest landscapes observed at the molecular level was

also evident at the phenotypic level.

A common garden experiment in non-limiting conditions (article n°4) revealed that
the native habitat of the mother trees explained a significant fraction of phenotypic
differentiation for the majority of growth and leaf-traits. Even if seed mass was taken into
account, we cannot completely exclude that a part of these divergences may be due to other
maternal effects. It remain however probable that a part of them could be truly genetics and
thus result from the action of local evolutionary processes. This study did not allow
affirming that the inherent phenotypic differentiation observed here was driven by natural
selection rather than by other (and neutral) evolutionary processes. There are however some
indications that it may be:

(1) The plot we studied (in the experimental site of Paracou) is an environmental mosaic
where a single bottomland is bordered by two slopes and two hilltops. It is poorly probable
that random neutral processes would have driven such mirror-like (and thus symmetrical)
phenotypic differentiation on both sides of the bottomland.

(2)  The different micro-habitats are potentially connected by gene flow, as the distance
between closed habitats is lower than the expected gene flow. It is thus poorly probable that
the different sub-populations would have experienced different histories, considering both
their demography and the genetic drift.

(3) The patterns of phenotypic differentiation were surprisingly similar within the two
Eperua species. In particular, I have chosen a hierarchical model for estimating the effect of
native habitat within the two species independently rather than testing for a global effect
of native habitat. The fact that two species unrelated by gene flow display close patterns of

phenotypic differentiation preferentially suggest the influence of local adaptation rather
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Growth rate

than neutral processes. However, we cannot exclude that maternal effects not taken into
account (such as seed quality) and common to both species would have contributed to model
similar patterns within the two species.

Last, the growth conditions during experiment were very different to natural
conditions encountered by seedlings in the wild, and we may not conclude about the
maintenance of such phenotypic differentiation in situ.

A second experiment in which seedlings native from different micro-habitats were
experimentally submitted to drought and water-logging (article n°s) revealed that different
provenances were equally sensitive to severe constraints: their growth rate decreased when
submitted to constraining conditions but resulted in similar growth rate between
provenances. This result revealed the absence of differential adaptation to drought and
water-logging of the different provenances, suggesting that the genetically-driven
phenotypic differentiation between the provenances is not a result of local adaptation to
hydric conditions or to hydric conditions alone. Because micro-habitats differ not only in
hydric constraints but also in a variety of abiotic (soil and litter chemical composition, light)
and biotic factors (community composition, predation), we can suppose that other
environmental factors not tested here (or a combination of them) may have caused the
phenotypic differentiation between sub-populations observed in non-limiting conditions.
Moreover, this experiment do not allow to completely exclude the influence of hydric
constraints in driving local adaptation, as the constraints exerted may have been too severe,

and we lack information about the reaction norm of the different provenance to each
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Figure go: Possible reaction norms leading to the observed states. . .
intermediate levels of

constraints, we cannot properly conclude that seedlings from different native habitats are
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equally sensitive to hydric constraints, figure go.

Reciprocal transplants will helps testing the hypothesis of local adaptation in natural
conditions (see ‘Preliminary results’). Up to now, the experiment is however too young to
be discussed as the seedlings grow very slowly and remain very small two years after
sowing. A significant, albeit small, effect of the local provenance was detected for some
traits (mainly survival), but any gene-by-environment interactions was detected at early
developmental stages. Moreover, any differences between local and foreigners were
detected in each transplant conditions as the seedlings remain very small and the effects not
clear. This experiment will however be followed until 2015, and the span of the recorded
traits will be extended to many other growth (total biomass accumulation and allocation to

leaves stems and roots) and leaf traits (chlorophyll content, carbon and nitrogen content,

leaf thickness).

Taken together, these results suggest that the genetic diversity of Eperua falcata is
structured at very local scale (in the order of several hundreds of meters), mainly by neutral

processes. However, local habitat patchiness and associated divergent selective pressures

may contribute to enhance the genetic structuring over very short spatial scales.

Restricted gene flow m
(+ local inbreeding?) \

Figure g1: The local structuring of genetic diversity in Eperua falcata.
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2. Open questions and perspectives

This study helped understanding how evolution operates in Neotropical tree
populations over short spatial scales, in the order of several hundred of meters. Several
questions remain however widely opened:

(1) How restricted gene flow and local inbreeding govern the spatial dynamics of
Eperua falcata populations (demography) and the structuring of genetic diversity
over short spatial scales?

(2) Have the different demes (sub-populations inhabiting different micro-habitats)
and populations (inhabiting the different study sites) experienced the same
demographic history or not?

(3) What is the real extent of local adaptation in the whole genome of Eperua falcata?

(4) Do different populations adapt to the same agent of selection (i.e. selective
environmental factors) in a same way or local adaptation involves different traits
and genes depending on the study site?

(5) Is local adaptation responsible for the phenotypic differentiation observed in
seedling in non-limiting conditions?

(sa) What is the genetic architecture of the structured traits?
(sb) Do these genes show footprints of natural selection or not?

(6) Is there a phenotypic differentiation also visible on adult trees? (And how to cope
with populations composed by trees of different ages with different ontogenic
histories?)

All these questions motivate further investigations, on both adult tree populations and

the recruited seedlings.

Some of these questions will be completed through two years of post-doctorate. As
the reciprocal transplants will be followed until 2015, the experiment will be coupled with
advanced genetic investigations based on both adult trees and transplanted seedlings. In
particular, I plan to use NGS technologies to re-sequence hundreds of genes (or genotype
SNPs within) chosen among the unigenes described from 454 analysis, (article n°3). This
work will be useful for:

- Searching the pedigrees of the transplant seedlings and search for father and mother
trees among the whole populations of adults.

- Estimating the realized gene flow from one generation (the adult trees that fructified
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in 2011) to another (the seedlings recruited in 2011) in Laussat and Regina populations.

- Measuring the extent of inbreeding in the generation of seedlings.

- Developing an association genetics approach that will aim at identifying the genes

controlling the phenotypic traits studied.

In parallel to the reciprocal transplant experiment, I used the HiSeq Illumina technology
to sequence the whole-genome of 40 adult trees inhabiting Laussat and Regina study sites
(10 trees within each micro-habitat and site). The assembly of the very short reads obtained
will be facilitated by the already available transcriptome (either by mapping the short-reads
on the assembled transcriptome of by realizing a hybrid assembly combining both long
reads from 4s54-pyrosequencing and short reads from Illumina technology). This
experiment will help me to estimate the genetic differentiation between micro-habitats and
the real extent of divergent selections in the whole genome of Eperua falcata. As the
assembled unigenes will be blasted and annotated, it will lead to more precise conclusions
about the identity of the genes targeted by natural selection in the two populations of

Laussat and Regina.
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3. Importance of assessing genetic diversity in a changing world

Contemporary changes and predictions

As it is the case in numerous regions of the world, the Amazon basin is going to
experience strong climatic changes. Since the mid-1970s, all tropical forests regions have
experienced a warming at a mean rate of 0.26+0.05°C per decade, figure 92 (Malhi & Wright
2004). In the particular case of French Guiana, temperatures show a similar trend, with an
increase of about 0.25°C per decade (Wagner 2011). Since 1970s, precipitation appears to have
declined in tropical forest regions at a rate of 1.0+0.8% per decade without, however, a
significant trend in Amazonia. However, Li et al. (2008) revealed a significant increase in
the frequency of dry events for the period 1970-1999, while Arias et al. (2011) have reported a
decrease in cloudiness with an increase in solar irradiance in Amazonia for the period 1987-

2007. Moreover, the majority of models from the IPCC scenarios expect a significant
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Figure 92: Rate of temperature change (°C per decade) in each tropical forest
subregions (a) for the period 1960-1998; (b) for the period 1976-1998. (from
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persistence

Climate-based species distribution models predict a redistribution of tree species in
the world during the next century (Aitken et al. 2008). These models postulate that
environmental conditions are the primary determinant of species distributions: species
future range distributions are predicted by projecting the present ecological niches of the
species on maps representing future climate scenarios. However, these models are often
unrealistic as they take into account neither the potential of species and their populations
to evolve, nor their true dispersal abilities with an evolutionary point of view.

Thus, understanding if and how species would be able to overcome rapid climate changes
require understanding the limits of population persistence (Chevin et al. 2010, Hoffman &
Sgro 2o11).

Environmental changes threaten populations’ persistence, because they affect
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populations’ size, leading to strong genetic drift. Combined together, the reduction of
population size reinforced by genetic drift erodes the genetic diversity of populations
(‘bottleneck effect’), leaving them more vulnerable to changes. Two mechanisms may allow
populations to avoid extinction: migration and adaptation (Aitken et al. 2008, Chevin et al.
2010). Thus predicting the ability of populations to overcome environmental changes
requires assessing the ability of populations to adapt locally to new conditions, or to migrate

toward other favorable areas.

Adaptation to new conditions would primarily depend on the strength of selection
exerted by both abiotic (climate change) and biotic factors (such as inter-specific
competition with species that recently colonized the area). Secondly, adaptation to new
conditions would depend on both (1) the available genetic diversity for climate-related
functional traits in the population and (2) the ratio between the rate of environmental
change and the rate of adaptation that include both the fecundity and the generation time
of the species considered. Tree populations commonly display large genetic variations for
functional traits as they display large heritability values. Moreover, the genetic diversity is
often spatially structured by local evolutionary processes (such as local adaptation) that
contribute to maintain high levels of genetic diversity in forest landscapes (Dirzo & Raven
2003, Kawecki & Ebert 2004). However, directional selection is subsequently supposed to
affect the genetic diversity for such climate-related genes, leaving populations more
vulnerable to future changes (Jump & Penuelas 2005). Last, inter-specific hybridization,
which is common in tropical rainforests, is also of major importance, as such hybridizations
may produce new genotypes with higher fitness than parental species (Hufford et al. 2003,
Aitken et al. 2008).

In this study, the glasshouse experiments revealed that the majority of growth and
leaf traits vary significantly between seedlings progenies, leading to high maternal family-
to-total variance ratios (62m/02p) and probably high heritability values in the congeneric
species Eperua falcata and E. grandiflora. Moreover, both neutral and adaptive processes
contribute to structure the genetic diversity over short spatial scales in Amazonia, and thus
to maintain high levels of genetic diversity in large areas. These results suggest the existence
of an extensive genetic variability for phenotypic traits in widespread natural populations
of Eperua that would be beneficial for future populations’ adaptation to contemporary

climate change.
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Migration toward a new area (i.e. the establishment of a new population in a new
area in the case of plant species) requires that the distance to another favorable habitat
would be lower than seed dispersal. It depends both on the species properties to realize long-
distance dispersal and on the fragmentation of the habitat: the establishment of a new
population in a new area requires that a favorable environment of sufficient area would be
available in the limits of the populations’ dispersal abilities. Moreover, the colonization of
a new area requires a sufficient number of founders (Hufford et al. 2003), because a new
population composed by too few founders (and thus with a poor genetic diversity) would
be submitted to strong genetic drift and thus may not establish durably.

Analysing the fine-scale genetic structuring in Eperua falcata revealed that gene flow
is highly restricted (less than hundreds of meters), that is lower previous estimates of gene
flow in the congeneric E. grandiflora. Such limitations of gene flow would be critical for this
species to colonize new areas in the current context of rapid climate changes. However, this

study did not investigate the process of rare long-distance gene flow in E. falcata.

Last, phenotypic plasticity may also be of major importance, as it may contribute to
buffer populations against extinction. According to Pigliucci (Pigliucci 2001), phenotypic
plasticity may be viewed as a proximate cause of developmental change. The ability of a
species to develop phenotypic plasticity (i.e. the ability of some individuals composing the
population to overcome environmental changes by altering either their physiology or their
morphology) may prevent local extinction of the populations, at least at short term before
adaptation. Moreover, once small founder populations are established in a new area, the
phenotypic plasticity of founders may allow for the persistence of the newly established
populations (Aitken et al. 2008).

Submitting E. falcata seedlings to soil water content constraints revealed that growth
was significantly affected by both drought and water-logging by comparison with non-
limiting conditions. Moreover, soil constraints induced changes in leaf traits suggesting that
E. falcata is able to develop plastic response to environmental constraints, among which soil
water depletion. In addition to previous studies revealing that E. falcata is well tolerant to
drought (Bonal et al. 20m), this study revealed its ability to develop phenotypic plasticity
that may contribute to prevent local extinctions in the context of global warming in

Amazonia.
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Even if studying each species of the Amazonia remain impossible, more research
efforts -at least on the more abundant tree species- should help expecting the capacity of
neotropical trees to deal with rapid climate change. In particular, studying the process of
evolution in tropical forest landscape allows:

=> estimating the ability of species to migrate toward new habitats and their migration
rate,

=> estimating the extent of phenotypic variations for traits involved in plant response
to stresses (mainly drought, figure 93) and assessing the extent of genetic diversity

for the underlying climate-related genes.
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Figure 93: Mechanisms of plant response to drought stress. (from Chaves et al. 2003)
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Thls section contains the complete results of this PhD. They are
orgamzed in three parts: molecular evolution, genomics and

phenotyp.ic evolution. PhD results are formatted as research

articles.

Molecular evolution

- Article n°1
- Molecular divergence in tropical tree populations occupying environmental

| mosaics.

D. Audigeos, L. Brousseau, S. Traissac, C. Scotti-Saintagne & I. Scotti.

(Published in Journal of Evolutionary biology, 2013)

= Article n°2

- Fine-scale genetic structure and local adaptation in a neotropical tree species of

' iz Amazoma (Eperua falcata, Fabaceae).

L Brousseau, M. Foll & I. Scotti
-: - (in prep.)



Genomics

%, Bioinformatic tools
‘Rngs’: A suite of R functions to easily deal with next-generation (454-)
sequencing data and post-process assembly and annotation results.

L. Brousseau, C. Scotti-Saintagne

(will be compiled into an R package) Ky
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High-throughput transcriptome sequencing and polymorphism discovery in
four Neotropical tree species.

L. Brousseau, A. Tinaut, C. Duret, T. Lang, P. Garnier-Géré & I. Scotti
(Submitted to BMC Genomics)

Phenotypic evolution
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Highly local environmental variability promotes intra-population divergence of
quantitative traits: an example from tropical rainforest trees.
5 0 L. Brousseau, D. Bonal, J. Cigna, I. Scotti.

(Published in Annals of Botany, 2013)
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Local adaptation in tropical rainforest trees: response of Eperua falcata (Fabaceae)
seedling populations from contrasted habitats to drought and to water-logging.
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Article n°1 - Molecular divergence in tropical tree populations
occupying environmental mosaics
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* INRA UMR 0745 EcoFoG (‘Ecologie des foréts de Guyane’), Campus Agronomique,
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Published in: Journal of Evolutionary Biology (2013) 26: p 529-544 (doi: 10.1111/jeb.12069).

Abstract

Unveiling the genetic basis of local adaptation to environmental variation is a major
goal in molecular ecology. In rugged landscapes characterized by environmental mosaics,
living populations and communities can experience steep ecological gradients over very
short geographical distances. In lowland tropical forests, interspecific divergence in edaphic
specialization (for seasonally flooded bottomlands and seasonally dry terra firme soils) has
been proven by ecological studies on adaptive traits. Some species are nevertheless capable
of covering the entire span of the gradient; intraspecific variation for adaptation to
contrasting conditions may explain the distribution of such ecological generalists. We
investigated whether local divergence happens at small spatial scales in two stands of Eperua
falcata (Fabaceae), a widespread tree species of the Guiana Shield. We investigated Single
Nucleotide Polymorphisms (SNP) and sequence divergence as well as spatial genetic
structure (SGS) at four genes putatively involved in stress response and three genes with
unknown function. Significant genetic differentiation was observed among sub-populations
within stands, and eight SNP loci showed patterns compatible with disruptive selection.
SGS analysis showed genetic turnover along the gradients at three loci, and at least one
haplotype was found to be in repulsion with one habitat. Taken together, these results
suggest genetic differentiation at small spatial scale in spite of gene flow. We hypothesize
that heterogeneous environments may cause molecular divergence, possibly associated to

local adaptation in E. falcata.
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Introduction

Environmental gradients - the more or less continuous spatial variations of biotic
and abiotic conditions - and environmental patchiness produce spatially variable selective
pressure on biological populations, inducing their genetic diversification through local
adaptation (Antonovics 1971, Linhart & Grant 1996, Kawecki &Ebert 2004, Savolainen et al.
2004, Fine et al. 2005, Hedrick 2006, Namroud et al. 2008). Correlation between
environmental variables and frequencies of adaptive genetic variants has been repeatedly
observed, and such patterns have generally been interpreted as signatures of selection
forcing genetic pools to adjust to local environment (Storz & Kelly 2008, e.g. Hedrick 2006).
The observation of adaptive genetic divergence between populations occupying different
parts of an environmental gradient is therefore suggestive of the action of disruptive
selection in favor of local adaptation.

The study of how genetic diversity is coupled with environmental gradients rests on
solid theory, and stems from the rather intuitive idea that genetic turn-over can be
quantified through changes in allele frequencies, and that if a gradient influences allele
frequencies, then an association should be present between the two (Epperson 2003).
Although with considerable refinement, this approach is the base of all studies of ecological-
genetic gradients (Bergmann 1978, Ingvarsson et al. 2005, Joost et al. 2007, Ingvarsson 2008,
Eckert et al. 2009, Coop et al. 2010, Eckert et al. 2010, Fournier-Level et al. 2011, Montesinos-
Navarro et al. 2011, Hancock et al. 2011, Chen et al. 2012), including those of populations
inhabiting contrasting habitats.

Conventionally, the effect of environmental gradients has been sought at scales that
go from regional to continental (Achere et al. 2005, Tsumura et al. 2007, Eveno et al. 2008,
Namroud et al. 2008), implicitly assuming that at shorter scales migration will
systematically overwhelm selection. Nevertheless, there are reasons to think that disruptive
selection acts even at very local scales. Even in the absence of selection gradients, genetic
relatedness tends to be spatially structured in plant populations (and particularly in trees)
because of preferential dispersal in the close neighborhood. Limitations to dispersal can
therefore reinforce differential, spatially structured disruptive selection. Conversely,
moderate levels of gene flow may increase the rate of adaptation, by enabling the emergence
of novel multilocus genotypes and by exposing alleles to multiple environments, thus
facilitating the action of selective filters (Goudet et al. 2009, Kremer & Le Corre, 2012).

Finally, most plant populations produce a large excess of seeds and seedlings each season,
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which should set the stage for very strong selection, even if it is partially confounded by
random processes. The existence of local adaptation in spite of gene flow has been reported
at the very short spatial scale in animals (Storz, 2005), inartificial plots for outcrossing wind-
pollinated annual plants (Freeland et al. 2010) but also on larger scales for wind-pollinated
trees (Savolainen et al. 2007, Eveno et al. 2008, Eckert et al. 2009, Eckert et al. 2010). Jump &
Penuelas (2005) have reviewed proofs that intra-population genetic variation for traits and
genes related to response to climatic gradients exists in plant species. Their analysis rests
on a long tradition of studies on local adaptation to patchy or continuously varying
environments, of which clear examples are found in annual plants at both the landscape
(Angert & Schemske, 2005, Manel et al. 2010, Poncet et al. 2010) and within-population scale
(Schmitt & Gamble 1990). For instance, local adaptation has been identified at the molecular
level for tree species within a range of less than 3 km (Jump et al. 2006), and parapatric or
sympatric speciation for palms has likely occurred on a single 12 km2 island (Savolainen et
al. 2006, Babik et al. 2009). Thus, even for long-lived organisms, such as trees and palms, it
is possible to observe genetic divergence at a very local scale, in spite of the (real or expected)
presence of recurrent gene flow among environmental patches or portions of the gradient.
It is therefore legitimate to ask whether locally variable selection contributes to the
diversification of sub-populations and to the build-up and maintenance of genetic diversity
and adaptive potential in tree species.

With the development of genomic methods, several strategies for testing the
association of Expressed Sequence Tags (EST), Single Nucleotide Polymorphisms (SNPs)
or anonymous markers with traits and/or eco-logical preferences (association mapping;
population genomics) have been introduced (Luikart et al. 2003, Neale & Savolainen 2004,
Gonzalez-Martinez et al. 2006, Eckert et al. 2009). These methods usually require a priori
information that may not be easily accessible for nonmodel taxa (Luikart et al. 2003), while
enabling gene-level selection studies without prior knowledge about the relationship of
phenotype to genotype or the precise function of candidate loci (Storz 2005, Vasemagi &
Primmer 2005). Higher (or lower)-than-expected levels of divergence among populations at
a given locus is then taken as suggestive of disruptive (or stabilizing) selection (Beaumont
& Nichols 1996, Luikart et al. 2003, Beaumont & Balding 2004, Storz 2005, Gonzalez-
Martinez et al. 2006, Riebler et al. 2008). This strategy can be applied at the genome level,
when extensive genomic information is available, or to sets of candidate genes (Phillips

2005, Wright & Gaut 2005) when a particular ecological and physiological process is

121



targeted.

When environmental factors are spatially structured, for example in the case of
habitat patches or gradients, the study of Spatial Genetic Structure (SGS) can also help
testing the association of genotypes and environ-mental conditions. SGS can result from a
variety of processes, including spatially structured selection and limited dispersal (Condit
et al. 1996, Clark et al. 1998, Plotkin et al. 2000). It is therefore necessary to distin-guish the
relative role of the different evolutionary forces (Heywood 1991; Manel et al. 2003,
Vekemans & Hardy 2004). In structured environments, the distribution of genotypes
relative to habitat gradients can be compared with the overall distribution of genotypes (or
to a null distribution). Specifically, at loci under diver-gent selection, it is expected that
turnover of alleles is steeper along the gradient than in any other direction (and between
ecologically contrasted zones than between randomly drawn zones; Oden & Sokal, 1986).
Landscapes with abrupt habitat changes occurring over short spatial scales and with an
alternation of eco-logically divergent habitat patches provide a suitable opportunity for the
study of the strength of selective forces leading to local adaptation. Seasonally flooded
lowland forests of the Guiana shield occur in a rugged landscape characterized by small
creeks alternating with small hills, where edaphic (i.e. related to soil characteristics)
conditions can vary steeply from bottomlands to the top of hills and hillocks, resulting in
environmental mosaics (Baraloto & Couteron 2010). Therefore, forest tree populations
growing in this region provide the opportunity to test the occurrence of local adaptation
phenomena. Habitat specialization has been repeatedly observed in tropical trees (Plotkin
et al. 2000, Harms et al. 2001, Lopez & Kursar 2003, Palmiotto et al. 2004, John et al. 2007).
Several studies have tested responses to edaphic constraints in trees from the Guiana shield
(Baraloto et al. 2005, 2006, 2007) and analyzed the interspecific variability of traits related to
edaphic stress response (Bonal et al. 2000, Bonal & Guehl 2001, Coste et al. 2005, Bonal et al.
2007; Scotti et al. 2010), but the presence of intraspecific local adaptation in species occupying
several habitats (and its possible genetic base) have never been tested. The present work
focuses on populations of E. falcata, a common tree species of the Fabaceae family growing
in relatively dense clusters of up to several hundreds of trees and densities of up to 40 stems
(diameter at breast height > 10 cm) per hectare. Seed dispersal is barochore and pollination
is mostly performed by bats. E. falcata was found to be significantly positively associated
with flooded forest (Collinet 1997, Baraloto et al. 2005, 2007). However, distribution maps

show that it can occur on a large spectrum of edaphic conditions, up to hilltops, thus
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showing a somewhat generalist behavior and therefore potential for local adaptation.

The present study focuses on three main edaphic habitats occupied by this species:
bottomlands, seasonally flooded by heavy rainfall during the rainy season; slopes, with thin
soil and highly variable soil water content and terra firme plateaus, with deep, well-drained
soil possibly prone to drought during the dry season (Wright 1992).We have analyzed
genetic diversity in a set of seven genes of which four have a known function related to
response to hypoxic stress (Catalase), drought stress (Farnesyltransferase) and plant water
balance (two aquaporins; Audigeos et al. 2010) and three were randomly drawn from an EST
library obtained from seedlings from one of these papers’ study areas. We assessed SGS and
performed multilocus scans for genetic differentiation at small spatial scale (~ 6 ha), in two
forest plots presenting environmental patchiness. We tested local differentiation of E.
falcata populations as a function of variation of edaphic conditions and found loci

potentially undergoing disruptive selection.
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Materials and methods

(a) PARACOU Plot 6 P (b) NOURAGUES Plots (10-11)x(J-L)
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4
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P
...... : Figure 1 E. falcata cartography on
......... drainage map for each sampling site:
Paracou Plot 6 (A) and Nouragues Plots
10J, 10K, 10L, 11K, 11J, 11L (B). Light
grey represents VD, medium grey
represents lateral drainage (SLD) and
dark grey represents surface
hydromorphy {SH). The axes used in
each plot for directional autocorrelation
mm Surface hydromorphy analyses are shown. Dashed line:
0 50 100 Surface lateral drainage Paracou ‘Eastern Half’. Dotted line:

E— m i i 7
Vertical drainage Paracou ‘Northern half’.

Sampling and DNA isolation

Trees were sampled from two forest inventory plots in French Guiana, one with an
environmental mosaic (Paracou, Fig. 1a) and one with two homogeneous patches of strongly
contrasted environments (Nouragues, Fig. 1b). The Paracou experimental station, so km
from Kourou (5 ° 15°N, 52 ° 55W), is formed by 15 plots of 6.25 ha (Gourlet-Fleury et al.

° 4'W) has an area of over 100 ha,

2004). The Nouragues research station (4 ° o5’N, 52
subdivided in 1-ha square plots. Both sites represent relatively accessible but undisturbed
forest areas. At both sites, the study area was subdivided based on a discrete categorization
(Ferry et al. 2010) of environmental (and particularly edaphic) conditions (Fig. 1): vertical
drainage (VD) corresponding to terra firme forests, with deep soil rarely undergoing
drought and never undergoing flooding; surface lateral drainage (SLD), which could
experience drought during the dry season due to its very variable soil water-content and
surface hydromorphy (SH) corresponding to seasonally flooded forest with soil saturated
with water to the surface, undergoing hypoxic stress during the rainy season. This
environmental partition loosely corresponds also to topography classes like plateau, slope
and bottomland respectively. In Paracou, Plot 6 (of an area of 6.25 ha) was chosen. The three
environmental conditions described above are represented in this plot (Fig. 1a). In
Nouragues, six contiguous 1-ha plots crossed by a river (10], 11], 10K, 11K, 10L, 11L), for a total
area of 6 ha, approximately equivalent to Paracou’s Plot 6. Only the VD and SH ecological
conditions were found at the Nouragues study site (Fig. 1b). The majority of Nouragues
individuals are found in VD zones and a few in SH zones. Cambium was collected from

440 E. falcata trees with a diameter larger than 10 cm at breast height: 258 in Paracou (48, 172
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and 38 in the SH, SLD and VD zones respectively) and 182 in Nouragues (29 and 153 in the
SH and VD zones respectively) and DNA was extracted following a CTAB method (Doyle

& Doyle 1987, Colpaert et al. 2005).

Amplicon choice, sequencing and polymorphism detection

To study evolutionary processes responsible of genetic diversity in E. falcata, we
analyzed sequences with a putative role in the response to stresses related to edaphic
conditions and sequences with unknown function. Of the seven loci used in the study, two
were aquaporin gene fragments, PIPr1 and PIP12 characterized in a previous study
(Audigeos et al., 2010), whereas the other nuclear fragments were obtained by sequencing
clones from both cDNA and genomic libraries. The five additional sequences included: a
fragment of the gene coding for Catalase (CAT), involved in the response to oxidative
stress caused by flooding; a fragment of the gene coding for Farnesyltransferase (FTase),
involved in the abscissic acid (ABA) metabolic pathway; a DNA fragment coding for a
hypothetical protein (HYPs) and two ESTs with unknown function (UNK7 and UNKi4).
The chosen loci represent a mix of candidates for a putative role in the response to edaphic
constraints (Cat, FTase), genes with a housekeeping function in plant water balance (PIPs)
and ‘randomly drawn’ gene functions (HYPs, UNK7, UNK14).Although we cannot assume
that any of these sequences are ‘neutral’ in the general sense, we have no special reason to
think that they undergo disruptive selection in this particular habitat gradient, with the
notable exception of CAT and FTase. Therefore, we consider the sampled gene panel as
representative of the general behavior of the transcriptome with respect to this particular
gradient. Moreover, we decided to make use only of EST sequences because other kinds of
regions, such as anonymous genomic sequences or microsatellites, may have different
molecular properties (e.g. different substitution rates, nucleotide composition and linkage
disequilibrium levels for the former, different mutation model and rates for the latter),
making the data set inhomogeneous from the evolutionary point of view. By restraining our
analysis to only one kind of sequence type, we have tried to avoid any bias in data
interpretation that may arise from comparisons between data sets with different underlying
structures. The libraries were obtained using the Lambda ZAP II kit (Stratagene, La Jolla,
CA, USA) following the manufacturer’s protocol. About 200 clones were sequenced and
their putative function assigned based on their comparison with public databases using

BLASTn and BLASTx. A set of 47 sequences with length between 300 and 6oobase pairs
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(bp) was selected, including: proteins with known function, retrotransposons, hypothetical

proteins or sequences without match in public databases. Primers were designed using
PRIMER - BLAST (www.ncbi.nlm.nih.gov/tools/primer-blast/) and OLIGO - CALC
(http://www.basic.northwestern.edu/biotools/oligocalc.html). Preliminary tests for

amplification were conducted on two individuals. Fifteen fragments produced specific
ampli-cons; PCR and sequencing on 16 individuals were performed to evaluate sequence
quality and polymorphism level. Five chosen fragments plus the two aquaporin genes were
then sequenced in all samples. Haplotypes have been deposited in GenBank under accession
numbers JQ8o1740 - JQ801745 (Table 1).

