Zm MimK J ;M2iBbK- AMi2" +iBM; "QbQMb -
.BK2MbBQM HBiv
1/KQM/ P B;M +

hQ +Bi2 i?Bb p2 " bBQM,

1/KQM/ P'B:M +X Zm MimK J :M2iBbK- AMi2" +iBM; "QbQMb- M/ GQr
- b2b (+QM/@K iX[m Mi@; b)X 1+QH2 MQ' 'K H2 bmTG0'B2m 2 /2 HVQM @

> G A/, iZH@yyNe9e9R
2iiTbh,ffi2HX "+?2Bp2b@Qmp2 i2bX7 fi2H@yyNe
am#KBii2/ QM k9 J " kyR9

> G Bb KmHiB@/Bb+BTHBM v GOT24WB p2 Dmbp2 "i2 THm B/BbBIBTHBN
"+?Bp2 7Q i?72 /2TQbBi M/ /Bbb2KIBEBMBR MNQ@T™+B2® " H /BzmbBQM /2 /
2MiB}+ "2b2 "+?2 /Q+mK2Mib- r?2i?@+B2MMiB}2mM2b#/@ MBp2 m "2+?22 +?22- T
HBb?2/ Q° MQiX h?2 /IQ+mK2Mib MK VW+RK2Z2EF IQKHBbb2K2Mib /62Mb2B;M
i2 +?BM; M/ "2b2 "+? BMbiBimiBQWER BM?8 7M#M2I @b Qm (i~ M;2 b- /2b H
#Q /-Q 7 QK Tm#HB+ Q T ' Bp i2T2HRAB+B @2MT2BIpXib X



ECOLE NORMALE SUERIEURE DE LYON

Memoire d'Habilitationa diriger des recherches
Version of March 24, 2014

Siecialie: Physique

Edmond ORIGNAC

SUJET: Magretisme Quantique, Bosons en interaction et basse dime nsionnalie

Composition de la commission d'examen

MM. B. Doumt Rapporteur
T. Jolicoeur Rapporteur
P. Holdsworth Examinateur
F. Mila Rapporteur
S. Eggernt Examinateur

Laboratoire de Physique de Ecole Normale Sugerieure de Lyon
46, Alee d'ltalie, 69007 Lyon France
Edmond.Orignac@ens-lyon.fr



Contents

Introduction to one-dimensional systems 4
one-dimensional fermions and bosonization 5
1.1 The Tomonaga-Luttinger model . . . . . . .. ... ... ... ... . ..... 6
1.1.1 Denitionofthemodel . . . . . ... .. ... ... ... .. ... ... 6
1.1.2 Diagonalization of the model using the density varidds . . . . . . . .. 7
1.1.3 Expressing the operators in terms of the density vabkes . . . . . . . .. 10
1.2 The XXZ spin-chainmodel . . . . . .. ... ... . .. ... . ... ... ... 14
1.2.1 Jordan-Wigner transformation and derivation of a basized Hamiltonian 14
1.2.2 Derivation of a bosonized representation for spin ap¢ors . . . . . . .. 15
1.3 Hardcore bosons . . . .. . . . . . .. 16
1.4 The Tomonaga-Luttinger liquid concept . . . . . ... ... .. ... ..... 17
1.5 Multicomponent Systems . . . . . . . . ... e 22
1.5.1 The case of fermions withspin. . . .. .. ... ... .......... 22
1.5.2 General multicomponent models . . . . .. ... ... ... ... .... 28
The sine-Gordon model 31
2.1 Renormalization group approach. . . . . . .. ... . ... .. ..o .. 32
2.1.1 The operator product expansion approach . . . . ... .. ..... ... 32
2.1.2 Renormalization group for the sine Gordon model . . . .... . ... .. 33
2.2 The Luther-Emery point and the Ising model . . . . .. ... ... ...... 34
2.2.1 Fermionization of the sine-Gordon model at the LutheEmery point. . . 34
2.2.2 The double Ising model and Dirac fermions in two dimeiosis . . . . . . 35
2.3 Integrability of the sine-Gordon model and the Form-faor approach . . . . . . 38
2.3 1 S-matrixX . . . .. e e 38
2.3.2 Bethe Ansatz at the re ectionless points . . . . ... ... ....... 40
2.3.3 The form factor expansion . . . . . .. ... ... ... ... 42
A brief review of experimental systems 45
3.1 Quasi-one dimensional conductors . . . . . . . ... e e 45
3.1.1 TTRE-TCNQ . . . . e e 45
3.1.2 The Bechgaard and Fabresalts . . .. ... ... .. .......... 46
3.1.3 Inorganic one-dimensional conductors . . . . . .. ... ... .. ... 48
3.2 Carbon nanotubes . . . .. . ... 49



3.3 spin-1/2chains . . . . . . . 50

3.4 ColdatomiC gases . . . . . . . . o i e 53

Il Quantum magnetism 58
4 the two-leg ladder 59
4.1 BOSONIzation . . . . . . . o e 60
4.1.1 GeneralCcase . . . . . . o i 06

4.1.2 ISOtropiC CaSe . . . . . . o o e e e 62

42 Semi-inniteladder . . . . . .. 65
4.2.1 Open boundary conditions in a spin-1/2 chain . . . . . . ... .. ... 65

4.2.2 Two-leg ladder with open boundary conditions . . . . . ... ... ... 66

4.3 Laddersunderamagnetic eld . ... .. ... .. ... ... ... ..., 69
4.4 Ladders with Dzyaloshinskii-Moriya interaction . . . . .. .. ... .. .. ... 72
4.4.1 Uniform Dzyaloshinskii-Moriya interaction . . . . . . . .. .. ... ... 74

4.4.2 Staggered Dzyaloshinskii-Moriya interaction . . . . .. ... ... ... 76

5 the spin-Peierls transition 82
5.1 Mean-eldtheory . . . . . . . . . . 83

1l Interacting bosons 88
6 Dipolar bosons 89
6.1 qualitative considerations. . . . . . . . .. ... e 89
6.2 Determination of the Luttinger exponent . . . . . .. ... .. .. ........ 91

7 Bosonic ladders under eld 93

8 Disordered bosons 97
8.1 The Aubry-Ande transition . . . . . . . . . . . .. 97
8.2 Eectofinteraction. . . . . . . . . . . . . .. 98



General introduction

| began my research experience in the eld of correlated losimensional systems during my
PhD thesis under the direction of Thierry Giamarchi from 199 to 1998 at the Laboratoire de
Physique des solides of the University Paris-Sud. The subjexf my thesis was the e ect of
disorder in ladder systems, and was in part motivated by theiscovery of superconductivity in
the ladder material Sk4Cu,404; under high pressure. During that period, | became acquairde
with the bosonization technique and the renormalization gup.

After the PhD, | moved to Rutgers University (Piscataway, New Jesey) for a postdoctoral
fellowship. During that period, | got interested in the spirtube system as well as Kondo-
Heisenberg chains. The work with Natan Andrei led me the learn tegrable models and
conformal eld theory techniques. During that period, | stated to collaborate with R. Citro
(U. Salerno, ltaly). | was hired in 1999 by CNRS, at the laboratioe de Physique theorique
de I'Ecole Normale Superieure. During that period, | worked wh P. Lecheminant (University
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principal elds of study was then quantum magnetism in low dnensions, and | was patrtially
supported by an ACI grant from the French Ministry of Reseait jointly with R. Moessner.
| stayed in Paris until 2005, then moved to the ENS-Lyon. Therel started a collaboration
with David Carpentier on transport in mesoscopic spin glass and more recently on topological
insulators. In parallel, | started to work on interacting bson systems, motivated in part by
experiments on ultracold gases. In the present habilitatiothesis, | have chosen to focus on the
closely related topics of quantum magnetism and interactinbosons in low dimensionality. In
a rst part, | will introduce the eld of interacting systems in one-dimension. | will review the
bosonization technique as well as the theory of the quantunms-Gordon model. In a second
part, 1 will describe my work on quantum spin systems, stantig with two leg ladder systems,
and ending with the spin-Peierls transition. In the last pat, | will describe the research on
interacting bosons.

Note concerning this version of the manuscript

The thesis that was reviewed before the habilitation defeasalso included copies of articles
published in peer-reviewed journals. For copyright reasenthe articles cannot be included
in this version. Instead, when necessary, | have introducead note in a boxed frame at the
beginning of the chapter indicating on which articles it is ased.
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Chapter 1

one-dimensional fermions and
bosonization

In three dimensional systems of interacting fermions, sues electrons in a metal or liquictHe,

the thermodynamics and the low energy response can be ddsed in terms of the Landau
Fermi liquid theory.[1, 2, 3, 4] In Landau Fermi liquid theoy, the elementary excitations of the
system are fermionic quasiparticles possessing a residné&traction. The energy of an excited
state is:

X 1 X
E = (k; )Nk t3 f(k; k% Yne nie o (1.1)

k; kik O
"0

where (k; ) is a renormalized dispersion for the quasiparticlés, n (k; ) is the variation of
quasiparticle occupation number in the statk; andf (k; ;k% 9 is the residual interaction.
Eq.(1.1) leads to a speci ¢ heat behaving as:

22T
3

C = (F); (1.2)
where () is the density of states resulting from the renormalized dpersion (k; ). Consid-
ering a variation of the density, one nds that[4]:

2 Z d
o et g kO (1.9

I. e. the residual interactions between the quasiparticles renmoalizes the compressibility of
the Fermi liquid. The magnetic susceptibility \ is also renormalized[4], with:

Z
() _ 4° L3 o
el R GRS R G ) (1.4)

Loften taken in the form (k) = ve (ke )(k  kg) with v = ke=m , m being an e ective mass di erent from
the electron mass, containing renormalizations coming frm the interactions



The Landau Fermi liquid theory can be justi ed in the framewak of many-body diagrammatic
perturbation theory from some plausible hypotheses[5] arekperiments on heavy fermion ma-
terials have shown that quasiparticles with a mass 100 timéle electron mass could account
for the thermodynamics of these systems, indicating that istrongly correlated systems very
strong renormalizations of the dispersion can be obtainedithout a breakdown of the Fermi
liquid state. Despite its robustness, the Fermi liquid thexy is known to break down in low-
dimensional systems. The most well known examples are thadtional quantum hall e ect,
where the physical properties can be described in terms ofagiparticles of fractional charge
possessing anyonic statistics and the one-dimensionaltsyss where the quasiparticles are re-
placed by collective charge and spin excitations propagag at di erent velocities, the so-called
Tomonaga-Luttinger liquid.[6, 7] The case of one-dimensial systems is not only a theoreti-
cal counterexample to Landau Fermi liquid theory. It is alsaelevant to various experimental
systems such as the organic conductors (TMTTEX, (TMTSF) ,X inorganic conductors such
as Lip:gM0gO17, or carbon nanotubes. Moreover, the Tomonaga-Luttingerduid concept is not
restricted to fermionic systems, but is also applicable tgs systems and systems of interacting
bosons. As a result, it has found applications to low dimengial quantum antiferromagnets
such asK CuF ; as well as ultracold atomic gases. In the rest of this chaptdrwill review the
solution the the Tomonaga-Luttinger model, and | will intraduce the spin-charge separation
concept. | will then discuss the extension of the Tomonagauittinger liquid concept to spin
systems and interacting bosons. | will then turn to perturbtions of the Tomonaga-Luttinger
model, and introduce the concept of the Luther-Emery liquidand the quantum sine-Gordon
model. | will end with a survey of the experimental systems.

1.1 The Tomonaga-Luttinger model

1.1.1 De nition of the model

To obtain the Tomonaga-Luttinger model, we start with a modeon one-dimensional interacting
spinless fermions with Hamiltonian:

H = QO +V (15)
Ho = (K)o (1.6)
1 X
vV = E V(Q)C)‘:l_,_qCKZ quZCkl: (17)
ki:k2;q

Our aim is to understand the low-energy spectrum of the Hamohian (1.5). Since we are
restricting to low energy excitations, it is justi ed to linearize the spectrum around the two
Fermi points kg, as shown on the Fig. 1.1. Our Hamiltonian can then be rewrittein terms
of left moving ( ) and right moving (+) fermions as:
X
H = Ve TKCY., G (1.8)
k;r



Figure 1.1: The dispersion of a one-dimensional model ofrféons (solid line) and the dispersion
linearized near the Fermi points.

1 X X
T (G4 (@ ( D+ (@ ( L (1.9)
q r
wherec,. = C .+, and:
X
(Q = Gl qr Gk (1.10)
k
g = V(0); (1.11)
%@ = V(0) V(Zke) (1.12)
1.1.2 Diagonalization of the model using the density variable S

The remarkable insight of Tomonaga[8] and Luttinger[9] wai attempt to rewrite the non-

interacting Hamiltonian entirely in terms of the Fourier conponents ,(q) of the density. Indeed,
because of the linearized form of the spectrum, the action tife density operator ( @) on

an eigenstate of the Hamiltonian creates another eigenstaté the Hamiltonian with energy
shifted by ve g. Moreover, the calculation of the commutator of the densitpperators yields a
particularly simple result,

L
[ a); (@)]=r q;qog_ (1.13)
that allows the rewriting of the non-interacting Hamiltonian Hy as a quadratic form in the
Fourier components of the density:

VFX
L
q

Ho = [+(@+C 9+ (a (a] (1.14)



It has been shown[10] that the partition functions calculad from the Hamiltonian (1.14) and
from the original fermion Hamiltonian are identical, provirg that they share the same spectrum.
So the original fermion Hamiltonian can be rewritten entirgl in terms of the density operators.
The relation (1.13) is very similar to the commutation relaton of boson operators, and in fact
it is possible forq 6 O to reexpress (q) in terms of boson creationky, and annihilation b
operators:
r o

@= T at e (raq ; (1.15)
sothatinthelimitof L! +1 the Hamiltonian (1.14) can be rewritten as a sum of independen
harmonic oscillators Hamiltonians. The transformation leding to (1.14) is calledbosonization
for that reason.

