
HAL Id: tel-00961450
https://theses.hal.science/tel-00961450

Submitted on 3 Apr 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

A symbolic approach for the verification and the test of
service choreographies

Hữu Nghĩa Nguyen Nguyễn

To cite this version:
Hữu Nghĩa Nguyen Nguyễn. A symbolic approach for the verification and the test of service chore-
ographies. Other [cs.OH]. Université Paris Sud - Paris XI, 2013. English. �NNT : 2013PA112250�.
�tel-00961450�

https://theses.hal.science/tel-00961450
https://hal.archives-ouvertes.fr

Université Paris-Sud

École Doctorale Informatique de Paris-Sud

Laboratoire de Recherche en Informatique

Doctoral Thesis

A Symbolic Approach for the Verification

and the Test of Service Choreographies

Presented on October 31, 2013

by

Hữu Nghĩa NGUYỄN

to receive the Doctoral Diploma of Computer Science

Committee in Charge:

Reviewers: Manuel Núñez – Universidad Complutense de Madrid, Spain
Gwen Salaün – Grenoble Inp, Inria, France

Examiners: Philippe Dague – Université Paris Sud , France
Pascal Poizat – Université Paris Ouest Nanterre la Défense, France
Fatiha Zäıdi – Université Paris Sud, France
Gianluigi Zavattaro – Università di Bologna, Italy

Supervisors: Pascal Poizat and Fatiha Zäıdi (dir.)

January 2010 – October 2013

i

Abstract

Service-oriented engineering is an emerging software development paradigm for
distributed collaborative applications. Such an application is made up of several
entities abstracted as services, each of them being for example a Web application,
a Web service, or even a human. The services can be developed independently
and are composed to achieve common requirements through interactions among
them. Service choreographies define such requirements from a global perspective,
based on interactions among a set of participants. This thesis aims to formalize the
problems and attempts to develop a framework by which service choreographies can
be developed correctly for both top-down and bottom-up approaches. It consists
in analyzing the relation between a choreography specification and a choreography
implementation at both model level and real implementation level. Particularly, it
concerns the composition/decomposition service design, the verification, and the
testing of choreography implementation. The first key point of our framework is to
support value-passing among services by using symbolic technique and SMT solver.
It overcomes false negatives or state space explosion issues due by abstracting or
limiting the data domain of value-passing in existing approaches. The second key
point is the black-box passive testing of choreography implementation. It does not
require neither to access to source codes nor to make the implementation unavailable
during the testing process. Our framework is fully implemented in our toolchains
which can be downloaded or used online at address: http://schora.lri.fr.

Keywords: Choreography, Web services, Value-passing, Conformance, Projection,
Realizability, Passive testing, Symbolic transition systems, Tools.

ii

Résumé

L’ingénierie orientée services est un nouveau paradigme pour développer des logiciels
distribués et collaboratifs. Un tel logiciel se compose de plusieurs entités, appelés
services, chacun d’entre eux étant par exemple une application Web, un service
Web, ou même un humain. Les services peuvent être développés indépendamment
et sont composés pour atteindre quelques exigences. Les chorégraphies de service
définissent ces exigences avec une perspective globale, basée sur les interactions
entre des participants qui sont implémentés en tant que services. Cette thèse vise à
formaliser des problèmes et tente d’élaborer un environnement intégré avec lequel les
chorégraphies de services peuvent être développés correctement pour les deux types
d’approches de développement : l’approche descendante et l’approche ascendante.
Elle consiste à analyser la relation entre une spécification de chorégraphie et une
implémentation de la chorégraphie au niveau du modèle et aussi au niveau de
l’implémentation réelle. Particulièrement, il s’agit de la composition/décomposition
des services, la vérification, et le test de l’implémentation de chorégraphie. Le premier
point-clé de notre environnement intégré est de représenter le passage de valeurs
entre les services en utilisant la technique symbolique et un solveur SMT. Cette
technique nous permet de réduire les faux négatifs et de contourner le problème
d’explosion combinatoire de l’espace d’états, ces problèmes sont durs à l’abstraction
et à l’énumération des valeurs pour les approches existantes basées données. Le
second point-clé est le test passif bôıte noire de l’implémentation de chorégraphie. Il
ne nécessite pas d’accéder au code source, ni de rendre indisponible l’implémentation
pendant le processus de test. Notre environnement intégré est mis en œuvre dans
nos outils qui sont disponibles en téléchargement ou à utiliser en ligne à l’adresse :
http ://schora.lri.fr.

Mots-clés : Chorégraphie de services, Service web, Passage de valeurs, Conformité,
Projection, Réalisabilité, Test passif, Système de transitions symboliques, Outils.

iii

Acknowledgment

I would not have been able to complete this dissertation without the help and support
of the kind people around me, to only some of whom it is possible to give particular
mention here.

First and foremost, I would like to present my deepest gratitude to my supervisors:
Prof. Pascal Poizat, and Dr. Fatiha Zäıdi, directress of my thesis, for their excellent
guidance, patience, support, and encouragement.

Beside my supervisors, I would like to thank the rest of my thesis committee:
Prof. Philippe Dague, Prof. Manuel Núñez, Dr. Gwen Salaün, and Prof.
Gianluigi Zavattaro, for taking their time to review carefully my thesis and for
their insightful comments.

Special thanks are dedicated to Prof. Philippe Dague, director of LRI, for his
welcome and support during my PhD study.

I thank my labmates in LRI for the stimulating discussions.

Last but not he least, I thank my family, parents, brother and sisters. They are
always supporting me and encouraging me with the best wished.

Contents

Page

Contents iv

List of Figures vii

List of Tables ix

List of Listings xii

List of Acronyms xiii

1 Introduction 1
1.1 General Context . 2
1.2 Problem Statement . 3
1.3 Overview of Our Approach . 4
1.4 Contributions of the Thesis . 5
1.5 Publications . 6
1.6 Outline of the Thesis . 7

2 Service Choreographies: Issues & Challenges 9
2.1 Service Choreography . 10

2.1.1 Coordination Languages and Models 10
2.1.2 Service Choreography . 12
2.1.3 Choreography Development: Issues and Challenges 13

2.2 Choreography Modeling . 15
2.2.1 Basic Elements . 16
2.2.2 Data Support . 19
2.2.3 Communication Modes . 20
2.2.4 Parallelism . 21

2.3 Realizability & Projection . 21
2.3.1 Realizability Notions . 21
2.3.2 Realizability through Projection 23

iv

Contents v

2.3.3 Causes of Unrealizability . 23
2.3.4 Enforcing Realizable Choreographies 24
2.3.5 Impact of Data on Realizability 25

2.4 Conformance Checking . 26
2.4.1 Choreography Conformance 26
2.4.2 Conformance Relation . 27
2.4.3 Impact of Data on Conformance Relation 28

2.5 Choreography Testing . 29
2.5.1 Formal Software Testing . 29
2.5.2 Service Choreography Testing 31

3 A Symbolic Model of Choreographies 35
3.1 Specification Language . 36

3.1.1 Basic Events: Interaction vs. Sending & Reception 36
3.1.2 General Language . 37

3.2 Symbolic Semantics . 39
3.2.1 Symbolic Transition System 39
3.2.2 Transformation Rules . 40
3.2.3 STG Product . 41
3.2.4 Reachability . 43

3.3 Symbolic Conformance . 43
3.3.1 Making Implementation and Specification Comparable 44
3.3.2 Conformance Relation . 44
3.3.3 Conformance Computation . 47
3.3.4 PES Satisfiability and Conformance Verdict 48

3.4 Realizability Checking & Projection 51
3.4.1 Event connectedness . 54
3.4.2 Data connectedness . 55
3.4.3 Branching decision . 56

3.5 Tool & Experimental Evaluations . 58
3.5.1 Boolean Condition Solver . 59
3.5.2 Tool Architecture . 59
3.5.3 Experimental Evaluation . 60

3.6 Discussion . 65

4 Passive Testing of Choreographies 67
4.1 Passive Conformance Testing . 68

4.1.1 Chor Language & Trace Semantics 68
4.1.2 Local & Global Conformance 70
4.1.3 Implementation . 72
4.1.4 Observation of SOAP Messages 74

vi Contents

4.1.5 Global Log Synthesis . 75
4.1.6 Testing Algorithm . 76
4.1.7 Tool & Experimental Evaluation 77

4.2 Online Property-Oriented Testing . 81
4.2.1 Symbolic Transition Graph with Assignments 82
4.2.2 Local Properties . 86
4.2.3 Global Property . 89
4.2.4 Implementation . 90
4.2.5 Experimental Evaluation . 96

4.3 Discussion . 97

5 Case Study 99
5.1 Case Study Description . 100
5.2 Verification . 100

5.2.1 Reachability Checking . 100
5.2.2 Realizability Checking . 102
5.2.3 Choreography Projection . 102
5.2.4 Conformance Checking . 103

5.3 Testing . 105
5.3.1 Conformance Testing . 106
5.3.2 Property-Oriented Testing . 108

6 Conclusions and Perspectives 111
6.1 Synthesis of Results . 112
6.2 Perspectives . 114

A SChorA Syntax 117
A.1 Declaration Part . 117
A.2 Command Part . 118

Bibliography 121

List of Figures

2.1 Coordination of Services . 10
2.2 Coordination Modeling Approaches of Online Shopping Process 12
2.3 Choreography, Roles, Services and Global, Local Viewpoints 13
2.4 Issues in Choreography Development Process 14
2.5 Examples of unrealizable choreographies 14
2.6 Criteria of Choreography Modeling . 16
2.7 Example of Interconnection and Interaction-based Modeling Approaches 17
2.8 Impact of Communication Modes: Realizability in Synchronization →

Unrealizability in (a) Asynchronous–Sender, (b) Asynchronous–Receiver,
and (c) Asynchronous–Disjoint . 24

2.9 Impact of Data: unrealizability → realizability 26
2.10 Conformance Checking Scheme . 27
2.11 Impact of Data on Conformance Relation: Maybe Verdict 29
2.12 Active and Passive Testing Processes . 31
2.13 An Architecture of Distributed Testing 33

3.1 Semantics of STG . 40
3.2 Transformation from our Language to STGs 40
3.3 Rules for the Product of STGs . 41
3.4 STGs for Example 1 and Example 2 . 42
3.5 Two Refinements for the Implementation in Figure 3.4(d) 45
3.6 Restrictions of the STGs in Figure 3.5 45
3.7 Retrieval of

τ
=⇒ Transitions and Their Semantics 46

3.8 Online Shopping Process in (a) Extending BPMN 2.0 Choreography [Knu-
plesch et al., 2012] and in (b) Symbolic Transition Graph 52

3.9 The Projection of STG in Figure 3.8(b) on Role: (a) buyer, (b) vendor,
(c) warehouse, and (d) shipper) . 53

3.10 Projection with Additional Interactions of STG in Figure 3.8(b) under
Synchronization Communication Mode 58

3.11 Architecture of our Toolchain for Conformance Checking 60
3.12 Architecture of our Toolchain for Choreography Projection 61

vii

viii List of Figures

3.13 Impact of Number of (a) States, (b) Branches, (c) Roles, (d) Operations
and (e) Variables on the Realizability of Choreography; and (f) Verification
Time . 63

4.1 Chor Choreography Language . 68
4.2 Operators on Traces . 69
4.3 Role language . 70
4.4 Natural Projection of Chor Language . 70
4.5 Conformance Testing Choreography Implementations 73
4.6 Sendings and Receptions Correlation . 76
4.7 Tester Scalability . 80
4.8 STGAs of four services . 84
4.9 Shipping choreography . 85
4.10 Trace Semantics of STGA . 85
4.11 Architecture of the Verification System 91
4.12 Online Verification of Local Property . 92
4.13 Tester Scalability . 96

5.1 Reachability Checking by SChorA tool 101
5.2 Realizability Checking by SChorA tool 102
5.3 Choreography Projection by SChorA tool 103
5.4 Conformance Checking by SChorA tool 104
5.5 Conformance Checking of a Mutation of the Case study 105
5.6 Point of Observation of SOAP-Capturer (1) and SOAP-Forwarder (2) . . 106
5.7 Graphic User Interface of SOAP-Forwarder 106
5.8 Conformance Testing of an Implementation 108
5.9 Verdict Output of Vendor Service Testing 109

List of Tables

2.1 Interaction vs. Interconnection in choreography languages 18
2.2 Interaction vs. Interconnection in Choreography Models 18
2.3 Data Support in Choreography Modeling Approaches 20
2.4 Service Choreography Projection Approaches 23
2.5 Choreography Conformance Relations . 28
2.6 Service Choreography Testing Approaches 32

3.1 The Basic Events . 37
3.2 Decision Table for Conformance based on PES Satisfiability Checking . . 50
3.3 Natural Projection of STG of Choreography 53
3.4 Experimental Results of Conformance Checking 61
3.5 Experimental Results of Projection & Realizability Checking 62

4.1 Online-Shopping Case Study . 78
4.2 Semantics of Global Property . 90

ix

List of Algorithms

1 Product of n STGs . 42

2 Reachable STG . 43

3 Conformance PES Computation . 49

4 Correction of Data Connectedness . 56

5 Correction of Branching . 57

6 Synthesis of Global Observations (synthesisObservations(L)) 77

7 Preorder Verification (isPreorder(l, t)) 78

8 Global Conformance Verification . 78

9 Checking Correctness of Local Property 93

10 Translation of Local Property to XQuery 95

xi

List of Listings

3.1 Translation into the Z3 Language of the PES in Example 5 50
3.2 Example of Condition Solver using Z3 SMT 59

4.1 Example of Complex Message Exchange in XML 82
4.2 Example of Captured Message . 94
4.3 Example of Transformation of Local Property into XQuery 95

5.1 Example of Captured log of Vendor Service 107
5.2 A Local Property to Verify Vendor Service 108

A.1 Structure of SChorA Script . 117
A.2 Syntax of Model Descriptions Used in SChorA Script 118
A.3 Syntax of Commands Used in SChorA Script 118
A.4 Example of SChorA Script . 120

xii

List of Acronyms

SOAP Simple Object Access Protocol . 3

IUT Implementation Under Test . 4

PO Point of Observation . 4

STG Symbolic Transition Graph . 5

WS-BPEL Web Service Business Process Execution Language 11

WS-CDL Web Service Choreography Description Language 11

BPMN Business Process Model & Notation. .14

MSC Message Sequence Chart . 16

BPEL4Chor Choreography Extension for BPEL . 16

CD Collaboration Diagram . 16

UML Unified Modeling Language . 16

CSP Communicating Sequential Processes . 18

FIFO First In, First Out . 21

PCO Point of Control and Observation . 30

STGA Symbolic Transition Graph with Assignments . 81

CE Candidate Event. .87

SChorA Symbolic Choreography Analysis tool . 99

OSP Online Shopping Process . 100

SBBC Symbolic Branching Bisimulation for Conformance.103

PES Predicate Equation System . 105

Prop-tester Property-Oriented Testing tool . 105

PACT Passive Conformance Testing tool . 106

STS Symbolic Transition System . 115

xiii

C
h
a
p
t
e
r

1
Introduction

Contents
1.1 General Context . 2

1.2 Problem Statement . 3

1.3 Overview of Our Approach . 4

1.4 Contributions of the Thesis . 5

1.5 Publications . 6

1.6 Outline of the Thesis . 7

1

2 Chapter 1. Introduction

1.1 General Context

Service-oriented engineering is an emerging paradigm for the development of dis-
tributed applications. This trend has increased with the emergence of component
and service architectures such as Web services. Such an application is made up
of several entities abstracted as services, each of them being for example a Web
application, a Web service, or even a human. To reach a common objective, the
services have to coordinate by interacting with each other. A centralized point of view
may be taken on collaboration, which nicely suits service orchestration. However,
modern processes and applications are much more collaborative in nature. Hence,
they should be specified and implemented in a collaborative way too. This is where
service choreography may help.

Choreographies support a collaborative vision of a distributed application. It specifies
from a global perspective the interactions between roles played by services in some
collaboration. A choreography is a specification of what the collaboration participants,
or roles, should follow and achieve altogether. Due to its global perspective, a
choreography focuses on interactions between two roles.

Besides the global perspective, the interactions may be seen from the local perspective
of each role. From this perspective, only interactions that directly involve the role
are captured. Consequently, there exist two kinds of models, local models, or role
models, which specify the local behaviors of roles (one for each), and global models,
or choreography models, that correspond to choreography specifications.

Choreography models are useful during the early phases of system analysis and
design thanks to their global perspective, while role models are blueprints for the
implementation of services realizing roles, for the derivation of test cases for these
services, and for the adaptation of reused services to the choreography constraints.
Consequently bridging the gap between choreography and role models is a cornerstone
for top-down choreography development processes. This relates to the projection
issue which generates relevant role models, from a choreography model. There exist
two type of projection, natural projection which generates local models from local
one without introducing any additional interactions whereas smart projection may
introduce some additional interactions among generated local models, e.g., when
the choreography is not realizable. In other words, the natural projection is correct
when the choreography is realizable. The realizability attribute of a choreography is
whether the choreography model can be correctly projected to role models, i.e., the
composition of generated models conforms to the choreography.

Another issue of choreography is the relation with implementation. Services may be
written from scratch or be reused, and are then coordinated to fulfill the choreography.

1.2. Problem Statement 3

This relates to automatic service composition and orchestration.An alternative is
the generation of service skeletons from choreographies, e.g., thank to the projec-
tion.Skeletons are then completed by developers to build a running system. In any
case, an important issue, so-called conformance, is to check whether the implementa-
tion exhibits or not the behaviors specified in the choreography. When service code is
available, or when behavioral interfaces of the services are provided, verification using
model-checking or behavioral equivalences is an alternative. In the opposite case,
formal testing is of great help. It enables one to check whether an implementation
conforms or not to a specification without requiring an access to its code, e.g., the
implementation source code is unavailable.

1.2 Problem Statement

Lack of Value-Passing Support in Choreography Models. When model of
choreography and its implementation are available, some issues of choreography
development may be done at model level. Choreography interactions are usually
achieved through message exchanges, e.g., Simple Object Access Protocol (SOAP)
messages in Web services. It is critical to support value-passing in modeling and
then in analyzing service choreographies.

Most existing approaches do not adequately support the value-passing, i.e., without
explicitly considering the data exchanged through interactions and using it for
branching decisions. They just abstract away from data. This may yield over-
approximation issues, e.g., false negatives in verification process. Hence the presence
of value-passing in choreography model may change its attributes, e.g., realizability.

Some approaches do this by working on closed implementation-level systems, i.e.,
value-passing is only with ground data. In such a case, this could lead into serious
efficiency problems, state space explosion, when analyzing choreography. Some
others avoid this problem by analyzing choreography based on the syntax when
checking realizability. However, these approaches miss the cases of unreachable and
conditional. Moreover, the models used in these works are interaction-based but
data are expressed as the way of interconnection-based, i.e., the variables are defined
at each local role then their values are synchronized thanks to interactions. This
is not adequate for an interaction-based approach. The interactions together with
variables should be the basic events.

Limitation of Control and Observation of Choreography Implementation.
After the system has been implemented, the implementation must be verified to
conform to its specification, to ensure that the system will operate correctly. When
the model of implementation is not available, the conformance between the imple-

4 Chapter 1. Introduction

mentation and its choreography specification may be guaranteed by testing, also
known as conformance testing.

Testing consists in performing experiments on Implementation Under Test (IUT).
An implementation of choreography is a set of services which can be independently
developed, then composed to realize a common goal. The implementation is usually
deployed in a distributed system composed of loosely coupled machines which are
physically distributed and do not share system resources but rather are connected
via message exchanges.

In distributed context, it is difficult, even impossible in some situation, to control
overall IUT, e.g., system working 24/7 where the IUT can be running in their real
environment. Therefore, the testing should not disturb its natural operation, since it
might produce a wrong behavior of the overall system. In other words, the tester
should realize the testing only by observing the behavior of IUT, e.g., inputs and
output IUT, through Point of Observations (POs).

The observations might be not complete. It is caused by unobservable events or
partial order of occurrences of observations, i.e., lack of shared clock of distributed
system. Consequently, the tester only has a partial view or a set of partial views of
the IUT.

1.3 Overview of Our Approach

Symbolic Technique in Modeling and Verifying Service Choreographies.
In our framework, data is supported using a symbolic approach and the use of an
SMT solver. Since the model is equipped with data and loops, we use symbolic
techniques in order to avoid the usual state space explosion problem (when messages
parameters or variables are flattened wrt. their infinite domains). Hence, messages
parameters and variables are represented by symbolic values instead of concrete
ones. Symbolic models and equivalences enable us to analyze choreographies in
presence of data without suffering from state space explosion and without bounding
data domains.

Passive Testing to Test Choreography Conformance. Passive testing is a
testing approach which aims to not disturb execution of IUT during testing process.
Contrarily, active testing requires to control IUT by sending some inputs to IUT
and by observing its outputs. Passive testing detects faults “in-process”, i.e., while
the IUT is in its normal operation. The exchanged messages between services of
IUT will be recorded in a log that will be examined later on against the properties
derived from experts.

1.4. Contributions of the Thesis 5

1.4 Contributions of the Thesis

Our contributions are manifold. They can be grouped into three major categories.
The first contribution is a symbolic model and framework to specify and analyze
service choreographies. Particularly, we define a formal language with an inter-
action model addressing both global (choreography) and local (role requirements,
service description) perspective. Our language supports information exchange and
data-related constructs (conditional and loop constructs). We give also a fully
symbolic semantics to this language using a model transformation into Symbolic
Transition Graphs (STGs), thus avoiding data abstraction and over-approximation,
restriction by manually bound data domains, and limitation to implementation-level
closed descriptions.

Based on the developed model, we then propose a symbolic framework in which the
data variable are manipulated by using symbols rather than their concrete values.
This enables one to model and analyze service choreography in presence of data
without suffering from state space explosion and without bounding data domains.
The framework is used to deal with realizability checking, conformance checking,
and projection.

We do not only check whether the choreography is realizable, but also we propose
solutions for rendering it realizable. For that purpose, we build a smart projection
function, dealing with data. It is dedicated to enable the realizability of choreog-
raphy, i.e., when the choreography is unrealizable, some extra interactions can be
automatically introduced. Furthermore, the minimum extra interactions are added
in order to obtain minimal implementation and traffic. The projection considers both
synchronous and asynchronous communication modes.

We build on branching bisimulation and on a symbolic extension of weak bisimulation
to develop a specific symbolic version of branching bisimulation dedicated at checking
the conformance of a set of local entities wrt. a choreography specification. Our
equivalence enables one to check conformance in presence of choreography refinement,
i.e., where new services and/or interactions may be added wrt. the specification.
Going further than a true vs. false result for conformance, our approach supports
the generation of the most general constraint over exchanged information in order to
have conformance.

The second contribution is related to passive testing of service choreographies. It
tackles the peculiarities of choreography implementation through non-intrusiveness,
support for black-box services without source code being available. Our work is started
by passive conformance testing of service choreography. Several languages have been
proposed for choreography. We chose Chor since it is both expressive and abstract

6 Chapter 1. Introduction

enough to suit the requirements of a specification language. This work is based on
näıve passive testing approach, i.e., any execution traces of implementation will be
examined against choreography specification in order to emit verdicts. Conformance
is checked both at the local and at the global level. Local conformance represents
whether some service implementation plays or not correctly its role in choreography.
Global conformance ensures that interactions between services follow the prescription
of the choreography or if they diverge from the envisioned collaboration.

The limitations of the testing approach above, e.g., offline testing, without value-
passing, and requirement of global clock to synthesize, have been overcome by the
second one. It is based on property-oriented passive testing approach, i.e., only
some execution traces which concern tested properties are examined. A property can
express a critical, positive or negative, behavior to be tested on an isolated server
(locally) or on a set of services (globally). This work supports online verification,
i.e., faults are detected as soon as they are generated, of these kind of properties are
checked against local running traces of each service in a distributed system where no
global clock is needed.

The last contribution of the thesis is the availability of toolchains. They demonstrate
our theoretical approaches, e.g., symbolic choreography analysis–SChorA1, and
choreography testing2. The toolchains and their source code are totally available for
using and developing. Furthermore, SChorA has a Web application version thus one
can use it immediately anywhere by using any web browsers without installation
and configuration.

1.5 Publications

Main contributions of this thesis have already been published in proceedings of
international conferences as well as presented in national research days.

International Conferences.

1. Huu Nghia Nguyen, Pascal Poizat and Fatiha Zäıdi.Automatic Skeleton Gener-
ation for Data-Aware Service Choreographies. in ISSRE - IEEE International
Symposium on Software Reliability Engineering, pages 320-329. November
2013.

2. Huu Nghia Nguyen, Pascal Poizat and Fatiha Zäıdi.Online Verification of Value-
Passing Choreographies through Property-Oriented Passive Tesing. in HASE -

1http://schora.lri.fr
2https://www.lri.fr/∼nhnghia/tools

http://schora.lri.fr
https://www.lri.fr/~nhnghia/tools

1.6. Outline of the Thesis 7

IEEE International Symposium on High Assurance Systems Engineering, pages
106-113. October 2012.

3. Huu Nghia Nguyen, Pascal Poizat and Fatiha Zäıdi. A Symbolic Framework
for the Conformance Checking of Value-Passing Choreographies. in ICSOC
- International Conference on Service Oriented Computing, pages 525-532.
November 2012.

4. Huu Nghia Nguyen, Pascal Poizat and Fatiha Zäıdi. Passive Conformance
Testing of Service Choreographies. in SAC - ACM Symposium on Applied
Computing, pages 1528-1535. March 2012.

Talks.

1. A Symbolic Framework for the Conformance Checking of Value-Passing Chore-
ographies. in Journées du GDR GPL, MTV2 track. April 2013.

2. Vérification des chorégraphie implantant en BPEL. in Journées du GDR GPL,
COSMAL track. June 2011.

Poster.

1. Symbolic Approach for the Verification and the Test of Service Choreographies.
in Journées du GDR GPL. April 2013.

1.6 Outline of the Thesis

The rest of the thesis is divided into five chapters. Basic notions of service choreogra-
phies and related work are presented in Chapter 2 while the main contributions of
the thesis are presented in Chapter 3 and Chapter 4. Particularly, they are organized
as follows:

Chapter 2 presents a state of the art of service choreographies. We go from the
general notions of service choreographies to an overview of choreography
modeling approaches and choreography testing approaches.

Chapter 3 introduces our formal language and model for interaction-based ser-
vice choreographies with value-passing. The symbolic semantics of the

8 Chapter 1. Introduction

language and model are also introduced by translating them into Sym-
bolic Transition Graph. Based on the proposed model, we examine the
fundamental issues of choreography, e.g., conformance, projection and
realizability with the presence of value-passing in the model. Finally, we
introduce our tools to validate the proposed model.

Chapter 4 presents two passive testing approaches: one näıve approach and another
one property-oriented approach, to test real implementations of service
choreographies. The näıve approach tests all observed behaviors of
implementation while the property-oriented approach focuses only on
some critical behaviors of the implementation. There are also some
improvements from the former to the latter, e.g., no data to data, offline
to online, global clock to no global clock. The evaluations of our work
by tool supported are also given.

Chapter 5 presents an application of our toolchain, which is presented in the chapters
above, on development process of a simple case study. This consists of
specification and modeling the case study by our language and model.
It is then verified by SChorA (Symbolic Choreography Analysis) tool
which analyzes, by using symbolic approach, some attributes such as
the realizability, the reachability, the conformance, and the projection.
Finally, two passive testing tools, one online and one offline, will be
introduced to guarantee the correctness of implementation.

Chapter 6 concludes this thesis. The limitations of the thesis are discussed and
some future works are also pointed out.

C
h
a
p
t
e
r

2
Service Choreographies:

Issues & Challenges

Contents
2.1 Service Choreography . 10

2.2 Choreography Modeling . 15

2.3 Realizability & Projection . 21

2.4 Conformance Checking . 26

2.5 Choreography Testing . 29

The object being studied of the thesis is service choreographies. This section is
dedicated to present their definitions as well as the fundamental issues in choreography
development process, e.g., realizability, projection, conformance. We then present,
compare and point out limitations in existed researches which try to solve one or
several of these issues.

9

10 Chapter 2. Service Choreographies: Issues & Challenges

2.1 Service Choreography

2.1.1 Coordination Languages and Models

Nowadays, a software system is more and more complex. It usually consists of many
software components, called services. The computation of the system is thus divided
in each its services. The services are usually implemented in distributed environment.
They communicate with each others to achieve common requirements.

To build such a system, there exist two approaches, top-down and bottom-up. The
top-down approach bases on the decomposition of a system into services which can
be put into practice. Contrarily, the bottom-up approach bases on composition of
existing services to achieve requirements of the system.

Coordination languages and models are developed to deal with the problem of
managing interactions among services, which are concurrent and distributed processes,
hence some drawbacks can occur: deadlocks, starvation or incorrect multiple access
to resources, . . . So that, the coordination is the consistent organization of the
communication and its effects, such that required cooperation between all services
involved is established.

To model such a system, two parts are taken into account: computation and coordina-
tion. The computation model helps programmers only to build a single computational
service. Whereas the coordination model is the glue that binds separate services into
an ensemble.

Coordination of Services Organization

Exogenous

Endogenous

Topology

Orchestration

Choreography

Figure 2.1: Coordination of Services

Exogenous vs. Endogenous. The coordination might be integrated into a com-
putational service or be implemented by an entity separating with the computational
service. The former is called endogenous coordination, while the latter is called exoge-
nous coordination. Consequently, we have endogenous and exogenous coordination
languages and models which are defined in [Arbab, 1998] as following:

“Endogenous coordination languages and models provide coordination
primitives that must be incorporated within a computation for its coordi-
nation. In applications that use such models, primitives that affect the
coordination of each module are inside the module itself.”

2.1. Service Choreography 11

“Exogenous models and languages provide primitives that support the
coordination of entities from without. In applications that use exogenous
models primitives that affect the coordination of each module are outside
the module itself.”

For instance, Linda is an endogenous model, whereas Reo [Arbab, 2004] is an
exogenous one. [Capizzi et al., 2004] shows that a distributed system can be
moved from an underlying endogenous data-driven to and endogenous event-driven
coordination model, simply by replacing the coordination aspects and leaving the
computation code unchanged.

Orchestration vs. Choreography. Depending on the interaction topology in
coordination model, service compositions are classified into two styles: orchestrations
and choreographies [Peltz, 2003]. Orchestration always represents control from one
participant’s perspective, called orchestrator. It differs from choreography which is
more collaborative and addresses the interactions that implement the collaboration
among participants [Meng and Arbab, 2007]. Unlike the orchestration, there is no
privilege entities in the choreography – which is a peer-to-peer set of relationships,
without looking at any single participant’s internals. The coordination of a set of
services in an orchestration system can be considered as exogenous coordination, i.e.,
thanks to orchestrator. Meanwhile, in choreography, each participant controls itself
in the collaboration in regarding activities of others.

Figure 2.2 illustrates topologies of interactions of orchestration and choreography
approaches to model an Online Shopping Process which has three participants:
buyer, vendor and shipper. The choice between an orchestration and a choreography
approach to model this collaboration may be driven by a number of factors, often of
an organizational nature. For instance, to easily implement and closely monitor the
performance of the participants, it is desirable to have a single point, orchestrator in
Figure 2.2(a), of interaction between them. This orchestrator would handle all inter-
actions related to the collaboration. Thus, interactions between the buyer, the vendor
and the shipper become the ones between buyer and the orchestrator and the ones
between the orchestrator and the vendor and the shipper. In orchestration approach,
the collaboration depends on the orchestrator which may introduce some risks, e.g.,
overload, resource location, maintenance, . . . The drawbacks may be overcome in
choreography approach. However the choreography approach faces to the difficultly
of management and monitoring the participants due to their distributed environment.

An orchestration can be transformed into a choreography and vice versa. [McIlvenna
et al., 2009] investigates about the synthesis of orchestrators from choreography. A
translation from Web Service Choreography Description Language (WS-CDL) to Web

12 Chapter 2. Service Choreographies: Issues & Challenges

Buyer Vendor

Shipper

Orchestrator

(a) Orchestration

Buyer Vendor

Shipper

(b) Choreography

Figure 2.2: Coordination Modeling Approaches of Online Shopping Process

Service Business Process Execution Language (WS-BPEL), which is a programming
language to build orchestrators, is studied by [Mendling and Hafner, 2008]. [Quinton
et al., 2009] proposes to build, whenever possible, orchestrators, and then distribute
them using protocols so as to obtain choreography.