PCRs were carried

out in a 15 1 uL volume

containingis ng of DNA, 1x
Taq buffer, 2 mM MgCl 2,
0.25s mM of each dNTP, 0.3

U Taq polymerase (all

aquaperin

aguaparir ABRBETI4

products from New

England Biolabs) and o.5

uM of each primer. An

temperature decreases from the highest to the lowest temperature over the first seven cycles (see Methads for

initial denaturation at g4 ° C
for 10 min was followed by 35 cycles of (45 s at 94°C; 20 s at the annealing temperature
shown in Table 1; 1 min 30s at 72 °C) and a final extension at 72 °C. PCR products were
purified with EXOSAP-IT (USB Corporation). Sequencing reactions were performed with
the BigDye®Terminatorvs.1 cycle sequencing kit (Applied Biosystems) in a total volume of
10 uL containing o.5 uL of Big Dye,1.5 uL of Buffer, 1 uL of 2 uM primer, 4 uL of cleaned-up
PCR product and 3 uL of milli-Q water. All fragments were sequenced in both directions.
Sequencing reactions were then purified by ethanol purification and sequence data were
obtained on an ABI 3130xlcapillary sequencer (Applied Biosystems). Base calling and contig
assembly were done using CODONCODE ALIGNER V 2.0.1 (Codoncode Corporation,
Dedham, MA, USA). All polymorphisms were visually checked. As DNA sample were
diploid, the identification of haplotypes (i.e. sequence variants) for individuals with more
than one SNP was performed using PHASE (Stephens et al. 2001, Stephens & Donnelly
2003) implemented in DNASP V 5 (Librado & Rozas,2009) to produce two haploid

sequences per individual.
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Data analyses

We performed our analyses at the ‘site’ level (Paracou and Nouragues) and at the
‘habitat’ level (VD, SLD and SH) within a site. We use the terms throughout the article:
‘amplicon’ to refer to sequenced PCR fragments; ‘haplotype’ for the different amplicon

sequence variants and ‘SNP’ for each polymorphic site (including indels).

e  Molecular diversity and differentiation

Nucleotide diversity of each amplicon was estimated by both 8s (Watterson 1975), based
on the number of segregating sites and 01 (Nei, 1987), based on the average number of
pairwise nucleotide differences between sequences in a sample. Haplotype diversity Hd
(Nei 1987) was also calculated for each amplicon. Analyses of diversity were conducted in
DNASP V s (Librado & Rozas 2009). Linkage disequilibrium among amplicons was
estimated only for haplotypes occurring with > sofrequency, using a likelihood ratio test
(Slatkin & Excoffier 1996) as implemented in ARLEQUIN V 3.5 (Excoffier & Lischer, 2010).
Linkage disequilibrium (LD) within amplicons and departure from Hardy-Weinberg
equilibrium were tested on a contingency table of observed vs. predicted genotype
frequencies using a modified Markov-chain random walk algorithm as described by Guo &
Thompson (1992) and implemented in ARLEQUIN. LD was tested with 50 significance
before and after applying the sequential Bonferroni correction for multiple testing. We also
computed the LD descriptive statistic r2 (Hill & Robertson 1968), as it summarizes both
recombination and mutation history and it is less sensitive to sample size than other
common LD statistics, such as D’ (Flint-Garcia et al. 2003). r 2 was calculated on SNPs using
DNASP Vs and statistical significance of r2 was computed with a one-tailed Fisher’s exact
test and applying Bonferroni corrections for multiple testing. The decay of LD with
physical distance was estimated using nonlinear regression of LD between SNPs (r2) onto
their distance in base pairs (Remington et al. 2001; Ingvarsson 2005). The expected value of
r 2 under drift-recombination equilibrium, taking mutation into account, was computed
according to Hill & Weir (1988). The genetic structure of populations was investigated by
the analysis of molecular variance (AMOVA) (Excoffier et al. 1992) implemented in
ARLEQUIN V 3.5. AMOVA was estimated among sites and among environments within
site, for each amplicon as Nst (Pons & Petit 1996) and for all amplicons as Fst (Weir &
Cockerham 1984).
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e Detection of ‘outlier’ loci

Departures from the standard neutral model of molecular evolution were investigated
by two different methods: the frequentist method described by Beaumont & Nichols (1996)
and the more refined Bayesian method described in Beaumont & Balding (2004). To
compare the results obtained with the two methods, we assigned confidence levels of 999
and 9ooo for FDIST 2 and BAYESFST. The use of these two significance thresholds confers
comparable false discovery rates to the two methods (Beaumont & Balding 2004).
Identification of polymorphisms carrying a possible signature of natural selection (‘outlier’
loci) was first performed with the FDIST2 program, which uses the summary-statistics
approach described in Beaumont & Nichols (1996) and further developed in Beaumont &
Balding (2004).Twenty-thousand coalescent simulations were performed with three and
two populations of so individuals for Paracou and Nouragues respectively. Because sample
size was unequal between sub-populations at each site, and because only one sample size
can be entered as a parameter in FDIST 2, we also ran the analyses with three populations,
sample size 170 and two populations, sample size 150, for Paracou and Nouragues
respectively; this corresponds to the largest sample size for each site. The numbers of
populations and samples to simulate were chosen to model as closely as possible the
populations that have been analyzed at each site. Expected Fi for simulations was
determined as the mean of observed Fy values. To comply with the assumption of
independence of loci required for the estimation of population diversity and divergence,
three independent subsets of 21 SNPs (three per amplicon) with zero pairwise LD were used
to compute Fg ’s. This led to three independent simulations, each of which is based on 21
statistically independent loci; as these are statistically uncorrelated, we consider them as
being effectively independent loci, although they come from a restricted number of physical
genome locations. The neutral envelop was constructed for each simulation at the 99
confidence level. A single envelop was obtained by selecting, in each diversity bin computed
by the algorithm, the most conservative Fy values (i.e. the largest upper bound and the
smallest lower bound). Loci with a Fy value exceeding the upper limit of the neutral envelop
conditional on heterozygosity were considered as potentially under divergent selection. The
Bayesian inference method implemented in the BAYESFST program (Beaumont &
Balding 2004) was also used to identify genes under selection. This algorithm relies on a
Bayesian model to identify locus-specific population divergence between samples, by

implementing a Metropolis-Hastings Markov Chain Monte Carlo (MCMC) process based

128



on the likelihood of allele counts. It has the advantage of disentangling locus effect (o),
population effect (;) and optional interaction between locus and population effects (yi). A
positive value of a; indicates the presence of disruptive selection at the locus, whereas a
negative value suggests balancing selection. The vj’s also have an interpretation in terms of
selection: a large positive ¥ could indicate a potentially advantageous mutation that would

be locally adapted in a particular population (Beaumont & Balding 2004). Default prior

distributions were used to generate 10 000 parameter series and convergence was checked
using the CODA package of R version 2.10.1. Outlier values for a; and y; were identified

setting the confidence level at goo.

e Spatial analyses

We tested whether the distribution of genotypes was likely to have arisen by chance,
given the spatial structure of stems and habitats, using a method adapted from Harms et al.
(2001). We compared the relative abundance of each haplotype in each habitat to its
expectation under the null hypothesis of random distribution of haplotypes. The null
distribution of each haplotype’s relative abundance was simulated by 10 oootorus-
translations of stem locations to conserve their spatial pattern. The limits of the neutral
confidence interval were defined as values excluding 59 of the highest and lowest values. If
the relative frequency of a genotype, determined from the true habitat map, wa soutside the
confidence interval, then it was considered to be statistically associated with the habitat (if
the frequency had a positive value) or dissociated from the habitat (negative value). Habitat
association of haplotypes and genotypes for each amplicon and of SNPs was tested for each
site. Spatial genetic structure was assessed at plot scale using directional spatial
autocorrelation analyses (Epperson 2003) of the pairwise kinship coefficient between
individuals (fij; Loiselle et al. 1995), which was computed for haplotypes and individual
SNPs. Calculations were performed by SPAGEDI (Hardy & Vekemans 2002). Kinship
coefficient values were computed for a set of nine 20 m-wide distance intervals (from oto
180 m) and the significance of the slope of fj as a function of geographical distance was
tested based on the permutation procedure implemented in SPAGEDI withio ooo
permutations. Significance of negative slopes (indicating that genetic similarity decreases
with geo-graphical distance) was tested at one-tailed a = s50with Bonferroni correction for
multiple tests. Directional autocorrelation was performed by taking into account all and
only the pairs of points connected by a segment aligned in the desired direction, with a

tolerance of pi/12 radians on each side. The matrix of distances for suitable pairs of points
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was computed using an R script written for this purpose and available from the Authors.
Autocorrelation was performed: (a) for Paracou: along the (orthogonal) X and the Y axes
indicated in Fig. 1a, and omni directionally, for the whole plot as well as for its Northern its
Eastern halves (Fig. 1a; these sub-plots were included in the analyses because eye inspection
of the landscape revealed that they contained a habitat gradient along one of the axes); (b)
in Nouragues, along the X and Y axes indicated in Fig. 1b and omnidirectionally. The Y
axis corresponds to the presumed direction of the environ-mental gradient for all cases
except the Northern half of the Paracou plot, where the presumed cline direction is the X
axis (for the whole plot in Paracou, despite the ruggedness of the pattern, the proportion of
points sampled in the VD condition steadily increases along the Y axis; Fig. 1a). SGS was
conservatively considered as anisotropic (i.e. strength of autocorrelation varied between
directions) when the slope of f; values with distance was significant in one, but not the
other, of the mono-directional tests, although some degree of autocorrelation is expected to
occur in all directions due to neutral processes, such as limitations to seed and pollen

dispersal.
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Results

DNA polymorphism

Sequence polymorphism data
obtained from the seven EST loci for
the two experimental sites are shown in

Table 2. The

total number of

polymorphic sites per amplicon ranged
from 6 for HYPs to 31 for FTase and the
number of haplotypes per amplicon

ranged from 12for PIP1.2 to 36 for FTase.

Table 2 DNA polymorphism for seven amplicons across the

two sampling sites. N: number of analysed haploid sequences,

L: sequence length, Sy number of polymorphic sites, h: number of
haplotypes; Hy: Nei's gene diversity computed on haplotype
frequencies; 0, thy: estimates of population-level diversity based
on the average number of pairwise differences per site between
sequences and on the number ol segregating sites respectively.,

Amplicon N L St h Hy 0.4x10% Oy x10%
CAT 309 B57 8 15 0.567 1.53 1.93
FTase 578 397 31 36 0.637 3.12 11.26
HYP5 642 361 6 10 0.618 2,12 2.36
PIP1.1 456 552 17 23 0.796 4.45 4.60
FiP1.2 664 525 7 12 0,384 1.1 1.88
UNK7 482 417 8 13 0.645 3.18 2.84
UNK14 622 412 11 24 0.502 2.30 3.83

The average nucleotide diversity Ox across polymorphic fragments was 0.00254 and varied

from o.oo111 for PIP1.2 to 0.00445 for PIP1.1.The average of 0;is higher (0.0041) than h p;

values ranged from 0.00188 for PIP1.2 to 0.01126 for FTase, which had the highest number of

SNPs and haplotypes. In this amplicon, the great majority of SNPs are non-synonymous

(18), one was triallelic and one was a heterozygous singleton coding for a termination codon

that shortens the protein sequence of the last 10 amino acids.

Linkage disequilibrium

We did not find any clear evidence of

|
tight linkage  dis-equilibrium  among
«©
amplicons. Three loci (CAT, PIPriand =
PIP1.2) showed  significant  linkage o
disequilibrium after Bonferroni correction: "~
< |\
. . - \
CAT and PIPr.1 were associated in \\
Nouragues; PIPr.1 and PIP1.2 in Paracou. As S- \
R Y . .
. .l e ——— —l; . 2
none was in LD in both Nouragues and ] gt i ol e S e
o
Paracou, all loci were considered as g 20 Ay 80 AN g0 900
Distance (nt)
independent. BetWeen 2% (FTase) and 40% Figure 2 Plot showing the squared correlation of allele frequency
(r*) as a function of physical distance between sites for seven

(HYPs) of

within-amplicon

linkage

amplicons in E. falcata. A nonlinear fitting was performed using
Equation | (Remington ef al., 2001).

disequilibrium tests between SNP loci were

significant at P<o.o1. Decay of linkage disequilibrium within amplicons was rapid (Fig. 2).

Nonlinear fitting of the squared correlation of allele frequencies r2 as a function of distance

between SNPs showed expected values of ~ 0.10 atioo bp (determination coefficient for the
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fitted modelRz = 3.5%). It has to be noted that the locus with the highest density of SNPs
(FTase) also shows the lowest level of linkage disequilibrium, thus excluding the possibility
that high levels of polymorphism are due to co-amplification of two different loci (which

would cause strong linkage disequilibrium between variants belonging to the two loci).

Population structure

Population differentiation analyses are presented in Table 3. The average level of
genetic differentiation between sites was very low (Fs = 0.010), but significantly different
from zero (P<1075). Ny values at the amplicon level ranged from -o.01 to 0.03, with three
amplicons having a value significantly different from zero: CAT, FTase and UNK14. The
level of global genetic differentiation among habitats within Paracou was quite similar, with
an overall Fy significant value of o.01. N values at the amplicon level ranged from o.ooto
0.04, with two amplicons showing significant differentiation: CAT and FTase. The
situation is similar for pairwise comparisons between environments, with significant
divergence for CAT in three cases and for FTase in two cases. In Nouragues, the mean level
of genetic differentiation was null. Ny values varied between -o.10 and o.10 among

amplicons, with two amplicons (FTase andUNKi4) showing significant positive values.

Table 3 Results of the analysis of molecular variance (amova). Genetic differentiation (F-statistics) at the haplotype level for each amplicon
{Ns7) and at the multilocus level (Fsr) for different hierarchical levels (between sites and among and between environments).

Paracou Nouragues
aracou vs. nouragues
Prl aco /S, Nouragues

Pairwise

Global VD vs. VLD VD vs. SH VLD vs. SH
Locus Statistic F-statistic F-statistic F-statistic F-statistic F-statistic
CAT Nst 0.03 0.04* 0.06" 0.02" 0.12
FTase Nst 0.02* 0.02" 0.04" 0.00 0.10*
HYP5 Ngt 0.00 0.00 0.01 0.01 0.00 0.01
PIP1.1 Ney 0.00 0.00 0.01 0.01 0.00 0.00
PIP1.2 Nst 0.00 0.01 0.01 0.00 0.00 0.01
UNK?7 Nsr 0.01 0.00 0.01 0.00 0.00 0.02
UNK14 Ngy 0.01° 0.00 0.01 C 0.00 0.05*
All loc Far 0.01* 0.01* 0.01 0.02* 0.01 0.00

Significant values (z = 5%) are indicated by an asterisk.

Outlier detection

The summary-statistic simulation method implemented in FDIST 2 identified two
SNPs of 74 and six of 60 as outliers showing footprints of disruptive selection at theggoo
confidence level in Paracou and Nouragues respectively (Fig. 3). The outliers found for the
Paracou site belong to two amplicons (CAT and UNK37). Outlier detection by pairs of

habitats in Paracou (Supplementary Fig. S1) shows that the results obtained in the global

132



analysis are mainly due to divergence between VD and SH. The six outliers detected in
Nouragues belong to three amplicons (CAT, FTase and UNKi4). One SNP (CAT_S355)
was a significant outlier at both sites (outlier detection based on simulations with larger
samples sizes provided much more liberal results; Supplementary Fig. S2). The more robust
Bayesian method, implemented in BAYESFST, provided different results at a comparable
90% confidence level: no SNP was significantly different from neutral expectations.
However, the SNPs detected as significant by the coalescent-based method showed the

highest o values with the Bayesian method.
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Spatial genetic structure

Torus translation tests detected 20 significant independent habitat associations (not
counting for tightly linked SNP loci): nine in Nouragues, 11 in Paracou, of which 13 for
haplotypes and seven for SNPs, of 454 tests (4%) at two-tailed o = 5%; one remained
significant after Bonferroni correction (Table 4 and Suppl. Table 1).

Six associations with SLD and with VD, as well as

Table 4 Torus-translation tests for habitat associations on the two

study plots one with SH, were detected (Suppl. Table 1), along

with six cases of repulsion with SLD and one with
oo s VD (no case of repulsion with SH was detected).

2 3 NA NA O 0 5 The most frequent haplotype at the FTase locus (h1)
3 1 NA NA 0 O 4

showed strong association with SH and repulsion

with SLD in Paracou, and was associated with VD in Nouragues, together with two SNPs
of the same gene. In Paracou, one PIPL1 haplotype (his) was associated with SLD and
PIP1.2’s most common haplotype (h1), as well as one PIP1.2 SNP (Si45), were associated
with VD. The repulsion between FTase haplotype Hi and SLD in Paracou was the only
significant test left after Bonferroni correction. Directional and omnidirectional
autocorrelation was tested for each individual SNP, and for all amplicons at the haplotype
level, at the two sites. After Bonferroni correction, 26 autocorrelograms (of a total of 894,
or3%), involving six SNPs and four amplicons, showed a significant negative slope at the
0.=5% threshold (Suppl. Table 2). In eight cases (Fig. 4, Suppl. Table 2), there was significant
autocorrelation along the direction of the gradient (Y axis for all tests except for Paracou,
Northern Half), but not for the direction orthogonal to the gradient. Two of these tests
involved amplicon UNKi4 in Nouragues, for one SNP (UNKi4_194) and for the whole
amplicon; four involved amplicon HYPs in Paracou, two for one SNP (HYPs_160) and two
for the whole amplicon; two involved amplicon CAT in Paracou, one for a SNP (CAT_299)

and one for the whole amplicon.
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Discussion

The results presented here show patterns of genetic differentiation associated with
micro-geographical habitat variations at fine spatial scale in populations of E. falcata. These
results were obtained with four independent methods and suggest that divergent selection
may be strong even between sub-populations belonging to a continuous population. The
results obtained for each amplicon and each kind of analysis are summarized in Table s.
Analysis of molecular variance (Table 3) shows that the Catalase and Farnesyltransferase
genes can reach very high levels of sub-population divergence within a plot (several SNPs

displayed strongly negative F: values in Nouragues).

Table 5 Summary of significant results tor all amplicons, all statistics and all sites. Amplicon/Haplotype/SNP level indicates whether the
analysis was performed, respectively, for all haplotypes ol an amplicon, for each of its haplotypes or for each of its SNPs. For amplicon-
level tests, only the names of the populations having shown significant tests are listed. In toroid tests, ‘ass’ and ‘rep” indicate whether a
given haplotype or SNP variant was found to be in association {ass) or in repulsion (rep) with a given habitat,

Directional spatial
AMONA Outlier detection Toroidal permutation tests autocorrelation
Amplicen Amplicon
Amplicen level SNP level Haplotype level SNP level level SNP level
Calalase (CAT)  Paracou Paracou: CAT_3355 Paracou Paracou
Nouragues: CAT_S355 Eastern Northem half:

haif CAT_S221
Paracou: FTase 5242/5LD
{rep)
Nouragues: FTase_S36/
lass), FTase_S269/ND (ass)

Farnesyitrans- Paracou Nouragues: FTase_S36,
ferase (FTasel MNouragues FTase S269

PiP1.1 - -

FIP1.2 Paracou; PIP1.2_S145/VD
(ass)

Hypothetical h10/VD (ass) Paracou: HYPS_S267/VD Paracou:

Protein 5 s: h2/VD (ass), (rep) HYP5_S160

{HYP3) h&/ND (rep), h11/4D {rep)  Nouragues: HYPS_S160 Paracou Eastern
S201/VD fass) half: HYP5_S160

Unknown Paracou: UNK7_S204 Paracou: h1/AVD (ass)

amplicon 7

{UNKT)

Unknown Nouragues  Nouragues: UNK14_S86, u: hANVD (ass), 7/ Nouragues: UNK14 Mouragues  Nouragues:

amplicon 14 UNK14.5194, VD (ass) {rep) UNK14_S194

(UMK 4) UNK14_5328 Nouragues: h/VD (rep)

SNPs that appear as significant in at least two independent analyses are shown in bold, The asterisk (*) indicates the only toroid test that

remained significant after Bonlerroni correction.

Because the SH population is much smaller than the VD, both demographically and
in surface, this may imply that the lower portion of the VD population is more similar to
SH, at neutral loci, than it is similar to the upper part of VD, due to neutral SGS. This
would have the consequence of generating negative Fy, i.e. closer relatedness between alleles
from different populations than from the same population). Coalescent-based outlier
detection methods revealed eight SNPs under disruptive selection belonging to four
amplicons (although none was significant with the more conservative Bayesian approach).
Directional autocorrelation identified three SNPs (and the amplicons they belong to) as
significantly associated to the expected direction of the gradient (although none was

associated to the orthogonal direction). Finally, allele (or genotype)-by-habitat association
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tests obtained by torus permutation identified 20significant tests at the two-tailed 500
threshold; one of these remained significant after Bonferroni correction. Table 5 shows that
at least six SNP variants, haplotypes or amplicons turned out to be significant in at least
two independent analyses. The Catalase amplicon showed significant results (mostly in
Paracou) both at the amplicon and at the SNP variant levels; one SNP of the Catalase
amplicon (CAT_S355) was a significant outlier in both populations. Farnesyltransferase
displayed significant results at all levels and in both plots, with two SNP variants showing
significant results in outlier detection and in torus permutations. The latter analysis, both
at the haplotype and at the SNP level, indicates that generally the detected variants are less
represented than expected in drought-prone SLD habitats: all significant tests show either
association with VD or SH, or repulsion with SLD; the only results that remains significant
after Bonferroni correction is the repulsion of haplotype 1 and SLD in Paracou. HYPs also
shows a SNP variant with clear trends of habitat association, as well as the UNKi4
amplicon. These results suggest that forces behind the differentiation between sub-
populations are very strong even at short spatial distances, and that these forces are
structured by variation in habitat rather than by neutral dispersal processes. The processes
underlying the observed divergence occur over distances in the order of few hundreds of
meters — well within gene dispersal distances predicted for the genus (Hardy et al. 2006).
Therefore, it is likely that at least part of the observed differentiation is caused by disruptive
selection (Linhart & Grant 1996). On one hand, our findings support the idea that
environmental heterogeneity generates genetic heterogeneity within populations. On the
other hand, the contrast between results observed in Nouragues and Paracou suggests that
the contrasts we have studied are of different kinds. The structure of the gradients may
differ between the two plots, as suggested by their differences in topography. Moreover,
and more generally, it is likely that environmental conditions, other than the limited set of
edaphic properties that we have taken into account, differentiate habitats in the two sites.
Differences among the results obtained with the three methods suggest that each captured
different aspects of the distribution of genetic diversity. For instance, both the outlier
detection and torus permutation tests stress the idea of differences in gene frequencies
between (sub)populations, but the latter also takes into account the spatial distribution of
genotypes; moreover, autocorrelation rests on the explicit spatial layout of pairwise
individual relatedness, while ignoring population-level distributions (except for the

determination of neutral envelopes). Thus, the three methods may be able to detect different

137



patterns, which in turn may be the result of different dynamic processes: outlier detection
methods stress the quantitative difference between the effects of selection and drift on
divergence between groups; torus-based tests also compare groups, but stress departures
from random distribution of individual variants; autocorrelation methods detect departures
from the random distribution of individual relationships and tests continuous turnover of
genotypes. As our analyses are based on seven loci only, a possible source of incoherence
among results obtained with the three methods may also lie in limited robustness. Seven
loci certainly are far from providing a satisfactory representation of the whole
transcriptome, let alone of the genome. Even without the ambition to evaluate genome-level
processes, our study nevertheless proves that genetic divergence can be detected at the
within-stand level, at least for some loci. Moreover, the robust-ness of each of the three
methods used here resides (i) in the number of SNPs (not ESTs) for outlier detection, (ii)
in the number of genotypes per locus (not in the number of loci, which are analyzed
individually) for torus-translation and (iii) autocorrelation analyses. For the latter analysis,
it is not uncommon to obtain results from data sets containing between five and 1oloci
(Collevatti & Hay 2011; Oddou-Muratorio et al. 2010). The partial incoherence shown by the
results suggests a pattern of moderate divergence affecting multiple loci, occurring at the
micro-geographical scale in relation with habitat conditions. It is important to underline
that the diffuse signal of divergence that we observe must not be interpreted as
straightforward indication of disruptive selection acting upon the observed loci. Other
mechanisms, such as isolation by adaptation (Nosil et al. 2008), genomic hitch-hiking (Via
& West 2008) or partial restrictions to mating (e.g. by environ-mentally cued flowering
time differences) may produce moderate levels of divergence at neutral loci. Such
divergence is observed against a background of overall weak but diffuse SGS patterns
(Suppl. Table 2: omnidirectional autocorrelation is significant for ‘all loci’ in three cases of
four), probably caused by limited pollen and seed dispersal, as already observed at Paracou
in a closely related species (Hardy et al. 2006). Population structuring is not, however, strong
enough to prevent long-term genetic mixing, as shown by the rate of decay of intragenic
linkage disequilibrium. The pattern shown in Fig. 2 indicates that historical genetic mixing
at the population (and species) level is globally as intense as in other angiosperm tree species
(e.g. Ingvarsson 2008) and at least as intense as in most conifers (Brown et al. 2004;
Gonzalez-Martinez et al. 2006, Heuertz et al. 2006). Current mixing at the stand level

appears to be relatively intense, because only a minority of loci showed significant spatial
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autocorrelation and because Fy values between sub-populations were overall small. This is
not inconsistent with the possibility that the observed divergence is caused by selection,
because moderate levels of gene flow may facilitate divergence, as indicated by theoretical
predictions of divergence with gene flow (Goudet et al. 2009, Kremer & Le Corre, 2012).
Moreover, it is actually possible that the weak but detectable back-ground spatial genetic
structure contributes to create the conditions for divergence to operate: preferential mating
between spatially close trees would tend to enrich sub-populations with locally adapted
genotypes, thus enhancing the outcome of ecological filtering and facilitating sub-
population divergence. This hypothesis can be put to test by building spatially explicit,
individual-based models describing simultaneously pollination, seed dispersal and selection
in divergent habitat patches (e.g. by building combinations of models for dispersal)and
selection in continuous environmental patches (Debarre & Gandon 2010) and for pollen and
seed dispersal (Klein & Oddou-Muratorio 2011). The indication of the action of diversifying
processes, observed in E. falcata, motivates further studies in the genetics of divergence, that
will need to take advantage of population genomic approaches (Luikart et al. 2003) now
accessible to nonmodel species in general (Ekblom & Galindo 2011) and to trees in particular
(Gonzalez-Martinez et al. 2006). To take advantage of the wealth of data that can be
produced by genomic approaches, these studies will need to be matched by breakthroughs
in the modeling of processes of divergence with gene flow. The combination of theoretical
advances and large data sets will permit to disclose the mechanisms underlying patterns of
ecological-genetic divergence such as those demonstrated in E. falcata, and perhaps
ultimately provide the key to the understanding of the maintenance of reservoirs of adaptive

variation in natural populations.
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Article n°1 - Supplementary text

Description of genes and polymorphisms for genes with known functions

Catalase is related to detoxification during oxidative stress (Mittler 2002; Willekens
et al. 1997) which may be induced by hypoxia or anoxia during the rainy season in SH
environment (Blokhina et al. 2003) or by drought during the dry season in VD environment
(Moran et al. 1994). Farnesyltransferase is related to the ABA signaling pathway (Cutler et
al. 1996; Pei et al. 1998) which could be induced by several biotic and abiotic stresses
including drought (Raghavendra et al. 2010; Wilkinson& Davies 2002). PIP 1.1 and 1.2 are
members of the multi-gene aquaporin family, involved in transmembrane water transport,
and belong to the “plasmamembrane” (P) subfamily, located in cell membranes. The
molecular effects of SNPs with significant habitat structure are the following: CAT_s221
and CAT_s355 are located in intronic regions; FTase_s36 is a nonsynonymous mutation,
replacing a polar and positively charged amino acid (Arginin) by a polar and uncharged
amino acid (Glutamine); FTase_s242 is a nonsynonymous tri-allellic SNP, the most
frequent amino acid is Aspartic acid (polar and negatively charged) replaced by Asparagin
(polar and uncharged) or Histidin (polar and positively charged); FTase_s269 is a
synonymous mutation; PIP1.2_si45 is a non-synonymous mutation replacing a Tyrosine

with a Cysteine (both polar aminoacids).
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Article n°1 - Supplementary figures
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Figure S1: Distribution of observed Fsr values for each locus (y axis) as a function of its heterozygosity (Hy) (x axis) for
pairs of habitats at the Paracou site (see Figure 1). The simulated median (dotted line) and 99oo neutral envelop
confidence limits (dashed lines), obtained by coalescent simulation, are shown. The names of loci lying outside the
neutral envelop are displayed. SH: surface hydromorphy; SLD: surface lateral drainage; VD: vertical drainage. Note
that the scale on the y axis differs between plots.
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(a)

(b)

Figure S2: Outlier detection tests (a) for Paracou with sample size N = 170 and (b) for
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Article n°1 - Supplementary tables

Table S1: Results of toroidal permutation tests: list of individual SNPs and haplotypes having shown at
least one significant habitat association. Type: type of locus / variant being tested: H = single haplotypes

within locus; S = SNP loci (the association of most frequent variant to habitats is shown). ‘+’ = association
and ‘-’ = repulsion (two-tailed o = 500). Tests significant after Bonferroni correction are marked by .
Plot
Paracou Nouragues
Type haplotype/locus VD SLD SH VD SH
H Ftase_hl ns -* + + ns
S Ftase_S36 ns ns ns + ns
S Ftase 5242 ns - ns ns ns
S FTase_S269 ns ns ns + ns
H HYP5_h2 ns ns ns + ns
H HYP5_h8 ng ns ns . ns
H HYP5_h10 + ns ns ns ns
H HYP5_h11 ns ns ns - ns
S HYP5_S160 ns ns ns + ns
S HYP5_S165 ns ns ns + ns
S HYP5_S190 ns ns ns + ns
S HYP5_S201 ns ns ns + ns
S HYP5_S267 - ns ns ns ns
H PIP1.1_h15 ns + ns ns ns
H PIP1.2_hl + ns ns ns ns
S PIP1.2_S145 + ns ns ns ns
H UNK14_h4 + ns ns ns ns
H UNK14_h7 + ns ns ns ns
H UNK14_h9 ns ns ns - ns
S UNK14_S86 ns ne ns - ns
H UNK7_h1 + ns ns ns ns
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Table Sa: Slopes of spatial autocorrelation plots. Only results for loci whose tests provided at least one negative,

significant slope are displayed. f;;: interval (minimum, maximum) of kinship observed in omnidirectional tests.
gnificant slope are displayed. f;;: interval ( , ) of kinship observed directional test

OMNI: omnidirectional autocorrelation; X: autocorrelation in the X direction; Y: autocorrelation in the Y direction.

d: autocorrelation plotted against linear distance; In(d): autocorrelation plotted against logarithm of distance. The

number of tests carried out for SNPs is indicated in parentheses for each plot (the total does not correspond to the

tOtﬂ.l nulnber OE polymorphism bccause some 1OCi were monomorphic at one or the othcr site and because some 1OCi

were excluded from the analyses due to missing data). Loci that show directional correlation along the Y axis, but not

along the X axis, are indicated in bold.