The usefulness of bosonization stems from the fact that thelfunteracting Hamiltonian

H = Hy + V remains quadratic in the density variables and thus can be atjonalized by a
Bogoliubov transformation. A computationally more conveient approach is to introduce the
chiral elds:

1 X .
) = T (Qe?; (1.16)
qu
= 2 dx° (x9:
X o _
= oo 2N 172 (9 g, (1.17)
L L o}
60

whereN; is the number of fermions added near the Fermi poimk and the integration constant
9 is an operator such that N,; 5] = ir. The chiral elds have the commutation relations:

[ r(X); ro(X(ﬁ]
[ (x); +(x9]

The introduction of the integration constants in Eqg. (1.16)is necessary to ensure that these
commutation relations are valid also for a nite size system
so that the non-interacting Hamiltonian becomes:
Z

Ho=  dx;= (@ +)°+(@ ) : (1.20)

@ (x xO); (119
ir (x x9: (1.19)

Then, one can introduce another set of elds,

(x) = +(x (x); (1.21)
x) = (++ (x)=2z (1.22)



having Fourier decomposition:

J 1 X igx .
() = “+5 [+@ (@™ (1.23)
q60
_ 1 N X X +(q)+ (q) igx .
(x) = > 0+ o) T L Telq ; (1.24)

q

with J = N N andN = N; + N . The elds de ned in (1.21) satisfy the canonical
commutation relation [ (x); ( x9] =i (x x9 and allow the rewriting of the non-interacting

Hamiltonian in the form:
z dx
Ho=ve o= ()?%+(@)"; (1.25)

and of the interaction term in the form:

Z 22' Z 22'
v @ 2, @) g% 2 @) (1.26)
2 2
giving for the full Hamiltonian:
Z . h i
H= k) 2+ Y@ (1.27)
2 K
where:
2 2
2= v+ ¥ 2 (1.28)
_ VEtO 20
K= Vet 0.+ 20 (1.29)

The Hamilton'b’:\n_can be bl‘%lg_ht back to the non-interacting fom by a simple rescaling of the
elds, 7 = = K and "= K , which is equivalent to the Bogoliubov transformation. In

the form (1.27), the Hamiltonian describes one-dimensionphonons, with a displacement eld
(x) and a momentum density (x). Indeed, if we consider a one-dimensional harmonic chain,

with Hamiltonian:

X
H = %+ g(un Uns1)® (1.30)
and [un;pm] = | nm, calling a the lattice spacing, we can introduce the continuum elds
P(na) = p,=aand u(na) = u,, and obtain the commutation relation Li(x);P(x9] =i (x x9
with the continuum Hamiltonian:
z p2
H= dx >+ E(@u)2 ; (1.31)



where we have de ned = m=aand = ka, which is precisely the form (1.27). The analogy
can be pushed further by noting that with our de nitions, thedensity (x)= +(X)+ (x)=

@ = , which corresponds to the usual de nition of the density[]]las a function of the dis-
placement in elasticity theory, (x) = @u. Following that analogy, we can view bosonization
as a consequence of having particles moving along a line. Whe particle is moving, it is
forced to interact with its neighbors, and exchange some memum with them. As a result,
the individual motion of a particle is quickly transformed nto a collective motion represented
by a compression wave.

1.1.3 Expressing the operators in terms of the density varia bles

Having found the spectrum, the next step is to calculate the ceelation functions of the model.
In particular, it is useful to determine the fermion Green'sfunctions. To do that, one can
remark that the commutation relations of the density with the fermion annihilation operator
are:

[ ) (1= (x x9 (x) (1.32)

Thus, the fermion annihilation operator has the same commation relation with the density
as the exponentiale " ™) and it is expected that ,(x) e " &,
Indeed, the fermion annihilation and creation operators cabe written[12, 10]:

LX) = 191—E el 0 (1.33)
(x) = pl—t d (1.34)
where ::::: indicates normal ordering. Using the relations:
[c0); N =0r xRl 005 =1, (1.35)
where the last commutator is a consequence of the choice ofmcoutator [ 2; °] =i , and

using the Glauber identity e*e® = eA*BexlAB1 yvalid for [A; [A;B]] = [B; [A;B]] = 0, one can
check that (1.33) indeed reproduce the commutation relatis of the fermion operators.

A less rigorous version of (1.33) is obtained keeping the out nite and neglecting the
normal ordering. One can then write:

gl +)

(x) = P (1.37)
where we have introduced = ( +)=2. With (1.36) and , the retardated Green's function
at T = 0 of right moving fermions is obtained in the form:

1 2 (p? 1=p K)2=4
G, (xt) = (1.38)

2 (x ut i0y) x2 (ut+i0,)?

10



taking the Fourier transform of the Green's function, the spctral function is[13]:

! KT v (! + v
() +1) v I vq

The delta peak at! = vqis changed into a power-law singularity that indicated thatthe
Fermion excitations have become incoherent, the true longyéd excitations being the density
modes (1.16). Also, a threshold is present for= vqwhich is a sign of the interaction of the
two Fermi points. The calculation of the momentum distributon shows also that the step at the
Fermi energy is replaced by a power law singularity(k) 2+ Cjk kgj2K*1¢ Dsign(ke k).
The energy distribution obeys the same lawy( ) 3 + Cj Fj2K+1=K Dgign(e ).

For nite temperature, the spectral functions can be derivd in a similar manner. The
Green's function takes the form:

Al (k1) =

(a)? (1.39)

. Pk Ee2) biket g
G t) = 2 I iu sinhl(x ut) o iu sinhTL(x+ ut) o - (140)
u u
Leading to the spectral function[14]:
T FKeKD . ugq ! o +1 .ug+!
Ai(k;!) e Re (2i) B P i AT o Re (2i) "B > | AT ;
(1.41)

where we have dened = (K + K 1 2)=4. In the case of nite size, the Fermion Green's
functions have been obtained all = 0 as well as for nite temperature[15]. The derivation
requires a more careful treatment of the boundary conditiaand of the zero modes than in
the present introduction.

Besides the obtention of the Fermion Green's function, thedz (1.36) also allow us to obtain
a more complete representation of the density operator. Ieéd, since (x) = €kFx L (x) +
e kFX  (x), we can write the density as:

(x) = Xy(X) (X); (1.42)
Y(X) (X)EFKFX Y (X) +(X)+ %FX Y (x) (x); (1.43)

r

1 N sin(2 (x) 2kFx);

“@ (1.44)

Therefore, an oscillating component of the density, of wavector 2kg is also present. This

component is the order parameter fork charge density wave ordering. Using Wick's theorem,
it can be shown that for zero temperature:

2
(% )a 2 0:0); — 4 20T ( (%) (0,002 .
hr e e i=e e erntll (1.45)

11



so that no long range order, but only quasi-long range ordes possible in the ground state, in
agreement with the Mermin-Wagner-Hohenberg theorem.[167,118] The order parameter for

superconductivity, Osc = +(x) (x) % can also be considered. One has:

2 1=K
T @2 e 2 00 = ———— 1.46
X2+ (u )? ( )
so that super uid correlations are also quasi-long range @ered. The super uid exponent is the
inverse of the density wave exponent. This can be understoad the consequence of a duality
property. Indeed, the Hamiltonian (1.27) can be rewritten:

z dx Nu i
H= = —(P)?+uK(@ )?; (1.47)
2 K
where@ = P . One has the commutation relations [(x);P(x9] = i (x x9 so that the

Hamiltonian (1.47) can be changed into (1.27) by the substition (x)! (x), P(X)! ( x)
andK ! 1=K. As aresult, the correlations of exponentials of the eld are obtained from the
correlation of the elds by the substitution K ! 1=K. In general, with the Hamiltonian (1.27)
the two-point ground state correlation functions are of thédorm:

2 2K=4
W Xdegi OO = g *WT () (00)%=2— — 1.48
X2+ (uj j+ )2 (149)
2 ZK 1:4
e &g i OO = g °MT((x) (©O0)?%=2_ - 1.49
X2+ (uj j+ )2 (149

In the language of the renormalization group, the operat@ has the scaling dimension?K=4
while the operator€ has scaling dimension ?>=(4K). An operator €( * ) has a scaling
dimension ( 2=K + 2K)=4, but its correlation function also contains a phase factor The
Fourier transform of the correlation functions (1.48) give the Matsubara response functions.
For a general correlation function of the form:

2

hT O(x; )O(0;0)i = m ; (1.50)
The Fourier transform is (for < 1):
221 )@ ) j2 (D
olg;il) = 0O At : (1.51)
giving after analytic continuationi! ! ! + i0 the response function. For < 1, the response

function is divergent. This implies a divergent density-wee response foK < 1 (i. e. repulsive
interactions) and a divergent superconducting responseafid > 1 (i. e. attractive interactions).
For positive temperature, the correlation functions take tie form:

12



2

. 414
AT ( (x; ) (0;0))% = Kiln4X2+(u]21+ )? T3

1+ u|z 1+ Tjiz 1+ u|z 1+ Liz
2 4
. 1 24 i 2 1+ —
T ) o= goma TIIE) . — _
1Z +1z 1Z +1Z
1+~ 1+ 4= 1+ 1+ =
where = 1=(kgT), z=x iu,z = x+iu and is the Gamma function[19]. As a
function of Matsubara time, the correlation functions are priodic of period , as required by
the Kubo-Martin-Schwinger condition[20]. In the limit u; jzj, the expressions (1.52) can
be simpli ed, using the identity (6.1.17) in [19] yielding he approximate correlation functions:
2 3 2K:4
. . 2 2
HTd ®lgi ©Of + 4 S ; (1.54)
2u2sinh £ sinh 2
2 3 2K 1:4
2 2
Hre (5lgi ©Of + 4 > : (1.55)

2112 o Zz i _Z
u?sinh : sinh T

For long distances, the correlation functions (1.54) decagxponentially with distance. The

characteristic length u= (kg T) is the thermal length. The result (1.54) can be derived with

conformal eld theory[21] by mapping the plane on a cylindeof circumference . In that

language, the origin of the exponential decay of the corréilan functions is the fact that the

system has the same correlation functions as a quasi-one dmional system. The response

functions corresponding to (1.54) have been obtained[223]4drom the integral (convergent for
< 1=2):

z.,, Z

glax 1)
I (g;!) = dx d 5 (1.56)
1 0 sinh *u)
u
2usin( ) (i nj + iuq) (i'nj iuq)
[ [ U L A [ T S AL
(2 )2 B 1 2 4 B 1 2 4
The nite temperature response functions are nite forg;! ! 0, however they diverge as a

power law of temperature whenT ! 0.

To summarize that section: We have seen that with spinlessrfieions in one dimension, the
long-lived low energy excitations are not fermionic quasagticles as in the three dimensional
case, but instead are bosonic collective modes analogousstmnd waves. These modes are
described by a one-dimensional harmonic Hamiltonian. Therfeion excitations are incoherent,
and the ground state superconducting and density wave colations have only quasi-long range
order, with corresponding power law divergences of the respse functions.

13



1.2 The XXZ spin-chain model

1.2.1 Jordan-Wigner transformation and derivation of a bos onized
Hamiltonian

The Tomonaga-Luttinger liquid Hamiltonian (1.27) is also aplicable to the study of spin-1/2

chains. That can be understood by considering the Jordan-@her transformation[24]:

P

S o= ()" men Cmomy (1.57)
1
Sh = ot > (1.58)

where SX¥* are spin-1/2 operators,S; = SX + iSY, and the ¢, are fermion annihilation oper-
ators. While spin-1/2 operators anticommute on the same st but commute on di erent site,
fermion operators always anticommute. The Jordan-Wignerp@rator:

. P y
g man ChCm (1.59)

compensates the anticommutation relation of the fermion @pators on di erent sites and thus
permits to reproduce exactly the spin-1/2 operator algebra
As a result, the Hamiltonian of the XXZ spin chain:
X
H = J(Sﬁ(sﬁ(ﬂ + Sr{sr):ﬂ.) + JZS§S§+1 hSé ; (160)

n

is mapped to thet VvV model of interacting fermions.
X h [
H = U1 G+ ChCrra) + V(AhG 12)(QuyGn 172)  ChCh (1.61)

n

with t = J=2,V = J, and = h. The phase factor ( )" in (1.57) has been inserted to
ensure that forV = 0 the minimum of the kinetic energy is atk = 0. In the limit V t,
a bosonized representation of the Hamiltonian (1.61) can beerved. For V = 0, we will
have two Fermi points at kg with = 2tcoskga) where a is the lattice spacing of our
model. We can also relate the Fermi wavevector to the magnedition of the XXZ model using:
m = hS%i = k= 1=2. For h 6 0, we can take the continuum limit as we did for Eq. (1.5),
and we obtain a bosonized Hamiltonian of the for (1.27). Fdr = 0, a more careful treatment
is required. Indeed, forh =0, the t V model is at half- lling and kg = =(2a) so that:

" #
dc, = a Yo +é Co (1.62)

r r

<

and since we have a discrete sum in (1.61), the termg + H:c: do not drop out from
the Hamiltonian. In more physical terms, wherke = =(2a), we have & =2 =a i.e. &g is

14



a reciprocal lattice vectors, and interactions can includamklapp terms[25]. Using (1.36), we
can nevertheless derive a bosonized representation of thentléonian (1.61):
Z h i Z
dx u 2V
H= = uK()?*+— 2
UK() P+ @) 5y

2
Since the scaling dimension of cos 4s 4K, this term is irrelevant in the renormalization group
sense as long ak > 1=2. Within the perturbative treatment, K ' 1, so the renormalization
group xed point is a still Hamiltonian of the form (1.27) with renormalized parameterai and
K.

dx cos 4; (1.63)

1.2.2 Derivation of a bosonized representation for spin opera tors

Using the relations (1.57), it is possible to derive a bosomid representation of the spin op-
erators. First, we need to use a slightly modi ed expressioaf the Jordan-Wigner operator
compared with (1.59), that has the advantage to yield a herman expression in the continuum
limit[26], i. e.
" #
P v X
g ma O = cos ¢/ Cn (1.64)

m<n

On the lattice, the expressions (1.59) and (1.64) are comfiéy equivalent, but (1.64) becomes
after bosonization:

cos( kegx); (1.65)

while (1.59) would give a non-hermitian expression. The rean for such di erence is that we
have approximated a eld taking only discrete values by a al taking its value in a continuum.
Using the bosonized expressions of the fermion operators, degive a bosonized representation
of the spin operators:

S é®™ -
S'(x) = L=p— ( )®+cos(2 (X) 2kex+ x=a) ; (1.66)
S*(x) = %ﬁz lo Lsine 2ex): (1.67)

In the representation (1.66), plays the role of an azimuthal angle. To derive (1.67), the @uber
identity and the commutators (1.35) have been used to expreshe products % | +H:c. It

+

IS also possible to derive a bosonized representation of thgerator S;,; S,, of the form:

cos(2  2keXx).

StaSi= 5 () 2+(@ ) + (1.68)

Such representation allows us to nd the correlation functins of the XXZ spin chain atT =0
and nd that it has only quasi-long range order in the viciniy of J, = 0.
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1.3 Hard core bosons

Using the Holstein Primako representation[27], one can wré a spinS operator as:

Sz o= b,‘ﬁ% S; (1.69)
S = B 25 bl (1.70)

with the constraint b, 2S. For S = 1=2, Eq. (1.69) shows that a spin-1/2 is equivalent to
a hard core boson. In particular, the Jordan-Wigner transfonation (1.57) can also be used
to represent hard core bosons in terms of fermioAsThe Egs. (1.66){ (1.67) thus also yield a
bosonized representation of hard-core bosons. It is impant to note that the representation

thus obtained is non-trivial. The bosonic modes that enterhte problem can be understood
as the density modes of the hard core boson system as we disedspreviously for fermions.
Hard core bosons can also be considered directly in the contim [28] and the bosonized
representation that we have derived is also applicable.

