J. A. Acebrón, L. L. Bonilla, C. J. Pérez-vicente, F. Ritort, and R. Spigler, The Kuramoto model: A simple paradigm for synchronization phenomena, Reviews of Modern Physics, vol.77, issue.1, pp.137-185, 2005.
DOI : 10.1103/RevModPhys.77.137

A. Arnold, L. L. Bonilla, and P. A. Markowich, Liapunov functionals and large-time-asymptotics of mean-field nonlinear Fokker-Planck equations, Transport Theory and Statistical Physics, vol.16, issue.7, pp.733-751, 1996.
DOI : 10.1080/00411459608203544

D. G. Aronson, Non-negative solutions of linear parabolic equations, Ann. Scuola Norm. Sup. Pisa, vol.22, pp.607-694, 1968.

Y. Bakhtin, Exit asymptotics for small diffusion about an unstable equilibrium. Stochastic Process, Appl, vol.118, pp.839-851, 2008.

P. W. Bates, K. Lu, and C. Zeng, Invariant manifolds and foliations for semiflow, p.129, 1998.

N. Berglund and B. Gentz, The Eyring-Kramers law for potentials with nonquadratic saddles, Markov Processes Relat. Fields, vol.16, pp.549-598, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00294931

L. Bertini, S. Brassesco, and P. Buttà, Soft and Hard Wall in a Stochastic Reaction Diffusion Equation, Archive for Rational Mechanics and Analysis, vol.1, issue.2, pp.307-345, 2008.
DOI : 10.1007/s00205-008-0154-0

L. Bertini, S. Brassesco, P. Buttà, and E. Presutti, Front Fluctuations in One Dimensional Stochastic Phase Field Equations, Annales Henri Poincar??, vol.3, issue.1, pp.29-86, 2002.
DOI : 10.1007/s00023-002-8611-z

L. Bertini, G. Giacomin, and K. Pakdaman, Dynamical Aspects of Mean Field Plane Rotators and??the??Kuramoto Model, Journal of Statistical Physics, vol.63, issue.3, pp.270-290, 2010.
DOI : 10.1007/s10955-009-9908-9

URL : https://hal.archives-ouvertes.fr/hal-00497541

L. Bertini, G. Giacomin, and C. Poquet, Synchronisation and random long time dynamics for mean-field plane rotators, 2013.

L. L. Bonilla, Stable nonequilibrium probability densities and phase transitions for meanfield models in the thermodynamic limit, Journal of Statistical Physics, vol.128, issue.3-4, pp.659-678, 1987.
DOI : 10.1007/BF01013379

A. Bovier, M. Eckhoff, V. Gayrard, and M. Klein, Metastability in Reversible Diffusion Processes I: Sharp Asymptotics for Capacities and Exit Times, Journal of the European Mathematical Society, vol.6, pp.399-424, 2004.
DOI : 10.4171/JEMS/14

S. Brassesco and P. Buttà, Interface Fluctuations for the D = 1 Stochastic Ginzburg???Landau Equation with Nonsymmetric Reaction Term, Journal of Statistical Physics, vol.93, issue.5/6, pp.1111-1142, 1998.
DOI : 10.1023/B:JOSS.0000033154.54515.e8

S. Brassesco, P. Buttà, A. De-masi, and E. Presutti, Interface fluctuations and couplings in the d=1 Ginzburg-Landau equation with noise, Journal of Theoretical Probability, vol.11, issue.1, pp.25-80, 1998.
DOI : 10.1023/A:1021642824394

S. Brassesco, A. De-masi, and E. Presutti, Brownian fluctuations of the interface in the d = 1 Ginzburg-Landau equation with noise, Annal. Inst. H. Poincaré, vol.31, pp.81-118, 1995.

