?. Oury, A. Kirchev, Y. Bultel, and E. Chainet, PbO2/Pb2+ cycling in methanesulfonic acid and mechanisms associated for soluble lead-acid flow battery applications, Electrochimica Acta, vol.71, pp.140-149, 2012.
DOI : 10.1016/j.electacta.2012.03.116

/. Dioxide and . Lead, II) Galvanostatic Cycling in Methanesulfonic Acid : a Morphologico-Kinetics Interpretation, Journal of the Electrochemical Society, vol.160, pp.144-154, 2013.

?. Oury, A. Kirchev, and Y. Bultel, New Elements About Lead Dioxide/Lead(II) Cycling in Methanesulfonic Acid, ECS Transactions, vol.45, issue.29, pp.153-162, 2013.
DOI : 10.1149/04529.0153ecst

?. Communication-orale, ]. R. Pboama99, L. Amadelli, A. B. Armelao, N. V. Velichenko et al., Pb 2+ Cycling in Methanesulfonic Acid for Soluble Lead-Acid Flow Battery Références Oxygen and ozone evolution at fluoride modified lead dioxide electrodes, Electrochimica Acta, issue.2, pp.45-713, 1999.

]. R. Ama02, A. Amadelli, F. I. Maldotti, A. B. Danilov, and . Velichenko, Influence of the electrode history and effects of the electrolyte composition &nd temperature on O 2 evolution at ?-PbO 2 anodes in acid media, Journal of Electroanalytical Chemistry, vol.534, pp.1-12, 2002.

]. J. Cao07, H. Cao, F. Zhao, J. Cao, and . Zhang, The influence of F -doping on the activity of PbO 2 film electrodes in oxygen evolution reaction, Electrochimica Acta, vol.52, pp.7870-7876, 2007.

]. J. Cao09, H. Cao, F. Zhao, J. Cao, C. Zhang et al., Electrocatalytic degradation of 4- chlorophenol on F-doped PbO 2 electrode, Electrochimica Acta, vol.54, pp.2595-2602, 2009.

]. D. Che85, E. Cheng, and . Hollax, The Influence of Thallium on the Redox Reaction Cr 3+ /Cr 2+, Journal of the Electrochemical Society, vol.132, pp.269-273, 1985.

]. B. Che09, Z. Chen, H. Guo, X. Huang, Y. Yang et al., Effect of the current density on electrodepositing alpha-lead dioxide coating on aluminum substrate, Acta Metallurgica Sinica, vol.22, pp.373-382, 2009.

]. S. Chi92, M. Chieng, and M. Kazacos, Skyllas-Kazacos, Modification of Daramic, microporous seperator, for redox flow battery applications, Journal of Membrane Science, vol.75, pp.81-91, 1992.

]. S. Chi93 and . Chieng, Membrane processes and membrane modification for redox flow battery applications, Thèse de doctorat, 1993.

]. J. Col10a, G. Collins, X. Kear, J. Li, D. Low et al., A novel flow battery: A lead acid battery based on an electrolyte with soluble lead(II). Part VIII. The cycling of a 10 cm× 10 cm flow cell, Journal of Power Sources, vol.195, pp.1731-1738, 2010.

]. J. Col10b, X. Collins, D. Li, R. Pletcher, D. Tangirala et al., A novel flow battery: A lead acid battery based on an electrolyte with soluble lead(II) Part IX: Electrode and electrolyte conditioning with hydrogen peroxide, Journal of Power Sources, vol.195, pp.2975-2978, 2010.

]. L. Das03, L. Da-silva, J. F. De-faria, and . Boodts, Electrochemical ozone production: influence of the supporting electrolyte on kinetics and current efficiency, Electrochimica Acta, vol.48, pp.699-709, 2003.

]. M. Dud11, B. Duduta, V. C. Ho, P. Wood, V. E. Limthongkul et al., Semi-Solid Lithium Rechargeable Flow Battery, Advanced Energy Materials, vol.1, pp.511-516, 2011.

]. D. Eus80 and . Eustace, Bromine Complexation in Zinc-Bromine Circulating Batteries, Journal of the Electrochemical Society, vol.127, pp.528-532, 1980.

