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Abstract

With the rise of the usage of computers and mobile devices, and the higher price of

electricity, energy management of software has become a necessity for sustainable soft-

ware, devices and IT services. Energy consumption in IT is rising through the rise of web

and distributed services, cloud computing, or mobile devices. Therefore, energy manage-

ment approaches have been developed, ranging from optimizing software code, to adapta-

tion strategies based on hardware resources utilization. However, these approaches do not

use proper energy information for their adaptations rendering themselves limited and not

energy-aware. They do not provide an energy feedback of software, and limited information

is available on how and where energy is spend in software code.

To address these shortcomings, we present, in this thesis, energy models, approaches

and tools in order to accurately estimate the energy consumption of software at the applica-

tion level, at the code level, and for inferring energy evolution models based on the method’s

own input parameters. We also propose JALEN and JALEN UNIT, energy frameworks for

estimating how much energy each portion of code consumes, and for inferring energy evo-

lution models based on empirical benchmarking of software methods. By using software

estimations and energy models, we are able to provide accurate energy information without

the need of power meters or hardware energy investment. The energy information we pro-

vide also gives energy management approaches direct and accurate energy measurements

for their adaptations and optimizations. Provided energy information also draws a model

of energy consumption evolution of software based on the values of their input parameters.

This gives developers knowledge on energy efficiency in software leading to choose some

code over others based on their energy performance.

The experimentations using the implementations of our energy models offer important

information on how and where energy is spend in software. In particular, we provide em-

pirical comparison of programming languages (PL), algorithms implementations, the cost of

using a virtual machine in PL, compilers’ options, and I/O primitives. They also allow the

detection of energy hotspots in software, therefore focusing on the main spots where further

lookups are needed for energy optimizations. Finally, we demonstrate how our benchmark-

ing framework can detect energy evolution patterns based on input parameters strategies.

With our contributions, we aim to advance knowledge in energy consumption in soft-

ware by proposing models, approaches and tools to accurately measure energy at finer

grains. In a nutshell, we build a software-centric energy microscope and conduct experiments

aimed to understand how energy is being consumed in software, and directions to be taken

for energy optimized software.





Résumé

Avec l’augmentation de l’utilisation des ordinateurs et des appareils mobiles, et la hausse

du prix de l’électricité, la gestion énergétique des logiciels est devenue une nécessité pour

des logiciels, appareils et services durables. La consommation énergétique augmente dans

les technologies informatiques, notamment à cause de l’augmentation de l’utilisation des

services web et distribuée, l’informatique dans les nuages, ou les appareils mobiles. Par

conséquent, des approches de gestion de l’énergie ont été développées, de l’optimisation

du code des logiciels, à des stratégies d’adaptation basées sur l’utilisation des ressources

matérielles.

Afin de répondre à ces lacunes, nous présentons dans cette thèse, des modèles énergé-

tiques, approches et outils pour estimer fidèlement la consommation énergétique des logi-

ciels, au niveau de l’application, et au niveau du code, et pour inférer le modèle d’évolution

énergétique des méthodes basé sur leurs paramètres d’entrées. Nous proposons aussi JALEN

et JALEN UNIT, des frameworks énergétiques pour estimer la consommation énergétique

de chaque portion de code de l’application, et pour inférer le modèle d’évolution énergé-

tique des méthodes en se basant sur des études et expériences empiriques. En utilisant des

modèles énergétiques et d’outils d’estimations logicielles, nous pouvons proposer des in-

formations énergétiques précises sans avoir besoin de wattmètres ou d’investissement de

matériels de mesures énergétiques. Les informations énergétiques que nous proposons,

offrent aussi aux approches de gestion énergétique des mesures directes et précises pour

leurs approches d’adaptations et d’optimisations énergétiques. Ces informations énergé-

tiques établissent aussi un modèle d’évolution énergétique des logiciels en se basant sur

leurs paramètres d’entrées. Cela offre aux développeurs une connaissance plus profonde

sur l’efficacité énergétique dans les logiciels. Cette connaissance amènera les développeurs

à choisir un certain code au lieu d’un autre en se basant sur son efficacité énergétique.

Les expérimentations utilisant l’implémentation de nos modèles énergétiques offrent

des informations importantes sur comment et où l’énergie est consommée dans les logi-

ciels. Plus particulièrement, nous proposons des comparaisons empiriques des langages de

programmation (LP), des implémentations d’algorithmes, du coût de l’utilisation d’une ma-

chine virtuelle dans les LP, des options des compilateurs, et des primitives d’entrées/sorties.

Nos outils permettent aussi de détecter les hotspots énergétiques dans les logiciels, perme-

ttant ainsi de focaliser sur les principaux endroits où davantage d’études sont nécessaires

pour l’optimisation énergétique. Finalement, nous démontrons comment notre framework

d’étude empirique permet de détecter les modèles d’évolution énergétique en se basant sur

les stratégies d’évolution des paramètres d’entrées.

Grâce à notre contribution, nous visons d’évoluer la connaissance dans le domaine de

la consommation énergétique dans les logiciels, en proposant des modèles, des approches et



des outils pour mesurer avec précision la consommation énergétique à des grains plus fins.

En un mot, nous avons construit un microscope logiciel et énergétique, et avons mener des

expérimentations afin de comprendre comment l’énergie est consommée dans les logiciels,

et les chemins à prendre pour produire des logiciels optimisés énergétiquement.



موجز

مع إزدياد إستخدام أجهزة الحاسوب و الأجهزة النقالة، و مع إرتفاع أسعار الكهرباء، أصبحت إدارة 
إستهلاك  .إستهلاك الطاقة في التطبيقات و البرمجيات ضرورة من أجل تطبيقات، أجهزة و خدمات مستدامة

الويب، الخدمات الموزعة، الحوسبة  الطاقة في تكنولوجيا المعلومات يزداد بسبب إرتفاع إستخدام خدمات

لذلك، تم تطوير مناهج لإدارة الطاقة في البرمجيات، و تتراوح هذه المناهج بين  .السحابية، و الأجهزة النقالة
و لكن، هذه المناهج لا  .تحسين شفرة البرمجيات، إلى خطط تكيفّ تعتمد على مدى إستخدام موارد الإجهزة

بشكل مناسب من أجل خطط التكيفّ، فتصبح هذه المناهج محدودة التأثير في تعتمد على معلومات الطاقة 
لا تقدم هذه المناهج معلومات عن إستهلاك الطاقة في البرمجيات، و هناك معلومات قليلة  .مجال الطاقة

.متوفرة حول كيف و أين يتم إستهلاك الطاقة في شفرة البرمجيات

طروحة صيغ، مناهج و برامج من أجل تقدير بشكل دقيق إستهلاك لمعالجة هذه القصور، نقدم في هذه الأ
الطاقة في البرمجيات على مستوى البرنامج و على مستوى شفرة البرمجيات، و عبر إستدلال نموذج تطور 

، منصات برمجيات من أجل Jalen Unitو Jalenنقدّم أيضًا  .الطاقة في البرمجيات طبقا لمعلومات الإدخال
تهلاك الطاقة في كل جزء من شفرة البرمجيات، و من أجل إستدلال نموذج تطور الطاقة معرفة نسبة إس

عبر إستخدام التقديرات البرمجية من أجل معرفة إستهلاك الطاقة، نستطيع  .إعتمادًا على إختبارات تجريبية
تثمار في هذه أن نقدم معلومات دقيقة حول إستهلاك الطاقة من دون إستخدام آلات لقياس الطاقة أو الإس

معلومات الطاقة التي نقدمها تعطي مناهج إدارة الطاقة قياسات دقيقة و مباشرة للطاقة من أجل خطط  .الآلات
هذه المعلومات تقدم أيضًا نموذج تطور الطاقة معتمدة على معلومات  .تكيفها و مقاربات تحسين البرمجيات

معرفة حول كفاءة البرمجيات، و تؤدي إذن إلى إختيار هذه المعلومات تعطي المطوّرين  .الإدخال للبرمجيات
.شفرة برمجية ما على حساب أخرى طبقا لأدائها في مجال إستهلاك الطاقة

الإختبارات التي قمنا بها بإستخدام برامجنا التي تنفذ صيغ الطاقة التي طوّرناها، تقدّم معلومات هامة حول 
بشكل خاص، نقدّم مقارنات تجريبية حول لغات البرمجة،  .اتكيف و أين يتم إستهلاك الطاقة في البرمجي

تطبيق الخوارزميات، ثمن إستخدام آلة إفتراضية في لغات البرمجة، خصائص مترجمات لغات البرمجة، و 
نستطيع أيضًا إكتشاف النقاط الساخنة في إستهلاك الطاقة في البرمجيات  .وظائف المدخلات و المخرجات

أخيرًا، نبرهن كيف أن منصة برمجياتنا الإختبارية  .ثر من أجل تحسين إستهلاك الطاقةحيث يجب التدقيق أك
تستطيع أن تكتشف نموذج تطور إستهلاك الطاقة في البرمجيات إعتمادًا على خطط تطور معلومات 

.الإدخال

، مناهج و برامج عبر إسهاماتنا، نهدف إلى تطوير المعرفة في إستهلاك الطاقة في البرمجيات عبر تقديم صيغ
برمجي من أجل قياس إستهلاك الطاقة، و قمنا  مجهربإختصار، طوّرنا  .من أجل قياس الطاقة بشكل دقيق

بإختبارات تهدف إلى فهم كيف يتم إستهلاك الطاقة في البرمجيات، و الإتجاهات التي يتعينّ إتخاذها من 
.أجل بناء برمجيات كفوءة في إستهلاك الطاقة





Contents

List of Tables xiii

Part I Context and Problem Statement 1

Chapter 1 Introduction 3

1.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Research Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Organization of the Document . . . . . . . . . . . . . . . . . . . . . . . . . 7

Chapter 2 State of the Art 9

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Energy Management Approaches . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 From Managing to Measuring Energy of Middleware and Software . . . . 27

2.4 Energy Measurement Approaches . . . . . . . . . . . . . . . . . . . . . . . 28

2.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

vii



Contents

Part II Energy Measurement and Evolution 41

Chapter 3 Energy Measurement at the Application Level 43

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.2 Energy Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.3 Experimentations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.4 Discussions and Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.6 The Need for Code Level Measurement . . . . . . . . . . . . . . . . . . . . 65

Chapter 4 Energy Measurement at the Code Level 67

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.2 Energy Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.3 Jalen: Measuring Energy Consumption of Java Code . . . . . . . . . . . . 72

4.4 Experimentations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.5 Discussions and Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

4.7 The Need for Energy Evolution Modeling . . . . . . . . . . . . . . . . . . 92

Chapter 5 Unit Testing of Energy Consumption 95

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.2 Modeling Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.3 Jalen Unit: Modeling Software Methods Energy Consumption . . . . . . . 101

5.4 Inferring Automatically the Energy Model of Software Libraries . . . . . 104

5.5 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

5.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

viii



Part III Conclusion and Perspectives 113

Chapter 6 Conclusion and Perspectives 115

6.1 Summary of the Dissertation . . . . . . . . . . . . . . . . . . . . . . . . . . 115

6.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

6.3 Perspectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

6.4 Publications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

Bibliography 125

Appendices 133

Appendix A Jalen Unit Injectors 135

ix



Contents

x



List of Figures

2.1 The comparison taxonomy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.1 Methodology of measurement at application level. . . . . . . . . . . . . . . . . 45

3.2 CPU model for software. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.3 Network model for software. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.4 PowerAPI architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.5 Accuracy of CPU model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.6 Stressing Jetty and Tomcat web servers and MPlayer . . . . . . . . . . . . . . . 54

3.7 An example of the impact of CPU frequencies on energy consumption. . . . . 55

3.8 CPU and network power consumption in Iperf stress test. . . . . . . . . . . . 55

3.9 Energy consumption of the recursive implementation of the Tower of Hanoi

program in different languages (using a base 10 logarithmic scale). . . . . . . 57

3.10 Energy consumption cost and execution time of the recursive implementation

of the Tower of Hanoi program in different languages . . . . . . . . . . . . . . 59

3.11 Energy consumption of the recursive implementation of Tower of Hanoi pro-

gram in C and C++ using O2 and O3 GCC and G++ compilers’ options. . . . 60

3.12 Energy consumption of the recursive and iterative implementation of Tower

of Hanoi program in C++. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.1 Methodology of measurement at code level. . . . . . . . . . . . . . . . . . . . . 69

4.2 Jalen’s architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.3 The approach of the instrumentation version of Jalen. . . . . . . . . . . . . . . 75

4.4 The approach of the sampling version of Jalen. . . . . . . . . . . . . . . . . . . 76

xi



List of Figures

4.5 The energy information call tree provided by Jalen. . . . . . . . . . . . . . . . 77

4.6 Energy consumption of methods called by Google Guava’s join method when

varying its string parameter size, using statistical sampling and instrumenta-

tion versions of Jalen. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

4.7 Comparison between energy consumption and CPU time of Tower of the re-

cursive version of the Towers of Hanoi program. . . . . . . . . . . . . . . . . . 81

4.8 Overhead of individual Tomcat requests using ApacheBench. . . . . . . . . . 82

4.9 Energy consumption percentage using the statistical sampling of Jalen, of the

recusrive version of the Towers of Hanoi program. . . . . . . . . . . . . . . . . 83

4.10 Percentage of CPU energy consumption of the top 10 most energy consuming

methods of Xalan Dacapo benchmark, on a Dell workstation and on a Mac-

Book Pro. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

4.11 Energy consumption of the 10 most energy consuming methods of Jetty in our

experiment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.12 Energy per invocation (epi) of the 10 most energy consuming methods of Jetty

in our experiment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

4.13 Energy consumption in percentage of the 6 most energy consuming classes of

Jetty in our experiment. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.14 Percentage of CPU energy consumption of the top 10 most energy consuming

methods of 5 Dacapo benchmarks. . . . . . . . . . . . . . . . . . . . . . . . . . 90

5.1 Evolution of the energy consumption of RSA asymmetric encryption/decryp-

tion according to key length. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

5.2 Energy consumption of Guava’s join method when varying the string size. . . 99

5.3 Energy consumption of Guava’s join method when varying the number of

strings. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.4 Jalen Unit approach. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.5 Energy evolution model of four methods from the Violin String Java library . 106

xii



List of Tables

2.1 Summary of rule-based and proxy-based approaches . . . . . . . . . . . . . . 18

2.2 Summary of other middleware approaches . . . . . . . . . . . . . . . . . . . . 19

2.3 Comparative table of middleware platform solutions for energy management 24

2.4 Comparative table of energy measurement approaches . . . . . . . . . . . . . 38

3.1 Frequencies and voltages for Intel Pentium M processor . . . . . . . . . . . . . 47

xiii





Part I

Context and Problem Statement

1





Chapter 1

Introduction

“Innovation is hard. It really is. Because most people don’t get it. Remember, the automobile, the

airplane, the telephone, these were all considered toys at their introduction because they had no

constituency. They were too new."-Nolan Bushnell

Contents

1.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Research Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Organization of the Document . . . . . . . . . . . . . . . . . . . . . . . 7

Energy consumption of computers and software is becoming a major factor in design-

ing, building and using sustainable technologies. The topic of energy is becoming main-

stream, as more approaches, software, hardware and technologies are being proposed for

energy management, optimization or measurement. Information and Communication Tech-

nology (or ICT) accounted for 2% of global carbon emission in 2007 [Gar07] or 830 MtCO2e

(Metric Tonne Carbon Dioxide Equivalent), and is expected to grow to 1,430 MtCO2e in

2020 [Web08]. However, the Climate Group also estimates that ICT solutions could reduce

15% of carbon emissions in 2020 [Web08]. On the other hand, in term of energy consump-

tion, ICT consumed up to 7% of global power consumption (or 168 Gigawatt, or GW) in

2008 [VVHC+10]. This number is expected to double by 2020 to 433 GW, or more than 14.5%

of global power consumption [VVHC+10]. These numbers show that although ICT could

help reduce energy consumption and carbon emissions of other domains, its own carbon

footprint and energy consumption is predicted to rapidly grow. The need to accurately mea-

sure and optimize energy efficiency of ICTs is therefore a necessity for the next years and

decades.

In addition, software and computer configurations are using distributed services and are

constantly powered up. Mobile devices (such as smartphones), servers in data centers, and

3



Chapter 1. Introduction

desktop computers, consume a rising amount of energy. The diversity of software and hard-

ware configurations makes the middleware layer a good candidate for managing energy

consumption. However, managing energy and adapting software and devices for energy

concerns require to accurately measure this energy consumption. Existing approaches are

limited to using resources utilization information, or coarse-grained hardware-based mea-

surements. A new generation of models, approaches and tools is therefore needed for mea-

suring the energy consumption of software.

In the remainder of this chapter, we outline the problems that motivate this research in

Section 1.1. Next, in Section 1.2, we present our research goals. Then, we summarize the

contribution of our thesis in Section 1.3. Finally, we conclude with a brief introduction of

each of the chapters of this document.

1.1 Problem Statement

Existing approaches for energy management and energy measurements are subject to many

limitations hampering the efforts for building efficient and accurate energy management

approaches. A number of open problems have limited the efficiency of energy management

and measurement. During this dissertation, we have identified the following issues.

Lack of Context-Adapted Energy Measurement Approaches

Existing energy management middleware and software do not use direct energy measure-

ments. They use resources utilization as a key metric for energy estimation. This method-

ology lacks accurate energy measurements, therefore adaptations have, at best, gross effi-

ciency when managing software. The diversity and evolution of hardware and software in

term of energy efficiency implies that energy modeling and estimations need to be as ac-

curate as possible. Modern CPUs, for example, have multiple energy optimization features

that simple resources utilization mapping is not enough to get accurate measurements (e.g.,

DVFS, multi-cores, etc.). In addition, existing energy management approaches base their

adaptations and optimizations on configuration and domain-specific algorithms, protocols

or rules. Therefore, their approaches can only be applied in a restrained set of configurations.

For example, many require the usage of a hardware power meter for measuring energy, thus

limiting the usability of such approach to an additional hardware investment. The difficulty

of the latter, in terms of additional financial, usability, and energy costs, makes it a difficult

choice for efficient and context-adapted energy measurements.

Limited Granularity in Software Energy

Measuring energy consumption in software is also a question of granularity. The problem

here is that coarse-grained approaches provide little usable information on the energy con-

sumption of software. Hardware power meters give accurate energy consumption results

4



1.2. Research Goals

but for a whole device or hardware, such as the energy consumption of a computer laptop

(including the screen, keyboard, mouse, etc.). This makes difficult for software developers,

engineers and scientists to extrapolate and calculate the energy consumption of particular

software. It is even nearly impossible to use such hardware meters to measure the energy

consumption of software code, such as methods in an application. The latter adds additional

problems, such as how to isolate the energy consumption of methods, and how to provide

accurate estimation at this code level that is several layers away from the hardware, i.e.,

the actual material consuming the electric energy. There is limited granularity in existing

approaches for measuring the energy consumption of software.

Limited Understanding of Software Energy Consumption

Beside the lack of energy measurement approaches based on context information and their

limited granularity, the green computing community have limited understanding of how

software consumes the energy at the code level. Lots of research has been done into un-

derstanding the internal functioning of software in term of execution time or memory man-

agement, but few empirical-based research exists for energy consumption in software. Un-

derstanding how energy is being consumed by software, in particular at the code level, is

a key for developing better energy efficient software. We also need to experiment and thus

understand where energy is being spent by the internal components of software, which part

is consuming more, and most importantly, why this energy consumption is happening as it

is? What is the impact of modifying the programming language, the compiler or evolving

the parameters of a method on the energy consumption? The answers to these questions are

valuable knowledge into writing energy efficient code and software.

1.2 Research Goals

Given the problems we identified in the previous section, our goals in this dissertation are

focused on bringing solutions for accurately measuring energy in software, at a finer-level,

and understanding this energy consumption and distribution. Such solutions allow us to

more accurately measure the energy consumption in software, with an adaptable and scal-

able approach, and to better understand energy in software. The main goals of our approach

are as following:

• Energy modeling for software. The first step to measure energy without drawbacks

of hardware investment or gross estimations is to properly model energy in software.