H. Brezis, Functional analysis, Sobolev spaces and partial differential equations, 2011.
DOI : 10.1007/978-0-387-70914-7

J. Buck, Synchronous Rhythmic Flashing of Fireflies. II., The Quarterly Review of Biology, vol.63, issue.3, pp.265-289, 1988.
DOI : 10.1086/415929

E. Carlen, P. Degond, and B. Wennberg, KINETIC LIMITS FOR PAIR-INTERACTION DRIVEN MASTER EQUATIONS AND BIOLOGICAL SWARM MODELS, Mathematical Models and Methods in Applied Sciences, vol.23, issue.07, 2012.
DOI : 10.1142/S0218202513500115

URL : https://hal.archives-ouvertes.fr/hal-00625542

F. Collet and P. Dai-pra, The role of disorder in the dynamics of critical fluctuations of mean field models, Electronic Journal of Probability, vol.17, issue.0, pp.1-40, 2012.
DOI : 10.1214/EJP.v17-1896

P. Constantin, I. G. Kevrekidis, and E. S. Titi, Asymptotic states of a Smoluchowski equation. Archive for Rational Mechanics and Analysis, pp.365-384, 2004.

D. Pra and F. Hollander, McKean-Vlasov limit for interacting random processes in random media, Journal of Statistical Physics, vol.56, issue.3-4, pp.735-772, 1996.
DOI : 10.1007/BF02179656

P. Dai-pra, M. Fischer, and D. Regoli, A Curie-Weiss Model with Dissipation, Journal of Statistical Physics, vol.19, issue.11, pp.37-53, 2013.
DOI : 10.1007/s10955-013-0756-2

M. V. Day, On the exponential exit law in the small parameter exit problem, Stochastics, vol.17, issue.4, pp.297-323, 1983.
DOI : 10.1080/17442508308833244

M. V. Day, Large deviations results for the exit problem with characteristic boundary, Journal of Mathematical Analysis and Applications, vol.147, issue.1, pp.134-153, 1990.
DOI : 10.1016/0022-247X(90)90389-W

M. V. Day and T. A. Darden, Some regularity results on the Ventcel-Freidlin quasi-potential function, Applied Mathematics & Optimization, vol.25, issue.1, pp.259-282, 1985.
DOI : 10.1007/BF01442211

B. Derrida, Microscopic versus macroscopic approaches to non-equilibrium systems, Journal of Statistical Mechanics: Theory and Experiment, vol.2011, issue.01, p.1030, 2011.
DOI : 10.1088/1742-5468/2011/01/P01030

URL : http://arxiv.org/abs/1012.1136

M. Doi and S. F. Edwards, The theory of polymer dynamics. Oxford science publications, 1988.

N. Dunford and J. T. Schwartz, Linear operators. Part II, 1988.

G. B. Ermentrout and N. Kopell, Parabolic Bursting in an Excitable System Coupled with a Slow Oscillation, SIAM Journal on Applied Mathematics, vol.46, issue.2, pp.233-253, 1986.
DOI : 10.1137/0146017

G. B. Ermentrout and N. Kopell, Multiple pulse interactions and averaging in systems of coupled neural oscillators, Journal of Mathematical Biology, vol.23, issue.3, pp.195-217, 1991.
DOI : 10.1007/BF00160535

H. Eyring, The Activated Complex in Chemical Reactions, The Journal of Chemical Physics, vol.3, issue.2, pp.107-115, 1935.
DOI : 10.1063/1.1749604

B. Fernandez and S. Méléard, A Hilbertian approach for fluctuations on the McKean-Vlasov model. Stochastic Process, Appl, vol.71, pp.33-53, 1997.

M. I. Freidlin and A. D. , Random Perturbations of dynamical systems. Grundlehren der Mathematischen Wissenschaften Series, 1998.

A. Friedman, Partial Differential Equations of Parabolic Type, N. J, 1964.

T. Funaki, The scaling limit for a stochastic PDE and the separation of phases, Probability Theory and Related Fields, vol.71, issue.2, pp.221-288, 1995.
DOI : 10.1007/BF01213390

T. Funaki, Zero temperature limit for interacting Brownian particles. I. Motion of a single body, The Annals of Probability, vol.32, issue.2, pp.1201-12271228, 2004.
DOI : 10.1214/009117904000000180

A. Galves, E. Olivieri, and M. E. Vares, Metastability for a class dynamical systems subject to small random perturbations. The Annals of Probability, pp.1288-1305, 1987.