]. B. Fan02, S. Fang, Y. Iwasa, T. Wei, M. Arai et al., A study of the Ce(III)/Ce(IV) redox couple for redox flow battery application, Electrochimica Acta, vol.47, pp.3971-3976, 2002.

]. R. Fit00, N. Fitas, L. Chelali, B. Zerroual, and . Djellouli, Mechanism of the reduction of ?and ?-PbO 2 electrodes using an all-solid-state system, Solid State Ionics, vol.127, pp.49-54, 2000.

]. M. Ger99, M. Gernon, T. Wu, P. Buszta, and . Janney, Environmental benefits of methanesulfonic acid. Comparative properties and advantages, Green Chemistry, vol.1, pp.127-140, 1999.

A. Hazza, D. Pletcher, and R. Wills, A novel flow battery: A lead acid battery based on an electrolyte with soluble lead(ii), Physical Chemistry Chemical Physics, vol.6, issue.8, pp.1773-1778, 2004.
DOI : 10.1039/b401115e

]. A. Haz05, D. Hazza, R. Pletcher, and . Wills, A novel flow battery?A lead acid battery based on an electrolyte with soluble lead(II). IV. The influence of additives, Journal of Power Sources, vol.149, pp.103-111, 2005.

]. P. Hen82 and . Henk, Lead salt electric storage battery, 1982.

]. J. Ho94, G. Ho, R. Tremiliosi-filho, B. E. Simpraga, and . Conway, Structure influence on electrocatalysis and adsorption of intermediates in the anodic O 2 evolution at dimorphic ?-and ?-PbO 2, Journal of Electroanalytical Chemistry, vol.366, pp.147-162, 1994.

]. S. Hos11, M. Hosseiny, M. Saakes, and . Wessling, A polyelectrolyte membrane-based vanadium/air redox flow battery, Electrochemistry Communications, vol.13, pp.751-754, 2011.

]. C. Hsu01, F. Hsu, and . Mansfeld, into a Capacitance, CORROSION, vol.57, issue.9, pp.747-748, 2001.
DOI : 10.5006/1.3280607

]. P. Jon54, R. Jones, W. F. Lind, and -. Wynne, The behaviour of the lead dioxide electrode. Part 3.?Overvoltage during oxygen evolution in H 2 SO 4, Transactions of the Faraday Society, vol.50, pp.972-979, 1954.

]. M. Kaz90, M. Kazacos, and M. Cheng, Skyllas-Kazacos, Vanadium redox cell electrolyte optimization studies, Journal of Applied Electrochemistry, vol.20, pp.463-467, 1990.

]. S. Kim11, M. Kim, W. Vijayakumar, J. Wang, B. Zhang et al., Chloride supporting electrolytes for all-vanadium redox flow batteries, Physical Chemistry Chemical Physics, vol.62, issue.40, pp.18186-18193, 2011.
DOI : 10.1039/c1cp22638j

]. A. Kir07, A. Kirchev, M. Delaille, E. Perrin, F. Lemaire et al., Studies of the pulse charge of lead-acid batteries for PV applications. Part II. Impedance of the positive plate revisited, Journal of Power Sources, vol.170, pp.495-512, 2007.

]. A. Kir08, M. Kirchev, E. Perrin, F. Lemaire, F. Karoui et al., Studies of the pulse charge of lead-acid batteries for PV applications. Part I. Factors influencing the mechanism of the pulse charge of the positive plate, Journal of Power Sources, vol.177, pp.217-225, 2008.

]. E. Kot87, S. Kötz, and . Stucki, Ozone and oxygen evolution on PbO 2 electrodes in acid solution, Journal of the Electrochemical Sociaty, vol.228, pp.407-415, 1987.

]. F. Lap62 and . Lappe, Some physical properties of sputtered PbO 2 films, Journal of Physics and Chemistry of Solids, vol.23, p.1563, 1962.

]. R. Lar93, M. Largent, J. Skyllas-kazacos, and . Chieng, Improved Photovoltaic System Performance Using Vanadium Batteries, 23rd IEEE PV Specialists Conference, pp.1119-1124, 1993.

