. Concernant-le-débit, aorte proximale entraîne une augmentation du pic du débit dans les artères de la macrocirculation Cette augmentation du pic de débit est, par ailleurs, plus importante pour les artères distales que pour les artères proximales. A l'inverse, une diminution du module de Young de l'aorte proximale

L. Table and 5. , 4 montre l'influence en pourcentage du changement du module de Young E de l'aorte proximale sur les pressions et débits de l'aorte ascendante, de l'aorte thoracique II et de l

O. Mondiale-de and L. Santé, Maladies cardiovasculaires, 2012.

A. Aouba, M. Eb, G. Rey, G. Pavillon, and E. Jougla, Données sur la mortalité en France : principales causes de décès en 2008 et évolutions depuis, Bulletin Epidémiologique Hebdomadaire, vol.22, 2000.

J. Tao, Y. Jin, L. Wang, X. Gao, L. Liu et al., Reduced arterial elasticity is associated with endothelial dysfunction in persons of advancing ageComparative study of noninvasive pulse wave analysis and laser Doppler blood flow measurement, American Journal of Hypertension, vol.17, issue.8, pp.654-659, 2004.
DOI : 10.1016/j.amjhyper.2004.03.678

F. Feihl, B. Waeber, and A. Askari, Hypertension artérielle : macrocirculation et microcirculation, Revue Médicale Suisse, vol.5, pp.1778-1782, 2009.

D. Rizzoni, M. Muiesan, E. Porteri, D. Ciuceis, C. Boari et al., Interrelationships between macro and microvascular structure and function, Artery Research, vol.4, issue.4, pp.114-117, 2010.
DOI : 10.1016/j.artres.2010.10.001

O. Rourke, M. Safar, and M. , Relationship Between Aortic Stiffening and Microvascular Disease in Brain and Kidney: Cause and Logic of Therapy, Hypertension, vol.46, issue.1, pp.200-204, 2005.
DOI : 10.1161/01.HYP.0000168052.00426.65

M. Safar and H. Struijker-boudier, Cross-talk between macro- and microcirculation, Acta Physiologica, vol.23, issue.Suppl. 2, pp.417-430, 2010.
DOI : 10.1111/j.1748-1716.2009.02073.x

C. Wright, H. Scholten, J. Schilder, B. Elsen, W. Hanselaar et al., Arterial stiffness, endothelial function and microcirculatory reactivity in healthy young males, Clinical Physiology and Functional Imaging, vol.18, issue.5, pp.299-306, 2008.
DOI : 10.1111/j.1475-097X.2008.00807.x

V. Urbancic-rovan, A. Bernjak, A. Stefanovska, K. Azman-juvan, and A. Kocijanvic, Macro- and microcirculation in the lower extremities???Possible relationship, Diabetes Research and Clinical Practice, vol.73, issue.2, pp.166-173, 2006.
DOI : 10.1016/j.diabres.2006.01.002

M. Dauzat, Manuel de physiologie cardiovasculaire intégrée. Suramps Medical, 2002.

. Sherwood, Physiologie humaine, 2006.

A. Guyton and J. Hall, Précis de physiologie médicale. Piccin Italie, 2ième édition. [15] American heart society, 2003.

. Myheartandstrokenews, All-About-Heart-Rate-Pulse_UCM_438850_Article

E. Alché, Comprendre la physiologie cardiovasculaire. Medecines-Science, Flammarion, 2003.

M. Safar and P. Lacolley, Disturbance of macro- and microcirculation: relations with pulse pressure and cardiac organ damage, AJP: Heart and Circulatory Physiology, vol.293, issue.1, pp.1-7, 2007.
DOI : 10.1152/ajpheart.00063.2007

. Complior, Notions sur la pression centrale, 2013.

P. Courand and P. Lantelme, Mesure de la pression centrale : y a-t-il un intérêt en pratique ? Réalités Cardiologiques, 2012.