J. Gärtner, On the McKean-Vlasov Limit for Interacting Diffusions, Mathematische Nachrichten, vol.44, issue.1, pp.197-248, 1988.
DOI : 10.1002/mana.19881370116

G. Giacomin, J. L. Lebowitz, and E. Presutti, Deterministic and stochastic hydrodynamic equations arising from simple microscopic model systems, Stochastic partial differential equations: six perspectives, pp.107-152, 1999.
DOI : 10.1090/surv/064/03

G. Giacomin, E. Luçon, and C. Poquet, Coherence Stability and Effect of Random Natural Frequencies in Populations of Coupled Oscillators, Journal of Dynamics and Differential Equations, vol.63, issue.2
DOI : 10.1007/s10884-014-9370-5

URL : https://hal.archives-ouvertes.fr/hal-01018542

G. Giacomin, K. Pakdaman, and X. Pellegrin, Global attractor and asymptotic dynamics in the Kuramoto model for coupled noisy phase oscillators, Nonlinearity, vol.25, issue.5, pp.1247-1273, 2012.
DOI : 10.1088/0951-7715/25/5/1247

URL : https://hal.archives-ouvertes.fr/hal-00705301

G. Giacomin, K. Pakdaman, X. Pellegrin, and C. Poquet, Transitions in Active Rotator Systems: Invariant Hyperbolic Manifold Approach, SIAM Journal on Mathematical Analysis, vol.44, issue.6, pp.4165-4194, 2012.
DOI : 10.1137/110846452

URL : https://hal.archives-ouvertes.fr/hal-00783567

D. S. Goldobin, J. Teramae, H. Nakao, and G. B. Ermentrout, Dynamics of Limit-Cycle Oscillators Subject to General Noise, Physical Review Letters, vol.105, issue.15, p.154101, 2010.
DOI : 10.1103/PhysRevLett.105.154101

G. Haller, I. Mezic, and S. Wiggins, Normally hyperbolic invariant manifolds in dynamical systems, 1994.

S. K. Han, T. G. Yim, D. E. Postnov, and O. V. Sosnovtseva, Interacting Coherence Resonance Oscillators, Physical Review Letters, vol.83, issue.9, pp.1771-1774, 1999.
DOI : 10.1103/PhysRevLett.83.1771

H. Hasegawa, Dynamical mean-field approximation to coupled active rotator networks subject to white noises. arXiv:cond-mat, 210473.

L. He, C. L. Bris, and T. Lelì-evre, Periodic long time behaviour for an approximate model of nematic polymers. Kinetic and related models, pp.357-382, 2012.
URL : https://hal.archives-ouvertes.fr/inria-00609763

D. Henry, Geometric theory of semilinear parabolic equations, Lecture Notes in Mathematics, vol.840, 1981.
DOI : 10.1007/BFb0089647

M. W. Hirsch, C. C. Pugh, and M. Shub, Invariant manifolds, Lecture Notes in Mathematics, vol.583, 1977.

M. Hitsuda and I. Mitoma, Tightness problem and stochastic evolution equation arising from fluctuation phenomena for interacting diffusions, Journal of Multivariate Analysis, vol.19, issue.2, pp.311-328, 1986.
DOI : 10.1016/0047-259X(86)90035-7

P. C. Hohenberg and B. Halperin, Theory of dynamic critical phenomena, Reviews of Modern Physics, vol.49, issue.3, pp.435-479, 1977.
DOI : 10.1103/RevModPhys.49.435

F. Hollander, Large deviations, Fields Institute Monographs. AMS, vol.14, 2000.
DOI : 10.1090/fim/014

E. M. Izhikevich, Dynamical systems in neuroscience: The geometry of excitability and bursting, 2007.

J. Jacod and A. N. Shiryaev, Limit theorems for stochastic processes, of Grundlehren der Mathematischen Wissenschaften, 2003.
DOI : 10.1007/978-3-662-02514-7

T. Kato, Perturbation theory for linear operators, Classics in Mathematics, 1995.

C. Kipnis and C. Landim, Scaling Limits of Interacting Particle Systems, volume 320 of Grundlehren der mathematischen Wissenschaften, 1999.