]. P. Leu11, C. Leung, F. C. Ponce-de-león, and . Walsh, An undivided zinc?cerium redox flow battery operating at room temperature (295 K), Electrochemistry Communications, vol.13, pp.770-773, 2011.

]. P. Leu12, X. Leung, C. Li, L. Ponce-de-león, C. T. Berlouis et al., Progress in redox flow batteries, remaining challenges and their applications in energy storage, RSC Advances, pp.27-10125, 2012.

]. X. Li09, D. Li, F. C. Pletcher, and . Walsh, A novel flow battery: A lead acid battery based on an electrolyte with soluble lead(II). Part VII. Further studies of the lead dioxide positive electrode, Electrochimica Acta, vol.54, pp.4688-4695, 2009.

]. H. Lim77, A. M. Lim, R. C. Lackner, and . Knechtli, Zinc-Bromine Secondary Battery, Journal of The Electrochemical Society, vol.124, issue.8, pp.1154-1157, 1977.
DOI : 10.1149/1.2133517

]. L. Liy11, K. Liyu, W. Soowhan, M. Wei, N. Vijaayakumar et al., Zhenguo, A stable vanadium redox-flow battery with high energy density for large-scale energy storage, Advanced Energy Materials, vol.1, pp.394-400, 2011.

]. G. Mcd72, E. Y. Mcdonald, T. S. Weissman, and . Roemer, Lead-Fluoroboric Acid Battery, Journal of the Electrochemical Society, vol.119, pp.660-663, 1972.

]. B. Mon92, D. Monahov, and . Pavlov, Hydrated structures in the anodic layer formed on lead electrodes in H 2 SO 4 solution, Journal of Applied Electrochemistry, vol.23, pp.1244-1250, 1993.

]. A. Par12, T. M. Parasuraman, C. Lim, and M. Menictas, Skyllas-Kazacos, Review of material research and development for vanadium redox flow battery applications, Electrochimica Acta, vol.101, pp.27-40, 2012.

]. D. Pav87, I. Pavlov, P. Balkanov, and . Rachev, Orthorhombic PbO Formation during the Discharge of Lead Acid Batteries PbO 2 Active Mass, Journal of the Electrochemical Society, vol.134, pp.2390-2398, 1987.

]. D. Pav92 and . Pavlov, The lead-acid battery lead dioxide active mass: a gel-crystal system with proton and electron conductivity, Journal of the Electrochemical Society, vol.139, pp.3075-3080, 1992.

]. D. Pav93 and . Pavlov, Suppression of premature capacity loss by methods based on the gel-crystal concept of the PbO 2 electrode, Journal of Power Sources, vol.46, pp.171-190, 1993.

]. D. Pav98, B. Pavlov, and . Monahov, Temperature Dependence of the Oxygen Evolution Reaction on the Pb/PbO 2 Electrode, Journal of the Electrochemical Society, vol.145, pp.70-77, 1998.

]. D. Pav02, G. Pavlov, and . Petkova, Phenomena That Limit the Capacity of the Positive Lead Acid Battery Plates. I. The Charge Potential Transient as an Indicator of Positive Plate State of Charge and State of Health, Journal of the Electrochemical Society, vol.149, pp.644-653, 2002.

]. S. Pen12, N. F. Peng, C. Wang, Y. Gao, X. X. Lei et al., Influence of trishydroxymethyl aminomethane as a positive electrolyte additive on performance of vanadium redox flow battery, International Journal of Electrochemical Science, vol.7, p.4314, 2012.

]. D. Ple04, R. Pletcher, and . Wills, A novel flow battery: A lead acid battery based on an electrolyte with soluble lead(II). Part II. Flow cell studies, Physical Chemistry Chemical Physics, vol.6, pp.1779-1785, 2004.

]. D. Ple05, R. Pletcher, and . Wills, A novel flow battery?A lead acid battery based on an electrolyte with soluble lead(II). III. The influence of conditions on battery performance, Journal of Power Sources, vol.149, pp.96-102, 2005.