The modeling should take into account the different hardware components involved

in the energy consumption (such as the CPU, network card, disk, etc.), and resources

utilization by the monitored software.
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• Software-only approach. In addition to modeling energy, the approach needs to be

software-only. Therefore, acquiring all the information required for the energy models

needs to be done only through software means (such as calling an operating system

routine or API, a virtual machine function or reading a configuration file).

• Accuracy. Estimating the energy consumption of software without the need of a hard-

ware power meter is not relevant if the estimations are not accurate. Therefore, the

margin of error in the estimations needs to be negligible or low within an acceptable

margin. The estimations also need to be aware of the diversity of hardware compo-

nents and their characteristics (such as DVFS and multi-cores in modern CPUs).

• Fine-grained measurements. It is important that estimations, measurements and mod-

els provide results at finer levels. In particular, offering energy information at code

level, such as classes and methods in software, is mandatory to understand energy

consumption and efficiently energy optimize software.

• Experimentations on software energy. Experimentation results and analysis on en-

ergy consumption and distribution in software are strongly missing in the green com-

puting community. Our goal here is to empirically benchmark and experiment on

software, and at code level, in order to understand how energy is being consumed,

why the said energy pattern is happening, and how energy is evolving.

1.3 Contribution

In this section, we summarize the contributions of our thesis. As stated before, the goal of our

research if to provide models, approaches and tools for measuring the energy consumption

of software. And also, we aim to understand the energy consumption and distribution in

software. The main contributions of our work are summarized as follows.

Energy Models for Software. We define and propose energy models for estimating the en-

ergy consumption of software at the application level (e.g., software as black box), and at the

code level (e.g., at the granularity of classes and methods). We also propose a methodology

to infer the energy evolution model of software methods based on their input parameters

and empirical benchmarking.

Energy Measurement Tools. Based on our energy models, we develop software for mea-

suring the energy consumption of software code. The first software system, JALEN, measures

the energy consumption of software methods and classes. It has a low overhead, therefore

does not impact the user experience, provides accurate, fine-grained measurements, and fol-

lows a software-only approach. The second software system, JALEN UNIT, is a framework

for inferring the energy evolution model of software code based on their input parameters. It

generates and executes empirical benchmarks for software methods and their applications.
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Lessons on Software Energy Consumption. Our final contribution is a serie of experi-

mentations aimed into understanding the energy consumption and distribution in software.

Based on our experimentations, we validate or recuse common belief on energy consump-

tion of software, and provide learning that help software developers into writing more en-

ergy efficient software.

1.4 Organization of the Document

This dissertation is organized in three parts. In the first part, Context and Problem Statement,

we discuss the context behind our work, motivations and problem statement of our thesis.

We also conduct a study of the state-of-the art approaches and tools for energy management

and energy measurement. The second part, Energy Measurement and Evolution, presents our

contribution, both in term of energy modeling, methodology approach and validation and

experimentation results. Finally, we conclude and present our perspectives in the last part,

Conclusion and Perspectives. In the remainder of this section, we summarize each chapter in

the dissertation.

Part I: Context and Problem Statement

Chapter 1: Introduction. In this chapter, we introduce the problematic of energy manage-

ment and energy consumption in software, and describe the context of our work. We also

present the motivation behind our work and the problem statement of our thesis and contri-

butions.

Chapter 2: State of the Art. In this chapter, we conduct a study of the state-of-the art

approaches for managing energy of software and services at the middleware layer. The

former layer is a good candidate for managing energy of distributed software and heteroge-

neous software services. We also present the challenges of managing energy in software and

the necessity of having direct measurement for optimal energy management. This require-

ment motivates us to further study the energy measurement approaches, models and tools

in software. We discuss our findings and deduce the challenges and limitations of exist-

ing approaches. Therefore, our contribution tackles these challenges into providing energy

measurement models, approaches and tools.

Part II: Energy Measurement and Evolution

Chapter 3: Energy Measurement at the Application Level. In this chapter, we present

our energy models and approach for measuring the energy consumption of software at the

application level, i.e., as black box. We propose energy models for estimating energy con-

sumption of software using only information collected through software means. Therefore,
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our approach does not require any hardware power meter, and offers estimation accuracy

similar to hardware measurements. Finally, we conduct a series of experimentation on soft-

ware in order to understand the impact of software on energy consumption. In particular,

we study the impact of programming languages, their compilers, the usage of a virtual ma-

chine, the implementation algorithms, and of I/O primitives.

Chapter 4: Energy Measurement at Code Level. This chapter complements our research

on energy measurement with the introduction of a lower layer of measurement, e.g., code

level. We present our energy models and approach for measuring the energy consumption

of software code, i.e., classes and methods. We also introduce our code level measurement

tool, JALEN. This tool provides accurate estimations of the energy consumption of Java ap-

plications at the granularity of their methods and classes. Finally, we validate our approach

and tool, and conduct a study on the energy distribution between methods in software. In

particular, we detect energy hotspots in software and discuss our findings.

Chapter 5: Energy Evolution Modeling. In this chapter, we propose an approach to model

the energy consumption evolution of software code based on their input parameters. We

introduce our energy evolution software framework, JALEN UNIT. The framework bench-

marks methods in an application and infers its energy consumption evolution based on the

evolution of its parameters. We conduct experimentations in order to validate and report

on different energy evolution strategies. Finally, we discuss our findings and the impact of

software, programming language’s infrastructure (in particular, virtual machine), and side

effects on software energy evolution.

Part III: Conclusion and Perspectives

Chapter 6: Conclusion and Perspectives. In this chapter, we summarize our work and

contributions in the dissertation. Finally, we present our short-term and long-term perspec-

tives in term of energy measurements, energy evolution modeling and energy management

of software.
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Chapter 2

State of the Art

“We are embedded in a biological world and related to the organisms around us."-Walter Gilbert
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2.1 Introduction

In this chapter, we review approaches, models and tools related to energy management and

measurement of software. The goal of this chapter is to study the existing energy-related

approaches, compare and discuss the latters in order to outline the limitations of the current

approaches into providing energy management and energy measurement platforms.

We start by studying energy management approaches in software, and in particular at

the middleware layer in Section 2.2. We argue that middleware platforms are relevant can-

didates for managing energy of software and hardware in the context of distributed ser-

vices, multi-devices configurations, heterogeneous programming languages, software and

9



Chapter 2. State of the Art

devices, and connected devices. Then in Section 2.3, we motivate our approach focusing

on software and on energy measurement as they are requirements for efficient middleware-

based energy management platforms. We study and compare energy measurement, estima-

tion and modeling approaches in Section 2.4. Finally, we summarize our findings in Sec-

tion 2.5.

2.2 Energy Management Approaches

Reducing the energy consumption of software and devices requires a comprehensive view of

the different layers of the system. Sensors and actuators, used to monitor energy consump-

tion and modify devices’ options, need to be controlled by intelligent software. Applications

running on the devices and the hardware itself also need to be monitored and controlled in

order to achieve efficient energy savings. Many approaches have been proposed to man-

age the energy consumption of the hardware, operating system, network or software layers.

However, with the widespread usage of ubiquitous devices and the high coverage of net-

works (Wi-Fi, 3G, 4G, Bluetooth), a new generation of communicating and mobile devices

is emerging. The energy consumption of this diversity of devices, and subsequently appli-

cations developed in different programming languages, is better managed through a layer

capable of monitoring and managing both the hardware, operating system, network and ap-

plication layers. Therefore, the middleware layer positions itself as a relevant candidate for

hosting energy-aware approaches and solutions.

Many middleware platforms, architectures, optimization techniques and algorithms al-

ready exist for energy management of hardware and software. We therefore chose several

approaches based on the priority given to energy management in the proposed solutions.

Our study on middleware approaches focuses on architectures and frameworks that em-

phasize on energy management in distributed environments. Only references and recent

works of the last years have been considered. Lot of efforts have been spent on energy man-

agement and optimization. Middleware approaches can adapt their core modules and/or

the environment (e.g., hardware, software) following energy objectives and we considered

both approaches in our review. As most of nowadays distributed systems are connected

with other applications and services, any viable solution should therefore incorporate solu-

tions for energy awareness that emphasize and take advantage of the distributed nature of

such systems. We selected the middleware approaches based on this criterion.

In Section 2.2.1, we review middleware approaches for energy management in dis-

tributed environments, proposing a detailed overview of the energy management issues

in each approach. Finally, we compare the reviewed middleware approaches based on an

energy taxonomy that we introduce in Section 2.2.2.
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2.2.1 Middleware Approaches for Energy Management

In this section, we review 12 middleware solutions targeted or specifically build for energy

management. Middleware platforms provide an abstraction of the underlying hardware,

network, and operating system interfaces to the applications. S. Krakowiak defines middle-

ware as [Kra07]:

In a distributed computing system, middleware is defined as the software layer

that lies between the operating system and the applications on each site of the

system.

The main goal of architectures and platforms for energy management is to optimize or

reduce the energy consumption of hardware devices or software services. These approaches

do not only optimize the energy consumption of applications and devices, but also optimize

the consumption of the middleware platform itself. For a platform to manage energy effi-

ciently, energy should not be considered as a non-functional requirement. It should rather

be the core of the approach, eventually taking into account other requirements (quality of

service, quality of context, user preferences, usability).

Many approaches integrating energy awareness or energy optimizations exist at the

middleware layer. From the wide range of approaches, we select 12 middleware platforms

responding to the following criteria:

1. Middleware architectures or frameworks emphasizing on energy management in distributed

environments. We skipped middleware approaches that do not integrate the distributed

dimension, or energy management. With the democratization of cloud-computing, the

widespread usage of connected mobile devices (e.g., smartphones, tablets, laptops),

and with the reduction of network costs for end-users, distributed usage scenarios are

frequent. Managing energy of this rising usage is, thus, crucial for their success and

market adoption.

2. Recent work of the last years only. Energy-aware approaches applied at different sys-

tem layers have been proposed since the early days of computer science. Since 2005,

more than 20,000 research papers related to energy management have been pub-

lished [LQBC11]. Also, with the progress of technologies and the evolutions in cus-

tomers’ usages, approaches that were valid a decade ago may not offer today the same

level of accuracy or energy saving as they were offering. Many approaches and energy

related technologies became deprecated. The utilization of technologies and devices

also change and evolve. This makes the need for new solutions a necessity (e.g., the

decline of the desktop PC and the rise of mobile devices and servers). With the high

number of available publications, we argue that limiting the study to the most recent

approaches and technologies allows us to provide a more representative view of the

usable energy management approaches at the middleware layer.
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We select 12 middleware platforms integrating energy management approaches: Tran-

shumance [PMND07, PlDR08, DPHu+08], Grace/2 [SYH+04, VYI+09], CasCap [XHSYJ11],

DYNAMO [MDNV07], PARM [MV03], ECOSystem [ZEL05], SANDMAN [SB07, SHB08],

SleepServer [ASG10], GreenUp [SLH+12] and the approaches reported in [XKYJ09, BS09,

RGKP10]. Table 2.1 and 2.2 on pages 18 and 19 summarize the positive and negative points

of these middleware approaches for energy management.

Transhumance

Transhumance [PMND07, PlDR08, DPHu+08] is a power-aware middleware platform for

data sharing on Mobile Ad hoc Networks (MANets). It supports collaborative applications

and provides a set of communication facilities such as a publish-subscribe event system.

Transhumance targets small networks (up to 20 nodes), moving at pedestrian speed (up to

5 km/h). The energy management in the platform is policy driven with adaptation poli-

cies defining battery level thresholds at which adaptations are triggered. These adaptation

policies follow the conditions/actions paradigm.

Energy management in Transhumance focuses mostly on adapting the middleware plat-

form’s modules. Applications adaptations follow the middleware platform’s own adapta-

tions. As such, if the middleware platform does not adapt its modules in order to save

energy (e.g., enable/disable messages encryption), then applications will not be adapted to

the environment’s changes. Transhumance does not check for conflicts between applied ac-

tions. This is left for the user or administrator to guarantee that adaptations actions are not

in conflict and do not damage the system integrity or are counterproductive (e.g., wasting

energy instead of saving it).

GRACE and GRACE-2

Global Resource Adaptation through CoopEration (GRACE) [SYH+04, VYI+09] is a hierarchical

adaptive framework for energy savings. It combines adaptations at different levels: seldom

and expensive global adaptation, frequent and cheap per-application adaptation, and internal adap-

tation on a single system layer. GRACE uses a hierarchical approach that invokes expensive

global adaptation (which considers all applications and all system layers), and inexpensive

scoped adaptations (per-application adaptation where only one application is considered at

a time), and internal adaptation where only a single system layer—but not necessarily one

application—is considered.

The hierarchical approach of GRACE provides a flexible middleware platform that fits

for distributed environments. The three layers system allows different granularity adapta-

tions, from global and expensive adaptations to local per-application ones. However, this

approach requires a centralized global coordinator that needs a resources-rich device to run

on. This limits the benefits of the framework in environments where a large, but resource-

poor, number of devices are present (e.g., wireless sensor networks). The use of predictions
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in the global adaptation severely limits its frequency, thus limiting these adaptations to large

changes in the system. This approach has also a drawback when the framework is used in

a volatile environment. As applications and devices may appear or disappear frequently,

the global adaptation is also invoked frequently, leading to more energy-consuming global

adaptations (and ultimately to energy losses instead of savings).

Middleware for Energy-awareness in Mobile Devices

In [XKYJ09], the authors propose an energy-aware middleware platform for mobile devices

that is based on application classifications and power estimations to accomplish application-

specific energy optimizations. The middleware platform uses a policy manager to choose

adaptive policies to apply on the system.

The major weakness of the architecture is the absence of any conflict resolving mech-

anism. Adaptation policies are added by the user/administrator and may conflict. The

approach also requires a training period for the application classifier to be anywhere effec-

tive. This may not fit very well in volatile environments where applications and hardware

components change frequently. The dual power estimation (component hardware level and

application level) may incur a non-negligible energy overhead in small sensor networks and

very low capacity devices (embedded sensors and devices). On the other hand, policy-based

rules written in semantic languages allow very flexible adaptations. The approach can cover

different environments with only having to modify policy rules.

CasCap

CasCap [XHSYJ11] is a framework for context-aware power management. The framework

is based on three concepts: crowd-sourcing of context monitoring, functionality offloading

and providing adaptations as services. Its architecture is composed of three components:

mobile devices, Internet services, and clones. Mobile adaptations are based on adaptation

policies that are also offered as services, while clones allow the mobile device to offload some

processing to them for energy savings.

The proposed architecture uses the cloud in order to propose adaptation services and

functionality offloading. Adaptation as a service fits well in a ubiquitous environment where

several devices may use a similar service. In this case, one implementation in the cloud is

needed and allows energy savings by offloading all the processing to the cloud. However,

the extensive usage of the cloud and Internet services requires high usage of the network

interface of mobile devices. The latter is one of the most energy expensive component in a

mobile device. Therefore, optimizing the usage of the Internet service by calculating pro-

cessing/network costs tradeoffs is a most needed requirement for the architecture.

The weakness in the approach is more present in the experimentations rather then the

theoretical architecture. No full implementation, neither any cloud-based service, were eval-

uated. Only minimal validations of trivial experiences were conducted (such as the WLAN
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energy consumption on a YouTube video). However, the authors identify where the major

points of the architecture fit in the experiences. All what is left is to validate these points

with a global implementation of the CasCap architecture.

DYNAMO

DYNAMO [MDNV07] is a cross-layer framework for energy optimizations based on quality

of service tradeoffs for video streaming in mobile devices. The framework uses a distributed

middleware layer in order to adapt all levels of the system (e.g., software, middleware, op-

erating system, network and hardware). Its architecture uses a proxy server in order to

perform end-to-end global and network adaptations with the mobile device (e.g., dynamic

video transcoding). On-device adaptations complement the end-to-end adaptions with local

adaptations specific to the hardware and software of the mobile device (e.g., LCD backlight

intensity adaptation). The approach is built around the usage of a proxy in order to offload

some energy-consuming functionalities from the mobile device. This approach is adapted

to a network intensive scenario (such as video streaming) where the network overhead for

communicating with a proxy is leveraged with the intensive use of the network for the video

stream. Adapting the video stream on the proxy, thus allowing to reduce the streamed band-

width and the required computation for processing it on the device, provides energy savings.

However, the proposed model and architecture will probably not perform as good as the

paper’s results in different scenarios. In a CPU intensive application, or a lighter network

case (e.g., web browsing), the energy gains are quickly overrun by the network overhead,

and in particular in mobile devices (where the network card is in the top 3 of the energy

consuming components [CH10]). On the other hand, the approach is based on utility func-

tions. The reasoning for adaptation is based on the evaluation of this utility function, and the

tradeoffs between energy consumption and the allowed variations of the quality of service

parameters.

PARM

PARM [MV03] is a Power-Aware Reconfigurable Middleware for low-power devices. It dynam-

ically reconfigures the component distribution on these devices and migrates components

to proxy servers in order to save energy on the mobile client. The PARM framework is a

flexible, reflective message oriented middleware platform. In addition to typical middle-

ware platform components, it provides a set of additional independent components (e.g.,

encryption/decryption, caching, clock synchronization) that are used for energy optimiza-

tion. Components are migrated to a proxy in order to save energy on the mobile client.

The PARM algorithm has a worst case execution time of O(n3), which may lead to high

energy consumption of brokers and longer execution decision times when the environment

is composed of a large number of mobile clients. PARM goal is also limited to an environ-

ment where proxies, brokers and servers are abundant. It has one main core adaptation

technique: component migration from mobile clients to proxy servers.
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Green Computing: Energy Consumption Optimized Service Hosting

In [BS09], the authors propose a dispatch algorithm for data centers in order to consoli-

date services dynamically into a subset of servers and temporarily shut down the remaining

servers in order to save energy. The goal of the approach is to minimize the number of

running servers while still being able to respond to clients’ requests and respect the QoS

requirements described in SLAs.

The approach has the advantage of respecting the SLA and QoS of client’s requests while

still trying to minimize the energy consumption. Although not rule-based or policy-based

reasoning, the probabilistic algorithmic approach is not penalizing with regards to energy

or time. Data centers are a resource-rich environment and the overhead of the algorithm

should be minimal compared to the energy consumption of the servers. However, the pro-

posed approach and algorithm poses many assumptions, thus being limited to a small pool

of case studies. It is also limited to data centers that host and handle services offered to

clients. The authors identify several limitations of their algorithm, such as limited optimiza-

tion criteria (only energy consumption and service response time are considered to date),

centralized algorithm which may become a performance bottleneck, absence of fault toler-

ance and management of sudden fluctuations in service requests.

ECOSystem

Energy Centric Operating System (ECOSystem) [ZEL05] is a framework that manages energy

consumption at the OS level. The framework is based on a new unit: currentcy, which is an

abstraction of energy currency. Currentcy is a unified abstraction for the energy a system can

spend on devices. A unit of currentcy represents the right to consume an amount of energy

during a fixed amount of time.

The currentcy model is a step towards unified energy management. The model, inspired

from human’s financial transactions, allows a flexible and generic approach to energy allo-

cation. However, the model and framework does not reduce or optimize energy consump-

tion. It is only limited to providing a modeling and architectural infrastructure for energy

transactions and allocation, but without reducing the energy utilization per se. Nevertheless,

proposing a currency model for energy helps in raising awareness on the price of energy

consumption, not only for the end-user, but also for developers and system administrators.

SANDMAN

SANDMAN [SB07, SHB08] is an energy-efficient middleware platform built upon the BASE

middleware platform [BSGR03]. BASE is a minimal communication middleware platform

for pervasive computing based on peer-to-peer principles. SANDMAN is built as several

extensions to BASE, and relies on three main concepts: i) reducing data transfer energy con-

sumption by selecting the most efficient communication protocol, ii) switching idle devices
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to low power mode (sleep) in order to save devices’ energy during their idle time, iii) and

allowing clients to select the most energy efficient service. In order to switch devices to idle

mode while still being discoverable by users, SANDMAN uses a self-adaptable discovery

protocol that can handle deactivated devices.