2.1.2 Service Choreography

Choreography, Role and Service. Choreography is the specification, from global
perspective, of interactions between participants in some collaboration. A choreogra-
phy is a constraint that each service implementing a role has to follow.

An interaction represents a communication between a participant, sender, to other
participants, receiver(s), in a choreography. An interaction represents usually a
message exchange. Most choreography modeling approaches consider only the
interactions between two participants, i.e., there exists only one receiver. Thus an
interaction from sender to a set of receivers can be represented by a set of interactions,
in parallel, from the sender to each receiver.

“A Role represents the behavior that a participant has to exhibit in order to fulfill the
activity defined by the choreography” [Busi et al., 2006]. A role can be implemented
by one or several service(s), which can be also called peers, which represents an
active component which may be identified with a process, an active object, a thread,
a Web service, a user, an organization, . . . A service can be implemented by one or
several roles. In this thesis, we considered the case 1 role – 1 service, i.e., a role
is implemented by one and only one service. In our approach, role, service and
interaction are atomic elements.

Global & Local Models. Besides the global perspective of choreography, interac-
tions may be seen from the local perspective of each role. From this perspective, only
interactions, that directly involve the role, are captured. Consequently, there exist

2.1. Service Choreography 13

Implementation

Service1

Service2

Service3

Specification: Local views

Role1

Role2

Role3

Specification: Global view

Choreography
Role1

Role2

Role3

S
p
ec
ifi
ca
ti
on

Im
p
lem

en
tation

global view

local view 1

Figure 2.3: Choreography, Roles, Services and Global, Local Viewpoints

two kinds of models, local models, or role models, which specify the local behaviors
of roles (one for each), and global models, or choreography models, that correspond to
choreography specifications. Choreography models are useful during the early phases
of system analysis and design thanks to its global perspective, while role models
are blueprints for the implementation of services realizing roles, for the derivation
of test cases for these services, and for the adaptation of reused services to the
choreography constraints.

The notion of local model is identical with the one of “orchestrator” in [Busi
et al., 2006, Li et al., 2007b]. Indeed, regarding Figure 2.2(b), if we consider a
collaboration which captures only the interactions between the buyer and the vendor,
the shipper, i.e., it does not capture the interactions between the vendor and the
shipper, then the buyer is an orchestrator in this collaboration. In the other hand,
this collaboration represents the local view point of the buyer in the choreography.
Hence the interactions in this collaboration is also represented by local model of
the buyer.

2.1.3 Choreography Development: Issues and Challenges

A choreography is a description of a coordination system which can be implemented
based on top-down or bottom-up approaches. Figure 2.4 illustrates the development
process of service choreography. In this section, we give a brief of the three funda-
mental issues in choreography development process. Their details will be introduced

14 Chapter 2. Service Choreographies: Issues & Challenges

in the next sections. Some challenges to solve them will be also pointed out.

S
p
ec
ifi
ca
ti
on

Im
p
le
m
en
ta
ti
on

Choreography

Local models
(skeletons)

Composition

Services

global conformance?
testing

local conformance
testing

project

implementabstract

realizability?
(checking)

global conformance?
checking

compose

Figure 2.4: Issues in Choreography Development Process

Issues. The first issue is realizability which intends to check whether a choreography
can be implemented?. Generally, not all choreographies are realizable. Let us describe,
by using Business Process Model & Notation (BPMN) 2.0 notations, two unrealizable
choreographies as in Figure 2.5. The left hand side choreography describes a request
interaction between two roles buyer and vendor followed by a ship interaction
between roles warehouse and shipper. This choreography is not realizable since role
warehouse has no possibility to know when ship must be done. It is done after
request, but warehouse never knows when request occurs. The right hand side
choreography requires that either request or ship is done but there is no way to
ensure that since different senders, i.e., buyer and warehouse, are concerned. The
approaches for realizability checking will be presented in Section 2.3.

a

requestrequestrequest

buyer

vendor

shipshipship

warehouse

shipper

b

requestrequestrequest

buyer

vendor

shipshipship

warehouse

shipper

Legend

requestrequestrequest

a

b

Sender

Operation

Receiver

Exclusive choice
Sequence flow

Start End

Figure 2.5: Examples of unrealizable choreographies

2.2. Choreography Modeling 15

The second issue is projection. In top-down approaches, if the choreography is
realizable, it is then projected on each role to obtain role model from which each
service is implemented. Projection can be defined as a procedure which takes as an
input a choreography model with n roles and outputs a set of n local models.

To ensure the correctness of projection, the conformance between the choreography
model and the composition of the generated role models, called global conformance
should be verified. The third issue is conformance. The global conformance checking
is the cornerstone also in bottom-up approaches. In this approach, the participant
services in the implementation of the choreography are selected from existed services
thanks to its model. To guarantee the collaboration of selected services with respect
to the choreography, the global conformance should be also checked.

When model of participant services are not available, conformance testing can be
done to verify the correctness of implementation. Local conformance testing ensures
a service plays correctly its roles while global conformance testing guarantees the
collaboration between services with respect to the choreography.

Challenges. The issues above can be solved at model level, e.g., projection, confor-
mance checking between role models and choreography model, or at implementation
level, e.g., conformance testing between set of services and the choreography when
models of participant services are not available,.

The first challenge is a lack of data support in existing choreography modeling
approaches. Since the interactions are usually achieved thanks to message exchange,
value-passing and data should be supported in choreography models, and in the
solving processes of the issues above. Some approaches just abstract away from
data. This may yield over-approximation issues, e.g., false negative in the verification
processes. Others support data with ground variables which can entail the state
space explosion problem.

The second challenge, which is related to the testing process, is the limitation of
controllability and observability of choreography implementation which is a set of
distributed services. Thus it is not easy to start or stop the services at testing moment.
Furthermore, the full observations of overall implementation is usually not available.
One can only observed partially the implementation at each participant service.

2.2 Choreography Modeling

We class the choreography models and languages based on some attributes which
are depicted in Figure 2.6.

16 Chapter 2. Service Choreographies: Issues & Challenges

Choreography Modeling

Basic Element
Interconnection

Interaction

Parallelism
Interleaving

True-Concurrency

Communication
Synchronization

Asynchronization

Data
Support

Expressiveness
Assignment

Condition

Treatment
Bounded

Symbolic No support

Figure 2.6: Criteria of Choreography Modeling

2.2.1 Basic Elements

Depending on the ways of definition of basic elements, there exist two different
modeling approaches for choreographies [Decker et al., 2008]: interconnected interface
models and interaction models. In interconnected interface models, the basic elements
are the events defined at the role level (e.g., sending or receiving a message). Global
level interactions are then defined by roughly connecting these events. The messaging
activities of different processes are interconnected. To the contrary, in interaction
models, the basic elements are the interactions between roles. An interaction usually
represents a message exchange between two participants in a choreography. Figure 2.7
demonstrates the two modeling approaches of Online-Shopping Process example.

These two meta-models can be seen as different views of the same choreography. The
interconnection model is suitable for implementation since it focuses on describing
the activities of a participant service. Whereas the interaction model is suitable for
specification and verification due to its global perspective.

Table 2.1 classifies choreography description languages into these two classes. WS-CDL
was proposed by W3C firstly in 2005. Let’s Dance [Zaha et al., 2006] is a graphical
description of choreography. BPMN can only describe interconnection choreography
in the first version. In version 2.0, it supports to describe interaction choreography.
Collaboration Diagram (CD), also called communication diagram in Unified Modeling
Language (UML) 2, are used to specify interaction choreography by [Bultan and Fu,
2008, Salaün et al., 2012].

Message Sequence Chart (MSC) can also describe choreographies [Foster et al., 2005].
It follows the interconnection modeling approach. However, it is rather suited for
describing sequences of interactions in contrast to full choreographies. Complex
branching, e.g., parallel, conditional, is not well supported by MSCs [Decker and
Weske, 2011]. Choreography Extension for BPEL (BPEL4Chor) is extended from
WS-BPEL to specify interconnection models. ScriptOrc [Bhattacharjee and Shyama-

2.2. Choreography Modeling 17

B
uy

er

Buy article

Start shopping

End shopping

Article recieved

Article invalidated

V
en

do
r

Check availbility

Inform buyer

Ship article

Order received Article available

no

Buyer informed

yes

S
hi

pp
er

Delivery article

Ship requested
Article shipped

(a) Interconnection-based in BPMN 1.0

Order requestOrder requestOrder request

buyer

vendor

InformationInformationInformation

vendor

buyer

Ship requestShip requestShip request

vendor

shipper

Delivery articleDelivery articleDelivery article

shipper

buyer

Article
available

no

yes

(b) Interaction-based in BPMN 2.0

Figure 2.7: Example of Interconnection and Interaction-based Modeling Approaches

18 Chapter 2. Service Choreographies: Issues & Challenges

sundar, 2008] is an algebra language for specifying interconnection choreography.

Table 2.1: Interaction vs. Interconnection in choreography languages

Interaction Interconnection

− WS-CDL

− Let’s Dance

− BPMN 2.0

− CD

− MSC

− BPMN 1.0

− BPEL4Chor

− ScriptOrc

Table 2.2 classes choreography modeling approaches into three groups, Process
Algebra-based, Automata-based, and Petri-net-based [Su et al., 2007]. Most works
construct their models based on WS-CDL, e.g., [Li et al., 2007a] proposed using
Communicating Sequential Processes (CSP) to model WS-CDL.

Table 2.2: Interaction vs. Interconnection in Choreography Models

References Interaction Language

P
ro
ce
ss

A
lg
eb
ra
s

[Busi et al., 2006] X WS-CDL
[Kazhamiakin et al., 2006] X

[Li et al., 2007a] X WS-CDL 7→ CSP
[Bravetti and Zavattaro, 2007] X

[Qiu et al., 2007] X

[Bhattacharjee and Shyamasundar, 2008] ScriptOrc
[Barker et al., 2009]
[Sun et al., 2010] X WS-CDL
[Salaün et al., 2012] X CD 7→ LOTOS
[Yoon et al., 2011] X

[Poizat and Salaün, 2012] X BPMN 2.0 Choreography 7→ LOTOS

A
u
to
m
at
a

[Meng and Arbab, 2007]
[McIlvenna et al., 2009] X

[Mei et al., 2009] X WS-CDL
[Diaz and Rodriguez, 2009] X

[Zhou et al., 2010] X WS-CDL
[Hwang et al., 2010]

P
et
ri
-n
et
s [van der Aalst et al., 2006]

[Decker and Weske, 2011] X iBPMN

[Valero et al., 2009] X

An interaction model can be transformed to interconnection one and vice versa. In
[Kopp et al., 2010], the authors present a mapping of interconnection models to
interaction models by transforming BPMN 1.0 models into iBPMN models by using
Petri-nets as intermediate format. [Decker and Weske, 2011] show a way to generate
interconnection models out of interaction models.

2.2. Choreography Modeling 19

2.2.2 Data Support

Abstract, Bounded and Unbounded Data Domain. Choreography modeling
approaches differ on the way they deal with data. Some just abstract away from
data. This may yield over-approximation issues, e.g., false negative in the verification
processes. Others support data with ground variables which can entail the state space
explosion problem. For the following, let us suppose a very simple choreography C:
“A and B exchange an integer lower than 5”. Data can be supported by working on
closed implementation-level systems where sent messages contain only ground data,
e.g., “A sends 4 to B” or “A sends x+3 to B, knowing that x is 1”. In such a case,
the state space explosion of the system model is limited. This is because even if the
reception of a message in some entity is denoted with a free variable, e.g., “B receives
from A a y lower than 10”, upon making it correspond with a sent message, the
variable will be bound. Here, y = 4, satisfying B since 4 < 10 and conforming to C
since 4 < 5. However, this is not adequate when working on abstract specifications
where there are no such ground sent messages but only free variables and constraints
on their values, e.g., “A sends some x greater than 3 to B” (note, here, that the
exact x is not given, since it can be known only at run time).

Another solution is to bound data domains, e.g., integers are bound to [0..b]. The
issue is that conformance may not yield outside the bounds. On our example, it
works if b < 5 but not if b ≥ 5 since A may then choose to send 6. Defining bounds
in order to avoid false positives in the verification process can be difficult.

Data is supported using a symbolic approach, i.e., the data variables are manipulated
by using symbols rather than their concrete values. This enables one to model and
analyze service choreography in presence of data without suffering from state space
explosion and without bounding data domains.

The data support in choreography modeling approaches are compared in Table 2.3.
In [Kazhamiakin and Pistore, 2006b, Knuplesch et al., 2012], the authors discuss
about using symbolic model checking to analyze choreography but their choreography
models still bound value domain of variables.

Data-Awareness Interaction. When data is supported, the basic element (fist-
class) of interaction models should be data together with interaction, called data-
awareness interaction. The models used in [Xiangpeng et al., 2006, Busi et al., 2006,
Kazhamiakin and Pistore, 2006b, Li et al., 2007b, Sun et al., 2010] are interaction-
based but data are expressed as the way of interconnection-based, i.e., the variables
are defined at each local role then their values are synchronized thanks to interactions.
This is not adequate for the interaction-based approach. The interactions together
with variables should be the basic events. In the choreographies of Figure 2.9, variable

20 Chapter 2. Service Choreographies: Issues & Challenges

Table 2.3: Data Support in Choreography Modeling Approaches

support data-aware treatment loops assign.
interaction

[Qiu et al., 2007]

no

yes no
[Bravetti and Zavattaro, 2007] yes no
[Salaün et al., 2012] yes no
[Diaz and Rodriguez, 2009] yes no
[Xiangpeng et al., 2006]

yes no
closure

yes yes
[Busi et al., 2006] no yes
[Li et al., 2007b] yes yes
[Sun et al., 2010] no yes
[Kazhamiakin and Pistore, 2006b]

bound data
yes no

[Knuplesch et al., 2012]
yes

no no
Ours–[Nguyen et al., 2012a] symbolic yes limited

x is attached to the interaction o1, in which one does not need to specify explicitly
that the first condition x > 0 must be done at a and the second one x ≤ 0 at c.

Expressiveness. Column 5 and 6 of the Table 2.3 are relative to the expressiveness
of the choreography language. Having both loops and assignments may yield state
space explosion if one does not close the system or bound data domains. This can
be avoided by working on closed implementation-level systems. Here, since sent
messages contain only ground data (values), the state space explosion of the system
is limited: even if the reception of a message is denoted with a free variable, upon
making it correspond with a sent message, the variable will be bound. However,
this is not adequate when working on abstract specifications where there are no
such ground sent messages but only free variables and constraints on their values.
Another solution is to bound data domains, e.g., conformance may not yield outside
the bounds, so choosing them is difficult.

2.2.3 Communication Modes

At global level, an interaction α is a single event. When α is projected on local models,
it becomes two separate events: a sending, α!, and a reception, α?. The causality
of the two local events depends on which communication model is considered. The
synchronous communication requires that communication between events α! and
α? can take place only if both are performed simultaneously, denoted as α! = α?.
The asynchronous communication allows communication between events α! and
α? to be consistent with the reception α? being performed after the sending α!,
denoted as α! ≺ α?.

The causality of two consecutive interactions, α1 ≺ α2, is considered at local level by
the causality of their sending and reception. There exist four possibilities [Lanese

2.3. Realizability & Projection 21

et al., 2008, Nguyen et al., 2012c]:

− Synchronous communication: (α1! ≺ α2!) ∨ (α1? ≺ α2?) ∨ (α1! ≺ α2?) ∨ (α1? ≺ α2!)

− Asynchronous–sending communication: α1! ≺ α2!

− Asynchronous-reception communication: α1? ≺ α2?

− Asynchronous–disjoint communication: α1? ≺ α2!.

Consequently, interaction models assume only synchronous communication [Kopp
et al., 2010], since its communications are atomic event. The asynchronous communi-
cation modes are only considered when composing local models (of roles or services).
In reality, asynchronous communication is usually achieved from synchronous com-
munication by exchanging messages between senders and receivers through a certain
communication medium, represented as a set of queues. This medium is referred
as communication model in [Kazhamiakin et al., 2006, Kazhamiakin and Pistore,
2006b], as conversation protocol in [Fu et al., 2004, Bultan et al., 2006]. In asyn-
chronous communication mode, the composition of local models depends on the
kind of queues, e.g., First In, First Out (FIFO), and on the size of queues. Hence
some features of choreography, e.g., realizability, conformance, depend also on these
elements [Kazhamiakin and Pistore, 2006a, Salaün and Roohi, 2009, Salaün et al.,
2012, Roohi and Salaün, 2011, Basu et al., 2012]. A composition of set of services
is synchronizable [Basu and Bultan, 2011] if and only if the ordering of message
exchanges remain the same when asynchronous communication is replaced with
synchronous communication.

2.2.4 Parallelism

Since the choreography implementation is a set of services which are distributed
processes, hence their activities might occur in parallel. Most approaches based
on automata or on process algebra, interprets the parallel as interleaving, i.e., two
parallel events α1 and α2 are executed in sequence, either α1 then α2 or α2 then α1.
The true-concurrency means that events can occur at the same time. This attribute
is well supported in approaches based on Petri-net.

2.3 Realizability & Projection

2.3.1 Realizability Notions

A fundamental issue of choreography, called realizability, is whether a choreography
specification C can be implemented by an implementation Impl. Following [Kopp
et al., 2010], realizability is a property of an interaction choreography model.

22 Chapter 2. Service Choreographies: Issues & Challenges

A trivial implementation of a choreography is a single service which plays all roles
of the choreography. In such a case, there is no more realizability issue. However,
choreography intends to specify, from a global view, a collaboration of a set of roles.
Each role in the choreography is a concrete entity taking part in this collaboration.
It should be implemented by a distinguishable, independent service. Consequently,
an implementation of a choreography should be a set of services where each one
implements one of the roles and their composition represents the behaviors required
by the choreography.

Depending on how to say Impl implements C, i.e., conformance relation, the realiz-
ability notions can be divided into three classes: complete, partial and distributed
realizability as the following definitions. Given a choreography C which represents
the collaboration of n roles, R1, . . . , Rn, and an implementation Impl consisting of n
services S1, . . . , Sn. Complete realizability which is defined in [Bultan and Fu, 2008]
requires that (i) each service si implements its roles Ri and (ii) the behaviors of the
composition S1 × . . .× Sn are equals to the one of C. This is a strong requirement
since it demands that behavior of services exactly matches the choreography. A
weaker notion, called partial realizability, is defined in [Zaha et al., 2006]. It relaxes
the second condition of the complete realizability by only requiring that a subset
of the choreography is implemented. Thus the complete realizability implies the
partial realizability. The fist condition of these two notions demands each role is
implemented by one and only one service. [Lohmann and Wolf, 2010] introduces
distributed realizability which modifies this condition by allowing that a role can be
realized by more than one services.

Without regarding on relation of pair role–service in the first requirement (i) above,
realizability notion in [Kopp et al., 2010, Poizat and Salaün, 2012] only requires
the second one. A realizable choreography can be implemented by a set of services
where the composition exactly shows the specified message exchange behavior of the
choreography. This definition is referred as synchronous realizability in [Kazhamiakin
and Pistore, 2006a].

In reality, asynchronous communication is achieved from synchronous one by intro-
ducing a message queue at each participant service. Two notions are defined in [Basu
et al., 2012] based on size of message queue. Realizability∀ requires the existence
of an implementation Impl such that its behaviors for all possible receive queue
sizes are equivalent to the choreography C. Realizability∃ requires the existence of
an implementation Impl such that its behavior is equivalent to the choreography C
when unbounded receive queues are used.

2.3. Realizability & Projection 23

2.3.2 Realizability through Projection

In a top-down service choreography approach, as depicted in Figure 2.4, service
developers construct a global specification and project it into local specifications.
Services are then selected to implement the local specifications. In this development
approach, the realizability issue becomes to verify whether a choreography model can
be correctly projected onto role models.

Projection is a procedure which takes as an input a choreography model with n roles
and outputs a set of n local models, each one representing the required behaviors of a
role in the choreography. Table 2.4 represents choreography projection approaches. To
ensure the correctness of this projection, the conformance between the choreography
model and the composition of the generated role models should be verified.

The realizability of choreography is checked in [Salaün et al., 2012, Roohi and Salaün,
2011, Poizat and Salaün, 2012] by firstly projecting the choreography onto local
models. A system is built by composing these local models; some additional FIFO
buffers are necessary if an asynchronous communication mode is assumed. Finally,
the realizability is checked by verifying the equivalence of the choreography and
the system.

Table 2.4: Service Choreography Projection Approaches

Supporting Data Smart Projection
[Qiu et al., 2007]

no

no (only support branching)
[Bravetti and Zavattaro, 2007] no
[Salaün et al., 2012] yes
[Diaz and Rodriguez, 2009] yes
[Li et al., 2007b]

yes

no
[Xiangpeng et al., 2006] no
[Sun et al., 2010] yes
[Kazhamiakin and Pistore, 2006b] no
[Knuplesch et al., 2012] no
Ours–[Nguyen et al., 2013] yes

2.3.3 Causes of Unrealizability

Choreography may often be not realizable. The reason of choreography unrealizability
is that the interactions involve separate roles. Hence a role cannot compute itself
which interactions it must or must not do. The role does the computation when
it must perform an interaction after another interaction, or when it has to choose
which branch must be followed. These two cases were illustrated in Figure 2.5. Two
conditions of sequential composition and choice are only decided by one role [Qiu
et al., 2007, Lanese et al., 2008]. It is called dominant role in [Qiu et al., 2007].

24 Chapter 2. Service Choreographies: Issues & Challenges

Another issue is that the realizability depends on the kind of communication modes,
e.g., synchronous or asynchronous communication. Figure 2.8 represents three
choreographies which are realizable in synchronous communication mode but they are
unrealizable in asynchronous ones. Let us consider the choreography in Figure 2.8(a)
under asynchronous–sender communication mode where m1 occurs before m2, i.e.,
the choreography requires that the sending of m1 must occur before the one of
m2. Since there is no interaction between b and c, the services cannot respect the
execution order of messages as specified in the choreography. The same reason of
unrealizability holds for the two right choreographies.

a

m1m1m1

b

a

m2m2m2

c

a

b

m1m1m1

a

b

m2m2m2

a

c

c

m1m1m1

a

b

m2m2m2

c

a

Figure 2.8: Impact of Communication Modes: Realizability in Synchronization →
Unrealizability in (a) Asynchronous–Sender, (b) Asynchronous–Receiver, and (c)
Asynchronous–Disjoint

Few works focused on the realizability issue assuming asynchronous communication.
Three sufficient conditions (lossless join, synchronous compatible, autonomous) were
proposed in [Fu et al., 2004, Bultan et al., 2006] that guarantee a realizable conver-
sation protocol. A service composition is synchronous compatible if its synchronous
product does not contain a state in which there exists a service which has a send
transition from its current local state, however, the corresponding receiver service is
not in a state where it can receive that message. A service composition is autonomous
if, given any state of any of the services, only one of the following three conditions
hold 1) all the transitions from that state are send transitions, 2) all the transitions
from that state are receive transitions, or 3) that state is a final state and there are
no send or receive transitions from that state. A conversation protocol satisfies the
lossless join condition if its conversation set is equal to the join of its projections to
each service. Both necessary and sufficient conditions (equivalent and well-formed
conditions) for realizability were provided by [Basu et al., 2012]. Before this work,
the realizability of choreographies with asynchronous messages using unbounded
FIFO message queues was undecidable.

2.3.4 Enforcing Realizable Choreographies

The unrealizability of choreography is usually caused by the lack of information which
are used by participant to decide its behavior, e.g., when to do the next behavior

2.3. Realizability & Projection 25

or which route needs to be followed. It is impossible to make an unrealizable
choreography to a realizable one without introducing additional interactions [Qiu
et al., 2007, Salaün et al., 2012, Diaz and Rodriguez, 2009, Sun et al., 2010]. Some
approaches enable the realizability by privileging some roles in the choreography, e.g.,
dominant role in [Qiu et al., 2007] or additional coordinators in [Diaz and Rodriguez,
2009, Autili et al., 2013]. These roles help the participants to decide their behaviors,
e.g., the route in the case of non-deterministic branching. The former approaches seem
to be inappropriate in the sense of the choreography where there is no privileged roles.

As illustrated in Figure 2.8 where the choreographies are unrealizable under asyn-
chronous communication mode but are realizable under synchronous one, hence some
approaches try to make synchronizable choreography, [Salaün et al., 2012], or to
reorder message emissions [Kazhamiakin and Pistore, 2006a].

Some other works, [Qiu et al., 2007, Basu et al., 2012] propose well-formed conditions
to enforce designers to describe realizable choreographies. This approach is too
restrictive and complex for designing choreographies since it may prevent the designer
from specifying what (s)he wants to do. Furthermore, the designer cannot only focus
on composition issues, but has to take care, at the same time, these well-formed
conditions [Salaün et al., 2012]. This is contrary to our work of trying propose a
realizable choreography based on an arbitrary one given by the designer.

2.3.5 Impact of Data on Realizability

Most existing approaches do not adequately support the value-passing, i.e., without
explicitly considering the data exchanged through interactions and using it for
branching decisions. They just abstract away from data. This may yield over-
approximation issues, e.g., false negatives in verification process. Hence the presence
of value-passing in choreography model may change its realizability property. Let
us take an extension of the unrealizable choreographies in Figure 2.5 as depicted in
Figure 2.9, which becomes realizable thanks to the value-passing. In this figure, the
BPMN 2.0 notations are extended to support data [Knuplesch et al., 2012], hence an
interaction is attached with a variable. The left choreography describes that firstly
there is an interaction o1 from role a to role c with data exchange called x. Then the
interaction o2 from a to b should be done if x > 0. Finally, the interaction o3 from c
to d should be done if x ≤ 0. It is straightforward to see that the interaction o3 is
never executed. Hence there is no need of o3 in the choreography. The choreography
becomes realizable when only o1 and o2 are required to be implemented. The right
choreography is realizable as well, when the communication is synchronous or on an
asynchronous sending mode. After o1 has been done, all roles know x so they can
decide to do (send or receive) o2 or o3.

26 Chapter 2. Service Choreographies: Issues & Challenges

Legend
requestrequest
request

name

a

b

Sender

Operation

Variable

Receiver

a. unreachable

o1
o1
x

c

a

o2
o2
a

b

o3
o3
c

d

x > 0 x ≤ 0

b. conditional branching

o1
o1
x

b

d

o1
o1
x

d

a

o1
o1
x

a

c

o2
o2
a

b

o3
o3
c

d

x > 0

x ≤ 0

Figure 2.9: Impact of Data: unrealizability → realizability

The choreography modeling and realizability checking are also presented in [Paci
et al., 2008, Bultan et al., 2009, Poizat and Salaün, 2012, Basu et al., 2012]. The
realizability is checked in [Paci et al., 2008] based on access control policies of
local services and the credentials that local services are willing to disclose. [Bultan
et al., 2009, Poizat and Salaün, 2012] propose tools for checking the realizability of
choreography modeled by collaboration diagrams and by BPMN 2.0. The necessary
and sufficient conditions for realizability of choreographies are given in [Basu et al.,
2012]. However, all these approaches do not explicitly support data exchanged by
messages and used for routing decisions.

2.4 Conformance Checking

The second key issue in choreography-oriented development is checking the confor-
mance of an implementation wrt. the choreography specification. When the model
of the implementation is available, the conformance checking can be done, otherwise
conformance testing will be done. However, it is generally desirable to detect faults
as soon as possible in system development.

2.4.1 Choreography Conformance

The conformance issue naturally arises in a bottom-up development process, where
peers implemented as services and advertising behavioral descriptions (conversations)
are reused and composed. The question here is “Will these services behave altogether
as prescribed in the choreography?”. Conformance is also central in a top-down
development process, see Figure 2.4, where local obligations, kinds of “behavioral
skeletons”, are generated by projection from the choreography. The question here
is “Am I sure that if I implement these local obligations then I will have a correct
implementation of the choreography?”. Conformance is therefore a cornerstone for

2.4. Conformance Checking 27

choreography realizability checking that addresses whether projection may or may
not be used to get a conform set of services skeletons.

Since choreography conformance intends to check whether an implementation of a
choreography conforms to its specification, the first notion we need to define is an
implementation of a choreography. As discussion in Section 2.3.1, an implementation
of a choreography is a set of coordination services, each services implements a role in
the choreography and the coordination between them conforms to the choreography
specification. With such definition of implementation, choreography conformance
consists of local and global conformance. Local conformance ensures behavior of each
service respects to its role. Global conformance guarantees the collaboration of the
set of services respects to the choreography specification.

2.4.2 Conformance Relation

Conformance is a binary relation between an implementation model Impl and a
specification Spec.

ImplementationSpecification
Conforms?

Figure 2.10: Conformance Checking Scheme

The conformance is usually a non symmetric relation since it allows Impl to be less
than Spec. If we note behavior(X) the set of all potential behaviors of X, then we
have the following equation:

behavior(Impl)
⊆
=

behavior(Spec)

For example, the conformance relation stated by [Su et al., 2007] does not allow
behaviors of Impl to be larger than behaviors of Spec:

“Assuming some fixed choreography modeling language L: Given a
choreography C in L and a set I of service implementations in L, is it
possible to determine if every possible execution of I always generates the
behaviors allowed by C?”

In Table 2.5, we compare approaches for conformance checking. Column 2 focuses
on data support.

28 Chapter 2. Service Choreographies: Issues & Challenges

Table 2.5: Choreography Conformance Relations

Data Conformance
supported local global relation (based on)

[Qiu et al., 2007]

no

no yes Trace equivalence
[Bravetti and Zavattaro, 2007] yes yes Trace equivalence
[Salaün et al., 2012] no yes Strong bisimulation
[Basu and Bultan, 2011] no yes Pre-Order
Ours [Nguyen et al., 2012c] yes yes Pre-Order
[Busi et al., 2006]

yes

no yes Branching bisimulation
[Kazhamiakin and Pistore, 2006b] no yes Branching bisimulation
[Li et al., 2007b] yes no Weak bisimulation
Ours [Nguyen et al., 2012a] no yes Branching bisimulation

The three last columns of Table 2.5 ingredient is how to formulate the behaviors of an
execution of services and compare them against a choreography. One straightforward
approach is to use traces of the service executions modulo irrelevant events. This has
been mostly studied in automata based choreography models. The other is to employ
the notion of bisimulation between the generated global behaviors and choreography.
Most process algebra based choreography models adopt this approach. Weak and
branching bisimulations are able to support internal events and hiding (formally,
τ actions). Branching bisimulation [Van Glabbeek and Weijland, 1996] has been
preferred over weak bisimulation in the last years since it is a congruence, hence
supports compositional reasoning.

Most approaches allows the implementation to have some irrelevant behaviors which
will be removed or hidden in the conformance checking process. This is important,
e.g., if one has to deal with messages added to make some choreography realizable.

2.4.3 Impact of Data on Conformance Relation

Most approaches do not take data into account their conformance relation. Let us
investigate the impact of data on conformance relation by considering example in
Figure 2.11. This figure represents two models. The left one specifies a very simple
choreography consisting of two roles, a and b, and an interaction Request from role
a to role b. The right one describes the collaboration of an implementation of the
choreography. The implementation can do from role a to role b a Request interaction
or a Start interaction depending on value of the variable x at the initial state, i.e.,
this value is configured before running. Hence the implementation conforms to the
choreography if and only if x is configured greater or equal 0, e.g., when we examine
only nature numbers. Consequently, the conformance checking is neither Pass nor
Fail. In such a case, we issue Maybe verdict, see Section 3.3.

2.5. Choreography Testing 29

1

{}

2

{}

Request[a,b]

(a) Specification

1

{x}

2

{}

[x ≥ 0]Request[a,b]

[x < 0]Start[a,b]

(b) Implementation

Figure 2.11: Impact of Data on Conformance Relation: Maybe Verdict

2.5 Choreography Testing

2.5.1 Formal Software Testing

Software testing is the process of executing a system with the intent of finding
faults [Glenford J. Myers, 2004]. The standard definition was presented in IEEE
Standard Glossary of Software Engineering Terminology [Jane Radatz, 1990]:

“Test is an activity in which a system or component is executed un-
der specified conditions, the results are observed or recorded, and an
evaluation is made of some aspect of the system or component.”