Locus nj OMNI1 X
d In(d) d In(d) d In(d)
SNP LEVEL
Nouragues (61)
UNK14 194 -0.065,0.103 | -0.001 -0.070 ns ns -0.001 -0.010
Paracou (75)
ALL LOCI -0.005,0.018 -0.00006  -0.007 ns ns ns ns
CAT §221 -0.007,0.124 -0.0005 -0.051 ns ns ns ns
FTase_330 -0.027,0.076 -0.0005 -0.052 ns ns ns ns
HYP5_160 -0.024,0.036 | -0.0004 -0.035 ns ns -0.0006 -0.048
UNK14_387  -0.005,0.077 -0.0003 -0.030 ns ns ns ns
Paracou, Northern half (71)
CAT_S221 -0.11,0.21 -0.0015 -0.111 -0.0018 -0.181 ns ns
FTase_S330 -0.077,0.065 -0.001 -0.074 ns ns ns ns
Paracou, Eastern half (63)
ALL LOCI -0.020,0.029 -0.0001 -0.0145 ns ns ns ns
CAT 5355 -0.071,0.202 ns -0.0878 ns ns ns ns
HYP5_160 -0.065,0.068 | -0.0011 -0.0678 ns ns -0.0011 -0.0819
AMPLICON LEVEL
Nouragues (7)
ALL LOCI -0.018,0.016 -0.0001 -0.008 ns ns ns ns
UNK14 -0.032,0.044 | -0.0004 -0.028 ns ns -0.0006 -0.040
Paracou (7)
ALL LOCI -0.006,0.018 | -0.00007 -0.008 ns ns -0.00008 -0.009
FTase -0.015,0.033 -0.00007 -0.011 ns ns ns ns
HYP5 -0.015,0.023 | -0.0001 -0.014 ns ns -0.0001 -0.018
Paracou, Northern half
Paracou, Eastern half
ALLLOCI -0.008,0021 | ns ns ns ns ns -0.015
CAT -0.054,0.073 | ns ns ns ns -0.0005 -0.052
HYP5 -0.032,0.032 | -0.0004 -0.0263 ns ns -0.0003 -0.027
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Article n° 2 - Genome scan reveals fine-scale genetic structure and
suggests highly local adaptation in a Neotropical tree species
(Eperua falcata, Fabaceae)

Louise BROUSSEAU®2, Matthieu FOLL3, Ivan SCOTTT*

1. INRA, UMR ‘Ecologie des Fore"ts de Guyane’, Campus agronomique, BP 709, 97387
Kourou cedex, French Guiana

2. INRA, UMR ‘Ecologie et Ecophysiologie Forestiéres’, 54280 Champenoux, France

3. Computational and Molecular Population Genetics (CMPG), Institute of Ecology and

Evolution, University of Bern, Baltzerstrasse 6, CH-3012 Bern, Switzerland

Abstract

Populations undergoing divergent ecological constraints may diverge genetically due
to the effect of directional selection. The outcome of divergence processes depends on the
balance between selection, drift and gene flow. If selection is sufficiently strong, it can
overcome the blurring effects of the other two forces, and population divergence can be
observed at the phenotypic and molecular level. Genome scans can reveal loci under
divergent selection and permit to estimate the portion of the genome involved in
divergence. Although genome scan approaches are now widespread, they have never been
applied to megadiverse tropical rainforests and to conditions where ecological divergence
occurs at very short spatial distances (‘highly local’ processes, where environmental
turnover occurs well within the range of gene flow).

We have applied and AFLP-based genome scan to population of the Neotropical tree,
Eperua falcata (Fabaceae) in the Guiana Shield, where it grows in dense stands that cross the
boundaries between starkly contrasting habitats such as seasonally or permanently flooded
swamps and well-drained plateaus. We have found that, despite the short spatial distances
and the presence of gene flow, habitat-structured subpopulations diverge at a substantial
number of loci. Simulation analyses show that the observed levels of divergence are
compatible with strong directional selection. Intense selective processes may therefore
maintain genetic and phenotypic variability within rainforest tree populations; such
adaptive diversity may constitute the fuel that feeds the great diversity harbored by these

communities.
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Introduction

Environmental heterogeneity influences the distribution of plant genetic diversity
across habitat types. Forest trees provide numerous examples of adaptation to
environmental variations at both phenotypic and molecular levels (Savolainen et al. 2007).
Several provenance tests performed in common gardens and reciprocal transplants have
revealed that tree populations undergo phenotypic divergence under the pressure of
ecological gradients and contrasts (Petit & Hampe 2006). Such patterns of phenotypic
divergence are often interpreted as a result of divergent selection driven by environmental
heterogeneity that may be caused by biotic and abiotic factors. At the molecular level,
numerous studies reported footprints of divergent selection in the genome of forest trees
among habitats using both genome scans (Jump et al. 2006) and candidate genes approaches
(Eveno et al. 2008, Audiegeos et al. 2013).

Amazonian lowland rainforests are characterized by complex habitat patchiness,
whereby environmental variations occurs at a very small spatial scale. The succession of
waterlogged bottomlands and well-drained terra firme contributes to explain the
maintenance of high tree diversity in such forests. The structure of tree communities
strongly differs among habitat types, with variations in tree and palm biomass (Khan 1987,
Ferry et al. 2010), and differentiation in some phenotypic traits (Kraft et al. 2008). It has been
suggested that divergent selective pressures among habitat types may have driven niche
differentiation and specialization of trees to local conditions: significant habitat associations
within species complexes are supposed to result from adaptive radiations along topography
gradients (Baraloto & Couteron 2010). At the population level, a recent study has revealed
footprints of divergent selection between local populations, occupying distinct habitats, for
genes putatively involved in plant responses to environmental stresses (catalase, farnesyl-
transferase, Audigeos et al. 2013) in the canopy tree species Eperua falcata. Genetic
differentiation was accompanied by weak but consistent phenotypic divergences for growth
and leaf physiology at the seedling stage (Brousseau et al. 2013). These results suggest that
adaptive phenomena may be widespread and may affect a substantial fraction of the
genome, even when divergence occurs at highly local scales, in conditions in which gene
flow may easily erase the effects of weak selective forces.

The evolutionary mechanisms driving the large diversity of tropical rainforests are
still poorly understood, and to date genome scan approaches have not been applied to the

study of the extent of habitat-driven adaptive differentiation in any tropical rainforest
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ecosystem.

Genome scans allow screening the genome to detect locus-specific signatures of
population divergence, which are taken as suggestive of natural selection (Storz 2005).
Because most of the genome is supposed selectively neutral (Kimura 1985), loci identified in
genome-wide analyses, whose differentiation is higher than the average genome-wide
estimate, can be interpreted as being under divergent selection. This conclusion must be
taken with caution, however, because excess divergence does not automatically mean
selection at or near the divergent locus (Nosil et al. 2008, Excoffier et al. 2009, Hermisson
2009, Bierne et al. 2011), but the identification of divergence outlier loci is suggestive,
nevertheless, of non-neutral differentiation processes, if departures from neutral
demographic and spatial patterns can be excluded (Bierne et al. 2013). AFLP markers (Vos
& Bleeker 1995) are particularly effective in such genome-wide analysis, because they are
cost-intensive and universal (Bonin et al. 2007, Meudt & Clarke 2007), although they are
dominant and thus require prior genetic knowledge (such as inbreeding coefficient, Fis) for
proper interpretation.

Here, we investigated whether sub-populations growing in contrasting
environments display signatures of potential divergent selection at the genome level. We
did this in two populations of a canopy tree species (Eperua falcata) of the coastal Guiana
Shield, and we used a genome scan approach involving AFLP markers to test the hypothesis.
Eperua falcata is a canopy-dominant tree species widely distributed in French Guiana.
Because of its generalist behaviour relative to environmental heterogeneity and of its high
population densities, it is a good model to analyse the genetic structuring among local
habitats within continuous tree populations over short geographical scales. We detected
0.3% and 1.8% outlier markers, and simulations based on the actual levels of divergence
observed in the populations show that such loci may be under selection of moderate

strength.
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Materials and methods

Study sites and sampling

Laussat (W) Regina (E)

Lo Dy ;. 1
Q 50 100 450 200 250 I

Figure 1: Geographical and topographic situation of the study sites. Coloured dots: trees sampled for genotyping.

Our study includes two populations of Eperua falcata established in the costal shield of
French Guiana: Laussat (W) (X: 5°28’37”; Y: -53°34’36”) and Régina (E) (X: 4°18’44” ; Y: -
52°14’6”), (Fig. 1). They are submitted to contrasted levels of precipitations, with a mean
annual precipitation of 2500 mm and 3500 mm (in years 2010 and 2011) respectively.

Both sites harbour different habitat types, from a bottomland to terra firme, but differ in
landscape raggedness. At Laussat a permanently water-logged bottomland lies next to a
plateau of low elevation (trees elevation at this site ranges between17 and 6o meters). At
Régina, a seasonally water-logged bottomland with flooding events lies at the foot of
hilltops of higher-elevation plateaus with steeper slopes (trees elevation ranges between 43
and 109 meters). At both sites, bottomlands are characterized by hygromorphic soils with a
large accumulation of organic matter up to a depth of 1 metre. On the contrary, terra firme
have well-drained ferralitic soils rich in iron oxides with a sand-clay texture allowing free
vertical drainage.

All trees of diameter at breast height (d.b.h.) > 20 cm dbh were mapped in a
continuous area of 6.7 ha in Régina, and in two areas of 2.5sha and 1.8ha, one in the
bottomland and one in the plateau, in Laussat (Fig. 1). Population density varied between
29.9 adult trees/ha and 48.1 trees/ha in Régina and Laussat, respectively. In each study site,
two groups of 30 trees, one for each habitat, were sampled for genetic analysis.

Molecular methods
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Fresh leaves were sampled and frozen at -80°C. Genomic DNA was extracted from
leaves using a CTAB protocol (Doyle & Doyle 1987, Colpaert et al. 2005), and each sample
was extracted twice independently. Amplified fragment length polymorphisms (AFLPs)
profiling was performed on all of the 240 samples according to the protocol of Vos & Bleeker
(1995). DNA was digested using PstI and Msel restriction enzymes. Restriction fragments
were amplified using two selective PCRs with respectively one and three selective
nucleotides. Fifteen primer combinations were analyzed (see Table 1). The whole protocol
was applied to each duplicate of all samples to obtain a complete replicate for each
individual.

Peak profiles were scanned using PeakScanner vi.o and the bin set was created using
RawGeno v2.0. The complete method of AFLP scoring and data cleaning is available in
supplementary methods. After data cleaning, 1196 markers were retained for further

analysis.

Table 1: List of Primer used for AFLP profiling.

Combination Pst+1 Pst+3 Mse+1 Mset3

Pst+tACA

2 Pst+ATT Mse+TAA

3 Pst +tAAC

4 Pst+A Pst+ATA Mse +T

5 Pst-ACA

6 Pst+ATT Mse+TAG

7 Pst+AAC

8 Pst +ATA

9 Pst+T PstrTAA Mse+CAA

10 Pst:TAG

11 Pst+tACA Mse+CAA

12 PSt+ATA Mse +C

13 Pst+A Pst-ACA

" P ATT Mse+CAT

15 PSt+ATA

General statistical analysis

o Linkage disequilibrium analysis
Pairwise statistical disequilibrium between o/1 AFLP scores at pairs of markers was
estimated, within each study site, based on two-way contingency tables using a Fisher exact

test.

e Estimation of inbreeding (F1s) coefficients
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We used SNPs data from a previous study (Audigeos et al. 2013) to estimate
inbreeding coefficients (Fis). We used ARLEQUIN v3.5.1.2 (Excoffier & Lischer 2010) to
compute observed and expected heterozygosity in two study sites at SNP markers for which
differentiation (Fst) between local habitats were not significant. For each site, the mean Fis
(across loci) revealed an excess of heterozygotes varying from -0.207 to -0.089. We used a
mean Fis of -0.14 for the present genetic analysis.

o  Genetic structure and spatial genetic structure analysis (SGS)

A Bayesian clustering analysis was performed on AFLP data using STRUCTURE
v2.3.4 (Pritchard et al. 2000, Falush et al. 2007) both at the regional and the local scale. The
analyses were performed with the “admixture model” and “correlated allelic frequencies”
settings. A burn-in of 10000 iterations was followed by 10000 iterations. Twenty runs were
performed for all K (number of clusters) values from K=1to K=9. The true number of genetic
groups was assessed a posteriori using the method proposed by Evanno et al. (2005).

Fine-scale genetic structuring and gene dispersal were assessed using the spatial
autocorrelation method based on kinship coefficients, developed by Hardy & Vekemans
(1999) and implemented in SPAGeDi vi1.3 (Hardy & Vekemans 2002). Within each site, the
spatial autocorrelation of the kinship coefficient (Fj) was analysed over twenty evenly
spaced distance classes between o and 500 m. 95% null confidence intervals were obtained
through 1000 random permutations of individuals among geographical locations.
Neighbourhood size (N1) and gene dispersal (og) with prior knowledge about population
densities in the study site were also estimated using SPAGeDi. The slope b of the regression
of relatedness (Fjj) against geographic distance (d;;) were also computed, along with their
standard error estimated by Jackniffing over loci, and allowed the quantification of SGS
intensity: Sp=b/(F)-1) where F(;) is the average kinship coefficient between individuals
separated by distances belonging to the first distance class.

o Assignment of “synthetic” AFLP genotypes

Expected heterozygote frequencies within each study site and local habitat were
computed based on the inbreeding coefficient estimated from SNPs data for each sub-
population, by solving the equations relating the inbreeding coefficient and allele and
genotype frequencies: for each marker j, with f indicating relative frequencies and N
indicating absolute frequencies:

f(00); = (1 —Fg)*q; + (Fs * q;)) (1= Fg) *q} + (Fis * q;) — f(00); =0

where ‘0’ is the “absence of peak” allele, and q is the relative frequency of the ‘o’ allele;
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solving for ¢:

q; = 258 itk Aj= Fis? — [4 + (1 — Fis) * (—£(00),)]

T 2%(1-Fis)

The expected absolute frequency of heterozygotes is:
N(01); =2« N; xq; — 2 x N(00); where N;j is sample size for this marker. Finally, N(or);
fragment-carrying samples were randomly selected and assigned the heterozygote (o1)
genotype. The remaining fragment-carrying samples were assigned the dominant (ir)
genotype.

e Detection of loci under selection

Adaptive divergence within populations inhabiting contrasting habitats was
assessed based on two Fsr-based approaches: (a)
we used the coalescent-based FDIST method (Excoffier & Foll 2009) implemented in
ARLEQUIN v3.5.1.2 (Excoffier & Lischer 2010). This method simulates samples under a
hierarchical island model by the coalescent and compares the observed genetic
differentiation for each locus to the null distribution obtained from simulations. (b) we used
the Bayesian method implemented in BAYESCAN to detect outliers (Foll & Gaggiotti
2008). The method relies on a logistic regression model that partitions the genetic
differentiation at each locus within each population into two components: a population-
specific component (beta) common to all loci, and a locus-specific component (alpha); if the
latter is significantly non-zero, this is interpreted as a departure from neutrality at the locus.

We looked for loci under selection between local habitats within each study sites and
between the two local habitats without distinction of the study site (local habitat

partitioning).
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Results

Blind Bayesian clustering

At regional scale, three clusters were detected with a maximum AK for K=3 (Fig. 2).
The first cluster included all individuals from Regina, the second cluster included
individuals from the plateau of Laussat ant the third cluster included trees inhabiting the
bottomland of Laussat. For K=2, the two groups corresponding to the two study sites were

retrieved.

deltak

=3 o8

Regina Regina Laussat Laussat
hilltop bottomland plateau bottomland

Figure 2: Bayesian clustering analysis on the whole data set. Upper pane: AK values. Lower pane:
individual o values for K=2 and K=3.

Within Laussat, two peaks for AK were detected, for K=2 and K=6 (Supplementary

Fig. S1). At K=2, inferred clusters are geographically grouped in agreement with local habitat
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structuring and with the spatial subdivision of the sample, except for 5 trees belonging to

the hilltop and that were assigned to the same cluster as individuals from bottomland. At

K=6, two ‘major’ groups detected (based on the number of individuals assigned to) were in

accordance with local habitats, whereas the remaining clusters included several individuals

from both habitats.

At Regina, a maximum AK was found for K=7 (Supplementary Fig. S2). Individuals

assigned to the different clusters were geographically grouped. A second peak of AK was

found at K=3: one cluster of trees from the bottomland, one cluster of trees from the hilltop,

and a large cluster of trees scattered across the site. As in Laussat, individuals were

associated to a cluster in agreement with local habitat structuring and spatial sample

subdivision for K=2.

Fine-scale SGS Analysis and gene dispersal estimation
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Figure 3: Spatial genetic structure analysis based on all AFLP
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Spatial genetic structuring was

by

relative

of

assessed estimating

relatedness between 1711 pairs

individuals in Regina and 1810 pairs in
Laussat. The mean number of pairs by
distance class was 86 in Laussat and g2
in Significant SGS was

Regina.
detected in both sites (Fig. 3), with

kinship declining with increasing
geographical distance. In Laussat,
spatial autocorrelation was

significantly positive until 56 m, and it
became significantly negative from 230
m onward. In Regina, autocorrelation
was positive and significant until 30 m
and became negative and significant
after 250 m. Gene dispersal was

estimated at 45.7 and 64.39 m in the two

sites respectively (Table 2).



Table 2: SGS and gene dispersal parameters estimated by SpaGeDi

Laussat Regina 0.039
©
b (SE) -0.016(0.001)  -0.012 (0.001) S -
SGS parameter @ i
F1(SE) 0.037 (0.003) 0.04 (0.032) < 0.036
estimates % 2 I 0.026
Sp 0.017 0.013 e © 1 '
-
N —
o 4
Gene dispersal D 0.003 0.003 S
parameter Nb (SE) 65.62 (21.02) 78.51(14.21) 8
o
estimates cg (SE) 45.7(7.33 64.4 (5.82) Arlequin (all) Bayescan Bayescan
(Laussat) (Regina)

Figure 4: Fsr values for all comparisons (boxes) with their

. . confidence intervals (bars).
Outlier detection

Overall Fst was 0.039 among the four sub-populations, 0.036 and 0.026 between
habitats within site for Laussat and Régina, respectively (Fig. 4).
A total of 24 loci were detected as outliers being under divergent selection in at least

one analysis and are summarized in Table 3.

Table 3: Summary of outliers detected in at least one analysis.

Coalescent Bayesian method
Marker method rithi 7ithi Remark
number Within A% 1r1_11n
Laussat Regina

86 ns # ns

158 # ns ns

181 # ns ns
222 & ns ns band is more frequent in hilltop at both sites
233 -~ i o band is more frequent in hilltop at Regina, band is

absent in bottomland at Laussat

287 # ns ns

313 ns ns * band is more frequent in bottomland at both sites
345 * * ns band is present at Laussat bottomland only
451 * ns ns band is present at Laussat bottomland only
463 * ns ns band is present at Regina hilltop only
485 & w ns band is more frequent in bottomland at both sites
605 - i e band is more frequent in bottomland at Regina, band is

absent in hilltop at Laussat
624 -~ - o band is more frequent in hilltop at Regina. band is
absent in bottomland at Laussat
668 1 ns ns band is more frequent in hilltop at both sites
672 g ns ns band is more frequent in hilltop at both sites
687 * ns ns band is present at Regina bottomland only
742 x ns ns band is more frequent in bottomland at both sites
band is more frequent in bottomland at lausssat, band is
757 =+ ns ns S z
absent in hilltop at Regina

785 X ns ns band is more frequent in bottomland at both sites
799 # ns ns

814 & ns ns band is more frequent in hilltop at both sites
848 # ns ns

881 * ns ns

962 ns ns ®
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Under the coalescent model, the between-sites outlier search (Fct) detected 16 loci
with excess divergence (1.34 %) and 53 loci (4.43%) with a divergence deficit (P<o.o1). Tests
involving sub-populations within regions (Fst) based on the hierarchical island model
detected 21 loci with significantly large divergence (1.75%) and 31 loci (2.600%) with
significantly small divergence (P<o.o1) (Fig. 5).

The Bayesian analysis within each site detected four outliers (M86, M 345, M 485 and
M624, FDR=0.084 and FNDR=0.092) at Laussat, and two outlier (M313 and M962, FDR=o0.01
and FNDR=0.091) at Regina (Fig. 6). Fisher exact tests on AFLP score frequencies revealed
significant statistical linkage between the markers M 345, M 485 and M 624 in Laussat (P=0.03
between M345 and M 485, P=0.0003 for M345/M624 and P=0.0004 for M485/M624), Fig. Ss.
Three outliers detected by the Bayesian analysis in Laussat (M345, M485 and M624) were
also detected by the coalescent approach at a p-value < o0.01. Many outliers (12/1196) showed
a similar pattern of band presence (phenotype ‘') frequency variations between local
habitats in the two study sites. For M222, M233, M624, M668, M672 and M814, the band

frequency was higher in hilltop than in

bottomland in both sites. For M313, M48s,

0.6 - Mé6os, M742, M757 and M78s, the band
i . s frequency was higher in bottomland than in
K ‘7%%3737. o ;;: hilltop in both sites. M345, M4s1, M463 and
ol 683%2&? M687 were detected as outliers but an AFLP
0.0 - band was only present in one habitat of one

| - : | ; Y of the study sites and may not be considered

(4 : b
T — as a ‘true outlier’.

Figure 5: Results of the coalescent outlier search. Blue

dashed line: 9596 neutral envel~=- ~~4 J~~b~d 1mne ~nny
neutral enx Laussat | | Regina
FDR=0.084 ; FNDR=0.092 FDR=0.1 ; FNDR=0.091
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Discussion

Bayesian clustering

At the regional scale, the large genetic differentiation between study sites (K=2) can
easily be explained by isolation by distance. Nevertheless, the most likely number of
clusters was K=3, with one group for Regina, and two groups for Laussat, one from the
bottomland and one from the plateau. This suggests a larger differentiation between groups
inhabiting contrasting habitats, or belonging to distinct spatial groups, in Laussat than in
Regina, as also revealed by estimates of within-site Fst values (Fig. 4). Within both sites
with K=2, individuals from different local habitats formed separate clusters. This result

suggests overall restriction to genetic mixing at short distances, with further genetic

subdivision, as shown by AK peaks at K=3 and K=7 in Laussat and Regina respectively.

Fine-scale SGS and gene dispersal

To evaluate the role of neutral processes in shaping within-population genetic
structure, we investigated the fine-scale genetic structuring over all loci within each study
sites. Kinship coefficients decreased quickly with geographical distances in the two study
sites as expected under the isolation-by-distance model: significant relatedness between
individuals became non-significant at 56 and 30 meters for Laussat and Regina respectively.
The structure was globally flat, with kinship values never exceeding 0.04 above or below
the population average, indicating that the spatial distribution of relatedness is relatively
uniform (as a term of comparison, kinship values are 10-fold larger for Bayesian outliers;
Supplementary Fig. S1). Similar SGS patterns have already been observed in several
temperate (Leonardi & Menozzi 1996, Streiff et al. 1998, Vekemans & Hardy 2004, Vornam
et al. 2004, Jump & Penuelas 2007, Chybicki et al. 2011, Hampe et al 2010, Oddou-Muratorio
et al. 2010, Jump et al. 2012) and tropical tree species (Stacy et al. 1996, Doligez & Joly 1997,
Konuma et al. 2000, Dick et al. 2003, Lowe et al. 2003, Cloutier et al. 2006, Born et al. 2008,
Collevati et al. 2010), including in the Guiana shield (Dutech et al. 2002, Degen et al. 2004,
Latouche-Halé et al. 2004, Cavers et al. 2005, Hardy et al. 2006).

Significant, albeit weak, spatial genetic autocorrelation is commonly explained by a
restricted gene flow by seed and pollen, because it can lead to significant genetic
differentiation within continuous stands (Cavers et al. 2005). Even if the strength of SGS
may be influenced by some AFLPs submitted to divergent natural selection across habitats

(Jump et al. 2012), significant spatial autocorrelations observed over all loci within each site
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is more likely to be caused by neutral processes In tropical rainforests, gene dispersal is
commonly restricted to short distances, as observed in numerous studies (Ward et al. 2005,
Hardy et al. 2006, Dick et al. 2008, and all references within). In E. falcata, gene dispersal
estimates (G ranging from 45.7 to 64.4 meters depending on the study site) are concordant
with the hypothesis of limited gene flow and local inbreeding, as in other tropical and
temperate trees (Heuertz et al. 2003, Oddou-Muratorio et al. 2010). Nevertheless, a previous
study (Audigeos et al. 2013) found similar patterns in this species, but showed that genetic
turnover occurs at shorter distances in the direction of environmental gradients than within
environmentally homogeneous patches. This suggests that at least part of the observed SGS

is linked to environmental filters.

Outlier detection

Fst values found between sub-populations within sites were rather large (between
2.696 and 3.99%), considering the small distance of the sampled groups at each site (up to 200
m). This suggests the presence of mechanisms inducing divergence at a highly local scale.
The most likely candidates are neutral processes (drift, inbreeding, restricted gene flow, and
demographic events); differentiation outliers are suggestive of the action of additional
evolutionary processes, such as various forms of selection, that may make these loci depart
from the neutral average distribution (Beaumont & Balding 2004, Foll & Gaggiotti 2008,
Excoffier et al. 2009); alternatively, they may indicate the presence of some other indirect
mechanisms inducing genetic divergence, that may or may not be directly related to
environmental filters (Excoffier et al. 2009, Hermisson 2009, Bierne et al. 2013). Outlier tests
based on a differentiation index (Fst) are robust to inter-locus variations, and theoretical
models show that footprints of natural selection persist longer kept in differentiation
indices (Fst) than in intra-population estimators of genetic diversity (Storz 2005). Fst-based
methods are also supposed to be robust to many demographic scenarios (Beaumont 2005,
Bonin et al. 2006), partly because demographic events affect the genome in a homogeneous
manner (Eveno et al. 2007). However, the inclusion of bottlenecked populations may bias
the method (Storz 2005), and the degree to which these tests are robust to demography has
not been fully explored (Nielsen et al. 2005).

Both the coalescent and the Bayesian method detected outliers at the very local scale
we studied (between sub-populations separated by few hundred meters at most). Three

outliers were detected by both methods (M345, M 485 and M624). Moreover, many markers
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(M222, M233, M313, M 485, M605, M624, M668, M672, M742, M757, M785 and M814) showed
a similar pattern of band frequency variations between local habitats in the two study sites;
markers 345, 451, 463 and 687 may not been considered as a ‘true outlier’, as described in the
Results section. There were fewer outliers with excess divergence between sites than
between sub-populations within site. This suggests that factors driving divergence among
regions are not necessarily stronger than those occurring between local sub-populations
growing in different habitats. As the effects of dispersal limitation can only increase with
distance, it seems unlikely that this kind of neutral process be stronger locally than at the
regional level, suggesting that highly local divergence may be due to selective forces. In this
study we have found a lower proportion of outliers than in Audigeos et al. (2013) in the same
species at two different sites. However, both the kind and the number of marker used
differed between the two studies, as Audigeos et al. (2013) focused on few hundred SNPs
markers, by using a combination of candidate genes and anonymous loci, that may have
been enriched for loci undergoing divergent selection. Yet, the proportion of outliers found
in our study was surprisingly high when considering the very local scale studied here. Scans
for outlier detection at varying geographical scales in a variety of biological models
(including animals and plants, both aquatic and terrestrial) are abundant in the literature.
Table 4 displays a survey of such studies.

We found 21 outliers (1.8%) with the coalescent method and 6 outliers (0.59%) with

Table 4: Detection of outliers for selection in several studies varying in biological models and geographical scales. Model:
A/P = animal/plant; W/T = aquatic/terrestrial; d = geographical distance (Km) (e: elevation); Method: C: coalescence; B:
Bayesian; SS: summary statistics (software used, in parentheses: BF: BAYEFST; BS: BAYESCAN; D: DFDIST; F:

FDIST2; FS: FstSNP); N: Number of markers; P: proportion of outliers (e: elevation; B: Bayesian; C: coalescent; SS:

summary statistics; T: temperature gradient; R: rainfall gradient)

Species Model d Marker Method N P Citation
Salmo prutta AW 600 SSRs cD) 74 2.7% Meier eral. (2011)
Gasterosteus o 09 SSRs B (BF) 57 8.7% Makinen ez al. (2008)
aculeatus
Zosteramarina P,W 50 SSRs C(F) 25 4% Oetjen &Reusch (2007)
Capra hircus AT 9200 SNPs C(F) 27 11% Pariset er al. (2009)
Peromyscus ) 0o 0L )
memiculats AT 200; 0.5 (e) Isozymes CcE 12 0%:; 8.3% (e) Storz & Dubach (2004)
Linum . . _ o Soto-Cerda & Cloutier
usitatissum L PT Worldwide SSRs C(F):B(BS) 150 0% 2013)

_ } _ T: 1.2%(SS): 0.26%(B) .
Picea mariana  P,T 700 SNPs SS(FS): B (BF) 768 R:1 4% (SS)0.13%(B) Prunier er al. 2011
Fagus sylvatica P,T 10 AFLPs C (D) 254 0.39% Jump er al. (2006)
T ittori

frorina AT 70 AFLPs C (D) 2356 0.033% Galindo ez al. (2009)
saxatilis
Rana \ B .