The SANDMAN approach targets energy consumption of idle devices in a communicat-

ing network. It achieves this by grouping devices with similar mobility patterns in a clus-

ter and temporarily migrating nodes advertisement to the cluster head (CH). The approach

however, has two weaknesses: i) the cluster head (CH) has to answer discovery requests on

behalf of devices of its cluster, thus having to be awake all the time and consuming more

energy. No energy-aware approach is specified in the election of the CH. This may lead to

small battery devices being elected as a CH, which may also lead to a quicker failure of the

CH. ii) the CHs act as single point of failure in the platform. The failure of a CH causes

the devices of its cluster to be temporarily undiscoverable. On the other hand, SANDMAN

manages energy when devices are idle. It does not optimize the energy consumption of run-

ning applications, thus making the approach limited to situations where devices are used

for short periods of time, and in non-critical environments.

SleepServer

SleepServer [ASG10] is a software approach allowing energy management in desktop PCs.

The network-proxy based approach allows machines to migrate to low power sleep states

while still allowing their network connectivity. This is done using virtual machine proxy

servers and virtual LANs.

The approach of SleepServer is similar to SANDMAN’s. Both use additional proxy ma-

chines (a cluster head in SANDMAN and a sleep server in SleepServer) to maintain avail-

ability and network presence of the host while it is in sleep mode. Thus, it has the same

weaknesses: i) the sleep server becomes a single point of failure for the platform. Its fail-

ure may cause host machines to become unavailable until they are wake up again; ii) the

sleep server has to be awaken all the time therefore consuming energy (albeit the energy

consumed is compensated by the energy saved of the system). On the other hand, the usage

of SleepServer still requires additional hardware investment (in the form of the sleep servers

themselves). It only manages energy for idle devices, allowing energy savings if frequent or

long periods of sleep time occurs. SleepServer itself does not offer energy optimizations to

applications or devices, but rather to the overall functioning of connected network of com-

puters. The approach, nevertheless, allows a transparent and heterogeneous migration of

hosts’ availability and network presence. Virtual images offer great flexibility for grouping

images into a smaller number of sleep servers, or migrating them again to another sleep

server (in particular in case of failure of a sleep server). They also offer security and isolation

between the different virtual images.
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Sleepless in Seattle No Longer

In [RGKP10], the authors present a system aimed to preserve the network accessibility of

user machines in an enterprise network while still allowing them to go to sleep, and therefore

save energy. The system is based on two components: a sleep proxy for each subnet, and a

sleep notifier program that runs on the user machine. The latter alerts the proxy when the

machine goes to sleep.

The main advantage of this approach (and other similar ones) is allowing machines to

go to sleep while still keeping them available for user requests. The only investment needed

for user machines is the installation of a sleep notifier daemon. The latter doesn’t need to

know the address of the proxy (it broadcasts its notifications), thus making adding/remov-

ing machines easy to manage for the proxy. The usage of an independent proxy frees the

user machines from additional loads incurred from managing sleeping machines. However,

the proxy is a single point of failure in the system. If it goes down, sleeping machines can-

not be woken up again because their network traffic is redirected to the proxy. In addition,

the sleeping policies are left for users or administrators to implement. A machine will go to

sleep by its own (or the user’s) initiative. Therefore, the proposed system cannot save energy

if machines (through their OSs, applications or users) do not go to sleep at all.

GreenUp

GreenUp [SLH+12] is a software-only approach for providing high-availability to sleeping

enterprise workstation machines. GreenUp allows any workstation machine to act as a proxy

for other machines so the latter can go to sleep while preserving their presence in the network

subnet. Therefore when a machine goes to sleep, another one starts acting as a proxy for it.

GreenUp offers a software-only approach where existing machines are used as proxies

to manage each other’s sleep and network presence. The advantage is the absence of any

hardware investment or modification of existing software (unlike for example SleepServer),

making deployment easy. Another aspect is the absence of bottlenecks or central proxy

servers. Because each machine can act as a proxy, the failure of a machine or even a proxy

is quickly remediated by having another machine acting as a proxy for the newly unman-

aged ones. Guardian machines ensures that there is always a minimum number of proxies

available, thus limiting a complete blackout of the system. However, although the approach

manages the network presence of sleeping machines, it does not include policies to deter-

mine when machines go to sleep. This is left for users or administrator. Thus, GreenUp

hopes to induce users to choose more aggressive sleep policies and thereby save energy, while still

allowing machine availability.

Table 2.1 and 2.2 present the pros and cons of each of the previous middleware ap-

proaches. In particular, we summarize the advantages of these approaches, and outline the

main drawbacks and limitations for efficient energy management.
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Middleware Approach for

Energy Management

Pros Cons

Rule-based approaches

Transhumance Uses the intuitive condition-

s/actions paradigm

Focus on adapting the middle-

ware platform’s modules

No conflict management for

adaptation policies

Can only be applied on a lim-

ited environment

CasCap Offloads functionalities to the

cloud to relieve the mobile de-

vice

Network (energy consuming

component) usage required

No complete experimentation

yet

Middleware for Energy-

awareness in Mobile Devices

Usage of applications classifi-

cation

No conflict management

Based on semantic policy rules Requires training periods

DYNAMO Combines adaptations at dif-

ferent system levels

Fits well only in a network in-

tensive scenario

Vision of the global and local

context for adaptations

Requires hardware investment

in a proxy

Proxy-based approaches

SANDMAN Usage of an auto-adaptable

discovery protocol

Cluster head consumes maxi-

mum energy

Nodes can go to sleep and still

be discoverable

Cluster heads act as bottle-

necks

Usage of various techniques

for detecting if a device is un-

used or not

SleepServer PCs can go to sleep and still

maintain network presence

Sleep servers act as bottlenecks

Virtual Images allows flexibil-

ity and security

Sleep servers and state transi-

tions consume energy

Sleepless in Seattle No Longer PCs can go to sleep and still

maintain network presence

Proxy server acts as bottle-

necks and is a single point of

failure

A proxy frees machines from

additional loads

Sleeping and energy policies

left for users to define

GreenUp PCs can go to sleep and still

maintain network presence

Sleeping and energy policies

left for users to define

Software-only approach

Absence of bottlenecks or cen-

tral server

Table 2.1: Summary of rule-based and proxy-based approaches
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Middleware Approach for

Energy Management

Pros Cons

Other approaches

GRACE/2 Combines adaptations at dif-

ferent system levels

Requires a centralized global

coordinator

Flexible approach: infrequent

and expensive global adapta-

tions, and frequent and cheap

local adaptations

Limited advantages in volatile

environments

PARM Efficient component migration

and redistribution for energy

optimization

Worst case execution time of

O(n3)

Necessity of proxies, brokers

and servers presence

Works well for computation

intensive applications

Moderate or negative gains in

communication intensive ap-

plications

Energy Consump-

tion Optimized

Service Hosting

Energy savings while respect-

ing SLAs and QoS

Requires many assumptions,

limited to data centers

Minimizing the number of

running servers

Centralized algorithm, limited

optimization criteria, no fault

tolerance

ECOSystem Proposes a currency model to

quantify energy management

No energy optimization per se

Allocation and scheduling fol-

lowing Time, Tasks and De-

vices dimensions

Table 2.2: Summary of other middleware approaches

2.2.2 Comparison and Discussions

In order to compare the solutions reported in this review, we defined a taxonomy to de-

scribe the various properties of each middleware platform solution. Figure 2.1 summarizes

this taxonomy. In particular, we introduce five comparison terms: System Levels which refer

to the level of the system where the energy adaptation takes places (such as adapting hard-

ware characteristics, or software components); Applied Environment which refers to the main

user environment that the middleware platform targets (such as wireless sensor networks or
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data centers); Type which refers to the type of the energy management approach (such as an

adaptation algorithm, or an architectural pattern); Degree of Autonomy which refers to the au-

tonomous nature of the energy management approach (such as using predefined algorithm

or a rule-based approach); and Sizing which refers to the scalability of the approach (such as

being applied to a limited or specific environment or a generic approach). In Table 2.3, we

compare the middleware approaches we reviewed in this section based on the taxonomy we

introduce.

Taxonomy

Type
Degree of 

Autonomy

Applied 

Environments
System Levels Sizing

Hardware

Operating

System

Middleware

Software

WSN

Mobile 

Networks

Data Centers

Smart Homes

Architecture

Protocol

Algorithm

Modeling 

Language

None

Predefined

Rule based

Event based

Learning based

Limited 

Environments

Environment 

specific

Domain specific

Configuration 

specific

Generic

Figure 2.1: The comparison taxonomy.

System Levels

By this term, we refer to the level of the system where the energy adaptation takes place.

We take into account the following system levels: Hardware, Operating System, Middle-

ware, and Software. Most proposed solutions manage the software, hardware, or operating

system levels in addition to the middleware level. Several solutions apply energy adapta-

tions at the software level. Transhumance focuses on adapting the middleware platform, but

the software is also adapted when the middleware platform adapts itself. GRACE applies

multi-layer adaptations including per-application adaptations. Application-specific energy

optimizations based on application classification are used in [XKYJ09]. While CasCap adapts

software and services in mobile devices. DYNAMO targets video streaming scenarios (e.g.,

software) while trying to perform quality of service tradeoffs. The approach in [BS09] uses
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a dispatch algorithm to consolidate services in data centers. SANDMAN integrates several

middleware platform techniques (middleware platform interfaces, service sessions or proto-

col selection), however it also manages the hardware level by techniques such as switching

devices’ power mode or grouping devices in clusters based on similar mobility patterns.

SleepServer targets also the hardware and software levels by managing energy through the

creation of virtual images in order to keep the network availability of computers. The ap-

proach in [RGKP10] and GreenUp both target the hardware and software levels by manag-

ing the sleep of machines and their network presence through the usage of hardware and

software proxies. GRACE and ECOSystem manage energy consumption and adaptations

also at the operating system level. GRACE can apply adaptations at an OS level granularity,

while ECOSystem is built on the currentcy model and used in OS scheduling and allocation.

Other approaches presented in this review adapt the system mainly on the middleware level,

without major energy oriented adaptations in other levels of the system.

Applied Environments

This refers to the main user environments that the proposed middleware platform approach

targets. Environments range from Wireless Sensor networks (WSN) to other mobile networks,

to large-scale systems, and to data centers. Because we limited our study to distributed envi-

ronments, the approaches presented in this chapter involve mobile networks or large-scale

systems. Transhumance targets Mobile Ad Hoc Networks (MANETs). SANDMAN, on the

other hand, targets larger environments: pervasive mobile networks and Wireless Sensor

Networks (WSN). It seeks to reduce the energy consumption of idle devices in communicat-

ing networks. SleepServer, GreenUp and the approach in [RGKP10] are applied on comput-

ers in an enterprise environment (networked PCs, server availability). PARM also applies to

mobile networks but its architecture and algorithmic approach are fit for large-scale systems.

The approach in [BS09] is built for data centers. GRACE adopts a hierarchical approach for

energy saving in different levels of computers (applications, all system layers). The principle

of the approach can be applied to distributed systems in general. DYNAMO’s approach fol-

lows some of GRACE’s ones, in particular the usage of different information layer to perform

end-to-end adaptations. DYNAMO, however, targets mobile devices. ECOSystem manages

energy at the Operating System (OS) level, particularly managing computer tasks using a

new energy abstraction mixing energy with currency: currentcy. CasCap and [XKYJ09] tar-

get applications in mobile devices running using network services or devices.

Type

This defines the type of the energy management approach. Types can be architectural, proto-

col, algorithm, or a modeling based. Architectural approaches are middleware platforms or

frameworks that propose energy optimization techniques as architectural solutions. Protocol

approaches refer to the cases where an energy efficient protocol is proposed in the middle-

ware layer. Algorithmic approaches refer to the cases where the latter is constructed around
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an energy-aware algorithm in the middleware layer. Modeling approaches are when a model

is proposed for energy-awareness in the middleware layer. Most approaches presented in

this review are architectural-based, with few exceptions: SANDMAN and PARM, in addi-

tion, propose protocol-based and algorithmic approaches, respectively. In SANDMAN, a

self-adaptive discovery protocol is used as the basis of the energy management approach.

PARM uses an algorithm to determine the components to migrate. This algorithm is crucial

for the PARM framework. For the other approaches, [BS09] is a dispatch algorithm for data

centers, and ECOSystem’s approach is based on a new modeling definition: currentcy.

Degree of Autonomy

This indicates the degree of autonomy of the energy management approach (and not the

overall degree of autonomy of the middleware platform itself). Autonomic computing refers

to “computing systems that can manage themselves given high-level objectives from administra-

tors” [KC03]. These systems are self-manageable where this self-management encompasses

four main aspects: self-configuration, self-optimization, self-healing, and self-protection. They

are formed by autonomic elements, which contain resources and deliver services. We choose

several keyword expressions to describe the degree of autonomy. The expressions are: i)

None, where the approach is not autonomous at all. This can be a system that applies en-

ergy adaptations through question/answer interactions with the user. ii) Predefined. In this

case, the system uses predefined strategies, such as an algorithm, a protocol, static rules or

a finite-state automaton. iii) Rule-based. Here, energy management adaptation is based on

rules (or adaptive policies) that can be added and modified by an external entity (user, ad-

ministrator). iv) Event-based. Systems that use an (complex) event processing engine falls

in this category. The system collects data (context or energy data) and takes an adaptation

decision as a result of events processing. And v) Learning based. Here, energy management

evolves by learning from context and energy information, and from the user habits. A level

of artificial intelligence is also required for systems to be considered in this category.

Transhumance uses adaptation policies for middleware platform energy adaptations,

and adaptation profiles for applications. Both techniques are based on a rule-based approach

with conditions on the energy levels (local to one node or global to the network) and adap-

tation actions. The solutions proposed in [XKYJ09] and in [XHSYJ11] (CasCap) uses also

adaptive policies for energy management. DYNAMO is also based on rules and on poli-

cies that can take the shape of utility factors. ECOSystem proposes a modeling definition,

currentcy, and allocation and scheduling approaches that are predefined. PARM and [BS09]

are based on algorithms that are defined prior to the execution of the system. SANDMAN

uses an adaptable protocol and different predefined approaches for its energy awareness.

SleepServer, GreenUp and [RGKP10] use a predefined approach allowing computers to go

to sleep while preserving their network presence. GRACE is build around a multi-layer ar-

chitecture. It is based on global and per-application algorithms to apply adaptations, and

profiling for resource usage predictions, all of which are predefined prior to the execution of

the system.
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Sizing or Scalability

This describes the scale of the proposed approach. This means, how well can we apply the

approach on different environments other than the ones that were presumably defined for.

We use several concepts for this taxonomy: i) Limited Environment, where the approach can

be applied to an environment with very specific conditions. ii) Environment-specific. The

approach is limited to one or few environments (such as approaches limited to WSN). This

taxonomy is a subset of the wider domain-specific taxonomy. iii) Domain-specific. Here, the

scope is wider than environment-specific. For example, an approach that can be applied on

WSN and other mobile networks, fits in this taxonomy. iv) Configuration-specific, where the

approach can be sized if a specific configuration is met, regardless of the applied environ-

ments or domains. And v) Generic. Here, the approach can be scaled on different domains,

and thus can be considered as generic enough for a high degree of sizing.

Most of the reviewed approaches are environment-specific or domain-specific, with two

more specific solutions: Transhumance, which requires additional preconditions, and PARM

that has a wide domain scope but requires a specific configuration. Transhumance targets

MANets with a maximum of 20 nodes and moving at a pedestrian speed (up to 5 km/h),

which makes this a limited environment. ECOSystem emphasizes on the various computer

tasks and networks. Thus, these approaches are domain-specific, same for SANDMAN,

GRACE and [XKYJ09]. SANDMAN targets pervasive networks in general, including WSN.

SleepServer, GreenUp and [RGKP10] are specific to computer network within an enterprise

environment (where servers are available to host virtual images for desktop PCs). The ap-

proach in [XKYJ09], CasCap and DYNAMO are applied on mobile networks, while GRACE

targets the very wide scope of distributed environments. Finally, PARM can be applied on

different domains, from mobile networks to large-scale systems. However, it requires a spe-

cific configuration with the presence of proxies, brokers and servers.

Discussions

Based on our comparison we discuss how well the reviewed solutions fit in an area of re-

search where contributions are still needed for a fully autonomous middleware platform for

energy management. Most of the solutions presented in this review follow two main ap-

proaches of autonomy: rule-based and proxy-based approaches, while the others use predefined

techniques.

Rule-based approaches offer an high degree of architectural autonomy, but with a lim-

ited decisional autonomy. The architecture of the middleware platform is flexible and evo-

lutive, and can easily cope with changes in the environment. These architectures are based

on autonomic control loop design [KC03], with subsystems designed to monitor, analyze,

plan and execute energy-aware adaptations. Rules, on the other hand, need to be predefined
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Middleware)

Applied Environ-

ments

Type Degree of Auton-

omy

Sizing (Scalability)

Transhumance Software MANets Architecture Rule-based Limited Environ-

ment

SANDMAN Hardware Pervasive Mobile

Networks, WSN

Architecture, Pro-

tocol

Predefined Domain-specific

PARM – Mobile Networks,

Large Scale Sys-

tems

Architecture,

Algorithm

Predefined Configuration-

specific

GRACE/2 Operating System,

Software

Distributed Sys-

tems

Architecture Predefined Domain-specific

Middleware for

Energy-awareness

in Mobile

Devices

Software Mobile Networks Architecture Rule-based Domain-specific

Energy Consump-

tion Optimized

Service Hosting

Software Data Centers Algorithm Predefined Environment-

specific

ECOSystem Operating System Computer Tasks Modeling Predefined Domain-specific

CasCap Software Mobile Networks Architecture Rule-based Domain-specific

DYNAMO Software Mobile Networks Architecture Rule-based Domain-specific

SleepServer Hardware, Soft-

ware

Desktop PCs, En-

terprise Networks

Architecture Predefined Domain-specific

Sleepless in Seattle

No Longer

Hardware, Soft-

ware

Desktop PCs, En-

terprise Networks

Architecture Predefined Domain-specific

GreenUp Hardware, Soft-

ware

Desktop PCs, En-

terprise Networks

Architecture Predefined Domain-specific

Table 2.3: Comparative table of middleware platform solutions for energy management
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and updated on environment’s evolutions. None of the rule-based middleware platform ap-

proaches [PMND07, PlDR08, DPHu+08, XKYJ09, XHSYJ11, MDNV07] incorporate conflict

management strategies. Transhumance [PMND07, PlDR08, DPHu+08], CasCap [XHSYJ11]

and the approach in [XKYJ09] all use Event-Condition-Action rules. The rule selection strat-

egy is therefore simply a condition checked when an event occurs, and actions are applied

regardless of their impact on the system or the conflicts that they may produce. The creation

and the update process of these rules are left to the user, administrator or another applica-

tion. The latters are responsible for verifying the consistency of the rules and the absence

of rules conflicts and incompatibilites. DYNAMO [MDNV07] follows a similar process, al-

though the usage of utility functions is complementary to ECA rules. This allows better

modularity and flexibility in rule creation and evolution, but also allows the rule selection

process to alleviate some of the conflicts. Conflicts may be prevented by using different

rule selection strategies, such as fuzzy logic [Zad65]. Or they can be dealt with a conflict

management process based on system knowledge (through, for example, machine learning

techniques), crowd-sourcing or modeling of the impact of applied actions. The distributed

nature of the environment gives developers the opportunity to utilize the processing power

and knowledge repositories that lies in the cloud. Finally, Transhumance is the only ap-

proach here where rule actions are applied on the middleware platform modules only. The

other approaches apply their rule actions on the managed system (software, system or hard-

ware parameters).