E. K. Kosmidis, O. Pierrefiche, and J. Vibert, Respiratory-Like Rhythmic Activity Can Be Produced by an Excitatory Network of Non-Pacemaker Neuron Models, Journal of Neurophysiology, vol.92, issue.2, pp.686-699, 2004.
DOI : 10.1152/jn.00046.2004

S. Y. Kourtchatov, V. V. Likhanskii, A. P. Napartovich, F. T. Arecchi, and A. Lapucci, Theory of phase locking of globally coupled laser arrays, Physical Review A, vol.52, issue.5, pp.4089-4094, 1995.
DOI : 10.1103/PhysRevA.52.4089

H. A. Kramer, Brownian motion in a field of force and the diffusion model of chemical reactions, Physica, vol.7, issue.4, pp.284-304, 1940.
DOI : 10.1016/S0031-8914(40)90098-2

Y. Kuramoto, Chemical oscillations, waves, and turbulence. Dover Books on Chemistry Series, 2003.
DOI : 10.1007/978-3-642-69689-3

C. Kurrer and K. Schulten, Noise-induced synchronous neuronal oscillations, Physical Review E, vol.51, issue.6, pp.6213-6218, 1995.
DOI : 10.1103/PhysRevE.51.6213

B. Lindner, J. Garcia-ojalvo, A. Neiman, and L. Schimansky-geier, Effects of noise in excitable systems, Physics Reports, vol.392, issue.6, pp.321-424, 2004.
DOI : 10.1016/j.physrep.2003.10.015

E. Luçon, Large time asymptotics for the fluctuation SPDE in the Kuramoto synchronization model, pp.1204-2176

E. Luçon, Quenched Limits and Fluctuations of the Empirical Measure for Plane Rotators in Random Media., Electronic Journal of Probability, vol.16, issue.0, pp.792-829, 2011.
DOI : 10.1214/EJP.v16-874

R. J. Macgregor and R. L. Palasek, Computer simulation of rhythmic oscillations in neuron pools, Kybernetik, vol.2, issue.2, pp.79-86, 1974.
DOI : 10.1007/BF00271630

R. S. Maier and D. L. Stein, A scaling theory of bifurcations in the symmetric weak-noise escape problem, Journal of Statistical Physics, vol.68, issue.FS 14, pp.291-357, 1996.
DOI : 10.1007/BF02183736

G. Marrucci and P. L. Maffettone, A description of the liquid-crystalline phase of rodlike polymers at high shear rates, Macromolecules, vol.22, issue.10, pp.4076-4082, 1989.
DOI : 10.1021/ma00200a045

E. Martinelli, F. Olivieri, and E. Scoppola, Small random perturbations of finite- and infinite-dimensional dynamical systems: Unpredictability of exit times, Journal of Statistical Physics, vol.4, issue.4, pp.477-504, 1989.
DOI : 10.1007/BF01041595

H. P. Mckean, Propagation of chaos for a class of non-parabolic equations. Stochastic differential equations, pp.41-57, 1967.

M. A. Naimark, Linear differential operators. Part I: Elementary theory of linear differential operators, 1967.

K. Oelschläger, A Martingale Approach to the Law of Large Numbers for Weakly Interacting Stochastic Processes, The Annals of Probability, vol.12, issue.2, pp.458-479, 1984.
DOI : 10.1214/aop/1176993301

H. Ohta and S. Sasa, Critical phenomena in globally coupled excitable elements, Physical Review E, vol.78, issue.6, p.65101, 2008.
DOI : 10.1103/PhysRevE.78.065101

E. Olivieri and M. E. Vares, Large Deviations and Metastability, volume 100 of Encyclopedia of Mathematics and its Applications, 2005.

R. Osan, J. Rubin, and B. Ermentrout, Regular travelling waves in a onedimensional network of theta neurons Eulerian calculus for the contraction in the wasserstein distance, SIAM J. Appl. Math. SIAM J. Math. Anal, vol.37, pp.1197-12211227, 2002.