]. D. Ple08a, H. Pletcher, G. Zhou, J. Kear, F. C. Low et al., A novel flow battery?A lead-acid battery based on an electrolyte with soluble lead(II)

]. D. Ple08b, H. Pletcher, G. Zhou, J. Kear, F. C. Low et al., A novel flow battery?A lead-acid battery based on an electrolyte with soluble lead(II)

V. Part, Studies of the lead dioxide positive electrode, Journal of Power Sources, vol.180, pp.630-634, 2008.

]. A. Ram82, T. Ramamurthy, and . Kuwana, Electrochemical nucleation and growth of lead dioxide on glassy carbon electrodes, Journal of Electroanalytical Chemistry, vol.135, pp.243-255, 1982.

]. P. Rue57, B. D. Ruetschi, and . Cahan, Anodic Corrosion and Hydrogen and Oxygen Overvoltage on Lead and Lead Antimony Alloys, Journal of the Electrochemical Society, vol.104, pp.406-413, 1957.

]. E. Ruf10, M. H. Rufino, L. A. Santana, L. M. De-faria, . Da et al., Influence of lead dioxide electrodes morphology on kinetics and current efficiency of oxygen?ozone evolution reactions, Chemical Papers, vol.64, pp.749-757, 2010.

]. J. Sch46, W. T. Schrodt, J. O. Otting, D. N. Schoegler, and . Craig, A Lead Dioxide Cell Containing Various Electrolytes, Transactions of the Electrochemical Society, vol.90, pp.405-417, 1946.

]. A. Sha10, X. Shah, R. Li, F. C. Wills, and . Walsh, A mathematical model for the soluble lead-acid flow battery, Journal of the Electrochemical Society, vol.157, pp.589-599, 2010.

]. T. Shi11 and . Shigematsu, Redox Flow Battery for Energy Storage, SEI Technical Review, vol.73, pp.5-13, 2011.

]. I. Sir10, C. T. Sirés, C. Low, F. C. Ponce-de-león, and . Walsh, The characterization of PbO 2 -coated electrodes prepared from aqueous methanesulfonic acid under controlled deposition conditions, Electrochimica Acta, pp.55-2163, 2010.

]. M. Sky88, M. Skyllas-kazacos, R. Kazacos, and . Mcdermott, Vanadium compound dissolution processes, Patent Application PCT, p.471, 1988.

]. M. Sky96, C. Skyllas-kazacos, M. Menictas, and . Kazacos, Thermal stability of concentrated V(V) electrolytes in the vanadium redox cell, Journal of the Electrochemical Society, vol.143, pp.86-88, 1996.

]. M. Sky99, C. Skyllas-kazacos, M. Peng, and . Cheng, Evaluation of precipitation inhibitors for supersaturated vanadyl electrolytes for the vanadium redox battery, Electrochemical and Solid-State Letters, vol.2, pp.121-122, 1999.

]. M. Sky03 and . Skyllas-kazacos, Novel vanadium chloride/polyhalide redox flow battery, Journal of Power Sources, vol.124, pp.299-302, 2003.

. Sky09 and . Chapitre, SECONDARY BATTERIES ? FLOW SYSTEMS, Vanadium Redox- Flow Batteries " dans Encyclopedia of Electrochemical Power Sources, pp.444-453, 2009.

]. M. Sky10, G. Skyllas-kazacos, G. Kazacos, H. Poon, and . Verseema, Recent advances with UNSW vanadium-based redox flow batteries, International Journal of Energy Research, vol.34, pp.182-189, 2010.

]. M. Sky11, M. H. Skyllas-kazacos, S. A. Chakrabarti, F. S. Hajimolana, M. Mjalli et al., Progress in flow battery research and developments, Journal of the Electrochemical Society, vol.158, pp.55-79, 2011.

]. T. Suk03, M. Sukkar, and . Skyllas-kazacos, Water transfer behaviour across cation exchange membranes in the vanadium redox battery, Journal of Membrane Science, vol.222, pp.235-247, 2003.

]. L. Tha74 and . Thaller, Electrically rechargeable redox flow cells, p.71540, 1974.

]. L. Tha79a and . Thaller, Redox flow cell energy storage systems, NASA, vol.3, pp.791431002-79, 1979.

]. L. Tha79b and . Thaller, Recent advances in redox flow cell storage systems, pp.1002-79

]. A. Vel96, D. V. Velichenko, F. I. Girenko, and . Danilov, Mechanism of lead dioxide electrodeposition, Journal of Electroanalytical Chemistry, vol.405, pp.127-132, 1996.