Proxy-based approaches have the main advantage of keeping a device available for the

user (or for other devices), while the device is in sleep mode. Therefore, this approach

achieves both energy savings and limited disruption of the availability of the device. The re-

viewed proxy-based approaches [SB07, SHB08, ASG10, RGKP10, SLH+12], although sharing

a similar proxy functioning, differ in a key aspect : the proxy. In SANDMAN [SB07, SHB08],

nodes regroup in clusters following similar criteria, then elect one of their own as a cluster

head (or proxy). The cluster head is then responsible, not just for maintaining the presence

of its nodes in the network, but also in deciding when a node is unused and thus can be

put to sleep. On the contrary, the proxy in SleepServer [ASG10], GreenUp [SLH+12] and

in [RGKP10], is only responsible for keeping the availability of their sleeping machines in

the network. The proxy does not incorporate autonomic or intelligent functioning in rela-

tion to deciding when a machine should go to sleep. The nature of the proxy in the previous

3 approaches is different: i) a virtual machine image for SleepServer and unique to its orig-

inal machine. Therefore, proxies are not shared as each machine have a unique proxy in

the form of its virtual image. ii) an independent hardware proxy responsible for managing

all machines in [ASG10]. And iii) in GreenUp [RGKP10], a proxy is a normal machine that

is elected using a distributed management technique. Although not similar, the selection

process share some principles with SANDMAN’s selection process.

The other approaches reviewed in this study [SYH+04, VYI+09, MV03, BS09, ZEL05]

have little autonomic functioning. They all use predefined techniques to manage

energy, such as algorithmic adaptations and prediction algorithms (PARM [MV03],

GRACE [SYH+04, VYI+09] and [BS09]) or energy models (ECOSystem [ZEL05]).
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Although these approaches offer a certain degree of autonomic management for energy

consumption, a full autonomous energy management is yet to be defined. Autonomous con-

text learning approaches for energy management at the middleware are missing. An energy

management autonomous approach should therefore imitate the human body metabolism 1:

the platform needs to be transparent to the user and to devices and applications, but with-

out limiting users’ high-level decisions. In the human body, when energy becomes low, the

system starts by using its reserves and notifying the human about the situation (e.g., the

human feels hunger). Therefore, the human could apply high-level decisions, such as eat-

ing (to recharge his energy and reserves), or reduce his activity, or go to sleep (low power

mode). We therefore believe that middleware platform approaches should take inspiration

from biologic systems and provide a similar autonomous functioning for energy-awareness

because the complexity of systems is rapidly increasing. Autonomous functioning means

that users, in particular home users, do not need to do the job of a system administrator in

managing the energy consumption of their software and devices. The absence of a system

administrator, albeit for managing energy, is a challenge for ubiquitous computing, in par-

ticular in smart homes [EG01]. Energy, as a non-functional requirement, needs, more than

other business logics, to be less disruptive for users, thus the need for autonomous energy

management.

In addition to autonomic functioning, all the reviewed approaches are specific to a do-

main or to an environment. Transhumance requires very specific conditions on the environ-

ment (small networks of up to 20 nodes and moving at pedestrian speed of up to 5 km/h).

The platform focuses mainly on adapting the middleware platform itself with limited adapt-

ability for applications. On the contrary, PARM requires a specific configuration (the pres-

ence of proxies, brokers or directory services), but with a wider domain scope (e.g., mobile

networks, large scale systems). The algorithm presented in [BS09] can only be applied on

data centers, thus is environment-specific. Similar to the previous approach, ECOSystem

proposes a currency definition and a framework that targets the energy consumption at the

OS level. SANDMAN targets energy consumption of idle devices in a communicating net-

work, SleepServer, GreenUp and [RGKP10] manage energy consumption of idle devices in

an enterprise network, while the architecture in [XKYJ09] is valid for mobile networks. Fi-

nally, GRACE combines adaptations at different levels of the system in order to optimize the

energy and resource utilization in a distributed environment. We believe that middleware

platform approaches should allow some degree of scaling, not just inside a specific domain

(such as the proxy-based approaches in enterprise networks [ASG10, RGKP10, SLH+12]),

but to a wider scope of applications. In the diversity of devices, networks and environments,

an ideal middleware platform for energy management should be able to manage energy for

multiple domains, ranging from mobile devices and desktop machines to distributed soft-

ware in data center.

But in order to efficiently manage energy consumption in software and devices, the said

energy need to be calculated. In the next sections, we study the energy measurements and

estimation approaches for software and hardware.

1The human body metabolism is an analogy commonly used in autonomic computing.

26



2.3. From Managing to Measuring Energy of Middleware and Software

2.3 From Managing to Measuring Energy of Middleware and Soft-

ware

We argue that energy optimization at the middleware layer is best suited for large-scale en-

ergy reduction in our modern context. Devices are more and more heterogeneous and vary

in characteristics and utilization. From mobile devices, to servers and data centers, and to

desktop and laptop computers, the range of hardware and its execution domain vary greatly.

Managing energy per device or for a specific execution context or platform provides more

precise energy management but with the cost of lower scalability and sizing. These types

of approaches are limited, specially with the advent of cloud computing and distributed

environments.

Although managing energy for this diversity of hardware and software at the middle-

ware layer is a good choice, energy should be accurately measured at the software layer.

Distributed devices would push the energy consumption of their software to the middle-

ware layer in order to take energy-related adaptation decisions. Energy management and

optimization need software energy measurement, whether at the middleware layer or at

lower layers, such as at hardware, software or even at code level. Middleware approaches

for energy management require in-depth knowledge of software and hardware in order to

efficiently manage energy and optimize its consumption.

Our study of the energy management approaches at the middleware layer shows that

two groups define these approaches: rule-based management, and predefined management.

Each has its own advantages and drawbacks as we discussed in the previous section. How-

ever, both approaches share a common drawback: the lack of energy metrics. The first com-

ponent of the MAPE-K autonomic control loop [KC03] is monitoring. Therefore, achieving

autonomic energy management of middleware and software requires accurate energy mon-

itoring of the system.

Although existing approaches achieve energy adaptations based on non-energy metrics

(mostly using resources utilization, and usage assumptions), these adaptations could be im-

proved by using direct and accurate energy measurements. What if, instead of using the

CPU percentage usage of an application, an energy management middleware would use the

real energy consumption of the application on the CPU hardware? The same logic applies

to other hardware resources, such as the network card or hard disk.

Providing direct energy measurements does not only offer more accurate monitoring

and management, but also it allows more autonomic management. Rule-based and predefined

approaches use common software assumptions about energy consumption in their adap-

tations. These assumptions are based on developers’ experience and are limited to certain

contexts. Aiming for full autonomic management requires separation of contexts and con-

figurations’ logics with the autonomic management platform. Having direct energy metrics

allows achieving this separation of concerns for energy related managements.
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In the next section, we study the state-of-the art approaches in energy measurement,

estimation and modeling. We discuss approaches for measuring the energy consumption of

hardware components and software applications, and report the limitation of the existing

work. Finally, we propose criteria for efficient energy measurement approaches based on

the limitations of the state-of-the art solutions and on the requirements of measuring energy

for software.

2.4 Energy Measurement Approaches

Managing energy at any system level while providing a minimum accuracy requires mea-

suring the energy available and consumed. In particular, monitoring or estimating the en-

ergy and/or resources consumption of hardware and software is a sine qua non condition for

energy management at a higher level. This understanding of energy is however rudimen-

tary [Kan09], but also depends on hardware, software and execution context. New power

models taking into account both computation and power management are therefore needed.

Ultimately, systems should be designed to be energy adaptive (e.g., being able to adapt their

behavior depending on energy concerns) not just energy efficient [Kan09].

Distributed systems add an additional layer of complexity in measuring energy. Energy

efficiency can be improved by considering the end-to-end energy use of a task in all involved

systems [LQBC11]. Metrics should take into consideration that energy consumption affects

and is affected by other factors such as reliability, performance. Therefore, new metrics,

models and new measurement techniques are needed to support scientific evaluation of end-

to-end energy management [LQBC11].

Monitoring energy consumption of hardware components usually requires a hardware

investment, like a multimeter or a specialized integrated circuit. For example in [MSK07], the

energy management and preprocessing capabilities is integrated in a dedicated ASIC (Ap-

plication Specific Integrated Circuit). It continuously monitors the energy levels and performs

power scheduling for the platform. However, this method has the main drawback of being

difficult to upgrade to newer and more precise monitoring and it requires that the hardware

component is built with the dedicated ASIC, thus making any evolution impossible without

replacing the whole hardware.

On the other hand, an external monitoring device provides the same accuracy as ASIC

circuits and does not prohibit energy monitoring evolutions. Devices, such as AlertMe Smart

Energy [Ale], monitor home devices and allow users to visualize their energy consumption

history through application services, such as the now defunct Google Powermeter [Goo].

The previously mentioned monitoring approaches allow getting energy measures about

hardware components only. However, knowing the energy consumption of software ser-

vices and components requires an estimation of that consumption. This estimation is based

on formulas such as the ones presented in [SMM07] and [KZ08].
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Next, we details the main state of the art approaches for energy modeling and energy

measurement and estimation.

2.4.1 Energy Modeling

Estimating the energy consumption of hardware and software is often achieved through

modeling resource usage for energy information. In this section, we outline the main ap-

proaches for energy models at software and middleware layers.

Energy Cost of Software

In [SMM07, SMM08], the authors propose formulas to compute the energy cost of a software

component as the sum of its computational and communication energy costs. For a Java

application running in a virtual machine, the authors take into account the cost of the virtual

machine and eventually the cost of the called OS routines. The energy cost of a software

component is calculated based on the following formula:

Ecomponent = Ecomputational + Ecommunication + Einfrastructure (2.1)

where Ecomputational is the computational cost (i.e., CPU processing, memory access, I/O op-

erations), Ecommunication is the cost of exchanging data over the network, and Einfrastructure

is the additional cost incurred by the OS and runtime platform (e.g., Java VM).

More specifically, the computational energy cost of a component is determined as the com-

putational energy cost of its interfaces (in component-based software engineering sense).

The latter is calculated as the aggregation of the energy costs of executing its bytecodes,

native methods and the cost of threads synchronization (via a monitor mechanism in the

Java Virtual Machine). Communication energy cost is calculated based on the size of transmit-

ted and received data while accounting for the cost of transmission/receiving a unit of data.

The authors rely on previous research [FN01, XLWN03] to assert their argumentation that the

energy consumption of wireless communication is directly proportional to the size of transmitted and

received data [SMM08]. Finally, infrastructure energy overhead cost is calculated as the energy

cost of the garbage collector thread, process scheduling, context switching, and paging.

In [KZ08], the authors take into account the cost of the wait and idle states of the applica-

tion (e.g., an application consumes energy when waiting for a message on the network). The

following model is proposed:

EApp = EActive + EWait + EIdle (2.2)

where EActive is the energy cost of running the application and the underlying system soft-

ware, EWait is the energy spent in wait states (when a subsystem is powered up while the
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application is using another), and EIdle is the energy spent while the system is in idle state.

This general model is also derived for the CPU using the following formula:

ECPU = {pActive ⇥ fActive + PIdle ⇥ (1− fActive)} ⇥ T (2.3)

where PActive is the power consumption of the CPU in active mode, PIdle is the power consumption

in idle mode, fActive represents the CPU percentage time spent on running the application, T is the

time spent running the application workload.

In [TT13], the authors use sensors between the power source and the system in order

to measure its energy consumption. The sensors capture at regular intervals the power line

conditions, such as voltage and current. The captured information is then stored in a cen-

tral data collection server. After application execution, the readings from both sensors and

application are correlated and energy consumption is estimated using the following power

model:

E =

Z
T

PSdt− PIT (2.4)

where PS is the instantaneous power profile of the system, T is the execution time and PI is

the idle power of the system. The idle power is calculated when the system is idle while a

minimum number of applications are running.

Energy aware middleware

In addition to the previous approaches, Petre [Pet08] proposes an energy-aware model for

the MIDAS middleware platform language [PSW06]. The author proposes to model energy-

awareness using the MIDAS middleware platform language [PSW06]. MIDAS is a resource-

centric language based on a previous framework developed also by the author [PSW00]

for location-aware computing. The framework defines a language for topological action

systems, which is used for resource notation. The language assists the network manager

on issues like resource accessibility and mobility, replicated resources and node failure and

maintenance.

The author models data resources, code resources, and computation unit resources (a

combination of data and code). A resource is defined as a unit that has a location and other

properties. The location of these resources is modeled as a node of a network. The author

distinguishes two networks: the electricity network containing the electricity sockets (mod-

eled as electricity resources or energy supply); and the resource network of devices and

resources.

In this model, energy is defined as a quantity that is consumed by the hardware devices

(and indirectly by the software). The author considers that data resources and their storage

do not consume energy. However, writing and reading data do consume energy. Code

resources, on the other hand, need hardware to execute on. And hardware needs a power

supply to work. Therefore, the author distinguishes three computation units: software or
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code (the unit that requests energy to run), hardware (the unit that consumes energy in

order to execute the code), and electrical socket (the energy provider).

The author gives an example scenario of a user walking in a city with a mobile phone

and interacting with context and location-aware elements: a statue that sends multimedia

information about it, and a restaurant that sends an SMS about its menu and price. The ex-

ample is modeled using the energy-aware additions to the MIDAS language. For example,

the phone will have energy and functionality variables, as well as action modeling for charg-

ing using the electric sockets. Actions to apply when receiving an SMS or a video message

are also included in the phone modeling.

Adding energy awareness in the MIDAS middleware platform language allows a uni-

form approach to modeling resources in a network. This is done by having energy mod-

eled using the same formalism of network nodes, location or other properties. However,

this modeling does not offer tools to optimize or reduce the energy consumption directly.

Instead, it provides a modeling infrastructure that helps in managing energy-aware applica-

tions and networks.

Energy consumption estimation based on workload in servers

In [LGT08], the authors propose a model for estimating the energy consumption of servers.

For that, they use hardware performance counters (collected through software and operat-

ing system tools), and experimental results. A linear regression model is also proposed for

predicting the energy consumption of computer jobs.

In particular, the total energy consumed by the system for a given workload is calculated

using the following combined model:

Esystem = α0(Eproc + Emem) + α1Eem + α2Eboard + α3Ehdd (2.5)

where α0, α1, α2, and α3 are constants that are determined using experimental results on a

given server architecture (e.g., linear regression analysis).

Eproc is the energy consumed by the processor, Emem the energy consumed by the

DRAM memory, Eem the electromechanical energy, Eboard the energy consumed by the sup-

port chipsets, and Ehdd is the energy consumed by the hard drive while operating.

The energy consumption of these resources is calculated using resource-specific models.

For example, the energy consumption of the hard disk is the sum of the power required

to spin the disk, the idle power, and the power to read and write data. The model is thus

represented using the following formula:

Ehdd = Pspin−up ⇥ tsu + Pread

X
Nr ⇥ tr

+Pwrite

X
Nw ⇥ tw +

X
Pidle ⇥ tidle (2.6)
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where Pspin−up is the power required to spin-up the disk from 0 to full rotation, tsu is the

time required to achieve spin-up, Pidle the power consumed by the disk when in idle, Pread

and Pwrite are the power consumed per kilobyte of data read and write from the disk, and

Nr the number of kilobyte read or written.

Emem is calculated using a combination of the counts of highest level cache misses

in the processor combined with the read/write power and the DRAM memory activation

power. Eem is calculated based on the energy consumed by the cooling fans and the optical

drives. Eboard uses probe based measurements to calculate the energy required by the sup-

port chipsets. Finally, the processor energy Eproc is calculated as a function of its workload.

The workload manifests by the CPU core temperature and the ambient system temperature.

The temperature is measured using ipmitool [ipm] through sensors in the path of the outgo-

ing airflow from the processor.

2.4.2 Energy Measurement and Estimation

Managing and optimizing energy consumption in software while providing a minimum

accuracy requires measuring the energy available and consumed. In particular, monitoring

or estimating the energy and/or resources consumption of hardware and software is a sine

qua non condition for energy management at a finer grain. In this section, we review the main

approaches and tools for measuring and estimating the energy consumption of software

systems.

PowerScope

In [FS99], the authors propose a tool, PowerScope, for profiling energy usages of applications.

This tool uses a digital multimeter to sample the energy consumption and a separate com-

puter to control the multimeter and to store the collected data. PowerScope can sample the

energy usage by process. This sampling is more accurate than energy estimation, although

it still requires a hardware investment.

In particular, PowerScope maps energy consumption to program structure. It can there-

fore determine the energy consumed by a specific process, and even down to the energy

consumption of different procedures within the process. The implementation of the tool

uses statistical sampling of both the power consumption and the system activity. The tool

generates an energy profile that is analyzed post mortem. Thus, the tool has no profiling over-

head, but with the price of no online values. During the sampling, a multimeter is used to

sample the current drawn of the profiled computer. A separate computer is also used to

store the collected information and controls the multimeter (although this can also be done

on the same computer).

In more details, PowerScope uses three software components:
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1. a System Monitor that samples system activity by using a user-level daemon and OS

kernel modifications. The monitor records the value of the program counter (PC) and

the process identifier (PID). It also records, through instrumentation, additional system

information such as the pathname associated with executing processes, or the loading

of shared libraries.

2. an Energy Monitor that runs on a separate machine and collects current samples from

the multimeter. The latter transmits asynchronously the current samples to the monitor

where they will be stored.

3. and an Energy Analyzer that uses the collected data by the system monitor and the en-

ergy monitor to generate the energy profile of the system activity. Energy usage is cal-

culated using the formula in equation 2.7, and the analyzer then generates a summary

of energy usage per process. The analyzing process is done offline after the execution

of the program.

E ⇡ Vmeas

nX
t=0

It∆t (2.7)

where E is the total energy over n samples using a single measures voltage value Vmeas, It
is the current and ∆t is the interval of time.

Using their tools on adaptive video scenarios, the authors managed to obtain a 46%

reduction in total energy consumption when applying video compression, smaller display

size, network and disk power optimizations. However, the tool is relatively old i.e. 1999.

Many modern hardware, operating system and software energy management techniques

were not available more than a decade ago. On a modern system the energy reduction may

be lower than the number the authors got in their research.

pTop

pTop [DRS09] is a process-level power profiling tool. Similar to the GNU/Linux top program

[Linc], the tool provides the power consumption (in Joules) of the running processes. For

each process, it gives the power consumption of the CPU, the network interface, the com-

puter memory and the hard disk. The tool consists in a daemon running in the kernel space

and continuously profiling resource utilization of each process. It obtains these information

by accessing the /proc directory [Mou01]. For the CPU, it also uses Thermal Design Power

(TDP) – which is the maximum amount of power the cooling system requires to dissipate

– provided by constructors in the energy consumption calculations. It then calculates the

amount of energy consumed by each application in a t interval of time. It also consists of a

display utility similar to the Linux top utility. A Windows version is also available, so called

pTopW, and offers similar functionalities, but using Windows APIs.
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pTop’s energy model is a sum of the energy consumed by individual resources in ad-

dition to energy consumed by the interaction of these resources. The following formula

presents the energy consumed by an application Eappi:

Eappi =
X

Uij ⇥ Eresourcej + Einteraction (2.8)

where Uij is the usage of application i on resource j, Eresourcej is the amount of energy consumed by

resource j, and Einteraction is the indirect amount of energy consumed by the application because of

the interaction among system resources, in the time interval t.

The authors also propose a general model for energy consumption of a particular re-

source. The model is a function of the states (e.g., read, write) and transitions of the resource.

The formula is as follows:

Eresourcej =
X
jinS

Pjtj +
X
kinT

nkEk (2.9)

where S defines the states of the resource j, T its transitions, Pj the power consumed by

resource j in a time interval t, nk the number of transitions k, and Ek is the energy consumed

by this transition.

From the general model, resource specific models can be generated. For the CPU the

formula is therefore:

ECPU =
X
j

Pjtj +
X
k

nkEk (2.10)

where Pj and tj are the power consumption and the time the processor running at a particular fre-

quency, respectively; nk is the number of times transition k occurs, and Ek is the corresponding

energy of that transition. This calculation is based on an assumption that CPU energy is pro-

portional to the process CPU time.