. Etud, univ-montp1.fr/travaux-pratiques-de-dfgsm2/tp-exploration-fonctionnelle-vasculaire/ mesure-de-la-vitesse-circulatoire-sanguine

P. Boutouyrie and S. Laurent, Remodelage des grosses et petites artères dans l'hypertension artérielle, Sang Thrombose Vaisseaux, vol.16, pp.81-89, 2004.

P. Segers, J. Mynard, L. Taelman, S. Vermeersch, and A. Swillens, Wave reflection: Myth or reality?, Artery Research, vol.6, issue.1, pp.7-11, 2012.
DOI : 10.1016/j.artres.2012.01.005

D. Gregg, The physiological basis of medical practice. Williams and Wilkins, 1966. chapter Dynamics of blood and lymph flow

J. Li, Arterial system dynamics, Biomedical Engeneering Series, 1987.

J. Gilbert and M. Safar, Risque vasculaire cardiaque et cérébral -33 questions et 7 ordonnances, 2006.

H. Struijker-boudier, The burden of vascular disease in diabetes and hypertension: from micro-to macrovascular disease-the " bad loop, Medicographia, vol.31, pp.251-256, 2009.

S. Laurent, M. Briet, and P. Boutouyrie, Large and Small Artery Cross-Talk and Recent Morbidity-Mortality Trials in Hypertension, Hypertension, vol.54, issue.2, pp.388-392, 2009.
DOI : 10.1161/HYPERTENSIONAHA.109.133116

M. Lishner, S. Akselrod, V. Avi, O. Oz, M. Divon et al., Spectral analysis of heart rate fluctuations. A non-invasive, sensitive method for the early diagnosis of autonomic neuropathy in diabetes mellitus, Journal of the Autonomic Nervous System, vol.19, issue.2, pp.119-125, 1987.
DOI : 10.1016/0165-1838(87)90005-1

H. Tsuji, M. Larson, F. Venditti, E. Manders, J. Evans et al., Impact of Reduced Heart Rate Variability on Risk for Cardiac Events: The Framingham Heart Study, Circulation, vol.94, issue.11, pp.2850-2855, 1996.
DOI : 10.1161/01.CIR.94.11.2850

H. Huikuri, A. Ylitalo, S. Pikkujamsa, M. Ikaheimo, K. Airaksinen et al., Heart rate variability in systemic hypertension, The American Journal of Cardiology, vol.77, issue.12, pp.1073-1077, 1996.
DOI : 10.1016/S0002-9149(96)00135-X

Y. Shiogai, A. Stefanovska, and P. Mcclintock, Nonlinear dynamics of cardiovascular ageing, Physics Reports, vol.488, issue.2-3, pp.51-110, 2010.
DOI : 10.1016/j.physrep.2009.12.003

J. Bigger, J. Fleiss, L. Rolnitzky, and R. Steinman, The ability of several short-term measures of RR variability to predict mortality after myocardial infarction, Circulation, vol.88, issue.3, pp.927-934, 1993.
DOI : 10.1161/01.CIR.88.3.927

L. Fauchier, D. Babuty, P. Cosnay, M. Autret, and J. Fauchier, Heart Rate Variability in Idiopathic Dilated Cardiomyopathy: Characteristics and Prognostic Value, Journal of the American College of Cardiology, vol.30, issue.4, pp.1009-1014, 1997.
DOI : 10.1016/S0735-1097(97)00265-9

G. Yi, J. Goldman, P. Keeling, M. Reardon, W. Mckenna et al., Heart rate variability in idiopathic dilated cardiomyopathy: relation to disease severity and prognosis., Heart, vol.77, issue.2, pp.108-114, 1997.
DOI : 10.1136/hrt.77.2.108

S. Neto, E. Neidecker, J. Lehot, and J. , Comprendre la variabilité de la pression artérielle et de la fréquence cardiaque. Annales Françaises d'Anesthésie et de Réanimation, pp.425-452, 2003.