Specification-based testing aims to test the functionality of an implementation, called
IUT, according to a requirement specification. A correct implementation of a specifi-
cation will contain no faults. Therefore, it can be achieved by either constructing
it without making any errors, or by detecting and removing all the faults. The
definitions of the failure, the fault and the error are relative among authors. In
[Laycock, 1993], the authors represented these notions in the relation between a
specification and its implementation.

Given an implementation Impl, of a specification Spec, a failure occurs if
for an input i, the output produced by Impl is unacceptable compared to
the output produced by Spec. Any part of the system state, that could
lead to failures, is a fault. An error is the direct cause of a fault. In the
case of a program fault, the error is often a mistake by the programmer.

With these definitions, the test can be redefined by the conformance relation between
the implementation and its specification.

Verdicts. The execution of each test provides one of the three possible verdicts:
Pass, Fail and Inconclusive. The Pass verdict means that the test does not

30 Chapter 2. Service Choreographies: Issues & Challenges

detect any faults. The Fail verdict means that the test detected a fault. The
Inconclusive will be emitted when neither Pass nor Fail verdicts are emitted, i.e.,
no definite conclusion can be drawn from the test. In conformance testing, an IUT
conforms to a specification if there is no Fail verdicts for every test.

Testing vs. Proof of Correctness, Model Checking, Debugging. Testing is
very different from proof of correctness and model checking. Testing works on an
actual IUT. Whereas proof of correctness and model checking requires a model of
the IUT, which is usually not available. Based on model of IUT, proof of correctness
uses the technique of a formal logic system to prove that if the input values satisfy
certain constraints, then the output values produced by the IUT, will satisfy certain
properties. Meanwhile model checking verifies all potential behaviors of IUT with
respect to the specification by regarding their models.

Testing is not only debugging. The purpose of testing can be also quality assurance,
verification and validation, or reliability estimation. Debugging is only done at
code stage whereas testing can be also done after the code stage, i.e., when system
is deployed.

Active and Passive Testing. Formal software testing can be differentiated as
active or passive. Active testing consists in applying a set of test cases by sending
some input to the IUT and then analyzing its output in order to emit a verdict. This
method assumes a kind of controllability of the IUT through Point of Control and
Observation (PCO).

To the contrary of active testing which has the controllability, the passive testing
does not disturb the natural operation of the IUT. In the passive testing [Lee et al.,
1997], the tester can not send messages to the IUT. It only observes the exchange
(input and output) of messages, through the PO, of an IUT during run-time. These
observations will then be compared to the specification in order to emit a verdict.
Consequently, it is also of particular interest since one does not always have the ability
to control an IUT. By using passive approach, testing can be done continuously and
the services in a collaboration can evolve dynamically.

Following [Ladani et al., 2005], passive testing approach is divided into two groups,
näıve and property-oriented based approaches. The näıve based approach consists in
comparing the specification trace with the one of the implementation in a forward or
backward manner. Whereas in property-oriented based approach, as shown in Fig-
ure 2.12(b), only critical properties, which are given either by an expert or extracted
from the standard, are compared with the execution trace [Bayse et al., 2005]. If
specification is available, then the properties must conform to the specification.

2.5. Choreography Testing 31

SpecificationProperties

Tester

conform

observe IUTPOIUT PCO

Specification Test cases

Tester Verdict:
(pass, fail,

inconclusive)

generate

observe

stimulus

(a) Active Testing (b) Passive Testing

Figure 2.12: Active and Passive Testing Processes

Black, White and Grey Box Testing. Black-box testing, called also functional
testing, treats the IUT as black-box, i.e., the tester does not have any internal views
of the IUT. Contrary to black-box testing, in white-box testing, IUT is viewed as
a white-box, or glass-box, i.e., the structure and flow of the IUT are visible to
the tester. Grey-box testing is a common used transition between black-box and
white-box testing. Testers have access to the system source code, but testing process
is usually executed as the black-box [Repasi, 2009].

Controllability, Observability and Testability. Controllability is the degree to
which it is possible to control the state of the IUT as required for testing. Observability
is the degree to which it is possible to observe (intermediate and final) test results.
For instance, in active testing, the communication between the test system and the
IUT are realized by the input or output messages at PCOs in a given order. In this
context, the controllable message is the messages which are sent by tester and the
observable message the messages received by tester [Rafiq and Cacciari, 2003].

The controllability and observability have a great influence on several aspects of
the testing activity, for example, the execution of test sequences, the observations
that can be made during the test execution. The testability is the degree to which a
IUT facilitates the establishment of test criteria and the performance of testing pro-
cess [Jungmayr, 2004].

2.5.2 Service Choreography Testing

In Table 2.6, we compare approaches for choreography testing. The criterion are
detailed as below.

Passive Testing. The first criteria is passive testing. Each service in a choreography
implementation is usually developed and deployed independently with the other
services. Furthermore, lack of controllability of a distributed system prevents active

32 Chapter 2. Service Choreographies: Issues & Challenges

Table 2.6: Service Choreography Testing Approaches

Passive Testing Value-Passing
Online

Global
sup. prop. architecture support structure clock

[Zhou et al., 2010] no
no

centralized yes no no yes
ours–[Nguyen et al., 2012c]

yes

centralized no no no yes
[Andrés et al., 2010]

yes
distributed no no no no

[Hallé and Villemaire, 2009] centralized yes no yes yes
ours–[Nguyen et al., 2012b] distributed yes yes yes no

testing. Passive testing becomes a potential candidate for testing service choreography
in which the tester discovers the behaviors of a service only by observing from outside
its inputs and outputs. Column 3 is relative to property-oriented passive testing
approaches which allows testers to focus on some critical behavior of IUT.

Architecture of Passive Testing System. The second criteria is based on testing
architecture. Testing architecture is a description of the behavior of testers by which
the IUT is tested. A choreography implementation can be tested by many testers at
different sites of the implementation. The testing architecture is distinguished by
terms of coordination between the testers in the testing process. There exists three
kinds of testing system.

− Centralized testing consists of only one tester.

− Remote testing consists of several testers located at different sites. There
is no coordination between the testers, and each of them behaves with its
corresponding PO, independently of the others.

− Distributed testing consists of different testers like in remote testing, but there
is a coordination between the testers. If this coordination has to follow given
specific procedures, it is called a coordinated testing.

The basic idea is to coordinate the testers by using a communication service parallel
to the IUT through a multicast channel. Each tester observes the IUT only through
the port PO to which it is attached, and communicates with the other testers through
the multicast channel. One tester dose not perform only in the observations with
the IUT through the attached port PO, but also the coordination messages with the
other testers while the testing is carried out.

Data Support. Columns 5 and 6 of the Table 2.6 are relative to the data support
in testing process. Some approaches, [Andrés et al., 2009, 2010, Nguyen et al., 2012c]
just abstract away from data. This is known to yield over-approximation issues, e.g.,

2.5. Choreography Testing 33

IUT

Testing system

PCO2PCO1 PCO3

Tester1 Tester2 Tester3

Figure 2.13: An Architecture of Distributed Testing

false negatives in the verification process. Furthermore, the information exchange is
usually in complex type, thus complex data treatment should be supported in testing.

Online Testing. Column 7 of the Table 2.6 distinguishes online and offline realiza-
tion testing approaches. Testing process is done to detect a fault in IUT. In some
case, it is intended to be able to detect faults as soon as they are generated by the
IUT, thus the IUT can be prevented to go to serious errors, e.g., damage of material.
It is the case of online testing. Contrarily, offline testing performs the test after IUT
terminating its execution.

Global clock. In distributed testing, each tester knows only its attached service. It
has only (local) observations about this service, thus partial observations about the
choreography. To test global conformance, tester needs to correlate local observations
to construct global observation. The correlation is usually done based on time
stamp of local observations. Consequently, a global (logic) clock or a shared clock is
required for a choreography implementation, i.e., at a moment, all local clocks of
testers indicate the same value. This requirement is usually not achieved due to the
distributed environment.

C
h
a
p
t
e
r

3
A Symbolic Model of

Choreographies

Contents
3.1 Specification Language . 36

3.2 Symbolic Semantics . 39

3.3 Symbolic Conformance . 43

3.4 Realizability Checking & Projection 51

3.5 Tool & Experimental Evaluations 58

3.6 Discussion . 65

In this chapter, we present a framework to model and analyze service choreographies.
Particularly, we first introduce our formal language and model for interaction-based
service choreographies with value-passing. The symbolic semantics of the model are
also given. Based on the proposed formal model, we then examine three fundamental
issues of choreography, e.g., (global) conformance, projection and realizability. Finally,
we present the validation of our approach by our tools.

35

36 Chapter 3. A Symbolic Model of Choreographies

3.1 Specification Language

One important motivation in setting up the set of activities that can be specified in
our language is BPMN, the standard notation for business process modeling that is
able to support in its 2.0 version both orchestration and choreographic modeling. We
plan to define model transformation from BPMN 2.0 to our language in the future,
thus enabling the seamless integration of the verification techniques we describe here
in BPMN 2.0 modeling tools.

Recently, process algebras have been received attentions in developing choreography
modeling by giving a formal semantics to business process languages and notations [Su
et al., 2007]. We take inspiration in all-purpose process algebras such as LOTOS
and choreography-oriented ones [Qiu et al., 2007, Bravetti and Zavattaro, 2007].

3.1.1 Basic Events: Interaction vs. Sending & Reception

In interaction-based model, the basic event in choreography is an interaction. An
interaction represents a communication between two roles. In this section, we
will extend interactions with data. We distinguish two kinds of interactions: free
interactions and bound interactions.

Let a, b, . . . ∈ R: be a finite set of roles,
o, o1, . . . ∈ O: be a finite set of operations, and

x, y, z, x1, . . . ∈ V : be a finite set of variables,

a free interaction represents a communication of value of variable x realized through
an operation o from role a to b is denoted by o[a,b].x, while the bound one is denoted
by o[a,b].〈x〉.

The difference between free and bound interaction relies on how their variables
representing data exchange are interpreted, i.e., the variables are free or bound,
see their semantics defined in Figure 3.1. Particularly, in free interaction, the data
exchange must be known before the interaction may occur, e.g., in this free interaction,
o[a,b].x, value of x was established somewhere before occurrence of the interaction,
hence this interaction transfers the value of x from a to b through operation o.
Otherwise, in bound interaction, the data exchange is bounded at the moment the
interaction occurs, e.g., when this bound interaction, o[a,b].〈x〉, happens, the variable
x is assigned a new value, hence its old value is overridden, and the new value is
transferred from a to b through operation o. We remark that x may be a complex
structure variable. The variable x may be omitted when the interaction does not
carry data, e.g., ACK[a,b], or when it is never used.

3.1. Specification Language 37

Table 3.1: The Basic Events

α Kind Local/Global Free/Bound fv(α) bv(α)

o[a,b].x Free Interaction
global model

f {x} ∅
o[a,b].〈x〉 Bound Interaction b ∅ {x}
τ Silent

local model

f ∅ ∅
o[a,b]?〈x〉 (Bound) Reception b ∅ {x}
o[a,b]!x Free Sending f {x} ∅
o[a,b]!〈x〉 Bound Sending b ∅ {x}

At local views, we introduce a (bound) reception o[a,b]?〈x〉, a free sending o[a,b]!x, and
a bound sending o[a,b]!〈x〉. They are used to represent events of each participant in
choreography. Table 3.1 lists our basic events, in which we define fv(α) and bv(α)
as the set of free and bound variables in α. The semantics of these events respect
the late symbolic semantics of the free and bound events as presented in [Hennessy
and Lin, 1995].

In the Table 3.1, τ event is considered for local model. In the literature, τ events
are usually used to represent unobservable events, e.g., internal events. Since
we are interested in an abstract formal choreography model, i.e., implementation
independent and in interaction-based model, the basic events are interactions, the
internal event can be ignored at choreography level [Kopp and Leymann, 2009].
Although there are no internal events in our approach, τ is used to represent an
unobservable interaction. Consequently, it does not exist at global model but may
appear on local models to express interactions of third participants, e.g., these
interactions do not concern with the current participant, this is why they are
not observed.

3.1.2 General Language

The syntax of our specification language, L, is given by:

L ::= 1 | α | L;L | L+ L | L|L | L[>L | [φ] ⊲ L | [φ] ∗ L

In L we can specify activities which are either basic or composite. A basic activity
is either an inaction (1), or a standard basic event (α) presented above. We
then have structuring operators, that can be used to specify composite activities
such as sequencing (;), non-deterministic choice (+), parallel activities (|), and
interruption ([>). Furthermore, since data exchange is supported, we have data-
based conditional constructs, namely guards (⊲) and while loops (∗), where φ is a
condition (a boolean expression). The decreasing priority of operators is ⊲ and ∗, ;,
+, |, and [>.

38 Chapter 3. A Symbolic Model of Choreographies

Choreography (Global) Specification. A choreography specification describes,
with a global perspective, the legal interactions among roles played by the participants
of a distributed system. In a choreography, each role is identified by a unique
name. A choreography (or global) specification for a set of roles R ⊆ R, a set
of operations O ⊆ O, and a set of variables V ⊆ V , is an element of L with
the basic event α is either a free interaction or a bound interaction, i.e., α ∈
{o[a,b].x, o[a,b].〈x〉 | o ∈ O ∧ a ∈ R ∧ b ∈ R ∧ a 6= b ∧ x ∈ V }.

Example 1 (Online-Shopping). Let us suppose a very simple Online-Shopping
choreography between two roles: b (buyer) and v (vendor). The buyer first requests
an article by providing an amount to be bought. If the amount is greater than 5 then
the vendor aborts this transaction. Otherwise, a confirmation will be issue from the
vendor to the buyer. This can be described as follows:

C1 ::= Request[b,v].〈x1〉; ([x1 < 5] ⊲ Confirm[v,b] + [x1 ≥ 5] ⊲ Abort[v,b])

Role and Service (Local) Specification. In a top-down development process,
local descriptions correspond to role requirements (or role for short) obtained by
projection from global specifications. Each role describes what is expected from
a service that would implement it. In a bottom-up development process, local
specifications correspond to the behavioral contracts or interfaces that services
advertise in order to foster reuse, composition, and adaptation [Poizat, 2011]. In the
sequel, we will use the term local entity, or entity for short, in order to abstract from
the process development being used. An entity (or local) description for an entity a, a
set of rolesR ⊆ R with a ∈ R, a set of operationsO ⊆ O, and a set of variables V ⊆ V ,
is an element of L with the basic event α is either a free sending, or a bound sending,
or a reception, i.e., α = {o[a,b]!x, o[a,b]!〈x〉, o[b,a]?〈x〉 | o ∈ O∧ b ∈ R∧a 6= b∧x ∈ V }.

Example 2. A tentative to implement the Online-Shopping choreography (which is
correct as we will see in the following) is that the buyer sends the amount of the
article to the vendor and then waits for either abort or confirmation, while it is the
vendor that checks the amount in order to give its decision:

Buyer b ::= Request[b,v]!〈y1〉; (Abort
[v,b]? + Confirm[v,b]?)

Vendor v ::= Request[b,v]?〈z1〉; ([z1 < 5] ⊲ Confirm[v,b]! + [z1 ≥ 5] ⊲ Abort[v,b]!)

3.2. Symbolic Semantics 39

3.2 Symbolic Semantics

3.2.1 Symbolic Transition System

We use Symbolic Transition Graphs (STG) [Hennessy and Lin, 1995] as a formal
model for service choreographies. It can be used to specify either global view or
local view by using global or local events. We select STG as model for service
choreography since it supports data, guard and free/bound variables [Hennessy and
Lin, 1995, Van Glabbeek and Weijland, 1996, Deng and Lin, 2005]. Many formal
approaches and notably conformance relation are based on such a model [Pathak
et al., 2008]. Moreover, Symbolic Transition systems, which is very close to STG,
are widely used in different areas, e.g., for testing purpose [Gaston et al., 2006,
Bentakouk et al., 2009], or for code generation [Pavel et al., 2005, Fernandes and
Royer, 2007, Fernandes et al., 2007].

A STG is a transition system. Each transition of STG is labelled by a guard φ and a
basic event α. The guard φ is a boolean equation which has to hold for the transition
to take place. A symbolic transition from state s to state s′ with a guard φ, and an

event α is denoted as s
[φ]α
−−→ s′. The guard φ of a transition can be omitted if it is

true, e.g., s
α
−→ s′. We add a specific event, X, to denote activity termination.

Definition 1 (Symbolic Transition Graph). Formally, a STG is a tuple (S, s0, T)
where, S is a non empty set of finite states, each state s having an associated set of
free variables fv(s) which are used by guards or events in next transitions, s0 ∈ S is
the initial state, and T is a set of finite transitions.

If s
[φ]α
−−→ s′ is a transition of T then fv(φ)∪fv(α) ⊆ fv(s) and fv(s′) ⊆ fv(s)∪bv(α).

A non-symbolic semantics for STGs would bound free variables using domain enu-
meration, e.g., bound an integer x to {0, 1, 2, . . .}, thus yielding state space explosion.
In the symbolic semantics, substitutions are associated to STG states. Let us begin
with some additional notations.

A variable substitution (substitution for short) σ is a mapping from V to V . ∅ denotes
the empty substitution. σ[x 7→ y] is the substitution σ where the mapping from x to
y is added, eventually erasing a previous mapping from x. eσ denotes the application
of σ to e. A term [Hennessy and Lin, 1995] is a pair sσ where s is a state and σ
is a substitution. In the sequel, we denote states by s, s1, s

′, etc. and terms by
t, t1, t

′, etc.

We may now define the (late) symbolic semantics of an STG as relation over terms

40 Chapter 3. A Symbolic Model of Choreographies

(Figure 3.1). Under late semantic, for every transition s
[φ]α
−−→ s′, the free variable in

φ and α will be changed by the substitution of s. Moreover, if α is a bound event,
e.g., o[a,b].〈x〉, o[a,b]?〈x〉, or o[a,b]!〈x〉, then the substitution of s′ is the one of s by
updating a substitution from x to a fresh variable, z, instead of a value. Please note
that −→ is used for STG transitions (over states) and 7−→ is used for STG semantics
(over terms).

(TAU)

s
[φ]α
−−→s′

sσ
[φσ] α
7−−−→s′σ

(FREE)

s
[φ] o[a,b]•x
−−−−−→s′

sσ
[φσ] o[a,b]•(xσ)
7−−−−−−−−→s′σ

(BOUND)

s
[φ] o[a,b]◦<x>
−−−−−−−→s′

sσ
[φσ] o[a,b]◦<z>
7−−−−−−−−−→s′

σ[x/z]

with α ∈ {τ,X} • ∈ {!, .} ◦ ∈ {?, !, .}

Figure 3.1: Semantics of STG

3.2.2 Transformation Rules

We use STGs as a formal model to give semantics to our language. This is achieved
by a rule-based transformation defined in Figure 3.2 where 0 is the empty description
(only used for semantics), X denotes activity termination, α denotes any event but
for X, and α̂ denotes any event (including X). The symmetric rules for CHOICE1

and PAR1 can be inferred from them and are omitted here.

(SKIP)

1
[true]X
−−−−→0

(ACT)

α
[true]α
−−−−→1

(SEQ1 − L1 does not end)

L1

[φ]α
−−→L′

1

L1;L2

[φ]α
−−→L′

1;L2

(SEQ2 − L1 ends, begin L2)

L1

[φ1]X−−−→L′
1, L2

[φ2] α̂−−−→L′
2

L1;L2

[φ1∧φ2] α̂−−−−−→L′
2

(CHOICE1 − choose L1)

L1

[φ] α̂
−−→L′

1

L1+L2

[φ] α̂
−−→L′

1

(PAR1 − one step in L1)

L1

[φ]α
−−→L′

1

L1|L2

[φ]α
−−→L′

1|L2

(PAR3 − synchronous termination)

L1

[φ1]X−−−→L′
1, L2

[φ2]X−−−→L′
2

L1|L2

[φ1∧φ2]X−−−−−→L′
1|L

′
2

(GUARD)

L
[φ′] α̂
−−−→L′

[φ]⊲L
[φ∧φ′] α̂
−−−−→L′

(LOOP1 − one more iteration)

L
[φ′] α̂
−−−→L′

[φ]∗L
[φ∧φ′] α̂
−−−−→L′;[φ]∗L

(LOOP2 − end of the loop)

[φ]∗L
[¬φ]X
−−−→0

(INTER1 − one L1 step)

L1

[φ]α
−−→L′

1

L1[>L2

[φ]α
−−→L′

1[>L2

(INTER2 − L1 ends, interruption not possible)

L1

[φ]X
−−→L′

1

L1[>L2

[φ]X
−−→L′

1

(INTER3 − interruption by L2)

L2

[φ] α̂
−−→L′

2

L1[>L2

[φ] α̂
−−→L′

2

Figure 3.2: Transformation from our Language to STGs

3.2. Symbolic Semantics 41

3.2.3 STG Product

The product of STGs is used to give a semantics to a composition of a set of
interacting local entities (Figure 3.3). We assume that the STGs use disjoint sets
of variables which can be achieved using, e.g., indexing by the name of the entity.
The first rule (TERM) expresses that the composition terminates successfully when
all its components do so. The second rule (PAR1) represents the independent
evolution of one of the STGs (the first one). The third rule (FREE COM) denotes
a synchronization between a sending a data in x to b and b receiving it in variable
y. In this rule, t[y 7→ x] with t = sσ denotes the term sσ[y 7→x]. Further, 〈t1, t2〉,
with t1 = s1σ1

and t2 = s2σ2
, denotes the term (s1, s2)σ1∪σ2

. The symmetric rules
for these rules can be inferred from them and are omitted here. We give a binary
version of the product for simplicity purposes. An n-ary version of it can be obtained
working on tuples 〈t1, . . . , tn〉 of terms instead of pairs 〈t1, t2〉, generalizing TERM
to n terminations, and having n symmetric rules PAR1, . . ., PARn. COM does not
change being generic on a and b.

(TERM)

t1
[φ1] X

7−−−→t′1, t2
[φ2] X

7−−−→t′2

〈t1,t2〉
[φ1∧φ2] X

7−−−−−−→〈t′1,t
′
2〉

(FREE − COM)

t1
[φ1] c[a,b]!x
7−−−−−−→t′1, t2

[φ2] c[a,b]?〈y〉
7−−−−−−−→t′2

〈t1,t2〉
[φ1∧φ2] c[a,b].x
7−−−−−−−−→〈t′1,t

′
2[y 7→x]

〉

(PAR1)

t1
[φ] α
7−−−→t′1

〈t1,t2〉
[φ] α
7−−−→〈t′1,t2〉

α ∈ {o[a,b].x, o[a,b].〈x〉}

(BOUND − COM)

t1
[φ1] c[a,b]!〈x〉
7−−−−−−−→t′1, t2

[φ2] c[a,b]?〈y〉
7−−−−−−−→t′2

〈t1,t2〉
[φ1∧φ2] c[a,b].〈x〉
7−−−−−−−−−→〈t′1,t

′
2[y 7→x]

〉

Figure 3.3: Rules for the Product of STGs

Example 3. The STGs for the choreography in Example 1 and for the buyer and
vendor in Example 2 are shown in Figure 3.4(a-c). Figure 3.4(d) presents the product
of the STGs in Figure 3.4(b) and Figure 3.4(c). The free variables of the states are
given below them, e.g., {x1} for state 2 in the choreography STG.

The Algorithm 1 represents the implementation of the product rules in Figure 3.3. In
this algorithm, we use ⊔ to denote disjoint union, i.e., S1⊔S2 is defined only if S1∩S2 =
∅. We use also two other functions renameVariable and updateFreeVariables.
The first one, renameVariable(S, s, v, v′), renames the variable v into v′ when it
is used in guard of transitions after state s of STG S. The second one is used for
updating the set of free variables of each state in order to satisfy the STG definition
(Definition 1).

42 Chapter 3. A Symbolic Model of Choreographies

1

{}

2

{x1}

3

{}

4

{}

Request[b,v].x1

[x1 < 5]Confirm[v,b]

[x1 ≥ 5]Abort[v,b]

X

(a) Online-shipping choreography

1

{}

2

{}

3

{}

4

{}

Request[b,v]!〈y1〉 Abort[v,b]?

Confirm[v,b]?

X

(b) Implementation of Buyer

1

{}

2

{z1}

3

{}

4

{}

Request[b,v]?〈z1〉
[z1 < 5]Confirm[v,b]!

[z1 ≥ 5]Abort[v,b]!

X

(c) Implementation of Vendor

1,1

{}

2,2

{y1}

3,3

{}

4,4

{}

Request[b,v].〈y1〉
[y1 < 5]Confirm[v,b]

[y1 ≥ 5]Abort[v,b]

X

(d) Composition of (b) and (c)

Figure 3.4: STGs for Example 1 and Example 2

Algorithm 1: Product of n STGs
Data: n STGs Si = (Si, s0i, Ti)
Result: a STG S = (S, s0, T), the product of S1, . . . ,Sn

1 s0 := {s01, s02, . . . , s0n} ; // initial state
2 S := {s0} ; // set of nodes
3 T := ∅ ; // set of transitions
4 product ({s01, s02, . . . , s0n}) ;
5 // update set of free variables of each state to satisfy STG definition

updateFreeVariables (S, s0, T);
6 return (S, s0, T) ;

7 product ({s1, s2, . . . , sn}) = begin
8 s := {s1, s2, . . . , sn};

9 foreach s1
[φi11]X/si11
−−−−−−−−→, s2

[φi22]X/si22
−−−−−−−−→, . . . , sn

[φinn]X/sinn
−−−−−−−−−→, do

10 s′ := {si11, . . . , sinn}; S := S ⊔ {s′}; T := T ∪ s
[φi11∧...∧φinn]X/s′

−−−−−−−−−−−−−→;

11 foreach sl
[φil] c

[a,b]!xil/sil−−−−−−−−−−−→, sk
[φjk] c

[a,b]?〈xjk〉/sjk
−−−−−−−−−−−−−−→ with l 6= k ∧ l, k ∈ {1, . . . , n} do

12 s′ is constructed from s by replacing xl by xil and xk by xjk ;

13 S := S ⊔ {s′}; T := T ∪ s
[φil∧φjk] c

[a,b].xjk/s
′

−−−−−−−−−−−−−−→;
14 renameVariable (Sl, sl, xil, xjk) ;
15 product (s′) ;

3.3. Symbolic Conformance 43

3.2.4 Reachability

STG is a specific directed graph where each transition is guarded by a condition. A
transition t is never fired when its guard is always false for any value of variables,
e.g., (x > 2) ∧ (x < 0) In such a case, the transition t is unreachable, otherwise it
is reachable. If a transitions t is unreachable then the transitions, which are only
visited through t, are also unreachable. A STG is reachable if all its transitions are
reachable. It is straightforward to see that the reachable STG obtained from a STG
by removing all unreachable transitions has the same behaviors with the original one.

All unreachable transitions of a STG are cut off thanks to the pseudo-code in
Algorithm 2. Particularly, given a STG (S, s0, T), we start the traversal from the
initial state s0. For each outgoing transition t, we verify the combination of its guard
and its precedent guards accumulating from the s0. If the combination is always
false, then the transition is removed. Furthermore, all transitions which are only
visited through t are also removed.

Algorithm 2: Reachable STG
Input: a STG S = (S, s0, T)
Output: reachable STG

1 visit (φ, s) = begin
2 if (s is visited) then return;

3 foreach transition ti = s
[φi]αi−−−−→ si in outgoing(s) do

4 if ¬(SOLVE(φ ∧ φi)) then

5 remove ti from S ; // cutoff
6 remove the transitions which depend only on ti from S ;

7 visit (φ ∧ φi, si);

8 visit (true, s0) ;

In the sequel of this chapter, we examine only reachable STGs, e.g., if a STG is not
reachable, we must firstly removed all unreachable transitions.

3.3 Symbolic Conformance

In this section, we present our conformance relation between a model denoting the
semantics of a set of local descriptions for interacting entities, I, and a choreography
global specification, C. In the sequel, I will be named implementation even if we
have seen before that it may denote either a real implementation or a set of local
requirements to be implemented. Since the semantic models are STGs, we define
conformance over two STGs, one for I and one for C. We choose branching bisimu-
lation [Van Glabbeek and Weijland, 1996] as a basis since it supports equivalence
in presence of τ actions that result from the hiding of interactions added in imple-

44 Chapter 3. A Symbolic Model of Choreographies

mentations wrt. specifications, i.e., refinement. However, branching bisimulation is
defined over ground terms (no variables), while STGs may contain free variables.

In [Busi et al., 2006, Kazhamiakin and Pistore, 2006b], this issue is considered by
introducing at each state an evaluation function that maps variables to values, thus
reducing open terms to ground ones. Conformance is then verified only for some
fixed values of the model variables. It is possible to check conformance for different
fixed values. However, this may lead to state space explosion when domains of
the variables are very big. As an alternative, we base our work on (late) symbolic
extensions of bisimulations, introduced in [Hennessy and Lin, 1995, Lin, 1996, Li
and Chen, 1999], that directly support open terms.

3.3.1 Making Implementation and Specification Comparable

First of all, we remind the reader that we assume the two STGs have disjoint
sets of variables which can be achieved using, e.g., indexing. We also assume for
simplicity that a local entity has the same identifier than the corresponding role in the
choreography. This constraint could be lifted using a mapping function. Additional
interactions may have been introduced in the implementation wrt. the specification
during refinement, e.g., to make it realizable. In order to compare the STGs, we
have first to hide these interactions, which is done using restriction (Definition 2).

Definition 2 (Restriction). Given an STG S = (S, s0, T) and a finite set of events
E, the restriction of S to E, denoted by S ⇃E , is the STG, S ′, obtained from S by
renaming into τ all the events that do not exist in E and updating the set of free
variables of each state in S ′ in order to satisfy Definition 1.

Example 4. We give refinement examples in Figure 3.5 in which some interactions
are introduces. In the first case (a), we have an additional interaction to agree on
the phone (there is no choice) that acceptation will be used. In the second case (b),
the client can specify the maximum (s)he agrees to pay for the articles (y). This
influences the sequel of the implementation since the costs $10: if the user requires
to pay less, no shipping is done. The restriction of STGs in Figure 3.5 to the set of
events used in the choreography specification, {Request[c,s], Abort[s,c], Confirm[s,c]},
yields the STGs in Figure 3.6.

3.3.2 Conformance Relation

Thanks to the previous steps (product of the local entity STGs and STG restriction),
in the sequel we may consider STGs with interaction, termination, and hidden actions
only, i.e., α̂ ∈ {o[a,b].x, o[a,b].〈x〉,X, τ}. Further, we know that the first of the two

3.3. Symbolic Conformance 45

1

{}

2

{y1}

4

{}

5

{}3

{}

Request[b,v].〈y1〉
[y1 ≥ 5]Abort[v,b]

[y1 < 5]Tel [b,v] Confirm
[v,b]

X
(a)

1

{}

2

{y1}

4

{}

5

{}

3

{y}

Request[b,v].〈y1〉
[y1 ≥ 5]Abort[v,b]

[y1 < 5]Tel [b,v].〈y〉 [y ≥ 10]Confirm
[v,b]

[y < 10]X

X
(b)

Figure 3.5: Two Refinements for the Implementation in Figure 3.4(d)

1

{}

2

{y1}

4

{}

5

{}
3

{}

Request[b,v].〈y1〉
[y1 < 5]Abort[v,b]

[y1 ≥ 5]τ Confirm
[v,b]

X
(a)

1

{y}

2

{y, y1}

4

{}

5

{}

3

{y}

Request[b,v].〈y1〉
[y1 < 5]Abort[v,b]

[y1 ≥ 5]τ [y ≥ 10]Confirm
[v,b]

[y < 10]X

X
(b)

Figure 3.6: Restrictions of the STGs in Figure 3.5

STGs we compare may have τ events (resulting from restriction) while the second
STG (the choreography specification) may not.

A key element is to be able to “absorb” series of τs. The idea originates from
weak forms of bisimulations such as weak bisimulation [Milner, 1999] and branching
bisimulation [Van Glabbeek and Weijland, 1996] where we have a transition s

τ
=⇒ s′

if we have a path of zero or more
τ
−→ transitions between s and s′. However, to work

with STGs, these s
τ
=⇒ s′ transitions have to be extended to support the guards that

may appear on
τ
−→ transitions. This is achieved using rules EMPTY and TAU∗ in

Figure 3.7. Rule SEM in this figure defines the semantics of
τ
=⇒ transitions. This

semantics is denoted with relations
τ

Z==⇒ over terms in the same way than we had −→
transitions in STG and 7−→ in their semantics. These rules are a simplification of the

ones in [Li and Chen, 1999] that support s
α̂
=⇒ s′ transitions where α̂ is not always

τ (this difference being a consequence of the definition of weak bisimulation wrt.
branching bisimulation).