For the network interface:

ENeti = tsendi ⇥ Psend + trecvi ⇥ Precv (2.11)

where tsendi and trecvi are the amount of time process i sends and receives packets, Psend and Precv

are the power consumption of the wireless card at sending and receiving states.

For the hard disk:

EDiski = treadi ⇥ Pread + twritei ⇥ Pwrite (2.12)

where treadi and twritei are the amount of time process i writes to the disk and reads from the disk,

Pread and Pwrite are the power consumption of the disk writing and reading states.

The authors tested their model using their process-level profiling tool. The average me-

dian error is less than 2 Watts when compared to direct energy values by a wattmeter (in

their case a Watts Up Pro meter [wat]) in a random workload sample taken every 10 sec-

onds. The tool’s overhead is relatively low, although not negligible, at 3% of the CPU and

0.15% of memory in a 1 second sampling interval of more than 60 processes running in the

systems.
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Other Energy Tools

In addition to the previous approaches, other tools offer energy information. We present

here a selection of other major energy measurement tools in the remainder of this section.

PowerTop PowerTop [powc] is a Linux tool to diagnose issues with power consumption and

power management. It reports an estimation of the energy consumption of software appli-

cations and system components. It also offers an interactive mode where users can apply

different power management settings not enabled by default in the Linux distribution. Pow-

erTop therefore shares similarities with pTop but also limitations such as the lack of fine-

grained results.

Energy Checker Energy Checker [ene] is an SDK provided by Intel and offers function for

exporting and importing counters from an application. These counters measure the time

spent for a particular event or process, such as reading a file, or converting a video. The

counters are then used to estimate the power consumption of the application. However,

the power estimation requires a hardware powermeter, thus limiting the flexibility of the

approach.

Joulemeter Joulemeter [jou, RGKP10] is a software tool that estimates the energy consump-

tion of hardware resources and software applications in a computer. It monitors resources

usage, such as the CPU utilization or screen brightness, in order to estimate the energy con-

sumption of these resources. Joulemeter uses machine specific power models for hardware

configuration. Their current model takes into account processor Pstates, power utilization,

disk I/O levels and whether the monitor is turned on or off. The models, however, are

learned through calibration. This draws a limitation in term of flexibility as power models

cannot be estimated without previous laboratory benchmarks.

Other System Tools

In addition to pTop, several utilities exist on Linux for resource profiling. For example, cpufre-

qutils [The] which consists of multiple tools such as cpufreq-info to get kernel information

about the CPU (i.e., frequency), and cpufreq-set to modify CPU settings such as the frequency.

iostat [Linb] that is used to get devices’ and partitions’ input/output (I/O) performance in-

formation, as well as CPU statistics. Other utilities [Git] also exist with similar functionali-

ties, such as sar, mpstat, or the system monitoring applications available in Gnome, KDE or

Windows. However, all of these utilities only offer raw data (e.g., CPU frequency, utilized

memory) and do not offer direct energy information. These raw data can, nevertheless, be

used to feed power models with information needed for estimating the energy consumption.
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Application Profiling Tools

Several open-source or commercial profiling tools already propose some statistics of appli-

cations. Profilers are generally programming language dependent. GNU gprof [gpr] and

C Profiler [cpr] as an example of profilers in C. For .NET languages, profilers exist such as

ANTS Performance profiler [ant], AQtime Pro [aqt] or SlimTune [sli]. In Java, tools such as

VisualVM [Vis], Java Interactive Profiler (JIP) [jip], JProfiler [ej-], or the Oktech Profiler [OKT],

offer coarse-grained information on the application and fine-grained resource utilization

statistics. However, they fail to provide energy consumption information of the applica-

tion at the granularity of threads or methods. For example, the profiler of VisualVM only

provides self wall time (e.g., time spend between the entry and exit of the method) for its

instrumented methods. However these tools do not provide network related information,

such as the number of bytes transmitted by methods and thus the energy consumed.

2.4.3 Discussions

Although many approaches exist for measuring various resources metrics, energy metrics

are still lacking. Few approaches offer energy models or tools for calculating the energy

consumption of software or hardware.

Energy measurement nowadays can be grouped into three categories: hardware mea-

surement as for example in [MSK07, Ale], power models as in [SMM07, KZ08, Pet08, LGT08,

TT13], and software measurement (as in many tools [DRS09, powc, ene, jou, FS99, cpr, gpr,

aqt, sli, jip, ej-, OKT, Vis]).

Hardware measurement offers high precision but at a coarse-grained level. It also re-

quires, as it name states, additional hardware whether embedded or not. The main limita-

tion of such approach is the inability for evolution and the difficulty to scale.

Power models provide models to calculate or estimate the energy consumption of hard-

ware and software. Models are either too generic and coarse-grained [Pet08, KZ08], or plat-

form dependent (in particular Java) [SMM07, SMM08]. Tools based on energy models suffer

also from platform dependency [DRS09, FS99, LGT08]. The model in [LGT08] offers a com-

bined model to calculate the energy consumption of the system. However, their resources-

specific models varies from fine-grained software-based models, such as the hard disk en-

ergy model, to coarse-grained hardware-based models, such as for the processor. The model

presented in [LGT08] uses statistical methods in their formulas, thus a tradeoff arises be-

tween precision and software overhead.

The most promising approach in software measurement is energy application profiling.

Profilers help in understanding the system and decomposing the energy consumption of

each resource. For example, in [CH10], the authors determined that on an Openmoko Neo

Freerunner mobile phone [fre], the GSM module and the display (LCD panel, touchscreen,

graphics accelerator and driver, and backlight) consume the majority of power. Still, cur-

rent approaches are either coarse-grained (provide energy values at the process level) as in
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[DRS09, FS99], or profile some system resources without providing energy values such as

[cpr, gpr, aqt, sli, jip, ej-, OKT, Vis]. PowerScope [FS99] does not offer energy information in

real time unlike pTop [DRS09]. Similar to a number of other profilers, PowerScope collects

resources information at runtime then calculates energy values offline at a later stage of the

measurement. The advantage of real time solutions such as pTop is the ability for adaptive

middleware platforms to use energy measurements for runtime energy-aware adaptations.

PowerScope also requires hardware investment in the form of a digital multimeter while pTop

provides similar per-process energy information using only software means.

Software profilers use software statistical sampling or software code instrumentation.

Both approaches have advantages and limitations [LV99, Pro]. Instrumentation offers two

main advantages: i) accuracy where exact resources values are provided; and ii) repeatabil-

ity as bytecode instrumentation produces similar results with the same environment and

parameters. Sampling, on the other hand, i) have a lower overhead as it only occurs at sam-

pling intervals (unlike instrumentation where the overhead is permanent); and ii) does not

require application source (or byte-) code modification. Although bytecode instrumentation

has a non-negligible overhead for very large applications, we argue that supporting precise

and accurate per-method energy profiling is better suited for diagnosing energy leaks in

applications.

Table 2.4 presents a general comparison between the main energy measurement ap-

proaches studied in this chapter.

Based on our review of state-of-the-art approaches, we argue that work still need to be

done for accurate and invisible energy measurement approaches. New metrics and models

on both system and software levels need to be defined. These new measurements should

adopt in our opinion the following criteria:

1. Accurate measurements. Energy consumption measurement is key for energy-aware

adaptations. On higher system levels (middleware and software), more accurate mea-

surement provides better information for relevant energy management and adapta-

tion. Measurements at a finer-granularity need to be defined, not only by providing

system resources values, but rather by providing fine-grained energy consumption

values for applications.

2. Fine-grained power models. Energy models and formulae need to be precise enough to of-

fer energy consumption values at finer-granularity. State-of-the-art software and mid-

dleware platform models have either energy precision limitations (providing coarse-

grained energy values), or provide finer-grained resources (not energy) values. We

argue that finer-grained power models, without unnecessary mathematical or archi-

tectural complexity, are needed for better energy measurements.
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Monitored

Resources

Energy Preci-

sion

Operating

System Modifi-

cation

Software Modi-

fication

Hardware

Investment

ASIC, Power-

meter

3 Hardware

Energy

Hardware 5 5 3

OS utilities 5 Hardware and

OS Resources

5, but Hard-

ware, Software,

Process for

Other Re-

sources

5 5 5

Software Profil-

ers

5 Software Re-

sources &

Parameters

Software,

Classes &

Methods

Depends on

Profiler

Depends on

Profiler

5

PowerScope 3 Current, Pro-

gram Counter

Process, Proce-

dure

3 5 3

pTop 3 Hardware Re-

sources (CPU,

Disk, Network)

Process 5 for CPU, 3 for

Network

5 5

PowerTop 3 Hardware

resources

Application 5 5 5

Energy Checker 3 Hardware

resources,

Application

counters

Application 5 3 through

counters

3

JouleMeter 3 Hardware

resources

Process 5 5 5

Table 2.4: Comparative table of energy measurement approaches
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3. Reduce user experience impact. Adding an additional layer of computation in order to

measure energy consumption has a non-negligible impact on user experience. Ap-

proaches implementing energy models and formulae need to be invisible for the user,

the application and the underlying system. Therefore, tools need to have low or neg-

ligible overhead (in particular in term of time and energy impact). The scalability and

evolution (in addition to practical usage) of the system is greatly impacted with addi-

tional hardware. Thus, no additional hardware investment needs to be used for energy

measurement. Finally, measurement tools should not require the manual modification

of applications source code. We need to measure legacy or newer software without

requiring the availability of their source code, or their modification by the user/devel-

oper. Instrumentation (in particular bytecode instrumentation at runtime), in this case,

provides a tradeoff between accuracy and independence of source code modification.

4. Software-centric approaches. Hardware meters, although offering a precise value of the

energy consumption of the device, have numerous limitations:

• They only monitor hardware devices, not software.

• They do not offer flexibility as they require hardware investment.

• The impact of energy meters on energy efficiency have also been found to de-

crease over time [KG09].

Measuring energy consumption of devices and software is relevant when the collected

information is reusable. Raw energy consumption values are hardware dependent,

therefore they cannot be used as is in different hardware or configurations. They also

may, to a lesser extend, fluctuate even on the same machine and configuration due

to electro-mechanical imperfections. We argue that a software-only methodology of-

fers enough advantages to yield this limitation of reusability, while still maintaining

accuracy, fine-grained results and with little user experience impact.

2.5 Summary

In this chapter, we reviewed the state-of-the art approaches in energy management and en-

ergy measurement in software. The middleware layer is a good choice for managing the

energy consumption of software and devices (see Section 2.2). This layer offers assets for

managing the diversity of software and hardware, their inherent heterogeneous nature (e.g.,

programming languages, devices characteristics, applied environments, etc.), and the dis-

tributed platforms devices and services are nowadays using. However, existing solutions

only offer limited energy management, such as providing architecture or algorithms applied

to an environment-specific domain or to a certain execution context (see our discussions in

Section 2.2.2). In addition, managing energy cannot be achieved efficiently if energy is not

directly measured.

39



Chapter 2. State of the Art

Existing approaches manages energy based on resources utilizations, and rarely use en-

ergy measurement and monitoring. The latters, on the other hand, are also limited. They

require hardware power meters, or coarse-grained estimations of the energy consumption

of software, and are limited in granularity (see Section 2.4). Measuring or estimating the

energy consumption of software needs to be accurate with a low margin of error, and also

fine-grained. Devices, software and even portions of software code need to be measured

for energy consumption, without impacting the user experience (for example with a high

execution overhead), and while using software-only approaches.

Our work in this thesis is, therefore, providing energy measurement approaches and

tools, to accurately estimate the energy consumption of applications, and software code, at

a finer level, without impacting the user experience, and using only software approaches.

We also propose to model the evolution of energy consumption of software code (such as

methods in modern programming languages) based on their input parameters. We conduct

experiments using our approaches and tools, and report on the findings and learnings we

got from our work about software energy consumption, distribution of energy in software

code, and the impact of software parameters and execution platforms on energy evolution.

Our contribution is detailed in the next part of this thesis in Chapters 3, 4, and 5.
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Energy Measurement and Evolution
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Chapter 3

Energy Measurement at the Application

Level

“The higher your energy level, the more efficient your body. The more efficient your body, the better

you feel and the more you will use your talent to produce outstanding results."-Tony Robbins

Contents

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.2 Energy Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.2.1 Methodology of Measurement . . . . . . . . . . . . . . . . . . . . 45

3.2.2 Model for CPU . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.2.3 Model for Network Card . . . . . . . . . . . . . . . . . . . . . . . 49

3.3 Experimentations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.3.1 Measurement tools, PowerAPI . . . . . . . . . . . . . . . . . . . 50

3.3.2 Validation of Models . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.3.3 CPU model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.3.4 Network model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.3.5 Impact of Programming Languages . . . . . . . . . . . . . . . . . 56

3.3.6 Impact of Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.4 Discussions and Limitations . . . . . . . . . . . . . . . . . . . . . . . . 62

3.4.1 Model-based software energy estimations are accurate and valid 62

3.4.2 Ethernet network energy is negligible to CPU . . . . . . . . . . . 62

3.4.3 Energy and execution time are not linear . . . . . . . . . . . . . . 63

3.4.4 Code, algorithms, languages, and parameters impact energy

consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.4.5 Software as a black-box is not sufficient . . . . . . . . . . . . . . 64

3.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.6 The Need for Code Level Measurement . . . . . . . . . . . . . . . . . . 65

43
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3.1 Introduction

Energy consumption of software is a rising issue in the green computer community as well as

for computer scientists and developers. Energy needs to be optimized in order to efficiently

use software without any useless waste. Developers try to produce energy efficient soft-

ware by stripping features, limiting software’s capabilities, produce smaller feature-centric

software, or reduce the usage of their applications. However, a first step of optimizing the

energy consumption in software is to accurately measure it. State-of-the art solutions (see

Chapter 2) provide limited approaches for efficient and accurate energy measurement. Ac-

curate approaches require hardware investment in the form of power meters, while software

approaches lacks accuracy, usability and flexibility, and software profilers do not address the

energy dimension. Energy meters have the drawback of being difficult, if not impossible, to

upgrade. They also only provide information at hardware level, not software. Finally, hard-

ware meters fall into oblivion as users would stop using them after a period of time [KG09].

We argue that efficient solutions require software-only energy measurement approaches,

and that model-based software estimation of energy consumption provides accurate estima-

tion for energy management and optimization approaches.

In addition, using resources utilization as a metric for energy consumption (as state-

of-the art energy management approaches do) is not an efficient or accurate approach for

modern hardware and software. Resources utilization is not 1-to-1 and linear to energy con-

sumption. Modern CPUs feature Dynamic Voltage and Frequency Scaling or DVFS, there-

fore providing different amount of energy consumption of the CPU between its various fre-

quencies and voltages. An application using the same percentage utilization in two different

CPUs will not consume the same amount of energy. The same problematic is also present for

other hardware components: hard disks, RAM memory or network cards feature different

energy consumption specifications. Ideally, a software-only approach measures or estimates

the energy consumption of hardware and software resources. This approach would have a

low margin of error and provides an important addition to energy management solutions

at middleware and software layers. It provides its energy measurements or estimations to

middleware energy management platforms. The latter then uses this information in order to

adapt and optimize software and devices based on real energy values (instead of resources

utilizations). We argue that using direct energy values for energy management is a more effi-

cient approach as to adapt and optimize software, but also to understand where and how the

energy is being consumed. This knowledge is key into developing energy efficient software

and energy management middleware platforms.

In this chapter, we propose in Section 3.2 energy models in order to estimate the energy

consumption of software without the need of additional hardware meters. In Section 3.3, we

then validate our models in a software implementation and conduct experiments in order to

understand the energy consumption of software while varying programming languages, al-

gorithms, parameters and compilers. The lessons we learnt from these experiments provide

key insights into energy consumption in software and lead to a better understanding of en-

ergy consumption at deeper levels. We details thoses lessons and discussions in Section 3.4.
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3.2 Energy Models

3.2.1 Methodology of Measurement

For measuring the energy consumption of applications, we adopt a software-based estima-

tion methodology. Our approach is summarized as follows: hardware resource utilization

are measured before being mapped to software through energy models. Concretely, we mea-

sure hardware resource utilization, either directly from the devices, or through the operating

system primitives. This information is then exposed in defined energy models in order to

estimate the energy consumption of software. In details, our methodology is composed of

four steps that are summarized in Figure 3.1:

Applications

Operating System

Energy Models

Hardware

Manufacturers 

documentation
Utilization of 

hardware resources

1

Energy consumption 

of hardware2

Resources utilization 

by software3

Energy consumption 

of software4

Figure 3.1: Methodology of measurement at application level.

1. First, we collect utilization data of hardware resources. For example, the current CPU

frequency and voltage, or the network card throughput mode. This step is necessary

for modeling the total energy consumption of the monitored hardware resources. For

each resource, data is collected directly from the hardware interface (if available), or

through the operating system APIs or tools.

2. Next, we use energy models in order to estimate the total energy consumption of

the hardware resource. These models compute the energy consumed by a hardware

component based on its runtime characteristics (e.g., voltage and frequency for a CPU),

and its physical properties (e.g., Thermal Design Power or TDP for a CPU). The former

are collected in the first step (from hardware itself or through the operating system),

while the latter are provided by hardware manufacturers.

3. The third step is to collect resource utilization of the hardware resources by software

applications. We consider that each process (identified by a unique PID) is a separate
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application. Software running using multiple processes is managed by calculating the

sum of the energy consumption of its processes. Resource utilization is monitored

at runtime through the operating system. For example, we use the proc file system

(or procfs) in Unix systems in order to collect information about the percentages of

utilization of each CPU frequency by the monitored application.

4. Finally, we apply our energy models to estimate the energy consumed by the appli-

cation on a specific hardware resource. The total energy consumption of software is

therefore the sum of its energy consumption on each monitored hardware component.

Our approach uses energy models in order to estimate the energy consumption of soft-

ware. In our work, we concentrate on several key hardware components, in particular the

CPU and the network. These two components are widely present in most of modern de-

vices, from desktop computers, data centers and mobile devices. Therefore, we concentrate

on these two components as a first step in our energy modeling. The next sections present

our models for the CPU and the network card.

3.2.2 Model for CPU

In our methodology described in Section 3.2.1, we use energy models in order to compute

and estimate the energy consumption of software. Several previous works have proposed

energy and power models for the CPU (see Chapter 2). However, these models are limited

in their scope and accuracy. In this section, we extend the state-of-the art models and present

our energy models to estimate the energy consumption of software for the CPU hardware

resource. The model is summarized in Figure 3.2.

PowerX

t t + d

CPU
dCPU utilization 

by software
=

Powersoftware
d

Figure 3.2: CPU model for software.

Building the CPU Energy Model

We propose a power model for modeling the energy consumption of the CPU. This model is

based around the standard equation for modeling the power consumption of Complementa-

try Metal Oxide Semiconductor (CMOS) components, and in particular modern processors.

We use power as measurement unit instead of energy in parts of our models for two reasons:

46



3.2. Energy Models

• Most state-of-the art models use power as unit for their models. Because we base and

improve our own models on standard CMOS equations and models, we also use power

as a measurement unit. This facilitates comparison between models and widespread

usage of our models.

• Energy consumption is strongly related to execution time. We want to abstract this

relation by providing the total energy consumption, and the energy consumption by a

unit of time (in particular, per second–power).

The standard model for the power consumption on a CPU is as follows:

P
f,V
CPU = c⇥ f ⇥ V 2 (3.1)

Where f is the frequency, V the CPU voltage and c a constant value depending on the hard-

ware materials (such as the capacitance and the activity factor). Thanks to this relation, we

note that power consumption is not always linearly dependent to the percentage of CPU uti-

lization. This is due to Dynamic Voltage and Frequency Scaling (DVFS) and also to the fact

that power depends on the voltage (and subsequently the frequency) of the processor. For

example, a process at 100% CPU utilization will not necessarily consume more power than a

process running at 50% CPU utilization but with a higher voltage. Therefore, a simple CPU

utilization profiler is not enough in order to estimate the power consumption of the CPU or

software.