M. Pagani, G. Malfatto, and S. Pierini, Spectral analysis of heart rate variability in the assessment of autonomic diabetic neuropathy, Journal of the Autonomic Nervous System, vol.23, issue.2, pp.143-153, 1988.
DOI : 10.1016/0165-1838(88)90078-1

R. Freeman, J. Saul, M. Roberts, R. Berger, C. Broadbridge et al., Spectral Analysis of Heart Rate in Diabetic Autonomic Neuropathy, Archives of Neurology, vol.48, issue.2, pp.185-190, 1991.
DOI : 10.1001/archneur.1991.00530140079020

W. Langewitz, H. Ruddel, and H. Schachinger, Reduced parasympathetic cardiac control in patients with hypertension at rest and under mental stress, American Heart Journal, vol.127, issue.1, pp.122-128, 1994.
DOI : 10.1016/0002-8703(94)90517-7

G. Parati, D. Rienzo, M. Groppelli, A. Pedotti, A. Mancia et al., Heart rate and blood pressure variability and their interpretation in hypertension, Armonk: Futurama, pp.465-478, 1995.

J. Siché, F. Tremel, V. Comparat, R. De-gaudemaris, and J. Mallion, Examination of variability in arterial blood pressure at rest using spectral analysis in hypertensive patients, Journal of Hypertension, vol.13, issue.1, pp.147-153, 1995.
DOI : 10.1097/00004872-199501000-00021

M. Collette, Contribution à la mesure de la rigidité artérielle par technique d'impédance bioélectrique : Modélisation, instrumentation et traitement des signaux, 2009.

W. Kubicek, J. Karnegis, R. Patterson, D. Witsoe, and R. Mattson, Development and evaluation of an impedance cardiac output system, Aerospace Medicine, vol.37, pp.1208-1212, 1966.

J. Malmivuo and R. Plonsey, Bioelectromagnetism -principles and applications of bioelectric and biomagnetic fields, p.1, 1995.

M. Collette, G. Leftheriotis, and A. Humeau, Modeling and interpretation of the bioelectrical impedance signal for the determination of the local arterial stiffness, Medical Physics, vol.22, issue.2, pp.4340-4348, 2009.
DOI : 10.1146/annurev.fl.22.010190.000245

URL : https://hal.archives-ouvertes.fr/hal-00858654

M. Collette, A. Humeau, C. Chevalier, J. Hamel, and G. Leftheriotis, Assessment of aortic stiffness by local and regional methods, Hypertension Research, vol.62, issue.5, pp.578-583, 2011.
DOI : 10.1161/01.HYP.0000237669.64066.c5

URL : https://hal.archives-ouvertes.fr/hal-00857584

M. Collette, A. Lalande, S. Willotaux, G. Leftheriotis, and A. Humeau, Measurement of the local aortic stiffness by a non-invasive bioelectrical impedance technique, Medical & Biological Engineering & Computing, vol.47, issue.5, pp.431-439, 2011.
DOI : 10.1007/s11517-011-0741-3

URL : https://hal.archives-ouvertes.fr/hal-00762054

W. Harvey, La circulation du sang Des mouvements du coeur chez l'homme et chez les animaux -Deux réponses à Riolan. Masson, 1879

M. Malpighi, De pulmonibus observationes anatomicae

C. Wright, C. Kroner, and R. Draijer, Non-invasive methods and stimuli for evaluating the skin's microcirculation, Journal of Pharmacological and Toxicological Methods, vol.54, issue.1, pp.1-25, 2006.
DOI : 10.1016/j.vascn.2005.09.004

R. Rauh, A. Posfay, and M. Muck-weymann, Quantification of inspiratory-induced vasoconstrictive episodes: a comparison of laser Doppler fluxmetry and photoplethysmography, Clinical Physiology and Functional Imaging, vol.254, issue.6, pp.344-348, 2003.
DOI : 10.1006/mvre.1996.0036