46 Chapter 3. A Symbolic Model of Choreographies

(EMPTY)

s
[true] τ
====⇒s

(TAU∗)

s
[φ1] τ
===⇒s1,s1

[φ2] τ/s
′

−−−−→

s
[φ1∧φ2] τ
=====⇒s′

(SEMANTICS)

s
[φ] τ
==⇒s′

sσ
[φσ] τ

Z====⇒s′σ

Figure 3.7: Retrieval of
τ
=⇒ Transitions and Their Semantics

In presence of variables and guards, the semantics of transition firing in STGs can
be supported by domain enumeration as we have seen before. To avoid this (and the
risk of state space explosion), we give a symbolic semantics to firing too, associating
to transitions the condition under which it can be fired (Definition. 3).

Definition 3 (Fireable Transition). A transition t
[φ] α̂
7−−−→ t′ (resp. t

[φ] τ
Z===⇒ t′) is

fireable under condition ρ, fv(ρ) ⊆ fv(φ), iff ρ ⇒ φ. In such a case, we write

ρ |= t
[φ] α̂
7−−−→ t′ (resp. ρ |= t

[φ] τ
Z===⇒ t′). By extension, we write ρ |= t

[φ] τ
Z===⇒ t′

[φ′] α̂/t′′

−−−−→ if

we have ρ |= t
[φ] τ

Z===⇒ t′ and ρ |= t′
[φ′] α̂
7−−−→ t′′.

Our conformance relation (Definition 4) is inspired by the extension of weak bisim-
ulation into branching bisimulation [Van Glabbeek and Weijland, 1996] and the
extension of weak bisimulation into symbolic weak bisimulation [Li and Chen, 1999].
We take into account termination (X) and the fact that there may be τs only in the
first of the two compared STGs.

Definition 4 (Symbolic Branching Bisimulation for Conformance - SBBC). A binary
relation over terms, Rρ, parametrized by a boolean formula ρ, is a symbolic branching
bisimulation for conformance (SBBC) iff (t1, t2) ∈ Rρ implies:

1. ∀ (ρ |= t1
[φ1] τ
7−−−→ t′1) (t′1, t2) ∈ Rρ

2. ∀ (ρ |= t1
[φ1] X
7−−−→ t′1) ∃ (ρ |= t2

[φ2] X
7−−−→ t′2)

3. ∀ (ρ |= t1
[φ1] c.〈x1〉
7−−−−−−→ t′1) ∃ (ρ |= t2

[φ2] c.〈x2〉
7−−−−−−→ t′2) (t′1[x1 7→z], t

′
2[x2 7→z]) ∈ Rρ′

with ρ′ = ρ[x1 7→ z, x2 7→ z] and z is a fresh variable

4. ∀ (ρ |= t1
[φ1] c.x1
7−−−−−→ t′1) ∃ (ρ |= t2

[φ2] c.x2
7−−−−−→ t′2) (t′1, t

′
2) ∈ Rρ∩(x1=x2)

5. ∀ (ρ |= t2
[φ2] X
7−−−→ t′2) ∃ (ρ |= t1

[φ1] τ
Z===⇒ t′1

[φ′
1] X

7−−−→ t′′1) (t′1, t2) ∈ Rρ

6. ∀ (ρ |= t2
[φ2] c.〈x2〉
7−−−−−−→ t′2) ∃ (ρ |= t1

[φ1] τ
Z===⇒ t′1

[φ′
1] c.〈x1〉

7−−−−−−→ t′′1) (t′1, t2) ∈ Rρ ∧
(t′′1[x1 7→z], t

′
2[x2 7→z]) ∈ Rρ′ with ρ′ = ρ[x1 7→ z, x2 7→ z], and z is a fresh variable

3.3. Symbolic Conformance 47

7. ∀ (ρ |= t2
[φ2] c.x2
7−−−−−→ t′2) ∃ (ρ |= t1

[φ1] τ
Z===⇒ t′1

[φ′
1] c.x1

7−−−−−→ t′′1) (t′1, t2) ∈ Rρ ∧
(t′′1, t

′
2) ∈ Rρ′∩(x1=x2)

Definition 4 gives the conditions under which two terms, t1 and t2, are R
ρ equivalent.

Case (6) states that for an interaction fireable under condition ρ from t2 to t′2, there
must be an equivalent interaction fireable under condition ρ from t1 to t′′1, possibly
after zero or more τ transitions between t1 and some t′1. Equivalence of interactions
is up to renaming of the used variables (x1 and x2) into a fresh variable z. Moreover,
following branching bisimulation, we must have t′1 and t2 (respectively t′′1 and t′2)
equivalent. In the later case, we have to take into account the renaming of x1 and x2

by z in terms (t′′1 and t′2) and in the equivalence relation condition (ρ). Case (5) is
simpler. To a termination in t2 corresponds a termination in t1 reachable after zero
or more τs. Since no data is bound by termination, we just have to take into account
recurrence over Rρ. Cases (2), (3) and (4) are symmetric versions of cases (5), (6)
and (7) respectively, simpler since there are no τs in the specification/t2. Finally,
case (1) states that nothing is to correspond in t2 to a τ transition in t1, but for the
recurrence over Rρ.

Given two STGs I = (S1, s01, T1) and C = (S2, s02, T2), we write I ⊲ρ C if there
exists a SBBC relation Rρ between the terms formed by the two initial states with
empty substitutions, i.e., (s01∅, s02∅) ∈ Rρ. We can now give the formal definition of
choreography conformance.

Definition 5 (Choreography Conformance). Let C be a choreography specification
and I be an implementation consisting of n local entities P1, . . . , Pn, let C be the
STG for C, I be the STG generated by the product of the STGs for P1, . . . , Pn, and
E be the alphabet of C, I conforms to C iff I ⇃E ⊲trueC.

3.3.3 Conformance Computation

Our algorithm for the computation of the SBBC relation between two STGs is a
modification and simplification of the one proposed in [Li and Chen, 1999] that
computes symbolic weak bisimulation. Simplification was made possible due to the
use of SBBC for choreography conformance: there may be τs in I but not in C. The
algorithm outputs a set of boolean formulas ρs1,s2 relative to pairs of states (s1, s2),
s1 being in I and s2 in C. ρs1,s2 denotes the conditions under which s1 and s2 are
SBBC related (Def. 4). In the algorithm, these boolean formulas are encoded as a
Predicate Equation Systems (PESs) [Lin, 1996], i.e., a set of predicate equations.
A predicate equation (PE) is a function which contains a boolean expression, e.g.,
R(x) ::= (x ≥ 0).

48 Chapter 3. A Symbolic Model of Choreographies

Following [Lin, 1996], a PES can be written using substitutions in order to simplify
its notation. For example, the PES {R0() ::= ∀z R1(z, z);R1(x, y) ::= (x > y)} is
rewritten {R0 ::= ∀z R1([x/z, y/z]); R1 ::= (x > y)}.

The main function is function close, called initially on the initial states of the
two STGs we compare. This function compares two states, s1 and s2 up to some
substitution σ, and returns the most general formula such that s1 and s2 are SBBC
bisimilar. This is formula false in the worst case (s1 and s2 are not branching
bisimilar). close relies on the match function that encodes the different cases in

Definition 4. Trans(s1, s2) = {α|s1
[φ1] τ
===⇒ s′1

[φ′
1]α/s

′′
1−−−−−→} ∩ {α|s2

[φ2]α/s′2−−−−−→} denotes the
common observable actions that can be performed both from s1 and from s2. Since
function close visits a pair (s1, s2) ∈ S1 × S2 at most once, it always terminates
after a finite steps, as for the algorithm whose complexity is O(|S1| × |S2|).

Example 5. Applying the algorithm on the STGs in Figure 3.6(b) (i.e., restriction
of Fig. 3.5(b)) and in Figure 3.4(a) (specification), we retrieve the following PES:

R1,1() ::= ∀Z0 R2,2(Z0, Z0)
R2,2(y1, x1) ::= (((x1≥5 ⇒ y1≥5 ∧R3,2(y1, x1)) ∧ (y1≥5 ⇒ x1≥5 ∧R3,2(y1, x1)))

∧((x1<5 ⇒ y1<5 ∧R4,3) ∧ (y1<5 ⇒ x1<5 ∧R4,3)))
∧(¬(y<10))

R3,2(y1, x1) ::= ((x1≥5 ⇒ y≥10 ∧R4,3) ∧ (y ≥ 10 ⇒ x1 ≥ 5 ∧R4,3))
∧((¬(y<10)) ∧ (¬(x1<5)))

R4,3() ::= true

It can be simplified into {R1,1 ::= y ≥ 10, R2,2 ::= y ≥ 10, R3,2 ::= y ≥ 10 ∧ Z0 ≥
5, R4,3 ::= true, } but this demonstrates the need for an automatic PES satisfiability
checking procedure.

3.3.4 PES Satisfiability and Conformance Verdict

The formula resulting from conformance checking is under the form of a PES (see
Section 3.3.3). It has to be analyzed in order to reach a conformance verdict. This
step is performed with Z3, a state-of-the art theorem prover from Microsoft Research
that can be used to check for the satisfiability of a set of formulas, i.e., find if there
is an interpretation that makes all asserted formulas true.

In order to use Z3, we translate the PES into the Z3 input language as demonstrated
in Listing 3.1 for the PES in Example 5. Each predicate equation in the PES is
translated as a boolean function (using define-fun) and each free variable is translated
as an integer function (using declare-fun). In our example, variables are integers,
but we stress out that complex types such as XML ones can be supported too,
following [Bentakouk et al., 2011].

3.3. Symbolic Conformance 49

Algorithm 3: Conformance PES Computation
Data: two STGs I = (S1, s0,1, T1) and C = (S2, s0,2, T2)
Result: a PES, i.e., a set P of PEs (one for each couple of states in a subset of S1 × S2)

1 W := ∅ ; // couples of visited nodes
2 P := ∅ ; // predicates for couples of visited nodes
3 close (s0,1, s0,2, ∅) ;
4 return P ;

5 close (s1, s2, σ) = begin
6 if (s1, s2) 6∈ W then
7 W := W ∪ {(s1, s2)}; Rs1,s2 := match(s1, s2, σ); P := P ∪ {Rs1,s2} ;

8 return Rs1,s2(σ) ; // a predicate ρs1,s2 with parameter σ

9 match (s1, s2, σ) = begin
10 foreach γ ∈ Trans(s1, s2) do // Trans(s1,s2) is set of events 6= τ of
11 ργ := matchEv (γ, s1, s2, σ) ; // next transitions from s1, s2

12 // The others events (6∈ Trans(s1, s2)) must not occur

13 foreach s1
[φ′

j,1] τ
−−−−→ s′j,1

[φj,1]αj,1
−−−−−−→ sj,1 such that αj 6∈ Trans(s1, s2) do

14 ρj,1 := ¬φj,1 ; // exist τ in implementation

15 foreach s2
[φi,2]αi,2
−−−−−−→ si,2 such that αi 6∈ Trans(s1, s2) do

16 ρi,2 := ¬φi,2 ; // no τ in specification

17 return
∧

γ

ργ ∧
∧

j

ρj,1 ∧
∧

i

ρi,2 ;

18 // Success termination
19 matchEv (X, s1, s2, σ) = begin

20 foreach s1
[φ′

j,1] τ
−−−−→ s′j,1

[φj,1]X
−−−−−→ sj,1, s2

[φ′′

i,2]X
−−−−−→ si,2 do

21 // if no τ between s1 and s′j,1, then sj,1 and si,2 always conform

22 if s1 ≡ s′j,1 then ρij := true; else ρij := close(s′j,1, s2, σ) ;
23 φj,1 := φ′

j,1 ∧ φ′′
j,1 ;

24 return
∧

i

(

φi,2 ⇒
∨

j

(φj,1 ∧ ρij)) ∧
∧

j

(φj,1 ⇒
∨

i

(φi,2 ∧ ρij)) ;

25 // Bound interaction
26 matchEv (c. < x >, s1, s2, σ) = begin
27 z := newVar () ; // create a new fresh variable

28 foreach s1
[φ′

j,1] τ
−−−−→ s′j,1

[φ′′

j,1] c.xj,1
−−−−−−−→ sj,1, s2

[φi,2] c.xi,2
−−−−−−−→ si,2 do

29 if s1 6≡ s′j,1 then φj1 := φ′
j,1; φi2 := true; ρij := close(s′j,1, s2, σ);

30 else φj,1 := φ′′
j,1; ρij := ∀z close(sj,1, si,2, σ[xj,1 7→ z, xi,2 7→ z]) ;

31 return
∧

i

(

φi,2 ⇒
∨

j

(φj,1 ∧ ρij)) ∧
∧

j

(φj,1 ⇒
∨

i

(φi,2 ∧ ρij)) ;

32 // Free interaction
33 matchEv (c.x, s1, s2, σ) = begin

34 foreach s1
[φ′

j,1] τ
−−−−→ s′j,1

[φ′′

j,1] c.xj,1
−−−−−−−→ sj,1, s2

[φi,2] c.xi,2
−−−−−−−→ si,2 do

35 if s1 6≡ s′j,1 then φj1 := φ′
j,1; φi2 := true; ρij := close(s′j,1, s2, σ);

36 else φj,1 := φ′′
j,1; ρij := (xj,1 = xi,2) ∧ close(sj,1, si,2, σ) ;

37 return
∧

i

(

φi,2 ⇒
∨

j

(φj,1 ∧ ρij)) ∧
∧

j

(φj,1 ⇒
∨

i

(φi,2 ∧ ρij)) ;

50 Chapter 3. A Symbolic Model of Choreographies

Listing 3.1: Translation into the Z3 Language of the PES in Example 5

1 ; encoding of the PES - it can be tried online at: http :// rise4fun.com/
z3

2 ; note: newlines should be added manually if copy/paste from PDF is used
3 (set -option :print -warning false)
4 (declare -fun y () Int)
5 (define -fun R4_3 () Bool true)
6 (define -fun R3_2 ((y_1 Int)(x_1 Int)) Bool (and (and (implies (>= x_1 5)

(and (>= y 10) R4_3)) (implies (>= y 10) (and (>= x_1 5) R4_3))) (and
(not (< y 10)) (not (< x_1 5)))))

7 (define -fun R2_2 ((y_1 Int)(x_1 Int)) Bool (and (and (and (implies (>=
x_1 5) (and (>= y_1 5) (R3_2 y_1 x_1))) (implies (>= y_1 5) (and (>=
x_1 5) (R3_2 y_1 x_1)))) (and (implies (< x_1 5) (and (< y_1 5) R4_3))
(implies (< y_1 5) (and (< x_1 5) R4_3)))) (not (< y 10))))

8 (define -fun R1_1 () Bool (forall ((Z_0 Int)) (R2_2 Z_0 Z_0)))
9 ; uncomment for step 1, comment for step 2

10 (assert (= R1_1 false))
11 ; comment for step 1, uncomment for step 2
12 ; (assert (= R1_1 true))
13 (check -sat)

We check R1 1 in order to conclude on conformance. For this, the check-sat Z3
command is run following Table 3.2. If R1 1 asserted false (as in Listing 3.1) yields
an unsat response then there is no interpretation such that R1,1 is false, hence we
can conclude directly that conformance is true. Otherwise, we have to retry with
R1 1 asserted to true to reach a verdict. If it responses an unsat, i.e., there is no
interpretation such that R1,1 is true, then we can conclude that the conformance is
false. If the response is sat, i.e., there exists some interpretation such that R1,1 is
true; meanwhile there exists also some interpretation such that R1,1 is false thanks to
the former check. In such a case, we give the condition ρ1,1 representing constraints of
free variables such that the conformance can be achieved. Otherwise, the response is
timeout, i.e., Z3 can not solve the PES, hence we give inconclusive as the conclusion
of conformance relation.

Table 3.2: Decision Table for Conformance based on PES Satisfiability Checking

check-sat response
conformance decision

R1 1 asserted false R1 1 asserted true
unsat not needed true

otherwise
unsat false
sat ρ1,1 (R1,1)

timeout inconclusive

3.4. Realizability Checking & Projection 51

3.4 Realizability Checking & Projection

A trivial implementation of a choreography is a single service which plays all roles
of the choreography. In such a case, there is no more realizability issue. However,
choreography intends to specify, from a global view, a collaboration of a set of roles.
Each role in the choreography is a concrete entity taking part in this collaboration.
It should be implemented by a distinguishable, independent service. Consequently,
an implementation of a choreography should be a set of services where each one
implements one of the roles and their composition represents the behaviors required
by the choreography. This implementation can be constructed based on a projection
and local conformance. The local conformance ensures that a service respects its
role. It will be studied in the next chapter. This section is then dedicated to define
the projection.

Example 6. In order to illustrate the problems related to the realizability checking
of service choreography, we extend the Online Shopping choreography presented in
Example 1 as in Figure 3.8. We model the scenario using an extended BPMN
2.0 choreography [Knuplesch et al., 2012] as in Figure 3.8(a). It describes the
collaborations between four independent participants: a buyer, a vendor, a warehouse,
and a shipper. First, the buyer asks the vendor for an interested article by indicating
the name of a requested article. The buyer responds with the information of the
article info. This is repeated until the buyer decides to buy an article or it is aborted
by the vendor. After receiving the buy request, the vendor issues a sell command to
the warehouse. The warehouse replies with the status of the article. If it is available,
the warehouse transfers the article to the shipper, then a confirmation will be issued
from the vendor to the buyer. Otherwise, the vendor will notify a sold response to
the buyer.

The STG corresponding to this choreography is presented in Figure 3.8(b). For
simplicity, we denote b as the buyer, v as the vendor, w as the warehouse, and
s as the shipper. The operation and variable names are also reduced. Since the
information brought by name of the first interaction, info, busy, and invoice do
not help any interactions, i.e., using by guard or free interaction, we remove them in
the STG. The name in the third interaction is kept in the STG since it will be used
by the sell and ship interactions.

Let us note that a specification specifies what rather than how system should or
should not be done. Hence in this example, Figure 3.8, we do not pay attention
to how the buyer selects the article itself, but after that we know the name of the
selected one. The interaction buy should be described by a bound interaction, e.g.,
buy[b,v].〈x1〉. Contrarily, in the interaction sell, the article name transferred from
the vendor to the warehouse is the one the vendor received from the buyer, hence the

52 Chapter 3. A Symbolic Model of Choreographies

interaction must be described by a free interaction, e.g., sell[v,w].x1.

requestrequest
request

name

buyer

vendor

responseresponse
response

info

vendor

buyer

abortabort
abort

busy

vendor

buyer

buybuy
buy

name

buyer

vendor

sellsell
sell
name

vendor

warehouse

responseresponse
response

avail

warehouse

vendor

soldsold
sold
vendor

buyer

shipship
ship

name

warehouse

shipper

confirmconfirm
confirm
invoice

vendor

buyer

avail 6= OK

avail = OK

(a)

0

{}

1

{}

2

{}

3

{}

4

{}

5

{x1}

6

{x1}

7

{x1, x2}

8

{}

req[b,v]

rep[v,b]

req[b,v]

rep[v,b]

abo
rt
[v,b

]

buy[b,v].〈x1〉 sell[v,w].x1 rep[w,v].〈x2〉

[x2=OK] ship[w,s].x1

confirm[v,b].

[x
2 6=OK] sold [v,b]

(b)

Figure 3.8: Online Shopping Process in (a) Extending BPMN 2.0 Choreography [Knu-
plesch et al., 2012] and in (b) Symbolic Transition Graph

The projection extracts relevant behaviors of role, local model, from a choreography.
A set of such local models can be used as a candidate for implementation. Basically,
projection is a procedure which takes as an input a choreography model with n roles
and outputs a set of n local models, each one representing the required behaviors
of a role in the choreography. Intuitively, behaviors of a local model are extracted
from those of global model, in which a participates, e.g., the free interaction o[a,b].x
is projected onto free sending o[a,b]!x of role a, and on reception o[a,b]?〈x〉 on role b.

Definition 6 (Natural Projection). The natural projection of each transition of
global STG is defined by rules in Table 3.3.

Example 7 (Projection). The projection of choreography STG in Figure 3.8(b) on
its roles after removing two consecutive τ transitions is depicted in Figure 3.9.

3.4. Realizability Checking & Projection 53

Table 3.3: Natural Projection of STG of Choreography

Transition
Project the transition

on role a on role b on role c 6∈ {a, b}

s
[φ] o[a,b].x
−−−−−→ s′ s

[φ] o[a,b]!x
−−−−−→ s′ s

o[a,b]?〈x〉
−−−−−→ s′ s

τ
−→ s′

s
[φ] o[a,b].〈x〉
−−−−−−→ s′ s

[φ] o[a,b]!〈x〉
−−−−−−→ s′ s

o[a,b]?〈x〉
−−−−−→ s′ s

τ
−→ s′

0

{}

1

{}

2

{}

3

{}

4

{}

5

{}

7

{}

req[b,v]!

rep[v,b]?

req[b,v]!

rep[v,b]?

abort[v,b]?

buy[b,v]! τ

confirm[v,b]?

sold[v,b]?

(a)

2

{}

6

{x1}

7

{x1, x2}

4

{}

τ

sell[v,w]?〈x1〉 rep[w,v]!〈x2〉

τ

τ [x2=OK] ship[w,s]!x1

(c)

1

{}

0

{}

2

{}

3

{}

4

{}

5

{x1}

6

{}

7

{x2}

request[b,v]?

rep[v,b]!

req[b,v]?

rep[v,b]!

abort[v,b]!

buy[b,v]?〈x1〉 sell[v,w]!x1 rep[w,v]?〈x2〉

confirm[v,b]!

[x2 6=OK] sold[v,b]!

(b)

2

{x2}

7

{x2}

4

{}

τ

τ

τ

τ ship[w,s]?〈x1〉

(d)

Figure 3.9: The Projection of STG in Figure 3.8(b) on Role: (a) buyer, (b) vendor,
(c) warehouse, and (d) shipper)

We now define the realizability issue by using the notions of projection as conformance
as follow:

Definition 7 (Realizability). A choreography is realizable iff there exists a (natural)
projection function which generates a set of local models such that they (globally)
conform to the choreography.

Going further than determining whether a choreography is realizable, we intend to
provide a dedicated projection which can be used also for unrealizable choreographies.
In such a case, the projection is able to propose additional interactions in order
to enable the realizability of a choreography. Our projection, which generates
local models from a choreography, is performed in several steps. First, we remove
all unreachable transitions of the choreography. We then work on a reachable
choreography. We calculate a set of additional interactions needed to be added. If

54 Chapter 3. A Symbolic Model of Choreographies

this set is not empty, i.e., the choreography is not realizable, then we minimize
this set such that there are minimal interactions which are added. After adding
the additional interactions to the choreography, we perform the natural projection
of the choreography on each role. Finally, we reduce some consecutive transitions
which contains only τ event. Let us go in detail by analyzing the cases where we
need to introduce additional interactions. In the sequel of this section, we examine
only reachable STGs, e.g., if a STG is not reachable, we must firstly removed all
unreachable transitions.

3.4.1 Event connectedness

On global models, an interaction, e.g., α, which is a single event, becomes two
separate events: a sending, α!, and a reception, α?, when it is projected on local
models. The causality of the two local events depends on which communication
model is considered. In synchronous communication mode, the sending and reception
occur at the same time, denoted as α! = α?. In asynchronous one, the sending occurs
before the reception, denoted as α! ≺ α?.

The causality of two consecutive interactions, α1 ≺ α2, is considered at local level
by the causality of their sending and reception. In synchronous mode, we have
(α1! ≺ α2!) ∨ (α1? ≺ α2?) ∨ (α1! ≺ α2?) ∨ (α1? ≺ α2!). In asynchronous mode,
based on the results of [Lanese et al., 2008, Nguyen et al., 2012c], we consider three
possibilities: α1! ≺ α2! (sending), α1? ≺ α2? (reception), and α1? ≺ α2! (disjoint).
To ensure such causality of two consecutive interactions, α1 and α2, the relations
between their sender, s1 and s2 resp., and their receiver, r1 and r2 resp., must satisfy
one of the conditions below, depending on the communication mode:

− synchronous mode: {s1, r1} ∩ {s2, r2} 6= ∅

− sending mode: s2 = s1 ∨ s2 = r1

− reception mode: r2 = r1 ∨ s2 = r1

− disjoint mode: s2 = r1

These conditions enable all the participants to compute when they may or may
not do (send or receive) the next interaction. Let us go into detail, for instance,
with the sending mode assumption. This mode requires that the sending of the
next interaction must happen after the one of the current interaction. If these two
interactions have the same sender, e.g., s2 = s1, then the sender always enables this
condition. Moreover, if the sender of the next interaction and the receiver of the

3.4. Realizability Checking & Projection 55

current one are the same, e.g., s2 = r1, when it receives the current interaction, it
knows that the sending of the current interaction has already occurred, and thus it
may enforce the condition by sending the second interaction.

If two consecutive transitions, e.g., s
[φ1]α1
−−−→ s1

[φ2]α2
−−−→ s2, with α1 and α2 do not

satisfy the condition above, we introduce an additional transition at s1, e.g., s
[φ1]α1
−−−→

s′
α
−→ s1

[φ2]α2
−−−→ s2. The event α does not carry a variable but it connects α1 and α2.

Sender and receiver of α is determined based on communication modes. If the sending
mode is selected, then the sender of α is either the sender or the receiver of α1, while
the receiver of α is either the sender α2. Thus with the additional interaction, the
connectedness between α1 and α, then between α and α2 is guaranteed. For example,
to ensure the connectedness of ship and confirm in our running example, with the
sending mode, an additional interaction from the shipper to the buyer is added as

follows: s
ship[w,s].x0
−−−−−−→ s′

additional[w,v]

−−−−−−−−→ s1
confirm[v,b].〈x3〉
−−−−−−−−−→ s2. Let us remark that, the

interaction additional[s,v] may be also added.

3.4.2 Data connectedness

In a choreography specification, a variable indicates not necessarily explicitly its
owned roles, e.g., it is usually used to constrain data exchanges carried by interactions,
since the specification represents what should be implemented rather than how can
be implemented. However, in implementation, to validate a guard, a role must know
the free variables that appear in the guard. Hence any free variables used by a role
(in guards or in free interactions) must be known by itself. Intuitively, a variable is
known when its value is pre-configured before running time or its value is received
from another role. Let us remark that, value of variable x can be changed after a
bound interaction o[a,b].〈x〉 occurs, hence only a and b know x when this interaction
happens, other roles could know x if there exists some free interactions carrying x
from either a or b to them.

If a role c uses a variable x in its guards or in its free interactions, but c does not

know x, e.g., s
o1[a,b].〈x〉
−−−−−→ s1

[x>0] o2[c,d].x
−−−−−−−→ s2, then an additional interaction will be

introduced in order to connect data of variable x from the roles knowing it, a or b, to

c, e.g., s
o1[a,b].〈x〉
−−−−−→ s′

additional[b,c].x
−−−−−−−−−→ s1

[x>0] o2[c,d].x
−−−−−−−→ s2. The proposition of additional

interactions in order to connect data is done as in Algorithm 4. In which a proposed
additional interaction is in the form 〈t, {a, b}, c, x〉 where t is the transition which
uses variable x, hence additional interaction will be inserted before it, and {a, b} is a
set of roles which knows x and will send x to c.

56 Chapter 3. A Symbolic Model of Choreographies

Algorithm 4: Correction of Data Connectedness
Input: a global STG C = (S, s0, T)
Output: set of additional interactions

1 let owner(s, x) as set of roles which know variable x before state s;
2 E := ∅ ; // set of additional interactions

3 foreach transition si
[φi]αi−−−−→ s′i in T do

4 V := fv(φi) ∪ fv(αi) ; // set variable to be verified
5 a := sender(αi) ;
6 foreach v ∈ V do
7 if (a 6∈ owner(si, v)) then add 〈t, owner(si, v), a, v〉 to E;

8 // update owner

9 if (αi is a bound interaction o[a,b].〈x〉) then owner(s′i, x) := {a, b};

10 if (αi is a free interaction o[a,b].x) then owner(s′i, x) := owner(si, x) ∪ {b};

11 return E;

3.4.3 Branching decision

A state s of a STG may have many outgoing transitions. Each transition has a guard.
If these guards are not implied each other, then the branching at the state s is firstly
decided by these guards. Obviously, this condition cannot be determined at syntax
level but at semantic level. In such a case, s is a conditional branching. Thanks to
these guards, only one branch can be selected at a time, and each initial role can
always compute whenever it does or does not initiate the interaction.

Contrarily, it the state s is an unconditional branching, there are several guards that
may be satisfied, hence many transitions may be fired. The branching will be decided
by the roles which initiate interactions of each outgoing transition. A transition

s
[φ]α
−−→ s′ may be initiated by either sender or receiver of α in synchronous mode, but

only by the sender of α in asynchronous mode. State (2) of the STG in Figure 3.8(b)
is an unconditional branching, while the state (7) is a conditional branching.

When many roles may decide the route, but these roles works independently, the
choreography will not be respected since each role may select a different branch.
Therefore, only one initiator is allowed to decide the route. If a branching has
more than one initiator, a dominant initiator will be selected to decide the route.
Dominant initiator is the role which may initiate maximal transitions, e.g., at the
state (2), buyer is a dominant initiator. Some additional interactions from the
initiator to the other ones will be introduced in order to complete the control of the
dominant initiator into these branches. Hence the selection of dominant initiator
adds minimally interactions. Some additional interactions from the initiator to the
other roles may be also introduced to inform them of the selected route.

As the natural projection, see Table 3.3, guards are preserved only at local model of the
sender. However, in the case of a conditional branching, guards are also maintained at

3.4. Realizability Checking & Projection 57

local models which decide the route based on these guards. A conditional branching
can be also decided as done for an unconditional branching. However, the conditional
branching (based on data) is better than unconditional one (based on events) since
less additional interactions are added. Let us consider a state s having m branches,
of a choreography STG with n roles. If s is a conditional branching, then we need
no more than n additional interactions which correspond to the n roles involved in
the branching. Otherwise, if s is an unconditional branching, there are no more than
(n− 1)×m additional interactions from dominant initiator to n− 1 other roles in
order to inform selected branches. Most of existing works do not deal with the case
of conditional branching, i.e., all branchings are considered as unconditional ones,
hence they usually insert more additional interactions than we do. The correction of
branching is done as depicted by the pseudo-code in Algorithm 5.

Algorithm 5: Correction of Branching
Input: a choreography C = (S, s0, T)
Output: set of additional interaction

1 let R as set of roles in C;
2 E := ∅ ; // set of additional interactions
3 foreach s ∈ S do
4 if (|outgoing(s)| = 1) then continue ; // no branching --> pass to the next iteration
5 isConditional := true;

6 foreach transition s
[φ1]α1
−−−−→ s1, s

[φ2]α2
−−−−→ s2 in outgoing(s) do

7 // whether exists some value of variables s.t. φ1 and φ2 are satisfied
8 if (SOLVE(φ1 ∧ φ2)) then
9 isConditional := false; break;

10 if (isConditional) then continue ; // conditional branching
11 // unconditional branching
12 select a dominant initiator a that participates the most of outgoing transition;

13 foreach transition ti := s
[φi]αi−−−−→ si in outgoing(s) do

14 b := sender(αi); c := receiver(αi);
15 foreach r ∈ R do
16 if (a 6= r) ∨ (a 6= b ∧ r 6= c) then add 〈t, {a}, r〉 to E;

17 return E;

The output of the projection of the global STG, described in Figure 3.8(b) under
synchronous communication mode, produces four local STGs, as shown in Figure 3.10,
corresponding to local models of the buyer (a), the vendor (b), the warehouse (c),
and the shipper (d). For the sake of clarity, in these local STGs, the additional states
are gray and the additional interactions start with +, e.g., +bri.

58 Chapter 3. A Symbolic Model of Choreographies

1

{}

0

{}

2

{}

3

{}

4

{}

7

{}

21

{}

22

{}

23

{}

req[b,v]!

rep[v,b]?

req[b,v]!

rep[v,b]?

abort[v,b]?

buy[b,v]!

sold [v,b]? co
n
f
ir
m

[v
,b
] ?

+b
r 1
[b,
s] !

+br1
[b,v]! +br1

[b,w]!