Another instructive manner to arrive at the bosonized represntation of boson operators
is by considering the number-phase representation. In thaepresentation, we rst consider
the number operatorN, = kb, and de ne its canonically conjugate variable , Buch that
[Nn; n] = i. We can then rewrite tBe boson annihilation operator ag¥, = € » N, and
the boson creation operator as¥ = = N,e ' .2 akir]@ the continuum limit, we nd the
annihilation operator in the form g(x) = b= = € g (X), where g(x) is the bosonic
particle density, and (x) is the super uid phase of the boson eld. The commutator beames
[ (xX); x91=i (x x9. This result is also consistent with the form of the order pameter
for super uidity of the spinless fermions. Moreover, in a mael of interacting bosons such as
the Lieb-Liniger model[29]:

z 1
H= & @@ e(0 % s(*3 % L6 s (1.72)

the number phase representation leads to the Hamiltonian:

1 (@8)°, p— p— 9., .
H = dx% ﬁ*‘ 5(@ )% B B+§§ : (1.72)
Minimizing the classical energy with respect to the boson dsity, we obtain an average boson
densityh gi = =g. Replacingin (1.72) the operatorg by h gi g and expanding to quadratic
order, we obtain a Hamiltonian:
Z
_ 1 (@ g)? : 2 g 2
H= dx >m W+hB|(@) +§( ) (1.73)

2|n that case the phase factor ( )" can be removed, provided that the kinetic energy of the bosos without
hard core interaction is minimal for k =0

SWwith that representation, we are actually enlarging the Hilbert space adding an unphysical space where
N, takes negative values. However, thdy, operators annihilate the states with N, = 0, so that no admixture
between the physical and unphysical Hilbert space can takelpce when the boson Hamiltonian is normal ordered.
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Neglectingthe @ g)? term, the Hamiltonian (1.73) reduces to a Hamiltonian of the fion (1.47)

with uK = hgi=m,u=K = g=, = P . The Hamiltonian (1.73) yields the same dis-
persion relation for the low-energy modes as the Bogoliubapproximation, but does not rely
on the incorrect assumption of Bose condensation. If we retuto the Hamiltonian (1.71) and

derive equations of motion for the elds and , we obtain:

@ +@@=m)=0 (1.74)
2
@+@V - sgi(@)=em) (1.79)

The rst equation is the continuity equation, the second onés the Euler equation with velocity
potential =m. This shows that bosonization can be viewed as linearized ajuum hydrody-
namics, and that the linearly dispersing excitations predied by bosonization can be viewed
as sound modes, as already suggested by the one-dimensi@hainon analogy (1.30). In this
picture, we can view the Tomonaga-Luttinger liquid as a ondimensional crystal melt by quan-
tum uctuations. Such hydrodynamic interpretation is independent of particle statistics. When
considering the picture obtained from the phase represetitan, we can alternatively view the
Tomonaga-Luttinger liquid as a super uid whose long rangerder is turned into quasi-long
range order by quantum uctuations. Thus, the absence of omting breaking the continuous
U(1) translation symmetry and U(1) global gauge symmetry appears to place one-dimensional
systems of interacting particles in a kind of \ uctuating sypersolid" state, with both quasi-long
range crystalline and super uid order.

1.4 The Tomonaga-Luttinger liquid concept

Until now, we have discussed the solution of the Tomonaga-Ltiriger model within a perturba-
tive framework. However, it has been argued by Luther[30] artdaldane[31] that the bosonized
Hamiltonian o ered a more general description of the low engy physics of interacting parti-
cles in one-dimension than suggested by the perturbativeemtment. Indeed, the theoretical
treatment shows that the Tomonaga-Luttinger model is scalevariant, and can be viewed
as a renormalization group xed point[6]. This suggests thahe Hamiltonian can be viewed
in general as the xed point Hamiltonian of a gapless model ofteracting particles. Such a
xed point is characterized by two parameters, the velocityof excitations and the Luttinger
parameter. The xed point is called the Tomonaga-Luttingerliquid. In a more modern lan-
guage, one would note that a model in which the low energy disgsion of excitation is linear
is at a renormalization group xed point with a dynamical expnentz = 1. For such a xed
point, space and rescaled Matsubara time are equivalent, dias a result, the scale invariance
of the xed point implies the full conformal invariance of the model.[32] Conformal eld theory
allows for a classi cation of the conformally invariant xed points. Since the model hasJ(1)
symmetry, a plausible xed point is thec = 1 conformal eld theory generated by theU(1)
Katz-Moody algebra the Hamiltonian of which is precisely (27). The interpretation of K in
the language of conformal eld theory is simply thatk is the compacti cation radius of the
conformal eld theory. From a practical point of view, in order to characterize a system in
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the Tomonaga-Luttinger liquid state, one has to determinehte velocity of excitations and the
Tomonaga-Luttinger parameter from the macroscopic obseles. A simple approach is to
calculate the charge (or spin) sti ness and the compressiity with the help of the xed point
Hamiltonian and relate them with the exact quantities. First if we consider the compressibil-
ity, with the help of (1.23), we see that adding one particled our system is going to make
(x)! x=L . Using the Hamiltonian (1.27), we see that this is going to shithe energy by
the amount u=(2KL ). If we consider the ground state energy change, since in axtensive
system the ground state energ¥o(N;L) N behaves asiEq(N;L) = Le(N=L) N , we
nd that the ground state energy changes by:e{N=L) + €'(N=L)=(2L), so that, since

eYN=L) = , we have:
u

e'(N=L) = K (1.76)
Using the de nition of the compressibility as:
1 @L
= [ ap ) (1.77)
1
= 1.78
(@P=@) (78)

where the pressur®® = (@B=@y, we ndthat =1=( 3e'( o)) = K=(u 3). Now, if we
turn to the stiness, we have to consider our system under a eilnge of boundary conditions
such that (L) = € (0). Such a change of boundary condition amounts to makingx) !
(x) + 'x=L giving a shift of the ground state energy from (1.27) equal toK' ?=2 L ). This
gives us the second relation:
@E

@

In the case of a Galilean invariant model, the relation (1.79can be further simpli ed.
Indeed, under a Galilean boost, (x;t) ! &™* mM?=2 (x-t)sothat (x;t)! (X;t)+ mvx
mv?t=2 and ! + mv. In the Hamiltonian (1.27), this gives a shift of the energy ael to
ukK (mv)?L=(2 ). But in a Galilean invariant model, the energy is simply stited by Nmv?=2
in the moving frame. Equating the two quantities, we nd thatuK = N=(mL) i. e.

L = uk: (1.79)

uk = WO: (1.80)

Such an approach has been applied to the V model (or equivalently the XXZ chain)
of Eq. (1.61) by Haldane. Thet V model is integrable by the Bethe Ansatz (BA), and
the low energy spectrum as well as the sti ness and the comgsebility can be obtained non-
perturbatively. The Tomonaga-Luttinger theory then xes relation between the velocity of
excitations u, the compressibility and the sti ness which have been cheelt on the BA solution.
For h = 0, an analytic expression oiu; K is available:

1

2 Zarccosy

K =

t2 V_Z
u= — (1.81)
~ .
arccos o
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Figure 1.2: Contour plots of (a) the excitation velocityu and (d) the Luttinger parameter K
in the plane (h, = V=) forthet V model after F. D. M. Haldane, Phys. Rev. Lett.45,
1358 (1980). In the notation of Haldaneys = uandK = e 2 .
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which becomes in the case of the XXZ chain:

1
K= 2 3
2 2arccos
P

"7 Sarccos 2 (1.82)
These expressions are de ned only f¢d,j <J (or jVj< 2tinthet V model). ForJ, < J,
the XXZ chain has a ferromagnetic long range order, and fdy > J it has an antiferromagnetic
long range order. The phase transitions from the Luttingeiduid state to the ferromagnet and
to the antiferromagnet belong to di erent universality classes. In the case of the transition
to the ferromagnetic state, the Luttinger exponent is diveging at the transition, while the
velocity is vanishing[33, 34]. On the ferromagnetic sidehe dispersion of excitations is gapless
and quadratic. In the case of the transition to the antiferrmagnetic state, both the velocity
and the Luttinger exponent remain nite at the transition, but the excitations become gapful on
the antiferromagnetic side. The latter type of transition kelong to the Berezinskii-Kosterlitz-
Thouless[35, 36] to be discussed in chapter 2. For now, let just note that for J = J,
the scaling dimensions of the operatord and cos2, as well as€ cos2 and @ in (1.66)
and (1.67) become respectively=2 and 1, as we would expect fronsU(2) invariance. The
guantities u; K have also been derived for the Lieb-Liniger model.[37] Theyly depend on the

dimensionless parameter = mg= . For 1, their behavior follows the prediction from
the Bogoliubov approximation (1.73). For !'1 |, the bosons behave as hard core bosons and
K! 1,u! o=m. There are two ways to reach that limit, the rst one is by senthg g to

in nity, the second one is by sending the density to zero.

The Tomonaga-Luttinger exponent has also been obtained fdne non-integrable Bose-
Hubbard model[38].

Besides knowing the expression of the xed point bosonized mdtonian, we also need a
representation of the density and particle creation and aninilation operators in terms of the
elds that enter the Hamiltonian (1.27). Haldane[39] proposg the following arguments to
justify such a representation.

First, we will consider classical particles along a line, dncall x,, the positions of the
particles. We will then dene a eld (x) such that (x,) = m and (x) is an increasing
function of x. The particle density will then be given by

b3
(x) = (X Y(m )); (1.83)
m=1
— X_ d .
= . ((x) m )&, (1.84)
— 1 )4 i X d .
= g2k U&, (1.85)

where in the last line we have applied the Poisson summatioorinula. For a given average
density of particles o, there are ox particles between the position 0 and the positiox > 0,
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so we expect that (x)= ox "(x), yielding:

X \
x= o -@" gk ox T (1.86)

k=1

That formula is analogous to the formula giving the particlelensity in Eq. (1.42). It is assumed
that for the quantum system, a similar formula holds, with:

X .
xX)= o E@ + A, @m0 2 0x). (1.87)

m

The coe cients A, cannot in general be predicted from bosonization as they depd on the
details of the model. In perturbative bosonization, only te termsA ; are nonzero. The origin
of the higher order terms can be understood by the followinggument.

The 4k component of the density is given by an operator(4kg) = qciF,,qc ke +q- IN
rst order perturbation theory, the ground state of the interacting system is given by:

+ + + + .
O G P e B ke @ (ke @ @ ke iced0d (189

Acting on that state with (4kg) and neglecting approximating (nke + @) (nkg), V(2kg +
d) V(2kg) yields a contribution proportional to:

V (2ke)
4k + + 1.
( F) (SkF) (kF) " C¥F+QOCK|: qOC Ke qC ke +q ( 89)
(1.90)
the bosonized expression of which is:
o () )i w0 (1.91)

(Bke)  (ke)

Turning to the expression of the particle annihilation opeator, one can start from the phase
representation (1.72) encountered, with:

200 = ¢ ©" (1.92)

It is of course di cult to de ne properly the square root of an operator which is a sum of delta
functions. However, since (x) is a periodic function of (x), the square root should preserve
that property. This leads to the representation:

n #

b
S)= e (e w0 (1.93)
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where again the parameter8,, are not universal. In the perturbative approach, onlyB, and
B, are nonzero. With the help of the Jordan-Wigner transformabn (1.57), the corresponding
representation for fermions is:

n #
R
F(x)=¢é ™ B, @Ml () ox) - (1.94)

m=1

The non-universal amplitudes have been computed for the XXZ ispchain[40]. One has:

2 r S — 3
- A A
= d A4 ) T+ Zcos2+::d (1.95)
2 2
1 A
z = @ +( ) ?Zcosz + 11 (1.96)
with:
2K 2 " s ez dt sinh L e 2 i
AS ok 1p P ok o T Snhtcosh1 x 190
S 0 sinhtcosh 1 51 t
8K 2 1 #2K+%
A = p— K 2 (1.98)
2K |;L ; ZKKl 14
todt cosh t e? 1 1 1 2
eXp T 2snhlsinhtcoshl Lt smhLt Ntk ©
" 0 2K 2K 2K
8 L Fax 21 gt sinh X 1t *
A, = — p=22  exp - —K - 2(1 K)e % (1.99)
2 2 T o t sinhg-coshl &t

The expressions of the higher order terms can be found in [40]he amplitudes in (1.97) are
divergent in the limit K = 1=2. This is an indication of the presence of logarithmic corcéons
to the correlation functions in the SU(2) symmetric case.[4MWe will defer their discussion to
Chapter 2.

1.5 Multicomponent systems

1.5.1 The case of fermions with spin
Derivation of the bosonized Hamiltonian

In the case of non-interacting fermions with spin, we can sagtely obtain a boson representa-
tion of the type (1.36) of the spin up and spin down fermions, ith two separate Hamiltonians
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of the form (1.27) for each spin. However, when considering a lbhard type interaction:

Hine = gz dx - (x) #(x) (1.100)
_ gZ dx E@ . cos(2 -  2kg.»X) }@ L+ cos(2 4 2Kg.4X) (1.101)

whenkg.- = kg4, we note that there is an extra term in the Hamiltonian, of the érm:
cos 2( - #) (1.102)

Also, whenkg.- + Ke.» = 2 =a in a system of spin-1/2 fermions on a lattice (of lattice spaag
a) a term of the form:

cos( -+ ) (1.103)

is present in the Hamiltonian.
Introducing the new canonically conjugate operators,

= —"pz—; :—"pé—; (1.104)

it is possible to rewrite the Hamiltonian in the form:

H = E| +H: (1.106)
H = ? UK ( )2+ Il:_(@ )2 (1.107)
z dx u 29 z p
_ 2 2 17 s .
H = 5 u K( )+ K—(@ ) 2 ) dxcos 8 ; (1.108)

in v‘[)hi_ch the charigg excitations () and the spin excitations () are decoupled. We note that
cos 8 andcos 8 are marginal perturbations in the vicinity of the non-intelacting point.
We will defer the renormalization group treatment to a latersection, but we already note that a
marginally irrelevant operator can give rise to logarithng corrections to the va!er-Iaw beh%vi_or
of the correlation functions. It should be noted that by the escaling = 2, = = 2
and K = 2K, the bosonized spin Hamiltonian is mapped on the spin chain Hatonian.