A. Seifalian, G. Stansby, A. Jackson, K. Howell, and H. G. , Comparison of laser doppler perfusion imaging, laser doppler flowmetry, and thermographic imaging for assessment of blood flow in human skin, European Journal of Vascular Surgery, vol.8, issue.1, pp.65-69, 1994.
DOI : 10.1016/S0950-821X(05)80123-9

B. Fagrell, Advances in Microcirculation Network Evaluation: an Update, International Journal of Microcirculation, vol.15, issue.1, pp.34-40, 1995.
DOI : 10.1159/000179093

P. Carpentier, New techniques for clinical assessment of the peripheral microcirculation, Drugs, vol.58, pp.17-22, 1999.

S. Simonson and C. Piantadosi, NEAR-INFRARED SPECTROSCOPY, Critical Care Clinics, vol.12, issue.4, pp.1019-1020, 1996.
DOI : 10.1016/S0749-0704(05)70290-6

P. Öberg, Laser-Doppler flowmetry, Critical Reviews in Biomedical Engineering, vol.18, pp.125-163, 1990.

G. Nilsson, T. Tenland, and P. Öberg, Evaluation of a Laser Doppler Flowmeter for Measurement of Tissue Blood Flow, IEEE Transactions on Biomedical Engineering, vol.27, issue.10, pp.597-604, 1980.
DOI : 10.1109/TBME.1980.326582

I. Fredriksson, C. Fors, and J. Johansson, Laser Doppler flowmetry -a theoretical framework, 2007.

A. Humeau, G. Mahé, F. Chapeau-blondeau, D. Rousseau, and A. P. , Multiscale Analysis of Microvascular Blood Flow: A Multiscale Entropy Study of Laser Doppler Flowmetry Time Series, IEEE Transactions on Biomedical Engineering, vol.58, issue.10, pp.2970-2973, 2011.
DOI : 10.1109/TBME.2011.2160865

URL : https://hal.archives-ouvertes.fr/hal-00857613

A. Humeau, B. Buard, D. Rousseau, F. Chapeau-blondeau, and A. P. , Multifractal Analysis of Laser Doppler Flowmetry Signals: Partition Function and Generalized Dimensions of Data Recorded before and after Local Heating, Biocybernetics and Biomedical Engineering, vol.32, issue.1, pp.17-26, 2012.
DOI : 10.1016/S0208-5216(12)70029-3

URL : https://hal.archives-ouvertes.fr/hal-00858979

A. Humeau-heurtier, E. Guerreschi, P. Abraham, and G. Mahé, Relevance of Laser Doppler and Laser Speckle Techniques for Assessing Vascular Function: State of the Art and Future Trends, IEEE Transactions on Biomedical Engineering, vol.60, issue.3, pp.659-666, 2013.
DOI : 10.1109/TBME.2013.2243449

URL : https://hal.archives-ouvertes.fr/hal-00845954

B. Buard, G. Mahé, F. Chapeau-blondeau, D. Rousseau, P. Abraham et al., Generalized fractal dimensions of laser Doppler flowmetry signals recorded from glabrous and nonglabrous skin, Medical Physics, vol.42, issue.6, pp.2827-2836, 2010.
DOI : 10.1118/1.3395577

I. Lindstedt, M. Edvinsson, and L. Edvinsson, Reduced responsiveness of cutaneous microcirculation in essential hypertension ??? A pilot study, Blood Pressure, vol.89, issue.2, pp.275-280, 2006.
DOI : 10.2143/AC.55.4.2005744

K. Kvernebo, C. Slasgsvold, and E. Stranden, Laser Doppler flowmetry in evaluation of skin post-ischaemic reactive hyperaemia. A study in healthy volunteers and atherosclerotic patients, Journal of Cardiovascular Surgery, vol.30, issue.1, pp.70-75, 1989.