K. Pakdaman, B. Perthame, and D. Salort, Dynamics of a structured neuron population, Nonlinearity, vol.23, issue.1, pp.55-75, 2010.
DOI : 10.1088/0951-7715/23/1/003

URL : https://hal.archives-ouvertes.fr/hal-00387413

S. H. Park and S. Kim, Noise-induced phase transitions in globally coupled active rotators, Physical Review E, vol.53, issue.4, pp.3425-3430, 1996.
DOI : 10.1103/PhysRevE.53.3425

J. E. Paullet and G. B. Ermentrout, Stable Rotating Waves in Two-Dimensional Discrete Active Media, SIAM Journal on Applied Mathematics, vol.54, issue.6, pp.1720-1744, 1994.
DOI : 10.1137/S0036139993250683

A. Pazy, Semigroups of linear operators and applications to partial differential equations, Applied Mathematical Sciences, vol.44, 1983.
DOI : 10.1007/978-1-4612-5561-1

P. A. Pearce, Mean-field bounds on the magnetization for ferromagnetic spin models, Journal of Statistical Physics, vol.27, issue.2, pp.309-290, 1981.
DOI : 10.1007/BF01022189

C. S. Peskin, Mathematical aspect of heart physiology, Courant Institute of Mathematical Science Publication, 1975.

J. Pham, K. Pakdaman, J. Champagnat, and J. Vibert, Activity in sparsely connected excitatory neural networks: effect of connectivity, Neural Networks, vol.11, issue.3, pp.415-434, 1998.
DOI : 10.1016/S0893-6080(97)00153-6

J. Pham, K. Pakdaman, and J. Vibert, Noise-induced coherent oscillations in randomly connected neural networks, Physical Review E, vol.58, issue.3, pp.3610-3622, 1998.
DOI : 10.1103/PhysRevE.58.3610

A. S. Pikivsky and S. Ruffo, Finite-size effects in a population of interacting oscillators, Physical Review E, vol.59, issue.2, pp.1633-1636, 1998.
DOI : 10.1103/PhysRevE.59.1633

A. Pikovsky, M. Rosenblum, and J. Kurths, Synchronization: A Universal Concept in Nonlinear Sciences, 2003.
DOI : 10.1017/CBO9780511755743

A. S. Pikovsky and J. Kurths, Coherence Resonance in a Noise-Driven Excitable System, Physical Review Letters, vol.78, issue.5, pp.775-778, 1997.
DOI : 10.1103/PhysRevLett.78.775

C. Poquet, Phase reduction in the noise induced escape problem for systems close to reversibility, Stochastic Processes and their Applications, vol.124, issue.10
DOI : 10.1016/j.spa.2014.05.003

URL : https://hal.archives-ouvertes.fr/hal-01061157

E. Presutti, Scaling limits in statistical mechanics and microstructures in continuum mechanics. Theoretical and Mathematical Physics, 2009.

W. Rappel and A. Karma, Noise-Induced Coherence in Neural Networks, Physical Review Letters, vol.77, issue.15, pp.3256-3259, 1996.
DOI : 10.1103/PhysRevLett.77.3256

M. Reed and B. Simon, Methods of modern mathematical physics. I. Functional analysis, 1980.

A. Rybko, S. Shlosman, and A. Vladimirov, Spontaneous Resonances and the Coherent States of??the??Queuing Networks, Journal of Statistical Physics, vol.1, issue.4, pp.67-104, 2009.
DOI : 10.1007/s10955-008-9658-0

URL : https://hal.archives-ouvertes.fr/hal-00176074

H. Sakaguchi, Cooperative Phenomena in Coupled Oscillator Systems under External Fields, Progress of Theoretical Physics, vol.79, issue.1, pp.39-46, 1988.
DOI : 10.1143/PTP.79.39

H. Sakaguchi, S. Shinomoto, and Y. Kuramoto, Phase Transitions and Their Bifurcation Analysis in a Large Population of Active Rotators with Mean-Field Coupling, Progress of Theoretical Physics, vol.79, issue.3, pp.600-607, 1988.
DOI : 10.1143/PTP.79.600