_ AWT 100 AFLPs D) 392 1.5% Bonin er al. (2006)

temporaria
Timema A, 5 AFLPs C (D) 534 14.6% Nosil ef al. (2008)
Eperuafalcata  P,T 0.5 SNPs C(F) 57 3.5% Audigeos eral. (2013)
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the Bayesian method. 3 outliers (0.3%) were detected by both methods. Among all outliers,
12 (1%) showed a similar pattern of band frequency variations between local habitats in the
two study sites. These estimates are of the same order of magnitude as those detected in
studies comparing populations separated by larger distances, suggesting that the same
processes that occur with a larger degree of spatial separation in other species may occur at
very short distances in E. falcata. How should the observed divergence be interpreted? It is
customary to interpret directly outliers as loci under directional selection or tightly linked
to loci under selection; however, this logic has been criticised (Bierne et al. 2011, Bierne et al.
2013, Hermisson 2009) and the methods shown to be sensitive to genetic structure and
demography (Excoffier et al. 2009). To assess how confident we can be in weighing the role
of selection in the generation of outliers, we need to check our biological system against
possible departures from the theoretical model underlying the tests. Bierne et al. (2013) list
exhaustively the possible assumption violations: (a) departures from Wright’s island
model: we have sampled continuous populations, which can confidently considered as
equivalent to a continuous island model (Hardy & Vekemans 1999); (b) variations in
recombination rate around loci: although this cannot be excluded, we have used entirely
anonymous markers of a single type, which lets us think that there should be no systematic
bias; (c) selective sweeps: this cannot be excluded and we have no information about it; (d)
cryptic hybrid zones: this is rather unlikely, given that the sub-populations we have sampled
from different habitats belong to a well-defines botanical and genetic species that has a
clustered distribution, with each cluster covering both habitats; (e) pervasive selection:
although this cannot be excluded a priori, it seems highly unlikely that the AFLP markers
used here are massively selected; (f) genome-wide effects of genetic incompatibilities:
surely we cannot exclude all effects of some restriction to mating between trees from
different habitats (beyond plain restriction of dispersal); for example, differences in
resource availability (e.g. water may be available at different dates in different habitats)
may cause shifts in flowering phenology, so that trees from the same habitat may mate more
frequently; or flowering traits, influencing pollinator behaviour, may be correlated to other
physiological traits, which may be in turn ecologically divergent. In both cases, there would
be pre-zygotic barriers to hybridisation, which would fall in the ‘coupling effect’ category
described by Bierne et al. (2011). However, although flowering phenology is irregular, we
have not detected time shifts between habitats at the same site for E. falcata and flower trait

dimorphism has so far not been reported. In conclusion, with the exception of point (c), it
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seems unlikely that our experimental design violates in any major way the assumptions of
“selection outlier” detection methods. Therefore, we tend to think that the observed
divergence is caused by some form of directional or disruptive selection. In E. falcata, a
common garden experiment has further revealed intrinsic differences in seedling growth
and leaf physiology between subpopulations from divergent habitats (Brousseau et al. 2013),
which suggests some form of adaptive divergence for complex traits. The selective agency
behind the observed divergence needs to be proven experimentally and functionally, in
particular by showing that the putatively selected polymorphisms control adaptive traits; if
it is the case, one should expect that the selected loci have major effects on traits, because in
the case of the classical polygenic model it is not expected that quantitative trait loci
underlying traits under divergent selection be more divergent than neutral loci (Kremer &
Le Corre 2012, Le Corre & Kremer 2012). The observation of patterns of divergence at the
highly local scale studied here indicates that major evolutionary events can occur even

within continuous populations.
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Article n°2 - Supplementary methods

Supplementary methods I - AFLP scoring

® Reading of Peak profiles
We used PeakScanner to read peak profiles within the range 50-500 bp.

e Thresholds definition
We analyzed peaks profiles in both negative controls and sample profiles in the whole
analysis window (50-500 bp) for defining detection thresholds. For each combination, we

analyzed all peaks contained in negative controls and

I defined “lim.max.0” as the 959 quantile of peaks height

i E) b ] & |  within negative control. Thus, we suggest that the 5%

of higher peaks in negative control may be “true peaks”

0 ’ ? 7 : 100 due to contaminations, while 9596 of peaks contained in
negative controls may be considered as “true”
background noise.

HHE - - Then, we analyzed the distribution of all peaks higher

° 20 | b 2l & ™1 than “lim.max.0” in sample profiles and defined a
t

; , . ' . | “lim.min.1” threshold corresponding to 250 of the

i % i) 50 50 100

distribution of peaks height outside background noise.

Figure: Peaks distribution and thresholds in

: €« »
both negative controls (top) and samples These thresholds will be used to score “peak presence

profiles (bottom). in the further steps.

e Binset definition
Binset was defined using RawGeno (Arrigo 2009) with parameters: maximum=2bp,
minimum bin width=1bp, range=50-500bp. We used “lim.min.1” as threshold for bin design.
We didn’t use the “replicate” option because we wanted to analyze the replicates of each
sample independently before doing consensus. Binset was manually corrected and exported.
Last, we searched for peaks within bins and used the intensity of each sample within each
bin for data cleaning and scoring steps.

e Data Pre-cleaning
We pre-cleaned data by removing, for each combination, samples for which the two
replicates were not available due to problems during genotyping (off-scale size standard or

profile of bad quality).

e Scoring and consensus
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We assigned “0”, “N”, or “1” to each peak according with the criterions:
Peak < lim.max.o : “0”
lim.max.o < Peak <lim.min.1:“N”
Peak > lim.min.1: “1”
and defined consensus as follow:
o/0 or o/N : “0” (we considered the phenotype “o0” if the replicates displayed two peaks
within background noise or one peak within background noise and a “small peak” of
intensity lower than lim.min.1).
1/1: “1”
/N : “N” or “1” if a small peak outside blank (“N”) was supported by a peak of high
intensity in the replicate (peak intensity within the o.5 upper quantile of peaks intensity
distribution within samples, see above).
o/1: “*” (“*” indicated a mismatch)
N/N : “s” : (“s” indicated an ambiguity, i.e. the two replicates displayed two peaks outside
background noise but intensity lower than lim.min.1)

e Data post-cleaning

Data were post-cleaned by eliminating

markers for which a peak of intensity

o
~ S T TR B higher than lim.min.1 was found in a

g © \f\ﬂi\_w \‘\ iNE .J\HJ'-[\U!\-,I\/\.n : .

€ e | - hl H H/V . U\I A least one negative control
N 3 [ \ (
o | 5 A (contaminant).

We also remarked that peak intensity
decreased within the so-soobp window
Figure : Masking step

and that it was variable among profiles.
It resulted in numerous o and missing data (including “N”, “*” and “$”) in profile tails that
would result in assigning false-“0” to an absence of peak. To avoid it,
We masked all “0” at the end of each profile (“N”) until a true peak (noted “1”) was found
We removed all markers displaying any “1” or any “0”.
We removed the last markers for which the proportion of “0” plus missing values (including
“N”, “*” and “s$”) were higher than the mean proportion of “0” plus missing values in bins
of the whole dataset.
[{Peb

Last, we removed all markers that did not display at last 15 “true values” (true “o” or true

“1”) for each site and local habitat.
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e Data fusion
Last we merged datasets from the different combinations. Samples that were absent from a
combination (because one of the two replicates failed) were noted NA (by opposition with

missing values due to post-treatment “N”, “*” and “s”).

Supplementary methods II — Genotypes allocations

For each sub-population inhabiting each local habitat, we estimated the frequency of
homozygote (11) and heterozygotes (o1) under the different values of Fis using the observed
frequency of individuals displaying the phenotype [o] that necessarily corresponds to the
genotype (00).

For each marker j,

£(00); = (1 —Fis) * q7 + (Fis * q;) < (1 — Fis) * g7 + (Fis * q;) — f(00); = 0 where q
traduces the frequency of the allele (o).

Thus,

—Fl'S+,/Aj
a4 = 2%(1—Fis)

With Aj= Fis? — [4 = (1 — Fis) * (—£(00);)]

Thus,

N(01); =2*N;*q; —2+*N(00); where N;j corresponds to the number of phenotypes
available for this marker (with removal of missing values)

Last, we assigned the genotype (00) for individuals displaying the phenotype [0]. We also
randomly assigned (o1) or (11) for individuals displaying the phenotype [1] with respect with

the expected number of heterozygotes (No1) and homozygotes (N11) estimated.
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Article n°2 - Supplementary figures
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Figure S1: Bayesian clustering analysis on the Régina data set. Left upper pane: AK values. Left lower
pane: individual o values for K=2 and K=6. Right pane: geographical distribution of individuals
belonging to the main clusters (see text).
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Figure S2: Bayesian clustering analysis on the Laussat data set. Left upper pane: AK values. Left lower pane:

individual o values for K=2, K=3 and K=7. Right pane: geographical distribution of individuals belonging to the
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significant p-value (p>0.05).
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Bioinformatic tools - ‘Rngs’: A suite of R functions to easily deal
with next-generation (454-)sequencing data and post-process

assembly and annotation results.

1. Introduction to bioinformatics

Next generation sequencing technologies are now able to produce large amount of genetic
data with reduced cost and time. However, dealing with such datasets needs to be
automatized and requires specific tools often difficult to use.

Assembly. Next-generation sequencing allows sequencing large amounts of DNA
templates, but produces small sequenced fragments (reads) that need to be assembled into
contigs. In 454-pyrosequencing for example, DNA libraries are sequenced by fragments of
200 to 500 bases, and each portion of the genome/transcriptome may be sequenced one or
several times (Fig. 1). Numerous software packages allow the assembly of NGS reads into

contigs, among which the most popular are probably MIRA, Newbler, and CAP3.

RS
|

} Assembled contig overview

List of assembled
contigs and synthetic —

statistics —  Assembled reads within the

contig

F1g1;re1Example of assembled data from 454 pyrosequeﬁcing.

Blast and functional annotations. Once reads are assembled into contigs, blast and
functional annotations allow the characterization of unigenes among contigs. Blast
compares the assembled sequence of each contig to public databases (including encoded
proteins, dna sequences, and ESTs sequences). In a second step, functional annotation
allows identifying the biological processes and metabolic pathways in which each unigene
is involved, by assigning “Gene Ontology terms” (http://www.geneontology.org/) to
contigs that returned a blast result in the previous step. A widespread tool software used to
blast and annotate plant assemblies is B2G (Conesa & Gotz 2008).

SNPs discovery. Genetic analyses start with the existence of polymorphisms in DNA
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sequences. Thus, identifying polymorphisms in characterized unigenes is a major feature of
evolutionary biology, quantitative genetics and QTL mapping. However, identifying ‘true’
polymorphisms remain challenging due to higher error rates in next-generation sequencing
than classical Sanger sequencing of targeted sequences. It requires the filtering of assembly
mismatches through the use of informative statistics. Numerous softwares automatize SNP
detection, but the large majority of them remain complex, incomplete (without taking into
account for individual bases qualities within the different reads) or expensive. The package

presented here is largely inspired from SeqQual software.

2. Short description of ‘Rngs’

“Rnsg” is a suite of R scripts developed during this PhD that allows to easily post-process
NGS data from 454-pyrosequencing. Functions are coded in the widespread R language to
be freely available and modifiable by users. Because R is a simplified programming
language, it is more accessible for evolutionary biologists than other languages, such as

python or perl.

This package contains functions that help dealing with NGS data and outputs from

different widespread

o = softwares packages

(Fig. 2). The functions

are organized into

three categories:
| “assembly”, “blast &
2 _ ' annotation”, and
‘ — “SNP discovery”.
—
[

Figure 2: Overview of the ‘Rngs’ functions and their links with
commoly-used softwares
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Category function Brief Description options Inputfile(s) Outputfile(s)
Assignation MID_reads.function Search nucleotidic tags in read sequences. tegs h:tnucleondxc tags to search /"l widowsize (bases) to fasta (raw data) Assignation MID_reads.txt
searc. ags
A Hl])l ", IY: .. . . .1 .
sse y Assionation Contie. MIDS.functi Count the number of reads that brought each tag in 1“:1 Lr];ber of'revads/}l)v;'mg\'ngle?ch g (wuhme;chconng) Assignation MID_reads.txt / Contigs_Reads_Tags.txt /
ssignation Lontig Hunction the different assembled contigs fo © accepted for stans'm.js TR minimum number of tags per info_contigreadlist.txt (MIRA output) Contigs_Tags.txt
contig accepted for statistics
Go_hierarchy.function & Go_hierarchy2. function |Format Gene ontology database into matrix Ge‘ne_on'tology_database.txt (Ereely 5 Go_h%erarchy.txt and
available in the Gene Ontology W ebsite) Go_hierarchy2.txt
Extract annotation fomB2G, explore B2G nC‘onngs : th? mt?l ‘nuber ,Of asAsemI‘al-ed contigs contained in B2G ) 3 Contig_Annot_id.txt /
. . ! . project / "project_id" : project identifiant (character)/ Go_hierarchy2.txt / Blast2Go_mapping.txt .
Blast & BP_split.function database to find all has part relatioships between |- M A N N : Contig_Annot_names.txt /
A tation GO-terms / splits information into a binary matrix selected BL"; biological level to use / "threshold" ; blast e-value (edited by B2G) Contigs_annot_BL_splitted.txt
nne P Y threshold to keep both blast and annotation for the contig 85 - i
Contaminant_detectiont.function Extrlict anonredundant list of species fromblast Blast2Go_mapping.txt (edited by B2G) Species_list.txt / Hit_species.txt
results
Contaminant_detectionz.function Search contaminant contigs Hit_species.txt / Tree.phy Contaminant_by_contig.txt
.fasta (raw sequence data with tags
. Split .ace into contig sequence and quality . ( q . & . *.txt (.ace splitted into assembled
ACEsplit i clipped) / .qual (raw quality data with i i
files ! sequence and quality matrices)
tags clipped) / .ace (assembly)
Analyzed the distribution of base quality in
li i * txt lity_by_contig. txt
Quality_anaysis the assembly Quality_by_contig
i i man : minimum allele number / maf: minimum allele *_cleaned.txt (cleaned assembled
Ascleaning Assembly cleaning . . *,txt K .
frequency / mq: minimum quality sequence and quality matrices)
SNP Consensus Consensus edition IUPAC code) *_cleaned.txt consensus_with_masking. txt
detection min_dist : minimum distance to another SNP / min_depth :
SNP_stats SNP statistics o / min dep *_cleaned.txt SNP_stats.txt
minimum depth
nBase_Before: & nBase_After : numbe of bases in the consensus_with_masking. txt
SNP_design SNP design L . - - ing.txt/ SNP_design.txt
flanking region SNP_stats.txt
SNP vizualization by a PCA based on
SNP_viewer . y SNP_stats. txt tiff (figure)
several statistics
estimate min, max, average contig depth and
Contig_depth g € cep min_depth : minimum depth *_cleaned.txt Contig_depths. txt

depth at each base of the contigs
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4. Detailed description of the functions

‘Assignation MID reads.function’:

Raw data from NSG are commonly delivered into .fasta and .fasta.qual file formats (or fastq
that combined both .fasta and .fastq information) containing the sequences and base
qualities of each read. In NGS, identifying individuals or DNA pools of populations
requires the addition of nucleotide tags to DNA libraries. This function allows identifying
which tag is brought by each read, by searching for strict nucleotide patterns in the
beginning of each read sequence (contained in the .fasta file). The window size for tag
detection is defined by the user, and may vary from the strict length of the searched tags to
the whole read. Then, reads assembly requires the prior clipping of tags that may disturb
reads assembly. Looking at the number of reads bringing an identified tag across different
window size may help deciding how many bases to clip: when increasing window size does
not affect the number of reads carrying an identified tag, applying longer clips would
contribute to loss a part of ‘true sequence’ contained in the reads and to reduce reads length

inappropriately.

‘Assignation_contig MID.function’:

This function counts the number of reads that brought each tag in the different contigs.
This function was developed to deal with the output files provided by MIRA assembler
(Chevreux et al. 2004) but will be extended shortly to deal with several other assemblers.
This function merges the “read-tags association matrix” edited by the
‘Assignation_MID_reads.function’ with the “contig-reads association matrix” edited by
MIRA (named “infos_contigreadlist.txt”). The function exports two .txt files:
“Contigs_Reads_Tags.txt” contains full information about the tags brought by each read
within each contig, and “Contigs_Tags.txt” summarized the number of reads that brought

each tag within each contig.

‘Go_hierarchy.function’ , ‘Go_hierarchy2. Function’ & ‘BP_split.function’

‘Go_hierarchy’ and ‘Go_hierarchy2.” functions allow formatting Gene-ontology databases
(that contains all GO-terms with their has part relationships) into a tab-delimited matrix

named ‘Go_hierarchy.txt’.

The function ‘BP_split’ extracts annotation results from B2G mapping table (named

(‘Blast2Go_mapping.txt’), and searches for all GO-terms associated for all biological levels
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in the matrix-formatted Gene Ontology database. Two tables summarize which GO-terms
are associated to each contig at different biological level: one contains GO-term identifiers
(‘Contig_Annot_id.txt”) and one contains GO-term names (‘Contig_Annot_names.txt’).
The function also allows splitting annotation for a given biological level into binary matrix
(o/1) with contigs in lines and biological processes for a given level in columns. Several
options need to be specified: the total number of contigs contained in the B2G project, the

project identifier, the desired biological level of analysis, the blast e-value threshold to use.

‘Contaminant_detectioni.function’ & ‘Contaminant_detectionz.function’

‘Contaminant detection I’ extracts a non-redundant list of species from the B2G mapping
table (named ‘Blast2Go_mapping.txt’) that contains the species to which the different
blasted sequences belong to (‘Species_list.txt”). This non-redundant list of species may be
imported into ‘NCBI Common Tree Browser’
(http://www.ncbi.nlm.nih.gov/Taxonomy/CommonTree/wwwcmt.cgi) to search
phylogenetic relationship between the species. In particular, exporting only nodes
corresponding to “green plants” allow automatizing research for possible contaminants
based on blast results (to export in .phylip file named ‘Tree.phy’). The function edits a

matrix containing the list of species associated to each contigs (‘Hit_species.txt’).

‘Contaminant detection 2’ identified probable contaminant contigs by identifying contigs
for which any of the top blast result corresponds to a green plant. It exports a matrix that

resume if each contig is a contaminant or no.

‘ACEsplit.function’

.ace file format is a universal format for assembled data from NGS delivered by the most
popular assemblers. It contains numerous information about the assembled contigs, in

particular:

- The list of reads belonging to each contig, including:
o Reads sequence
o Read position within the assembled contig (beginning and end)
o Information about bases masked by the assembler (not taken into account
during assembly)
- Contig consensus sequences

- Contig consensus base qualities (average base quality for each base of the contig).
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However, the .ace file format is difficult to use with this format. Moreover, the .ace file
excludes individual base qualities (the quality of each base of each read composing each
contig). This information is, however, of major importance when searching for SNPs due
to higher base calling error rates in NGS than in classical Sanger sequencing. Thus, base
quality of each read need to be recovered from raw quality data contained in (tags clipped)
fasta.qual file. This function splits .ace and re-assembles contigs into matrix, and attributes
base quality scores for each base of each read. The results are edited in text files stored in a
directory name ‘Raw data’, with two text files by contig: one contains the sequence matrix

of assembled reads, and one contains quality scores matrix.

‘AScleaning.function’

Prior to SNP detection, assembled contig sequences and qualities need to be cleaned to
minimize ‘false-SNP’ discovery. ‘AScleaning’ allows cleaning assemblies based on several
statstics including singletons, minimum allele frequency, and minimum base quality. The

function screens all mismatches of the assembly, and follows a simple procedure:

(1) The function masks alternative bases composed by a single read (singletons)

(2) The function masks alternative bases if their allele frequency is lower than a defined
threshold (for example o.1)

(3) The function masks all bases with a quality lower than a defined threshold (for
example 20)

(4) Last, the function remove bases (matrix columns) containing only indel (‘) and

masked bases (‘N’). This final step reduces contig length.

‘SNPsearch.function’, ‘Consensus.function’, ‘SNP_design.function’ & ‘SNP_viewer

Both ‘SNPsearch’ and ‘Consensus.function’ screen each base of the contigs.

‘Consensus.function’ edits the consensus sequence of the ‘cleaned’ contigs (with [UPAC

codes).

‘SNPsearch’ searches for SNPs in the cleaned assembly and summarizes them by several
statistics (Contig, SNP position, variants, absolute and relative allele frequencies,

minimum allele frequency, maximum allele frequency, depth at the base, and distance to

another SNP).

These two functions lead to two other functions:
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- ‘SNP_viewer.function’ allows the visualization of SNPs through a principal
component analysis (PCA) based on several statistics

- SNP_design.function’ designs SNPs for submitting them for high-throughput
genotyping. SNPs variants are indicated under brackets and separated by “/”.SNPs
flanking regions are designed based on IUPAC consensus edited by the ‘Consensus’
function. An option allows defining the length of flanking regions to design. SNPs
with insufficient flanking regions (within ends of contig) are automatically
discarded. Another option allows avoiding SNPs close to another by specifying the

desired minimum distance (bases) between two targeted SNPs.

Other supplementary functions

Two other functions are also available:

‘Quality_anaysis.function’ analyzes the distribution of bases quality in the whole assembly

before cleaning. In particular, it may help assessing the global quality of sequencing.

‘Contig_depth.function’ analyses the minimum, maximum, and average contig depths, as

well as the depth at each base of each contig.
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Abstract

The Amazonian rainforest is predicted to suffer from ongoing environmental
changes. Despite the need to evaluate the impact of such changes on tree genetic diversity,
we almost entirely lack genetic resources. In this study, we analysed the transcriptome of
four tropical tree species (Carapa guianensis, Eperua falcata, Symphonia globulifera and Virola
michelii) with contrasting ecological features, belonging to four widespread botanical
families (respectively Meliaceae, Fabaceae, Clusiaceae and Myristicaceae). We sequenced
cDNA libraries from three organs (leaves, stems, and roots) using 454 pyrosequencing. We
have developed an R and bioperl-based bioinformatic procedure for de novo assembly, gene
functional annotation and marker discovery. SNP discovery takes into account single-base
quality values as well as the likelihood of false polymorphism as a function of contig depth
and number of sequenced chromosomes. Between 17103 (for Symphonia globulifera) and 23390
(for Eperua falcata) contigs were assembled. We identified between 688s (for Symphonia
globulifera) and 12878 (for Virola surinamensis) high-quality SNPs. The resulting overall SNP
density was comprised between 1.3 (C. guianensis) and 1.46 (V. surinamensis) SNP/100bp.
These newly identified polymorphisms are a first step towards acquiring much needed

genomic resources for tropical tree species.
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Introduction

The Amazonian rainforest of Northern South America hosts one of the greatest
pools of terrestrial biodiversity, including very large tree species diversity (Hubbel et al.
2008, Hoorn et al. 2010, Hawkins et al. 2011). In forest genetics, most efforts have so far
focused on temperate and boreal tree species. While ongoing anthropogenic climate change
is suspected to deeply affect the stability of Neotropical rainforests (Phillips et al. 2009),
tropical tree species genetic resources and adaptive potential are still poorly known
(Savolainen et al. 2007), although data for at least some species are now available (Audigeos
et al. 2010, Audigeos et al. 2013). Identification of polymorphisms and robust estimates of
tropical tree species’ standing genetic diversity are thus needed to evaluate the vulnerability
to environmental changes of populations and their ability to endure them (Jump et al. 2008,
Scotti 2010).

A thorough assessment of tropical tree species’ genetic diversity requires large
amounts of genomic data and informative molecular markers (Aitken et al. 2008, Stapley et
al. 2010). Single-nucleotide polymorphisms (SNPs) have become the most popular genome-
wide genetic markers (Seeb et al. 2011) and are increasingly used to characterize potentially
adaptive genetic variation (e.g. Schlotterer 2002, Eveno et al. 2008, Eckert et al. 2010).

High-throughput sequencing and genotyping methods are paving the way to
genomic studies in non-model species (Ellegren 2008, Allendorf et al. 2010, Seeb et al. 2011).
Indeed, advances in next-generation sequencing (NGS) techniques allow cost-effective
parallel sequencing of millions of sequences and are now an efficient route for generating
very large genetic data collections. Thus, NGS provides a valuable starting point for
identifying molecular markers in non-model species (Hayes et al. 2007, Seeb et al. 2011).

While assembling whole-genome sequence reads without a reference sequence can
be very complex and in the best cases incomplete, transcriptome sequencing constitutes an
efficient alternative in information-poor organisms since it avoids dealing with a large
amount of repetitive sequences (usually outside the transcriptome; Pop & Salzberg 2008).
Transcriptomes also include a large number of loci with known or predictable functions
(Bouck & Todd 2006, Emrich et al. 2007) and have been applied to comparative genomics
(Vera et al. 2008), marker discovery (Novaes et al. 2008), and population genomic studies
(Namroud et al. 2008).

Among common NGS techniques, the Roche 454-pyrosequencing technology is the

one producing on average the longest reads (Wicker et al. 2006, Weber et al. 2007, Emrich et
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al. 2007), which makes de novo assembly easier in non-model species without prior genomic
resources (e.g. in Eucalyptus grandis (Novaes et al. 2008), in Cucurbita pepo (Blanca et al.
2011) and in Maruca vitrata (Margam et al. 2011)). This technique also permits to identify
allelic variants by aligning assembled EST's from different haplotypes (Barbazuk et al. 2007)
and is commonly used for transcriptome analysis (gene expression profiling by mRNA
identification and quantification; Morozova & Marco 2008).

We describe the transcriptome and its polymorphism in four widespread
Neotropical tree genera chosen to represent different botanical families, ecological
properties and patterns of local and range distribution (see Materials and Methods).

The objectives of the present study are (i) to describe the transcriptomes of these
four tropical genera, (ii) to compare expression profiles among organs (leaves, stems and

roots), and (iii) to identify expressed single nucleotide polymorphisms (SNPs).
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Material and methods

Study species and sampling

The four species studied (Symphonia globulifera (L. f.) (Clusiaceae); Virola

surinamensis ((Rol. ex Rottb.) Warb.); Carapa guianensis (Aubl.) (Meliaceae); Eperua falcata
(Aubl.)) (Fabaceae)) are characterized by contrasted ecological requirements, spatial
structure and seed dispersal strategies (Table 1). For each species, we collected about ten
seeds from three different sampling sites: Paracou (5°16’20”’N; 52°55’32"E) for E. falcata and
V. surinamensis, Matiti (5°3’30”N; -52°36’17”E) for S. globulifera, and Rorota (4°sr’32”’N; -
52°21'37”E) for C. guianensis. Seeds germinated and grew during twelve months in a
greenhouse under non-limiting light and water conditions as described in Baraloto et al.
(2007). Two vigorous seedlings of each species were selected for transcriptome analyses.

Plant material was sampled from three organs: leaves, stems and roots.

Table 1: Species description.

Species . . Spatial population .

e FRange Ecology - light Ecology-soil el Seed dispersal

Carapa Nentropics [35] Light-responsive [30] el fferent [30] Nonaggregated [31] DY, rodents
guianensis P P B [36]

Eperua . . Mostly seasonally .

& Shield [37 Shade toletant [30 A ted [35 ty [37

fdeata wiata Shield [37] e tolerant [30] flonded [30] garegated [35] aravity [37]

Spraphonia Meotropics, gravity,
Shade toletant [30 3 11y flooded [30 B ted [31

globulifera Paleotropics [29] e tolerant [30] casonally flooded [30] on-aggregated [31] vertebrates [32]
sur:'f;ffnsis Meotropics [33] Light-responsive [30] Seasonally flooded [30] Mon-aggregated [31] verteblar;?:s (4]

cDNA library preparation and sequencing

Total RNA from each fresh sample was extracted using a CTAB protocol as
described by Le Provost et al. (Le Provost et al. 2003). mRINAs were converted to double
stranded cDNA using Mint cDNA synthesis kit (Evrogen) according to the manufacturer’s
instructions.

For each species, cDNA libraries from the different organs (leaves, stems and roots)
were identified by a specific molecular identifier (MID) tag. Samples from the same organ
of different conspecific individuals were pooled for sequencing (MID1 = leaves, MID2 =
stems, MID3 = roots). Libraries of the different species were sequenced separately (one run

per species) according to a standard Roche-454 protocol (Myer 2008). The raw data were
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submitted to the ENA database (study number: PRJEB3286;
http://www.ebi.ac.uk/ena/data/view/display=html&PRJEB3286) and given the accession
numbers ERS177107 through to ERS177110.

Assembly and functional annotation

The bioinformatic flowchart includes the following steps (Fig. 1).
For each species, .sff files were extracted into .fasta, .fasta.qual and .fastq files using
the .sff extract’ script available at http://bioinf.comav.upv.es/sff_extract/). The extraction

was made both with and without
| Raw data |

clipping of read ends. Adaptor and

Sequence extraction, tag
identification & removal

Sff_extract,

fasta files (with unclipped ends)
Assembl!
__________________________________ ‘ ,_7}' ] by searching exact motifs of MIDi,

MID sequences were identified in

'7 . .
: MID2 and MID3 in the first
& Blast and
tati
] < - annofafon twenty bases of each read.
L Blast2Go
e g
analyses Reads were de novo
Errenin Contaminant
x detection bl d . . .
H assemble into contigs usin
Assembly cleaning MIRA v.3.4.0 that auOWS much
”””””””””””””””””””””” SNP discovery

—‘ ... flexibility with a large range of

Figure 1: Bioinformatics flowchart parameters (Chevreux et al. 2004)

and has been used efficiently for transcriptome assemblies (Kumar & Blaxter 2010). We
applied the “accurate” mode (with ‘job’ arguments: ‘de novo, est, accurate’) to limit the
assembly of paralogous genes.