J. Cracowski, C. Minson, M. Salvat-melis, and J. Halliwill, Methodological issues in the assessment of skin microvascular endothelial function in humans, Trends in Pharmacological Sciences, vol.27, issue.9, pp.503-508, 2006.
DOI : 10.1016/j.tips.2006.07.008

J. Tortora and B. Derrickson, Principe d'anatomie et de physiologie, Canada, p.4, 2007.

M. Gaubert-dahan, L'effet du vieillissement sur la microcirculation cutanée, 2008.

G. Nilsson, E. Salerud, T. Strömberg, and K. Wårdell, Laser Doppler perfusion monitoring and imaging. dans Biomedical photonics handbook, 2003.
URL : https://hal.archives-ouvertes.fr/hal-00859282

M. Leahy, D. Mul, F. Nilsson, G. Maniewski, R. Liebert et al., Developments in laser Doppler blood perfusion monitoring. Society of Photo-Optical Instrumentation Engineers, 2003.

J. Fourier, Théorie analytique de la chaleur. Firmin Didot, Père et Fils, 1822

A. Stefanovska, M. Brasic, and H. Kvernmo, Wavelet analysis of oscillations in the peripheral blood circulation measured by laser Doppler technique, IEEE Transactions on Biomedical Engineering, vol.46, issue.10, pp.1230-1239, 1999.
DOI : 10.1109/10.790500

M. Hadase, A. Azuma, K. Zen, S. Asada, T. Kawasaki et al., Very Low Frequency Power of Heart Rate Variability is a Powerful Predictor of Clinical Prognosis in Patients With Congestive Heart Failure, Circulation Journal, vol.68, issue.4, pp.343-347, 2004.
DOI : 10.1253/circj.68.343

G. Parati, J. Saul, D. Rienzo, M. Mancia, and G. , Spectral Analysis of Blood Pressure and Heart Rate Variability in Evaluating Cardiovascular Regulation : A Critical Appraisal, Hypertension, vol.25, issue.6, pp.1276-1286, 1995.
DOI : 10.1161/01.HYP.25.6.1276

P. Kvandal, S. Landsverk, A. Bernjak, A. Stefanovska, H. Kvernmo et al., Low-frequency oscillations of the laser Doppler perfusion signal in human skin, Microvascular Research, vol.72, issue.3, pp.120-127, 2006.
DOI : 10.1016/j.mvr.2006.05.006

A. Bernjak, P. Clarkson, P. Mcclintock, and A. Stefanovska, Low-frequency blood flow oscillations in congestive heart failure and after ??1-blockade treatment, Microvascular Research, vol.76, issue.3, pp.224-232, 2008.
DOI : 10.1016/j.mvr.2008.07.006

B. Mandelbrot, Les objets fractals -forme, hasard et dimension. Flammarion, 1975.

J. Dubois and J. Chaline, Le monde des Fractales : la géométrie cachée de la nature, Ellipses, 2006.

L. Richardson, The problem of contiguity: An appendix to Statistic of Deadly Quarrels General systems: yearbook of the Society for the Advancement of General Systems Theory, 1961.

G. Parisi, U. Frisch, M. Ghil, R. Benzi, and G. Parisi, On the singularity structure of fully developed turbulence, 1985.

R. Lopes, P. Dubois, I. Bhouri, H. Akkari-bettaieb, S. Maouche et al., La g??om??trie fractale pour l???analyse de signaux m??dicaux??: ??tat de l???art, IRBM, vol.31, issue.4, pp.189-208, 2010.
DOI : 10.1016/j.irbm.2010.05.001

T. Halsey, M. Jensen, L. Kadanoff, I. Procaccia, and B. Shraiman, Fractal measures and their singularities: The characterization of strange sets, Physical Review A, vol.33, issue.2, pp.1141-1151, 1986.
DOI : 10.1103/PhysRevA.33.1141