M. Scheutzow, Noise can create periodic behavior and stabilize nonlinear diffusions, Stochastic Processes and their Applications, vol.20, issue.2, pp.323-331, 1985.
DOI : 10.1016/0304-4149(85)90219-4

URL : http://doi.org/10.1016/0304-4149(85)90219-4

M. Scheutzow, Some Examples of Nonlinear Diffusion Processes Having a Time-Periodic Law, The Annals of Probability, vol.13, issue.2, pp.379-384, 1985.
DOI : 10.1214/aop/1176992997

M. Scheutzow, Periodic behavior of the stochastic Brusselator in the mean-field limit, Probability Theory and Related Fields, vol.11, issue.3, pp.425-462, 1986.
DOI : 10.1007/BF00334195

G. R. Sell and Y. You, Dynamics of evolutionary equations, Applied Mathematical Sciences, vol.143, 2002.
DOI : 10.1007/978-1-4757-5037-9

S. Shinomoto and Y. Kuramoto, Cooperative Phenomena in Two-Dimensional Active Rotator Systems, Progress of Theoretical Physics, vol.75, issue.6, pp.1319-1327, 1986.
DOI : 10.1143/PTP.75.1319

S. Shinomoto and Y. Kuramoto, Phase Transitions in Active Rotator Systems, Progress of Theoretical Physics, vol.75, issue.5, pp.1105-1110, 1986.
DOI : 10.1143/PTP.75.1105

H. Silver, N. E. Frankel, and B. W. Ninham, A Class of Mean Field Models, Journal of Mathematical Physics, vol.13, issue.4, pp.468-474, 1972.
DOI : 10.1063/1.1666002

S. H. Strogatz and R. E. Mirollo, Stability of incoherence in a population of coupled oscillators, Journal of Statistical Physics, vol.60, issue.3-4, pp.613-635, 1991.
DOI : 10.1007/BF01029202

S. H. Strogatz, From Kuramoto to Crawford: exploring the onset of synchronization in populations of coupled oscillators, Physica D: Nonlinear Phenomena, vol.143, issue.1-4, pp.1-20, 2000.
DOI : 10.1016/S0167-2789(00)00094-4

S. H. Strogatz, Sync: The Emerging Science of Spontaneous Order, 2003.

D. W. Stroock and S. R. Varadhan, Multidimensional diffusion processes, Classics in Mathematics, 2006.
DOI : 10.1007/3-540-28999-2

A. Sznitman, Topics in propagation of chaos InÉcoleIn´InÉcole d'´ eté de probabilités de Saint-Flour XIX?1989, Lecture Notes in Math, vol.1464, 1991.

J. Teramae, H. Nakao, and G. B. Ermentrout, Stochastic Phase Reduction for a General Class of Noisy Limit Cycle Oscillators, Physical Review Letters, vol.102, issue.19, 2009.
DOI : 10.1103/PhysRevLett.102.194102

R. Toral, C. Mirasso, and J. D. Gunton, System size coherence resonance in coupled FitzHugh-Nagumo models, Europhysics Letters (EPL), vol.61, issue.2, pp.162-167, 2003.
DOI : 10.1209/epl/i2003-00207-5

J. Touboul, G. Hermann, and O. Faugeras, Noise-Induced Behaviors in Neural Mean Field Dynamics, SIAM Journal on Applied Dynamical Systems, vol.11, issue.1, pp.49-81, 2012.
DOI : 10.1137/110832392

URL : https://hal.archives-ouvertes.fr/hal-00846146

Y. Wang, D. T. Chik, and Z. D. Wang, Coherence resonance and noise-induced synchronization in globally coupled Hodgkin-Huxley neurons, Physical Review E, vol.61, issue.1, pp.740-746, 2000.
DOI : 10.1103/PhysRevE.61.740

D. Wei and X. Luo, Coherence resonance and noise-induced synchronization in Hindmarsh-Rose neural network with different topologies, Commun. Theor. Phys, vol.48, p.759, 2007.

K. Yushimura and K. Arai, Phase Reduction of Stochastic Limit Cycle Oscillators, Physical Review Letters, vol.101, issue.15, p.154101, 2008.
DOI : 10.1103/PhysRevLett.101.154101