Two values in the model in Formula 3.1 can be accessed at runtime from the operating

system: the CPU frequency f, and the voltage V. Each frequency runs at a certain voltage,

with some cases of multiple close-range frequencies running at the same voltage. As an

example, Table 3.1 outlines the supported frequencies of an Intel Pentium M processor with

their related voltages [pen04].

Frequency (GHz) Voltage (V)

1.6 1.484

1.4 1.420

1.2 1.276

1.0 1.164

0.8 1.036

0.6 0.956

Table 3.1: Frequencies and voltages for Intel Pentium M processor

The dynamic variables in the standard model in Formula 3.1, frequency f and voltage

V, are obtained through the operating system at runtime. However, the static variable c

cannot be obtained at runtime. The latter value is a set of data describing the physical CPU

characteristics (e.g., capacitance or activity factor). Manufacturers may provide this constant

although in most cases it is missing. In order to calculate this value, we use the existing

relation between the overall power of a processor and its Thermal Design Power (or TDP)
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value. TDP represents the power required by the cooling system of a computer to dissipate

the heat generated by the processor during execution. It is generally related to a certain state,

such as the maximum frequency and voltage. However, TDP is not a perfect estimation

of the power consumption of a processor. According to [RSRK07], a factor of 0.7 is to be

applied to the relation between the TDP and the power consumption. Therefore, the power

consumption of the processor can be modeled as follows:

P
fTDP ,VTDP

CPU ' 0.7⇥ TDP (3.2)

Where fTDP and VTDP represent the frequency and the voltage of the processor within the

TDP state, respectively. The benefit of using the TDP in our model is that TDP is a value

provided by most manufacturers.

Based on Formula 3.2, our model in Formula 3.1 can be used to calculate the constant c

as follows:

P
fTDP ,VTDP

CPU = c⇥ fTDP ⇥ V 2
TDP ' 0.7⇥ TDP (3.3)

thus c is modeled as:

c '
0.7⇥ TDP

fTDP ⇥ V 2
TDP

(3.4)

Therefore, to compute the power consumption of a CPU, we apply the following model:

P
f,V
CPU =

0.7⇥ TDP

fTDP ⇥ V 2
TDP

⇥ f ⇥ V 2 (3.5)

The Intel Pentium M processor have a TDP of 24.5 W for the maximum frequency of 1.6

GHz and voltage 1.484 V [pen04]. Thus, its constant c is calculated using Formula 3.4 to be

equal to 4.86716803⇥ 10−6.

Process CPU usage and power consumption

In order to estimate the power consumption of an application, we need to monitor its re-

sources usage, in particular its CPU usage. We choose to identify applications by their pro-

cesses, and the latters by their Process IDentifiers (PID). We calculate the process CPU usage

as a ratio between CPU time for the PID and the global CPU time (i.e., the time the processor

is active for all processes), during a duration d, as follows:

UPID
CPU (d) =

tPID
CPU

tCPU

(d) (3.6)

Finally, the power consumption of a process is the product of the power consumption

of the CPU for all applications, with the CPU usage of the monitored PID. This product is

modeled for a certain frequency as follows:

P
f
CPU =

0.7⇥ TDP

fTDP ⇥ V 2
TDP

⇥ f ⇥ V 2 ⇥
tPID
CPU

tCPU

(d) (3.7)
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When the processor supports dynamic scaling of the frequency and voltage (DVFS), the

CPU power consumption for a process PCPU is equal to the average of the CPU power of

each frequency balanced by the CPU time of all frequencies:

PCPU =

P
f∈frequencies P

f
CPU ⇥ t

f
CPUP

f∈frequencies t
f
CPU

(3.8)

3.2.3 Model for Network Card

The network power of a process is calculated using a formula similar to the CPU power

formula. We focus our modeling on Ethernet network cards because we first target desktop

and servers. Our estimation for network cards follows a cross-multiplication energy model,

and is summarized in Figure 3.3.

Mainly, the network power consumed by software is the total power consumed by the

network card Pnetwork multiplied by the duration of the monitoring d, then divided by the

transmission time of data ttransmission. The following equation presents the model:

Powernetwork
process =

Pnetwork ⇥ d

ttransmission
(3.9)

Even through the transmission time is gathered at runtime, the power consumption of

the network card is generated through manufacturers’ data. In particular, network cards

use different states or throughput mode (e.g., 1 Mbps, 10 Mbps) for sending or receiving

data. Each of these states yields different power consumption for transmitting bytes for

certain duration. Typically, manufacturers provide these values for a one second duration

transmission.

Power X

t t + d

network

Time of 

transmission

=Powersoftware

Duration

Figure 3.3: Network model for software.

Our network power model is therefore defined as:

Powernetwork
process =

P
i∈states ti ⇥ Pi ⇥ d

ttotal
(3.10)
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Where Pstate is the power consumed by the network card in the state i (provided by man-

ufacturers), d is the duration of the monitoring cycle, and ttotal is the total time spent in

transmitting data using the network card.

3.3 Experimentations

In this section we present the measurement tools we use to implement and deploy our en-

ergy models for software. First, we evaluate the validity of our energy models by comparing

the values they generate to direct hardware measurement (using power meters). Then, we

study the impact of programming languages and the impact of algorithms on the energy

consumption in software. Both studies offer insights into energy consumption variability in

software, when varying programming languages or implementation algorithms.

3.3.1 Measurement tools, PowerAPI

We use a system level library, called POWERAPI [BNRS13] and developed in our team by

Aurelien Bourdon. It implements our energy models in order to measure the energy con-

sumption of software. POWERAPI is a system library providing a programming interface

(API) to monitor at runtime the power consumption of software at the granularity of system

processes. Each process can therefore be monitored for its power consumption with a good

estimation in comparison to using hardware power meters. The library also offers energy

differentiation values based on hardware resources, such as giving the energy consumed by

the process on the CPU, or on the network or on other supported hardware resources.

POWERAPI’s architecture is modular as each of its components is represented as a power

module (see Figure 3.4). These power modules implement our energy models in order to

estimate the energy consumption of software at the application level. POWERAPI uses an

event bus (with the publish/subscribe paradigm) for exchanging information between its

modules. Listeners are used for gathering then providing energy information to the API.

A sensor module is responsible for gathering operating system related information for the

module. For example, it gathers the number of bytes transmitted by the network card, and

the time spent by the CPU at each of the processor frequencies (when DVFS is supported).

A formula module is responsible for estimating the power consumed for each process by

using both information gathered by the sensor module and information based on hardware

characteristics. This formula module uses our energy models specificed in Section 3.2 for the

calculations. Therefore, the formula module is hardware independent.

POWERAPI is implemented in Scala and is based on an event-driven architecture as

described in their website [powa]:

PowerAPI is based on a modular and asynchronous event-driven architecture

using the Akka library. Architecture is centralized around a common event bus
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Figure 3.4: PowerAPI architecture.

where each module can publish/subscribe to sending events. One particularity

of this architecture is that each module is in passive state and reacts to events

sent by the common event bus.

We also developed another monitoring application, called JOLINAR [jol]. This tool is

implemented in Java, and implements our energy models in order to estimate the energy

consumption of single monitored applications. JOLINAR is therefore a quick and easy tool

for application level measurements, however it does not provide a similar scalability as sc

PowerAPI.

Power meters

For comparing energy results calculated through our energy models (implemented in POW-

ERAPI), we use a Bluetooth power meter. The power meter, POWERSPY 2 [powb], is a mea-

surement unit coupled with power visualizer and analyzer software. It consists of a built-in

power meter in an electrical outlet, and measures the power consumption of hardware de-

vices plugged to the outlet. The main limitation of POWERSPY (and other hardware power

meters) is its limited granularity, at the level of hardware devices as a whole. Individual

hardware components cannot be measured (unless they have separate power units that can

be plugged in, independently, in an electrical outlet), neither can software. However, POW-

ERSPY offers direct measures about the power consumption of devices. We use this informa-

tion, while normalizing them, in order to compare our energy models to hardware energy

measurements.

3.3.2 Validation of Models

We validate the accuracy of our energy models (defined in Section 3.2) by comparing the

power values they generate with power values given by a hardware power meter. We
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use POWERAPI as an implementation tool for our energy models, and POWERSPY as the

hardware power meter. Experimentations are done on two computer: Dell Precision T3400

workstation computer with an Intel Core 2 Quad processor (Q6600); and a Dell OptiPlex

745 workstation computer with an Intel Core 2 Duo processor (E6600). Both computers runs

Ubuntu Linux version 11.04 and version 1.6 of POWERAPI.

3.3.3 CPU model

To validate the CPU model, we use three types of applications: a CPU-intensive applica-

tion (the Linux stress command [lina]), a video player (MPlayer [mpl]), and two application

web servers (Jetty [jet] and Tomcat [tom]). These applications cover different types of CPU

utilization: CPU-intensive for the stress command where the CPU is utilized up to 100%,

another CPU-intensive application, MPlayer, but where the CPU is utilized at different per-

centages and with different frequencies and voltages, and finally a web server that uses the

CPU moderately and depending on user activities. We choose these categories of applica-

tions in order to validate our models on different workloads, and using all the parameters

of our Formulas (e.g., time, frequency and voltage).

First, we stress the processor using the Linux stress command [lina]. The command is

a tool to impose load on and stress test systems. Basically, we stress the cores of the multi-cores

processor one at a time, while adding a new core to the test incrementally. Figure 3.5a depicts

the results as an evolution of the CPU power consumption along time (normalized values).

We normalize these values by subtracting for each measured value of the power meter, the

average of the differences between the values measured by the power meter and provided

by our energy models. The peaks correspond to stressing 1, 2, 3 and 4 cores, respectively.

Note that the slight synchronization shift on the graph between the two series of values is

due to the communication lag between the Bluetooth power meter and the computer.

Figure 3.5b shows the accuracy of our library where we outline the measured values

using the power meter and the values provided by our energy models, excluding the pre-

liminary synchronization values. The results show minor variations between the estimations

of our energy models and the power consumption values provided by the hardware power

meter. The margin of error is small in the CPU core stressing experimentation, and is around

0.5% of the normalized and averaged values.

The margin of error grows up to 3% in more complex software. We stress the Jetty

web server [jet] and the Apache Tomcat web server [tom] using Apache JMeter [jme]. In

both experimentations, the build-in scripts and web applications are stressed and results are

shown in Figures 3.6a and 3.6b for Jetty and Tomcat respectively. Finally, we play a video

using MPlayer [mpl] free media player. Figure 3.6c shows the results. These figures show

two advantages of our energy models:

• First, they validate our energy models on complex software, and in different domains.

We validate our model on CPU intensive Linux commands (stress command in Fig-

ure 3.5a), on web servers such as Tomcat web server (see Figure 3.6b) or the lightweight
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Figure 3.5: Accuracy of CPU model

Jetty web server (see Figure 3.6a), and on a video player application (MPlayer, see Fig-

ure 3.6c).

• MPlayer’s results (see Figure 3.6c) are particularly interesting as it outlines the effects

of DVFS. Our energy model takes into account this variability of frequencies and volt-

ages in the CPU, thus the variability of energy consumption in complex software. Also,

the Linux stress experiment in Figure 3.5a shows the importance of multi-core in en-

ergy consumption. For a similar period of time, energy consumption varies greatly

when running one, two, three or all the cores of the CPU.

On another example, we compared the energy consumption of VLC player decoding a

video, and an execution of the Tower of Hanoi program, both running on the Dell Opti-

Plex 745 workstation. The results in Figure 3.7 show the impact of running applications

under multiple frequencies (i.e., 1.6 GHz and 2.4 GHz). Although both executions of

VLC the two frequencies run the same program and decode the same video, the differ-

ence in energy consumption shows clearly the energy impact of DVFS as an approach

to lower energy consumption (i.e., 3325 and 1716 joules, repectively). In contrast, exe-

cuting a CPU intensive application, such as the Towers of Hanoi Java program, while

forcing a specific frequency of the CPU also outlines the impact of DVFS on energy

consumption. Results show the difference in CPU power consumption and execution

time while running a special version of the Tower of Hanoi algorithm (that writes to

a file each step of the algorithm) on two different frequencies. On the faster 2.4 GHz

frequency, the program consumes more energy per second and executes faster (total-

ing 3948 joules), while on the lower 1.6 GHz, it executes longer but with lower power

consumption (totaling 5092 joules). In this example, running faster even at a higher

frequencies results in better energy consumption than running at a lower speed but

nearly 40% longer.
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ing JMeter.
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(b) Running stress test on Tomcat web server

using JMeter.
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Figure 3.6: Stressing Jetty and Tomcat web servers and MPlayer

These results show the validity of our approach and that a simple time profiler isn’t

enough to get energy insights because its does not take into account DVFS and multi-

core CPUs.

3.3.4 Network model

In addition to stressing the CPU, we also stress the network card, an integrated Broadcom

5754 Gigabit Ethernet controller. We use the Iperf command [ipe] that performs network

throughput tests, and measure the power consumption of Iperf’s own CPU consumption,

and the power consumption of the Ethernet network card. We send two sets of TCP packets

of 100 MB each from a distributed client to our host server. We use the default settings of

Iperf while its CPU server executes following a periodically cycle (every second). The results

show very low network power consumption in comparison to the processor’s consumption
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Figure 3.7: An example of the impact of CPU frequencies on energy consumption.

of the Iperf process. The difference is around 192% between the network’s 0.017 watt and

the CPU’s 0.9 watt. Figure 3.8 outlines these numbers.
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Figure 3.8: CPU and network power consumption in Iperf stress test.

These numbers show that, although CPU power is quite low (average around 0.9 watt)

and the network card uses all its capacity, the consumed network power is largely negligible
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compared to the consumed CPU power on our test server. This observation is in correlation

with the literature [RSRK07].

These CPU and network experimentations show the validity of our energy models.

Therefore, we can reasonably argue that using a software-centric approach provides values

that are accurate enough to acknowledge the energy cost of software.

3.3.5 Impact of Programming Languages

Monitoring the energy consumption of software helps in understanding how energy is being

consumed, where and why. These questions, which we outlined in our main introduction

(see Chapter 1), are essential for energy optimization and management. In order to give

insights on these questions, we decide to conduct a comparison of the energy cost of pro-

gramming languages. Using our energy models and the tools implementing these models,

we run and compare an algorithm implemented in different programming languages. This

experiment is relevant for two reasons:

• First, it allows us to identify how energy is being consumed when changing the im-

plementation language. Therefore, we can have a view of the impact of programming

languages on energy consumption of software.

• Second, programming languages are diverse in term of design and specifications.

These languages can provide native code, byte code, compile at runtime, use a virtual

machine, etc. Our experiment on programming languages with this diversity gives us

clues on why energy consumption varies between languages.

Concretely, we run a similar implementation of the Tower of Hanoi program in different

programming languages. We choose this algorithm because of its simplicity (a few lines of

code), therefore we can quickly identify how, why and most importantly where energy is

being spend. The algorithm hold two main implementations: recursive, and iterative, which

we compare later in this section (see Section 3.3.6).

Next, we measure the energy consumption of these programs using the same set of pa-

rameters. In order to limit the impact of developers’ knowledge in programming languages

on the algorithm’s optimization, we use implementations of Tower of Hanoi made by Amit

Singh of Hanoimania project [Sin]. The project contains more than a hundred different im-

plementation of the Tower of Hanoi program in various programming languages, either

using the iterative or recursive algorithm for solving the Tower of Hanoi problem.

We chose 8 implementations representing three groups of programming languages:

• Native languages: implementations compiled in native code in C, C++ and Pascal.

• Virtual machine-based languages: implementations compiled as byte code in Java and

OCaml.
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• Scripting languages: implementations executed as scripts in Prolog, Python and Perl.

For each programming language, we use the default compiler with the default param-

eters and options. We also use PowerAPI to gather power values (in watt) for the program

execution and we report the energy consumption in joule (a function of time). Measure-

ments are collected at a 200 ms interval (or 5 Hz), and we run the Tower of Hanoi program

with 30 disks and 3 towers. The experimentations are done on the same configuration as in

Section 3.3.2, i.e., a Dell Precision T3400 workstation computer with an Intel Core 2 Quad

processor (Q6600), and running Ubuntu Linux version 11.04.

Figure 3.9 outlines the results of our experimentation. We observe that the energy con-

sumed by the same algorithm varies from language to language. The three implementations

in native code (C, C++, and Pascal) show similar energy consumption. C and C++ have a

near equal energy consumption (0.9% difference, at 325 and 322 joules respectively), which

is explained by the fact that both implementations are similar (C++ is considered as an incre-

ment of C language). The difference with Pascal language is slightly higher, but sill relatively

small (with a 5.9% difference at 341 joules).
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Figure 3.9: Energy consumption of the recursive implementation of the Tower of Hanoi pro-

gram in different languages (using a base 10 logarithmic scale).

The results also show that scripting languages have significantly higher energy con-

sumption. Perl is the most consuming at 25516 joules, while Python consumes 9450 joules

and Prolog 3673 joules. The difference between Prolog and C is high, at around 1000%, and

culminates to 47863% when comparing Perl and C. This is due to the scripting nature of

Prolog and Perl languages, compared to the native code produced by the gcc compiler of C.

Finally, virtual machine-based languages, Java and OCaml, are both at the opposite side

in term of energy consumption. Java has a low consumption at 88 joules, while OCaml
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consumes 1375 joules.

Based on these results, we note the following observations:

• The first notable observation is the low energy consumption of the Java implementa-

tion of the Towers of Hanoi program (88 joules). The increase of the C implementation

to the Java’s one is around 269%. The energy cost of the virtual machine is there-

fore minimal thanks to optimizations and code predictions in the Java virtual machine

(JVM). One such optimizations that is used in our Towers of Hanoi experimentation is

Just-in-time (JIT) compilation in the JVM [Ora]. Sun’s JVM combines both interpreta-

tion of byte code and JIT compilation. The Java byte code is initially interpreted, and

if portions of the code are being frequently executed, the JVM compile these portions

to native code. In our algorithm, the recursive version clearly outlines repetitive code

that the JVM detects and compiles to native code at runtime (JIT compilation).

In comparison, OCaml compiler produces a self-executable byte code. The execution

energy cost (1375 joules) shows the cost of starting and running OCaml virtual machine

(the executable file launches the OCaml byte code interpreter by itself [oca]). In the next

section (see Section 3.3.5), we conduct in-depth experiment of the impact of compilers,

and in particular of the impact of the OCaml byte code compared to native code.

• The second observation is the high cost of the scripting languages. These implemen-

tations have a high cost at 7751% (Perl), 2807% (Python) and 1030% (Prolog) increase

in energy consumption compared to the C energy consumption. This cost is explained

by the need to interpret then execute the program. This additional step clearly has a

high cost in term of energy consumption.

• Lastly, the relation between execution time and energy consumption is shown here

as linear. Figure 3.10 reports on the relation between energy consumption and execu-

tion time. We find that execution time and energy consumption of the different pro-

gramming languages is similar. However, this observation is not universal, and can

be explained by the fact that the Towers of Hanoi program is a CPU-intensive one. The

CPU usage is nearly around 100% of one of the processor cores during the execution

of the program. In average, this equals to around 18 watts in our host configuration

(ranging from 17.5 to 18.2 watts).

On more complex software and scenarios, such as playing a video in MPlayer, the

relation between execution time and energy consumption is not clear anymore. Our

experiment on MPlayer (see Figure 3.6c), VLC and Towers of Hanoi (see Figure 3.7)

outline the impact of DVFS and using multiple CPU frequencies. Decoding and ren-

dering video frames requires different amount of CPU power utilization (thanks to

DVFS), with differences up to 130% between peaks and valleys in the graph. The same

rendering is bound to a fixed duration (the length of the video), therefore using differ-

ent frequencies results in energy gains (although execution time is unchanged). Finally,

when using a CPU intensive application, the impact of running faster with a higher fre-

quency rather than running on a lower frequency but taking longer execution times.
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Figure 3.10: Energy consumption cost and execution time of the recursive implementation

of the Tower of Hanoi program in different languages

Impact of Compilers

In Section 3.3.5, we noticed that Java and OCaml energy cost is clearly different. Energy dif-

ferences between both implementations are important. We also noticed that C and C++ ver-

sions have higher energy consumption cost than Java. We decide to investigate the energy

consumption of the C and C++ versions using different options in the GCC/G++ compilers,

and compile the OCaml implementation using the native OCaml compiler: ocamlopt.