A. Humeau, B. Buard, G. Mahé, F. Chapeau-blondeau, D. Rousseau et al., Multifractal analysis of central (electrocardiography) and peripheral (laser Doppler flowmetry) cardiovascular time series from healthy human subjects, Physiological Measurement, vol.30, issue.7, pp.617-629, 2009.
DOI : 10.1088/0967-3334/30/7/007

URL : https://hal.archives-ouvertes.fr/hal-00858681

A. Humeau, B. Buard, G. Mahé, F. Chapeau-blondeau, D. Rousseau et al., Multifractal analysis of heart rate variability and laser Doppler flowmetry fluctuations:comparison of results from different numerical methods, Physics in Medicine and Biology, vol.55, issue.20, pp.6279-6297, 2010.
DOI : 10.1088/0031-9155/55/20/015

URL : https://hal.archives-ouvertes.fr/hal-00857845

B. Buard, G. Mahé, F. Chapeau-blondeau, D. Rousseau, P. Abraham et al., Laser Doppler flowmetry: multifractal spectra of signals recorded in hand of young healthy subjects before and after local heating, International Federation for Medical and Biological Engineering IFMBE Proceedings, vol.25, pp.1944-1947, 2009.
DOI : 10.1007/978-3-642-03882-2_516

URL : https://hal.archives-ouvertes.fr/hal-00858972

B. Buard, Contribution à la compréhension des signaux de fluxmétrie laser Doppler : Traitement des signaux et interprétations physiologiques, 2010.

H. Hentschel and I. Procaccia, The infinite number of generalized dimensions of fractals and strange attractors, Physica D: Nonlinear Phenomena, vol.8, issue.3, pp.435-444, 1983.
DOI : 10.1016/0167-2789(83)90235-X

M. Costa and J. Healey, Multiscale entropy analysis of complex heart rate dynamics: discrimination of age and heart failure effects, Computers in Cardiology, 2003, pp.705-708, 2003.
DOI : 10.1109/CIC.2003.1291253

M. Costa, A. Goldberger, and C. Peng, Multiscale entropy analysis of biological signals, Physical Review E, vol.71, issue.2, p.21906, 2005.
DOI : 10.1103/PhysRevE.71.021906

A. Goldberger, L. Amaral, J. Hausdorff, P. Ivanov, C. Peng et al., Fractal dynamics in physiology: Alterations with disease and aging, Proceedings of the National Academy of Sciences, vol.99, issue.Supplement 1, pp.2466-2472, 2002.
DOI : 10.1073/pnas.012579499

C. Shannon, A mathematical theory of communication. The Bell System Technical Journal, pp.379-423, 1948.

J. Richman and J. Moorman, Physiological time-series analysis using entropy and sample entropy, American Journal of Physiology. Heart and Circulatory Physiology, vol.278, pp.2039-2049, 2000.

Z. Turianikova, K. Javorka, M. Baumert, A. Calkovska, and M. Javorka, The effect of orthostatic stress on multiscale entropy of heart rate and blood pressure, Physiological Measurement, vol.32, issue.9, pp.1425-1437, 2011.
DOI : 10.1088/0967-3334/32/9/006

A. Bosch, C. Kaufman, E. Williamson, D. Duprez, and D. Dengel, Comparison of changes in heart rate variability and blood pressure during nitroglycerin administration and head-up tilt testing, Clinical Autonomic Research, vol.2, issue.1, pp.46-50, 2009.
DOI : 10.1007/s10286-008-0509-5

F. Sellke, P. Myers, J. Bates, and D. Harrison, Influence of vessel size on the sensitivity of porcine coronary microvessels to nitroglycerin, American Journal of Physiology, vol.258, pp.515-520, 1990.