Assembled contig consensus sequences were submitted to Blast2Go analysis
(http://www.blastzgo.de/baghome) that allows large-scale blasting, mapping and
annotation of novel sequence data particularly in non-model plant species (Conesa & Gotz
2008). Consensus showing Blast results with low e-value (10%) and valid functional
annotation were submitted to public databases (in process). We realized a semi-automated
search for contaminants by verifying the organism identity of each blast hit as follows:
NCBI Taxonomy CommonTree Browser
(http://www.ncbi.nlm.nih.gov/Taxonomy/CommonTree/wwwcmt.cgi) was searched
with a non-redundant list of species extracted from B2G. Among the ten hits with the

lowest e-values (below 10%), contigs having at least one hit with a sequence from a genus
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belonging to the "green plant” node of the generated tree were further considered as non-
contaminants, with contigs with no “green plant” genus sequence hits being treated as
contaminants and excluded. Studied contigs were then assigned the best informative
functional annotations from plant species hits, provided that their e-value was smaller than
1075,

The B2G analysis also allowed the matching of each contig with one or several

“r” for an association or “o” for an absence of association with

biological processes (either
processes considered here at levels 3 and 4). Level 3 processes were ranked by their number
of contigs and the cumulative distribution of the number of contigs was inspected.
Moreover, considering that a contig’s number of reads is a rough estimator of the level of
expression of the corresponding gene (Weber et al. 2007, Torres et al. 2008, Frias-Lopez et al.
2008, Craft et al. 2010), we used the number of reads belonging to contigs associated to
particular level 4 biological processes versus all other processes to identify processes with
remarkable expression levels in the different organs considered in each species. These
particular processes were compared qualitatively among organs in a second step. To identify
those processes, we used a permutation analysis as follows:

(1) For each organ, and for each level 4 biological process, both the number of reads per
contig was recorded, and its association (“1”) or not (“0”) for that particular process.

(2)  The observed average number of reads across all contigs associated to this biological
process was computed; and this statistic was considered as an estimator of the average
expression level of all genes involved in that biological process (contigs with zero counts
were excluded).

(3) Then, the number of reads per contig was permuted at random 1000 times among
contigs, under the assumption that there was no particular association (“1”) to the targeted
process. At each permutation, the average number of reads per contig associated to the
targeted biological process was computed again.

(4)  The thousand averages obtained by permutation provided a null distribution of
average read counts per contig within that biological process.

(s) If, for that biological process, the observed average read count per contig was larger
than 959 of the average values obtained by permutation, then the group of genes associated
to that biological process was considered as over-expressed, and consequently the biological
process was considered functionally important for that organ.

Because a contig may be associated to different biological processes, steps (ii)-(v)
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above were performed for each biological process separately, acknowledging the fact that

some Of these tests are therefore not 3.11 independent.

SNP discovery
Assemblies were post-processed using both bioperl scripts from the SeqQual pipeline

(Lang et al. in preparation), and home-made R scripts that followed various steps of filtering
the data by integrating a number of quality criteria. Both the SeqQual and R scripts are
available on request from the authors. The different steps of the procedure used were as

follows:

e Splitting .ace assembly files and linking to quality

Assembled contig sequence files were extracted from the .ace files given by MIRA

and linked to their original base quality scores contained in the .fasta.qual files

o  Assembly cleaning

Nucleotide differences were screened in assembled contigs and particular bases were

masked according to several criterions:

- being a singleton

- being a variant with a frequency lower than o.1 (see also ‘Computing SNP statistics and
post-filtering’ below).

- having a quality value (PHRED score equivalent) lower than 20 for polymorphic sites (i.e.
incorrect base call probability of 1/100).

Following this ‘masking step’, a ‘cleaning step’ removed all positions (i.e.
corresponding to one base) of the assembled contigs that contained only indel and masked
bases. This last step is particularly relevant for 454 data where false insertions due to
homopolymers were very common and drastically affect contig consensus, hampering
further re-sequencing and SNP design for genotyping. Consensus (using IUPAC codes)
were edited from cleaned assembled data and used both for estimating the total
transcriptome length obtained and for identifying quality SNPs for submission to

databases.

o Computing SNP statistics and post-filtering

All potential SNP contained in the cleaned assemblies were used to build a summary
statistics table (number of occurrences and frequency of the different variants, depth, mean
quality, minimum allele frequency (maf)). This table was used to identify the highest

quality SNPs a posteriori (without affecting assembly and consensus) for further SNP
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design and larger scale genotyping. In particular, we chose to avoid:
- SNPs adjacent to each other, because they are likely to be assembly artefacts (You et al.
2011).

- SNPs with lower-than-expected frequencies based on the number of gametes sequenced.
With two genotypes, four different gametes were sequenced and the probability of having
a variant was 0.25 at minimum. The following rationale can be applied to any number of
gametes N. The probability of observing a particular number of times (or fewer) the
minority variant (1/2N) follows a binomial distribution. The probability of observing the
tqx-t

variant exactly t times out of x reads is computed as p(t) = (f)p

and the probability

of observing it t times or fewer is given by Y5 p(t). All polymorphisms that were present
in a configuration with a cumulative probability P < 0.05 (e.g. 3 variants among 29 reads)
were considered as false positives and were discarded. In roughly half the case, these
configurations had already been excluded based on the below o.1 frequency rule (see
‘Assembly cleaning’). In the other half of the cases, additional configurations where variant
frequencies ranged from o.1 to o.15 but which had a probability below 506 could also be
excluded, therefore increasing the overall likelihood of the detected variants.

- SNPs having a depth lower than 8X, which can be considered as a stringent criteria, given
the 20 quality score for each base, a minimum SNP frequency of 2/8= 0.25 here (since
singletons have been previously excluded), and the fact that this configuration has a
probability of 0.31 based on the binomial distribution rationale, which is well above the 596
threshold chosen before.

Following the filtering steps described above, SNPs were counted and their density
per base was computed as the total number of polymorphisms (including SNPs at contig
ends that passed the quality and singleton filters) divided by the total number of bases where
the depth was at least 8 reads. Numbers of transitions, transversions, and deletions were

also reported.
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Results and Discussion
Assembly

Sequence data were obtained from all tissues and species except S. globulifera, for
which root cDNA library preparation failed. Between 167140 and 248145 reads were obtained
per species. More reads were associated with roots than with stems or leaves (Table 2). This
is likely due to technical artefacts such as a more efficient RNA extraction and/or cDNA
amplification from roots than from other organs, and a lower RNA extraction yield in

leaves due to high concentrations of secondary metabolites.

Table 2: Partitioning of reads among different organs (leaves, stems, roots) in each species cDNA 1ibrary (C.
guianensis, E. falcata, S. globulifera and V.surinamensis). Under brakets, the number of assembled reads.

Mutnber of reads

Carapn grianensis

Eperua folcain

Symphonia globulifern

Virola surinamensis

Frotn leawes [MID1]
From stems [MID 2]

63016 [43334 (28%)
47100 [29720 (19%)

17421 [11417 (0%)
25362 [15085 (14%)

40394 [32190 (30%)
110373 [66874 (6694

31526 [22077 (11%)

]
41435 [28254 (14%8)]
141943 [399 15 (72%3]

4314 [2691 (%]

From roots [MID 3]
Mo of reads without tag

132030 [77052 (50%)
5090 [3435 (294)

175551 [1008089 (76%4)
3260 [1799 (1%)

7 [2 (%)
6366 [4367 (4%4)

] ] ]
] ] ]
] ] ]
] ] ]

Between 103433 (S. globulifera) and 153551 (C. guianensis) reads were successfully
assembled into contigs and between 17103 and 23390 contigs were obtained, depending on the
species (Table 3). These figures are close to the average number of contigs commonly
obtained in similar studies (Kumar & Blaxter 2010, Blanca et al. 2011, Sloan et al. 2012) and
suggest reasonable transcriptome coverage from the data if we assume that the number of
contigs approximates the species’ unigenes. Average contig length varied between 414 bp
(E. falcata) and 523 bp (C. guianensis) (Supplementary Fig. S2).

Table 3: Assembly results.

Carapa grignensis Epermn folcain Symphonia globulifera Virola surinamensis
Mutrber of reads 245145 224554 167140 219213
Mutrber of assetnbled reads 153551 (61.9%) 132213 (58.9%) 103433 (61.9%) 142070 (A5 2%)
MNutrher of contigs 21 23390 17103 21070
Total length (hpd 11393209 0658583 Ti43116 0715015
Average length per contig Chypd 5233445 414.219 452734 461.6001
Average nunber of reads per contig 7.05333 5.65244 6.047 6785447

A large number of contigs was solely associated to roots for the three species (Fig.

2), particularly in E. falcata (619 of contigs from roots only, compared to 299 and 37% for
C. guianensis and V. surinamensis). This probably resulted from the predominance of root-
tagged reads (MID3, Table 2). In contrast, contigs exclusive to stems and leaves were in
much lower proportions in the three species with root data, varying from 49% to 7% for

stems, and 3% to 129% for leaves (Fig. 2).

187



Functional annotation
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Eperua falcata

Symphona.. processes. A majority of contigs

Virola surinamensis

returned a Blast hit result with e-

values below 10-25 (suppl. Fig.

Figure 2: Number of contigs associated with each organ (leaves,

stems, roots) (Note: sequencing from S. globulifera roots failed).

Carapa = Carapa guianensis; Eperua = Eperua falcata; Symphonia =
Symphonia globulifera; Virola = Virola surinamensis. L, S and R

S3) for C. guianensis (799%), E.
falcata (6990), S. globulifera (74%)

indicate contigs specific to Leaf, Stem and Root, respectively; and V. surinamensis (700/0), but

combinations of symbols correspond to contigs occurring in

multiple organs. only between 48.1% (E. falcata)
and 64.1% (C. guianensis) had
functionally informative annotations (Table 4). Less than 3.19 of the characterized contigs
were identified as contaminants for any species (1.58%, 3.06%, 2.920% and 0.29% in C.
guianensis, E. falcata, V. surinamensis and S. globulifera respectively). After removing
contaminants, from 12603 (S. globulifera) to 16912 unigenes (C. guianensis) with an e-value
lower than 10 were retained, that covered 4.65 Mbp (in S. globulifera) to 7.75 Mbp (in C.
guianensis) of the total transcriptome across species (Table 4).

The analysis of the cumulative distribution of contigs associated to each biological
process (level 3) revealed that 500 of the contigs belonged to around 1200 of the same
biological processes across species (Fig. 3). This corresponds to 8 biological processes (out
of 70 for C. guianensis and V. surinamensis) and 9 biological processes (out of 73 and 75 for

E. falcata and S. globulifera respectively).

Table 4: BlastX statistics across species, performed on consensus sequences from MIRA.

Carapa guianensis

Eperua folcain

Symphonia globulifera

Virola surinamensis

Mo of sequences that did not return any blast result

4556 (21.1%8)

TIAI(30.9%)

4463 (26.1%)

6384 (30.37)

Mo of blasted sequences 17184 (78.9%) 16159 (69, 1%) 12640 (73.9%) 14686 (69.7%)
[No sequences after contarminant remowval] [16912] [15664] [12603] [14545]

Mo of mapped sequences 15879 (72.0%) 13620 (56.53%) 11639 (68, 1%) 13000 (61, 7%a)

Mo of annotated sequences 13962 (64, 1%) 11240 (48, 1%) 10164 (59.4%) 11073 (52.6%)

Total assernbly length withouwt contaminant (hp) 11266552 9501561 TIETTT QAAAAE0

[Total length of blasted sequences after removal of [7746737] [4789056] [4748202] [5887279]

cottarninant and sequences with e-valuess10%7]
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Figure 3: Cumulative percentage of contigs annotated by biological process (level 3). Only non-contaminant

contigs with an e-value lower or equal to 10 were retained for the analysis.

Permutation analyses allowed us to identify biological processes (level 4) showing a
significantly higher occurrence of contigs for a given organ, that could be interpreted as a
higher expression of genes belonging to that process in that organ (Fig. 4).

In leaves, between five (V. surinamensis) and ten (C. guianensis) biological processes
stood out (Fig. 4 left column), eight of them being identified more than one species. Not
surprisingly, biological processes related to photosynthesis and carbon cycle in leaves appear
in this group (‘carbohydrate metabolic process’, ‘carbon fixation’, ‘generation of precursor
metabolites and energy’, ‘nitrogen cycle metabolic process’, ‘organic substance biosynthetic
process’, ‘oxidation reduction process’, ‘photosynthesis’, ‘response to radiation’).

In stems, we detected between eight (S. globulifera) and twenty-five (V. surinamensis)
relevant biological processes (Fig.4 middle column), fifteen of them being shared among
different species. At least a subset of these processes (‘cellular biosynthetic process’, ‘cellular
component movement’, ‘organic substance biosynthetic process’, ‘organic substance
catabolic process’, ‘secondary metabolic process’) are potentially related to cell
differentiation events that occur during wood formation.

In roots, between seven (C. guianensis) and twenty-six (E. falcata) biological
processes appeared as particularly relevant, eleven being shared by different species. They
reflect two main functions of roots: water and nutrient acquisition (‘response to inorganic
substance’, ‘response to ‘organic substance transmembrane transport’) and response to

stresses caused by soil constraints, which fall in two classes: (a) soil water depletion (e.g.
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‘response to osmotic stress’) which frequently occurs in tropical rainforests during the dry
season; (b) oxidative stresses caused by soil hypoxia, to which the processes ‘reactive
oxygen species metabolic process’, ‘response to oxidative stress’, and ‘response to oxygen
containing compound’ are related; flooding-induced hypoxia is particularly frequent in

water-logged bottomlands.

LEAVES STEMS

i A g : 2 G aging
. an 1 nitrogen.cycle metabolic process | [ ribonucleaprotain complex biogenesis ) ) . ;
(A) C. guianensis i e s R rotibuls basedrooens ribonucleoprotein complex biogenesis
photosynthesis | cellular component movement negative regulation.of molecular function
response to temperature stimulus | response to karrikin defanse, e
response.to.cold {| 1§ negative regulation of molecular function 1] -respon
response.to.oxidative.stress | 1 organic.substance catabolic process /[l transmembrane fransport
Sitoiatate meta Ol procoss ul " cellular katone.metabolic process || [ T —
matabsii [

response.to.radiation || teguisian.sf, ol Brososy 'm' response o organic. substance

oxidation reduetion process secondary.metabalic process

(B) E. falcata

carbon fxation l R
4 ac oman s Irne reaponse
photasyrithesis i} s ropianen o eielss ncaan

teacie. Gxygén species mitabelc srocess
sl process
ol o

generation.of precursormetabolites and.energy 1 | 1}

ol bons mazeic
e 5
oxidation reduction process || um-vumm.;m;.:.“g.m

Boron s
carbohydrate metabolic process F honyciarisn corplexbigenes

. . . g g bwwmnmm
St sibainis Blokinthelic prates :lmnh,mamllubn\[pm:sn
Carbohy it it process

cellular.biosynthetic process oA Tt B S

ol bios yrénwtic rocess

vi
Al

(=R - =]

(C) S. globulifera R

fruitripening
carbon fixation , reactive oxygen species metabolic process
photosynthesis i photosynthesis
nitragen.cycle metabolic pracess o response to.ouidelive.siress
o i response to heat
i . secondary.metabolic process
oxidation reduction.process | |

generation of precursor metabolites.and.energy
response to radiation | I1 defense response

ii i activati n! ate i 0,185
(D) V. surinamensis ot 4 gt o e on.of nnate immuns resporse
sbonuisopra, o 5,‘" ﬁ"nn
aemeraton o recursgn et
and energy }—I{ r,ﬁéﬂ
ls\lulvl!?{mﬂx%n.u | e
et B g =
carbon fication : orpuic SR T B .
.;';..,%.Eﬂéi; e . mr:s uns:mm aie ci; =
response to water.deprivation - [ l SERHE D, ".ﬂiﬁ‘a ppnae résm,m,ngii,suh e
"Wgﬁ&‘?& CE-, ERRS tran: tmnspm
response.to.cold I{ TR A pusl:vuwgl{nﬁunolhubgcal
o oy .\.M e st response.toinorganic su Stance il
nmiu TORRENE A
w2 ed O = o M T W @ o e B

Figure 4: Differences between observed and randomized mean contig number of reads within each organ from 1000
permutations of the number of reads per contig across all contigs for each biological processes (level 4) showing significant
over-expression in each organ.

(A) C. guianensis: Leaves (nitrogen cycle metabolic process, carbon fixation, photosynthesis, response to temperature stimulus, response to cold, response to oxidative stress, carbohydrate metabolic process,
generation of precursor metabolites and energy, response to radiation, oxidation reduction process); Stems (ribonucleoprotein complex biogenesis, microtubule based process, cellular component movement,
response to karrikin, negative regulation of molecular function, organic substance catabolic process, cellular ketone metabolic process, regulation of metabolic process, secondary metabolic process), Roots
(aging, ribonucleoprotein complex biogenesis, negative regulation of molecular function, defense response, transmembrane transport, response to oxygen containing compound, response to organic substance);
(B) E. falcata: Leaves (carbon fixation, photosynthesis, generation of precursor metabolites and energy, oxidation reduction process, carbohydrate metabolic process, organic substance biosynthetic process,
cellular biosynthetic process), Stems (actin filament based process, regulation of immune system process, regulation of innate immune response , activation of innate immune response, positive regulation
of molecular function, reactive oxygen species metabolic process, olefin metabolic process, cellular alkene metabolic process, one carbon metabolic process, cellular component movement, photosynthesis,
ribonucleoprotein complex biogenesis, sulfur compound metabolic process, single organism biosynthetic process, secondary metabolic process, carbohydrate metabolic process, carbohydrate derivative
metabolic process, organic substance biosynthetic process, cellular biosynthetic process), Roots (actin filament based process, regulation of immune system process, activation of innate immune response,
positive regulation of molecular function, reactive nitrogen species metabolic process, nitrogen cycle metabolic process, reactive oxygen species metabolic process, cellular alkene metabolic process, cell death,
one carbon metabolic process, cellular membrane organization, response to heat, response to oxidative stress, response to inorganic substance, cellular response to chemical stimulus, oxidation reduction
process, single organism biosynthetic process, secondary metabolic process, cellular ketone metabolic process, small molecule metabolic process, glycosyl compound metabolic process, organic substance
biosynthetic process, cellular biosynthetic process, response to osmotic stress, cellular catabolic process, cellular response to stress);

(C) S. globulifera: Leaves(root morphogenesis, carbon fixation, photosynthesis, nitrogen cycle metabolic process, generation of precursor metabolites and energy, oxidation reduction process, response to
radiation), Stems (fruit ripening, reactive oxygen species metabolic process, photosynthesis, response to oxidative stress, response to heat, secondary metabolic process, generation of precursor metabolites
and energy, defense response);

(D) V. surinamensis: Leaves (photosynthesis, generation of precursor metabolites and energy, carbon fixation, response to water deprivation, response to cold), Stems (activation of innate immune response,
one carbon metabolic process, photosynthesis, ribonucleoprotein complex biogenesis,translational initiation, generation of precursor metabolites and energy, response to other organism, defense response,
cellular response to chemical stimulus, response to oxidative stress, reactive oxygen species metabolic process, secondary metabolic process, organic substance catabolic process, cellular catabolic process,
single organism biosynthetic process, response to osmotic stress, response to water stimulus, response to water deprivation, response to oxygen containing compound, organic substance biosynthetic process,
cellular biosynthetic process, response to inorganic substance, response to heat, response to temperature stimulus, organic substance transport), Roots (activation of innate immune response, response to
oxidative stress, reactive oxygen species metabolic process, secondary metabolic process, cellular catabolic process, single organism biosynthetic process ,response to osmotic stress, response to water stimulus,
response to water deprivation, response to oxygen containing compound, response to organic substance, transmembrane transport, positive regulation of biological process, response to inorganic substance);
(Note: sequencing from S. globulifera roots failed).
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rRNA intron-encoded homing endonucleases were very abundant in the E. falcata
assembly (581 unigenes against 43, 39 and 17 unigenes in C. guianensis, S. globulifera and V.
surniamensis respectively). In E. falcata, these unigenes comprised between two and 920 reads
with a mean of 15.3 (s.d.=69.77). Among them, fourteen had more than 100 reads, and 74 had
between 10 and 100 reads.

Homing endonucleases from group I introns are self-splicing genetic elements or
parasitic genes mostly found in organellar genomes (Cho et al. 1998, Burt & Koufopanou
2004). Among contigs that showed BLAST hits with rRNA-intron-encoded homing
endonucleases in E. falcata, 69 were polymorphic and contained from 1 to 18 SNPs with
many haplotypes (Yahara et al. 2009). High transcription levels of such elements, combined
with the high numbers of mutations that they have accumulated, suggests a massive but
ancient genome invasion event (Yahara et al. 2009, Nystedt et al. 2013) in the E. falcata
genome compared to the other three species. The evolutionary implications of transfers of
such elements remain poorly understood, because of their ‘super-Mendelian’ inheritance
(such elements may be both vertically and horizontally transmitted; Koufopanou et al.

2002), and because they have no known function (Yahara et al. 2009).

SNP discovery

It has been shown that relaxed criteria for in silico SNP selection from next-
generation sequencing data or previous EST databases lead to high failure rates in
subsequent high-throughput SNP genotyping (Huse et al. 2007, De Pristo et al. 2011). We
have applied a stringent filtering process based on data quality and a probabilistic argument
in order to decrease the frequency of false SNPs. SNP depth was significantly reduced after

the first masking steps: original depth Table 5: SNP detection.

was on average 1.31-1.53 times from ~20 Gt punenss | penn febett P
. Zlntal tength with depth 2 BX after assebly 956876 603807 490604 862357
to ~23 across species on average per | mmetew __
Before Post-filtering based on Binomial test
N 8NPs 10615 7084 3447 10897
contig to a final average depth Of ,..«16 N polymorphic contigs 1716 (7 35%) 1200 (5.55%) 57 (5 77%) 1752 (8.32%)
SNP density (/ 100bg) il 117 o9 126
. W polymorphists with 2 variants 10420 (98, 16%) 6963 (08, 36%) 5362 (98.44%) 10757 (98.72%)
to ~I7 for the retalned SNPS’ N transitions 7655 1875 1000 2182
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5.500 (E. falcata) and 8.300 (V. surinamensis) of contigs contained at least one SNP (Table
5).The great majority of polymorphisms (between 95.7% in C. guianensis and 99% in S.
globulifera) were bi-allelic, with a majority of indels (Fig. 5). The transition/transversion
ratio (Ti/Tv) varied between 1.5 and 1.7, lower than those observed in other exome
assemblies (De Pristo et al. 2011). Estimated SNP density across polymorphic contigs varied
between 0.89 per 100 bp (C. guianensis) and 1.05 per 100 bp (V. surinamensis) (Table s).

However, these estimates are
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Transcriptome polymorphism and its usefulness in population genetics studies

Next-generation sequencing, allowing massive de novo acquisition of molecular
data, provides a range of new potential applications for evolutionary and ecological-genetic
studies in non-model species. High-throughput SNP data have indeed shown their potential
for inferences about demographic and adaptive processes in natural populations (Eckert et
al. 2010, Nielsen et al. 2005, Nielsen et al. 2009, Li & Wolfgang 2006, Siol & Barett 2010,
Turner et al. 2010, Fournier-Level et al. 2011, Hancock et al. 2011). However, this assumes that
the identified polymorphisms are of high quality, which is why we have tried to accomplish
here. The genomic resources obtained here will trigger new exciting fields of research on
tropical biodiversity. Providing a catalogue of putative functions for genomic regions with
a high potential diversity will help identifying useful candidate genes for further
resequencing or SNP genotyping (Lister et al. 2009, Morozova et al. 2009, Helyar et al. 2011).

These genes belong to a large range of biological processes, including growth, reproduction,
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light and nutrient acquisitions, as well as plant response to biotic and abiotic stresses.
Focusing on genes potentially involved in adaptive processes in Neotropicai forest tree
species will permit to test hypotheses about evolutionary processes underlying genome

evolution and the build-up of biological diversity in tropical forest ecosystems.
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Article n°3 - Supplementary figures
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Figure S1: Representation of SNP depths before and after the masking procedure.
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Abstract

* In habitat mosaics, plant populations face environmental heterogeneity over short
geographical distances. Such steep environmental gradients can induce ecological
divergence. Lowland rainforests of the Guiana Shield are characterized by sharp, short-
distance environmental variations related to topography and soil characteristics (from
water-logged bottomlands on hydromorphic soils to well-drained terra firme on ferralitic
soils). Continuous plant populations distributed along such gradients are an interesting
system to study intra-population divergence at highly local scales. In this study, we tested
(a) whether conspecific populations growing in different habitats diverge at functional
traits and (b) whether they diverge in the same way as congeneric species having different
habitat preferences.

* We studied phenotypic differentiation within continuous populations occupying different
habitats for two congeneric, sympatric, and ecologically divergent tree species (Eperua
falcata and E. grandiflora, Fabaceae). Over 3000 seeds collected from three habitats were
germinated and grown in a common garden experiment, and twenty-three morphological,
biomass, resource allocation and physiological traits were measured.

* In both species, seedling populations native of different habitats displayed phenotypic
divergence for several traits (including seedling growth, biomass allocation, leaf chemistry,
photosynthesis and carbon isotope composition). This may occur through heritable genetic

variation or other maternally inherited effects. For a subset of traits, the intraspecific
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divergence associated with environmental wvariation coincided with interspecific
divergence.

* Our results indicate that mother trees from different habitats transmit divergent trait
values to their progeny, and suggest that local environmental variation selects for different
trait optima even at a very local spatial scale. Traits for which differentiation within species
follows the same pattern as differentiation between species indicate that the same ecological

processes underlie intra- and interspecific variation.
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Introduction

Environmental variation occurring at the local scale creates complex habitat
patchiness which has been found to contribute to shaping the great diversity observed in
tropical rainforests (Ricklefs, 1977, Wright 2002, Vincent et al. 2011). A common explanation
for these diversity patterns is the divergence of preferences for edaphic conditions among
tree species, as repeatedly shown throughout the Neotropics (e.g. ter Steege et al. (1993),
Sabatier et al. (1997), Clark et al. (1999), Valencia et al. (2004), Baraloto et al. (2007), John et
al. (2007), Kanagaraj et al. (zo11)). Community-level differences in functional traits have
been found to underlie such differences (Kraft et al., 2008): for instance, Lopez & Kursar
(2003) and Engelbrecht et al. (2007) showed that divergence in species distribution between
hilltops and bottomlands are determined by variations in tolerance to drought and water-
logging.

It has been shown that bottomland, slope, and hilltop habitats actually differ in many
ways that may explain their impact on forest community composition. Generally speaking,
water availability in lowland tropical forests is strongly associated with topography and soil
characteristics (Sabatier et al. 1997). Large variations occur in soil drainage and moisture
between hilltops, slopes and bottomlands (Clark et al. 1999, ter Steege et al. 1993, Webb and
Peart 2000). Bottomland soils are subject to frequent periods of flooding and undergo
cyclical changes in O2 availability that strongly affect the metabolism of root tissues and
thus tree establishment and growth (Kozlowski 1997, Perata et al. 2011, Ponnamperuma 1972).
In contrast, thin soils on slopes undergo lateral drainage, which increases their susceptibility
to water shortage during dry periods (Sabatier et al. 1997). Finally, hilltops are usually
characterized by deep soils and display deep vertical drainage, with strong seasonal
variations in soil water availability (Sabatier et al. 1997). Beside differences in water
availability constraints, these habitats also differ in nutrient content, with lower nitrogen
and higher phosphorus content in bottomlands than on plateaus (Ferry et al. 2010, Luizao et
al. 2004). Moreover, soil respiration decreases in bottomlands as root biomass and soil
carbon content decreases (Epron et al. 2006). These variations in soil characteristics have an
additional impact on forest dynamics, with slopes and bottomlands exhibiting more
frequent light gaps than hilltops and therefore higher irradiance reaching the understory
(Ferry et al. 2010).

The widespread links between gradients of soil properties and species-specific

habitat preferences suggest that ecological specialisation has recurrently arisen through
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evolutionary processes such as adaptation and species divergence (Endler, 1977, Schluter,
2001, Rundle & Nosil 2005, Savolainen et al. 2007). Evolutionary dynamics may play a major
role in the build—up of lowland rainforest community diversity, and the role of genetic
diversity (including sensu lato both allelic and gene expression variability) in ecological
processes has been widely acknowledged (Ford 1964, Randall Hughes et al. 2008). In other
words, if ecological sorting of functional traits has occurred across different habitats and
has led to the emergence of ecologically different species, it is sensible to expect that such
processes are also currently occurring within species. Therefore, in species with continuous
stands growing in different, contiguous habitats, we should be able to observe “highly local”
intra-specific divergence (sensu Salvaudon et al. 2008) between subpopulations submitted
to divergent local environmental conditions; moreover, we expect that divergence between
intraspecific subpopulations growing in different habitats should co-occur with divergence
between species with different ecological preferences for those habitats. Here, we use the
term ‘highly local’ to characterise patterns observed at scales for which environmental
turnover occurs at shorter distances than gene flow (i.e. the average distance between
patches of different habitat types is shorter than the average gene dispersal distance,
implying that gene flow occurs among different habitats).

Tree populations in general are known to harbour large amounts of heritable
variation for several putatively adaptive characters (Cornelius 1994, Gonzalez-Martinez et
al. 2006); Neotropical rain forest trees are no exception (Scotti et al., 2010, Navarro et al.,
2004). If adaptation contributes to divergence between sub-populations occupying different
habitats, these sub-populations should be differentiated at potentially adaptive traits (sensu
Howe & Brunner 2005). The goal of the present study was therefore to test whether
populations of tree species growing as continuous stands across different habitats could be
subdivided into habitat-associated sub-populations displaying phenotypic divergence for
such traits (i.e. divergence caused by differentiation in (multi-locus) gene frequencies, by
maternal effects or by inheritance of stable gene expression patterns (“epigenetic
inheritance”)). The test was performed in two congeneric rainforest tree species of the
Guiana Shield (Eperua falcata and E. grandiflora), that display partially divergent habitat
preferences (Sabatier et al. 1997, Baraloto et al. 2007) but occur, even in low abundance, in
multiple habitat types. In Eperua species, gene flow is expected to be restricted — mainly due
to heavy seeds — but still intense at the distances considered here (estimate of mean parent-

offspring distance for E. grandiflora: 166-343 m; Hardy et al. 2006). In spite of such dispersal

200



distances, a recent study, performed partly on the same populations as those studied in the
present paper (Audigeos et al. 2013), has shown that molecular divergence occurs (in E.
falcata) at a highly local scale for genes involved in response to soil water content-related
stress, against an overall background of no genetic differentiation at other loci.