Figure 3.11 shows the energy consumption cost of the recursive implementation of the

Tower of Hanoi program using the O2 and O3 optimization flags. The difference in term

of energy consumption is notable. The O2 optimization option turns on more than 50 op-

timizations flags in GCC and G++ compilers. These allow a more optimized code, thus a

lower energy consumption: 21% and 27% decrease respectively for C and C++ when using

the O2 flag. The O3 flag turns all optimizations flags of O2 in addition to 8 more flags [gcc],

including the Predictive Commoning optimization flag. The latter eliminates redundancies

across the iteration of a loop [pre], therefore increasing performance and energy saving by

83% for C and C++ with the O3 flag (78% and 77% decrease compared to the compilation

with O2 flag).

When using the default OCaml compiler, ocamlc, the program consumes 1375 joules. In

comparison, the native code OCaml compiler, ocamlopt, produces an executable program

that consumes 130 joules. Ocamlc compiler produces a self-executable byte code, which

is interpreted by the OCaml byte code interpreter. Ocamlopt, on the other hand, produces
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Figure 3.11: Energy consumption of the recursive implementation of Tower of Hanoi pro-

gram in C and C++ using O2 and O3 GCC and G++ compilers’ options.

native code that is executed directly by the host machine. The main advantage of byte code to

native code is typical: universal execution on all hardware configuration (if a virtual machine

is implemented), or as the Sun slogan for Java says: Write once, run everywhere. But this

advantage has a cost that is outlined on our experiment with ocamlc and ocamlopt. Byte

code interpretation for OCaml has an increase in energy consumption of 957% compared to

the native code version.

3.3.6 Impact of Algorithms

We then compare the energy consumption difference between the same program, Towers

of Hanoi, but using two different implementations: a recursive algorithm and an iterative

algorithm. Figure 3.12 outlines the energy consumption cost of both recursive and iterative

algorithms implemented in C and C++ (and with different compilers options).

The recursive algorithm implemented in C++ consumed in average 322 joules while its

iterative version consumed 1656 joules, which amounts to more than 400% increase. When

using the O2 optimization option during compilation, both versions exhibit similar energy

consumption (on average 7% difference), however with the O3 option, the iterative ver-

sion does not save any energy. The recursive version shows a 78% decrease in energy con-

sumption using the O3 option in comparison with the O2 option. The Predictive Commoning

optimization in O3 eliminates redundancies across the iterations of a loop, which benefits

recursive algorithms more rather then iterative ones. Our results show that the recursive

version of the Towers of Hanoi program is more energy efficient than its iterative version.
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Impact of I/O Primitives

All the previous experimentations on the Tower of Hanoi algorithm do not print any mes-

sage on the Linux terminal. We carefully removed all print commands from the implementa-

tion code provided by Hanoimania. However, we noticed when we fist executed the unmod-

ified implementations from Hanoimanai, that the power consumption and execution time is

high. We decide to investigate this difference of energy consumption due to the I/O primi-

tives. Therefore, we measure the impact of adding an additional print line to the program.

We add a print command to print the action of moving a disk from one tower to another.

Listing 3.1 shows the implementation code in OCaml with the additional print_endline com-

mand.

1 t movedisk f t =

2 p r i n t _ e n d l i n e ( f ^ " −−> " ^ t ) ; ;

3

4 l e t rec dohanoi n f u t =

5 i f n = 1 then

6 movedisk f t

7 e lse

8 begin

9 dohanoi ( n − 1) f t u ;

10 movedisk f t ;

11 dohanoi ( n − 1) u f t ;

12 end ; ;

Listing 3.1: Towers of Hanoi recursive algorithm in OCaml with print command
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With the print command, the programs consumes 17852 joules, compared to 1375 joules

without the print command. The difference is nearly 1200% increase when adding a print

command. The experiment shows that printing to the terminal, a relatively simple task, is

costly. In particular if it is executed repetitively in a recursive algorithm (1 073 741 823 times

for 30 disks). The tasks of opening a pipe and sending data to the terminal are not negligible

efforts in term of performance and energy efficiency.

These numbers show the impact of I/O primitives on energy consumption. Writing to

a file, to the terminal, or other activities using I/O primitives use non-negligible amounts of

energy. Therefore, we argue that inputs and outputs should be used wisely in software, such

as when using log systems for recording the execution of software, or printing debugging

information in applications.

3.4 Discussions and Limitations

The learning we gained from the experiments conducted on our proposed energy models,

allows us to better understand software energy concerns. We summarize these learning in

the following points and limitations.

3.4.1 Model-based software energy estimations are accurate and valid

The first conclusion of our experiments is that our energy models are accurate and valid for

estimating the energy consumption of software (Section 3.3.2). The error margin we obtain

is low, between 0.1% and up to 3% on complex applications. The results in experiments

(Sections 3.3.5 and 3.3.6) also show the potential of our approach: our models allow energy

estimations on different programming languages, configurations and implementation algo-

rithms. We can reasonably argue that model-based software energy estimations are accurate

enough to replace hardware power meters. Another advantage is the absence of hardware

investment, and also being able to upgrade the models when needed. In addition, energy

models allow decomposing energy consumption per hardware component, and per appli-

cation.

3.4.2 Ethernet network energy is negligible to CPU

Physically, energy is directly consumed by hardware. Software energy consumption is the

energy consumed by hardware following software requests. As such, hardware components

have different energy consumption levels. CPU is, by far, the largest energy-consuming com-

ponent on computers. Our experiments show that Ethernet network energy consumption is

negligible compared to CPU’s energy consumption (Section 3.3.2). The difference we found

is about 192% for a network-intensive benchmark. Our results are in correlation with state-

of-the art results [RSRK07].

62



3.4. Discussions and Limitations

3.4.3 Energy and execution time are not linear

A common belief is that a simple CPU profiler can provide enough information to under-

stand the energy consumption of software. This belief is contradicted by our experiment

(Section 3.3.2) where energy consumption for decoding a video on MPlayer (Figure 3.6c) is

not linear to the execution time of reading this video (this is due to multiple CPU usage

values and DVFS). Figure 3.7 also show the impact of DVFS and executing the same task

(decoding a video in VLC, and solving the Towers of Hanoi algorithm) but under multiple

frequencies. However, on a group of CPU-intensive applications, this relation between en-

ergy consumption and time execution is linear. In particular, some CPU-intensive uses up

to 100% of the CPU nearly all the time (that is the case in the Tower of Hanoi program).

Therefore, CPU utilization is considered constant, thus the CPU usage approaches to 1. Our

model in Equation 3.7 becomes also a constant value, rendering the energy consumption of

software only a function of time.

We determine that these two groups of CPU-intensive applications have different energy

consumption patterns:

• Software that run at 100% utilization of the CPU have linear relation between energy

consumption and execution time.

• Software where its execution is impacted by DVFS, different CPU frequencies or multi-

cores, do not have linear relation. They rather are impacted by multiple factors (e.g.,

CPU frequency and voltage, multi-cores) in addition to execution time, therefore ren-

dering the use of only a time profiler useless for energy profiling.

3.4.4 Code, algorithms, languages, and parameters impact energy consumption

Our experiments show also that how software is being written and the language used are

important for energy efficiency. Using scripting languages have clearly drawbacks in term

of energy efficiency (Section 3.3.5) that should be taken into consideration when using them

(trade-offs would then be made between ease-of-use of the language, universality, and en-

ergy efficiency).

The experiments also validate that native code languages are the most efficient (Sec-

tion 3.3.5). The example of ocamlc and ocamlopt compilers showed the benefit in term

of energy efficiency of native code compared to byte code. However Java does a great job

mainly due to optimizations in the JVM (in particular, JIT compilation). Byte code languages

have a good trade-off between energy efficiency and versatility. The advantage of using byte

code (Write once, run everywhere) is increased with good energy efficiency (Java is better than

C and C++ without GCC or G++ optimizations; OCaml is 300% worst than Pascal while Perl

is 7382% worst).

The impact of the compiler and compilation options is outlined in our experiments. The

GCC and G++ compilers have optimization options that do a great job in term of energy
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efficiency (Section 3.3.5). Energy saving varies from 21% with the O2 optimization flag, to

up to 83% with the O3 optimization flag.

Finally, the design of the algorithm used to solve a problem is not to be forgotten. For

example, comparing iterative and recursive algorithms shows the advantages of the latter

in a CPU-intensive mathematical game puzzle. However, this cannot be generalized to all

problems as it also depends on the mathematical problems and solutions.

3.4.5 Software as a black-box is not sufficient

Our application level energy models provides the energy consumption of software. Al-

though this allows understanding the energy consumption of applications as a whole, moni-

toring at application level does not provide detailed information on how the energy is being

spent internally. Worst, if abnormal energy consumption is being noticed in an application,

there is little information on where and why this is happening. The experiment we did on

the impact of the print command (Section 3.3.6) illustrates such a scenario: a single print

command is responsible of nearly 1200% increase in energy. A code-level measurement tool

would allow detecting the code responsible for this energy increase. We managed to detect

this difference thanks to a small and comprehensible code base to review. On more complex

software, only detailed and fine-grained energy measurement would have detected this be-

havior. Therefore, coarse-grained measurement of the energy consumption of software is

not sufficient for later energy management and optimization. Finer-grained approaches are

needed for energy efficiency.

3.5 Summary

In this chapter, we present energy models in order to estimate the energy consumption of

software. Our approach is software-only, therefore we do not need the usage of any addi-

tional hardware meter (such as a multimeter or a power meter). The models we present

offers a high accuracy (with a margin of error of up to 3% as seen in Section 3.3.2). In addi-

tion, our energy models allow measuring the energy consumption per hardware resource,

such as the CPU or the Ethernet network card energy consumption. They also are used

to measure the energy consumption of individual applications (for example, processes in a

Linux system). We also outline the validity of our models and the software implementation

of these models, in term of accuracy of the models and the viability of the approach, and

against a power meter.

Based on our models, we investigate the energy consumption cost of different program-

ming languages in a CPU-intensive application. Our results show that scripting languages

have a much higher energy consumption compared to virtual machine based languages, and

to native code languages (see Section 3.3.5). They also show the impact of the optimization

options and parameters in compilers as energy consumption varies greatly in GCC and G++
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compilers based on their options (see Section 3.3.5). The impact of the virtual machine is also

outlined when comparing ocamlc and ocamlopt compilers, where native code surpasses

byte code in term of energy efficiency (Section 3.3.5). However, this is relative as Java byte

code is energy efficient in our experiment, mainly due to optimization in the Java Virtual

Machine.

Finally, we study the impact of coding algorithms, where changing the algorithm to

solve a problem can reduce the energy consumption of the problem (i.e., using recursive

instead of iterative implementation of the Towers of Hanoi program in C and C++, in Sec-

tion 3.3.6). The cost of printing a line on the system terminal is also shown to be non-

negligible, as shown in out results (see Section 3.3.6).

3.6 The Need for Code Level Measurement

Our experimentations in Section 3.3 shows the limits of software-only energy profiling, and

also the potential of measuring energy in software code. In Section 3.3.6, we outline a

glimpse of code optimization that is achieved thanks to software measurement. However,

this experiment requires running the measurement twice (once with the original code, and

once with the modified software), and also requires modifying the software itself. What if

we could measure the energy consumption of software at code level? And without software

modification or complex experimentation scenarios? Our experiments show the potential

and the necessity for such code level measurement energy models and tools.

In the next chapter, we present our energy models for measuring the energy consump-

tion of software at code level. We also present our implementation tool, called JALEN, and

our experimentations in detecting energy hotspots in software.
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Chapter 4

Energy Measurement at the Code Level

“Is the minor convenience of allowing the present generation the luxury of doubling its energy

consumption every 10 years worth the major hazard of exposing the next 20,000 generations to this

lethal waste?"-David R. Brower
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4.1 Introduction

In Chapter 3, we showed that monitoring energy at application level is limited in order to

understand how and where energy is being consumed in software. In particular, application

level measurements do not provide in-depth information on how the energy is being spend,

and which portion of code is responsible for the most energy consumption. An abnormal

energy consumption of an application would be better detected, understood and corrected

if needed, if detailed energy information is provided. Code level energy information is thus

useful for software developers for producing power efficient code. The Green Challenge for

USI 2010 [gcu] has identified that profiling applications to detect CPU hotspots is a winning

strategy for limiting the power consumption of applications. Although CPU profiling can

help in getting an idea of the energy consumption, the relation is not linear: for example,

DVFS in CPU and the energy consumption of other hardware components impact the global

energy consumption of software as we saw in Section 3.3. Therefore, we argue that a fine-

grained approach for proposing power-aware information is a keystone for future power-

aware systems and software.

However, monitoring at code level holds additional challenges that need to be correctly

addressed for measuring energy consumption:

• First, a major problem of code level monitoring is accuracy. Not only accurate energy

models are needed (as with application level monitoring), but also measuring energy

consumption at a fine grain requires precision. Due to the fine granularity of the mea-

surements, a moderate margin of error could lead to a false snapshot of the energy dis-

tribution between methods. For example, if two methods consume 80 and 100 joules

each and with a measurement tool with 10% margin of error, the values provided to

the user would be between 70 and 90 joules and 90 and 110 joules, respectively. There-

fore, such tools may estimate an equal result (90 joules each) where in reality a method

consumes 25% more energy than the other.

• When monitoring methods that may take as little as few milliseconds to execute, the

overhead of the measurement platform should not be high. The cost of the measure-

ment approach itself leads to higher overhead that pollutes energy results. The over-

head is not to be confused with the margin of error. Measurement tools with good

accuracy but high overhead, produces precise values but an additional cost in term of

energy or execution time is present, rendering the usability of the profiling limited in

production.

• Finally, a hard challenge is to correctly attribute the energy consumption of hardware

to the portion of code responsible for its consumption. With higher level programming

languages, and the complexity of modern software (e.g., multiple methods and threads,

methods overloading, children methods and call tree), this correlation between hard-

ware’s energy consumption and software code is a key element to measuring energy

at code level.
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In this chapter, we tackle these challenges and propose energy models in order to esti-

mate the energy consumption of software at code level, e.g., at elementary code block such

as methods (see Section 4.2). We then validate our models in a software implementation

called JALEN in Section 4.3. The latter is a software measurement tool for Java applications

that provides the energy consumption per method. Finally, in Section 4.4 we conduct ex-

periments in order to detect energy hotspots in applications. Lessons learned from energy

hotspot detections allow developers to better understand the energy distribution in their

code and produce energy efficient software, and are discussed in Section 4.5.

4.2 Energy Models

4.2.1 Methodology of Measurement

Our methodology to measure the energy consumption at code level bears similarities with

our methodology at application level (Section 3.2.1). In particular, our methodology is sum-

marized as follows: first, we measure hardware resource utilization by software code, then

we gather the energy consumption of the application (obtained through application level

measurement tools), and finally we map the previous data together through our energy

models in order to estimate the energy consumption of software code by hardware resources.

The granularity of our measurement at code level is that of methods. Concretely, we

measure the energy consumed by each method of the application on hardware resources. In

details, the methodology is composed of three steps that are summarized in Figure 4.1:

Applications

Operating System

Hardware

Energy consumption 

of software2

Energy Models

Utilization of 

hardware resources 

by software code

1

Energy consumption 

of code3

Application level 

monitoring

Figure 4.1: Methodology of measurement at code level.

1. First, we collect utilization data of the hardware resources by software code. For ex-

ample, we collect the CPU utilization of the executing method in an application, or the

number of bytes sent on the network card by a method, the number of times a method
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access the hard disk or the times spend reading or writing data. These data are gath-

ered, either directly from hardware and software, or through a middleman architecture

if available, such as a virtual machine.

2. Second, we gather the total energy consumption of the application, by hardware

resource. This information is obtained using our application level models and mea-

surement tools (Chapter 3). Basically, in this step, we isolate the energy consumption

of the application, therefore allowing energy models to be specified by the energy con-

sumption of software (thus, modeling hardware resources is not required in our energy

models at this step; they are already modeled at the application level in Chapter 3).

3. Finally, we map the collected data of software code and energy consumption at ap-

plication level with our code level energy models. This mapping allows our energy

models to estimate the energy consumption of software code (methods, classes, etc.)

by hardware resource.

4.2.2 Model for CPU

As with the application level models (see Chapter 3), we use power instead of energy in our

models. Using the information collected from the application level monitoring system, we

calculate the power consumption of software code or methods using the following formula:

PowerCPU
method = PowerCPU

software ⇥ UtilizationCPU
method (4.1)

PowerCPU
software is obtained through our application level model, in praticular by using

Formula 3.8.

Concretely, the power consumption of a method is a percentage of the power consump-

tion of the whole application based on resource utilization. This cross-multiplication equa-

tion allows us to abstract the hardware when measuring power consumption of software

code. At code level, our approach assumes that the power consumption of the application is

known (i.e., this information is gathered from application level monitoring). Therefore, our

code level model is hardware independent (unlike application level model).

Using the information we gather from our application level monitoring, we can esti-

mate the power consumption of software code at the granularity of methods (thus, classes,

packages or components). The first step is to calculate the CPU utilization of the code (i.e.,

method). As application code is generally executed inside threads (this is the case for Java),

we start by calculating the power consumed by thread, then we measure power at code level.

The power consumed by a thread is calculated through the following formula:

PowerCPU
thread =

PowerCPU
software ⇥ UtilizationCPU

thread

Durationcycle

(4.2)
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where PowerCPU
software is the power consumed by the application in the last monitoring cycle,

UtilizationCPU
thread is the CPU time of the thread in the last monitoring cycle, and Durationcycle

is the duration of the monitoring cycle. PowerCPU
software is obtained from the application level

models (from tools such as PowerAPI), UtilizationCPU
thread is obtained from the environment,

such as the OS or a virtual machine).

The next step is to calculate the CPU utilization for a method executing in the thread

against the total CPU utilization by the thead. For each thread, and for the monitoring dura-

tion, we get the list of all methods executing and estimate their CPU utilization. Threads can

execute one method at a time following an execution stack. For the duration of monitoring,

multiple methods can be executed by the thread. To estimate the CPU utilization of these

methods, we use their execution time and this formula:

UtilizationCPU
method =

Durationmethod ⇥ UtilizationCPU
threadP

m∈Methods
Durationm

(4.3)

Where Durationmethod is the execution time of the method in the last monitoring cycle, andP
Durationmethods is the sum of the execution time of all methods in the last monitoring

cycle.

Finally, we can estimate the power consumption of software methods of formula 4.1 by

the following:

PowerCPU
method =

UtilizationCPU
method ⇥ PowerCPU

thread

Durationcycle

(4.4)

4.2.3 Models for Network Card

The network power model at code level also uses power information from the application

level. The similar modular approach is applied here for the network. We calculate the net-

work power consumption per method using the number of bytes transmitted by the appli-

cation. First, we gather the number of bytes read and written by each method in the last

monitoring cycle. Then, we collect the network power consumption of the application using

application level models (and tools such as PowerAPI). Finally, the power consumed by a

method is a percentage of the power consumption of the application based on the number

of transmitted bytes (i.e., a cross-multiplication).

PowerNetwork
method =

Bytesmethod ⇥ PowerNetwork
process

Bytesprocess
(4.5)

Where Bytesmethod is the number of bytes read and written by the method, PowerNetwork
process

is the power consumed by the application, and Byteprocess is the number of bytes read and

written by all methods of the application. PowerNetwork
process is calculated using our application

level model, in particular Formula 3.10.
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The network power consumption per thread is therefore the sum of the network power

of all methods running in the thread as shown in the following formula:

PowerNetwork
thread =

X
PowerNetwork

methods (4.6)

At the application level, we choose to use the duration of transmission, while at code

level we use the number of bytes transmitted. This is motivated the availability of data. At

code level, it is difficult to collect the duration of network transmission per method, while

transmitted data size can be available easily. The usage of the transmitted data size is also

valid because the duration of transmission is related to the number of bytes transmitted [Ing]

as summarized in the following formula:

T imetransmission '
Sizepacket

Throughput
(4.7)

4.3 Jalen: Measuring Energy Consumption of Java Code

JALEN is a Java implementation of our energy models at the code level [jal]. The availability

of a virtual machine in the Java programming language helps us to retrieve information

used in our model. Although we use Java as a main language for our implementation and

studies, our approach is programming language agnostic and can be applied to different

programming languages having similar concepts (such as the concept of methods).