A. Zaidi, D. Benitez, P. Gaydecki, A. Vohra, and A. Fitzpatrick, Haemodynamic effects of increasing angle of head up tilt, Heart, vol.83, issue.2, pp.181-184, 2000.
DOI : 10.1136/heart.83.2.181

K. Skagen and F. Bonde-petersen, Regulation of subcutaneous blood flow during head-up tilt (45??) in normals, Acta Physiologica Scandinavica, vol.54, issue.Suppl., pp.31-35, 1982.
DOI : 10.1111/j.1748-1716.1982.tb06948.x

N. Montano, T. Ruscone, A. Porta, F. Lombardi, M. Pagani et al., Power spectrum analysis of heart rate variability to assess the changes in sympathovagal balance during graded orthostatic tilt, Circulation, vol.90, issue.4, pp.1826-1831, 1994.
DOI : 10.1161/01.CIR.90.4.1826

M. Bahjaoui-bouhaddi, M. Henriet, S. Capelle, G. Dumoulin, and R. J. , Active standing and passive tilting similarly reduce the slop of spontaneous baroreflex in healthy subjects, Physiological Research, vol.47, pp.227-235, 1998.

Y. Shi, P. Lawford, and R. Hose, Review of Zero-D and 1-D Models of Blood Flow in the Cardiovascular System, BioMedical Engineering OnLine, vol.10, issue.1, pp.1-38, 2011.
DOI : 10.1111/j.1525-1594.2008.00628.x

F. Van-de-vosse and N. Stergiopulos, Pulse Wave Propagation in the Arterial Tree, Annual Review of Fluid Mechanics, vol.43, issue.1, pp.467-499, 2011.
DOI : 10.1146/annurev-fluid-122109-160730

N. Westerhof, J. Lankhaar, and W. Be, The arterial windkessel, Medical and Biological Engineering and Computing, vol.10, pp.131-141, 2009.

N. Westerhof, F. Bosman, C. Devries, and A. Noordergraaf, Analog studies of the human systemic arterial tree, Journal of Biomechanics, vol.2, issue.2, pp.121-143, 1969.
DOI : 10.1016/0021-9290(69)90024-4

N. Stergiopulos, B. Westerhof, and N. Westerhof, Total arterial inertance as the fourth element of the windkessel model, American Journal of Physiology, vol.252, pp.585-593, 1999.

M. Abdolrazaghi, M. Navidbakhsh, and K. Hassani, Mathematical Modelling and Electrical Analog Equivalent of the Human Cardiovascular System, Cardiovascular Engineering, vol.2, issue.1, pp.45-51, 2010.
DOI : 10.1007/s10558-010-9093-0

K. Hassani, M. Navidbakhsh, and M. Rostami, Simulation of the cardiovascular system using equivalent electronic system, Biomedical Papers, vol.150, issue.1, pp.105-112, 2006.
DOI : 10.5507/bp.2006.015

T. Heldt, E. Shim, R. Kamm, and R. Mark, Computational modeling of cardiovascular response to orthostatic stress, Journal of Applied Physiology, vol.92, issue.3, pp.1239-1254, 2002.
DOI : 10.1152/japplphysiol.00241.2001

A. Avolio, Multi-branched model of the human arterial system, Medical & Biological Engineering & Computing, vol.36, issue.6, pp.709-718, 1980.
DOI : 10.1007/BF02441895

J. Womersley, Method for the calculation of velocity, rate of flow and viscous drag in arteries when the pressure gradient is known, The Journal of Physiology, vol.127, issue.3, pp.553-563, 1955.
DOI : 10.1113/jphysiol.1955.sp005276

M. Olufsen, Modeling the arterial system with reference to an anesthesia simulator, 1998.

C. Taylor and C. Figueroa, Patient-Specific Modeling of Cardiovascular Mechanics, Annual Review of Biomedical Engineering, vol.11, issue.1, pp.109-134, 2009.
DOI : 10.1146/annurev.bioeng.10.061807.160521

M. Neal and R. Kerckhoffs, Current progress in patient-specific modeling, Briefings in Bioinformatics, vol.11, issue.1, pp.111-126, 2010.
DOI : 10.1093/bib/bbp049

P. Reymond, F. Merenda, F. Perren, D. Rüfenacht, and N. Stergiopulos, Validation of a onedimensional model of the systemic arterial tree, American Journal of Physiology, vol.297, pp.208-222, 2009.