The specific questions asked in this study about phenotypic divergence in these two
congeneric species are: (i) Do seedlings from different local habitats diverge phenotypically?
(ii) Are patterns of intraspecific phenotypic divergence similar to those observed at the

interspecific level?
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Material and methods
Study species

E. falcata and E. grandiflora are abundant in the Guiana Shield, and grow
sympatrically in different but partially overlapping habitats. This allowed us to compare
intraspecific and interspecific patterns of divergence in the same phylogenetic context and
ecological background. E. falcata (Aubl.) (Fabaceae) has a preference for seasonally water-
logged bottomlands, whereas E. grandiflora (Aubl.) Benth (Fabaceae) is mostly restricted to
hilltops and slopes (Baraloto et al. 2007). The two species differ in several morphological
and functional traits, but their seedlings display similar degrees of tolerance to drought or
hypoxia under controlled conditions (Baraloto et al., 2007), indicating that they are potential
generalists for soil water conditions, at least at the younger life stages. Both species are bat-
pollinated (Cowan 1975) and disperse their heavy seeds by explosive dehiscence and gravity
at short distances of a few meters (Forget 1989). Gene dispersal distance is about 150-350 m
for E. grandiflora (Hardy et al. 2006) and probably similar for E. falcata (O. Hardy, pers.
comm.), well beyond the size of the habitat patches studied here. Data from nuclear genetic
markers (Audigeos et al. 2013) suggest that E. falcata is allogamous with no significant

selfing.

Study site

The experiment was performed in Plot 6 at the Paracou forest inventory site (5°18’N,
52°53’ W) (Gourlet-Fleury et al. 2004) located in an undisturbed forest in coastal French
Guiana, South America. The sampling area covers 9 ha and is characterized by a rugged
landscape formed by the alternation of 40-50 m-high hills, slopes, and bottomlands, varying
in soil drainage type and water table depth (Gourlet-Fleury et al. 2004). In such a habitat
mosaic, variations occur on geographical distances of the same order of magnitude as pollen
and seed dispersal but do not occur monotonically (i.e. there is no continuous gradient in a
given spatial direction). Three habitat types have been identified in the study area (Suppl.
Fig. S1) based on elevation, soil drainage, and water-logging characteristics (Ferry et al.
2010): “Bottomlands” (B) with hydromorphic soils and a water table between o and 60 cm
in depth depending on the season (Suppl. Fig. S1); “Slopes” (S) with surface drainage
conditions, and a water table consistently below 100 cm; “Hilltops” (H) with deep soils,

deep vertical drainage and a water table consistently below 150 cm.
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Seed sampling

Two-hundred and sixty-seven E. falcata trees and 67 E. grandiflora trees were
identified in the study area. Operators visited the plot at least three times a week in
February-March 2006, 2007 and 2008 to hand collect seeds on the ground from 44 fruiting
trees. The choice of the mother tree set was based on several considerations: (a) tree fertility;
(b) balanced sampling from all habitats; (c) non-overlapping tree crowns. Pairwise distances

between same-habitat fruiting trees were not statistically smaller than between trees in

different habitats (Fig. 1).
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Figure 1: A) Pair-wise spatial distances between mother trees within and between micro-habitats. Boxes show the
standard deviation of each group. B) Boxplots showing the distribution of pair-wise spatial distance between mother
trees within and between all micro-habitats.

Seeds collected for our experimental study were assigned to the same habitat as their
mother tree, thus forming three different native habitat types (“B”, “S” and “H”). When
crowns of conspecific trees overlapped, seeds were collected at opposite sides of the crown.
Each seed was assigned to a maternal family corresponding to its mother tree. A total of 3122

seeds were collected over the three seed production years.

Glasshouse Experiment

The seeds were weighed and laid down in germination boxes that were filled with a
substrate made of river sand which was kept damp using an automatic sprinkler system.
Germination success rate was about 60% for both species. Two months after germination,
the seedlings were transplanted into individual 12-1 pots filled with a mixture of sand and
an A-horizon soil (30/70 v/v), then transferred to a glasshouse. The A-horizon had been

collected in the same plot as the seeds and contained about 1.4 - 1.9 g kg-1 of nitrogen (Ferry
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et al. 2010).

About 49 of the seedlings died before transfer to the glasshouse. The remaining
seedlings were grown in the glasshouse for 24 months, until the study ended; then they were
harvested. The 1637 seedlings (Supp. Table S1) were randomly assigned to each of 103 16-
plant blocks. Each block contained four seedlings from each of four randomly drawn
maternal families, so that each family was combined randomly with a different set of other
families in each of the blocks in which it was represented (see Suppl. Method 1 for details).
The seedlings were placed under non-limiting conditions, which prevented both drought
and hypoxia (expected to occur in the field on hilltops/slopes and in bottomlands,
respectively; see above). Moreover, seedlings grown in the glasshouse experienced higher
light levels and milder competition than in natural conditions, favouring optimal growth.
A layer of neutral shade-cloth was used to reduce irradiance received to about 13% of full
sun (maximum photosynthetic photon flux density = 300 umol m-2 s-1) to simulate solar
radiation levels received by seedlings in gap openings. Seedlings were watered 2-3 times per
week to maintain the substrate close to field capacity (= 0.25 m3 m-3). The pots were
fertilised every six months (5 g complete fertiliser per pot, 12/12/17/2 N/P/K/Mg). Pots
were distributed in the glasshouse following an incomplete randomized block layout (for
the details of the experimental design, see Suppl. Method 1).

One-thousand-six-hundred-and-thirty-seven seedlings survived until month 24. For
measures taken at 24 months, the sample used in the present study was restricted to 656
seedlings of E. falcata and 170 seedlings of E. grandiflora (Suppl. Tables S1 and S2), since two
thirds of the seedlings grown in this experiment were set aside for a companion experiment
involving different soil water content treatments.

Phenotypic traits

We recorded twenty-three functional traits (Table 1) related to plant growth,
biomass allocation, leaf structure and leaf physiology (photosynthetic capacity and carbon
isotope composition). These traits are commonly used as proxies of plant fitness in general
(Kraft et al. 2008) and their ecological significance as proxies of fitness in seedlings has been
established by several studies (Wright et al. 2004, Cornelissen et al. 2003, Westoby et al.

2002).
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Table 1: List of abbreviations and units of phenotypic
traits.

Growth and biomass allocation

Seedling dimensions :

Plant height and stem diameter at
collar were measured every six months. Net

CO2 assimilation rate under saturating

H; Height at 6 months cm irradiance (Asat , umol m-2 s1) was
Hi; Height at 12 months cm
H Height at 18 months cm . .
H;j Heiiht at 24 months cm recorded in vivo at 18 months on one leaf per
H;z Elongation rate from 6 to 12 months cmmonth’
Higg Elongation rate from 12 to 18 months cm.month™ plant Wlth a portable photosynthesls system
His Elongation rate from 18 to 24 months cmmonth™
Dis Diameter at 18 months mm _
= D o o (CIRAS1, PP-Systems, Hoddesdon, UK)
Diga Radial growth rate from 18 to 24 mum.month™ . . . .
months operating in open mode and fitted with a
Biomass and allocation : Parkinson leaf cuvette, under the following
TMay Total dry mass at 24 months g
RM,, Root dry mass at 24 months g . li bi . CO
LM,y Total leaf dry mass at 24 months g microclimate: ambient air 2
LAy, Total leaf area at 24 months CIF
LMR4 Leaf / total mass ratio at 24 months gg! concentration = 380 y,mol mol—[;
RMR 34 Root / total mass ratio at 24 months gg’
. . -1
LARy Leaf area / total biomass ratio at 24 cnr.g hOtOS nthetlc hoton ﬂux dens1t - 600 +
months y y
[ Leaf traits 20 pmol m-2 s-1; vapour pressure deficit =
LMA 5 Leaf mass / area ratio at 18 months g.m'2
LMAs Leaf mass / area ratio at 24 months gm’* 1.0 + 0.5 kPa; ambient air temperature = 28.7
%(C g Carbon content in leaves at 18 months % o o1 . .
ey Nitrogen content in leaves 18 months % + 2.0 °C. Full stabilization was obtained
At Light-saturated carbon assimilationrate  pmol m™ s after about 3-S minutes. Measurements were
at 18 months
5 : . : conducted between 9:00 am and 1:00 pm to
3°C Carbon isotope composition of leaves per mil
at 18 months . . .
avoid mid-day depression of
photosynthesis.  After gas exchange

measurements, six to eight mature and fully expanded leaflets were collected per plant close
to the top of the stem. Fresh leaf area was then measured in the laboratory with an area
meter (Li-2100, Licor, Lincoln, Nebraska). The leaves were subsequently dried to constant
weight at 60°C for about three days, then finely ground to measure carbon (C) and nitrogen
(N) content and carbon isotope composition (813C, %o) as a surrogate for intrinsic water-
use efficiency (WUEi; Farquhar et al.,, 1982). Elemental and isotopic analyses were
conducted on a sub-sample of about 1 mg of dry leaf powder with an isotopic ratio
spectrometer (Delta-S Finnigan Mat, Bremen, Germany). Leaf mass to area ratio (LMA, g
m-2) was calculated as the ratio of dry mass to leaf area.

At 24 months, all the plants were harvested and the leaves, stems, and roots were
separated for biomass measurements. Total leaf area was measured with the same area
meter as above. All three compartments were dried at 60°C to constant weight for about 3-
4 days and then weighed. Leaf area to total biomass ratio (LAR, m2 g-1) was obtained by

dividing the total leaf area of a given plant (LA) by its total dry weight. Leaf mass ratio
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(LMR, g g-1) and root mass ratio (RMR, g g-1) were calculated as the ratio of leaf or root
dry mass to total plant dry mass (Table 1). Growth rates for height and diameter growth
between two dates were calculated as AP/At=(Pt2-Pt1)/(t2-t1), where P indicates the

phenotypic value and ti, t2 the times of the two different measurements.

Linear model of character variation

We fitted a classical linear model for the partition of individual phenotypic values,
including species, native habitat, maternal family, year of seed collection and seed mass as
sources of trait variation in a hierarchical framework. To produce unbiased estimates of
progeny and native habitat type effects, inter-annual variation and seed mass effects were
used as cofactors in the model, as they capture, at least partially, environmental effects
mediated by maternal allocation to seeds, and thus represent “maternal effects” related to
resource availability (Rice et al. 1993, Leiva and Fernidndez-Alés 1998, Gonzalez-Rodriguez
et al. 2012). Our hierarchical framework allowed us to estimate the effects of each habitat
type for each species, and the effect of each maternal family in each native habitat and each
species. The linear model for all traits is as follows:

Yijklm = u + 0j + Bk + ykl + tklm + (pk x Seed massi) + €ijklm (1)

where Yijklm is the phenotypic value of the i-th individual, u the global mean, @] the effect
of the j-th year of seed sampling and cultivation, Bk the effect of the k-th species, Ykl the
effect of the I-th native habitat type within the k-th species, tklm the effect of the m-th
progeny within the I-th native habitat within the k-th species, @k the regression coefficient
between trait value and seed mass in the k-th species, seed massi is the fresh mass of the i-
th seed and ¢ijklm the residual variation of the i-th individual.

Model parameters and effects were estimated in a Bayesian framework (see Suppl. Methods
2 for details) using the WINBUGS @ software (Lunn et al. 2000). Bayesian methods can
easily accommodate for unbalanced / incomplete experimental designs (Browne & Draper
2006) (erratic seed output (Suppl. Tables St and S2) made a balanced design impossible in
our study).

Conventional hypothesis testing of the significance of effects can be performed
using the 959 posterior distribution of effects (Song 2007). In this context, credible intervals
are treated as the Bayesian analogs of confidence intervals: an estimated parameter has 959%
of chance to be within the credible interval (Ellison 1996): parameters for which zero falls

outside the credible interval are considered significantly different from zero. The statistical
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consequences of multiple testing were evaluated by computing the Bayesian analogue of

False Discovery Rate (FDR; Benjamini & Hochberg, 1995, Miranda-Moreno et al. 2007).

Bayesian estimation of maternal family variance effects

We computed the ratio of maternal family variance (which include truly genetic,
epigenetic and possibly non-genetic maternal effects, and which we summarise as 12M) to
total phenotypic variance (02P). To estimate variances, we used a reduced version of linear
model (1) restricted to family variations within each species. Phenotypic values were broken
down as follows:

Yijm = u + 0j + Tm + &ijm (2),
and the ratio of maternal family variance to total variance was estimated as:
02M / 62P = 621/ 62Y.

Maternal family effects were estimated by fitting a quantitative-genetic hierarchical
model by a Bayesian inference method of variance partitioning (Suppl. Methods 3). This
simplified model was preferred to the full model to compute variance components because
(i) it is designed to directly estimate variance components, thus saving computation time
and (ii) the maternal family-level component (62M) we wished to obtain included all
sources of among-family variation, including habitat, but not include species effects (each

species is treated separately).

Phenotypic correlations between traits

We estimated phenotypic correlations both at the individual (seedling) and at the
maternal family level, using observed individual phenotypic values of seedlings and
Bayesian estimates of maternal family values, respectively. The latter were computed as the
sum of all sensu lato ‘genetic’ factors from Equation (1): Y’klm = p + Bk + vkl + tklm.. The
sum of these factors conveys the mean phenotypic value of each progeny free from seed
mass and year effects (which represent ‘environmental maternal effects’). Phenotypic
correlations were calculated using Pearson’s coefficient. Significance at two-tailed o = 0.05
was tested by the cor.test function in R (R Development Core Team 2008). False Discovery

Rate (FDR; Benjamini & Hochberg 1995) was computed for all correlation matrices.
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Results

At the intra-specific level, native habitat had a significant effect on eighteen out of
twenty-three traits in E. falcata, and fifteen out of twenty-three in E. grandiflora (Fig. 2 and
Suppl. Tables S3 to S6). Both species displayed significant variation among native habitats
for growth traits (including height and diameter; height and diameter growth rates; total,
root and leaf mass): seedlings from bottomlands grew faster and produced more biomass
than those from slopes and hilltops. Growth rate varied significantly among native habitats
at early stages in both species, but this effect vanished after twelve and eighteen months for
E. grandiflora and E. falcata respectively. In both species, 813C, leaf area and leaf mass were
larger, and N content smaller, in seedlings from bottomlands than from the other two
habitats. E. falcata seedlings from bottomlands showed lower LAR, but higher LM, than
those from slopes and hilltops. For E. grandiflora, Asat was higher in bottomland seedlings
than in those from hilltops. We did not find any significant variation in RMR among native
habitats. We estimated the expected rate of false positives (false discovery rate) as 0.89%

with a single test alpha = 59 as used here.
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Figure 2: Phenotypic differentiation among habitat types for growth, biomass allocation and leaf traits for two

species (Upper pane: Eperua falcata; lower pane: Eperua grandiflora) sampled at Paracou, French Guiana.

Bayesian estimates Of departures Of each group from the glObZ{l mean are ShOWl’l as boxes; t—bars ShOW the 95%

Bayesian credible interval of the estimated parameters. Figures above each plot provide the within—species trait

means, which correspond to the zero value in the plots. Units for each trait are provided in Table 1. For each plot:

left box: hilltop; middle box: slope; right box: bottomland. Stars indicate a significant effect of habitat type.
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The two species displayed significant differences for a subset of the recorded traits

(Suppl. Tables S3 to S6): E. falcata seedlings had significantly smaller stems, higher LA and

LMR, higher %N and lower LM A than E. grandiflora. No difference was detected for growth

rate, biomass accumulation, Asat or 813C. Nine traits (LM R24, LAR24, D18, D24, H6, Hiz,

H18, LM A24 and 2 N18; Suppl. Tables S3-S6) had significant differences at both the intra-

and interspecific level. For these traits, intraspecific trends ran contrary to the interspecific

ones (Fig. 3, Suppl. Tables S3-S6): that is, the overall direction of change between same-

species hilltop and bottomland subpopulations was contrary to the change between hilltop-

preferring E. grandiflora and bottomland-preferring E. falcata. None of the traits showing

significant differences among hilltop and bottomland subpopulations also showed

significant differences in the same direction between hilltop-preferring E. grandiflora and
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Figure 3: Comparison of the direction of trait value change between
habitats (within species) and between species for traits with significant
differences both at the intraspecific and at the interspecific level (see
Supplementary Tables S3-S6 for raw results). Trait names and units as
described in Table 1. B = bottomlands; S = slopes; H = hilltops; sp =
species-level values. Black symbols: Bayesian posterior medians for
Eperua falcata; white symbols: Bayesian posterior medians for Eperua
grandiflora. Vertical lines: Bayesian 950 credible intervals. Non-
overlapping credible intervals between two values imply significant

differences.
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bottomland-preferring E. falcata.
Four traits (RMR24, Di824,
Hi218 and Asat; Suppl. Tables
S3-S6) showed such a trend, but
for none of them were effects
significant both at the species
and at the subpopulation level.
Cofactors representing
maternally transmitted
environmental effects (year of
fruit set and seed mass) also
influenced several traits (Suppl.
Tables S3 to S6).

The maternal family
effect (which is obtained
independently  from  native
habitat effect described above)
was significant for all traits in
both species (Suppl. Tables S3 to

S6). Ratios of maternal family-

to-total variance (62M / ©2P)



ol o%p (%)

o'l o'p (%)

ranged between 1.2 % (H1824; 950 credible interval (c.i.0.95) = 0.007-7.2 %) and 10.1 % (Hi8;

€.i.0.95 = 4.9-20.5 %) in E. falcata, and from 0.0200 (LM A18; c.i.0.95 = 0.00003-2.61 %) to 25.4

60

o% (LA24; c.i.0.95 = 6-58 %) in E.

Eperua falcata (upper panc) and Eperua grandiflora (lower p;me), T

0

E. falcata
50 - ) .
w0 grandiflora (Fig. 4 and Suppl.
30 Table S7). Credible intervals
20 ST - . - - .
1 T LT Lo T T g - 1 were larger in E. grandiflora than
"] STEEE L BE ST oBs * grandf

in E. falcata (Suppl. Table Sy)

probably due to differences in

-

T L - sample size (Suppl. Table S1).

Correlation matrices

T . Ogn were very similar between the

two species (Suppl. Fig. S3 and
S4). Most

significant correlation at the

traits showed

Figure 4: Boxplots of Bayesian posteriors of 62M/G2P for all traits for

“rait
names as described in Table 1.

individual seedling level (raw
phenotypic data), but not at the maternal family level (capturing maternally inherited
effects on traits). Seedling-level and progeny-level trait correlation matrices, if both
significant, always had the same sign; we did not observe any significant family-level
correlation without matching significant seedling-level correlation. At the seedling level,
two main correlation groups emerged: dimensions, biomass and leaf traits (Table 1 and
Suppl. Fig. S3 and S4) were tightly correlated; allocation traits were all negatively correlated
with the remaining traits and had a mixed pattern of correlation to each other. Leaf mass
per area (LMA) was somewhat intermediate, showing both positive and negative
correlations with dimension, leaf and biomass traits and positive correlation with RMR. At
the maternal family level, traits such as Asat and 813C retained their positive correlation
with biomass traits (but not with dimension traits) and their negative correlation with
allocation traits; the latter globally retained their negative correlation with all other traits
and the positive correlation between LAR and LMR (although fewer correlations were

significant in E. grandiflora than in E. falcata). The FDR was smaller than 206 for all matrices

for both the 59 and the 196 significance threshold (Suppl. Fig. S3 and S4).
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Discussion

Divergence among sub-populations and maternal families was apparent for several
traits, indicating the presence of maternally inherited variability in both species, in
agreement with existing estimates of quantitative trait diversity in wild tree populations
(Cornelius 1994, Scotti et al. 2010, Coutand et al. 2010).

After removal of environmentally derived maternal effects (as described by seed
mass and year of fructification), native habitat explained a significant fraction of
phenotypic differentiation for several leaf- or plant-level traits. These effects are relatively
small (Suppl. Fig. S2) but significant, which is quite surprising, considering the small spatial
scale at which they occur. A subset of these traits may show divergence between sub-
populations only because they are correlated with traits that are involved in some adaptively
meaningful divergence (Lande & Arnold 1983). The analysis of phenotypic correlations at
the progeny level actually reveals that twenty of the thirty-three traits (61%) showing some
degree of divergence are correlated to at least another divergent trait. Because maternal
family level correlations were estimated on mean maternal family phenotypic values
(which do not include seed mass and year-of-production effects), the correlations between
traits is likely driven by several factors (including epigenetic effects, pleiotropy, and
physical QTL linkage), which we cannot break apart with the current data set.

Nine traits (Fig. 3) displayed divergence both between species and between
subpopulations within species. For all these traits, the intraspecific patterns ran opposite to
the interspecific one. This suggests that intraspecific trait distributions may be unimodal
functions of environmental variables with peak positions that differ between species
("reaction norm shift": Figure 3; figure 5 in Albert et al., 2010, Crispo, 2007). In such
conditions, if the span of environmental conditions sampled is limited relative to the extent
of such unimodal distributions, one may observe the kind of patterns reported here, with
intraspecific trends contrary to interspecific ones (Albert et al. 2010). Four additional traits
(RMR24, D1824, Hi1218 and Amaxi8; Suppl. Tables S3-S6) had monotonic intraspecific
trends that were concordant with interspecific ones, but without significant effects at either
the species or the population level, or both. These results show that, at least for a relatively
large subset of traits (9 out of 23, or 399), it is possible to detect intraspecific variation for
those traits showing interspecific variation along the same environmental gradients. This
is in agreement with the hypothesis that the differentiation processes currently affecting

within-population diversity may be the same as the ones that caused species divergence,
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although our observations require confirmation by functional-ecological experiments.

The maternally transmitted component of both trait divergence and trait
correlations may have multiple origins:
(a) Environmentally driven maternal effects (i.e. variation in resource availability
transmitted to seedlings through seed resources) can influence seedling growth (Gonzalez-
Rodriguez et al. 2011, Gonzalez-Rodriguez et al. 2012); in our study, these were controlled
through modelling of the effect of both seed mass and year of seed set, which are estimated
separately from maternal family effect; therefore we suggest that these effects should be
negligible in our estimation of sensu lato genetic factors, although some cases of maternal
background X environmental effects have been reported (Rice et al. 1993, Gonzélez-
Rodriguez et al. 2om).
(b) “Epigenetic” maternal effects (mainly due to the transient transmission of gene
expression states through the embryo) can contribute to similarity of traits within maternal
families, thus inflating maternal family effects. Epigenetic inheritance has been proven to
occur in trees (Rix et al. 2012), although its overall impact on trait variance was negligible.
It is not possible to estimate the importance of such effects in our study, and they can clearly
contribute to trait divergence among maternal families from different native habitats, if
mother trees transmit environmentally induced gene expression states to their progeny.
These variations in epigenetic state may have an adaptive meaning, if epigenetically
inherited trait values confer higher fitness in the maternal habitat.
(c) Truly heritable (additive and non-additive) genetic effects may also contribute to trait
divergence, and also have an adaptive meaning, for the same reasons as in (b). Two
arguments let us think that “truly genetic” effects may account for at least part of the
observed divergence between sub-populations. First, the same E. falcata adult tree
population used for the present study displayed molecular-genetic divergence between
habitats for genes involved in response to stresses related to soil water content (Audigeos et
al. 2013); this supports the possibility that genetic structuring can occur in these populations.
Secondly, we have shown that there are significant phenotypic differences between
maternal families within habitats. If habitat-driven differentiation were only caused by
epigenetic effects related to environmental differences, variation between same-habitat
maternal families should be negligible, which is not the case in our results. Traits that had
large maternal family variance components (62M/G2P) in our study (e.g. height and

biomass traits; leaf area; Fig. 4) often also showed high heritability in other tropical or
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temperate tree species (Visquez & Dvorak 1996, Hodge et al. 2002, Carnegie et al. 2004,
Navarro et al. 2004, Scotti-Saintagne et al. 2004, Costa e Silva et al. 2005, Sotelo-Montes et
al. 2007, Callister & Collins 2008, Ward et al. 2008, Scotti et al. 2010), suggesting that a non
negligible part of the phenotypic divergence among maternal families may be due to true
genetic factors; it has to be noted that heritability estimates are generally obtained at the
species or at the whole-population level, without considerations for environmental
subdivision, and therefore our 62M/G2P estimates are properly comparable to previous
studies. Finally, it has been proven that plant populations can show genetic divergence at
functional traits even if they are potentially connected by migration (Hovenden & Vander
Schoor 2004, Byars et al. 2007) or have been shown to undergo strong gene flow (Gonzalo-
Turpin & Hazard 2009).

Whatever the mechanistic base of phenotypic divergence between sub-populations
from different native habitats, how likely is it that these differences have arisen because of
neutral processes, e.g. to spatial genetic structure (due to local inbreeding)? Our study plot
is a 30om-sided square, and the largest possible distance between trees is approximately 425
m, within Eperua gene dispersal distance (Hardy et al. 2006); gene flow is thus possible
between the different habitat types. Moreover, seeds were sampled in a habitat mosaic, and
mother trees inhabiting a same habitat type are not on average closer than trees inhabiting
different habitats (Fig. 1). Thus, neutral divergence induced by neutral spatial genetic
structure seems unlikely.

Several studies on plants have shown divergence in adaptive traits along
environmental gradients (Kawecki & Ebert 2004, Carlson et al. 2011), particularly with
respect to edaphic factors and water-logging conditions (Silva et al. 2010). The existence of
sensu lato heritable traits showing highly local divergence between sub-populations
suggests that local adaptation at short geographical distances may occur (Ehrlich & Raven
1969, Schemske 1984, Jump et al. 2006, Turner et al. 2010) in presence of gene flow, which is
precisely the sense given by Kawecki (2004) to the term “local adaptation”. Conditions for
highly local adaptation are not unlikely in tropical rainforests, based on evidence about local
species distribution (ter Steege & Hammond, 2001) and the association between functional
traits and habitats (Baraloto et al. 2005) over short spatial scales (< 50 meters) (Kraft et al.
2010).

Functional considerations can help the interpretation of the observed differences

among seedlings native from different habitats. A higher productivity of seedlings from
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bottomlands as compared to the other two habitats is consistent with larger leaf area and
higher Asat, since these seedlings are therefore able to assimilate more carbon, use it to
synthesise more biomass, and eventually allocate it to growth. This is consistent with the
results of previous studies revealing a trend towards increasing growth performances from
drier to wetter habitats (Russo et al. 2005, Kariuki et al. 2006, Sanchez-Gomez et al. 2006,
Ferry et al. 2010). LMR and LAR were slightly lower in E. falcata seedlings from
bottomlands, suggesting that they invest more biomass in roots and stems than in leaves.
This is consistent with frequent water-logging events that drastically reduce Oz availability
in the soil and decrease hydraulic conductivity of roots, with consequences similar to those
of drought (Ponnamperuma 1972). Lower LMR and LAR would also contribute to reducing
water loss through a lower leaf area per unit of plant mass (Poorter & Markesteijn 2008).
Higher LMA in bottomland seedlings also permits a reduction of water loss through the
reduction of transpiring leaf area at the leaf level (Poorter et al. 2009). In parallel, higher
investment in root biomass would enhance water capture ability during dry periods as well
as root Oz absorption during wet periods. Furthermore, bottomland seedlings of both
species display higher water use efficiency (i.e. less negative 013C) than slope or hilltop
seedlings, which means that, during photosynthesis, they use less water for the same
amount of CO2 assimilation (Farquhar et al. 1982). This trade-off in water and carbon use
at leaf level is an efficient strategy when soil water resources are limiting (e. g. Ehleringer
& Cooper 1988) not only on hilltops but also in the bottomlands (Baraloto et al. 2007).
Finally, variations of N content are well identified as a determinant of photosynthetic
capacities (Reich et al. 1994), as revealed by the strong correlations between leaf nitrogen
and Asat. In natural conditions, leaf nitrogen and foliar N:P ratios are known to be highly
dependent upon soil chemical properties (Townsend et al. 2007), and the dependence of
Amax to N is expected to be stronger in N-limiting habitats than in P- or Ca- limiting
habitats. Bottomlands have higher N content and lower P content than hilltop habitats
(Ferry et al. 2010, Luizao et al. 2004), and we observe here lower %N in bottomland than in
hilltop seedlings. This suggests that the faster-growing bottomland seedlings, which also
have higher photosynthetic rates, have lower nitrogen content, contrary to what is expected
- at the interspecific level — according to the World Leaf Economic Spectrum (Donovan et

al. 2011).
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Conclusion

We detected phenotypic divergence for growth and physiological traits occurring
over very short spatial distances within a habitat mosaic. This suggests that large reservoirs
of within-species adaptive potential are maintained by trait filtering caused by niche
partitioning and habitat associations (Russo et al. 2005, Kraft et al. 2010), and possibly by
local adaptive processes. Species displaying such variation may respond more easily to
environmental changes through micro-evolution (by being able to react adaptively to the
expected impact of global change), if at least part of the variation is heritable or is caused
by adaptive plasticity. It is worth remembering that epigenetic (maternal) effects can be
considered as heritable in the broad-sense (Klironomos et al. 2013, Bossdorf et al. 2008). The
mechanisms underlying such local intra-specific divergence may also turn out to play a
major role in the generation of the outstanding diversity in tropical forest ecosystems and,
more generally, to be a fundamental mechanism in the maintenance of trait variation in

natural populations.
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Article n°4 - Supplementary methods

Method 1 - Design of the incomplete randomized block experiments

Each block was made of sixteen seedlings from four different maternal families (four
seedlings per family). To obtain this design, we proceeded as follows. Each block was
randomly assigned to a given position in the glasshouse. Next, sets of four families were
randomly assigned to blocks, then seedlings from each family were assigned to each block
containing that family, and finally the sixteen seedlings belonging to a block were randomly
assigned positions within the block. Seedlings were submitted to daily and seasonal natural
variations of irradiance. They were maintained in non-limiting water conditions (i.e., soil
water content close to field capacity, i.e. around 0.20 m3 m-3) throughout the experiment
(i.e. 24 months) by watering the pots every second or third morning. Homogeneity of the
environmental conditions in the glasshouse (i.e. air temperature, air humidity, radiation)
was tested twice a year over a 3 week’s period. Air temperature and humidity (average 28.6
+ 2.2 °C and 72.7 + 8.69%, respectively) were recorded at three different locations in the
glasshouse using a temperature and relative humidity probe (HMP4s, Yaisala, Helsinky,
Finland) connected to a CR10X datalogger (Campbell Scientific Inc., Logan, UT, USA).
Photosynthetic photon flux density (PPFD) was measured above each block using a linear
PAR ceptometer (AccuPar, Decagon Devices, Pullman, WA, USA) and compared with
incident photosynthetic photon flux density outside the glasshouse. This allowed
calculating a value of relative irradiance for each block and an average relative irradiance in
the glasshouse, which was about 14.3 + 2.3 9% over the study period. To avoid any competition
for light among the plants, pots were occasionally turned or their position swapped within

the block if necessary to minimise vertical overlap of leaves between seedlings.