Derivation of the bosonized expression of the operators

The fermion creation and annihilation operators take the fon:

;
= p > ; (1.109)
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where the operators are Majorana fermion operators with the anticommutation rkation

o+ o = o Itis necessary to introduce the operators to ensure the aobmmutation
of fermion operators of opposite spins.With Eq. (1.109), it is possible to rewrite the charge
and spin density in the form:

X
(x) = Yo (1.110)
v, 2 p_ P
= —Q@ + —cosF 2 2kg x)cos 2 (1.111)
X
f(x) = LI (1.112)
P P
g & ) g « ) P _
= 5 it gt e ? coséoz 2kex) « 4 (1.113)
z 1 X
r
1 2 = . P
= —p—é@ + —cosF 2 2Ke X) smp 2 (1.115)
Using the rescaling = P 2; = :p 2, the expressions of the spin density can be brought to
a form reminiscent oprgs. (1.66){(1.67). The di erence beteen the two expressions is coming
from the factor €2F* 2 Inthe case of lattice fermions at half llingke = =2aand a charge
gap opens for repulsive interactions giving i = 0, so that the expression (1.112) becomes

identical to the bosonized representation of the spin chainn that way, the equivalence between
a system of spin-1/2 fermions with a Mott gap and an antifernmagnet is recovered. When the
system is not at half lling, the presence of the operator is the expression (1.112) is an
indication that the carriers of the magnetic moments can ha/a uctuating position[43, 44]
when charge degrees of freedom are not frozen.

If we consider the spin-spin correlation functions, we olbse that the scaling dimensions of
the operators forming the uniform and staggered parts of* and Z# are identical only when
K =1, sothat K =1is a necessary condition for spin rotational invarianceThis condition
corresponds toK = 1=2 in the XXZ spin-1/2 chain, in agreement with Eq. (1.82). As a raslt,
in a case withSU(2) invariance, only 3 parametersu , K and u have to be determine to
de ne non-perturbatively the xed point bosonized Hamiltonan. For the Hubbard model,
these parameters have been determined from the Bethe Ansd&]. It has been shown that
K > 1=2 for any U.

In the case of a non-integrable model such as the extended Habdh model at quarter lling,
the Tomonaga-Luttinger parameters have been obtained fromumerical computation[46].

4Actually, Eq. (1.109) is not a fully rigorous representation. A more correct treatment would use operators
that change the fermion number[31, 42], of which the Majorama fermion representation is only an approximation.
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Figure 1.3: The Tomonaga-Luttinger charge exponer and the charge u (solid line) and
spin u (dashed line) velocities in the repulsive Hubbard model as arfction of density for
di erent values of U=t. From top to bottom U=t = 16;8;4;2;1 for K , u andu (in the left
part of the gure). After [45].

In the case of the Hubbard model under a magnetic eld[47, 48lyhere SU(2) symme-
try is lost but integrability is preserved the xed point bosonized Hamiltonian has also been
determined. We will defer its discussion to Sec.1.5.2.

The order parameters for singlet superconductivity and tplet superconductivity are ob-
tained in the form:

Oss= Y. (i) - 1" o2 (1.116)
Ors= L. ( iy %) - 14" o2 (1.117)
Ore= Y. (iyy) - 1d%2 gin"3 (1.118)
Orse= Y. ( iy ) - 14" g3 (1.119)

The duality transformation  $ exchanges the singlet superconductivity order parameter
Oss with the charge-density wave order parameteOcpw and the triplet order parameters
Orsxvz With the spin density wave order parameterOspy xyz .

The expressions (1.109), (1.110), (1.112) and (1.116) arkbtained in the framework of
perturbative bosonization. Non perturbative expressionsicluding higher order harmonics can
be obtained by applying (1.87) to spin up and spin down fermis and forming combinations.
This would give a density of the form:

P 2 X P p_
xX)= ¢ —@ + Apemt2 2 Mcogm 2 (1.120)
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owever, this expression must be corrected to take into acetthe presgnce of the term
cos 8 . In perturbative expansions, powers of this term cancel theos2n 2 in (1.120)
leading to the corrected expression:
pé X 0 iem+y("2 2 P X o goam®2 2
xX)= ¢ —@ +  AY,, @M Mcos 2 + Ay &M °0(1.121)
m m

Concerning the spin density, a similar procedure leads to:

P X . p_
S+ (X) g 2 A2m+1;xe|(2m+l)( 2 2Kg x)
m
P2 p; X iom®z
+e 2 cos 2 Ao €2M( FX). (1.122)
m
1 X _ p_
S*(x) = —p—z@ Aomz Sin2m( 2 2keX)
X "ops P
+ Aoms1zSIN 2 sin@m+1)( 2 2KE X): (1.123)

m

It should be noted that in the limit of U=t! +1 , in the Hubbard model, the spins up
and down cannot occupy the same site. The charge density iseththe same as the one of a
system of spinless fermions having a density equal to the swhthe density of spins up and
spins down. Meanwhile, the spin excitations become highlydenerate with a vanishingt . As
a result, although the total charge excitations can still belescribed by bosonization, the spin
excitations require a completely di erent description. Sah limit is called the spin-incoherent
Tomonaga-Luttinger liquid.[49, 50, 51] and requires a spattreatment.

Correlation functions

The ground state response functions for the case of genefal and K have been obtained in
[52] in terms of the Appell generalized hypergeometric funon of two variablesF,.[53] Starting
from the general correlation function:

2 2
the Feynman identity[54]:
P P
1 N 0 2y L

Is used to rewrite the Fourier transform of the Matsubara ceelation function (1.124) in the

form:
Z Z o

+  )agx !
o(g;')= dxd dw a1 v) ‘! ¢

(1.126)

+ ’

X2+ vu? 2+ (1 v)u? 2
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leading with the help of (1.51) to:
22(1 ) 20+ ) )

S S L

(a;!) =

(uz uz)qz
. - . . 2, 2.
Fl ; + 1—2, 1 ; + , 1 u —UZ, m (1127)

After analytic continuation, power-law singularities appar in the response function fot = u q
and! = u g. Such singularities mark the presence of a spin and a chargetnuum.
In the ground state, and for the spin-isotropic case & = 1, the spectral functions can
be expressed in terms of the Gauss hypergeometric functifsfy. In the caseu >u and with
=(K +K ! 2)=8we have forl >u q

2 (+ug (! uqg ! 1 u ul!+ugq
e = . 4 .
A+,s(q| ') ( )( +1) (2u ) +1:2(u +u ) 1:22Fl 1 ’ + 2, +1, 2u | u q ’
(1.128)
foruqg<!<u q
2 (! +u q) 1:2(! u q)2 1=2 1 1 2u | u
. 1) = A P P
Avslart) 1=2)2 +1=2)(u +u) =2u u) e N A (e (TR T T
(1
andfor!< uq,
2 T . 13 . |
" ug G +ugq 1 u ul+uq
a1y = . <L .
S O TSN (TRTD BE=TP TR Bt B U A TR TR
(1.130)

In the articles [56, 57], we expressed the spectral funct®of the general two-component model
in terms of Appell F, and F; functions.
ForO<u g<!<u q, the spectral function is expressed as:

. (= W't ug=rs*s Yjljvug=*rst
A k+ ,' <l = “y - P
lkeis * & Dl aecu g (o 2+ 2)( )0+ ugfGituag?
2u('j ug ('] uo
. 0. O . 0 0 . . .
Fl S 1’ s; 1 s 1S + S; + S, ! u(j!j_l_uq)' U(j'j+uq) ’ (1131)

and for! >u q, as:

Ak + i1 )y o= (Z2W) M0 u@e it Mjrugete TR Y
S S v+ JJ>u - o - P 0
| (s + )2+ 0)jj uds(lj+ug?

) . 0 . .0 o. u(g'j+uaq. u@g'j uo

FZ S 11 S; 1 5 1 S + S, 1 s + S; 1 2u (Jl J u q)1 2u (J' J + u q)

(1.132)
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whergu=u +u, u=u u >0, g :(p K 1= K )?=8, 2 :(p K 1= K )?=8,

s = (s + 2)andFy( ;; & ;xy)andFa( ;; % ; Sx;y) are respectively the rst
and second Appell hypergeometric functions [53]. For< 0 the spectral function for u q <
< ugandfor!< u qis obtained by interchanging (1.131) and (1.132) respectly [56].
We nd As(krs+ Q;!)=0for jl j<u g The singularities of the spectral functions[58, 59] can

be recovered from these expressions. We have:

8
Ej! ug s (fort' ' +uqg 0)
(! wuqgs=s (forI'1 +u gq+0)
. = .
Ars(a;!)/ s (+ug? Gor' ! ugq 0 (1.133)
" C+jl+uqgs (for!'! ugqg O
where
s é(K +K 142K +2K ' 2) 1; (1.134)
s ;%(2K +2K '+ K +K 1t 2) 1 (1.135)
o %(ZK +2K '+ K +K '+2) 1 (1.136)
o %(K + K 142K +2K '+2) 1 (1.137)
We have J_ > 0, so that the singularities forl = u. qgare cusp singularities, while s;- =

g. 1=2. For weak interactions, the singularities at! =+ u. g are peak singularities, and

turn into cusp singularities for stronger interaction. For nite temperature spectral functions
and response functions have been expressed as convoluti@egrals in [14] but no closed form
expression is known in the general case. The integrals gigithe spectral functions have been
considered numerically in [60].

1.5.2 General multicomponent models

Bosonization is of course also applicable to multicomportemodels. Such models can be
encountered for instance in ladder or nanotube systems (thaill be discussed later) or in
Kugel-Khomskii models.[61] In the case where all densitiase incommensurate, the low-energy
Hamiltonian takes the form:

dx X
H= 2_ Mab a b+ Nap@ @  ; (1.138)

ab

with [ a(X); s(X9] =i a (X x9. In (1.138) the matricesM and N are real symmetric and
are de ned in terms of the variations of the ground state engy Egs of a nite system of size
L from (respectively) change of boundary conditions,(L) = € @ ,(0) and change of particle
densities 5 = N,=L:

@Ees

Map = : 1.139
= L gray (1.139)
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1 @Egs .

N : 1.140
ab L @a@b ( )
The elds , and , have the decomposition:
N 1 X .
0 = § X p= a(e®
L g60
— (a) Ja 1 X iax
aX) = o Xt P= () (1.141)
L q60
where ()= @ a [ a(@; al DI=  abqe=0d [ $:d]= i wand [iNg]= i av

The spectrum of the general bosonized Hamiltonian (1.138)abtained by a linear transformation[62]
of the elds , and ;:

b = Pb o (1142)

X
a = Qa 7 (1.143)

where P'Q = 1 in order to preserve the canonical commutation relationfs3] The matricesP
and Q are calculated explicitly by applying a succession of lineransformations. We de ne the
rotation matrix R; that diagonalizesM, i. e. '‘Ri;MR; = | with ; a diagonal matrix, and
the matrix N; = 'R;NR;. Since the matrix 1 °N; ;° is symmetric, it can be diagonalized
by a second rotationR,, i.e. izle 1:2 = R, »'R, with 5 a second diagonal matrix. The
transformations P and Q are then:

P = Ry ,"Ru( 2™ (1.144)
Q = Ry 7Ro 2) % (1.145)
and we have:'PMP =( ) and'QNQ =( ,)*?, giving the transformed Hamiltonian:
Z 4xh ) ) i
H = > 2T P @) @) (1.146)

In this last equation, the elements on the diagonal of (,)'*? are the velocitiesu of the
decoupled modes of the Hamiltonian (1.138).

The de nition (1.144) implies in particular that: ‘PMNQ = ,ie. Q 'MNQ = ,, and
by taking the transpose,P 'NMP = .

The stability of the multicomponent TL liquid state requires that all the velocities are real,
l.e., that the matrix MN has only positive eigenvalues.

With the notations of [47, 48], the matricesP andQ areQ = U 1Z, P = 'UY(Z ') where:

U= (1.147)

11
01 °
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and:
ZCC ZCS

Z =
Zse Zss

(1.148)

P
The result (1.146) implies that the correlation functions boperatorse =( a a* 2 2) can be

factorized into products of correlators. We have for zero teperature:

P P
hT e' 2:1( a at a a)(X )ei 2:1( a at a a)(X )| =
2 (r)

Y VY
+ U +irx ’
=1r=
where:
"w #2
o =1 P. +r1 aQ
4 al a aNa
a=1

Further details can be found in the articles [64, 56, 65].
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Chapter 2

The sine-Gordon model

Until now, we have deferred the discussion of the sine-Gordétamiltonian that was obtained
in systems with umklapp processes or with spin degrees ofddem. In the present chapter,
we wish to review the main important results on the sine-Gomh model. We will write the
sine-Gordon model in the form:
Z .h i
_ dx 2, U 2 29 P=.

H = 5 uk () +f(@) 2 )zcos 8; (2.1)
which is the one appropriate for the spin sector of the Hubbarchodel in one dimension. For
the XXZ spin chain, the bosonized Hamiltonian can be brought taie form (2.1) by aﬂgscaling
of the elds. In the case of a dimerized spin-1/2 chain[66] enhas to rescale ! =" 2. The
case of the spin chain in staggered eld along can also be reduced to (2.1) by a duality
transformation.

Classically, the sine-Gordon model is integrable, and thelsition of the sine-Gordon equa-
tions of motion can be described in terms of solitons, antigons and breathers[Eb7]_. At the
classical level, the ground state of the sine Gordon Hamilt@mn is giﬁe_n by =n="2withn
integer. A soliton interp?Ja_tes between the ground stateti = n="2at 1 andthe groynd
state with =(n+1)+<= 2at+1 ,while an antisoliton interpolates between =(n+1) =" 2
at 1 ,and = n= 2at+1 . Breathers are bound states of solitons and antisolitons. Al
these excitations have a relativistic-like dispersiok = = u?p?+ 2, where is the mass of
the excitation and p its momentum. In the classical case, the parametét plays no role. By
contrast, in the quantum case, the parameteK is important. As the renormalization group
treatment will show, the parameterK determines whether the quantum sine-Gordon model
Is gapful or gapless. Moreover, in the gapful case, the paratar K also determines which
excitations are present and how these excitations scatter.
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2.1 Renormalization group approach

2.1.1 The operator product expansion approach

A very convenient method for deriving RG equations is the opator product expansion technique.[68]
The Hamiltonian is written:
x Z
H=Ho+ g dxdOix ) (2.2)
i
whereHy is the xed point Hamiltonian and O; is an operator of scaling dimensioq; i. e.
2 di

X2+ (u )2

where is a real space cuto andu is a velocity. The evolution operator in Matsubara time is
written:

MO (x; )01 (0; 0)ip, (2.3)

n X Z #

U =exp g dxdOi(x; ) ; (2.4)
and we want to determine how the coupling constantg will change under a rescaling of the
real space cuto ! e9Y. The idea of the method is to consider the product of two nornha
ordered operatorsO;(z) and O; (z9. The product can be expanded as:

X
Oi(x; )G;(0;0) = ' }J‘(x; )Ok(0; 0) + regularterms; (2.5)
k
Then, if one expands the Matsubara evolution operator (2.4p second order in the inter-

actions, and change the cuto, a correction to the couplinganstants g will be generated by
the integration over distances > <x2+ (u )?>< 2¢?. That step gives:

1X 2 vk . .
gk = > cdxd (% )G G (2.6)
i;j 2<x 2+(u )2< 2g2d
= d Ci'gg; (2.7)
i5j
where we have de ned: 5
d .
Ci= ? 2—' ( cos: sin =u) (2.8)

The second step is a rescaling of the elds to restore the angl cuto . Under the rescaling,
! (@+(2 di)d)w, leading to the nal renormalization group equations:

d X
2=@ die  Ciag 2.9)
i
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Figure 2.1: The renormalization group ow of the sine Gordomodel. A stable xed line exists
for K> 1.