(a) Local STG of buyer

2

{}

6

{x1}

4

{}

7

{x1, x2}

8

{}

+b
r2
[b,w

] ?

sell[v,w]?〈x1〉 rep[v,w]?〈x2〉

[x
2 6=OK] τ

[x2=OK] ship[w,s]!x1

+or[w,v]!

(c) Local STG of warehouse

1

{}

0

{}

2

{}

3

{}

4

{}

5

{x1}

6

{x1}

6

{x2}

7

{x2}

8

{}

22

{}

req[b,v]?

rep[v,b]!

req[b,v]?

rep[v,b]!

+br
2
[b,v

] ?

abort[v,b]!

buy[b,v]?〈x1〉 sell[v,w]!x1 rep[w,v]?〈x2〉 +cbr[v,s]!x2

[x2=OK] +or[w,v]?

confirm[v,b]!

[x
2 6=OK] sold [v,b]!

(b) Local STG of vendor

2

{}

7

{x2}

4

{}

+b
r 2
[b,
s] ?

+cbr[v,s]?〈x2〉

[x
2 6=OK] τ

[x2=OK] ship[w,s]?

(d) Local STG of shipper

Figure 3.10: Projection with Additional Interactions of STG in Figure 3.8(b) under
Synchronization Communication Mode

3.5 Tool & Experimental Evaluations

In this section, we now give in detail our tool-chain for analyzing service chore-
ographies. Our tool-chain may be used directly from our Web pages1. It can be
also downloaded to use at local computer. The Z3 SMT solver2 has to be installed
separately for licence reasons. We plan to interface our tool-chain with the SMT-LIB
API in order to let users choose other SMT solvers. We also present some of the
experiments we have made to evaluate it.

1http://schora.lri.fr
2http://research.microsoft.com/en-us/um/redmond/projects/z3/

http://schora.lri.fr
http://research.microsoft.com/en-us/um/redmond/projects/z3/

3.5. Tool & Experimental Evaluations 59

3.5.1 Boolean Condition Solver

The unreachable transition and conditional branching, e.g., the function SOLVE(φ) in
the above algorithm, are checked with the aid of the Z3 SMT solver. Let us consider
an example of checking whether the branch at state 7 in Figure 3.8(b) is a conditional
branching. We need to check whether there exists some values of x2 such that both
the first branching condition (x2 = OK) and the second branching condition (x2 6= OK)
are true. The translation in a Z3 script to check this example is as in Listing 3.2.

Specially, we first declared a data sort A as a general data type. Then OK (resp. x2)
is declared as a constant (resp. variable) typed A. Two boolean functions φ1 and φ2

are defined based on relation between x2 and OK. This very simple example shows
that these functions, variable and constant are uninterpreted, i.e., Z3 does not use
their interpretation (concrete values) but relies on their definition supported by a
dedicated decision procedure. The check-sat command checks if equation (φ1 ∧ φ2)
defined by the assert command is true for some interpretations of its variables.
If this is the case, the response of check-sat is sat, otherwise, unsat, i.e., the
equation is always false. In the example, the response will be unsat.

Listing 3.2: Example of Condition Solver using Z3 SMT
1 (declare -sort A)
2 (declare -const OK A)
3 (declare -fun x2 () A)
4 (define -fun phi1 () Bool (= x2 OK))
5 (define -fun phi2 () Bool (not (= x2 OK)))
6 (assert (and phi1 phi2))
7 (check -sat)

3.5.2 Tool Architecture

Conformance Checking. The architecture of our tool-chain for conformance
checking is given in Figure 3.11. It takes as input a choreography global specification
C, with m roles. It also takes an implementation description I, given as n≥m entity
local descriptions. These may correspond either to service descriptions or to role
requirements. The case when n>m denotes, e.g., an implementation where some
services have been added to make a choreography realizable. All inputs are first
transformed into STGs. The product of STGs and the restriction to actions in C
are used to retrieve a unique STG for I, thus yielding two STGs to compare: one
for C (C) and one for I (I). We then check if I conforms to C, which generates
the largest boolean formula ρ such that the initial states of I and C are SBBC
related. Finally, this formula is analyzed using the Z3 SMT solver in order to reach a
conformance verdict. This can be “always true” or “always false”, “always” meaning
whatever the data values exchanged between services are. However, sometimes we

60 Chapter 3. A Symbolic Model of Choreographies

can have conformance only for a subset of these values. Going further than pure
true/false conformance, our tool-chain thus allows to compute the largest constraint
on data values, ρ, that would yield conformance. Complex constraints may cause
the solver to return a timeout. In such a case, we emit inconclusiveness as a verdict.

Choreography
roles 1 . . .m (m ≤ n)

Model trans.

Local descr.1
. . .

Local descr.n

Model trans.
. . .

Model trans.

STG1
. . .

STGn

STG product STGI

STGC

Conformance

boolean formula ρ

Formula Checker

Z3 SMT Solver Verdict
(true, false, ρ, inconclusive)

Figure 3.11: Architecture of our Toolchain for Conformance Checking

The tool is extended such that it can take directly STGs as inputs, hence there is no
need of transformation. Moreover, one can also compose local services arbitrarily,
then provide the tool with the STG product.

Realizability Checking. The architecture of the tool-chain for realizabilily check-
ing and projection of service choreographies is presented in Figure 3.12. It takes as
inputs two parameters, a choreography global specification with m roles and a commu-
nication mode which can be synchronous (SYNC), sending (ASYNC SENDER), reception
(ASYNC RECEIVER) or disjoint (ASYNC DISJOINT). The choreography specification is
then translated into STG. The reachability checking will remove all unreachable
states and transitions of the STG. If the reachable STG above is unrealizable, the
realizability checking add minimally interactions to the STG to make it become
realizable. The natural projection is then applied on the realizable STG.

3.5.3 Experimental Evaluation

Evaluation on Existing Case Study. We have experimented our tool-chain,
including on examples from the literature: Market [Busi et al., 2006], Request
For Quota (RFQ [Kazhamiakin and Pistore, 2006b]), and Train Station Services
(TSS [Salaün et al., 2012]).

The experimental results of conformance checking is presented in Table 3.4. For
the implementations and the specifications, we respectively give the numbers of
operations (#Ops.), transitions (#Trans.), states (#States), services (#Services)
and roles (#Roles). We also give the conformance verdicts in the paper the example

3.5. Tool & Experimental Evaluations 61

Choreography
roles 1 . . .m

Model Transformation

Communication mode
(Sync,ASync Sender,

ASync Receiver,
ASync Disjoint)

STG Reachability Checking

Reachable STG

Realizability Checking

Realizable STG

Projection

m local STGs

Z3 SMT Solver

Figure 3.12: Architecture of our Toolchain for Choreography Projection

is taken from and with our approach. Finally, we give the execution time (Mac
Book Air with OS 10.7, 4 GB RAM, core i5 1.7 GHz) for the process described in
Figure 3.11 (but for the time to parse the input files). Rows 1 to 3 correspond to
the specification STG in Figure 3.4(a) and, respectively, to the implementations
STGs in Figures 3.4(d) (row 1), 3.5(a) (row 2), and 3.5(b) (row 3). Rows 4 and 5
correspond to the example and mutation in [Busi et al., 2006]. The difference in
the verdict comes from the fact the we distinguish between an STG ending with X

(successful termination) or not, hence an implementation deadlocking after achieving
all interactions of a specification will not conform to it: the specification may do
X while the implementation may not. Row 6 corresponds to a negative example
in [Kazhamiakin and Pistore, 2006b] and row 7 to a positive one in [Salaün et al.,
2012].

Table 3.4: Experimental Results of Conformance Checking

Name
Implementation Specification Verdict Duration

(#Ops./ #Trans./States/#Services) (#Ops./#Trans./States/#Roles) (Orig./Ours) (seconds)

Example 1 3/4/4/2 3/4/4/2 -/YES 0.069
Mutation 4/5/5/2 3/4/4/2 -/YES 0.084
Example 5 4/6/5/2 3/4/4/2 -/ρ 0.102
Market 8/9/10/2 8/10/10/4 YES/NO 0.118

16/27/26/8 8/10/10/4 YES/NO 0.201
RFQ 6/8/7/3 6/8/8/3 NO/NO 0.078
TSS 8/12/11/4 8/12/11/4 YES/YES 0.096

The experimental results of realizability checking is shown in Table 3.5. It was done on
a desktop computer running 32-bit XUbuntu 13.4 (kernel 3.8.0-23-generic) with Intel
Pentium 4 3.2GHz processors and 1GB of RAM. The second column corresponds to

62 Chapter 3. A Symbolic Model of Choreographies

the inputs which are choreography specifications. The remaining columns are devoted
to represent the checking result of: the reachability with their verdicts (Vdict) and
number of cut-off interactions (#delInt.); the realizability, with their verdicts (Vdict)
and number of additional interactions (#addInt.), corresponding to the four cases
of communication modes, synchronous (sync.), sending, reception, and disjoint.The
last column gives the time needed for the checking. To verify our projection, on one
hand, we recomposed the generated local models to obtain one STG, representing
the composition, which was then compared against the choreography STG. On
the other hand, since local models of the examples were available, we compared
them with our generated local models. The comparisons were done thanks to the
conformance checking.

Table 3.5: Experimental Results of Projection & Realizability Checking

Name
Choreography Size Reachability Realizability (Vdict./#addInt.) Duration

(#Ops./#Trans./#States/#Roles) (Vdict./#delInt.) sync. sending reception disjoint (seconds)

Example 6 11/9/4/9 yes/0 no/5 no/7 no/7 no/7 0.060
Market 8/10/10/4 yes/0 yes/0 yes/0 no/1 no/1 0.077
RFQ 6/8/8/3 yes/0 yes/0 yes/0 no/1 no/1 0.041
TSS 8/12/11/4 yes/0 yes/0 no/2 no/1 no/4 0.125

Generic Experiments. Additional interactions are generated to solve the conflicts
related to choreography order interaction, to branches selection and to variables
values. The Figure 3.13 illustrates how the number of additional interactions is
related to the number of states, branches for each state, roles, operations and data
for the choreography under the assumption of synchronous communication mode.
To conduct the experiments, we started from an initial configuration defined by 5
parameters and their values, i.e., 1000 states, 5 branches, 5 roles, 20 operations,
1 data level. With this configuration we generated a choreography STG with a
tree structure and it is a 5-ary tree. Data level 1 denotes that variables are carried
by events for all the transitions of the choreography. Data level n > 1 means
that variables are still carried by events and are also on guards. Consequently,
the data level increases with the number of variables in the guard. Based on the
initial configuration, we produced several other configurations by only varying one
parameter. For instance, to test the impact of the number of states, as illustrated in
Figure 3.13(a), we used 10 configurations: (states: x, branches: 5, roles: 5, operations:
20, data: 1) with x ∈ {1000, 2000, 3000, 4000, 5000, 6000, 7000, 8000, 9000, 10000}.
Based on each configuration, we generated randomly 30 choreography STGs. We
then tested on each generated STG. The result of one tested configuration is the
average of the results of these 30 STGs.

In our formal model, only one variable is changed when an interaction happens.
Hence if a role on the next transition depends on this variable, we need to introduce

3.5. Tool & Experimental Evaluations 63

0

5000

10000

15000

20000

25000

30000

1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

N
u
m
b
e
r
o
f
A
d
d
i-
o
n
a
l
M
e
ss
a
g
e
s

Number of States

branching ordering data

(a)

0

2000

4000

5 10 15 20 25 30 35 40 45 50

N
u
m
b
e
r
o
f
A
d
d
i-
o
n
a
l
M
e
ss
a
g
e
s

Number of Branches per State

branching ordering data

(b)

0

5000

10000

15000

5 10 15 20 25 30 35 40 45 50

N
u
m
b
e
r
o
f
A
d
d
i-
o
n
a
l
M
e
ss
a
g
e
s

Number of Roles

branching ordering data

(c)

0

2000

4000

20 40 60 80 100 120 140 160 180 200

N
u
m
b
e
r
o
f
A
d
d
i-
o
n
a
l
M
e
ss
a
g
e
s

Number of Opera-ons

branching ordering data

(d)

0

2000

4000

1 2 3 4 5 6 7 8 9 10

N
u
m
b
e
r
o
f
A
d
d
i-
o
n
a
l
M
e
ss
a
g
e
s

Number of Variables in a Transi-on

branching ordering data

(e)

0

50

100

150

200

250

300

350

400

450

500

1 2 3 4 5 6 7 8 9 10

V
e
ri
fi
c
a
(
o
n
 T
im

e
 (
s
e
c
o
n
d
)

Level

state branching role opera:on data

(f)

Figure 3.13: Impact of Number of (a) States, (b) Branches, (c) Roles, (d) Operations
and (e) Variables on the Realizability of Choreography; and (f) Verification Time

64 Chapter 3. A Symbolic Model of Choreographies

only one additional transition to transfer this variable to the concerned role. To
ensure the ordering of interactions, additional events are added. Indeed, when an
interaction e occurs, m interactions may happen after e, e.g., the target state of e
may have m outgoing transitions. In such a case, there are no more than m additional
interactions to add in order to solve the order conflict between e and m interactions.
For the branching decision, as explained in Section 3.4.3, there are no more than
(n− 1)×m additional interactions from a dominant role. This latter has to inform
n− 1 roles of the selected branches. The number of additional interactions for each
configuration consists of three parts, for data, branching and ordering. Generally,
the proportions of theses parts, data:ordering:branching, are 1:m:m× (n− 1).

To confirm our analysis on the formal model, we have conducted several experiments
that are depicted in Figure 3.13. The mentioned proportions are confirmed by the
obtained results for each bar of the bar chart. Furthermore, we can exhibit with
these experiments several features of our projection. In Figure 3.13(a), we observe
that the number of interactions increases with the number of states. In this case,
the tree becomes deeper. In Figure 3.13(b), when we vary the number of branches,
we obtain a larger tree with a higher number of leaves, as a consequence the number
of intermediate states will decrease. This decrease will slow down the increase of the
number of additional interactions used for branching decisions. However the number
of intermediate states decreases slowly when number of branches reaches the value 25
and higher values. That is why we observe that the number of additional interactions
reaches a threshold. Let us note that for each experiment only one parameter was
changed and especially here the number of states was not changed, it is why we
obtain a larger tree. Consequently, for projection concerns, it is notably better to
construct a choreography in breadth rather in depth. Figure 3.13(c) shows that our
method is more efficient with a higher number of roles. Indeed, in this case, for each
state, we determine a dominant role which will have in charge to inform the others
of the selected route. However the dominant role does not need to inform a role
which is a receiver of an interaction e on a branch since it is informed by the sender
of e. Consequently, the dominant role needs to inform less roles when the number of
roles (act as receivers) increases. Hence this slows down the increase of the number
of additional interactions by increasing the number of roles. In Figure 3.13(d), we
increase the number of operations, in others words the alphabet. Such a change has
no impact on the choreography realizability as the complexity of the choreography
(initial configuration) is not modified. Indeed, only the label, i.e., operations name,
are changed. In Figure 3.13(e) the number of variables is changed. We observe that
when we increase the number of variables, the number of additional interactions
increased in order to ensure the data-connectedness (the top bar is increasing). To
conclude, hopefully the complexity of the projection with value-passing is not totally
dependent on the data complexity. The verification times are shown in Figure 3.13(f).

3.6. Discussion 65

The horizontal axis represents the 10 configurations. It illustrates once again the
dependability of realizability on the complexity of choreography.

3.6 Discussion

Data may yield over-approximation when abstracted and/or state space explosion
problem. Moreover, the presence of data in model produces a new attribute of
model called reachability which intends to verify that all states of the model are
reachable from the initial one. Thus, the unreachable states and transitions of
a choreography model may be removed from the model. Consequently, this may
change the realizability of choreography, e.g., the unrealizability is caused by some
unreachable events. The presence of data in model also produces a new verdict, called
Maybe, of conformance checking. This verdict is emitted when the conformance is
only achieved with some sub data domains of variables, i.e., there is no conformance
when variables receive value outside these domains.

This chapter introduced our symbolic framework which allows to model and analyze
service choreographies in presence of data without suffering from state space explosion
and without bounding data domains. Based on our model, we analyzed three
fundamental issues of service choreography, e.g., conformance checking, realizability
checking, and projection. Our framework was fully implemented by our online tool
which is a web application, i.e., one can use it directly from any Web browser without
any installation.

Having both loops and assignments may yield state space explosion if one does not
close the system or bound data domains. In this work, we support loops and support
a limited form of assignment through message reception. The assignment will be fully
supported in the next chapter by using Symbolic Transition Graph with Assignments.
However to avoid state space explosion, we must limit with a depth k the analysis of
choreography, e.g., the unfolding or computation of traces.

C
h
a
p
t
e
r

4
Passive Testing of Choreographies

Contents
4.1 Passive Conformance Testing . 68

4.2 Online Property-Oriented Testing 81

4.3 Discussion . 97

When models of choreography implementation are available, the correctness of the
implementation can be verified by conformance checking presented in Chapter 3.
When they are not available, testing is an alternative. This chapter is dedicated to
introduce our two approaches of passive testing service choreographies. Section 4.1
presents our first approach which was also done firstly in thesis. This work applies
näıve passive testing to test conformance of service choreographies in which choreog-
raphy is specified by Chor language [Qiu et al., 2007]. In this work, we present also,
in detail, our infrastructure used for passive testing of service choreographies. It also
takes into account different scenarios of message correlations. After proposing our
symbolic model described in Chapter 3, we studied the second approach of service
choreography testing, presented in Section 4.2, which is based on property-oriented
passive testing. This work has overcome limitations of the first one, e.g., online test-
ing, value-passing, and without requirement of global clock to synthesize global log.
We then present our tools to validate the proposed approaches. Finally, Section 4.3
discusses our approaches and points out future work.

67

68 Chapter 4. Passive Testing of Choreographies

4.1 Passive Conformance Testing

4.1.1 Chor Language & Trace Semantics

A model with trace semantics is suitable for model-based testing. We started our
work to test choreographies by using the Chor [Qiu et al., 2007] language for the
specification of choreographies. While being simpler than more general purpose
languages such as BPMN or UML, Chor is expressive and abstract enough to
enable one to specify collaborations. Chor can also be seen as an abstraction of
the WS-CDL [World Wide Web Consortium, 2005] standard. Chor defines both
a choreography language, a role language, and projections between global and
local (role) descriptions supporting the formal treatment of collaborations at both
viewpoints.

The Chor Language and Its Semantics. The syntax of a Chor choreography
specification is defined in Figure 4.1(a) for structuring activities (A) and for basic
activities (BA). skip denotes a do-nothing action, while c[i,j] represents a basic
interaction on some medium c between two roles of the choreography, namely i and
j, called performers of the interaction. Since Chor is concerned about the abstract
specification of the collaboration, the instantiation of some interaction medium, and
details associated to it (e.g., exchanged data) is part of the developer duties. This is
can be, e.g., using message and message parts in a Web service framework. With
reference to [Qiu et al., 2007], we restrict to the observable fragment of Chor, i.e., we
do not take into account the specification at the global level of local non-observable
actions. Structuring in Chor is achieved using sequencing (;), exclusive choice (+i)
and parallel flows (|), in which “;” has higher priority while “+” and “|” have the
same priority.

A ::= BA (basic activities)
| A;A (sequential)
| A+A (choice)
| A|A (parallel)

BA ::= skip (no action)
| c[i,j] (communication)

(a) Syntax

Basic: [[skip]] =̂ {〈〉}
[[c[i,j]]] =̂ {〈c[i,j]〉}

Sequential: [[A1;A2]] =̂ [[A1]]
a[[A2]]

Choice: [[A1 + A2]] =̂ [[A1]] ∪ [[A2]]

Parallel: [[A1|A2]] =̂ [[A1]] ⊲⊳ [[A2]]

(b) Semantics

Figure 4.1: Chor Choreography Language

The semantics of a Chor specification C is given in terms of its trace set, [[C]], i.e., the
set of all possible traces of its execution, where a trace is a sequence [α1, . . . , αn] of
interactions. In the sequel we use t, t1, etc. for traces, T , T1, etc. for trace sets, and []

4.1. Passive Conformance Testing 69

denotes the empty trace set. The semantics of Chor is given in Figure 4.1(b). It relies
on concatenation (a) and interleaving (⊲⊳) operators defined in Figure 4.2. Further,
we have head([α1, α2, . . . , αn]) = [α1] and tail([α1, α2, . . . , αn]) = [α2, . . . , αn].

Concatenation Interleaving
taT =̂ {tat1|t1 ∈ T}

t1 ⊲⊳ t2 =̂

{t1} if t2 = []

{t2} if t1 = []

head(t1)
a(tail(t1) ⊲⊳ t2) otherwise

∪ head(t2)
a(t1 ⊲⊳ tail(t2))

Tat =̂ {t1
at|t1 ∈ T}

T1
aT2 =̂ {t1

at2|t1 ∈ T1,
t2 ∈ T2}

T1 ⊲⊳ T2 =̂ {t|∃t1 ∈ T1 ∧ t2 ∈ T2 such that t ∈ t1 ⊲⊳ t2}

Figure 4.2: Operators on Traces

The Chor Role Language and its Semantics. Role requirements are described
in a dialect of Chor called role languages (Role for short) with the only difference
that a global interaction c[i,j] corresponds in role i (resp. j) to an emission denoted
c[i,j]! (resp. reception denoted c[i,j]?). The semantics of a Chor (local or global)
specification C is given in terms of its set of all specification traces, trace set for
short, that represent all possible run of the specification [Qiu et al., 2007]. In the
sequel, a denotes trace concatenation and ⊲⊳ denotes trace interleaving. Further in
a trace, ⊠ denotes a deadlock (i.e., a blocking termination).

Getting Roles from Choreography. The requirements for each role of a chore-
ography can be obtained using natural projection (nproj) hiding the interactions
that do not concern the role of interest and orienting the other ones; i.e., for a role
k, the projection of c[i,j] gives c[i,j]! if k = i, c[i,j]? if k = j, and skip otherwise.

Example 8. Let us take the example of a collaboration involving two roles, a buyer
(r1) and a vendor (r2). The buyer first issues a request to the vendor (c1) which
then gives back good information (c2) and information of some concerned accessories
(c3). This is modelled in Chor as the specification C1 = c1

[1,2]; (c2
[2,1]|c3

[2,1]), whose
semantics, [[C1]], is:

[[C1]] = [[c1
[1,2]]]a([[c2

[2,1]]] ⊲⊳ [[c3
[2,1]]]) = {〈c1

[1,2]〉}a{〈c2
[2,1], c3

[2,1]〉, 〈c3
[2,1], c2

[2,1]〉}
= {〈c1

[1,2], c2
[2,1], c3

[2,1]〉, 〈c1
[1,2], c3

[2,1], c2
[2,1]〉}

Using nproj, we may obtain a process for each role in C1:

r1 = nproj(C1, 1) = c1
[1,2]!; (c2

[2,1]?|c3
[2,1]?)

r2 = nproj(C1, 2) = c1
[1,2]?; (c2

[2,1]!|c3
[2,1]!)

70 Chapter 4. Passive Testing of Choreographies

P ::= BP (basics)
| P ;P (sequential)
| P ⊓ P (choice)
| P |P (parallel)

BP ::= skip (no action)
| c[i,j]! (send message)
| c[i,j]? (receive message)

Basic: skip
[]
−→ ε Local: a

[a]
−→ ε

Sequential:
P1

σ−→P ′
1

P1;P2
σ−→P ′

1;P2

ε;P2
[]
−→ P2

Choice: P1 + P2
[]
−→ P1 P1 + P2

[]
−→ P2

Parallel: ε|ε
[]
−→ ε

P1
σ−→P ′

1

P1|P2
σ−→P ′

1|P2

c?∈fst(P1) c!∈fst(P2)

P1|P2

[c]
−→P1/c?|P2/c!

P2
σ−→P ′

2

P1|P2
σ−→P1|P ′

2

c!∈fst(P1) c?∈fst(P2)

P1|P2

[c]
−→P1/c!|P2/c?

(a) Syntax & Semantics

fst(ε) = fst(skip) =̂ ∅
fst(P1 + P2) =̂ ∅
fst(α) =̂ {α}
fst(P1;P2) =̂ fst(P1)
fst(P1|P2) =̂ fst(P1) ∪ fst(P2)

skip/α =̂ ⊥

α/α′ =̂

{

ε when α = α′

⊥ when α 6= α′

(P1;P2)/α =̂ P1/α;P2

(P1 + P2)/α =̂ ⊥

(P1|P2)/α =̂

P1/α|P2 when α ∈ fst(P1)

P1|P2/α when α ∈ fst(P2)

⊥ otherwise

P
σ−→P ′

P
σ

=⇒P ′

P
σ−→P ′ P ′ σ′

=⇒P ′′

P
σaσ′
=⇒ P ′′

(b) Operators on trace

Figure 4.3: Role language

nproj(c[i,j], k) =̂

c[i,j]! if k = i

c[i,j]? if k = j

skip otherwise

nproj(skip, k) =̂ skip

nproj(A1;A2, k) =̂ nproj(A1, k);nproj(A2; k)
nproj(A1||A2, k) =̂ nproj(A1, k)||nproj(A2; k)

nproj(A1 + A2, k) =̂ nproj(A1, k) + nproj(A2; k)

Figure 4.4: Natural Projection of Chor Language

The trace sets of r1, r2, and r = r1|r2, that represent respectively all possible executions
of r1, r2, and their collaboration:

[[r1]] = {〈c1
[1,2]!, c2

[2,1]?, c3
[2,1]?〉, 〈c1

[1,2]!, c3
[2,1]?, c2

[2,1]?〉}
[[r2]] = {〈c1

[1,2]?, c2
[2,1]!, c3

[2,1]!〉, 〈c1
[1,2]?, c3

[2,1]!, c2
[2,1]!〉}

[[r1|r2]] = {〈c1
[1,2], c2

[2,1], c3
[2,1]〉, 〈c1

[1,2], c3
[2,1], c2

[2,1]〉}

4.1.2 Local & Global Conformance

Formal methods provide many techniques to verify conformance between a specifica-
tion and an implementation, e.g., using behavioral equivalences and preorders [Bergstra
et al., 2001]. This has been applied recently to component and service based ar-
chitectures [ter Beek et al., 2007]. However, in our context, we have an important
constraint: the implementation source code is un-available since it is made up of

4.1. Passive Conformance Testing 71

distributed black-box services. Some approaches suppose that such services have
behavioral interfaces, but in practice this is seldom the case. A recent proposal
enables to retrieve such interfaces from black-box services using testing [Bertolino
et al., 2009]. Still, this can be an intrusive technique, i.e., that cause change on the
service due to the active nature of the test being used. In our context we base on
non intrusive passive testing techniques. Implementations may only be observed and
checked for conformance using their (execution) logs, which are (linear) sequences of
observations. This advocates for the use of a trace equivalence or a trace preorder.

Further, the relation between a choreography specification C and an implementation
I can be seen with two mirror perspectives. In the former perspective, it is the
coordination middleware that is tested. We are interested in the fact that I strictly
enforces (over connected services) what is described in C. I should then exhibit at
least (or exactly) the behavior described in C. This may be supported using active
testing of service orchestrations [Bozkurt et al., 2010]. In the second perspective,
it is the cooperation of the services that is tested. We are interested in the fact
that the services do not interact in some other ways than what is specified in C.
This corresponds to a passive testing using logs at the services’ locations. In such
a case, we impose that the traces of I are included in the C ones. In this work,
we focus on the second perspective. We may now give our formal definition of the
conformance of an implementation with reference to a specification. For this we base
on trace preorder.

Definition 8 (Preorder). The preorder relation, denoted with � , between two traces
is defined recursively as follows:

− 〈〉 � 〈σ2〉; and

− 〈α, σ1〉 � 〈α, σ2〉 iff 〈σ1〉 � 〈σ2〉.

Given two trace sets T1 and T2, we write T1 � T2 iff ∀t1 ∈ T1, ∃t2 ∈ T2 | t1 � t2.

Indeed, while implementing a choreography, the developer may have to add important
additional exchanges or synchronizing activities in the services. This is especially
the case with non-realizable choreographies. Take for example the specification
C = c1

[1,2]; c2
[3,4]. Projecting it on its roles we get R1 = c1

[1,2]!, R2 = c1
[1,2]?, R3 = c2

[3,4]!,
and R4 = c2

[3,4]?. Implementing the specification using these four services as-is, i.e.,
I = R1|R2|R3|R4, the developer cannot prevent that R3 and R4 interact on c2 before
R1 has sent c1 to R2: trace [c2

[3,4], c1
[1,2]] is in [[I]] while it is not in [[C]] = {〈c1

[1,2], c2
[3,4]〉}.

Therefore, the developer may decide to add a synchronizing message between R2 and
R3, csync, to enforce the choreography, i.e., replacing R2 and R3 above respectively

72 Chapter 4. Passive Testing of Choreographies

by c1
[1,2]?; csync

[2,3]! and csync
[2,3]?; c2

[3,4]!. However, in such a case, we would not have
conformance, i.e., [[I]] 6� [[C]]. To support this, we formally define conformance as
follows.

Definition 9 (Preorder Trace Equivalence). Given a specification S and an imple-
mentation I. We have I conf S iff [[I]] ⇃acts(S) � [[S]], where acts(S) is the set of
all activities of S and ⇃ is the filter operator, i.e., t ⇃X (or T ⇃X) retains only the
elements of X in t (or T) while preserving their order.

Before going on, let us stress a basic assumption that we make on the relation between
a choreography, C, and an implementation of it, I. We suppose a one-to-one function
between the roles in C and the services in I: each role ri is implemented by exactly
one service si, and each service si implements exactly one role ri. This enables
us to relate service communications in log files to role activities in specifications.
Based on the formal definition of conformance we proposed above, we may now
define conformance between a choreography implementation and a choreography
specification.

Definition 10 (Choreography Conformance). Given a choreography C with n roles,
ri = nproj(C, i), and an implementation I with n services, si, I conforms to C,
denoted I conf C, iff the following two conditions hold:

− local conformance: si conf ri, for every i = 1..n, and

− global conformance: (S1|S2| . . . |Sn) conf C.

Example 9. To ilustrate the need of both local and global conformances, let us
take again the C1 choreography specifications from Example 8, and examine the
conformance of an implementation I1 made up of two services, S1 and S2, whose logs
are t1 = [c1

[1,2]!; c2
[2,1]?] and t2 = [c1

[1,2]?; c2
[2,1]!; c2

[2,1]!] respectively. S2 obviously does not
conform to r2 since in the later only one c2

[2,1]! may happen, while two ones appear in
the log. S1 has realized c1

[1,2]!; c2
[2,1]?, i.e., an unique reception of c2[2,1]?. The second

message c2
[2,1]! sent by S2 may have been lost or cancelled. Hence S1 conforms to r1.

In the model composition S = S1|S2, only the c1
[1,2] and c2

[2,1] interactions have been
done. While S conforms to C1 (Definition 9), I1 does not conform to C1 since S2

does not conform to R2 (Definition 10).

4.1.3 Implementation

In active testing, the tester interacts with the IUT by sending inputs (messages) and
observing outputs (messages too). This method assumes a kind of controllability of

4.1. Passive Conformance Testing 73

the implementation through Points of Control and Observations (PCOs). Observing
the outputs and comparing them to the expected ones, i.e., those described by the
specification, a verdict can be emitted. A Pass verdict establishes the conformance
of the implementation to its specification and a Fail the contrary. Passive testing
is a software testing method that relies only on observations on the running IUT.
In passive testing the tester does not send messages to the IUT. It only observes
the exchange (sending and reception) of messages between the IUT and its partners,
through POs. These observations will be compared to the specification in order to
emit a verdict.

In both cases, active and passive testing, the implementation is considered as a black
box, which means that the internal structure of the implementation is not known
and no source code is available. The term “passive” relates to the fact that the
tests do not disturb the natural operation of the IUT, to the contrary of “active”
testing. Passive testing is also of particular interest since we do not always have the
ability to control an IUT. Using passive testing in our work, testing can be done
continuously and the services in a collaboration can evolve dynamically. Such a
seamless monitoring activity is a less costly activity as it does not require to make
the IUT unavailable during the testing process.

Specification Implementation

Choreography

calculate the
trace set

Traces

Peer models i

{project on each role i}

{calculate
the trace set
of service model i}

Traces i

Global log

Web Service i

Local log iLocal log iLocal log i

sy
n
th
esize{observe

service
i}

global
conformance?