Method 2 - Bayesian model of phenotypic value decomposition

Phenotypic differences among species, habitats-of-provenance and maternal families
were detected using a hierarchical linear model including seed mass effects and the three
levels of genetic divergence (species, provenance, and families), as shown in the ‘conceptual
model’ figure:

For all individuals “i”:

Yijklm~N(meanjjkim,Tres)
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meanijkim = 4 + @ + Pk + Ykl + tklm + (pk x Seed massi)
“Y” corresponds to the individual value for the phenotypic character. “tres” corresponds to
residual precision (1 / “within-groups” variance) of phenotypic variations. The term “a”
corresponds to the effect of the different years of seed sampling and culture, “B” corresponds
to species effect, “y” corresponds to provenance effect within each species (we allow each
species to respond differently to soil provenance), and “1” corresponds to the effect of
maternal family (in terms of mother tree identity) within each species and soil of
provenance. Then, the term “@” is the regression coefficient between trait value and seed
mass. We also defined one parameter per species in order to allow for divergent effects of
seed mass variation in the two species. This coefficient may be null, suggesting that intra-

specific variations in seed mass does not affect phenotypic variations.

Prior definition:
All parameters were sorted using non-informative priors:
Tres ~ Gamma(0.0001,0.0001)
% ~ N(0.00001,0.00001)
for all year “5” : aj ~ N(0.00001,0.00001)
for all species “k” : Bk ~ N(0.00001,0.00001)
for all provenance “l” (within each species k): Ykl ~ N(o.00001,0.00001)
for all maternal families “m” (within each provenance | and species k): tklm -

N (0.00001,0.00001)

for all species “k” : k ~ N(0.00001,0.00001)

The model was made identifiable by defining constraint £ aj = o for each factor.
Model was computed using 1 000 000 iterations with a burning of 100 0oo and a thinning of

500. Parameters were estimates with 9596 credible interval.

A parameter with 950 credible interval not overlapping o indicates that the
phenotypic value of the group diverges to the phenotypic mean with a probability of 95%.
Two groups identified by the same component (e.g. two habitats within the same species,

for a given trait) are considered as different if their 9596 credible intervals do not overlap.

Method 3 - Estimation of 02m/02p with a Bayesian two-ways analysis of variance
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Heritability was estimated at intra-specific level by estimation of ‘among-family’
exact precision.
For all individuals,
Traitjm ~N(mean ijm,Tres)

meanim = 4 + 0j + Tm

For all years of sampling and culture,
aj ~ N(o, Tyear)

For all maternal families,

tm ~ N(o, Tprogeny)

Priors definition

% ~ N(0.00001,0.00001)

Tres ~ Gamma(0.0001,0.0001)

Tyears ~ Gamma(0.0001,0.0001)

Tprogeny ~ Gamma(0.0001,0.0001)

We computed 62M/62P where 62M is the genetic variance “among groups” (inverse
of “among groups” precision TM), 62P the total phenotypic variance (sum of the inverse of
“among families” precision TM plus the inverse of “among years” precision Tyears, plus the
inverse of residual precision Tres).

Model was computed using 500 000 iterations with a burning of 2000 and a thinning

from 20 to 50 depending on the different traits.
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Article n°4 - Supplementary figures

Elevation

Water-logging

] 1: Permanent Water-logging.
flooding events

[[] 2: seasonalwater-logging

[ 3: Surfacewater-flow

Soil drainage

1 1: Hilltops
[] 2: Slopes
[ 3: Bottomland

Alt: Deep soils with alteritic schist
material andvertical drainage

[] vetticaldrainage
B Lateral superficial drainage
D Hygromorphic soil

Figure S1: Three habitats were defined according to elevation, water—logging and soil drainage conditions. Sampled
mother trees are indicated by red circles and numbers.
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Figure S2: Relative size of different effects on trait variability (seed mass effect is not displayed here and therefore
the bars do not sum to 100%).
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Figure S3: Pearson’s correlation between phenotypic traits at seedling and maternal family level for Eperua falcata.
Colours indicate the sign and strength of significant correlations (blue = negative correlation; red = positive
correlation; deeper colours indicate stronger correlation). Empty cells correspond to non-significant correlations (o =
5%). Significance levels: * = 500; ** = 196 or less. FDR: seedling level: 0.07% (a = 50%%) and 0.01% (0. = 19%); maternal

family level: 0.49% (0 = 59%) and 0.069% (0 = 19%).
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Figure S4: Pearson’s correlation between phenotypic traits at seedling and maternal family level for Eperua grandiflora.
Colours indicate the sign and strength of significant correlations (blue = negative correlation; red = positive correlation;
deeper colours indicate stronger correlation). Empty cells correspond to non-significant correlations (a = 5%).
Significance levels: * = 500; ** = 106 or less. FDR: seedling level: 0.200 (0 = 59%) and 0.04% (0 = 190); maternal family level:

1.29% (0 = 5%) and 0.3% (O = 19%).
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Article n°4 - Supplementary tables

Table St: Sampling size. Nprogeny indicates the number of mother trees (maternal
families) and nseedlings the number of seedlings used in the analysis.

Provenance Nprogeny Neediings (18 months) Nseedlings (24 months)
Bottomland 10 425 180
E. falcata Slope 14 538 274
Hilltop 10 400 202
Bottomland 2 58 26
E. grandiflora Slope 5 155 100
Hilltop 3 61 44
Total 44 1637 826

Table S2: Sampling size for each mother tree and year of fructification.

Mother tree 2006 2007 2008
1 0 7 0
2 60 0 i
3 0 20 48
4 0 12 i
Bottomland 2 0 12 0
6 40 ] 28
7 47 ] 0
8 0 12 43
9 0 12 i
10 0 52 27
11 0 16 0
12 18 0 i
13 21 ] il
14 5 0 0
15 0 17 0
~§ 16 0 7 0
3 sloge| ] p : s
‘E 19 0 52 i
20 45 ] 24
21 12 o 0
22 0 20 31
23 0 30 38
24 0 51 20
25 0 0 44
26 20 o i
27 53 0 0
28 59 0 0
Hilltop 29 0 12 0
30 0 12 43
31 0 48 23
32 0 36 i
33 0 7 i
34 0 38 i
Bottomland i 0 ¢ 0
o 36 0 0 52
Ny 37 0 0 20
;% 38 0 0 64
= Slope 39 0 8 20
§ 40 0 12 i
30 41 0 31 0
$ 42 0 0 38
= Hilltop 43 0 0 15
44 0 g 0
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Abstract

The impact of drought and flooding stress on functional traits and fitness was
studied in populations of seedlings from contrasting habitats, which have previously been
shown to display phenotypic differences in controlled conditions.

All provenances responded similarly to limiting conditions, with overall reduced
growth and decreased specific leaf area under drought, and with changes in biomass
allocation and decreased specific leaf area under flooding. Significant provenance x
treatment interactions were observed, suggesting the possible existence of adaptive
responses; however, these interactions were mostly due to the reduction of differences
between provenances observed in limiting conditions. Trait correlation matrices also
differed between provenance x treatment combinations, which may indicate an effect of
differential active responses to stress. Finally, it was shown that known functional traits
such as water use efficiency and specific leaf area have an effect on fitness in all
environments, and although it could not be proven that provenances had the most adaptive
trait values in the treatment that mimicked their environment of origin, observed trend

suggest that the subpopulations may undergo local adaptation.
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Introduction

The way populations and species vary in space and time in response to
environmental cues has captivated the attention of biologists for a very long time (Darwin
1859). Mechanisms underlying the adaptation of plants to environmental variation both in
space and time are a major focus in biology, ecology and environmental science, as plant
populations and communities are the foundation of most ecosystems. Plants that survive
and reproduce in a given environment necessarily cope with its peculiarities, and are
therefore able to face challenges arising in, and exploit resources provided by, that particular
set of biotic and abiotic conditions (Delph & Kelly 2013). When plant species occur in
diverse habitats, a main tenet is that their populations may exhibit “local adaptation”
(Endler 1977), which means that the variability of their traits allows for the (potential)
maximisation of fitness in each environment. Local adaptation sensu stricto implies genetic
divergence of populations under the effect of natural selection (Kawecki & Ebert 2004), but
the role of phenotypic plasticity in the maintenance of populations in variable environments
is also widely acknowledged (Miner et al. 2005).

Traits that are involved in adaptation to variable environmental conditions display
GxE (genotype-by-environment) interactions, which indicate differences among the
reaction norms of different genotypes (Kruuk et al. 2008). GXE interactions are suggestive
of local adaptation when the trait is involved in the determination of fitness (Conner &
Hartl 2004). The way individual traits affect survival and reproduction is summarised by
their “selection gradients” (Lande & Arnold 1983), which describe the relationship between
the value of a trait and (components of) fitness. It is common to observe that the trait values
that maximise fitness vary as a function of the environment, and therefore populations
adapted to different environments have different values of a trait. Relating trait values to
local environment and to fitness is the basis for the stringent demonstration of local
adaptation (Endler 1986, Linnen et al. 2009). The role a trait plays in determining individual
fitness is ultimately at the core of the (evolutionary) definition of a “functional trait”
(Violle et al. 2007); therefore, studying the distribution of traits in natural populations and
their effect on fitness is a key to the understanding of functional relationships of
populations with their habitat.

The investigation of how populations adapt to variable environments and
consequently diverge phenotypically is all the more intriguing in tropical rainforest

ecosystems, which harbour exceedingly large amounts of phenotypic diversity. At least part
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of that diversity is thought to be driven by adaptive processes, according to the ‘niche
theory’ of biodiversity (Hutchinson 1959), which has received at least indirect confirmation
by the observation of association between species and environmental parameters (Sabatier
et al. 1997, John et al. 2007, Vincent et al. 201). Because species diversification must
ultimately stem from initial genetic divergence between conspecific populations, studying
mechanisms underlying genetic differentiation among populations has a direct impact on
our understanding of biodiversity. A further aspect that makes tropical lowland rainforests
appealing from the theoretical standpoint is the way habitat properties can interact with
evolutionary processes. In these ecosystems, significant environmental variation occurs at
the very local geographical scale, driven by topography and associated soil water content
constraints. In bottomlands, forest trees face seasonal or permanent water-logging and
associated flooding conditions (Ferry et al. 2010). Prolonged water-logging commonly
results in soil hypoxia (Ponnamperuma 1972) that affects below-ground respiration (Epron
et al. 2006), induces a decrease in available N (Luizao et al. 2004), and may severely constrain
the survival of trees. Soil instability along the slopes increases the frequency of tree fall
events that contribute to change the levels of available light (Ferry et al. 2010), and slope
itself, plus reduced soil depth, induce water shortages (Sabatier et al. 1997). Moreover,
topography variations affect the soil water regime through a decrease in soil water
availability from bottomland to hilltops (Daws et al. 2002), but hilltops (often referred to as
“terra firme”) display deeper soils and therefore larger reservoirs of available soil water. This
patchiness may have a significant effect on species and population structure in addition to
the widely described successional effect controlled by light availability and related to gaps
in the canopy (Ferry et al. 2010). Numerous sympatric tree species display a non-random
spatial distribution related to soil variations (Clark et al. 1998, Clark et al. 1999, Palmiotto et
al. 2004), in association with differences in tolerance to seasonal drought (Engelbrecht et al.
2007) or flooding (Lopez & Kursar 2003, Baraloto et al. 2007). Other species seem to be more
generalist, and are able to colonise and develop in all three habitat types. Eperua falcata Aubl,
widely present across the Guiana shield, is one of such species. Significant genetic
structuring in relation with habitat-soil related types was described for several genes
involved in water relations within E. falcata (Audigeos et al. 2013), and significant
phenotypic divergence was detected under common conditions among seedlings collected
from E falcata populations growing in the three habitats (Brousseau et al. 2013). These

observations were made under conditions of close to optimal water supply, and the
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sensitivity of the three sub-populations to either water-logging or soil water deficit was not
addressed.

Selective pressure caused water-logging and drought is expected to act at very early
life stages, when large numbers of seedlings die. The sensitivity of seedlings and saplings
to water-logging and soil water deficit is therefore relevant to understand how local
environment may result in selection.

In this study, we used a provenance test to investigate whether seedlings originating
from habitats with highly contrasted soil water conditions display different growth, leaf
traits, and biomass allocation patterns when submitted to contrasting soil water conditions.
Seedling populations originated from three different habitats: bottomland, slope and hilltop
(Brousseau et al. 2013). Eighteen months old seedlings from this test were submitted during
6 months to three contrasted levels of water availability (severe water deficit, optimal water
supply and lasting water-logging). We hypothesized that seedlings from hilltop
provenances would display a larger tolerance to soil water deficit and a smaller one to water-
logging with respect to bottomland seedlings.

Differences among provenances in tolerance to water deficit or water-logging were
assessed from the reduction in growth, biomass accumulation and from changes in relative
biomass allocation to shoots and roots, as well as in leaf traits. We used a Bayesian approach
to assess the relative effects of habitat among sub-populations and of treatments on seedling
growth, and leaf traits. Using biomass accumulation traits as proxies for fitness, the extent

of local adaptation was assessed.
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Material and methods

Eperua falcata (Aubl.) (Fabaceae) is abundant in the coastal plains of French Guiana
and the Guyana shield, and has a clear preference for seasonally water-logged bottomlands,
but occurs also on seasonally dry slopes and well-drained hilltops (Baraloto et al. 2007). E.
falcata is bat-pollinated (Cowan 1975) and disperses its heavy seeds by explosive dehiscence
and gravity at short distances of a few meters (Forget 1989). Gene dispersal distance is

probably about 140-500 m (Hardy, pers. comm.).

Plant material and growth conditions

The protocol to obtain the seedlings used in this experiment was already described
in details by Brousseau et al. (2013). Basically, seeds allowing studying a total of 1363
seedlings in the present experiment were sampled as progenies from 34 mother trees in the
9-ha undisturbed plot 6 of the Paracou forest inventory site (5°18’N, 52°53W) of French
Guiana, South America (Gourlet-Fleury et al. 2004). To reach the required number of
seedlings from each mother tree, seeds were collected over three successive fructification
periods (February-March 2006, 2007 and 2008). The year of seed sampling was then taken
into account in the different statistical analyses. This site is characterized by a rugged
landscape formed by the alternation of 40 to so m-high hills, hill slopes, and bottomlands,
varying in soil drainage type and water table depth. Seeds were assigned to one of the three
habitats in agreement with soil properties and the topographic position of their mother trees:
“Bottomlands” (B) with hydromorphic soils and a water table between o and 60 cm depth;
“Slopes” (S) with a water-table always below 100 cm; “Hilltops” (H), with deep soils, deep
vertical drainage and a water-table always below 150 cm. Seeds were laid down in
germination boxes filled with a substrate made of river sand that was maintained humid
using a sprinkler system. Two months after germination, they were transplanted into
individual 12-1 pots containing a mix of sand and A horizon soil (30/70 v/v). They were
transferred into a glasshouse (ambient air temperature: 28.6 + 2.2 °C; relative air humidity:
72.7 + 8.69%; relative irradiance: 14.3 + 2.3 %). More details may be found in Brousseau et al.
(2013).

During 18 months, seedlings were maintained at a gravimetric soil water content
close to field capacity, i.e. around 20g kg™ dry soil by watering the pots every second or third
morning. After this date, 1242 seedlings were assigned to three treatments:

A control treatment (C) with pots maintained close to field capacity by manually
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watering every second or third day;

A water-logging treatment (F), in which each pot was inserted into a larger PVC
container (diameter = 30 cm; height = 50 cm; volume = 35 1) allowing to maintain a
permanent water table 3-cm above soil surface; the water level was manually adjusted every
second or third day;

A water deficit treatment (D), in which the seedlings were left without irrigation
until wilting occurred, i.e., when the orientation of the 3-4 most recent leaves changed from
horizontal to close to vertical. Leaf angles were observed every two-three days. After the
onset of leaf wilting, pots were immediately re-irrigated with 50, 100, 150 or 200 ml water
depending on total leaf area and plant size. Pots were weighted 12-18 h after watering to
ensure homogenous drainage with a balance (range so kg + 20g) every second week over the
experiment and when leaf wilting was first observed. This procedure allowed maintaining
soil water content between wilting point and wilting point +100 g kg™ soil water.

Progenies were uniformly assigned to the three treatments while within progenies,
Table 1: Detailed account of the number of individuals in the

seedlings were randomly assigned to )
g y & different treatments.

each  treatment. = Within  each
Control Dry Flooded

treatment, progenies were randomly
Bottomland 180 121 124 425

distributed among blocks of 16
Slope 274 128 136 538

seedlings from 4 different progenies. A
' . Hilltop 202 116 82 400

detailed account of the experimental
656 365 342 1363

design is provided in Table 1.

A subsample of the F and C plants (n = 15 for both) was weighted similarly to test
for the homogeneity within treatments and among progenies and habitats.

Gravimetric soil water content at the end of the experiment (SWCg4 mo) was
measured by sampling ~500 g fresh soil in each pot at the end of the experiment, drying the
samples at 105°C for about 7 days until constant mass. Fresh (FW) and dry (DW) mass

were recorded with a balance (model, accuracy), a weighted, in order to calculate SWCy.,,

mo (%) as: SWCyramo = 100 * %. This value was used to derive actual SWCyg.from the

pot weight at all dates. The changes in whole pot weight were attributed to changes in soil
water content, and in plant fresh weight. The latter were assessed from allometric
relationships between plant height and plant fresh weight recorded at the onset of the

experiment and at the end.
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Plant and leaf traits

Plant height (H, cm) and stem diameter near collar (D, mm) were recorded at the
onset of the experiment when the seedlings were 18 months old and at harvest (end of the
experiment at t = 24 months) to derive mean stem and radial increment rates.

At harvest, six to eight mature and fully expanded leaflets were collected per plant,
close to the top. Fresh leaf area of these leaves was measured with an area meter (Li-2100,
Licor, Lincoln, Nebraska) and leaves were subsequently dried to constant weight at 60 °C
for about three days in order to calculate leaf mass per area ratio (LM A, g m™) as the ratio
of dry mass over fresh leaf area. Leaves, stems and roots were then carefully separated and
the occurrence of adventitious roots above the collar was recorded (presence/absence). The
total fresh leaf area of each plant was measured with an area meter (Li-2100, Licor, Lincoln,
Nebraska). The leaf, root and stem components were then dried to constant weight at 60
°C for about three days and weighted to obtain leaf, root and stem masses (LM, RM and
SM, g). Leaf mass ratio (LMR) and root mass ratio (RMR) were then calculated as the ratio

of leaf or root dry mass over total plant dry mass.

Decompostion of the phenotypic value with a Bayesian modeling approach

Some mortality occurred during the experiment, and the dead plants were excluded
from the analysis. Similarly, some small individuals that never reached the wilting point
were excluded from the analysis.

Due to the complex experimental design (hierarchic effects, uncomplete and
unbalanced dataset), we used a Bayesian model of phenotypic value decomposition to
estimate the respective effects of habitat and soil water availability (water deficit, control,
water-logging) on phenotypic characters. The model included the effects of habitat,
treatment (estimated for each population of provenance) on seedling phenotypic values.
Progeny effects were also included.

The model was corrected by the addition of a factor relative to years of seed sampling
and seedling cultivation. Because each block did not receive seedlings from each habitat,
and was associated with a unique condition, we excluded the ‘block’ effect that made the
model unidentifiable.

Trait[i]~N(mean[i], Tges) (eq.1)
mean[i] = mu + Oyearii) + Oprovenanceli] + Oprovenance [il,treatmentli]

+ Qprogeny/provenance [i]
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In order to make the model identifiable, we constrained X0yer=0 (year effect),

Z0provenance=0 (provenance effect), and Oprovenance,Control = 0 : specifying that “control” is null
means that we defined the “control” treatment as a reference ; individual phenotypic values
depend only on provenance and year. We used non-informative prior for all parameters
(quasi-uniform normal law of large variance). The model was computed using WinBUGS®

(20000 iterations, burning=200, thinning=50).

Phenotypic correlations among traits

Last, we analyzed Pearson’s correlations among phenotypic traits in the different
conditions. We estimated first the overall correlation (all provenances confounded) each
treatment, and the correlation within each provenance and each treatment. Confidence

intervals were obtained by bootstrap (2000 iterations).

Estimation of selection gradients

Because biomass accumulation in tropical tree seedlings is strongly associated to
survival (Clark & Clark 1985, Howe 1990, Gerhardt 1996, Poorter 1999, Gilbert et al. 2001),
we took two traits: His.4 (height change during the stress) and RGs.4 (relative height growth
during the stress), which summarise the capacity to continue accumulating biomass during
the stress experiment, as proxies of the seedling survival component of fitness. Selection
gradients were analysed using the multiple regression approach described in Lande &
Arnold (1983) with three functional traits as explanatory variables: leaf mass per area at 24
months (LMA.,,), carbon isotope discrimination at 18 months (8%Cis), and seed mass (which
is not a seedling trait per se but has an impact on biomass traits). These traits have been
shown to affect fitness in plant populations from contrasting environments (Dudley 1996,
Poorter & Bongers 2006). Both linear and quadratic regressions were tested for LM A, and
dBCjs for the three treatments and both fitness proxies. The hypothesis that we tested is that
each provenance would have the trait value maximising fitness in the treatment
corresponding to its habitat. The correspondence between treatments and habitats was
designed based on known facts on the habitats and the treatments (Control = Hilltop;
Drought = Slope; Flooding = Bottomland). All analyses were performed based on maternal

family means of raw observed values.
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Results

Gravimetric soil water content at the

40

end of the experiment was about 8.93% (sd=
2.90), 19.7% (sd=7.7) and 31.5% (sd=5.68) in
the drought, control and water-logged

treatment, respectively (Fig. 1).

|

Soil water content (%)
30
Il

A synthetic view of the statistical

-- 4 @ oan

results (Table 2) shows that there are

10

significant effects for treatments, provenance

and family (progeny) for all traits.

Figure 1: Boxplots of gravimetric soil water content at
Significant differences were found for the end of the experiment in the three treatments: D,
water deficit; C, control; F, water-logging.
all traits among treatments, but much less so
among provenances. Direct treatment effects always overrode variations among
provenances and variations due to interactions, suggesting that the phenotypic values were
more influenced by the treatments than by the genetic structuring into sub-populations.

Genotype x Environment interaction terms were nonetheless significant for all biomass

traits and for LMA.

Table 2: Summary of the effects of the different factors (Treatment, Provenance, Family, Year) on the different
recorded traits.

s s ™ LM RM SM LA LMA LMA,., RMR SMR LMR SWCtlp
Provenance ns ns * * * * ns ns ns * ns
Treatment % % % B * * * % % * * NA
Interactions ns ns * * * * ns ns ns ns ns ns NA
Year ns * ns * ns ns * * * * ns *
Family % % % E * * * * % % %

Effects of water deficit and water-logging treatments.

In the water deficit treatments, seedlings reached the wilting point at a gravimetric
soil water content of about 8.4%. All seedlings survived the treatment.

Woater deficit affected growth: growth rate, radial growth, biomass accumulation,
and leaf area were smaller than in the controls, fig. 2 & 3. Relative biomass allocation
significantly differed under water deficit with respect to controls, with a larger shoot mass
ratio (SMR) and a lower leaf mass ratio (LMR) in seedlings submitted to water deficit, and
no change in root mass ratio (RMR), fig. 4. At leaf level, water deficit resulted in a visible

increase of leaf mass to area ratio (LMA), fig. s.
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and root mass (RM) at the end of the experiment. Units are grams.
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Surprisingly, despite its duration, water-logging had no effect on biomass
accumulation. Nevertheless, it induced a significant decrease in stem elongation
compensated by a large increase in radial growth, resulting in a significantly higher stem
mass. The large increase in stem volume was accompanied by more limited decreases in leaf

and root mass. Water-logging

o _
also induced significant changes 2
o]
o @ |
in biomass allocation, with a 3 ©
£
higher LMR and RMR. Last, 2 o _
(0]
Water—logging induced the %
: iy 2 S
production of adventitious roots 3
Q
. < o
in about 59% of water-logged 2 ©
seedlings, fig. 6. Water-logging * o _
o I I T
also induced an increase of LMA. c D F

Figure 6: Frequency of the individuals with (blue) and without (grey)
adventives roots in the three treatments (C= control, D=drought,

F=flood).
Provenance effect ood)

A significant effect of provenance was detected for biomass accumulation in leaves,
stems, and roots: seedlings from bottomland displayed significantly higher biomass
accumulation and leaf area than seedlings from the two other provenances. However, we
did not find significant differences in stem growth rate between 18 and 24 months among
provenances. Seedlings from hilltops had higher RMR than seedlings from the two other
provenances, whereas seedlings from bottomland had slightly higher SMR. Last, a gradual
structuring of LMR among provenance was observed: with seedlings from bottomlands

displaying lowest LMR, and seedlings from hilltop the largest LMR.

Interactions effects

All provenances showed similar response to treatments (i.e. no provenance-by-
treatment interactions) for the majority of traits.

For biomass accumulation -for which provenance where significantly different in
control conditions- provenance-by-treatment interactions were significant but resulted in
similar mean biomass accumulation of the different provenance in constraining (drought
or water-logged) conditions. Posterior estimates of provenance contributions to phenotypic
values revealed that such structuring between provenances was clear in control conditions

but disappeared in constrained ones: provenance effects on biomass were comprised

238



between 59.1 to 71.6 g (9500 CI with a median of 65.26g) for seedlings from bottomland,
between 44.2 to 55.2 g for seedlings from slopes (median =49.3) and between 51.8 to 64.18g
for hilltop provenance. Moreover, estimated leaf area was comprised between 1689 to 1984
cm? for seedlings from bottomlands (median=1837 cm2), 1489 to 1740 for seedlings from
slopes (median=1611 cm2), and between 1506 to 1772 cm? for seedlings from hilltops
(median=1641). In the drought and water-logging treatment, no significant differences were
found between provenances in posterior estimates of phenotypic values (i.e. overlapping
95% credible intervals of simulated phenotypic values) in spite of significant overall

provenance effect, see fig. 2to 5.

Variations of phenotypic correlations among treatment and provenances

Trait-trait correlation patterns varied significantly among treatments and among
provenances. In water-logged conditions, the correlation between longitudinal and radial
growth rates was significantly higher for seedlings from hilltops that for seedlings from the
two other provenances. 83C was positively correlated with longitudinal growth rate in
drought and water-logging conditions only. Correlation between d3C and growth rates was
significant for seedlings from hilltops in limiting conditions, but not in controls. RMR was
negatively correlated with growth rates in all cases except for hilltop seedlings under
drought. The correlation between SMR and longitudinal growth rate was not significant in
hilltop seedlings under drought, whereas it was significant in all other groups. LMA was
negatively correlated with longitudinal growth rate in constraining conditions only (but not
for hilltop seedlings in water-logging), and was negatively correlated with radial growth in

drought for all provenances and in water-logging for hilltop seedlings only.

Selection gradients

Out of twelve tests (two fitness estimators x two explanatory traits x three
treatments), eight displayed significant or marginally significant multiple regression
coefficients (Table 3). Coefficients were consistent, for a given combination of predicted
and explanatory variables, across tests. Linear fitness gradients were consistently negative
for LMA and the two quadratic relationships for 03C were concave. However, the
distributions of the independent variables for the three provenances were largely
overlapping in all treatments, thus preventing a test of association between independent

and dependent variables as a function of the provenance. However, some trends can be
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detected, although they are non-significant. Fig. 7 shows the relationship between the His,,
fitness function and LMA for the three treatments. The Slope provenance has the lowest
median for LMA, which corresponds to the highest fitness, in the Drought experiment,
whereas the hilltop provenance has the lowest median in the Control experiment; it also
has the lowest value (the highest fitness) in the Flooding experiment, contrary to the
hypothesis. The plots for the remaining significant fitness gradients are provided as Suppl.
Figure S1; Table 3 reports a verbal evaluation of the concordance between trait patterns and

the local adaptation hypothesis.

Table 3: Coefficients for the linear (o) and the quadratic (B) terms of the regressions. Only (marginally)
significant values are displayed. Rpoxy: trait used as fitness proxy; D: drought; C: control; F: flooding. *: P-
value between o.1 and 0.05; *: P<0.05; **: P<o.o1. Concordance with (trait) hypothesis: visual assessment on

(non significant) relationships between traits, fitness and provenances; YES/NO indicate clear trends;

(YES)/(NO) indicate inconclusive trends.