2.1.2 Renormalization group for the sine Gordon model

The operator product expansion of the operators:

2 ?K=4 2
; )= ———— 1 — + 2+ 4+ (210
cos (x; )cos (0) (U > (x@ @ ) (2.10)
leads to the Kosterlitz-Thouless renormalization group emtions:
dK K2 g 2
— = — = 2.11
d 2 u ( )
%J = 21 K)g (2.12)
It is convenient to introduce the dimensionless variablg(') = g("')=( u ). Because the ow is
symmetric undery ! yand K I K, itis su cient to discuss the case ofy > 0. The ow

diagram is represented on the Figure. 2.1.

When K > 1, the cosine operator is irrelevant and the Luttinger liqu xed point is stable.
When K < 1 the cosine is relevant, the system ows to a strong couplinged point. At the
strong coupling xed point, it is legitimate to expand the csine around =0, yielding a mass
term / 2 which shows that the spectrum is fully gapped. FoK far from 1, the RG ow is
nearly vertical, and the gap behaves as  u= (g=y¥ ¢ ),

At the transition between the gapful and the gapless regiméhere is a marginal ow, with
the cosine being marginally irrelevant. On that lineK (") =1+ y(')=2 and the RG equations
reduce to a single equation:

d
= YOR (2.13)
with solution:
“w_ Yy .
y() = T+y(0) (2.14)
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with y(") ! Ofor " !1 . Such marginal ow gives rise to logarithmic correlationsd the
correlation functions[41, 69]. One has in particular:

P

e Z e 12001 = fin(r= ) (2.15)
hcospé (X; )cospé (000 = —fin(r= )=2); (2.16)
hsinpi (x; )sinpé (0:00 = —fin(r=") 2] (2.17)

so that uctuations towards antiferromagnetic ordering ae enhanced over the uctuations to-
wards dimer order in the spin-1/2 chain at the isotropic poih In the Hubbard model with
repulsive interaction, this implies that spin density waveorder dominates over charge density
wave order. The logarithmic corrections also a ect macrospic observables such as the mag-
netic susceptibility. In, particular, in the spin-1/2 chain, with nite temperature, the RG ow
has to stop when the running cuto e' is of the order of the thermal lengthu=T giving at
nite temperature

y(0) Coge L

1
M= sryon@=) " 2T (2.18)
giving a susceptibility varying as[70]
(T) = L L (2.19)

+
2] 2In(To=T)

A similar logarithmic dependence of the magnetic susceptiity on the magnetic eld can be
deduced from Eq.(2.14). There exists also a line of margihatelevant ow with K =1 y=2.
Such a case is realized with the spin sector of the Hubbard mddéhen U < O, or the charge
sector of the half- lled Hubbard model whenU > 0 or with the frustrated antiferromagnetic
spin-1/2 chain with nearest neighbor exchangé@,; and next-nearest neighbor exchang&, >
0:24J,. This time, the coupling constant is diverging at a scale = 1=y(0). The excitations
of the sine-Gordon model are gapped.[66] and its spectrumf@med of massive solitons. In
the J; J, chain or the spin sector of the Hubbard model withd < 0, the massive solitons are
spin-1/2 spinons. Since the total spin can only change by lhdése spinons are always formed
or annihilated in pairs, giving a simple example of fractiamalized excitations.

2.2 The Luther-Emery point and the Ising model

2.2.1 Fermionization of the sine-Gordon model at the Luther- Emery
point

An interesting special point of the sine Gordon model is the lther-Emery point[71] obtained
for K = 1=2. At that point, the sine-Gordon model is a bosonized represtation of a model
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of free gapful fermions. Indeed, under the rescaling= = Poand = P 27 the sine Gordon
Hamiltonian becomes:
Z h
dx 29
H = -
5 U

)2

i
(T%+(@)* + % cosZ; (2.20)

Undoing the bosonization transformation by introducing thefree fermions =~ = 9527—” yields

the Hamiltonian:
Z n #

H= dx iu r¥9@ 5 + — AR (2.21)

with gapful spectrumE (k) = P (uk)2+1gH )=

2.2.2 The double Ising model and Dirac fermions in two dimensi ons

A mapping from the gapful free fermion model to a doubled Isghchain can be derived.[72, 73]
For a single Ising chain,

H= J  *Xx, h 7% (2.22)
] ]

there is a phase transition between a ferromagnetic phasethwih i = o 6 0 at small h
and a paramagnetic phasé i = 0 at large h. The Ising chain is known to possess a duality
transformation:

2z g XX (2.23)
=2 F K (2.24)

which exchanges) and 2h. For J = 2h the model is self-dual, indicating the transition point.

The Jordan-Wigner transformation (1.57) allows to rewritehe Hamiltonian in terms of pseud-

ofermions:

J X X

H= 2 (¢ 6)gu+*tga) h (dg 1=2) (2.25)
j j

It is convenient to introduce the Majorana fermions operats:

qv q ; (2.26)

o _
+
el

(2.27)

;

i =

1We don't include the ( )" factor in that case.
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that satisfy j = 7,
to rewrite:

b

— =N N

= Jy and the anticommutation relationsf ;; g =

I
~—
S
=~
N—r

After a rotation in Majorana fermion space,

Po( gy
é R;j

The Ising Hamiltonian is nally rewritten as:

iJ X ( )+ X
e Rj Rj+1 Lj Lj+1
4 j .

H =

1
j p_é( Rj +

Lij );

L;j );

N

> Rj+1 Lj+1 ih Rj Lj

Taking the continuum limit, the Hamiltonian becomes:

iJ

X
H= 7 (rM@rKX X@ LX)+ i(J=2 h)

4
J

indicating that the Ising transition is obtained when the Mgorana fermions become massless.

If we now consider two Ising chains,

H = Hl';(Hz
Ho = 3 X% X

i

jfnoj+lin

Z
dx r(X) L(X);

X
h A

jin s
j

Kk andf j; «g=

(2.28)

(2.29)

(2.30)
(2.31)

(2.32)

(2.33)

(2.34)

(2.35)

(2.36)

(2.37)
(2.38)

We can apply the previous mapping to each chain and derive antmuum representation of

the form (2.36):

X
( Y@ )
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Z

#

dx ') M(x)(2.39)



which can be rewritten into a single Dirac fermion represeation by introducing:

Rel = p?_z( el F iR (2.40)
so that: 7 7
H= v dx( 1@ = Y@ O)+im dx( % . ) &) (2.41)
If we now turn to the disorder op(\a(rators, we have that:
2% = @)= @& 5 (2.42)
k<j k<j
So:
X X Y i (n) (n)y.
4 i1 g2 T (@i Rij L;k)’ (2.43)
vj n=1;2
= (2 )F/z;j rRi (2 )L/;j Lij 1) (2.44)
k<j
Y i y y
= e CrRi RI*T L4 u) (2.45)
KSj 4
X
= cos ( Ry rRiF {5 i) (2.46)
k<j
We also have: " "
X
41-’;‘l sz = S)"‘ (Ll))cos ( )Ié;j Rj + {;j L) (2.47)
k<j
" #
X X — (2) @ X y y .
45152 = (g + [7)cos (Ry RIT 1§ i) (2.48)
k<j
and: " y "
4i1g2 = ( l(?l)"' |(_1))( g)"' |(_2))COS ( )Ig;j Rj {;j L) (2.49)
k<j

Applying bosonization, we obtain the relations:

1(X) 3(x) = cos (x) (2.50)
1(X) 3(x) = cos (x) (2.51)
() 300 = sin (x) (2.52)
X(x) 5(x) = sin (x) (2.53)

The correlation functions of the two-dimensional Ising moal in the vicinity of the critical point

are known[74] to be expressible in terms of Painlewe Il fustions[75]. This allows us to obtain
the correlation functions of the sine-Gordon elds at the Lther-Emery point. We see that the
operatorse always have short range order, while the operatoes present a long range order.
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2.3 Integrability of the sine-Gordon model and the Form-
factor approach

The integrability of the classical sine-Gordon model peis at the quantum level. Indeed,
the quantum sine-Gordon model can be mapped in all generglito the massive Thirring
model which is known from the work of Bergkno and Thacker to b integrable by the Bethe
Ansatz[76, 77].

The excited states of the quantum sine-Gordon model can besgeibed in terms of solitons
of massuM= , antisolitons of massuM= and (possibly) breathers. The dimensionless mass
M depends ong=uas[78] as:

2 _K_ T
M = 2 2Kl 1 K)g . (2.54)
1=2) >=5¢ (K) 4u

The ground state expectation value of the exponential elds conjectured to be[79]:

n2K Z 1 . 2
2. (LK) g @ dt sink?(nKt) K a
(K) 4 2u P T 2sinhKt)sinhtcosh(l K)t 2 !

(2.55)

with n < 1=K. However, in contrast to the classical sine-Gordon model, éhbreather masses
uM,= are quantized and satisfy the condition:

M, =2M si —
n sin n21 "

(2.56)

with n an integer, taking values from 1 to the integer part of 2K 1. The condition (2.56) can
be derived from a semiclassical analysis[80]. According 1.56), the breathers exist only for
K < 1=2i. e. only below the Luther-Emery point. The interpretation of this result is that for
K < 1=2 the interaction between the Luther-Emery fermions is regsive. As a result, a bound
state can be formed between a Luther-Emery hole (antisolit) and a Luther-Emery fermion
(soliton). For K > 1=2, the Luther-Emery fermion and the Luther-Emery hole repetach other
and no bound state can form.

In the case of the Hubbard model folJ < 0 andjUj t, or the frustrated spin-1/2 chain,
K < 1 and we have only massive spin-1/2 solitons. In the case oktlimerized spin-1/2 chain,
K = 1=4, so that two breathers of masse®l; = 2M sin(=6) = M and M, = 2M sin(=3) =
M~ 3 are present. The light breather of mas#! and spin S? = 0 forms a triplet with the
the solit(bn_of spinS* = 1 and the antisoliton of spin S* = 1. The heavy breather of mass
M, = M 3 s a singlet excitation.[66, 81, 82]

2.3.1 S-matrix

The integrability of the quantum sine-Gordon model can be sl to derive the exact free energy,
but also to obtain the correlation functions using the Formdctor expansion. To do that, it
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Figure 2.2: (a) an in-going state, with particle velocitiesn increasing order from left to right.
(b) an outgoing state, with particle velocities in decreasg order from left to right. In both type
of states, the particle are approximately localized in spacforming wavepackets.p:; p2; ps; pa
are their approximate momenta.

is convenient to work from theS matrix.[83] The S-matrix relates the in-going states, which
are wave-packets in which the particles are approximatelydtalized, with their velocities in
decreasing order from left to right, to the out-going stateslso wave-packets but with particle

S22 pes i ipm) = ouh®d s BRJipL  Pmiin (2.57)
The Bethe Ansatz integrability implies that no particle production can obtain so that the
numbers of solitons, antisolitons and breathers are consed, and the S-matrix is factorizable.[83]

As a result, it is su cient to know the S-matrix for collisions of two excitations. It is convenient
to parameterize the S-matrix in terms of:

"1 K
and introduce the rapidity to parameterize the velocityutanh , momentum p = mu sinh
and the energyE = mu?cosh of a particle. When working with rapidities, for two particles,
the invariant (E; + E)?=u* (py + p2)?=t2 = m2 + m3 + 2mim,cosh(; ), so that the
S matrix describing the collision of those particles dependsnly on = ; .. Another
advantage of that representation is that theS-matrix can be analytically continued to complex
values of the parameter. The S-matrix is a periodic function of of period 2 . Bound states
of particles correspond to poles of th&-matrix for purely imaginary values of the parameter

. When a bound statec is formed between two particles of massé&d, and M, the energy of
the bound state can be writtenM2 = M2+ M2+ 2M,M,cos{US). One has[83, 84]:

(2.58)

c )2
S( 1 2) = |+bC (259)
1 2 UG

The S-matrix for the soliton-soliton or antisoliton-antiliton collision is:

Z +1 . 1
sinh=(1 t
at : f( )t sinht— ; (2.60)
0 t sinh3 t cosh; i

Sss() = exp
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The S-matrix describing a collision between soliton and aisbliton without momentum
exchange is:

sinh =
sinh(i )=

SE() = Ses( ); (2.61)
while the S-matrix describing a collision between solitonnal antisoliton with momentum
exchange is:

sinhi =

(r) —
Sss() = sinh(i )

— Sl ); (2.62)

We notice that when ¥ is integer, the matrix describing re ection vanishes. The @ints
are called re ectionless points.
When breathers exist, we also have soliton-breather:

Z dt 2 coshst sinh skt
o t sinh3t cosh}

Sen () =( )exp sinhti— : (2.63)

and breather-breather k <1|):

£ dt4coshstsinhsktcoshi(1  I)t
o t sinh t cosh}

Shon( ) =( )exp sinhti— ; (2.64)

Z 1 dtzcoshzt sinhi(2k 1)t +sinhi(1 )t

S =( )
()= ()7 exp o t sinhi t cosh}

sinhti— . (2.65)

2.3.2 Bethe Ansatz at the re ectionless points

At the re ectionless points, there is no backscattering ofditons, antisolitons or breathers and
the S-matrix is simply describing a phase-shift of the particleafter a collision. Such situation
makes the description of the conditions to be satis ed by theapidities of the particles when
periodic boundary conditions are imposed particularly sipie to write.[85] Indeed, if we consider
a particle of rapidity ; and massm; going from positionx to position x+ L @5 it will receive a
phase-shifte™i " i resulting from its momentum, and another phase-shift 5\ Sk ( « ;)
from the collisions with the other particles. These phase gts have to compensate each other
so that the periodic boundary conditions are satis ed and:

U
gmismit g () W) =1 (2.66)
k6 j

Taking the logarithm of (2.66), we nd:

. 1X
mjLSIth+i— InSjk(k j):2|j; (2.67)
6k
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where thel;'s are integer. Introducing the densities of solitons, argolitons and breathers, the
equations (2.67) can be rewritten as integral equations[B5
X 41
M cosh + K (9 (%=210 O+ "(9 (2.68)

1

where = s;s;h indicates whether ( ) is a density of solitons §), antisolitons (s) or breathers
(h), "( ) being a density of unoccupied soliton, antisoliton or breher states. We have also
de ned:
1
K ()= i—dEInS (): (2.69)
The dimensionless free enerdy = ( ?=uU)F is obtained from the method of Yang and Yang.[86,
87, 88] The total energy of an excited state is given by:
Z X
E=Egs+ d M cosh (); (2.70)

with the dimensionless ground state energy densifygs given by:

2
EGS = T tan

> oK (2.71)

while the entropy is given by:

X Z
S= diC + MO)C + M)  Om () ") ")l (2.72)

We have to minimize the free energf = E TS with respect to the densities and " subject
to the condition (2.68). Introducing the pseudoenergies:

() ()=T
—e : 2.73
) (2.73)
we nd:
X - -
0 = F= m cosh TIn@l+e O Tin@+e O M (2.74)
1 X £
h = + > dX ( 9 (9 (2.75)
substituting the second line into the rst equation, we obtan:
T4 X _
m cosh = () 5 d O K ( 9In@+e Oy (2.76)
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The non-linear integral equations (2.76) must be solved irrder to obtain the pseudoenergies.
Once the pseudoenergies are known, it is possible to expréesfree energy using:

Z X Z
F = Ess+ d dm cosh () () T( + MIn@+e ) (2.77)
T4 X _
= Egs > d m cosh In(L+e ~7); (2.78)

where, to obtain the last line we have used the integral equans (2.76) and the condition (2.68).