{local
conformance?}

Figure 4.5: Conformance Testing Choreography Implementations

Our testing approach is represented by Figure 4.5. In this figure, repeated activities
are denoted with the “{” and “}” symbols, e.g., {Project on each role i} means that
the projection will be repeated on each role ri of C. At the specification level, from a
choreography specification C, we can obtain directly its trace set ([[C]]). Afterwards,
the set of local requirements ri of its roles is obtained by using the natural projection

74 Chapter 4. Passive Testing of Choreographies

function. From ri we have also its trace set ([[ri]]). At the implementation level, we
can obtain local implementation traces, called logs and denoted as li, from each PO.
From n collected logs, we synthesize a global log, denoted as log. Global log, log, and
local logs, li, will be checked against [[C]] and [[ri]] to establish global conformance
and local conformance, respectively. By Definition 10, the IUT conforms with C if
and only if both global and local conformance are achieved.

Our approach is fully supported by a tool that realizes Chor specification parsing,
trace semantics retrieval, global log synthesis, and conformance checking. We have
also implemented a monitoring module for the Apache ODE BPEL engine in order
to retrieve local logs.

4.1.4 Observation of SOAP Messages

The approaches to capture SOAP messages in the context of Web services (WSs) can
be classified into three groups. The first approach injects some modules into the WS
engine in order to extract the expected information, e.g., [Wu et al., 2008, Moser et al.,
2008a, Simmonds et al., 2009, Moser et al., 2008b]. The second approach intends to
implement a software which performs as a SOAP “proxy” and which is independent
and external to the WS engine, e.g., SoapUI1 or Membrane SOAP/HTTP Monitor2.
All incoming and outgoing SOAP messages of the WS must be directed to this SOAP
proxy, which then forwards the messages to their destination while conserving a copy
of them. The last approach sniffs passively the SOAP messages which are transferred
in the network by means of sniffers such as tcpdump3 or wireshark4.

The two last approaches capture the SOAP messages when they are outside of a WS
engine, and are as a consequence independent from it. This means that they can be
used for different types of Web service engines. However these two approaches, and
also more generally all approaches which only capture the SOAP messages outside
WS engines, miss some important features which are necessary for testing. They
cannot guarantee that the captured SOAP messages will be sent to the destination
and that these messages are accepted by the Web service partner. Another problem
is that they cannot know which instance of a Web service sends (or receives) the
captured messages. Let us consider the following example. Web service r1 can send
its requests either to r2 or r3. This is described as r1 = c1

[1,2]! + c2
[1,3]!. This example

raises the problem a “false negative” verdict in case we capture two consecutive
messages c1 and c2 at the PO of r1. The verdict has to be a Fail if these messages

1http://www.soapui.org/
2http://www.membrane-soa.org/soap-monitor/
3http://www.tcpdump.org/
4http://www.wireshark.org/

http://www.soapui.org/
http://www.membrane-soa.org/soap-monitor/
http://www.tcpdump.org/
http://www.wireshark.org/

4.1. Passive Conformance Testing 75

are sent by the same instance of the WS r1, but if they are sent by two different
instances the verdict has to be Pass.

With its advantages we chose the first approach to implement our tool to collect the
SOAP messages. The architecture of our monitor consists of a module integrated into
Apache ODE, a WS-BPEL compliant WS orchestration engine. It allows to capture
all messages which are sent or received by a monitored service and to record it into
a log file. However as this module is integrated into the ODE engine, it may cause
a limitation by considering only the monitoring of services which are implemented
in WS-BPEL. To overcome this issue, we have also implemented a kind of wrapper
which adds a WS-BPEL layer for services which are not WS-BPEL Web services.
Hence, we are able to capture and to log all the SOAP messages that are transmitted
between the monitored service and its partners.

Each service is observed by a monitor that captures all the input and output messages
of the service. The captured messages that do not concern the testing choreography
will be discarded by the tester. When a message is sent or received by a service of the
IUT, an observation is recorded immediately in the log file. A Chor interaction c[i,j]

means that a message c is transferred from ri to rj . As a consequence, an observation
contains the sender, the receiver, and the type of the message. Moreover, at the
specification (role) level, an interaction is equipped with “!” or “?” to indicate if
it is a sending or a reception. Hence, we annotate observations accordingly in logs.
To ease the reconstruction of the order between observations of different logs li, an
observation also contains the time of the observation. Furthermore, to correlate the
observations of a sending message and of the corresponding reception one, we inject,
at the sending moment, an identity in the header of SOAP messages.

Formally, the observation is defined as follows. Given an IUT which consists of n
services S = {S1, . . . , Si, . . . , Sn}, an observation is a tuple ob = (act, id, t, s, r,m) where
act ∈ {SEND, RECEIVE} indicates a sending or a reception, id is a message identity, t
is the reception or sending time, s, r ∈ S with s 6= r are the sender and the receiver,
and m is the message. A log li = [ob1, ob2, . . . , obm] for a service si is a sequence of
all the observations of messages which are sent/received by si to/from others services
of the IUT.

4.1.5 Global Log Synthesis

We have a set of local logs li and we need to synthesize a global log in order to perform
global conformance testing, i.e., compare this global log with the trace set of the
choreography. As proposed in [Zäıdi et al., 2009], we assume that clocks of services are
synchronous to support the construction of an order between two observations that
have happened in two different local logs, e.g., two . This assumption typically holds,

76 Chapter 4. Passive Testing of Choreographies

e.g., when collaborations are deployed over clouds. Communication is synchronous
in Chor. This means that the sending and the reception events for an interaction
happen at the same time. In an implementation there is usually a delay between a
sending and the corresponding reception. A choreography C = c1

[1,2]; c2
[3,4] means that

the passing of message c1 from r1 to r2 should happen before the passing of message
c2 from R3 to R4. Figure 4.6 represents all possible correlations between the sending
and the reception time of messages c1 and c2, where the order of execution is denoted
with an arrow “→”. For example, in Figure 4.6(a), the sending of c2 only happens
after the reception of c1. One can note that the case represented in Figure 4.6(a)
is the strongest one, i.e., it implies the other cases. For example, if c1

[1,2]? happens
before c2

[3,4]! as in Figure 4.6(a), we can infer that c1
[1,2]! happens before c2

[3,4]! as in
Figure 4.6(c) because of execution order transitivity (i.e., a → b ∧ b → c ⇒ a → c).
Hence case (a) is the default in our tool. However one may select any other case
in the tool.

c1[1,2]! c1[1,2]?

c2[3,4]! c2[3,4]?

(a)

c1[1,2]! c1[1,2]?

c2[3,4]! c2[3,4]?

(b)

c1[1,2]! c1[1,2]?

c2[3,4]! c2[3,4]?

(c)

c1[1,2]! c1[1,2]?

c2[3,4]! c2[3,4]?

(d)

c1[1,2]! c1[1,2]?

c2[3,4]! c2[3,4]?

(e)

Figure 4.6: Sendings and Receptions Correlation

Algorithm 6 represents the synthesis of global log based on the first case. This
algorithm is divided into two parts. The first part (lines 1–17) creates a new list of
observations by merging n local logs. The observations in this list are sorted by the
order of execution time. In fact, each local log has partial ordered, so that this part
is basically to sort n arrays which are already sorted. The second part (lines 18–27)
is to synthesize the global observations from the sorted list of local observations
corresponding to the case represented in Figure 4.6(a), which imposes that, in logs,
the reception of a message has to be adjacent to the sending of this message. This
means that there is nothing (neither sending nor reception of other messages) which
can happen in this interval.

4.1.6 Testing Algorithm

Before presenting the algorithms for global and local conformance verification, we
present Algorithm 7 which verifies the preorder relation between a log and a trace.
It is an implementation of Definition 8.

The algorithm for global conformance verification is presented in Algorithm 8. The
implementation to realize the choreography may need additional interactions. In

4.1. Passive Conformance Testing 77

this case, we only keep the interactions which are present in the specification by
using the filtering function. As soon as we find a trace of the choreography such
that the global log is its preorder then this log passes the conformance checking
and the algorithm is stopped. If we visit the whole trace set without finding any
trace of the specification such that the global log is its preorder, this means that the
implementation is not exhibiting a behavior represented by the specification, which
entails to return a Fail. The algorithm for local conformance verification is similar.
The only difference is that we do not have to synthesize the global log from n local
logs, i.e., line 2 in Algorithm 8.

Algorithm 6: Synthesis of Global Observations (synthesisObservations(L))
Input: A set of n logs log = [log1, log2, . . . , logn]
Output: A log log = {ob1, ob2, . . . , obm}

1 /* Get global order of observations */
2 t = [] ;
3 index1 = index2 = . . . = indexn = 1 ;
4 while true do
5 j = −1 ;
6 for i = 1 to n do
7 if indexi ≤ length(li) then
8 o = getElementAt(li, indexi) ;
9 if j = −1 then

10 min = o ;
11 j = i ;

12 if o.t < min.t then
13 min = o ;
14 j = i ;

15 if j = −1 then break;
16 t = t ∪ {min} ;
17 indexj = indexj + 1 ;

18 /* Synthesis of global log */
19 log = [] ;
20 for i = 1 to length(t) do
21 o1 = getElementAt(t, i) ;
22 o2 = getElementAt(t, i+ 1) ;
23 if o1.act = SEND and o2.act = RECEIV E and o1.id = o2.id then
24 o = new Observation(null, o1.id, null, o1.s, o1.r, o1.m) ;
25 log = log ∪ {o} ;
26 i = i+ 1 ;

27 return log ;

4.1.7 Tool & Experimental Evaluation

Test Case Experiment. We have experimented our approach and our tools
on several medium-size case studies. For each of them, we have defined several
correct implementations of its Chor choreography, and then we have performed
mutations at the level of the implementation services representative of errors in the

78 Chapter 4. Passive Testing of Choreographies

Algorithm 7: Preorder Verification (isPreorder(l, t))
Input: A trace t = [α1, α2, . . . , αn]
Input: A log log = [ob1, ob2, . . . , obm]
Output: true if log � t else false

1 if m > n then return false ;
2 for i = 1 to m do
3 if obi.s 6= αi.s or obi.r 6= αi.r or obi.m 6= αi.m then return false ;

4 return true ;

Algorithm 8: Global Conformance Verification
Input: A Chor specification C
Input: A set of n logs log = {log1, log2, . . . , logn}
Output: Verdict (Pass or Fail)

1 T = [[C]] ;
2 l =synthesisObservations(log) ; // get the global log
3 l = l ⇃act(C) ; // hide additional interactions
4 foreach trace t of the T do
5 if isPreorder(l, t) then return Pass ;

6 return Fail ;

development/implementation process. These mutations can be categorized as follows:
adding (a), removal (r), replacement (x), and reordering (o) of interactions, and
change (c) of structuring operators.

Table 4.1: Online-Shopping Case Study

Mutation
Chor specification Observations Verdict Duration

Roles # Int. # Traces # 1 # 2 S1 S2 S3 S (seconds)
1 – 3 8 5 5 4 X X X X 0.013
2 – 3 8 5 16 14 X X X X 0.017
3 – 3 8 5 16 14 X X X X 0.018
4 (a) in S3 3 8 5 17 14 X X X X 0.016
5 (a) in S2 & S3 3 8 5 18 14 X X X X 0.015
6 (r) in S3 3 8 5 11 10 X(⊠) X(⊠) X(⊠) X(⊠) 0.014
7 (r) in S2 & S3 3 8 5 14 12 X X(⊠) × ×(⊠) 0.014
8 (o) in S2 & (c) in S3 3 8 5 16 14 X × × × 0.018

We present in Table 4.1 results on one of our case studies, related to the online buying
and delivery of goods (see below). The rows of the table correspond to different
correct implementations (marked with –) and to different mutants. Its columns
corresponds to the inputs which are a Chor specification defined by the number of:
roles (# Roles), the number of interactions (# Int.) and the number of the traces (#
Traces); and a set of logs represented by the number of observations before (#1) and
after (# 2) the filtering on the set of interactions defined in the roles of the Chor
specification (see Definition 9). The remaining columns are devoted to the kind of
mutations being performed (Mutations), the testing verdicts (local, Si, and global,
S) and the duration of the testing process. As far as the verdicts are concerned,

4.1. Passive Conformance Testing 79

an implementation or a service may be conform while not achieving completely the
envisioned behavior. This may correspond to a potential deadlock situation. It is
detected by our tool and denoted by (⊠).

Our case study is described in Chor as follows:

C ::= Order[1,2];
(

Reject[2,1] ⊓ Confirm[2,1];Payment[1,2];
(Invoice[2,1] | Shipment[2,3]; Postage[2,3];Distribution[3,1])

)

The implementation of this specification has been done with three Web services,
Buyer (S1), Vendor (S2), and Shipper (S3), running on three ODE engines.

The first three rows correspond to correct implementation logs. Row 1 corresponds to
a case where the supplier rejects the order. It is hence much shorter, in observations,
than rows 2 and 3. These correspond to the supplier accepting the order. The only
difference between them is the order in which Invoice is done wrt. the rest of the
choreography (Shipment, etc.), i.e., the order in which parallel actions (| in the
Chor specification) are done.

In row 4, a new message is sent in S3 to inform S2 about the goods being delivered
to the client (Inform[3,2]!). Since this is a new message wrt. the choreography,
it is filtered out, and service S3 is still conform to its role. The same yields for
the whole implementation. In row 5, the corresponding message is also added in
S2 (Inform[3,2]?). Again, it is filtered out and the implementation is correct. In
row 6, S2 is mutated in order not to send Postage[2,3] to S3 anymore. Since it is
at the end of the S2 role, this one is still conform to its role. Further, S3 blocks
waiting for it (hence it does not send Distribution[3,1]), but also conforms to its role.
Then, in row 7, both S2 and S3 have agreed not to use Postage[2,3] (it is removed in
both services). While S2 stays conform, S3 is not conform anymore, since it sends
Distribution[3,1] before having received Postage[2,3], which is forbidden by its role.

Finally, we have a last mutation in row 8. We replace Shipment[2,3]!;Postage[2,3]!

by Postage[2,3]!;Shipment[2,3]! in S2. We also replace Shipment[2,3]?;Postage[2,3]? by
Shipment[2,3]?| Postage[2,3]? in S3. Now S2 and S3 may interact doing Shipment[2,3]

before Postage[2,3]. This is detected in the log of S2, the one of S3, and in the global
log, hence all of these are not conform since this contradicts the specification.

We have experimented our approach on bigger case studies. The biggest one is a
mutant with 7 services, 11 distinct interaction channels, and 116,640 traces in the
choreography trace set. We have 52 observations (40 after filtering), and the testing
time is 2.92 seconds. We have observed that the testing time is greater for fail

80 Chapter 4. Passive Testing of Choreographies

mutants since in the worst case we have to check all of the choreography traces to
give a verdict (see Algorithm 8).

Generic Experiments. We have evaluated our testing approach by conducting
practical experiments. Our aim was to assess the scalability (computation time)
with reference to the number of messages, and this both for correct and incorrect
logs. Our experiments can be explained as follows. We produce automatically a
Chor specification by choosing the number of roles, the number of messages, and the
operator types. Consequently, logs are produced automatically from this specification
by applying the projection for each role. We then inject faults inside the logs in order
to analyze the impact of the presence of faults on the time of the testing process.
Different kinds of faulty logs (mutants) have been produced. In the experiments
presented in Figure 4.7, we inject faults corresponding to the reordering of messages.
The positions of faults are selected randomly. For sake of simplicity, we present here
the experiments only for two services.

Figure 4.7: Tester Scalability

Figure 4.7 shows the time (in milliseconds) of verifications with 1, 000, 2, 000, 5, 000,
10, 000, and 20, 000 messages, and for correct or incorrect logs. Each measure is
computed from the average of 50 runs. Experiments are relative to the local verifica-
tions (for respectively service 1 and service 2), the global conformance verification
(including global log synthesis), and the whole conformance testing process (sum
of the 3). These experiments have been performed on a 2GHz Intel Core 2 Duo

4.2. Online Property-Oriented Testing 81

MacBook laptop with 4GB of RAM. The times shown in Figure 4.7 do not take into
account the time for the computation of the traces of the Chor specification since
it depends only on this specification. For 1, 000, 2, 000, 5, 000, 10, 000, and 20, 000
consecutive messages, this would be 43, 172, 1, 099, 3, 292, and 14, 305 milliseconds
respectively.

In Figure 4.7, we can observe that the local testing time is very small for any % of
faults. In the worst case (upper bound), i.e., for a correct log, we have to check the
whole of it. The computation time for different % of faults in the global conformance
testing is close to the case without faults. This is due to the important part of it used
for the global log synthesis that grows with the number of messages. This directly
impacts the overall testing time. Still, with a maximum time of 139 milliseconds for
20, 000 messages, we believe that our approach is scalable.

4.2 Online Property-Oriented Testing

The conformance relation in the previous section is based on trace preorder relation,
see Section 4.1.2. This relation allows to tests an implementation which realizes a
prefix of choreography, e.g., an implementation, which does nothing, always conform
to its choreography. Moreover, this relation cannot test the fact that an event
must happen after another. The work presented in this section will overcome these
drawbacks. It focuses on testing some critical behavior, called property, rather than
overall behaviors, of implementation. In this work, we assume that the properties
are provided by the standards or by the choreography experts. They will be then
checked on the execution traces, called log, of the IUT which are collected at running
time. The formal model of the IUT is defined only to reason about the format of the
logs and also about the one of properties. There is no need of the presence of model
in testing process which is realized by our tool. However if the model is available, we
have to check the correctness of properties wrt. the model to ensure no divergence
between them.

This work intends to test the value-passing among implemented services. Since
testing work on concrete data values presented in execution trace, in this approach,
bounding variables by bound event, e.g., o[a,b]?〈x〉, will be explicitly expressed by
data assignments. We start by briefly introducing some notions about Symbolic
Transition Graph with Assignments (STGA) which is used to specify distributed
systems with a global perspective, i.e., choreographies, and to describe the pieces
of a distributed implementation, i.e., services. A STGA is extended from STG to
support assignments.

82 Chapter 4. Passive Testing of Choreographies

4.2.1 Symbolic Transition Graph with Assignments

Let D be the, maybe infinite, set of data domains, ranged over by v, and V be the
finite set of variables, ranged over by x, y, z, x1, etc. We use dom(x) to represent
variable x domain, i.e., dom(x) ⊆ D. DTerm is a set of data expressions, ranged
over by t. BTerm is a set of boolean expressions, ranged over by φ. We assume that
V ∪ D ⊆ DTerm, t = t′ ∈ BTerm for any t, t′ ∈ DTerm. BTerm is closed under
the usual operators ∧,∨,¬.

Definition 11 (Message & Event). Given a finite set of operations O, labels L, and
data domains D, a message exchanging between two services of choreography takes
the following form:

o(l1 = v1, . . . , ln = vn)

where o ∈ O represents the name of the message and the composite data exchange is
represented by a set {l1 = v1, . . . , ln = vn}, rewritten as o(li = vi) for short, in which
each field of this data structure is pointed by a label li ∈ L and its value is vi ∈ D.

A basic event which represents the occurrence of a message o(l1 = v1, . . . , ln = vn)
takes the following forms, in which vi ∈ dom(xi):

− Global level:

+ interaction from role a to role b: o[a,b].(l1 = x1, . . . , ln = xn)

− Local level:

+ sending of interaction from role a to role b: o[a,b]!(l1 = x1, . . . , ln = xn)

+ reception of interaction from role a to role b: o[a,b]?(l1 = x1, . . . , ln = xn)

A non-observable event, e.g., internal computations, is noted by τ .

Listing 4.1: Example of Complex Message Exchange in XML
1 <Request >
2 <weight >3</weight >
3 <country >
4 <code>33</code>
5 <name>France </name>
6 </country >
7 </Request >

4.2. Online Property-Oriented Testing 83

Example 10 (Message). We represent the Request in Listing 4.1 as following:

Request(weight = 3, country/code = 33, country/name = “France”)

A STGA is a transition system where each state is associated with a set of free
variables and each transition may be guarded by a boolean expression φ ∈ BTerm
that determines if the transition can be fired or not. A guarded transition is labelled

by a triple (φ, e, A), e.g., s
[φ] e/A
−−−→ s′ represents a guarded transition from state

s to state s′ with a guard φ, an event e, and an action A. An action A is a
sequence of assignments. An assignment takes the form x := t. Thus, the action
A = (x1 := t1; x2 := t2; . . . ; xm := tm), will be executed in a sequential manner. We
denote Ax as {x1, .., xm} and A as {t1, . . . , tm}. We use fv(a) and bv(a) to denote
respectively the set of free and bound variables used in some expression a. These
sets for an event will be detailed later.

Definition 12 (Symbolic Transition Graph with Assignments). STGA is a tuple
M(E) = (S, s0, T) where, S is a non empty set of states, each state s having an
associated set of free variables fv(s), s0 ∈ S is the initial state, and T is a set of

transitions. If s
[φ] e/A
−−−→ s′, with e ∈ E, is a transition of T then fv(φ) ∪ fv(e) ∪

fv(A) ⊆ fv(s), fv(s′) ⊆ fv(s) ∪ bv(e) ∪ Ax and bv(e) ∩ (Ax ∪ fv(A)) = ∅

In a transition s
[φ] e/A
−−−→ s′, with e ∈ E, we can omit φ if it is true, and A if there is no

assignment. In the above definition, neither Ax ⊆ fv(s) nor fv(e) ⊆ Ax is required.

Example 11. Let us present a running example with four services: c (client), s
(shipping-quotation – Sq), a (accounting department – Ad), and b (bank center - Bc).
Their STGAs are shown in Figure 4.8. The sets of free variables attached at initial
states of these STGAs state that the client, the Sq, and the Ad services work with
parameters {x0, x1}, {y0} and {z0} respectively, while the Bc service works without
parameter. The client wants to ship some good, (s)he issues a request shipping to
the Sq service by providing the weight of goods to be sent, then it receives a response
indicating its price and a fee to pay. If the client agrees with this price, then the
client will send its credit card number to the Sq service. In the Sq service side,
after receiving the request, based on the received weight, and its price list (for sake
of simplicity, we only consider two prices, 2 and 3), it will calculate a fee, then
respond with the fee to the client. After that, it will wait to receive the client credit
card number during one hour, then it will commit the client information to the Ad
service. The Ad service will withdraw money from the Bc service based on the received
information from the Sq service.

84 Chapter 4. Passive Testing of Choreographies

0

{x0, x1}

1

{x1}

2 {x1}

3 {}

Request[c,s]!(weight = x0) Response[s,c]?(price = x2, fee = x3)

Confirm[c,s]!(card = x1)

(a) Client – c

0 {y0}

1 {y0, y1}

2 {y1, y2}

3 {y1, y2, y3}

4 {y1}

6 {}

5 {y1, y4}

[time < 1h]

Confirm[c,s]?(card = y4)

Commit[s,a]!(weight = y1, card = y4)

Request[c,s]?(weight = y1)

[y1 ≥ y0]τ/y2 := 2
[y1 < y0]
τ/y2 := 3

τ/y3 := y2 ∗ y1

Response[s,c]!(price = y2,
fee = y3)

[time ≥ 1h] τ

(b) Shipping-Quotation – s

0 {z0}

1 {z0, z1, z2}

2 {z2, z3}

3 {}

Commit[s,a]?(
weight = z1, card = z2)

[z1 ≥ z0] τ/ z3 := z1 ∗ 2
[z1 <
z0] τ/
z3 := z1 ∗ 3

Withdraw[a,b]!(
card = z2, amount = z3)

(c) Accounting department – a

0 {}

1 {}

Withdraw[a,b]?(
card = z1, amount = z3)

(d) Bank center – b

Figure 4.8: STGAs of four services

A shipping choreography, which presents the global behavior of the four services above,
is as in Figure 4.9.

Let us note that the assignments presented in these STGs are used to represent the
modifications of variables used by constraints of data carried by interactions. For
example, in the global STG the weight in Commit interaction is the one in Request
interaction while the fee responded by the Sq service to the client is either the double
or the triple of the weight.

Semantics of STGA are introduced in [Li and Chen, 1999] by both symbolic and
ground semantics. We choose late–ground semantics in our framework since we will
work on implementation trace which is a sequence of messages. We concretize by
using an evaluation function. An evaluation σ ∈ Eval is a mapping from V to D.
We denote σ(t) as the evaluation of expression t by σ. Obviously, σ(t) ⊆ D and

4.2. Online Property-Oriented Testing 85

0

{x0, x1, x2}

1

{x0, x1, x2}

2

{x0, x2, y1}

3

{x0, x2, y1, y2}

4

{x0, x2, y2}

5

{x0, x2, y2}

6

{x2, y2}

7 {}

Request[c,s].(weight = x0) [x0 ≥ x1]τ/y1 := 2

[x0 < x1]τ/y1 := 3

τ/y2 := y1 ∗ x0

Response[s,c].(price = y1, fee = y2)

Confirm[c,s].(card = x2)Commit[s,a].(weight = x0, card = x2)

Withdraw[a,c].(card = x2, amount = y2)

Figure 4.9: Shipping choreography

σ(φ) ∈ {true, false}. We write σ |= φ to indicate σ(φ) = true. Composition of
evaluations σ and σ′ is denoted by σ.σ′ such that σ.σ′(t) = σ(σ′(t)).

A (finite) path, π, of an STGA M(E) is a sequence of consecutive transitions in
M(E). Runs of a path, σ(π), is created by applying σ on π as depicted by rules in
Figures 4.10. Its result is a sequence of ground transitions where there is no guard,
i.e., it is true, each state consists of a state of STGA, an evaluation, and concrete
event, called message in which each of its parameter is a constant v. A message
m is a structure o(l1 = v1, . . . , ln = vn) where o is the control part and

⋃

{li = vi}
represents the data part. A trace is a sequence of messages created from a σ(π) by
removing all the states without changing the messages order.

Definition 13 (Trace Semantics of STGA). The semantic of a STGA M(E) is the
set of all its traces [[M(E)]].

(SEND)

s
[φ] o!(li=xi)/A−−−−−−−−→s′

sσ
o!(li=σ(xi))7−−−−−−→s′A.σ

σ |= φ

(INTERACT)

s
[φ] o.(li=xi)/A−−−−−−−−→s′

sσ
o.(li=σ(xi))7−−−−−−→s′A.σ

σ |= φ

(RECEIV E)

s
[φ] o?(li=xi)/A−−−−−−−−→s′

sσ
o?(li=vi)7−−−−−→s′

A.σ.
⋃
{xi 7→vi}

σ |= φ

(TAU)

s
[φ] τ/A
−−−−→s′

sσ
τ7−→s′Aσ

σ |= φ

∀vi ∈ dom(xi)

Figure 4.10: Trace Semantics of STGA

Example 12 (Trace). m = Response[s,c]!(price = 2, fee = 6) is a message of the Sq
service model in Figure 4.8(b). A trace of this model is

86 Chapter 4. Passive Testing of Choreographies

〈Request[c,s]?(weight = 3), τ, τ, Response[s,c]!(price = 2, fee = 6)〉,

while the trace below is not

〈Request[c,s]?(weight = 3), τ, τ, Response[s,c]!(price = 2, fee = 10)〉

In the sequel of the Section, we consider only observable messages, i.e., they are
not τ messages, and observable traces, i.e., they contain only observable messages,
since those are what we observe from the execution of an IUT. Indeed, from the
running IUT, we cannot observe internal activity representing by τ in the model. An
observable trace is obtained from [[M(E)]] by removing τ events while preserving the
order of other messages. [[M(E)]] is overridden as the set of all (observable) traces
of model M(E). Log, also called execution trace, recorded from an IUT will have
the format of an observable trace.

4.2.2 Local Properties

In this section we formally define properties. A property represents behaviors the
IUT is expected to satisfy. Since these behaviors to be tested are usually far fewer
than the behaviors of IUT, this approach reduces not only a lot of processing, but
also allows the tester to focus on critical behaviors of the IUT [Li et al., 2004, Ladani
et al., 2005]. We define local property P to express a behavior to be tested at the
level of one service, while global property P is used to express collaborations and/or
relation between data among services to be tested. The negative version of properties
is also presented to guarantee that the IUT does not perform some special behaviors
which can lead to erroneous behaviors. These properties are then checked against the
execution logs of the IUT to emit a testing verdict. Local property checking requires
only local log of the corresponding service, while a set of local logs are required for
global one.

Our property is expressed as a IF-THEN clause, e.g., IF context THEN consequence,
i.e., each time a context is satisfied then the consequence must appear. For example,
each time the Sq service in Figure 4.8 receives a Request from the client, then it must
respond. Furthermore, message exchanges carry information which can be validated
under some condition described by a boolean expression, e.g., the fee response must
be equal to the multiplication of the price response and the requested weight.

A message is an instance of an event (under an evaluation), i.e., an event expresses
a set of messages which have the same operation name and set of labels, i.e., which
differ at the values. We use candidate event, which is a pair event/predicate, e/φ, to
represent a sub-class containing messages which are instances of the event e that are
satisfied by φ.

4.2. Online Property-Oriented Testing 87

Definition 14 (Candidate Event). A Candidate Event (CE) is a pair o(l1 =
x1, . . . , ln = xn)/φ(x1, . . . , xn), denoted by o(x̄)/φ(x̄), where φ(x1, . . . , xn) is a boolean
expression on {x1, . . . , xn}. A CE o(x̄)/φ(x̄) is called to be validated by message
o′(l′i = vi) iff o′ = o ∧

∧

li = l′i ∧ ρ |= φ, with ρ =
⋃

{xi 7→ vi}.

By extension, we write o(x̄)/φ(x̄1, x̄) to present that this CE may depend on another
CE o1(x̄1)/φ(x̄1). The predicate can be omitted if it is true.

Example 13. CE1 = Request[c,s]?(weight = x)/(x > 0) expresses a class of received
Request message of the Sq service from the client such that the value of the requested
weight parameter is positive.

Definition 15 (Local Property). Local property P is described by the form:

P ::= Context
(d)
7−→ Consequence (positive)

¬P ::= Context
(d)
7−→ ¬Consequence (negative)

where

− d is a positive integer,

− Context is a sequence of CEs, e.g., 〈e1(x̄1)/φ1(x̄1), . . ., en(x̄n)/φn(x̄1, . . . , x̄n)〉,
and

− Consequence is a set of CEs, e.g.,

{e′1(ȳ1)/φ
′
1(x̄1, . . . , x̄n, ȳ1),. . ., e

′
m(ȳm)/φ

′
d(x̄1, . . . , x̄n, ȳm)}.

This definition allows to express that each time when the Context is satisfied then
the Consequence must or must not (depending on the formula type, i.e., P or ¬P)
be validated after at most d messages Since it is impossible to verify online the fact
that will occur in the future. The distance d can become also from requirements,
e.g., an account should be blocked if user enter 5 consecutively wrong passwords.
The Context is satisfied when all of its CEs are satisfied while the Consequence is
satisfied when there exists at least one CE which is satisfied. The Consequence is
not satisfied when all of its CEs are not satisfied.

Example 14. Let us take some examples of properties:

88 Chapter 4. Passive Testing of Choreographies

P s
1 ::= 〈Request[c,s]?()〉

(1)
7−→ {Response[s,c]!()}

P s
2 ::= 〈Request[c,s]?(weight = y1)〉

(1)
7−→ {Response[s,c]!(price = y2, fee = y3)/(y3 == y1 ∗ y2)}

P a
1 ::= 〈Commit[s,a]?(weight = x1, card = x2)〉

(1)
7−→ {Withdraw[a,b]!(card = y1, amount = y2)/

(y1 == x2 ∧ (y2 == x1 ∗ 2 ∨ y2 == x1 ∗ 3))}

P s
1 guarantees that the Sq service always responds to its received request. P s

2 details
the property P s

1 by adding a predicate which guarantees that the computation of fee
in the Sq service is correct. P a

1 guarantees that the Ad service transfers exactly the
credit card number from the Sq service to the Bc service and there are two prices 2
and 3 which can be applied.

Negative property is introduced as the reverse of positive one. If a model of the IUT
is available, we can easily obtain positive properties which corresponds to a negative
one and vice versa. A negative property corresponding to P s

1 is:

¬P s
11 ::= 〈Request[c,s]?()〉

(1)
7−→ ¬{Confirm[c,s]?(), Commit[s,a]!()}

This property states that the Sq service has not to receive a Confirm or send a
Commit immediately after receiving a Request from the client.