J. Fletcher, Mathematical modeling of the microcirculation, Mathematical Biosciences, vol.38, issue.3-4, pp.159-202, 1978.
DOI : 10.1016/0025-5564(78)90044-5

J. Lee and N. Smith, Development and application of a one-dimensional blood flow model for microvascular networks, Proceedings of the Institution of Mechanical Engineers, 2008.
DOI : 10.1161/01.RES.67.4.826

G. Fibich, Y. Lanir, and N. Liron, Mathematical model of blood flow in a coronary capillary

L. John, Forward electrical transmission line model of the human arterial system, Medical & Biological Engineering & Computing, vol.41, issue.3, pp.312-321, 2004.
DOI : 10.1007/BF02344705

W. He, H. Xiao, and X. Liu, NUMERICAL SIMULATION OF HUMAN SYSTEMIC ARTERIAL HEMODYNAMICS BASED ON A TRANSMISSION LINE MODEL AND RECURSIVE ALGORITHM, Journal of Mechanics in Medicine and Biology, vol.12, issue.01, pp.1250020-1250021, 2012.
DOI : 10.1142/S0219519411004587

J. Alastruey, Numerical modelling of pulse wave propagation in the cardiovascular system: development, validation and clinical applications, 2006.

L. Dumas, Inverse problems for blood flow simulation, International Conference on Engineering Optimization, 2008.

J. Wang and K. Parker, Wave propagation in a model of the arterial circulation, Journal of Biomechanics, vol.37, issue.4, pp.457-470, 2004.
DOI : 10.1016/j.jbiomech.2003.09.007

G. Papageorgiou and N. Jones, Arterial system configuration and wave reflection, Journal of Biomedical Engineering, vol.9, issue.4, pp.299-301, 1987.
DOI : 10.1016/0141-5425(87)90076-8

A. Iberall, Anatomy and steady flow characteristics of the arterial system with an introduction to its pulsatile characteristics, Mathematical Biosciences, vol.1, issue.3, pp.375-385, 1967.
DOI : 10.1016/0025-5564(67)90009-0

C. Murray, The Physiological Principle of Minimum Work: I. The Vascular System and the Cost of Blood Volume, Proceedins of the National Academy of Sciences of the United States of America, pp.207-214, 1926.
DOI : 10.1073/pnas.12.3.207

C. Murray, The Physiological Principle of Minimum Work: II. Oxygen Exchange in Capillaries, Proceedins of the National Academy of Sciences of the United States of America, pp.299-304, 1926.
DOI : 10.1073/pnas.12.5.299

H. Uylings, Optimization of diameters and bifurcation angles in lung and vascular tree structures, Bulletin of Mathematical Biology, vol.67, issue.5, pp.509-520, 1977.
DOI : 10.1007/BF02461198

W. Nichols, O. Rourke, and M. , The life and times of Donald A. McDonald, Artery Research, vol.2, issue.1, pp.1-8, 2008.
DOI : 10.1016/j.artres.2007.08.002

F. Liang, S. Takagi, R. Himeno, and H. Liu, Biomechanical characterization of ventricular???arterial coupling during aging: A multi-scale model study, Journal of Biomechanics, vol.42, issue.6, pp.692-704, 2009.
DOI : 10.1016/j.jbiomech.2009.01.010

S. Laurent, X. Girerd, J. Mourad, P. Lacolley, L. Beck et al., Elastic modulus of the radial artery wall material is not increased in patients with essential hypertension, Arteriosclerosis, Thrombosis, and Vascular Biology, vol.14, issue.7, pp.1223-1231, 1994.
DOI : 10.1161/01.ATV.14.7.1223