2.3.3 The form factor expansion

The form factor expansion allows the calculation of correfian functions in integrable models.
It has been applied to the calculation of conductivity in onedimensional Mott insulators[89, 90,
91], spin-spin correlation functions in gapful spin chain®2, 93, 94, 95] and spectral functions
in metals with spin gap[96]. In the present section, we willrst describe the principle of the
Form factor expansion, and we will then describe the calcdian of the simplest form factors.

Principle of the method

For any translationally invariant system, the Matsubara corelation functions in the ground

state can be written as: X

PA(X; )A(0;0)i = Hoje PX* H AeP* Hijn><n jAjo> (2.79)
X' .
= j <njAjo> j2gPrx En . (2.80)
n

where jn > is a simultaneous eigenstate of the energy operatbrjn >= E,jn > and of the
momentum operatorPjn >= P,jn >. In a general model, the computation of all eigenval-
ues and eigenstates is a daunting task. However, in the caseaafintegrable model such as
the sine-Gordon model, the problem is simpler. First, the genstates are simply described
in terms of tp.e rapidities of the soliﬁgns, antisolitons andreathers, and the eigenvalues are
simply P, =, mjsinh j andE, = ; mj cosh ;. Second, it is possible to obtain equations

form factors) to the S-matrix.[97] Solving these equations allows to write a ses expansion of
Eqg. (2.79) the terms of which are indexed by the number of stuns, antisolitons and breathers
in the expansion. Finally, for gapped models such as the si@®rdon model, the terme En
decays exponentially with over a scale inversely proportional to the sum of the masses o
the breathers, solitons and antisolitons appearing in theigenstatejn >. As a result, the rst
terms of the series already give an accurate approximatior the Matsubara correlation func-
tion (2.79). If we were considering the imaginary part of a sponse function, the situation
would be even better. Indeed,)t(he expression of the resporigaction being:

la(a;!)= j<njAj0o>j* (@ Pn) (! En); (2.81)
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for ! <E ,, the contribution of the eigenstatejn > to the response function is exactly zero. So
for xed ! and with a gapful model, only the terms with a total mass of theexcitations less
than ! need to be summed in (2.81) to obtain the exact answer.

The equations de ning the form factors

For the n-particle form factor, we de ne[97]:
IO AN 1107 gl = @ (masinh wrisin )M (2.82)

As a result of the Lorentz-like invariance of the sine-Gordomodel, FA(f ;g) depends only on
the di erences k. The form factor possesses invariance under the combinatiof charge
conjugation, parity and time reversal, so that:

i0ACOIh 15055 niow = FAV( 155555 n) (2.83)

outh 1,707 mJA)IN mer; 205 nlin = an) (2.84)

If we consider the two-particle form-factor and insert a redution of the identity in Eq. (2.82)
using the out-going state as a basis, we nd with (2.83) that:

FO(2 0=S(1 2Fa(1 2 (2.85)

and from (2.84):
Fa(i )= Fa(i + ) (2.86)

The equation (2.85) is called Watson's equation. It allowsot nd the two-particle form factor
by solving a Riemann-Hilbert problem.[98] When thé& matrix can be written as:
Z ., ¢
S()=exp dtf (t) sinh o ; (2.87)
0
The minimal solution of the Riemann Hilbert problem is given [97, 99]:

Z sint(i )=2 ]

Fm ()= f 2.
()=exp . dtf (t) Snht (2.88)
The solution (2.88) is free from poles. The general solutios of the form:
F()=K(O)F™(); (2.89)

whereK( )= K( )= K( +2i ). The factor K( ) contains all the poles of the physical
form factor.
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In the case of the general multi-particle form-factors, theet of equations to be solved is
discussed in[84, 100, 99]. This set of equation is:

Fa(C it gy jeasiiss n) = S( J FL)FA( 15000 jeas ity n) (2.90)
Fa2i + 15 2000 n)=Fa( 200 o (2.91)

To these equations, conditions xing the position of the p@s must be added. The rst one
is related to kinematic poles:
!

iI!imo( OFA( %+i:: 10 )= 1 S( D) Fa( it n);
(2.92)

where and °are the rapidities of a soliton and and an antisoliton. Thespoles correspond
the annihilation of a particle and an antiparticle, the totd energy being #M?2coshf=2)> =0
when 0= i . These poles relate tha + 2 particle form factor to the n particle form factor.
The other one is related to bound state poles. When a bound steexists, one has the relation
(with the same notations as in (2.59):

i lim  F(; O,l;:::;n): obF it (2.93)

uiug,

which relates then + 1 particles form factor to the n-particles form factor (the rst particle
being a bound state).

44



Chapter 3

A brief review of experimental systems

3.1 Quasi-one dimensional conductors

These systems are three-dimensional solids with a highly isotropic structure that can be
viewed as an an array of weakly coupled one-dimensional ¢t®i As a result, they can be
expected to show some Tomonaga-Luttinger liquid featured-owever, in all those quasi-one
dimensional conductors, interchain couplings are releviaperturbations that destabilize the
Luttinger liquid xed point[101]. If we call t, the interchain hopping, a renormalization group
argument shows that, whert, is relevant, below a temperature:

4K
t, 6K K2 1

F

the one-dimensional chains cannot be considered decoupﬁeld:l a Fermi quLBd_is restored.[101]
One may hope that sinceé, isirrelevant for eitherKk <3 2 2orK > 3+2 2the Tomonaga-
Luttinger liquid could be stable for large interactions. Howver, interchain exchange coupling
and interchain Josephson coupling are also present[10231004] and become relevant for
respectivelyK < 1andK > 1 giving rise respectively to antiferromagnetic or superoducting
long range order. As a result, the hints of Tomonaga-Luttingeliquid physics can only be
observed in a regime of su ciently large temperature or higlirequency. With these limitations
in mind, we discuss some of the hints of Tomonaga-Luttingaglid properties in these materials.

3.1.1 TTF-TCNQ

The organic conductor TTF-TCNQ (tetrathiafulvalenium-tetracyanoquinodimethane) is made
of chains of stacked organic molecules TTF and TCNQ. The strtwge is monoclinic, with space
group P2-., and lattice parametersa = 12;298A, b= 3;819A, c=18;468Aet = 104;46".
The electronic orbitals overlap most strongly along thé axis, and more weakly along the other
directions. TCNQ is an electron acceptor molecule, while TTk an electron donor molecule,
and as a result of electron transfer, the TTF chains are holeoged (, = 1:41)while the TCNQ
chains are electron dopedng = 0:59). A Peierls instability exists for T < 54K. It is know

45



(TMTTF),AsFg (TMTTF),Br (TMTSF),CIO,
1
(TMTTF),SbFg  (TMTTF),PFg (TMTSF),PFg

!

100

—
———
-

[

Temperature (K)
5

Lol

Pressure ~5 kbar

Figure 3.1: The universal phase diagram of organic conducto The Bechgaard salts are more
weakly correlated than the Fabre salts and correspond to Higr e ective pressure.

that 4kr uctuations of the charge density exist on the TTF chains[18] a signature of strong
correlations in one dimension. Angle resolved photoemissispectroscopy measurements that
give access to the electronic spectral functions of the TCN@ains can be interpreted in terms
of a one-dimensional Hubbard model withy = 4:9t.[106] However, the hole spectral functions
on the TTF chains have to be interpreted in terms of a Hubbard mael with U < 0:2t in
disagreement with the suggestion of stronger correlatiomdhese chains coming from the k¢
measurement.

3.1.2 The Bechgaard and Fabre salts

The Bechgaard salts (TMTSF}X (tetramethyltetraselenafulvalene combined with an anio
X ) and the Fabre salts (TMTTF),X (tetramethyltetrathiafulvalene combined with a anion
X ) are also examples of one quasi-dimensional conductors. eTpresent a stacking of the
TMTTF or TMTSF molecules forming chains. Since the formal chrge of a molecule is +(,
the chains are apparently three-quarter lled. However, a dnerization of the chains (giving 2
non-equivalent organic molecules in each unit cell) makelsem actually half lled in the upper
band. A universal phase diagram in the pressure temperatupéane has been proposed based on
experiments and is represented on Fig. 3.1. Under pressuree torganic molecules are brought
closer to each other, increasing the overlap integrals anbe kinetic energy of electrons, while
the Coulomb repulsion is weakly a ected. As a result, high pssure corresponds to smaller
interaction to bandwidth ratio. The Fabre salts at ambient gessure present a larger interaction
to bandwidth ratio than the Bechgaard salts and appear on théeft of the phase diagram.
They present a regime of charge localisation, where the camtiance becomes activated, in
agreement with the prediction of insulating state in a oneithensional system at half Iling.
However, since the Fabre salts are already three-quartereltl in the absence of dimerization, the
charge localization may also result from a three-quarter léd umklapp process[107] provided
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Figure 3.2: The NMR relaxation rate in TTF[Ni(dmit) ], as a function of temperature. The
continuous line is the Tomonaga-Luttinger liquid theory pediction. After [111].

K < 1=4. Other signatures of a one-dimensional physics in orgamienductors are the behavior
of Nuclear Magnetic Resonance (NMR) relaxation rate[108] anthe conductivity along the
chains[109, 110]. In NMR, the relaxation ratd; is given by:

Z
1 — | quBT + 1)
T, " im 2—!—Im (Q;'); (3.2)
where * is the response function:
Z Z,,
(g =i dx HS* (x;t);S (0;0)]iglx ¢ +iou. (3.3)

0

Using EQgs.(1.112), one nds that the R component of the spin-density gives a contribution
/ TK which is dominant for K < 1. In the organic conductor TTF[Ni(dmit),],, such a
power-law behavior has been observed for KT < 300K.[111] In the Fabre salts, the charge
degree of freedom localize, leading to an e ective = 0 in the absence of long range ordering
[108]. Concerning optical conductivity, the frequency degndent conductivity can be derived
from the sine-Gord?p_Hamiltonian describing the charge exations and the expression of the
charge currentj = 2@ = .[112, 113] For high frequency, perturbation theory givesnaac
conductivity (1) 14K 5andad. c. resistivity (T) T 3with n =1 in the case
of a half- lled umklapp, and n = 2 in the case of a quarter lled umklapp. By comparing
measurements at high frequency with the prediction from ptrrbation theory, one can extract
an exponentK .[109, 110] The results are compatible with an exponekt = 0:22 andn = 2.
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Figure 3.3: The momentum integrated spectrum in LisMogO,7 tted to a Luttinger liquid
theory. (b) corresponds to photons of high energy and (c) tohptons of low energy. The
energy independence shows that the measured spectrum doeswvary with the penetration of
the photons in the material, and therefore corresponds to bustates. After [116]

Measurements of dc conductivity in the direction transversto the chains also yield a power-law
dependence compatible with an exponet = 0:22.[110]

3.1.3 Inorganic one-dimensional conductors

The Li purple bronze, Lb.gM0gO17 possesses two quasi-one dimensional bands that are cragsin
the Fermi energy. Photoemission studies suggest a Luttingkquid state [114, 115, 116] The
integrated photoemission spectra follow a scaling form:(E) = T B[(E Eg)=T] with =
0:6[116] This is the form that would be predicted by TLL theoryvith =(K + K ! 2)=4
and this would be in agreement withK = 0:25. Such behavior was con rmed by Scanning
Tunneling Spectroscopy measurements[117]. However, whemsidering the spectral function
A(k;!), the situation is less clear. Second, the position of the ispon edges follows scaling,
but not the one of the holon peaks. Second, the spectral fummt does not follow the scaling
A(k;!) = T A(k=T;!=T) that would be expected from TLL theory but instead scales as
T Ak=T;!=T).[114]

To conclude that section, although some evidence for TLL pperties exist in quasi-1D
conductors, interchain couplings cannot be neglected. Irrder to nd stronger evidence of
TLL properties, one has to turn to arti cial structures such as nanotubes or nanowires which
can be studied in isolation. Another possibility is to turn tosystems made of weakly coupled
spin chains. In such systems, isolated chains only carry aagie-component Luttinger liquid,
which is less complicated to characterize. A third route isot consider ultracold atomic gases,
trapped in a quasi-one dimensional geometry. Below the degeacy temperature, these systems
can be expected to exhibit TLL features. Moreover, by workowith bosons instead of fermions,
one can obtain a single-component TLL.
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Figure 3.4: The two-dimensional honeycomb lattice, with tl inequivalent A and B sites.e;.,
are the basis vectors of the translation group that leaves ¢hhoneycomb lattice invariant.

3.2 Carbon nanotubes

Carbon nanotubes[118] have a 1D structure, made of a grapkesheet rolled into a cylinder.
For nanotubes of not too small radius, the overlap of thg? orbitals is not too strongly modi ed
by the curvature of the nanotube, and the band structure cand understood from that of a
two-dimensional nearest-neighbor tight-binding model oa honeycomb lattice as represented
on Fig. 3.4. The Hamiltonian reads:

X
H= t (da Gs *HQ) (3.4)
hij i
q
giving a dispersionE (k) = t 1+ 2cosky=2) cos{J §ky:2) + 4 cog(ky=2). There are two
non-equivalent pointsK; K in reciprocal space for whicte (k) is vanishing. However, since
the graphene sheet is rolled into a cylinder, not all waveviers are allowed. If the position
R; and the positionR; + ne; + me, are identi ed, the wavevectork will have to satisfy the
condition k (ne; + mey) 2 2 Z. Such a condition constrains the allowed wavevectors to
remain on parallel lines. If these lines intersect the poistk and K the nanotube will be
metallic, otherwise it will be semiconducting. The condibn to have a metallic nanotube is
that (n+ m) 2 3Z. In armchair nanotubes, withn = 2m this condition is always satis ed. In
zigzag nanotubes, withm = 0, the condition is satis ed whenn 2 3Z.