Verification of Local Property on Log. Given a (potentially infinite) log log =

〈m1, . . . ,mi, . . .〉, and a property P = 〈e1/φ1, . . . , en/φn〉
(d)
7−→ {e′1/φ

′
1, . . . , e

′
m/φ

′
m},

we define the semantics, i.e., the returned verdict, of the property P on the log log
by means of an algorithm. The algorithm works as follows. It is based on a Check
function which takes as inputs the execution log and a property to be checked. In
a property, a later CE may depend on a former one, consequently, verification of a
message may require the presence of its precedence. Since we can forward-only read
data in a continuous stream mode, we need to create buffer which contains some
fragment of messages stream, what we call a window. The created windows contain
the first message validating the first CE of the context property and the following
messages the n+ d next messages. Once a window is created, the verification process
on the window can start in parallel with the other created windows. In case of a
positive property, the verdict Fail is emitted only when no message in the d-next
messages of the log satisfies any CEs of Consequence. The expected verdicts (Pass or
Fail) can be given only when the Context is validated. An Inconclusive verdict is
emitted only if the Context cannot be matched, i.e., there is no Pass or Fail verdicts
are emitted. The algorithm needs to collect minimum n+ d messages for validating
the property (n messages for Context and then d messages for Consequence). There
are maximally (n+ d) + (n+ d− 1) messages registered in memory.

4.2. Online Property-Oriented Testing 89

4.2.3 Global Property

The local property is used to express some behavior of a service and is tested by
using only log of the service itself. However, some kinds of fault cannot be detected by
local property. Let us take an example by considering the number precision problem
in the Ad service of our running example as following. When the Ad service received
Commit[s,a]?(card = x, weight = y) from the Sq service, value of y will be rounded
to one digit, e.g., the Sq service sends weight = 4.96 but the Ad service will consider
the received weight as 5. In consequence, if the Ad service is configured with z0 = 5,
the price 2 will be applied instead of the price 3. This kind of fault in the Sq service
can be detected since its response contains price, e.g., by property P s

2 . But, the
Withdraw event sent by the Ad service does not contain the price, this cannot be
detected by verifying the relation between amount and weight. However as required
by the choreography model in Figure 4.9, the price applied by the Ad service has to
be the one applied by the Sq service, i.e., if price 3 is applied by the Sq service then
it must be also applied by the Ad service and the same holds with price 2. In such a
case, local log of only the Ad service is not sufficient. We need to analyze several
local properties on a global log to detect such a fault.

The global log of the choreography IUT was constructed by the synthesis of services
local logs of a choreography by assuming the existence of a global clock [Zäıdi et al.,
2009], e.g., the IUT is running in a cloud. The global clock allows to know the
total order of messages from the set of local logs. In this work, our global log is just
constructed by grouping local logs in a set. Since no synthesis is required, we do not
need a global clock.

Definition 16 (Global Property). The global property is described wrt. the follow-
ing grammar:

P ::= SET Z=⇒ SET ′ | ¬P ::= SET Z=⇒ ¬SET ′

where SET and SET ′ are two set of local properties.

Verification of Global Property on Global Log. We firstly formalize global
log as follows:

Definition 17 (Global Log). Let log1, . . . , logn be n local logs recorded from n
different services. We define the global log, log, of these n services as the set of their
logs. Local log of service i in global log is given by log⇂i.

90 Chapter 4. Passive Testing of Choreographies

Table 4.2: Semantics of Global Property

Check(log, P̄) Check(log,¬P̄) Condition
Pass Fail ∀Pa∈SET :Check(log⇂a, Pa)=Pass ⇒ ∃Pa′ ∈SET ′ :Check(log⇂a′ , Pa′)=Pass

Fail Pass ∀Pa∈SET :Check(log⇂a, Pa)=Pass ⇒6 ∃Pa′ ∈SET ′ :Check(log⇂a′ , Pa′)=Pass

Inconclusive Inconclusive ∃Pa ∈ SET : Check(log⇂a, Pa) 6= Pass

The semantics of global property P̄ = SET Z=⇒ SET ′ and ¬P̄ = SET Z=⇒ ¬SET ′

on global log log are presented in Table 4.2.

Example 15 (Global Property). We use a global property as defined below to
guarantee that price 2 is being applied by both Sq and Ad services.

P̄1 ::={〈Request[c,s]?(weight = x1)〉
(1)
7−→ {Response[s,c]!(price = x2, fee = x3)/(x3 == x1 ∗ 2)}}

Z=⇒ {〈Commit[s,a]?(weight = y1, card = y2)〉
(1)
7−→ {Withdraw[a,b]!(card = y3,

amount = y4)/(y2 == y3 ∧ y4 == y1 ∗ 2)}}

4.2.4 Implementation

The architecture of our online verification system5 is depicted on Figure 4.11. Each
local tester is attached to a service to be tested. Local tester will collect input/output
messages of its service at a point of observation (PO) which is put at a position such
that all exchanged messages from/to the service are captured. Based on collected
log, the local tester will verify its local properties and will emit a local verdict. Since
the global properties consist of elements, which have the same format with local
properties, we use local testers to verify these elements, then the results will be used
by the global tester to emit a verdict for global properties based on Table 4.2. For
such reasons, in this section we focus on the implementation of local tester.

Our framework is detailed in a stepwise manner:

Step 1: Properties definition. Standards or protocol experts provide the imple-
mentation behaviors to be tested, which are formulated as property according
to the Definition 15 and 16.

Step 2: Correctness of property. If specification model of the IUT is available,
then the properties will be then formally verified on the model guaranteeing
that they are correct wrt. the requirements.

Step 3: Translating property into XQuery. A property is translated into an
XQuery such that it returns false iff the property is violated, and true iff

5The tool is available at http://www.lri.fr/∼nhnghia/tools/prop-tester/

http://www.lri.fr/~nhnghia/tools/prop-tester/

4.2. Online Property-Oriented Testing 91

Ser
vic

e c
ho
reo

gra
ph
ies

to
be

tes
ted

Ser
vic

e1

Ser
vic

e2

Ser
vic

e3

PO
1

PO
2

PO
3

Lo
cal

tes
ter

s

Te
ste

r1

Te
ste

r2

Te
ste

r3

Gl
ob
al
tes

ter

Gl
ob
al
Te
ste

r

Figure 4.11: Architecture of the Verification System

the property is validated. The Inconclusive verdict of the property will be
emitted by the tester when the end of stream of the log is reached without
any delivered verdict.

Step 4: Extraction of execution traces. An observer is put at each service level
to sniff all of its (input and output) messages exchanged with its partners.
Each time the observer captures a message, if the message is related to the
properties to be tested, then it is sent through an opened pipeline between
the tester and the PO to the tester, where it will be verified by an XQuery
processor.

Step 5: Properties tested on the execution traces. The properties tested in
XQuery form will be executed by MXQuery6 processor on the XML stream
supplying by the observer. Based on result of the query, the verdict (Pass,
Fail, or Inconclusive) will be emitted.

In this verification, the steps 1, 2 and 3 are done once, while the step 4 and 5 are
done in a continuous way online. The Figure 4.12 exhibits the steps 3, 4, and 5. In
the sequel, we will present all the steps of the framework in the order, except that
step 4 will be explained before step 3 since the translation into XQuery depends on
the format of the log file.

6http://mxquery.org

http://mxquery.org

92 Chapter 4. Passive Testing of Choreographies

Property Translation XQuery Verification
Verdict
{Pass, Fail,
Inconclusive}

IUT Monitoring XML Stream MXQuery Processor

Figure 4.12: Online Verification of Local Property

Correctness of a Local Property. When a model of a service is available, we
suppose that the service (the implementation) must conform to its model, i.e., the
logs of the service must conform to its traces. The correctness of local property wrt.
a service model is guaranteed by the following definition.

Definition 18 (Correctness of Local Property). Let MS be a service model and P
be a property, we say P is correct (return true) wrt. MS if:

− ∀tr ∈ [[MS]], Check(tr, P) ∈ {Pass, Inconclusive}, and

− ∃tr ∈ [[MS]], Check(tr, P) = Pass

Since we cannot always compute all traces of MS, i.e., it may be infinite due to
the unboundedness of the model equipped with loops. To overcome this issue, we
put limit k which will cut the length of paths. For the data types, we avoid the
state space explosion by avoiding the unfolding of the model, the obtained paths are
symbolic paths, i.e., no concrete values are given to variables. The verification of the
correctness is performed by the Algorithm 9. We firstly find all paths of MS being
compatible with the events of the context of P . Two events are compatible iff they
have the same control part and list of parameter labels. For each found path, we add
the predicates of each CE of P to the guard of the transition of the compatible event
with the one of the CE if this is a sending, while for the reception the predicate is
added in the next transition. One of the two special transitions are added to each
path, lines 21 and 34, to distinguish if the path is or not compatible also with the
consequence of P . Z3 SMT solver is used, line 37–38, to determine whether the
cumulated predicates are satisfiable, i.e., it exists a set of instances (values) for the
variables of the path.

Correctness of Global Property. Since the global property consists of local
properties whose correctness are verified on local traces, we override the projection
function “⇂” applied for projecting global trace to local traces.

Definition 19 (Trace Projection). Let MC be a choreography model, and tr ∈ [[MC]].
We override the projection of tr on service a as:

4.2. Online Property-Oriented Testing 93

Algorithm 9: Checking Correctness of Local Property
Data: an STGA M = (S, s0, T), a number k > 0, and a Property

P = 〈e1/φ1, . . . , en/φn〉
(d)
7−−→ {e′1/φ

′
1, . . . , e

′
m/φ′

m}
Result: true/false (property P correct/incorrect)

1 Get all paths Π1 of M: each starts from s0, and its n last observable events are compatible with
〈e1, . . . , en〉, and its length isn’t greater than k;

2 if (Π1 == ∅) then return false ; // not found any path
3 Π3 := ∅ ;
4 foreach π1 ∈ Π1 do

5 π′
1 is minimum path at the end of π1 compatible with 〈e1, . . . , en〉;

6 ϕ := true; k := 1;
7 // for each CE in context

8 foreach transition trj = s
[φ] e/A
−−−−→ s′s

[φ] e/A
−−−−→ s′ ∈ π′

1, j = 1 to length(π′
1) do

9 if e is compatible with ek then

10 ϕ := ϕ ∧
∧

(xi == yi), with e is o(li = xi) and e′k is o(li = yi);
11 if e is reception then
12 update trj with φ := φ ∧ ϕ;
13 ϕ := φk;

14 else
15 update trj with φ := φ ∧ φk ∧ ϕ;
16 ϕ := true;

17 k := k + 1;

18 s
[φ] e/A
−−−−→ s′ is the last transition of π ; // ⇒ e ≡ en

19 Get all paths Π2 of M: each starts from s′, its length is not greater than d, and the its last
event is in {e′1, . . . , e

′
m};

20 if (Π2 == ∅) then

21 Π3 := Π3 ∪ {π1
a(s′

[ϕ]×
−−−→ s×)};

22 else foreach π2 ∈ Π2 do
23 k := 1 ; // for each CE in consequence

24 foreach transition trj = s
[φ] e/A
−−−−→ s′ ∈ π2, j = 1 to length(π2) do

25 if e is compatible with e′k then

26 ϕ := ϕ ∧
∧

(xi == yi), with e is o(li = xi) and e′k is o(li = yi) ;
27 if e is reception then
28 update trj with φ := φ ∧ ϕ ;
29 ϕ := φk;

30 else

31 update trj with φ := φ ∧ φ′
k ∧ ϕ;

32 ϕ := true;

33 k := k + 1;

34 Π3 := Π3 ∪ {π1
aπ2

a(s′′
[ϕ]X
−−−→ sX)} ;

35 b := false;
36 foreach π3 ∈ Π3 do
37 if exist an evaluation ρ s.t. state s× exists in ρ(π3) then return false;
38 else if exist an evaluation ρ s.t. state sX exists in ρ(π3) then b := true;

39 return b;

94 Chapter 4. Passive Testing of Choreographies

− proj(o[a,b].(li = xi), d) =

〈o[a,b]!(li = xi)〉 if d = a

〈o[a,b]?(li = xi)〉 if d = b

〈〉 otherwise

− tr⇂a=

{

〈〉 if length(tr) = 0

proj(head(tr), a)atail(tr)⇂a otherwise

Definition 20 (Correctness of Global Property). Given a choreography model MC ,
a set of n service models {MS

1 , . . . ,M
S
n}, and a global property P̄ = SET 7→ SET ′.

P̄ is correct wrt. MC iff:

− ∀Pa ∈ SET∪SET ′ of service a having model MS
a , ∃tr ∈ [[MS

a]], Check(tr, Pa) =
Pass

− ∀tr ∈ [[MC]], Check(tr, P̄) ∈ {Pass, Inconclusive}

− ∃tr ∈ [[MC]], Check(tr, P̄) ∈ {Pass}

In the definition above, the two last conditions can be also verified based on Algo-
rithm 9 where the notion of a compatible event is modified as follows. A sending
or reception event is compatible with an interaction if it is compatible with the
projection of the interaction.

Extraction of Execution Traces. We extend our monitor presented in Sec-
tion 4.1.4 to collect SOAP messages exchanged among Web services of a choreography.
Each service is attached by one observer at a point of observation such that it can
capture all SOAP messages from and to its service. We then put body parts of
captured message side by side as shown in Example 16 in which, we add also tstamp
attribute representing time stamp of the capturing moment. This tstamp allows
us to verify time condition, e.g. timeout condition in our example where after the
Response event the Confirm event can only happen before one hour.

Example 16. Listing 4.2 represents the captured log of the Sq service.

Listing 4.2: Example of Captured Message
1 <message source="c" destination="s" direction="reception" name="Request"

tstamp="1">
2 <weight >3</weight >
3 </message >
4 <message source="s" destination="c" direction="sending" name="Response"

tstamp="3">
5 <price >2</price > <fee >6</fee >
6 </message >
7 ...

4.2. Online Property-Oriented Testing 95

Translating Property into XQuery. The SOAP messages exchanged between
Web services are in XML format. One can refer to record execution traces (log) as
an XML document to take advantage of standardized XML tools, e.g., XML Query
Language (XQuery), to analyze it. XQuery is a language for finding and extracting
elements and attributes from XML data. The log of the IUT can be considered
as a data stream consisting of continuous messages with time-varying arriving and
unpredictable rates. Hence, the log processing requires real-time treatment, fast mean
response time, and low memory consumption. We use window clauses in XQuery to
slice the log into segments called window. The translation is done automatically, by
Algorithm 10, in which two functions ctrl(e) and cond(φ) are used to translate the
event e into XQuery and the assertion φ into XQuery respectively.

Algorithm 10: Translation of Local Property to XQuery

Data: Local property P = 〈e1/φ1, . . . , en/φn〉
(d)
7−−→ {e′1/φ

′
1, . . . , e

′
m/φ′

m}
Result: an XQuery

1 return XQuery as the following:

2 for $w in
(

3 for sliding window $win in $stream//message
4 start $s at $spos when ctrl(e1) and cond(φ1)
5 end $e at $epos when $epos− $spos eq (n+ d− 1)

6 return <window> {$win} < /window>
)

return
7 for $e1 in $w/message[1] return
8 for $e2 in $w/message[2] where ctrl(e2) and cond(φ2) return
9 . . .

10 for $en in $w/message[n] where ctrl(en) and cond(φn) return
(

11 (some $e11 in $w//message[position() > n] satisfies ctrl(e′1) and cond(φ′
1)) or

12 . . .

13 (some $e1m in $w//message[position() > n] satisfies ctrl(e′m) and cond(φ′
m))

)

Example 17. The query in Listing 4.3 represents a local property of Example 14.
Line 2–5 creates a sequence of windows, each window is represented by a variable
$win. The variable $stream points to a log in stream mode and $stream//message is
used to denote all message elements in the log. A window $win is a sub sequence
of $stream for which the start and end conditions are applied. XQuery uses XPath
syntax to express specific parts of an XML element. Our window starts at a message
such that its destination is the Sq service, i.e., “s”, its name is “Request’. The
window size is 2. The size can be less than 2 if we reach the end of $stream. Each
created window realized by an XQuery from line 2–5 is encapsulated by another
XQuery and will be referenced by $w, which has in charge to perform the checking of
the property of the created window (line 7–8). For the example, at line 7 it verifies
whether a message in window $w has its position which is strictly greater than 1 and
that the conditions in line 8 are satisfied. If both holds a Pass verdict is emitted.

96 Chapter 4. Passive Testing of Choreographies

Listing 4.3: Example of Transformation of Local Property into XQuery
1 for $w in (
2 for sliding window $win in $stream // message
3 start $s at $spos when $s/@name eq "Request" and $s/@direction eq "

reception" and $s/@receiver eq "s"
4 end $e at $epos when $epos - $spos eq 1
5 return <window >{$win}</window >) return
6 for $e1 in $w/message [1] return
7 (some $e11 in $w// message[position () > 1] satisfies
8 $e11/@name eq "Response" and $e11/@source eq "s" and $e11/@direction

eq "sending" and number($e11/fee) eq number($e11/price) * number($e1
/weight))

4.2.5 Experimental Evaluation

To evaluate the performance of our tools, we realized a series of experiments. For the
verification of each property in Example 14, we generate 50 logs files for each length
1,000, 2,000, 5,000, and 20,000 messages. Each of these logs contain a randomly
created sequence of messages corresponding to the shipping-quotation service and
the Ad service for the test of properties P s

1 , P
s
2 , and P a

1 respectively. Generated logs
are then sent as an XML stream to our tool, as described in Figure 4.12.

1"

1.5"

2"

2.5"

3"

0" 5000" 10000" 15000" 20000"

!
m
e
$(
m
il
li
se
co
n
d
s)
$

numberofmessages$

Ps1"

Ps2"

Pa1"

Figure 4.13: Tester Scalability

Since the performance of our tool depends on the one of the MXQuery processor, we
do not intend to benchmark MXQuery processors, but rather to get early experiences
of online verification of our approach. Generally, processing time of a property
depends on the complexity of its boolean expressions. Since the processing time
consists of time used to start up MXQuery and useful time used to validate the logs,
the average processing time will converge on the useful time. Figure 4.13 shows the
average of processing time (milliseconds). These experiments have been realized on
a Macbook Air laptop with a CPU 1.7GHz Core i5 and 4GB of RAM. These results
show that the maximum processing time per message are 2.8 milliseconds. This time
will converge on the useful time, that is less than 1.4 milliseconds, when length of

4.3. Discussion 97

logs increases. This tends to show that our framework can actually be done in real
time.

4.3 Discussion

Passive testing is suitable for testing distributed system. It does not require to
control IUT as active testing. It performs the testing by passively observing the
inputs and outputs of IUT. Consequently, it does not disturb the functioning of
the IUT. There exist two passive testing approaches: näıve and property-oriented.
The näıve approach examines any observations while the property-oriented approach
focuses only on observations which relate to some critical behavior of IUT. This
chapter presented our works based on these approaches. We firstly started to test
offline service choreographies. This work, based on the näıve approach, does not
take into account value-passing in the choreography. This was the first step to
establish the elements for passive testing of distributed system, e.g., interpretation
of asynchronous communication by five cases of observation correlations, monitoring
of SOAP messages. The limitations of the first work was overcome by the second
one. The second work focuses on online-testing, i.e., it detects the faults as soon as
possible, and it does not require a global clock. However the second one may miss
some faults due to the lack of property expressiveness, e.g., local property cannot
verify backward and global property cannot verify correlations of messages which
are from different local logs. These lacks can be fulfilled by the first approach.

Our works presented in this chapter is based on the verification of execution traces
of IUT, i.e., they are done after the IUT was deployed. They detect faults which
already occurred. It may be preferred to test the IUT before it is deployed to be able
to repair the IUT. In such a case, the IUT can be tested separately, i.e., each service.
Consequently active testing has more advantages than passive testing to test one
single service. Test cases to test actively each service can be generated from local
requirements which are projected from the choreography by our projection defined
in Section 3.4.

C
h
a
p
t
e
r

5
Case Study

Contents
5.1 Case Study Description . 100

5.2 Verification . 100

5.3 Testing . 105

This thesis has proposed a symbolic framework, which is fully tool supported,
for modeling, verification and testing service choreographies. For each step, the
implementation and evaluation of corresponding tool was presented in the previous
chapters. We demonstrate in this chapter, through a simple case study, an application
of our toolchain to support choreography development process: modeling, verification
and testing. The toolchain was written in around 34.000 lines of Java. It is available
for downloading or online use, e.g., Symbolic Choreography Analysis tool (SChorA).

99

100 Chapter 5. Case Study

5.1 Case Study Description

The case study in this chapter is an extended version of the Online Shopping
Process (OSP) presented Example 1 of Chapter 3. The case study can be modified
gradually to point out attached problems. For instance, it represents in the next
section a collaboration between three roles: buyer, vendor and warehouse. First the
buyer sends to vendor a request by indicating an amount to be bought. If this amount
is greater than 0 then the vendor forwards the request to the warehouse, otherwise
the vendor raises an error to the buyer. After receiving request from vendor, the
warehouse checks also the amount. It responds if the requested amount is greater
than 0, otherwise it raises also an error.

5.2 Verification

In this section, we verify the case study by using our SChorA tool. The verification
consists of reachability checking, realizability checking, choreography projection, and
conformance checking.

5.2.1 Reachability Checking

Figure 5.1 represents specification of the case study and reachability checking by
using the SChorA tool. The case study specification is written in editor part of
SChorA. For sake of simplicity, we denote b as the buyer, v as the vendor, and w
as the warehouse It respects our language presented in Section 3.1. A specification
is encapsulated into a component by component and end component keywords. A
component can be also given by an STG. There may be many components in the
editor part. They are put after DECLARATIONS keyword. The declared components
are verified by using corresponding commands that are put after COMMANDS keyword,
e.g., showSTG spec displays graphically STG of the spec component. The reader is
invited to refer to Appendix A for details of syntax of SChorA.

The reachability checking of the spec component is done thanks to showReach-

ableSTG spec command. The reachable STG is shown at the bottom of Figure 5.1.

In this STG, the (5)
[x≤0] error[w,v]

−−−−−−−−→ (3) transition was removed. Indeed, input verifica-
tion of the warehouse is dispensable in the case study choreography since the input
was already verified by the vendor before transferring it to the warehouse. In other
words, this transition is never fired, hence unreachable, since the disjunction of its
guard, x ≤ 0, and the guard of its precedent transition, x > 0, is always false.

5.2. Verification 101

Figure 5.1: Reachability Checking by SChorA tool

102 Chapter 5. Case Study

5.2.2 Realizability Checking

We check the realizability, under synchronous communication mode, of the case
study choreography by using showRealizableSTG spec SYNC command. The result
is presented in Figure 5.2. The choreography is not realizable since it needs an
additional interaction +cb[v,w].x. The interaction is introduced to transfer value of
x variable from the vendor to the warehouse. Indeed, if the buyer sends a request
with a negative number to the vendor then the choreography will be terminated
after the interaction error[w,v]. In such a case, the warehouse does not know that the
choreography was terminated. It may be blocked if it chooses another branching of
the choreography, e.g., it waits the sell[v,w].x. To render the choreography realizable,
the warehouse should know which branching of the choreography is selected. This
can be done by an additional interaction, e.g., +cbr[v,w].x which carries value of x,
hence the warehouse selects branch to follow based on value of x.

Figure 5.2: Realizability Checking by SChorA tool

5.2.3 Choreography Projection

Projection under synchronous communication mode of the case study choreography
is done by projection spec SYNC command. Its result is three local STGs of three
roles as presented in Figure 5.3.

We would like to point out the interesting branching decision of state (6) of obtained
local STG of the buyer (role b). Indeed, the guards of the outgoing transitions of
this state was removed since the branching can be decided by event, e.g., the buyer
chooses the route when it receives error[v,b]? or resp[v,b]?.

5.2. Verification 103

Figure 5.3: Choreography Projection by SChorA tool

5.2.4 Conformance Checking

The conformance checking verifies the Symbolic Branching Bisimulation for Con-
formance (SBBC) relation between two global STGs, one for implementation and
one for specification. Figure 5.4 presents an example of conformance checking of
an implementation of the case study. Let us suppose that one implements the case
study based on the local models obtained by the projection in Figure 5.3. These
local models of three services buyer, vendor and warehouse are described as three
components, from line 6 to 15, in the editor part of SChorA in Figure 5.4. The
implementation of the case study choreography is the composition of the three
services. It is represented by the impl component. The verdict Pass of the result in
Figure 5.4 means that the implementation conforms to the choreography. The result
also gives the Predicate Equation System of this relation. This proves once again
that the projection is correct, i.e., each service can be separately implemented from
its local model.

Let us suppose that the warehouse service is partially implemented, e.g., it always
waits the interaction cbr[v,w]? from the vendor. The STG composition of local models
of this warehouse service with the two above services, the buyer and the vendor
is presented in Figure 5.5. The conformance checking by SChorA shows that this

104 Chapter 5. Case Study

Figure 5.4: Conformance Checking by SChorA tool

5.3. Testing 105

implementation does not conform to the choreography, i.e., Fail verdict. Indeed,
thanks to the Predicate Equation System (PES) of this conformance relation, we
can see that the non-conformance is due to state (3.4.2) of the implementation
composition and state (3) of the specification (see Figure 5.2), e.g., R3.4.2 3 ::=

false. From the state (3) the spec terminates properly by doing X event however
the impl cannot evolve anymore from the state (3.4.2).

Figure 5.5: Conformance Checking of a Mutation of the Case study

5.3 Testing

From the case study choreography spec, the projection is done to obtain local
requirements of each role, see Figure 5.3. Developers need to implement services
which fulfill these requirements. This section presents two tools to test a real
implementation, that is a set of Web services, with respect to the choreography spec.
The first tool tests conformance of the implementation, while the second one focuses
on some critical behavior of the implementation.

We constructed two tools, SOAP-Capturer and SOAP-Forwarder that are used to
capture SOAP messages transferred among Web services. The captured messages
can be saved in a file to be used later, or be broadcasted in order to be analyzed in
real time by our tester tools, e.g., Property-Oriented Testing tool (Prop-tester), or
by any standardized XML tools, e.g., XQuery.

SOAP-Capturer is a module functioning inside Apache ODE1 which is a WS-BPEL
compliant web service orchestration engine. It captures any SOAP message received

1http://ode.apache.org/

http://ode.apache.org/

106 Chapter 5. Case Study

Figure 5.6: Point of Observation of SOAP-Capturer (1) and SOAP-Forwarder (2)

or sent by the Apache ODE. SOAP-Forwarder is a standalone application which is
put among the sender and receiver services to capture SOAP messages transferred
between them. It has a graphic user interface as shown in Figure 5.7.

Figure 5.7: Graphic User Interface of SOAP-Forwarder

5.3.1 Conformance Testing

The conformance testing is done by Passive Conformance Testing tool (PACT) tool.
The tool takes as input two parameters, a choreography description and a list of

5.3. Testing 107

logs (execution traces) of services which implement roles of the choreography. The
choreography is described in Chor [Qiu et al., 2007] language, see Section 4.1.1. Chor
does not support value-passing. The case study, after removing unreachable events,
is described by Chor language as the following, in which role 1 is the buyer, role
2 is the vendor and role 3 is the warehouse: req[1,2] ; (error[2,1] [] (sell[2,3] ;

info[3,2] ; resp[2,1]))

The logs of services are recorded by our monitoring tool, see Section 4.1.4. Listing 5.1
represents a log of vendor service which implements the vendor. Vendor service is
a Web service which is written in WS-BPEL language. It is deployed into Apache
ODE engine at address http://localhost:8081/ode/processes/vendor. We use
address of service to identify the service.

Listing 5.1: Example of Captured log of Vendor Service

1 http :// localhost :8081/ ode/processes/vendor
2
3 29/08/2013 15:17:30.128
4 RECEIVE | http :// localhost :8080/ ode/processes/buyer | 1377782250120 | req
5
6 29/08/2013 15:17:30.320 (1377782250320)
7 SEND | http :// localhost :8082/ ode/processes/warehouse | | sell
8
9 29/08/2013 15:17:30.678

10 RECEIVE | http :// localhost :8082/ ode/processes/warehouse | 1377782250634 | info
11

12 29/08/2013 15:17:30.721 (1377782250721)
13 SEND | http :// localhost :8080/ ode/processes/buyer | | resp

A captured event is represented by two lines in log file, e.g., line 3-4 in Listing 5.1.
The first one indicates the moment the event is captured. The second one contains:
event type (sending or reception), partner address, correlation identification, and
event operation name. The correlation identification is used to synthesize global
log from local logs of services, e.g., a sending and its reception is synthesized as
an interaction. Since we suppose that there exists a global (logic) clock among the
implemented services, the correlation identification is based on sending moment of
event. For instance, the identification 1377782250120 of the reception req at line 4
is the sending time of the sending req that can be found in the log of buyer service.

The conformance testing of an execution of implementation which consists of three
Web services: buyer service, vendor service, and warehouse service which play
respectively role 1, 2 and 3 of the choreography is done by PACT tool as presented
in Figure 5.8.

108 Chapter 5. Case Study

Figure 5.8: Conformance Testing of an Implementation

5.3.2 Property-Oriented Testing

Choreography implementation can also be tested by Prop-tester. It focuses on
testing some critical behavior of the implementation rather than overall one as by
PACT. The critical behavior to be tested is described by a property. If model of
implementation or of specification are available, the properties must conform to the
model. This can be done by a module of Prop-tester in which the model is given by
a STGA.

Property Description. Property definitions are described in XML files. Each prop-
erty is described in <property></property> tag. Property type can be positive or
negative. Namespaces used in properties are declared in <namespace></namespace>
tag. The boolean expression of each candidateEvent is a string wrt. XPath syntax,
described in <predicate></predicate> tag.

Local property described in Listing 5.2 verifies that when the vendor service receives
a request req with a positive amount from the buyer service, then this amount must
be equal to the amount of interaction sell to the warehouse service. Furthermore,
the vendor service must perform sell interaction after receiving req and before any
other interactions.

Listing 5.2: A Local Property to Verify Vendor Service
1 <properties >

5.3. Testing 109

2 <!-- Vendor Service transfers exactly what it received from the
buyer to the warehouse -->

3 <namespaces >
4 <namespace prefix="tns" uri="http :// www.lri.fr/"/> </namespaces >
5 <property name="lprop1" type="positive" distance="1">
6 <context >
7 <candidateEvent >
8 <event >
9 <data >

10 <x1 >from </x1>
11 <x2 >to </x2 >
12 <x3 >tns:req/tns:amount </x3> </data > </event >
13 <predicate ><![CDATA[
14 x1 == "http :// localhost :8080/ ode/processes/buyer"
15 and x2 == "http :// localhost :8081/ ode/processes/vendor"
16 and x3 > 0]]></predicate > </candidateEvent > </context >
17 <consequence >
18 <candidateEvent >
19 <event >
20 <data >
21 <y1 >from </y1>
22 <y2 >to </y2 >
23 <y3 >tns:sell/tns:amount </y3> </data > </event >
24 <predicate ><![CDATA[x3 == y3
25 and y1 == "http :// localhost :8081/ ode/processes/vendor"
26 and y2 == "http :// localhost :8082/ ode/processes/warehouse"]]>
27 </predicate > </candidateEvent > </consequence >
28 </property >
29 </properties >

Verdict Output. Prop-tester output its verdicts in continuous stream mode, i.e.,
a verdict is emitted each time a property is tested on the log. A verdict is given in
an XML element <vdict/> which has 3 attributes: prop the property name to be
tested, tstamp the testing time, and msg the time stamp of tested message which
validated the first event candidate of the property, i.e., if verdict is Fail then it
represents the moment of fault occurring. Figure 5.9 represents output verdicts of
testing local property lprop1 on the vendor service.

Figure 5.9: Verdict Output of Vendor Service Testing

C
h
a
p
t
e
r

6
Conclusions and Perspectives

Contents
6.1 Synthesis of Results . 112

6.2 Perspectives . 114

111

112 Chapter 6. Conclusions and Perspectives

6.1 Synthesis of Results

In this thesis, we proposed a theoretical and practical framework which supports
choreography development process. Particularly, we obtained the following results:

Identification of Lack of Value-Passing Support. The first contribution of the
thesis relies on the observation of lack of value-passing support in modeling and
analyzing service choreographies. Most existing approaches do not adequately support
the value-passing, i.e., without explicitly considering the data exchanged through
interactions and using it for branching decisions. They just abstract away from
data. This may yield over-approximation issues, e.g., false negatives in verification
process. Hence the presence of value-passing in choreography model may change
choreography properties, e.g., realizability, conformance. The lack of value-passing
support becomes the principal motivation of the thesis.