]. A. Vel03, E. A. Velichenko, D. V. Baranova, R. Girenko, F. I. Amadelli et al., Mechanism of Electrodeposition of Lead Dioxide from Nitrate Solutions, Russian Journal of Electrochemistry, vol.39, pp.615-621, 2003.

]. A. Vel07, D. Velichenko, and . Devilliers, Electrodeposition of fluorine-doped PbO 2, Journal of Fluorine Chemistry, vol.128, pp.269-276, 2007.

. Vel09, A. B. Velichenko, R. Amadelli, E. V. Gruzdeva, T. V. Luk-"-yanenko et al., Electrodeposition of lead dioxide from methanesulfonate solutions, Journal of Power Sources, vol.191, pp.103-110, 2009.

]. M. Ver13, K. J. Verde, Z. Carroll, A. Wang, Y. S. Sathrumb et al., Achieving high efficiency and cyclability in inexpensive soluble lead flow batteries, Energy & Environmental Science, vol.6, pp.1573-1581, 2013.

]. V. Vis12, A. Viswanathan, D. Crawford, S. Stephenson, W. Kim et al., Cost and performance model for redox flow batteries, Journal of Power Sources, 2012.

]. W. Wan11, S. Wang, B. Kim, Z. Chen, J. Nie et al., A new redox flow battery using Fe/V redox couples in chloride supporting electrolyte, Energy & Environmental Science, vol.4, pp.4068-4073, 2011.

]. J. Whi47, W. H. White, R. L. Power, R. T. Mcmurtrie, and . Pierce, Discharge Characteristics of the Perchloric Acid Cell, Transactions of the Electrochemical Society, vol.91, pp.73-94, 1947.

]. R. Wil10, J. Wills, D. Collins, J. Stratton-campbell, D. Low et al., Developments in the soluble lead-acid flow battery, Journal of Applied Electrochemistry, vol.40, pp.955-965, 2010.

]. C. Wu86, D. A. Wu, E. J. Scherson, E. B. Calvo, M. A. Yeager et al., A Bismuth-Based Electrocatalyst for the Chromous-Chromic Couple in Acid Electrolytes, Journal of the Electrochemical Society, vol.133, pp.2109-2112, 1986.

]. Z. Xie13, Q. Xie, Z. Liu, X. Chang, and . Zhang, The developments and challenges of cerium half-cell in zinc-cerium redox flow battery for energy storage, Electrochimica Acta, vol.90, pp.695-704, 2013.

]. Q. Xu13, T. S. Xu, P. K. Zhao, and . Leung, Numerical investigations of flow field designs for vanadium redox flow batteries, Applied Energy, vol.105, pp.47-56, 2013.

]. F. Xue08, Y. L. Xue, W. H. Wang, X. D. Wang, and . Wang, Investigation on the electrode process of the Mn(II)/Mn(III) couple in redox flow battery, Electrochimica Acta, vol.53, pp.6636-6642, 2008.

]. L. Zer06, R. Zerroual, B. Fitas, N. Djellouli, and . Chelali, Relationship between water departure and capacity loss of ? and ?-PbO 2 using an all solid-state system: Estimation of proton diffusion coefficient, Journal of Power sources, vol.158, pp.837-840, 2006.

]. P. Zha05, H. Zhao, H. Zhang, B. Zhou, and . Yi, Nickel foam and carbon felt applications for sodium polysulfide/bromine redox flow battery electrodes, Electrochimica Acta, vol.51, pp.1091-1098, 2005.

]. J. Zha11, L. Y. Zhang, Z. M. Li, B. W. Nie, M. Chen et al., Effects of additives on the stability of electrolytes for all-vanadium redox flow batteries, Journal of Applied Electrochemistry, vol.41, pp.1215-1221, 2011.

]. H. Zho06, H. Zhou, P. Zhang, B. Zhao, and . Yi, A comparative study of carbon felt and activated carbon based electrodes for sodium polysulfide/bromine redox flow battery, Electrochemistry Communications, vol.74, pp.296-298, 2006.