In the above picture, interactions have been completely niegted. Wen interactions are
taken into account, conducting carbon nanotubes are expect to show TLL features[119,
120, 121]. The advantage of carbon nanotubes over organimdoctors for the observation
of TLL physics is that it is possible to probe a single nanotud and avoid interchain coupling
e ects. Evidence for TLL behavior comes from tunneling congtivity measurements[122],
photoemission[123], STM[124] and NMR[125] experiments. &tretical consideration of tun-
neling from a Fermi liquid into a Luttinger liquid lead to the prediction[126] that the tunnel
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Figure 3.5: Tunnel conductance in carbon nanotubes. (a) plof the tunnel conductance as a
function of temperature on a logarithmic scale. (b) Plot ofthe conductance scaled according to
(3.5) as a function ofeV=Ig T for di erent values of temperature. The collapse is an indation
of Tomonaga-Luttinger liquid behavior. After Bockrath et al [122]

current behaves as:

— 1+ o v .V .
| = 19T sinh oT 1+§+IF ; (3.5)
wherel, is a non-universal prefactor, and = (K +1=K  2)=8 for tunneling in the bulk of
the nanotube, = (1=K  1)=4 for tunneling at the tip of the nanotube. EQq.(3.5) show that
the tunneling current satis es scaling as a function o/ =T. Such scaling has been observed in
experiments on metallic carbon nanotubes[122]. The ressilare compatible withK = 0:2.

ARPES measurements have also been performed on carbon nabets[123]. The results are
also compatible with a TLL state with an exponentK =0:28. gure 3.6.

STM measurements of carbon nanotubes[124] on a gold surface also compatible with a
Luttinger liquid state but with K = 0:55. The di erence with the measurements performed
on insulating substrates could be explained by a better se&eing of Coulomb interaction in the
nanotube by the metallic substrate.

3.3 spin-1/2 chains

In spin-1/2 chains, measurements of magnetic susceptibylin Sr,CuO3; have shown[127] that
for low temperature, the susceptibility exhibited logarihmic corrections as predicted by (2.19).
In the spin-1/2 chain material KCuF3, the dynamical structure factor has been measured by
neutron scattering.[129, 130, 131] From Eq.(1.56), the magtic structure factor of a Luttinger
liquid can be predicted. For temperature su ciently high, to avoid three-dimensional e ects,
the TLL behavior has been obtained.
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Figure 3.6: Photoemission spectroscopy measurements onrlien nanotubes bundles with
energyh =30 meV and energy resolution of 13 meV. The solid line%4¢ represents the
spectral functionA(!1) | K *17K 234 hroadened by the instrumental resolution. Left inset:
photoemission spectra with energyy =65 meV and resolution 15 meV on logarithmic scale.
Right panel: After Ishii et al.[123].
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Figure 3.7: Oscillations of the local density of states in aa&bon nanotube. After [124]

Figure 3.8: The magnetic susceptibility in SXCuO; for temperatures below 600 K compared
with the Bonner-Fisher approximation[128] forJ = 2200 K and J = 2800 K (dotted lines)
and the Eggert-A eck-Takahashi theory[70] (solid line). Inset: magnetic susceptibility versus
1=In(To=T) dots: experiment, solid line: theory. After [127].
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Figure 3.9: Structure factor atk = =c in the spin-1/2 chain material KCuF 3. The solid line
is the Luttinger liquid theory prediction. After [132]

Copper pyrazine dinitrate is a good realization of a spin-2/chain with exchange constant
J ' 0:91meV. It remains disordered forT > 0:1 K, indicating that the interchain coupling is
less than 104J. It has been possible to measure the behavior of the magnatipn and the
speci ¢ heat under applied eld[133] and compare with the mdictions of the Bethe Ansatz for
the spin-1/2 chain. Moreover, neutron scattering measuregnts have also con rmed[133, 134]
that the dynamical structure factor was in good agreement Wi a spin-1/2 chain model.

3.4 Cold atomic gases

Using optical and/or magnetic cooling and trapping technolgies, it is possible to obtain gases
of bosonic or fermionic atoms at temperature well below theedeneracy temperature. In optical
traps, the trapping potential can be engineered to create gsi-one dimensional structures[135,
136, 137], and interactions can be modulated by a magnetiddeusing Feshbach resonances.[138,
139] One-dimensional gases of hard core bosons have beelizeshexperimentally with optical
trapping.[140, 141, 142] The thermodynamic measuremerit4]l] such as the temperature and
the size of the cloud as a function of interaction are in agne®nt with the Lieb-Liniger theory[29]
as shown on Figs. 3.10 and 3.11. By superimposing a periodittite[140] in the longitudinal
direction, it is possible to further increase the e ective rass an enhance the e ect of interactions.
The momentum distribution is also in agreement with the preidtion of a model of hard core
bosons in a harmonic potential as shown on Fig. 3.12.

Using magnetic trapping, it is possible to trap atoms in the winity of a thin wire, and realize
a quasi-one dimensional system.[143] In such systems, [Besih resonances cannot be used for
modulating interaction strength, nevertheless it has begmossible to check that the Lieb-Liniger
equation of state gave a good description of the thermodynaes of a trapped one-dimensional
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Figure 3.10: The one-dimensional temperature of a trappedag as a function of transverse
con nement Uy measured in units of the recoil energ¥ .. For U 20E ec, the system
can be considered one dimensional with negligible intertakinteraction. The circles represent
experimental data. The solid line is the exact Lieb-Linigegas theory, with error bars to
account for uncertainty in the determination of experimerdl parameters. The short dashed
line represent the hard core boson theoretical result. Therlg dashed line the mean eld theory.

After [141]

Figure 3.11: The RMS length of a trapped gas as a function ofamsverse con nementJ,. The

solid line is the Lieb-Liniger theory, with error bars comig from uncertainty on experimental
parameters. The short dashed line is the hard core boson riksand the long dashed line the
mean eld theory. After [141]
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Figure 3.12: The momentum distribution in an array of trappd atomic gases in double loga-
rithmic scale. The circles are experimental data, the thickolid line is the theoretical result for
a gas of hard core bosons in a harmonic potential. The thin sbline materializes then(p) p
behavior of the momentum distribution. From (b) to (f), the axial lattice depth Va=Eec, the
temperature T=J, the exponent of n(p) p and the interaction parameter = U=J are:
(b) 4.6, 0.5,1.9, 5.5 (¢) 7.4,0.7,1.4,13.7 (d) 9.3, 0.9, 123.6 (e) 12, 1.3,0.8,47.6 (f) 18.5, 3.9,
0.6, 204.5. For (a) there is no superimposed periodic potéitin the longitudinal direction,
and =2:2and =0:5. After [140]
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Figure 3.13: The density pro le of an on-chip Bose gas. The wiinuous lines are computed
from the Thermodynamic Bethe Ansatz applied to the Lieb-Lirger gas, while the dotted lines
correspond to an ideal Bose gas. The dashed line in (b) copeads to a quasi-condensate
having the same peak density as the experimental data. Theatnsverse con nement frequency
I, =158nK. After [144]

gas.[144] More precisely, assuming that bosons in the growstate of the radial trapping form a
Lieb-Liniger gas, whose density pro le can be obtained frothe Thermodynamic Bethe Ansatz,
while the bosons in the excited states of the radial trappingre forming an ideal gas, and adding
together the densities of each component, it is possible td accurately the density pro le of
the 1D boson gas trapped on a chip, as can be seen on the Figu33

In [145], the e ect of a periodic potential on a one-dimensmal Bose gas was measured.
In the presence of a commensurate potential,(x) = Vpcos(2 ox), from Eqg. (1.87), the low
energy excitations are described by the sine-Gordon modd€lf]. ForK < 2, the cosine term is
irrelevant, and the Tomonaga-Luttinger liquid state is stéle in the presence of a weak potential.
As the strength of the potential is increased, a BKT phase trasition to the gapful Mott state
is observed. The measurements in [145] are in agreement wille formation of a Mott state
when the commensurate periodic potential exceeds a criticalue that depends on interaction
strength. For K < 2 which corresponds to a Lieb-Liniger parameter> 3:5, a small lattice
potential immediately opens a gap as represented on Fig. 3.1
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Figure 3.14: The phase diagram of a Bose gas under a periodmtegmntial in the plane of
lattice depth Vy and inverse Lieb-Liniger parameter. The solid line is the pdiction from the
sine-Gordon theory, while the dashed line is from the Bose-Blbard model[146]. For strong
interaction and weak lattice depth, the sine-Gordon modelakcribes the phase transition. The
inset shows the behavior of the gap as a function of the latecdepth. The solid line is the
prediction from the sine-Gordon model (2.54), and the dastidine the result for free fermions.

After [145]
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Chapter 4

the two-leg ladder

The present chapter is based on the articles[147, 148, 14901151].

The two-leg ladder model (see Fig. 4.1) is a system made of airpaf exchange coupled
antiferromagnetic spin chains, with Hamiltonian:

H = Ql + H2 + Hinterchain (4.1)
Hp = J (Sr)1(;pSr)1(+1;p + Sz;pszﬂ;p) + sté;psé+1;p (4.2)
X
Hinterchan = J- (Sr):;lsi);(z + SE{JSE,’;Z) + J% Sﬁ;lsﬁ;z (4_3)
"X
+ J’.(?)(Sr):;lsr):ﬂ;z + Sr):;lsr):ﬂ;z) + ‘]’.(?ZSrzulSrzwl;Z (4-4)
X'
+ 3" (SkaSh 12+ ShaSh 12) + J°SESE 12 (4.5)

n

The ladder model is known to possess a spin gap[152]. This i®sheasily understood
in the limit of J2 = J", =0, J; J > 0. In that limit, the ground state is given by a
spin singlet on each rung, and excited states are formed by aral of triplet excitations with
dispersionJ, J cosk. In the limit of JS =J"'>s=0andJ, ! 1 , the ladder model becomes
equivalent to an antiferromagnetic spin-1 chain which is ab known to possess a spin gap[153].
Using bosonization, it is possible to show that in the limit 0fJ-j;jJ2j;jJ"»j J, a spin gap
is formed[154, 155, 156]

1
JX N\

In
\]/\

2

Figure 4.1: The interchain exchange interactions in the tweg ladder. The couplingsl, are
along the vertical, whileJ$ and J", are along the diagonals.
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4.1 Bosonization

4.1.1 General case

Starting from the boson representation of the single chairgnd using Eqgs. (1.66){(1.67) one
obtains[154, 155, 156] the following bosonized represdita of the two-leg ladder model:

z dx u 2 z
H, = > UKp( )2+ K_F;(@ o) 2 p)z dxcos4 (4.6)
Z
2 2 2
Hinterchain = (%21)2 cos(1 2)+ 2 22)2 cos2(1 o)+ %C052(1+ 5) dx
+JZa @ 1@ 2 12@ 2 (4.7)

Near the XY symmetric point, the coupling constants are given by:

aw= . JI¥ JI")a
& =(J3 J,_?‘ ga)a
®w=(J JI¥ IMa (4.8)

More generally, the amplitudes are renormalized by interéions. It is convenient to rewrite
the Hamiltonian in terms of the elds:

_ 1. 2. _ 1% 2
a= —pé— s = —pz— 4.9
which yields:
H = Es"’ Ha
dx 5 Uy 5
Ha = > UKa( )+ (@ a)
2 Z Ka Z
2 = 2 =
+% dxcosF8 a)t ﬁ dxcosFZ a)
Z
dx u
Hs = R UsK s( s)2+ K_S(@ 5)2
Z S
20, F—
+ 2 ) dxcos( 8 ) (4.10)
Where:
B KJZa B KJza
Us=u 1+ o T Ks=K U
KJZa Jia
Up=u 1 ZJ Ka=K 1+ J (4.11)



It is worthwhile to note that the Hamiltonian 4.10 was obtain&l previously in a bosonization
study of the spin-1 chain[23], in which the spin-1 operatonsere represented as a symmetric
combination of spins-1/2. That result hints that spin-1 chians and two-leg ladders should
present similar physical properties at low energy.

The phase diagram can be obtained from the self-consisterdrimonic approximation[154]
or the renormalization group[156]. FoK¢ < 1, the eld s becomes long range ordered, and
the Hamiltonian H¢ has a gap in its excitation spectrum. In the HamiltonianH, as discussed
in [155, 156] at least one of the operators is relevant so thidte Hamiltonian is always gapped.
Two phases are possible, one with, long range ordered, and the other with 5 long range
ordered. The dierent regimes are represented on the tabked and 4.2 . The phases are
named according to the terminology of the paper by H. J. Schylis7]. In the phase called
XY 1 the correlations ofS;  sign@-)S, are quasi-long range ordered. In the phase called
XY 2, the correlations ofSf  sign@%)Ss are long range ordered. In the singlet phase and
the Haldane gap phase, all the local operators have only shaange order correlations. It is
possible however to construct a non-local order paramet&$8] for these phases analogous to
the VBS order parameter[159, 160, 161] of the spin-1 chain. Wl consider rst the case of
J» J9 J", < 0, where the Haldane gap phase is expected. The VBS order parteneC is
a nonlocal order parameter de ned for a spin-1 chain as:

X
C= kIi.r.n1 hS; exp(i S S (4.12)
it

y k<n<j

In the Haldane gap phase, all the spin-spin correlation funoins decay exponentially butC $0.
A non-zero VBS order parameter indicates that if all the sitesvhereSZ = 0 are removed from
a spin-1 antiferromagnetic chain the remaining (\squeez&dchain has antiferromagnetic order.
For our ladder system, the VBS order parameter takes the ford$2, 147].

" #
X
Oodd = _kli.ml h(Sg.1 + Sco)exp i (Sn1t S2) (Sii+ SPoi (4.13)
jk gt ' ’ . ' ' ’
k<n<j
To derive a representation of the string operator, we rst usthe identity: exp(i (Sj+S3)) =
exp(i (S Sj)), yielding:
Y 1 X
exp( (ST+S7)=( ) * “exp( (ST S (4.14)

k<n<j k<n<j

which is straightforwardly bosonized in the form ( )k J cosp 2( a(ka)  a(ja)). Using the
bosonized expression @&; + S7 = S*, the VBS order parameter is obtained in the form:

Ooga /__lim rcos” 2 s(X) cos’ 2 s(Y)i =(h:osp§ si)? (4.15)
x oy

Since in the Haldane gap phasd) i = 0 (see table 4.1) the VBS order parameter is non-
zero. Turning to the case ofl, JY J", > 0, we have to consider another VBS-like order
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Figure 4.2: A schematic view of (a) the AKLT picture of the Haldae gap phase, and (b) the
singlet phase of the two leg ladder. In the Haldane gap phase),(¢he dashed line encounters
one singlet, while in the singlet phase it does not encountany singlet.

parameter:
n X #
' i<n<j
which we can express as:
. . P . P . P .
Oeven ! Iqu ksin® 2 s(x)sin 2 ¢(y)i =(hsin’ 2 i)? (4.17)
x it
In the singlet phase,h i = = P 8 (see table 4.2) the even VBS order parameter is non-zero.