A Symbolic Model & Framework for Choreographies. Based on the identifica-
tion of lack of value-passing, we enriched the interaction-based model by introducing
free and bound variables at global and local models. Based on calculus languages
presented in [Bravetti and Zavattaro, 2007, Busi et al., 2006, Qiu et al., 2007] we for-
malized a process algebra language using for both choreography and implementation
(services) specification. This language describes not only interactions but also data
flow. We proposed a fully symbolic semantics, using STG, of the model in which, the
data variables are manipulated by using symbols rather than their concrete values.
This avoids data abstraction and over-approximation problems. Furthermore, it
enables one to model and analyze service choreography in presence of data without
suffering from state space explosion and without bounding data domains.

Based on the formal model, we re-examine several fundamental issues of services
choreography with the presence of value-passing such that the conformance, the
realizability and the projection. A new issue examined is reachability since with the
presence of data in the formal model, the guard operations based on data, e.g., ⊲
(if) and ∗ (loop), may disable some interactions in the choreography, see Example
in Figure 2.9(a).

Accordingly, we build on branching bisimulation [Van Glabbeek and Weijland,
1996] and on a symbolic extension of weak bisimulation [Li and Chen, 1999] to
develop a specific symbolic version of branching bisimulation dedicated at checking
the conformance of a set of local entities wrt. a choreography specification. Our
equivalence enables one to check conformance in presence of choreography refinement,
i.e., where new services and/or interactions may be added wrt. the specification.
Going further than a true vs. false result for conformance, our approach supports
the generation of the most general constraint over exchanged information in order to

6.1. Synthesis of Results 113

have conformance.

We did not only check whether the choreography is realizable, but also we proposed
solutions to enable its realizability. For that purpose, we built a projection function,
dealing with data, which allows to retrieve local models from a global one. The
projection is dedicated to enable the realizability of choreography, i.e., when the
choreography is unrealizable, some extra interactions can be automatically intro-
duced. Furthermore, the minimum extra interactions are added in order to obtain
minimal implementation and traffic. The projection considers both synchronous and
asynchronous communication modes.

Passive Online Testing Approach. In distributed context, the control overall
IUT is difficult to achieve, it is even impossible in some situation, e.g., system
working 24/7 where the IUT can be running in their real environment. Therefore,
the testing should not disturb its natural operation, since it might produce a wrong
behavior of the overall system.

We defined a formal model based on STGA [Li and Chen, 1999] for both local (service,
role) and global (choreography, composition of local models) with supporting complex
data types. We formalized our local and global properties, inspired from [Andrés et al.,
2010] by taking data into account. The local properties are used to test behaviors of
one isolated service wrt. its specification model, while the global properties test the
collaboration of a set of services wrt. its choreography model. A negative version of
property is also introduced. A positive property is used to describe expected behavior,
while a negative property describes a forbidden behavior. If a model is available, we
should verify the correctness of these properties wrt. its model. Once the correctness
of the properties is ensured, both local and global properties are verified against the
local execution traces of the running IUT collected at each service. Our verification
process does not require a global clock since we assume that global properties express
relation between several local properties and in particular by specifying relation
between data among the choreography. We validated the approach by a case study
in which services are realized by Web services. The SOAP messages exchanged
of each service are progressively collected as a XML stream. We translated our
properties into XQuery to perform an online verification of the properties on the
IUT XML stream.

Implementation of the Proposed Approaches. The last contribution of this
thesis is the availability of our tools. They demonstrate the proposed methods. The
first tool, namely SChorA, allows to analyze some choreography attributes such
that reachability, realizability, to check conformance of a set of local models against
a choreography model, and to project a choreography model to local models with
enabling the realizability attribute (in the case the choreography is unrealizable).

114 Chapter 6. Conclusions and Perspectives

An interested feature of this tool is that one can use it directly from web browser
without any installation and configuration.

Two tools, PACT for conformance testing and Prop-Tester for property-oriented
passive testing, performs passive testing of service choreography. The Prop-Tester is
an improvement on the PACT. Particularly, it first takes into account value-passing
in testing process. Secondly, it focuses on some critical behavior of IUT rather than
overall one. Thirdly, it performs online test, i.e., at running time. Finally, it does
not require the presence of a global clock on IUT.

Our case studies was implemented by Web services. We hence also developed two
tools to collect SOAP messages transferring among Web services. One tool, namely
SOAP-Capturer, is executed inside Apache ODE environment. Since the tool is
only suitable for WS-BPEL Web services, we then developed another tool, SOAP-
Forwarder, which functions independently from Web service engines. All the tools
are freely available to download, use, and develop.

6.2 Perspectives

In this section, we present some existing issues and discuss some open directions.

True–Concurrency Supported. A lack of the formal framework proposed in this
thesis is true-concurrency. Since choreography intends to specify collaboration of
a set of services which are usually implemented in a distributed environment, e.g.,
Web services, hence the true-concurrency is an inevitable attribute. This attribute
is not appropriately supported by the current approaches. It may be also need to
re-examine the fundamental issues of choreography when this attribute is present in
the model.

Application of the Proposed Framework to Diagnose Service Choreogra-
phies. Conformance checking or conformance testing intends to determine whether
a fault occurs rather than locates where the fault occurs. In environment of service
collaboration, by locating services which is cause of faults, one can isolate the rest of
the system from the faults. The fault services can be repaired or replaced basing on
their local models which are generated from the choreography by using our projection.

Resolving Mismatch for Service Choreography. Using a bottom-up devel-
opment process, each service of a distributed collaborative application may be
independently developed and deployed across different organizations. It is therefore
unavoidable that mismatch may arise at both signature and protocol levels, and need
to be identified and solved. When two or more services are incompatible, an adaptor

6.2. Perspectives 115

may be introduced to solve mismatch [Mateescu et al., 2012]. The adaptor runs
parallel with the services and guides their execution, e.g., avoiding deadlock of their
composition. In combination with adaptation, our approach can be used to resolve
mismatch between reused services and between these services’ composition and the
requirements expressed by the choreography. Skeletons constitute local contracts
that services have to fulfill to yield an overall composition being correct wrt. the
choreography. Given each of these skeletons, and the corresponding service one wants
to reuse for it, we can generate an adaptor between the skeleton and the service.
This can be performed in a fully automatic way for some mismatch. For the more
powerful adaptation approaches, i.e., for more complex mismatch, the process can
be aided [Cámara et al., 2012].

Generation of Source Code for Service Implementations. In a top-down
development process, once the behavioral skeletons have been generated from the
choreography with our approach, one has to implement the business logic behind the
protocols expressed in the skeletons. In order to get full compatibility between the
business logic and the behavioral protocols, one may use results presented in [Pavel
et al., 2005, Fernandes and Royer, 2007, Fernandes et al., 2007] to retrieve Java code
from skeleton models. This is made possible since the formal models we use for
skeletons, STG, are very close to the Symbolic Transition System (STS) used in the
above-mentioned approaches

Generation of Distributed Test Cases. Furthermore, we will study the dis-
tributed testing of choreography implementations based on the generation of test
cases or properties from the local model obtained by projecting choreography. Role
models can be used to generate test cases. Many approaches support the production
of tests from symbolic transition models. In [Bentakouk et al., 2009], the authors
generate symbolic test cases according to different coverage criteria or test purposes.
A product is performed between the test purpose and the symbolic model. A sym-
bolic execution tree for this product is generated and used to obtain symbolic test
cases, i.e., test cases with free variables and constraints on their values. These test
cases are then realized and executed against the implementation with the use of a
constraint solving tool. Role models generated with the approach we propose yield
global conformance with the choreography. In such a case, the interaction part is
guaranteed, in other words testing in isolation each service implementing a role can
be sufficient to warranty the correction of the choreography implementation.

Transformation Standard Choreography Languages to STG. This concerns
the definition of model transformations from standard choreography languages, e.g.,
WS-CDL and BPMN 2.0, to our choreography model. For instance, since there exists
a transformation [Bentakouk et al., 2009] from WS-BPEL, an execution language for

116 Chapter 6. Conclusions and Perspectives

Web service orchestration, to STS. Hence if this transformation is done, then the tool
chain of conformance verification of choreography and its Web service implementation
by WS-BPEL will be done completely automatically.

Integration of Tools in Eclipse. Our tools are freely available. They can be
download and used at local computer or directly from a web browser as SChorA.
However, they are standalone applications. The last perspective is to integrate the
extensions of our implemented tools as a verification plugin for the choreography
Eclipse editors, e.g., BPMN 2.0 or WS-CDL.

A
p
p
e
n
d
i
x

A
SChorA Syntax

A SChorA script consists of two parts: declaration and command. In the declaration
part, global models of choreographies, local models of roles or services, and com-
position of local models are declared. The command part describes commands to
manipulate the models above, e.g., conformance A B to check whether A conforms
to B.

Listing A.1 represents the structure of a SChorA script. Literal characters are given
in quotes. Vertical bar | separate alternatives. (X)+ represents repetitions n > 0
times of X, and (X)? represents repetitions zero or one time of X.

Listing A.1: Structure of SChorA Script
1 "DECLARATIONS"
2 (component)+
3 "COMMANDS"
4 (command)+

A.1 Declaration Part

The models to analyze are declared in the declaration part which is started by
DECLARATIONS keyword. Each model is declared inside component and end compo-

nent keywords. Listing A.2 represents syntax which is used to declare global and
local model.

A model can be described by our choreography algebra language, see Section 3.1,

117

118 Appendix A. SChorA Syntax

called chorD, which is an extension of chor [Qiu et al., 2007] to support data. It can
be also given by an STG. In such a case, the STG description has to respect the
DOT1 language.

Listing A.2: Syntax of Model Descriptions Used in SChorA Script
1 component: chorD | STG
2

3 chorD: "component" ID "chorD" chor "end component"
4
5 chor : chor ";" chor // sequential composition
6 | chor "|" chor // parallel
7 | chor "+" chor // choice
8 | chor "[>" chor // interruption
9 | "["guard"]" "|>" chor //if

10 | "["guard"]" "*" chor //loop
11 | "(" chor ")"
12 | event
13
14

15 STG : "component" ID "STG" (state)+ (transition)+ "end component"
16
17 state: INT ";"
18 | INT "[label =\"" ID "\"];"
19
20 transition: INT "->" INT " [label =\"" event "\"];"
21 | INT "->" INT " [label =\"[" guard "]" event "\"];"
22
23
24 guard: "true" | "false"
25 | expr op expr
26
27 expr : INT | ID
28
29 op : ">" | " >=" | "<" | " <=" | "=" | "!="
30

31 event: "skip" //do nothing
32 | ID "[" ID "," ID "]" (dir)? // event without data
33 | ID "[" ID "," ID "]" dir ID // event with free variable
34 | ID "[" ID "," ID "]" dir "<" ID ">" // event with bound variable
35

36 dir: "." | "?" | "!"
37
38 ID : (["a"-"z","A"-"Z","_"])+ (["A"-"Z"] | ["a"-"z"] | ["0"-"9"] | "_")*
39

40 INT: (["0"-"9"])+

A.2 Command Part

The commands used in a SChorA script are put in the command part which is
started by COMMANDS keyword. The commands respect the syntax in the Listing A.3.

1http://www.graphviz.org/content/dot-language

http://www.graphviz.org/content/dot-language

A.2. Command Part 119

Listing A.3: Syntax of Commands Used in SChorA Script
1 command: "showTime"
2 | "showStat" (ID)+
3 | "showSTG" (ID)+
4 | "showReachableSTG" (ID)+
5 | "showRealizableSTG" (ID)+ comm
6 | "projection" (ID)+ comm
7 | "conformance" ID ID
8

9 comm : "SYNC" | "ASYNC_SENDER" | "ASYNC_RECEIVER" | "ASYNC_DISJOINT"

The signification of each command is described as follows:

1. showTime shows the current time of system. It is useful to calculate the
execution time of one or several commands, e.g., put one showTime command
before and another one just after the block of commands to be calculated then
take offset of their results. This command has no parameters.

2. showSTG shows graphically STGs

− Parameters: A list of component names separating by space

− Example: showSTG spec impl will display graphically two STGs corre-
sponding to spec and impl components.

3. showStat displays statistics (number of states, transitions and messages) of
STGs corresponding to the specifications in parameters.

− Parameters: A list of names separating by space

− Example: showStat spec impl will display statistics of STGs correspond-
ing to spec and impl components.

4. showReachableSTG displays reachable STGs corresponding to the specifi-
cations in parameters

− Parameters: A list of names separating by space

− Example: showReachableSTG spec will displays the reachable STG cor-
responding to spec component.

5. showRealizableSTG displays realizable STGs corresponding the specifica-
tions in parameters

− Parameters: A list of global component names separating by space, and a
communication mode which is one of the following: SYNC, ASYNC SENDER,
ASYNC RECEIVER or ASYNC DISJOINT

120 Appendix A. SChorA Syntax

− Example: showRealizableSTG spec SYNC displays the realizable STG
corresponding to spec component under synchronous communication
mode.

6. projection generates local STGs of global component specifications. The pa-
rameters of projection command are same as the one of showRealizableSTG
command.

7. conformance verifies SBBC relation between two components

− Parameters: a name of implementation component, and a name of chore-
ography component

− Example: conformance impl spec will check whether impl component
conform to spec component

An example of a SChorA script is as in Listing A.4, in which a single line comment
is put after //, and a multi-line comment is put inside /∗ and ∗/:

Listing A.4: Example of SChorA Script
1 /* This script show STG of online shopping choreography which involves 2

roles: b (buyer), v (vendor)
2 We declare 2 components using DOT and chorD language. */
3 DECLARATIONS
4 component spec STG
5 0; 1; 2; 3; //list of states
6 //list of transitions
7 0 -> 1 [label="request[b,v].<x>"];
8 1 -> 2 [label="[x<=0] error[v,b]."];
9 2 -> 1 [label="request[b,v].<x>"];

10 1 -> 3 [label="[x>0] response[v,b].<x1 >"];
11 end component
12
13 component impl chorD
14 request[b,v].<y> ; (response[v,b].<y1 >
15 + [y<=0] * (error[v,b] ; request[b,v].<y>))
16 end component
17
18 //List of commands
19 COMMANDS
20 showSTG shopping impl // display graphically
21 projection spec SYNC // project spec under sync. communication mode
22 conformance impl spec //check conformance

Bibliography

Andrés, C., Emilia Cambronero, M., and Núñez, M. (2010). Passive Testing of Web
Services. In WS-FM. Springer.

Andrés, C., Merayo, M. G., and Núñez, M. (2009). Applying Formal Passive Testing
to Study Temporal Properties of the Stream Control Transmission Protocol. In
SEFM.

Arbab, F. (1998). What Do You Mean, Coordination? In NVTI, pages 1–18.

Arbab, F. (2004). Reo : A Channel-based Coordination Model for Component
Composition. Mathematical Structures in Computer Science, 14(03):329–366.

Autili, M., Di Ruscio, D., Di Salle, A., Inverardi, P., Tivoli, M., Ruscio, D. D.,
and Salle, A. D. (2013). A Model-based Synthesis Process for Choreography
Realizability Enforcement. In FASE, volume 257178.

Barker, A., Walton, C. D., and Robertson, D. (2009). Choreographing Web Services.
IEEE Transactions on Services Computing, 2(2):152–166.

Basu, S. and Bultan, T. (2011). Choreography Conformance via Synchronizability.
In WWW, pages 795–804. ACM.

Basu, S., Bultan, T., and Ouederni, M. (2012). Deciding Choreography Realizability.
In POPL.

Bayse, E., Cavalli, A. R., Núñez, M., and Zäıdi, F. (2005). A Passive Testing
Approach based on Invariants: Application to the WAP. Computer Networks,
48(2):235–245.

Bentakouk, L., Poizat, P., and Zäıdi, F. (2009). A Formal Framework for Service
Orchestration Testing based on Symbolic Transition Systems (long version). In
TESTCOM, pages 1–19.

Bentakouk, L., Poizat, P., and Zäıdi, F. (2011). Checking The Behavioral Confor-
mance of Web Services with Symbolic Testing and an SMT Solver. In TAP.

121

122 Bibliography

Bergstra, J. A., Ponse, A., and Smolka, S. A., editors (2001). Handbook of Process
Algebra. Elsevier.

Bertolino, A., Inverardi, P., Pelliccione, P., and Tivoli, M. (2009). Automatic Synthe-
sis of Behavior Protocols for Composable Web Services. In Proc. of ESEC/FSE.

Bhattacharjee, A. and Shyamasundar, R. (2008). ScriptOrc: A Specification Language
for Web Service Choreography. In APSEC, pages 1089–1096.

Bozkurt, M., Harman, M., and Hassoun, Y. (2010). Testing Web Services: a Survey.
Technical report, King’s College London.

Bravetti, M. and Zavattaro, G. (2007). Towards a Unifying Theory for Choreography
Conformance and Contract Compliance. In SC.

Bultan, T., Ferguson, C., and Fu, X. (2009). A Tool for Choreography Analysis
Using Collaboration Diagrams. In International Conference on Web Services,
pages 856–863.

Bultan, T. and Fu, X. (2008). Specification of Realizable Service Conversations using
Collaboration Diagrams. In SOCA, volume 2, pages 27–39.

Bultan, T., Fu, X., and Su, J. (2006). Analyzing Conversations of Web Services.
IEEE Internet Computing, 10(1):18–25.

Busi, N., Gorrieri, R., Guidi, C., Lucchi, R., and Zavattaro, G. (2006). Choreography
and Orchestration Conformance for System Design. In COORDINATION.

Cámara, J., Salaün, G., Canal, C., and Ouederni, M. (2012). Interactive Specification
and Verification of Behavioral Adaptation Contracts. Information & Software
Technology, 54(7):701–723.

Capizzi, S., Solmi, R., and Zavattaro, G. (2004). From Endogenous to Exogenous
Coordination Using Aspect-Oriented Programming. In COORDINATION, pages
105–118.

Decker, G., Kopp, O., and Barros, A. (2008). An Introduction to Service Choreogra-
phies. Information Technology, 50(2):122–127.

Decker, G. and Weske, M. (2011). Interaction-centric modeling of process choreogra-
phies. Information Systems, 36(2):292–312.

Deng, W. and Lin, H. (2005). Extended Symbolic Transition Graphs with Assignment.
COMPSAC.

Bibliography 123

Diaz, G. and Rodriguez, I. (2009). Automatically Deriving Choreography-Conforming
Systems of Services. In SCC, pages 9–16.

Fernandes, F., Passama, R., and Royer, J.-C. (2007). Components with Symbolic
Transition Systems: a Java Implementation of Rendezvous. In CAP, number i.

Fernandes, F. and Royer, J.-c. (2007). The STSLib Project : Towards a Formal
Component Model Based on STS. In FACS.

Foster, H., Uchitel, S., Magee, J., and Kramer, J. (2005). Tool support for model-
based engineering of Web service compositions. International Conference on Web
Services, 1:95–102.

Fu, X., Bultan, T., and Su, J. (2004). Conversation Protocols: A Formalism for
Specification and Verification of Reactive Electronic Services. Theoretical Computer
Science, 328(1-2):19–37.

Gaston, C., Gall, P. L., and Rapin, N. (2006). Symbolic Execution Techniques for
Test Purpose Definition. In TESTCOM.

Glenford J. Myers (2004). The art of software testing. John Wiley and Sons.

Hallé, S. and Villemaire, R. (2009). Runtime Monitoring of Web Service Choreogra-
phies using Streaming XML. In SAC.

Hennessy, M. and Lin, H. (1995). Symbolic Bisimulations. Theoretical Computer
Science, 138(2):353–389.

Hwang, S.-Y., Liao, W.-P., and Lee, C.-H. (2010). Web Services Selection in Support
of Reliable Web Service Choreography. ICWS, pages 115–122.

Jane Radatz, C. (1990). IEEE standard glossary of software engineering terminology.
IEEE Std 610121990.

Jungmayr, S. (2004). Improving testability of object oriented systems. Naturwis-
senschaften.

Kazhamiakin, R. and Pistore, M. (2006a). Analysis of Realizability Conditions for
Web Service Choreographies. FORTE, pages 61–76.

Kazhamiakin, R. and Pistore, M. (2006b). Choreography Conformance Analysis :
Asynchronous Communications and Information Alignment. In WS-FM.

Kazhamiakin, R., Pistore, M., and Santuari, L. (2006). Analysis of Communication
Models in Web Service. In WWW.

124 Bibliography

Knuplesch, D., Pryss, R., and Reichert, M. (2012). Data-aware Interaction in
Distributed and Collaborative Workflows: Modeling, semantics, correctness. In
CollaborateCom, pages 223– 232.

Kopp, O. and Leymann, F. (2009). Do We Need Internal Behavior in Choreography
Models? In 1st Central European Workshop on Servies and their Composition
(ZEUS).

Kopp, O., Leymann, F., and Wu, F. (2010). Mapping Interconnection Choreography
Models to Interaction Choreography Models. In Central-European Workshop on
Services and their Composition, ZEUS, pages 1–8.

Ladani, B. T., Alcalde, B., Cavalli, A., and Landi, B. T. (2005). Passive Testing - A
Constrained Invariant Checking Approach. In TESTCOM.

Lanese, I., Guidi, C., Montesi, F., and Zavattaro, G. (2008). Bridging the Gap
between Interaction- and Process-Oriented Choreographies. In SEFM, pages
323–332.

Laycock, G. T. (1993). The Theory and Practice of Specification based Software
Testing. PhD thesis, Sheffeild Universtiy.

Lee, D., Netravali, A., Sabnani, K., and Sugla, B. (1997). Passive testing and
application to network manager. Conference on Network.

Li, J., He, J., Zhu, H., and Pu, G. (2007a). Modeling and Verifying Web Services
Choreography Using Process Algebra. SEW, pages 256–268.

Li, J., Zhu, H., and Pu, G. (2007b). Conformance Validation between Choreography
and Orchestration. In TASE.

Li, S., Wang, J., Dong, W., and Zhi-Chang Qi (2004). Property-Oriented Testing of
Teal-Time Systems. APSEC.

Li, Z. and Chen, H. (1999). Computing Strong/Weak Bisimulation Equivalences and
Observation Congruence for Value-Passing Processes. In International Conference
on Tools and Algorithms for the Construction and Analysis of Systems.

Lin, H. (1996). Symbolic Transition Graph with Assignment. In CONCUR’96.

Lohmann, N. and Wolf, K. (2010). Realizability is controllability. In WS-FM, pages
110–127.

Mateescu, R., Poizat, P., and Salaün, G. (2012). Adaptation of Service Protocols
Using Process Algebra and On-the-Fly Reduction Techniques. IEEE Transactions
on Software Engineering, 38(4):755–777.

Bibliography 125

McIlvenna, S., Dumas, M., and Wynn, M. T. (2009). Synthesis of Orchestrators
from Service Choreographies. In APCCM, pages 129–138.

Mei, L., Chan, W. K., and Tse, T. H. (2009). Data Flow Testing of Service
Choreography. In ESEC/FSE.

Mendling, J. and Hafner, M. (2008). From WS-CDL choreography to BPEL process
orchestration. Journal of Enterprise Information Management, 21(5):525–542.

Meng, S. and Arbab, F. (2007). Web Services Choreography and Orchestration in
Reo and Constraint Automata. In SAC.

Milner, R. (1999). Communicating and mobile systems: the pi-calculus, volume 13.
Cambridge university press CambridgeUK.

Moser, O., Rosenberg, F., and Dustdar, S. (2008a). Non-intrusive monitoring and
service adaptation for WS-BPEL. In WWW.

Moser, O., Rosenberg, F., and Dustdar, S. (2008b). VieDAME - flexible and robust
BPEL processes through monitoring and adaptation. In ICSE, page 917.

Nguyen, H. N., Poizat, P., and Zäıdi, F. (2012a). A Symbolic Framework for
the Conformance Checking of Value-Passing Choreographies. In International
Conference on Service Oriented Computing, pages 525–532.

Nguyen, H. N., Poizat, P., and Zäıdi, F. (2012b). Online Verification of Value-Passing
Choreographies through Property-Oriented Passive Testing. In IEEE International
Symposium on High Assurance Systems Engineering, pages 106–113.

Nguyen, H. N., Poizat, P., and Zäıdi, F. (2012c). Passive Conformance Testing of
Service Choreographies. In SAC, pages 1927–1934.

Nguyen, H. N., Poizat, P., and Zäıdi, F. (2013). Automatic Skeleton Generation for
Data-Aware Service Choreographies. In ISSRE.

Paci, F., Ouzzani, M., and Mecella, M. (2008). Verification of access control require-
ments in web services choreography. In SCC, pages 5–12.

Pathak, J., Basu, S., Lutz, R., and Honavar, V. (2008). MoSCoE: An Approach
for Composing Web Services through Interative Reformulation of Functional
Specification. International Journal on Artificial Intelligence Tools, 17(01):109.

Pavel, S., Noyé, J., Poizat, P., and Royer, J.-C. (2005). A Java Implementation of a
Component Model with Explicit Symbolic Protocols. In SC.

126 Bibliography

Peltz, C. (2003). Web Services Orchestration and Choreography. Computer, pages
46–52.

Poizat, P. (2011). Formal Model-Based Approaches for the Development of Composite
Systems. Habilitation thesis, Université Paris Sud.

Poizat, P. and Salaün, G. (2012). Checking the Realizability of BPMN 2.0 Chore-
ographies. In SAC, number 1, pages 1927–1934.

Qiu, Z., Zhao, X., Cai, C., and Yang, H. (2007). Towards The Theoretical Foundation
of Choreography. In WWW.

Quinton, S., Ben-hafaiedh, I., and Graf, S. (2009). From Orchestration to Choreog-
raphy: Memoryless and Distributed Orchestrators. In FLACOS. Citeseer.

Rafiq, O. and Cacciari, L. (2003). Coordination Algorithm for Distributed Testing.
The Journal of Supercomputing, 24:203–211.

Repasi, T. (2009). Software testing - State of the art and current research challanges.
2009 5th International Symposium on Applied Computational Intelligence and
Informatics, pages 47–50.

Roohi, N. and Salaün, G. (2011). Realizability and Dynamic Reconfiguration of
Chor Specifications. Informatica, 35:39–49.

Salaün, G., Bultan, T., and Roohi, N. (2012). Realizability of Choreographies
using Process Algebra Encodings. IEEE Transaction on Services Computing,
5(3):290–304.

Salaün, G. and Roohi, N. (2009). On Realizability and Dynamic Reconfiguration of
Choreographies. In WASELF, volume 3.

Simmonds, J., Gan, Y., Chechik, M., Nejati, S., O’Farrell, B., Litani, E., and
Waterhouse, J. (2009). Runtime Monitoring of Web Service Conversations. IEEE
Transactions on Services Computing, 2(3):223–244.

Su, J., Bultan, T., Fu, X., and Zhao, X. (2007). Towards a Theory of Web Service
Choreographies. In WS-FM.

Sun, J., Liu, Y., Dong, J. S., Pu, G., and Tan, T. H. (2010). Model-Based Methods
for Linking Web Service Choreography and Orchestration. In APSEC, pages
166–175.

ter Beek, M., Bucchiarone, A., and Gnesi, S. (2007). Formal Methods for Service
Composition. Annals of Mathematics, Computing & Teleinformatics, 1(5):1–10.

Bibliography 127

Valero, V., Emilia Cambronero, M., Dıaz, G., and Macià, H. (2009). A Petri net
approach for the design and analysis of Web Services Choreographies. Journal of
Logic and Algebraic Programming, 78(5):359–380.

van der Aalst, W., Dumas, M., Ouyang, C., Rozinat, A., and Verbeek, H. (2006).
Choreography conformance checking: an approach based on BPEL and Petri Nets.
In ePrints Archive, pages 1–71. Citeseer.

Van Glabbeek, R. J. and Weijland, W. P. (1996). Branching Time and Abstraction
in Bisimulation Semantics. Journal of the ACM, 43(3):555–600.

World Wide Web Consortium (2005). Web Services Choreography Description
Language Version 1.0.

Wu, G., Wei, J., and Huang, T. (2008). Flexible Pattern Monitoring for WS-BPEL
through Stateful Aspect Extension. In ICWS, pages 577–584.

Xiangpeng, Z., Hongli, Y., Zongyan, Q., Yang, H., Zhao, X., Qiu, Z., Pu, G., and
Wang, S. S. (2006). A Formal Model for Web Service Choreography Description
Language (WS-CDL). In International Conference on Web Services, number
605730081, pages 273–287.

Yoon, Y., Ye, C., and Jacobsen, H. (2011). A Distributed Framework for Reliable
and Efficient Service Choreographies. In WWW, pages 785–794.

Zaha, J., Dumas, M., Hofstede, A., Barros, A., and Decker, G. (2006). Service
Interaction Modeling : Bridging Global and Local Views. In EDOC, pages 45–55.

Zäıdi, F., Bayse, E., and Cavalli, A. (2009). Network Protocol Interoperability
Testing based on contextual Signatures and Passive Testing. In SAC.

Zhou, L., Ping, J., Xiao, H., Wang, Z., Pu, G., and Ding, Z. (2010). Automatically
Testing Web Services Choreography with Assertions. In International Conference
on Formal Engineering Methods.

	Contents
	List of Figures
	List of Tables
	List of Listings
	List of Acronyms
	1 Introduction
	1.1 General Context
	1.2 Problem Statement
	1.3 Overview of Our Approach
	1.4 Contributions of the Thesis
	1.5 Publications
	1.6 Outline of the Thesis

	2 Service Choreographies: Issues & Challenges
	2.1 Service Choreography
	2.1.1 Coordination Languages and Models
	2.1.2 Service Choreography
	2.1.3 Choreography Development: Issues and Challenges

	2.2 Choreography Modeling
	2.2.1 Basic Elements
	2.2.2 Data Support
	2.2.3 Communication Modes
	2.2.4 Parallelism

	2.3 Realizability & Projection
	2.3.1 Realizability Notions
	2.3.2 Realizability through Projection
	2.3.3 Causes of Unrealizability
	2.3.4 Enforcing Realizable Choreographies
	2.3.5 Impact of Data on Realizability

	2.4 Conformance Checking
	2.4.1 Choreography Conformance
	2.4.2 Conformance Relation
	2.4.3 Impact of Data on Conformance Relation

	2.5 Choreography Testing
	2.5.1 Formal Software Testing
	2.5.2 Service Choreography Testing

	3 A Symbolic Model of Choreographies
	3.1 Specification Language
	3.1.1 Basic Events: Interaction vs. Sending & Reception
	3.1.2 General Language

	3.2 Symbolic Semantics
	3.2.1 Symbolic Transition System
	3.2.2 Transformation Rules
	3.2.3 STG Product
	3.2.4 Reachability

	3.3 Symbolic Conformance
	3.3.1 Making Implementation and Specification Comparable
	3.3.2 Conformance Relation
	3.3.3 Conformance Computation
	3.3.4 PES Satisfiability and Conformance Verdict

	3.4 Realizability Checking & Projection
	3.4.1 Event connectedness
	3.4.2 Data connectedness
	3.4.3 Branching decision

	3.5 Tool & Experimental Evaluations
	3.5.1 Boolean Condition Solver
	3.5.2 Tool Architecture
	3.5.3 Experimental Evaluation

	3.6 Discussion

	4 Passive Testing of Choreographies
	4.1 Passive Conformance Testing
	4.1.1 Chor Language & Trace Semantics
	4.1.2 Local & Global Conformance
	4.1.3 Implementation
	4.1.4 Observation of SOAP Messages
	4.1.5 Global Log Synthesis
	4.1.6 Testing Algorithm
	4.1.7 Tool & Experimental Evaluation

	4.2 Online Property-Oriented Testing
	4.2.1 Symbolic Transition Graph with Assignments
	4.2.2 Local Properties
	4.2.3 Global Property
	4.2.4 Implementation
	4.2.5 Experimental Evaluation

	4.3 Discussion

	5 Case Study
	5.1 Case Study Description
	5.2 Verification
	5.2.1 Reachability Checking
	5.2.2 Realizability Checking
	5.2.3 Choreography Projection
	5.2.4 Conformance Checking

	5.3 Testing
	5.3.1 Conformance Testing
	5.3.2 Property-Oriented Testing

	6 Conclusions and Perspectives
	6.1 Synthesis of Results
	6.2 Perspectives

	A SChorA Syntax
	A.1 Declaration Part
	A.2 Command Part

	Bibliography