Proxy Treatment q(LMA24) B(LMA,) concordance a(8Cy) ﬁ(ﬁ"c‘s) concordance
with LMA with §°C
hypothesis hypothesis

Hg,, D -0.5558%* ns YES ns ns -

H., C -0.7304* ns (YES) ns ns -

H., F -0.5851%* ns NO 4.4108° ns YES

RGis., D ns ns - -2.6328° -0.04785" (YES)

RG.s,, C -0.009592** ns (YES) -5.4743* -0.09952% (NO)

RGis,, F -0.005797%% ns NO ns ns -

Drought data (means) Control data (means) Flooded data (means)

H1824 - intercept
=38
Ll

H1824 - intercept
H1824 - intercept

Ll

S -
50 46 A2
146 150 154

40
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60 65 70 55 60 65 280 215 270 265 260
LMA24 LMAZ4 LMA24

Figure 7: Upper panes: estimated selection gradients; lower panes: box plots of the distribution of predictor

variables by provenance in each treatment.
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Discussion

All provenances displayed large responses to both limiting conditions relative to
controls, as expected. Drought conditions significantly reduced seedling growth, decreased
LMR, which has been shown to reduce transpiration and consequently water loss (Chaves
et al. 2003, Bréda et al. 2006), and increased LMA, which contributes to limit water
requirements by reducing the leaf surface per unit of mass (SLA) (Wright 2002, Poorter et
al. 2009). Water-logging induced a shift in stems development: higher SMR, lower RMR
and lower LMR by comparison with plants in control conditions. Such variations in stems
diametric growth may be explained by changes in bark thickness and/or xylem structure
(size and amounts of vessels) (Kozlowski 1997). LMA also increased in flooded conditions,
as observed in drought. These variations in leaf structure may be linked with loss of water
uptake under water-logging (Poorter et al. 2009).

Seedlings from the different provenances displayed both significant differences in
their mean phenotypic value for growth and leaf traits (biomass accumulation, leaf area,
LMR and LMA), and contrasted growth strategies in particular conditions as revealed by
the variations in the strength in the correlations between traits among provenances in
several conditions. Moreover, the different provenances were not equally affected by the
treatments, as revealed by the significant provenance-by-treatment interactions for several
traits. This suggests that evolutionary processes result in heterogeneous distribution of
genetic diversity among habitat types (Schemske 1984). Nevertheless, differences among
the Bayesian posterior distributions of phenotypic values for the three provenances were
clear in control conditions but disappeared in limiting (stressful) conditions, suggesting that
significant interactions are due to the absence of phenotypic differentiation among
provenances in constraining conditions in spite of significant structuring in controlled
conditions. This result is not surprising because non-limiting growth conditions commonly
allow the full expression of genetically driven phenotypic divergences, whereas these
differences are often hidden in constraining condition due to large environmental effects
(Wilson et al. 2006, Sogaard et al. 2008, Sogaard et al. 2009). For example, seedlings from
bottomlands, that produced more biomass than other provenances in control conditions, did
not accumulate more biomass during treatments than seedlings from other provenances.
This is probably because in water-logging conditions, seedlings with larger biomass would
have taken oxygen up from the substrate faster than smaller seedlings and probably suffered

from long-term hypoxia.
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All provenances had similar growth and leaf properties in constraining conditions
(drought or water-logging), suggesting absence of local adaptation to specific stresses, as
already described in numerous species (Hereford 2009). Yet, observed trait differences in
control conditions cannot be easily attributed to pure drift (Brousseau et al. 2013).
Differences in trait-trait correlations between provenances, as a function of treatments, are
also possibly linked to adaptive responses to environmental stresses (Robinson et al. 2009).
The analysis of selection gradients showed that traits such as water use efficiency and leaf
mass per area have an effect on fitness in all environments, indicating that selective
processes operate on seedlings. The distribution of phenotypic values of different
provenances largely overlapped, precluding the possibility to identify provenances
displaying optimum trait values in each treatment. Nevertheless, trends in the two
characters (Table 3, Fig. 7, Suppl. Fig. S1) hint that at least some patterns are compatible
with local adaptation. Ongoing reciprocal transplant experiments in natural conditions will
help clarify such trends.

Local adaptation mechanisms contribute significantly to the maintenance of genetic
and phenotypic diversity (Delph & Kelly 2013), which are the fuel of persistence of plant
populations in a changing environment. Global warming models predict large increases in
atmospheric CO, concentration and temperature by 2100 in Amazonia. No notable change
is expected in annual precipitation but changes in their seasonality, leading to increased
risks of seasonal flooding or drought in this region (Betts et al. 2004, Neelin et al. 2006,
Galbraith et al. 2010). Recent studies, based on both controlled and in situ experiments,
revealed that large scale drought effects have already occurred across Amazonia, and that
the tropical rainforest tree already were severely affected by such drought episodes with
important effects on growth, wood production and the resulting carbon sink (Phillips et al.
2009, Lola da Costa et al. 2010); some of these events have already lead to local tree mortality
(Meir and Woodward 2010); the ability of tropical rainforest tree population to adapt to
current, rapid climate change will depend on their genetic diversity in climate-related
functional traits (Jump 2005, Savolainen 2007, Aiken 2008), that is, in turn, negatively
affected by strong selective pressures exerted by these changes. Integrating the role of
adaptive and plastic responses as those identified here to community-level models of forest

dynamics will lead to better predictions of the impact of global change on forest ecosystems.
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Article n°s - Supplementary figures

Flooded data (means) Control data (means) Drought data (means)
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Figure S1: Additional selection gradient plots
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Preliminary results - Reciprocal transplants

Reciprocal transplants are probably one of the most suitable experimental strategies
to test the hypothesis of local adaptation based on phenotypic traits. This experiment was
set-up during the first year of my PhD (2010), and was coupled with molecular analysis
(AFLPs), already presented in article n°2. The goal of this experiment was to dissociate
genetic and environmental sources of phenotypic variations in natural conditions.

This section aims at briefly describing the experiment, and presents the preliminary

results. However, the experiment will be continued until 2015 at the earliest.

Material and Methods

Study sites and seed sampling

Seeds were sampled from the two populations of Eperua falcata established in the
sites of Laussat (x=214508.277 ; y=606318.383 UTM WGS1984) and Regina (x=362876.245 ;
y=476934.114 UTM WGS1984) in March 2010.

Laussat (W) Regina (E)

Figure 1: Sampling sites, sampled trees (circles) and seedling (triangles), and topography (interpolated
from heterogeneous GPS elevation data).
The two study sites have similar soil properties, but differ in rainfall, with a mean

annual precipitation of 2500 mm and 3500 mm in years 2010 and 2011 leading to longer dry

periods in Laussat (Fig. 2).
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The two sites covered different habitat types but had slight topographic differences

(Fig. 1). Laussat is composed by a permanently water-logged bottomland (elevation= ~38.17

meters) and a plateau of low elevation (~54.65m). Regina is composed by a seasonally water-

logged bottomland with flooding events in rainy season (~56.3m), hilltops of high elevation

(~84.6m) and important slopes (~69.2m).
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Figure 2: Climate diagrams for the two study sites.

In both sites, hygromorphic soils of bottomlands are characterized by a large

accumulation of organic matter until 1 meter traducing that soil formation was dominated

by an excess of water. On the contrary, soils from terra-firme are characteristic of well-

drained ferralitic soils rich in iron oxides with a sand-clay texture allowing free vertical

drainages (Fig. 3).

All Eperua falcate trees of
dbh>20cm were mapped within a
continuous area of 6.7 ha in Regina
(Fig. 1). Due to a higher population
density in Laussat, sampling was
restricted to two areas of 2.5sha and
1.8ha, one in the bottomland and one in
the plateau. Population densities
ranged from 29.9 adult trees/ha to 48.11
trees/’ha in Regina and Laussat

respectively.

Figure 3: Example of soil toposequences from the bottomland

(left) and the plateau (right) of Laussat

Seeds were sampled around fructifying mother trees according to a grid layout; the

identity of surrounding reproductive trees was recorded for each seed. Seeds were sown in

individual pots containing forest soils

emerged.

in a shade-house daily watered until cotyledons
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Seedling growth and transplants

About one month after seeds sowing, young .

and vigorous seedlings were transplanted into the

35.27

experimental gardens in the undisturbed forests of

Soil water content (w)

20 raay

Laussat and Regina. Seedlings were randomly i
: [ :

distributed in 12 transplant gardens of dimension 1om

Laussat B
Laussat TF
Regina B
Regina TF

x 1om (3 gardens within each site and local habitat)

) o L Figure 4: Soil water content in each study
with a randomization between blocks within gardens. site and local habirat (averaged over blocks
and over 3 measurements: 09/2012, 04/2012

A total of 813 seedlings were transplanted. and 09/2013)

Figure 4 shows soil water

e content within each local habitat

LAI (m’.m™)

. and transplant site. Finally, we

checked that light irradiance was

A s 3 & similar among the transplant
3 & N &
§ & f & .
¢ - € f gardens by assessing canopy
LAUSSAT REGINA
w) (E)

opening through hemispherical
Figure 5: Leaf area index (LAI) estimated in the transplant sites
(averaged among gardens, right) through hemispherical
photographs (left).

photographs (Fig. 5).

Phenotypic traits measurements

Seedlings survival and growth were followed every six months during the two first
years after transplants, and will be followed once a year until the end of the experiment.
Growth was assessed by measuring height, diameter (and growth rates), the number of
growth units, and the number leaves and leaflets. Leaflet area and total leaf area were
estimated through the allometric relation between leaflet dimensions and their area (Fig. 6).
The relation was calibrated by measuring leaf area with a planimeter for a variety of leaflets
from un-transplanted seedlings. (Relative) stem elongation rate, diameter growth rate, as

well as variations in leaf area between two dates were calculated as follow:
. (Ht2 — Ht1)/Ht1
B t2 —t1

Variations of discrete variables between two dates (variations in growth unit

numbers, number of leaf, and leaflet production) were assessed by calculating the absolute

difference between the two dates.
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Several leaf traits will be analyzed. In

April 2013, one leaflet per seedling was

, < 8 v=0.77580x + 0.00041
| \ | R2=0.0671 o
I\ 1Y , B praluec 22e6 v sampled and leaflet chlorophyll content was
\\ \\ i/ / v« /’,/',’ ~ 9 .,:1' . .
{/, (//\\ b J," assessed using a SPAD. Several disks of leaf
|/ 5 g
' ~ N
/ . .
$ 8 v tissue (154 mm2) were sampled and dried for
< p -
o | 4 R
L. g -1 Q l 3 further measurements of leaf mass per area
( 7:\\) o Ill T ‘| T T
U/ \ . o w0 o (LMA) and leaf nitrogen content. The
length * width (cm.cm) remaining of each leaflet was frozen and store

Figure 6: Allometric relation bewteen leaflets

dimensions and area at -80°C for further genetic investigations. At

the end of the experiment, seedlings will be

destroyed to measure their dry biomass, and biomass allocation to leaves, stems, and roots.

Statistical analysis

I used a linear model of phenotypic value decomposition similar to those used in the
two experiments in glasshouse (articles n°4 & n°s) but extended to include the numerous
factors tested here. Seedlings phenotypic value was thus decomposed into genetic
(‘provenance’) and environmental effects apprehended at both regional and local scales,

with all their interactions. The model was calibrated by a Bayesian method using

OPENBUGS, leading to the formalization:

P~N(mean,;, tg)

mean; = u+a;+ by + ¢, +dpy + g + 1(GxG)j i + I(EXE)  + L1egio(GXE)j 1 + L1ocqi(GXE) i m
mean; is the individual phenotypic value
Tg is the residual precision (1/03)
a; is the effect of the j regional provenance (site)
by is the effect of the k local provenance (local habitat)
c; is the effect of the I regional transplant environment (site)
d,, is the effect of the m local transplant environment (local habitat)
Jimis the effect of the gardens within each | regional transplant and m local habitat
1(GxG)j i is the “gene-by-gene” interaction between regional and local provenance
I(EXE);; is the “environment-by-environment” interaction between regional and local transplant
environments
Legio(GXE), is the regional “gene-by-environment” interaction between regional provenance and regional
transplant environment
Liocai (GXE)y m is the local “gene-by-environment” interaction between local provenance and local transplant

environment
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Thus, each parameter captures the phenotypic difference from the overall global
mean induced by a given level of a given factor. Each parameter was sorted a priori in a non-
informative quasi-uniform distribution (a normal distribution centered on o with large
variance, i.e. a normal distribution of very small precision). As in classical ANOVA, we
used the classical constraint “Y; @; = 0” to make the model identifiable.

For main effects, t consists in defining the effect of a given level as the sum of the
other level effects, and in sorting the effects of all other levels in a non-informative normal

distribution. For example,

Aji—1 = —Qj=3

aj-2~N(0,0.0001)

For interactions terms, it consists in fixing interactions at o for one factor (the factor
is set as a reference), and setting “), a; = 0” for the other factors. For example, for the

interaction ljcqi(GXE)j m

Provenance bottomland transplanted into bottomland:
liocar(GXE)g=1m=1 = 0

Provenance bottomland transplanted into hilltop:
liocar(GXE)g=1m=2 = 0

Provenance hilltop transplanted into bottomland:
liocat (GXE)k=2,m=1 = —liocat (GXE) k=2,m=2
Provenance hilltop transplanted into hilltop:

liocal (GxE)k=2,m=2 ~N(0,0.00001)

Because, the measured

TRANS PROV INT P simplated

characters include different

[ (GxE)y . : :
IO B - (i kinds of data (continuous such

o 2 as height and diameter,

Ko discrete such as the number of

leaves, or binary such as the
?:; . B>H

survival), we used different

statistical distributions to

draw prior distributions of

) ) o phenotypic values: a normal
Figure 7: Phenotypic value decomposition into ‘provenance’,

‘transplant environment’ and their gene-by-environment distribution for continuous
interactions, focusing on local scale.
characters, a Poisson
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distribution for discrete characters, and a Bernoulli distribution for survival. The difference
of number of leaves between two dates (differences between two Poisson distributions) was
drawn in a Skemall distribution. Complete BUGS codes are available in supplementary
materials.

This approach is very powerful for resolving complex linear models with numerous
factors involved, by finely dissecting phenotypic value into interesting effects free from
others sources of variations. Figure 7 shows how phenotypic values were partitioned,

focusing on local effects.
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Preliminary results and brief discussion

Provenance and transplant main effects were significant for numerous traits. Table
1 summarizes the significance of each factor for each phenotypic trait. Detailed figures of
parameters estimated for main effects are provided in supplementary figures S1 to S3.

A significant effect of the regional site of provenance was found for survival, height,
stem elongation rate, diameter growth rate, leaflet production and leaflet. Until 17 months
after transplant, seedlings from Laussat had a greater survival probability than seedlings
from Regina, but this effect became non-significant at 17 months, due to higher death rates
in seedlings from Laussat between 12 and 17 months. From 5 months, seedlings from Laussat
were smaller than seedlings from Regina. These differences appeared before at early-
developmental stages, before the first measurement and were maintained until 17 months.
Seedlings from Laussat had, however, a higher growth rate between 5 and 12 months; this
effect disappeared between 12 and 17 months, and was unsufficient to inhibit differences in
stems elongations installed at early-stages. Total diameter growth rate estimated from s to
17 months were slightly higher in seedlings from Regina, but this effect was insufficient to
lead to significant differences in diameter at 17 months between the two regional
provenances. The number of leaflets produced was equal whatever the provenance. Leaflet
production between 5 and 12 months was slightly higher in seedlings from Laussat but this
effect became non-significant between 12 and 17 months, and was not detected on leaf
production between 5 and 17 months. Seedlings from Regina had slightly higher leaflet area
at 5 and 12 months, but any differences in total leaf area were detected at any date.

Regional transplant site had significant effects on survival and leaf production. From
5 months, seedlings transplanted in Laussat had a greater survival probability than seedlings
transplanted in Regina. Seedlings transplanted into Laussat produced more leaves between
12 and 17 months, but this did not lead to more leaves at 17 months and this effect was not
detected by analyzing total leaf production between 5 and 17 months.

Local native habitat was significant for survival, total number of leaflets and leaflet
production. Seedlings from bottomland had a lower survival probability than seedlings
from hilltops, and produced more leaflets between 5 and 12 months, leading to more leaflets
at 12 and 17 months. Without differences in the total number of leaves, in total leaf area, and
in the average leaflet area, it is probable that a combination of a slightly more leaflets per
leaves and a slightly lower leaflet area in seedlings from bottomland would had led to similar

total leaf area among local provenances.

250



Local transplant environment had significant effects on several growth traits: height,
stem elongation rate, diameter, growth unit development (GU and AGU), leaf production
(NL and ANL), leaflet area and leaflet production (la and Ala). At 5 months, seedlings
transplanted into bottomland were taller than seedlings transplanted onto hilltops.
However, stem elongation rates became lower in bottomland between 12 and 17 months,
leading to similar seedlings height whatever the local habitat at 12 and 17 months.

From 5 months, seedlings transplanted into bottomlands had a higher diameter than
seedlings from hilltops. No difference in diameter growth was detected between 5 and 17
months, leading to the maintenance of differences between provenances. Seedlings
transplanted onto hilltops produced more growth units between 12 and 17 months than
seedlings transplanted into bottomland. This resulted in seedlings with more growth units
(but similar height) in hilltops by comparison with bottomlands. Seedlings transplanted
into bottomland had a higher leaf area without significant differences, neither in the number
of leaflets, nor in leaflet areas. Seedlings from bottomland produced fewer leaves and
leaflets between 12 and 17 months, leading to fewer leaves and leaflets at 17 months. From 12
months, leaf area became similar between local provenances. Because Eperua falcata is
widespread in water-logged habitats, we expected that survival probability would be higher
in bottomland. Surprisingly, survival probability was equal in both habitat types.
Furthermore, bottomland habitat had a negative effect on the majority of growth traits
(except for diameter), suggesting that seedlings grew better on hilltops than in bottomlands.

No ‘gene-by-environment’ (Igxk), ‘gene-by-gene’ (Igxg) or ‘environment-by-
environment’ (Igxe) interaction was significant. This suggests that the effect of local native
habitat was similar for the two regional provenances (IxG), the effect of transplant habitat
was similar in the two transplant sites, and that (regional or local) transplant environments
had the same effect whatever the (regional or local) provenance (IGxk).

Moreover, several factors seem to have increasing effects over time, whereas other
factors’ effects tend to disappear. For example, the effect of regional provenance became
non-significant at 17 months for survival, and from 12 months for stem elongation rate, leaf
production, and leaflet area. For these traits, differences among groups are equalized over
time. For provenance effects, the disappearance of significant effects over time may reveal
the existence of apparent genetic effects, probably due to maternal effects (such as seed
quality). On the contrary, regional provenance effect became significant for total diametric

increment from 5 to 17 months. In the same way, the effect of regional transplant site on
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survival became significant at 12 months. Differences in stem elongation rate, leaves and
leaflet productions (NL, ANL, NI, and ANL) between local transplant site became
significant from 12 months, and differences in NGU became significant at 17 months that
was associated to a significant variation in total ANGU between 5 and 17 months.

Even if significant, main factors effects were often small (i.e. they induced small
deviance from the overall global mean, u), thus suggesting that both provenance and
transplants effects little affect seedlings growth. Moreover, phenotypic differences among
local provenances were less clear that those observed in non-limiting conditions (Article
n°4). Several causes may be advanced here:

(1) Seedlings grew necessarily more slowly in natural conditions than in non-
limiting ones: at 5 months, seedlings transplanted into natural conditions
measured about 16.94 cm high, against 33.05 cm at 6 months in non-limiting
conditions. At 12 months, seedlings transplanted in field measured 22.07 cm
against 55.13 cm in non-limiting conditions. At 17 months, seedlings that grew in
the field measured only 26.19 cm against 77.02 cm for seedlings that grew in the
shade-house. Thus, at the same age, seedlings that grew in field and in
shadehouse are not at the same ontogenetic stage. The relative effects of
maternal, genetic and environmental sources of phenotypic variations are known
to vary across ontogenetic stages. Maternal effects are expected to decrease over
time, whereas both truly genetically- and environmentally-driven phenotypic
differences among seedling groups would appear after a sufficient time allowing
sufficient differences. Thus, the (small) seedlings analyzed here are probably too
young to detect large effects, and traits that were not significant in the first
measurements and that became significant will probably become more
significant. Moreover, seedlings growth at early-ontogenetic stages is probably
confused with a part of maternal effects. This expectation is supported by several
traits for which a significant ‘provenance’ effect became not significant through
time. In a preliminary analysis, I included seed fresh mass as a co-factor in the
model. This effect was removed because not significant, thus suggesting that
variation in seed mass did not significantly affect seedlings growth. However,
the model did not investigate how seed mass may be structured among regional
and local provenances (a part of the provenance effects may hide the effect of

seed mass differences among provenances). Moreover, seed mass describes only
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part of maternally-induced seed differences: seed quality is also an important
point (i.e. mother trees inhabiting a nutrient-rich environment would produce
seeds of better quality than mother trees inhabiting poor environments) that
cannot be taken into account, because analyzing seeds quality is a destructive
method that prevents seed sowing). For these reasons, it is necessary to follow
seedlings growth over a longer time period to draw conclusions about this

experiment.

(2) Common garden experiments in non-limiting conditions experiments allow the

(3)

full expression of genetically-driven phenotypic divergences among groups by
minimizing environmental sources of variations. In natural conditions, where
the factors influencing seedlings growth are multiple and complex, large
environmental variability may completely hide inherent phenotypic divergences
among provenances. In particular, environmental heterogeneity associated with
regional and local habitat transplant environment, coupled with a large
variability among gardens and probably numerous other factors not taken in
account (included into residual variability) may induce large phenotypic
variations and mask the inherent structuring of phenotypic traits observed in
common garden.

In the common garden experiment, the largest phenotypic divergences among
provenances were detected for seedlings biomass, which is an integrator of all
above-ground and below-ground compartments. Here, we lack information
about the most informative trait. Up to now, above-ground biomass may not be
estimated through the measured traits (stem dimensions and leaf area without
knowledge of leaf mass per area). Moreover, we have no idea about the below-
ground biomass of seedlings. Both below-and above-ground biomass, as well as
biomass allocation to leaves, stems and roots will be assessed at the end of the

experiment.
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Table 1: Measured phenotypic traits (with abbreviations and units) and synthetic results of

phenotypic value decomposition.
“*” indicates that the factor

cant, i.e. the parameters estimated for the different levels are

fi

is signi

hilltop.

bottomland, H

Laussat, R: Regina, B

not overlapping, based on 95% credible intervals.
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Perspectives

Phenotypic traits measurements

Until the end of the experiment, seedling growth will be followed every year. We
intend to extend the span of the recorded traits by including several leaf traits (leaf carbon,
nitrogen, and chlorophyll content, LM A) and by including seedlings biomass and biomass
allocation ratios.

Environmental characterization

We also envisage improving environmental characterization, and particularly soil
water content properties. Because soil water content varies widely between seasons and
days, it is not a good estimator of soil water constraints when measured instantaneously.
Due to technical constraints, we could not set up permanent sensors to automatically
measure soil water content at regular time intervals. Instead, we propose to finely analyze
soil granulometry, and to use soil-climate models that correlate rainfall and soil water
content depending on soil structure and texture.

Genetic analyses:

The phenotypic approach will be complemented by fine genetic analyses on both adult
tree populations and transplanted seedlings. We intend to develop a genome scan approach
through high-throughput genotyping or re-sequencing of a large variety of expressed
sequenced (chosen among the unigenes described from 454 analysis, Article n°3), including
both candidate genes and randomly chosen loci. Genetic data will be used to carry out both
population genetics and association studies. Matching genetic data from adult trees and
from seedlings will allow us to assess seedling relatedness. Association genetics will allow
identifying loci linked with quantitative traits (i.e. loci for which allelic state is correlated
with quantitative traits). Finally, high-throughput re-sequencing or genotyping of
characterized unigenes (expressed genes with known function, including several candidate
genes) will allow extending the genome scan approached initially developed on anonymous
(AFLPs) markers (Article n°2) and will lead to more precise conclusions about the identity
of genes targeted by divergent selection across habitat types.

Comparing results with other tree species:

In Parallel to this PhD, the reciprocal transplant experiment involves a variety of
biological tree species with different degrees of genetic divergence, and particularly two
Carapa species with complete reproductive isolation, and two Symphonia species organized

in a species complex with partial reproductive isolation. With the inclusion of Eperua falcata
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sub-populations, this experiment will allow to dissect environmental and genetic sources of
phenotypic variations across different levels of genetic differentiation (i.e. different stages
of speciation process): from intra-specific differentiation to complete isolation between

close species.
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Preliminary results - Supplementary materials

Linear model of phenotypic value decomposition

##t# Likelyhood for continuous traits
for (i in 1:Ndata){
Trait[i]~dnorm(mean[i],tau_R)

mean[i]<-mu+a[Prov_Geo[i]]+b[Trans_Geo[i]]+c[Prov_Topo[i],j]+d[Trans_Topo[i],j]+
i _GxG[Prov_Geo[i],Prov_Topo[i],j]+i_ExE[Trans_Geo[i],Trans_Topo[i] ]+

i _GXE_geo[Prov_Geo[i],Trans_Geo[i]]+i_GxE_topo[Prov_Topo[i],Trans_Topo[i] ]+
g[Garden[i]]

}

##t# Likelyhood for discrete traits
for( i in 1:Ndata ) {
Trait[i,j]~dpois(mean[i,j])

log(mean[i,j])<-mu+
a[Prov_Geo[i]]+b[Trans_Geo[i]]+c[Prov_Topo[i],j]+d[Trans_Topo[i],j]+

i _GxG[Prov_Geo[i],Prov_Topo[i],j]+i_ExE[Trans_Geo[i],Trans_Topo[i] ]+

i GXE_geo[Prov_Geo[i],Trans_Geo[i]]+i_GxE_topo[Prov_Topo[i],Trans_Topo[i]]+
g[Garden[i]]

}

### Likelyhood for binary traits
for( i in 1:Ndata ) {

Trait[i]~dbern(p[i])

logit(p[i])<-F[i]

F[i]~dnorm(mean[i],1)

mean[i]<-
a[Prov_Geo[i]]+b[Trans_Geo[i]]+c[Prov_Topo[i],j]+d[Trans_Topo[i],j]+

i _GxG[Prov_Geo[i],Prov_Topo[i],j]+i_ExE[Trans_Geo[i],Trans_Topo[i] ]+
i_GXE_geo[Prov_Geo[i],Trans_Geo[i]]+i_GxE_topo[Prov_Topo[i],Trans_Topo[i] ]+
g[Garden[i]]

}

### Likelyhood for traits based on Skemall distribution (differences between two
Poisson)

Cst <- 10000 # this just has to be large enough to ensure all p[i]'s < 1
UNIFLIM <- 100

for (i in 1:Ndata){

Delta Trait[i]«-Trait_t2[i]-Trait_t1[i]
zeros[i] <- ©

zeros[i] ~ dpois(zeros.mean[i])
zeros.mean[i] <- -loglike[i] + Cst

loglike[i] «<-
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-lambdal[i] + Thetal[i]*log(lambdal[i]) - logfact(Thetal[i])
-lambda2[i] + Theta2[i]*log(lambda2[i]) - logfact(Theta2[i])

log(lambdal[i])<-
mu+a[Prov_Geo[i]]+b[Trans_Geo[i]]+c[Prov_Topo[i]]+d[Trans_Topo[i]]+
i_GxG[Prov_Geo[i],Prov_Topo[i]]+i_EXE[Trans_Geo[i],Trans_Topo[i]]+
i_GxE_geo[Prov_Geo[i],Trans_Geo[i]]+i_GxE_topo[Prov_Topo[i],Trans_Topo[i]]+
g[Garden[i]]

log(lambda2[i])<-
mu+a[Prov_Geo[i]]+b[Trans_Geo[i]]+c[Prov_Topo[i]]+d[Trans_Topo[i]]+

i GxG[Prov_Geo[i],Prov_Topo[i]]+i_ExE[Trans_Geo[i],Trans_Topo[i]]+
i_GxE_geo[Prov_Geo[i],Trans_Geo[i]]+i_GxE_topo[Prov_Topo[i],Trans_Topo[i]]+
g[Garden[i]]

Thetal[i]<- Theta3[i] * (Delta_Trait[i]+Thetad4[i]) + (1-Theta3[i]) * Theta4d[i]
Theta2[i]<- Theta3[i] * Thetad4[i]+ (1-Theta3[i]) * (-Delta_Trait[i]+Theta4[i])
Theta3[i]<-step(Delta_Trait[i])

Theta5[i]~dunif(@, UNIFLIM)

Theta4[i]<-trunc(Theta5[i])

}

### Priors definition

# global mean and residuals
mu[j]~dnorm(0,0.0001) # not for discrete traits
tau_R[j]~dgamma(0.01,0.01) # residual precision (only for continuous traits)

# main effects

a[1]«-(-a[2]) ; a[2]~dnorm(0,0.0001)
b[1]<-(-b[2]) ; b[2]~dnorm(©,0.0001)
c[1]<-(-c[2]) ; c[2]~dnorm(0,0.0001)
d[1]<-(-d[2]) ; d[2]~dnorm(©,0.0001)

# Gene-by-gene interactions
i_GxG[1,1]<-0 ; i_GxG[1,2]<-0@
i GxG[2,1]<-(-(i_ G6xG [2,2])) ; i_GxG[2,2]~dnorm(©,0.0001)

# Environment-by-environment interactions
i_ExE[1,1]<-0 ; i_ ExE[1,2]<-@
i ExE[2,1]<-(-(i_ExE[2,2])) ; i_ ExE[2,j]~dnorm(©,0.0001)

# Gene-by-environment interactions (regional scale)
i_GxE_geo[1,1]<-0 ; i_GxE_geo[1,2]<-0
i_GxE_geo[2,1]<-(-(i_GxE_geo[2,2])) ; i_GxE_geo[2,2]~dnorm(0,0.0001)

# Gene-by-environment interactions (local scale)
i GXE_topo[1,1]<-0 ; i_GxE_topo[1,2]<-9©
i_GxE_topo[2,1]<-(-(i_GxE_topo[2,2])) ; i_GxE_topo[2,2]~dnorm(0,0.0001)

# Gardens effects (with 3 gardens within each regional site and local habitat)
g[1]<-(-(g[2]+g[3])) ; g[2]~dnorm(0,0.0001) ; g[3]~dnorm(0,0.0001)
g[4,j1<-(-(g[5]+g[6])) ; g[5]~dnorm(0©,0.0001) ; g[6]~dnorm(0,0.0001)
g[7,j1<-(-(g[8]+g[9])) ; g[8]~dnorm(0©,0.0001) ; g[9]~dnorm(0,0.0001)
g[10,j]1<-(-(g[11]+g[12])) ; g[11]~dnorm(©,0.0001) ; g[12]~dnorm(0,0.0001)
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