The two order parameters are mutually exclusive indicatinghat the singlet phase and the
Haldane gap phase are distinct. The di erence between the twzhases is topological. In the
AKLT picture[163, 164], a spin-1 is represented as a symmetrcombination of two spins 1/2,
and in the Haldane gap phase, the spins 1/2 are paired as singlalong the chain direction
(see gure 4.2 (a)). By contrast, in the singlet phase the sps 1/2 are paired along the rung
direction gure 4.2 (a)). These two valence-bond crystal sttes are therefore associated to two
topologically non-equivalent dimer coverings of the two ¢gladder. In the Haldane gap phase,
a vertical line will encounter an odd number of dimers, whilen the singlet phase a vertical line
will encounter an even number of dimers.

4.1.2 Isotropic case

In the isotropic case, it is possible to make a more detailechalysis of the Hamiltonian 4.10.
Indeed, the isotropic case corresponds #; = K, = 1=2 with the terms cos 4 ;., marginally
irrelevant. If, in a rst approximation (which becomes exatwhenJ, +J2+J", = 0), we neglect
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I Il Il v
Ks <1 <1 >1 > 1
Ka < 1=2 > 1= < 1=2 > 1=2
s hsi=0 hsi=0 critical critical
a, a h.=0 ha =0 h.=0 ha =0
phase _Ising AF_ Haldane gap| XY 2 XY 1
Order parameter cosF? s) cos(JZ a) | VBS-like el 2s |3 cos(s)

Table 4.1: The four sectors of the phase diagram of a two legltéer with ferromagnetic rung
coupling

I I 1 v
Ks <1 <1 >1 >1
Ka < 1=2 > 1=2 < 1=2 > 1=2
s hsi = P5 h gl = P5 critical critical
a a hai:p—g hai:{a—z hai:ia—g hai:p—i
phase _Ising AF_ singlet XY 2 XY 1
Order parameter sin(Pi s)sin( 2 ,) | VBS-like el 2s |3 sin(p3)

Table 4.2: The four sectors of the phase diagram of a 2 leg ladvith antiferromagnetic rung
coupling.
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. : N . P
all the F5‘n_arg|nal operators in the Hamiltonian 4.10 we can makthe rescaling 5! 4= 2,

a ! 2 5 and fermionize the resulting Hamiltonian[162]. It is convaant to rewrite the
Hamiltonian using a Majorana fermion representation:
Z
TR
H = IE dxr r;a@ r;a (4.18)
a=0
Z !
a=1

showing that the spectrum consists of a triplet of Majoranaefrmions of massn and a singlet
Majorana fermion of mass 3m. Moreover, using the relation between massive Majorana
fermions and the Ising model, a representation of the spinperators can be derived.[162] If one
writes: Sy, = Jp(X) +( )"n(x), then one has:

My=ni+ni= 1 530 (4.20)
My=ni+ni= 1,30 (4.21)
M,=ni+n5= 1,30 (4.22)
my=n; n3= 1230 (4.23)
my=ny ny= 1230 (4.24)
m,=n; nN5= 1 230 (4.25)

Using the results of[74], this allows the calculation of zetemperature correlation functions in
terms of Painlee 11l functions. The results of such computions are in good agreement with
numerical work[166]. The uniform component of the magneta#ion can be directly expressed
in terms of the Majorana fermion operators as:

Ji+J; = ié( v2+3% 2 3) (4.26)
H+J; = %(+3+1+ 3 ) (4.27)
I+ = ié( sl +2t 1 3) (4.28)
JgoJ; = %(ﬁo+1+ o 1) (4.29)
NEQEIN PR ié( v0+2F 0 2) (4.30)
g 33 = IE( v0+3% 0 3) (4.31)

1This technique is also applicable in the presence of biquadtic spin-spin interaction[165].
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4.2 Semi-in nite ladder

In the case of the semi-in nite spin-1 chain, it has been shawby considering the topological
term in the path integral representation,[167] that in the Hédane gap phase, spin-1/2 edge
states would be obtained. A simple picture of this result cabe obtained by considering the
AKLT ground state: cutting the chain anywhere will necessaly cut a dimer a leave one free
spin-1/2. The same question can be asked in the case of the #leg ladder, i. e. whether
a semi-in nite ladder will present edge states. In fact, theedge states are only obtained[149]
when the ladder is in the Haldane gap state witlDy,qq 6 0. To discuss that result, we rst
need to consider the case of a spin-1/2 chain with open boumgaonditions.[168, 169]

4.2.1 Open boundary conditions in a spin-1/2 chain

Let us rst consider the spin-1/2 chain with open boundary coditions in the XY limit. The
Hamiltonian reads:

Xl
H=3" (SiSuu * S, Shu); (4.32)

n=1

and becomes, after the Jordan-Wigner transformation (1.%57

Xl
J= 3 (Gt + ChaG); (4.33)
n=1
giving the eigenvalue equations:
Ec, = J(C+t G 1);(n 2 (4.34)
Ec, = Jc; (4.35)

These equations can be reduced to a single equation by inttmihg a ctitious site 0 such that
Co = 0. The Hamiltonian (4.33) is then diagonalized by introduang:

r__
2 X
G = N C sin(kn); (4.36)
X k>0
H = (k)cc: (4.37)
k>0

Taking the continuum limit of that Hamiltonian, we nd:

€z" ,(na) e 'z" .( na); (4.38)
Z 1

H = v dx 1@ - (4.39)

1

Sy
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We notice that we can bring that representation to the same fm as in the case of the in nite
system simply by introducing (x) = +( Xx). In terms of the bosonized representation,
the latter condition is simply .(x)+ ( X) = . Using the equation of motions of the
chiral elds, ,(x;t) = ((x rut;0) = ((0;t rx=u) that condition can be rewritten as

(0;t) = =28t. So we see that the bosonized representation of a semi-irtaiXY spin chain
is obtained simply by imposing a boundary condition (0;t) = =2. Such boundary condition
can be viewed as the condition that sin20;t) = 0 i. e. that the staggered component of
the magnetization (1.67) vanishes. Simultaneously, theajgered dimerization operator (1.68)
takes at the edge of the chain its maximal value. In the inteding case, the boundary condition
Is preserved, and the general XXZ spin-1/2 chain bosonized Hatonian is:

Zy . h i A
dx u 2
H = UK 24 = 2 4 4.4
3 UK() @) gy dxeos (4.40)
0 = =2 (4.41)
Indeed, with the boundary condition (0) = =2, we ensure that the staggered componeatgf the
magnetization vanishebsgn the edge, irrespective of inteton. By dening (x)= =2+ K~

and (x) = théta(x)= K, we can transform the Hamiltonian (4.40) into a non-interadhg
Hamiltonian. We then nd that the boundary condition ~(0;t) = 0 is solved by introducing
the chiral eld =, (x;t) = 2 (x ut; 0) and writing:

~(x;t)=%(~+(x ut)  T( x ut)); T(xt) = %(~+(x ut)+ . ( x ut)); (4.42)

So that:
Pk
(x;t) = §+T (x out)  H( x ut)) (4.43)
(x;t) = Eplf(i(x ut)+ ~( x ut)) (4.44)

With Eg. (4.43), we nd that in a semi-in nite chain, hd ®* ®™j = 0 and e ™j =
e z[=(2x)] ¥4, In the absence of an external magnetic eld, this leads toSY*i = 0.
When a magnetic eld is applied along thez direction, ke 6 =2 and Friedel oscillations of
the magnetization appear. In the case of a spin-1/2 chain, vean turn the boundary condition

(0) = =2 into the simpler boundary condition (0) = O provided that we change the sign of
sin2 and cos?2 in Eqgs.(1.66){ (1.68).

4.2.2 Two-leg ladder with open boundary conditions

We are now considering a semi-in nite ladder model with opeboundary conditions. We can
still apply bosonization, but the Hamiltonian (4.10) is now estricted to x > 0 with boundary
conditions (0) = 0 and ,(0) = 0. The ladder can still be fermionized, but a relation nw
exists between the right moving and the left moving elds[19]:

+n(0) = n(0); (4.45)
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forO n 3. To ndthe eigenstates of the fermionized Hamiltonian, its su cient to consider
for eachn the 1D Dirac equation:

(iU s@+m, 2) o(X)=E n(x); (4.46)

where ( X) is a two-component column vector,

a(X) = mr (4.47)

n;

The general solution taking into account the boundary conton (4.45) reads:

r
cos Q(X+ k)+ I SIN (kX) e kt 4 Hic + % 1 e Mnx=u (mn) n

1
n (61 =1 oL coskx + ) isin(kx) u 1

L k>0
D _ (4.48)
where (k) = = (uk)?+ m?, a is a fermion annihilation operator,e « = (uk + im)= (k), and

is a Majorana fermion operator. The Majorana fermion is prest only whenm, > 0. As
a result, in the case of a ladder with), J9 J%< 0, a triplet of Majorana fermion bound
states is formed near the edge, while in the opposite case,iagiet Majorana fermion bound
state is formed.

In the case where a triplet of Majorana fermions is formed,rgie from (4.26) the uniform
magnetization is:
Z, Z
M= dX(J+ic+J o) = iaTbC dX( +a +p+ 2 ) (4.49)
0

after integration, a contribution to the magnetization:

i
Mczéama& (4.50)

where , are the Majorana fermion operators associated with the bodrstate. Eq. (4.50) is
precisely the representation of a spin-1/2 in terms of Majana fermion operators[170]. The
presence of a spin-1/2 excitation at the edge in a ladder witterromagnetic coupling can be
understood from the limit of in nite ferromagnetic rung cowpling where the ladder becomes a
spin-1 chain. It is known that the spin-1 chain in the Haldane gp phase with open boundary
condition possesses spin-1/2 edge modes[167]. Those edgdes can be understood from the
AKLT picture[163, 164]. In that picture, each spin-1 is decoposed into two spins 1/2. The
spins 1/2 are then paired with their nearest neighbors in sgiets so that one of the spins is
paired with a spin on the left, and the other with a spin on the ight, thus leaving an in nite
chain translationally invariant. Itis clear in that pictur e that cutting the spin 1 chain anywhere,
will leave a free spin-1/2 edge state.

The Majorana fermion representation also allows the calatlon of the staggered magnetiza-
tion and the staggered dimerization in the semi-in nite tweleg ladder. Indeed, as we have seen
in Sec. 2.2.2, massive Majorana fermions on an in nite ling@arelated with the one-dimensional
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guantum Ising chain and the two-dimensional classical Iggmodel. In the case of a semi-in nite
line, the equivalence persists, but the boundary conditienon the Majorana fermions translate
into boundary conditions on the Ising degrees of freedom. Eonately, the latter conditions

are quite simple. When the Majorana fermions obey the boundacondition .(0) = (0),
the spins satisfy the free boundary condition, whereas when the Majmna fermions obey
+(0)= (0), the spins satisfy the xed boundary conditions (0) = 1.[171, 172, 173] Since

under a duality transformation the order () and the disorder () parameter are exchanged,
free boundary conditions for the spin translate into xed boundary conditions for and vice-
versa. In the Ising language, the semi-in nite ladder is thefore equivalent to four decoupled
semi-in nite Ising models with free boundary conditions. Apositive mass for the Majorana
fermions corresponds to a two-dimensional Ising model belats critical temperature. With
free boundary conditions, the localized Majorana fermion ade corresponds to a domain wall
bound to the edge in the Ising model. When the mass is negatjiibe Ising model is above
the critical temperature, and no domain wall is attached to lhe edge. Using the results from
[171, 172, 173, 174, 175], we obtain the following expressfor the staggered magnetization:
mtajmsja4 1—8e mexeve 2 m;X G m; X G jmgjXx ; (4.51)

% ()i
* VS’VS Vi Vi Vs

where the functionsG and H can be expressed terms of a solution to the Painlee 11 di eential
equation:

1R 1d * 1d 1
_ﬁ = —d— _d_ + 2 —2: (452)
with boundary conditions on
() nz+ e (! 0)
() 1 K02(2 )( R (4.53)
e being the Euler's constant. The functionsG and H are de ned by:
"z, . ! ) #
G(y) = y)exp d 3 () @ )2 a4 5@ ()
" y
z, ( . ,! . )#
Hly) = " (y)exp d 3 () @ 2)7? q 5( () 1) (454)

y

There is an apparent paradox in having a non vanishing staggel magnetization in the
absence of an external magnetic eld since this violates th&U(2) invariance of the model.
Actually, the Eq. (4.51) is only valid whenS%,. = 0. Such a state is only invariant under
rotations around the z-axis, and can sustain a staggered magnetization, as has hhebserved
in DMRG calculations[176, 177]. A staggered dimerizatios ialso present. Using the bosonized
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expression (1.68), and the mapping to the Ising spins, we nithat the staggered dimerization
IS + 1 2 3 o- The expectation value is then:

. mdjmgja* ; mX jMsjX
h. ()i —t\J/3VS‘ e imungt T2 G J VSJ (4.55)
tVvs t S
for ferromagnetic rung interaction, and:
Cjmgmeat P s ImgX L mx
h . (x)i — e M™MG® = G : (4.56)
ViVs Vi Vs

for antiferromagnetic rung interaction.
We can also obtain the staggered magnetization pro le wherhé edge spin is polarized by
an external magnetic eld. We nd in the ferromagnetic rung ase:

jmth MgX

mX (x)i el MmPFiG3 v G vk (4.57)
S
and in the antiferromagnetic rung case:
(i e Zmoed mabevags MX g IMX (4.58)
Vt Vs

4.3 Ladders under a magnetic eld

Until now, we have restricted ourselves to ladders in zero ethal magnetic eld. In the
presence of an applied eld, one must add a term:

hZ

- dx@( 1+ 2) (4.59)
hp Z
dx@ : (4.60)

Hyield

1
‘NI

When Hg is gapped in zero magnetic eld, that term induces a commensie-incommensurate
transition[178, 179]. Forh > h, the Hamiltonian Hs + Heg has a Luttinger liquid ground
state with gapless spectrum[180, 181, 182]. The Singlet orlH@ne phase are turned into the
XY 1 phase, while the Ising antiferromagnetic phase are turnddto the XY 2 phase. The
transition is most easily understood in the SU(2) invariantimit. Indeed, in that case, we can
fermionizeHs + Hyieg in the form;

Z Z
H= dx iug( )@ . '@ )dx+i o (! Y ) h(Y .+ Y ) (461)

and the energy of excitations is simphe (k) = P (usk)2+ 2 hs. Whenjhgj <j j, there
are no zero energy excitations, and the system remains gagp&henjhsj > j j, a fermion or
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