4.3.1 Approach and Architecture

We develop JALEN, a runtime measurement software for estimating the energy consumption

at code level for Java applications. JALEN uses power information provided by application

level monitoring tools (such as PowerAPI, or implementing application level monitoring di-

rectly inside JALEN), in order to estimate the energy consumption of software code. JALEN

provides energy information at a finer grain, i.e., at the level of threads and methods (there-

fore, estimations can be aggregated and offered at a higher code level, e.g., classes and pack-

ages).

The architecture follows our methodology of measurement (see Section 4.2.1) and is

specified in Figure 4.2:

• We first collect statistics about the application’s software and hardware resources uti-

lization (see first and second steps in our methodology in Section 4.2.1). Information,

such as methods durations, CPU time, or the number of bytes transferred through the

network card, are collected and classified at a finer grain, e.g., for each method of the

application.
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Java Virtual Machine

Hardware & OS

Java Application

Application level 

monitoring

Energy 

Consumption Data

Jalen

Figure 4.2: Jalen’s architecture.

• Next, a correlation phase takes place to correlate the application-specific statistics

with the application level energy information (see third step in Section 4.2.1). Per-

method energy consumption information is calculated using our energy models (see

Section 4.2).

• Finally, energy consumption per method is displayed to the user and can be exposed

as a service (to be used, for example, in an application’s autonomous adaptation cycle).

Next, we detail the implementation of JALEN.

4.3.2 Implementation

JALEN is implemented as a Java agent that hooks to the Java Virtual Machine during its

start, and monitors and collects energy related information of the executed application. We

develop two versions, each with different approaches on collecting and correlating infor-

mation. The first version uses byte code instrumentation, while the second uses statistical

sampling. Each holds advantages and disadvantages when monitoring energy consump-

tion of software, and can be better applied than the other in certain contexts. We explain

in details each of these implementations in the next sections, where we also compare these

implementation approaches.

Instrumentation Version

The instrumentation version of JALEN uses byte code instrumentation technics, in order to

collect resources usage information. In particular, we use ASM [Kul07, asm] to inject mon-

itoring code into the methods of legacy applications. The instrumentation process goes as

follows and is described in Figure 4.3.
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Byte code injection First, we inject monitoring code at the beginning and the end of each

instrumented method. The latters are instrumented based on their name, class, package or

other characteristics such as their number of parameters. This filtering is specified in the

settings of JALEN agent.

This injection can either be at runtime, where the JALEN agent injects code when a class

is first loaded; or offline, where a special tool is used to inject code to the .class files of the

program. We build both versions: 1) the first version is an agent that instruments byte code

at runtime and estimates the energy consumption; and 2) the second is composed of two

tools, a software that instruments offline the byte code of Java classes, and an agent that

estimates the energy consumption. Both versions inject the same code and provide the same

calculations. Differences are:

• The all-in-one agent have an additional overhead due to the cost of instrumenting Java

classes at runtime. However this cost is limited as the instrumentation happens only

once at the first class load.

• The two-tools version instruments all files of the program including files loaded with a

different class loader at runtime. The all-in-one agent cannot instrument classes loaded

by a different class loader.

Information collection The code injected at the beginning of methods collects information

such as the full name of the method, the timestamp of method’s execution and the depth

in the method call tree (to detect children method, i.e., methods that are stared by an in-

strumented method). This information is useful for acknowledging where energy is being

consumed (e.g., the energy spend by a method excluding the energy spend by its children

methods).

Call tree The code injected at the end of methods also collects the timestamp of method’s

end, and takes into account the restoration of the call tree up one level (when a method

ends, the hand is given back to its parent method, or to main method). This is because

Java uses stack frames in its Java stack. Stack frames contain the state of one Java method in-

vocation. When a thread invokes a method, the Java virtual machine pushes a new frame onto that

thread’s Java stack. When the method completes, the virtual machine pops and discards the frame for

that method. [Ven99]. Therefore, our implementation monitors the energy consumption of a

method excluding its called methods (e.g., children methods).

Network information Network information are gathered by using a delegator to route

all method call of sockets methods to a custom implementation where we add counters to

count the number of bytes send and received by each method. We use a delegator class to

route calls from the class SocketImpl [soc] to a custom implementation. We override the

methods getInputStream() and getOutputStream() to monitor the number of bytes
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Figure 4.3: The approach of the instrumentation version of Jalen.

read and written to sockets. This information is then correlated with the method names

invoking the methods getInputStream() or getOutputStream(), in order to get the

number of bytes read/written by method.

Applying energy models Periodically, on each monitor cycle, or at the end of the pro-

gram’s execution, the JALEN agent processes the gathered data on each method invocation.

It applies our energy models (see Section 4.2) and provides the energy consumed by each

method on the terminal or saved in a file.

In the next section, we detail the statistical sampling version of JALEN.

Statistical Sampling Version

The statistical sampling version of JALEN collects information about running methods from

the JVM, and correlates them with our energy models (see Section 4.2). This version follows
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a sampling strategy that is outlined in Figure 4.4:

• We first follow a two cycle approach: a big monitoring cycle where power consumption

of software is gathered from application level monitoring (see Chapter 3); and a small

monitoring cycle where statistical information is collected on each running method.

• During the small monitoring cycle, we collect the number of times a method appears in

our statistical sampling (measured at a higher frequency). For example, two method

AT and BT are executing for 10 seconds, and the big cycle is 1 second and the small

cycle is 10 milliseconds. The method AT is captured 7 times during the small cycle

while BT is captured 3 times. Each of these methods have different execution times

and CPU utilization, therefore both methods are scheduled and executed accordingly

(for example, method BT waits for a network answer, thus the JVM executes AT during

the wait).

• We then correlate theses statistics with the CPU time of threads (gathered from the

JVM), in order to estimate the energy consumption of methods.

• For disk and network energy, we detect and count the calls to Java’s JDK methods re-

sponsible for input/output and network (such as java.io, java.nio or java.net methods)

Java JVM

Jalen Sampling Agent

Correlation & Computation

Legacy Method 1

Collected data: statistics 

on methods time, I/O 

API usage, etc.

Energy 

Consumption Data

Legacy Method n...

Small monitoring cycles
Big monitoring cycle

Figure 4.4: The approach of the sampling version of Jalen.
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JALEN provides three types of information as shown in Figure 4.5:

• All energy: aggregated energy consumption, which means the energy consumption of

each method including all the methods it calls (children methods). Here, the energy

consumption of all methods running in the JVM is monitored, including Java’s JDK

methods (such as java.* methods).

• Net energy: energy consumption of methods excluding their children. Net energy is

similar to all energy as it provides the energy consumption of all running methods in

the JVM, but excluding the energy cost of children methods.

• Net library energy: energy consumption of certain methods (filtered by canonical

name) excluding children methods. This type of information provides only the en-

ergy consumption of certain methods (filtered in the settings of JALEN), excluding their

children, and excluding all other methods. This provides the energy consumption of

methods of the monitored software without polluting results with Java’s JDK meth-

ods. For example, for monitoring the energy consumption of a software library used

by another application.

Figure 4.5: The energy information call tree provided by Jalen.

Byte code Instrumentation versus Statistical Sampling

Our two implementations of JALEN differ in many ways, whether in the monitoring strategy,

granularity of measurements, or the cost overhead of the Java agent. Both approaches haves

advantages and limitations that we outline in the next paragraphs.

Code modification Byte code instrumentation (in short, we will use BCI) requires the in-

jection of additional byte code to the application’s methods. This injection implies that 1)
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byte code modifications is available and allowed, and 2) modifications is done when the

class is first loaded, therefore resulting in additional load time overhead (typically at the

start of the application). In contrast, statistical sampling (STS in short) does not require any

modification of the application code.

Overhead In BCI, the additional code added at the start and end of each method is exe-

cuted each time the method is executed. In particular, the cost of the injected code itself is

constant throughout all methods, as this injected code does the same calculations indepen-

dently to which method it is running in. Thus, in term of percentages, the overhead is small

in big consuming methods, while it is high in smaller ones. However, the overhead is also

strongly related to the number of method calls. A small method called lots of times will

results in having an overall high overhead. We measure this overhead to be around 129%

for Tomcat web server’s individual requests.

On the other hand, STS’s overhead is limited to the computations the JALEN agent does,

which are run in a separate thread of the main application. The overhead to the application is

therefore null, but the agent itself consumes energy and its overhead is measured to around

3%.

We also note that special care is required when analyzing information provided by the

instrumentation version of JALEN. Instrumentation adds a fixed and constant overhead to all

instrumented methods, therefore it is more visible (in total percentage) on small methods,

or frequently executed methods. Values should be normalized by removing this constant

overhead by a factor of the number of times the method is called.

To outline this situation, we compare the energy consumption of Google Guava’s [gua]

Joiner.join method using the instrumentation version of JALEN (see Figure 4.6b), and

the statistical sampling one (see Figure 4.6a). The figure reports the energy distribution of

the methods called by Joiner.join method. Experiments are done on a Dell OptiPlex

745 workstation with an Intel Core 2 Duo 6600 processor at 2.40 GHz and running Lubuntu

Linux 13.04 64 bits, version 1.6 of PowerAPI, and Java 7. We use version 14.0.1 of Google

Guava library. Energy data are calculated each 500 milliseconds.

Both versions show similar energy trendline and linear evolution of the energy con-

sumption. However, in the instrumentation version, small methods have high en-

ergy consumption, in particular, com.google.common.base.Preconditions.checkNotNull

method. This latter is called four times in each join call (once in Joiner.iterable, once in

Joiner.appendTo, and twice in Joiner.toString), and does nothing other than comparing if a

parameter is equal to null. However, due to instrumentation, checkNotNull has an energy

consumption ranging from 3% to 10% of the total energy when varying the size of the strings

to join.

Measured resources The BCI approach measures directly from the method its resources

consumption (i.e., execution time, number of bytes sent or received in network sockets, etc.).
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Figure 4.6: Energy consumption of methods called by Google Guava’s join method when

varying its string parameter size, using statistical sampling and instrumentation versions of

Jalen.

While STS samples the exposed data by the Java JVM and estimates the resources utilization

based on statistics. Therefore, the BCI approach have better results as resources consump-

tion are directly monitored instead of being statistically sampled. However, we find in our

experiments that both exhibits acceptable results, and that the main differences are for meth-

ods that are fast to execute and that consume little energy. The latters have a small impact

to the overall energy consumption, and due to their execution time and energy consumed,

they may be missed by our statistical sampling version. Tuning the statistics parameters (in

particular to allow shorter monitoring cycles), allows better resources monitoring for these

methods. Figures 4.6a and 4.6b show that both STS and BCI present similar energy trendlines

and evolution growth, with similar energy distribution between methods (when excluding

the overhead cost of the instrumentation).

Method filtering In our implementation, BCI first filters methods to measure prior to the

monitoring. Therefore, only selected methods are measured and instrumentation code is

added to just the required methods. This is in contrast to STS where all methods are moni-

tored, and filtering is done later at the correlation calculations. These two different strategies

adhere better to the specifications to each approach: the high overhead of instrumentation

pushes us to optimize BCI’s agent whenever possible, while STS is better achieved where all

available information is collected then energy information is more accurately estimated.

In the next section, we conduct experiments in order to validate our models and our

software implementation, JALEN. We also detect energy hotspots in software and the distri-

bution of energy in software code.
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4.4 Experimentations

4.4.1 Validation

Both versions of JALEN, byte code instrumentation and statistical sampling, uses PowerAPI

as an application level library. PowerAPI uses our application level energy models that

are validated in Chapter 3. We also have developed an independent version of JALEN that

implements both our application level and code level energy models directly in JALEN. In

Section 3.3.2, we show that the margin of error of our application level measurements is

up to 3% on complex applications (i.e., Tomcat and Jetty web servers or MPlayer). As the

version of JALEN we use during our experimentations relies on PowerAPI for estimating the

energy consumption of hardware at application level, it has the same margin of error and

accuracy as PowerAPI for hardware estimations.

For code level validation, we run two sets of experiments: first, we measure the over-

head and compare it to the overhead of software profilers (also due to the absence of similar

code level energy profilers); second, we assess the accuracy by comparing the energy evolu-

tion with the CPU time evolution of CPU intensive applications running at 100% CPU, and

with comparisons with another software profiler. The latter is relevant because we showed

in Chapter 3 that energy and time are linear for CPU-intensive applications (see Section 3.4.3): for

software that run at 100% utilization of the CPU, they have linear relation between energy

consumption and execution time.

We run our experiments on a Dell OptiPlex 745 workstation with an Intel Core 2 Duo

6600 processor at 2.40 GHz and running Lubuntu Linux 13.04 64 bits, version 1.6 of Power-

API, and Java 7. Energy data are calculated each 500 milliseconds. Sampling intervall for

STS and HPROF is at 10 ms.

Accuracy

As no other software profiler provides energy consumption of software code (see Chapter 2),

we validate the accuracy of our approach by comparing energy consumption provided by

our agent with CPU time and HPROF profiler [hpr]. As discussed earlier in Section 3.4.3,

energy and time are linear for CPU-intensive applications when they use 100% of the CPU.

Therefore, we use the same CPU-intensive application, the recursive Java version of the

Towers of Hanoi program, in order to demonstrate that the results provided by JALEN are

accurate.

Instrumentation version We compare the energy information provided by BCI’s version

of JALEN with the estimated CPU time of methods. Method TowerOfHanoi.moveDisk con-

sumes 83.34% of the CPU and of its energy, while TowerOfHanoi.solveHanoi consumes

16.58%. Finally, the main method consumes 0.06% of the energy. Results in Figure 4.7 show

similar match between CPU time and energy, which is what we anticipated as we validate

in Section 3.4.3 that time and energy are linear in this context.
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Figure 4.7: Comparison between energy consumption and CPU time of Tower of the recur-

sive version of the Towers of Hanoi program.

Sampling version The STS version, on the other hand, does not use CPU time in order

to estimate the energy consumption of software code. Therefore, we decide to compare it

to HPROF, a software CPU profiling tool that also uses statistical sampling in estimating

CPU usage of software code. The Java 2 Platform Standard Edition (J2SE) provides HPROF

by default, as a command line tool. This tool estimates the CPU utilization percentage of

all methods executing in the JVM. In contrast, JALEN can estimate the energy consumption

of all methods, but also filter this estimation to a selection of methods (for example, limit-

ing the estimation to the Tower of Hanoi’s methods while excluding calls to the Java JDK’s

methods).

We compare the energy consumption provided by JALEN with the output information

provided by HPROF. In HPROF, java.io.FileOutputStream.writeBytes method

uses 97.33% of the CPU during the execution of the program. STS’s version of JALEN pro-

vides an energy consumption of this method at 96.05%, thus a variation of 1.3% between

JALEN and HPROF.

However, JALEN can also filter methods, therefore, when excluding JDK’s meth-

ods, the results show that hanoi.TowersOfHanoi.moveDisk method consumes

99.92% of the energy. This is because hanoi.TowersOfHanoi.moveDisk calls

java.io.FileOutputStream.writeBytes method (and other methods, such as

java.io.BufferedWriter.write or java.io.Writer.write) in order to write the

program’s results to a file. In addition, hanoi.TowersOfHanoi.moveDisk itself have a
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net energy consumption of 0.73% (HPROF reports 0.13% for this method alone).

These numbers validate the accuracy of our statistical sampling, but they additionally

outlines the impact of byte code instrumentation. The latter introduces additional energy

cost due to the injected instrumentation code. We identified and discussed this impact in

Section 4.3.2, and our current experiments in Figure 4.7 and in this section follow our previ-

ous observations.

Overhead

The overhead of any energy profiler, or any software profiler, for that matter, is crucial to its

usability. In order to acknowledge the overhead of our agent during execution, we calculate

the time per individual request in Tomcat 7.0.42 using ApacheBench 2.3. On 10,000 requests,

the base mean time per request is at 4.157 ms in average. However, when using the sampling

version, the mean time per request is at 4.289 ms in average. HPROF also have a similar

overhead at around 4.336 ms in average. The instrumentation version has a time per request

of 9.532 ms in average. The overhead of the sampling version is therefore at 3.17%, while the

instrumentation version of JALEN have an overhead of 129.29% in comparison to the base

Tomcat (see Figure 4.8).
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Figure 4.9: Energy consumption percentage using the statistical sampling of Jalen, of the

recusrive version of the Towers of Hanoi program.

Although the overhead percentage of the instrumentation version is high, it is similar to

other software profilers that use also byte code instrumentation. The Java Interactive Profiler

or JIP [jip] is a software profiler that uses similar byte code instrumentation of methods,

however it does not produce energy related information. JIP 1.2 has a time per request of

8.241 ms in average in our experiment, thus an overhead of 98.24%. These metrics show

the cost of instrumentation, and that our instrumentation version has an overhead similar to

other software profilers that use byte code instrumentation.

Impact of sampling rate

Our statistical version samples data each 10 ms default. However, higher sampling rate

impacts the precision of the provided results. We vary the sampling rate from 10 to 50 ms

with a hop of 10 ms, plus rates of 100 ms and 500 ms (500 ms being the minimal cycle

recommended for the underlying application level library, POWERAPI, see Chapter 3), and

reports the results in Figure 4.9.

Results show the impact of varying the sampling rate with better precision for lower

rates (such as 10 ms), and more vague values for higher rates (as with 500 ms). In particular,

some methods disappear in our results as higher sampling rates means quick methods are

executed before being captured by Jalen STS. This is shown in Figure 4.9a where method

TowersOfHanoi.solveHanoi disappears from results when sampling rate is equal or

higher to 100 ms. Figure 4.9b reports on the decline of the number of captured and mon-

itored methods when increasing the sampling rate. These numbers decline from 64 Java

methods captures with a sampling rate of 10 ms down to only 9 methods when using a 500

ms sampling rate. Therefore, we argue on using the lowest possible sampling rate. In our

implementation, 10 ms is the lowest rate as the monitoring and calculations done by our

agent on each monitoring cycle requires between 5 and 8 ms.
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Impact of different machines

Hardware components consume electrical energy. Our approach associates the energy con-

sumption of hardware to the software code that initiated the task for hardware components.

Therefore, energy consumption is highly dependent on hardware components. To illus-

trate the impact of changing machines to energy consumption of software, we run the Xalan

benchmark in the Dacapo benchmark suite [dac] on two host configurations: a Dell OptiPlex

745 workstation with an Intel Core 2 Duo 6600 processor at 2.40 GHz and running Lubuntu

Linux 13.04 64 bits; and a MacBook Pro 5,3 with an Intel Core 2 Duo T9900 processor at 3.06

GHz and running Mac OS X 10.7.5. We use version 1.6 of PowerAPI, and Java 7 on both

configurations, with a sampling interval at 10 ms and energy data are calculated each 500

ms.
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Figure 4.10: Percentage of CPU energy consumption of the top 10 most energy consuming

methods of Xalan Dacapo benchmark, on a Dell workstation and on a MacBook Pro.

The results in Figure 4.10 of the first 10 methods show a similar energy consumption

trend. Both experiments outline org.apache.xalan.templates.ElemLiteralResult.execute and

org.apache.xalan.transformer.TransformerImpl.transform as the most consuming methods.

The results show also similar energy percentage values for these two methods, at 22.98% and

10.37% on the Dell workstation, and 26.95% and 14.02% on the MacBook Pro, respectively.

On the other hand, raw energy values in joules are different. While at the Dell worksta-

tion, templates.ElemLiteralResult.execute consumes 55.9 joules, it consumes 31.5 joules on

the MacBook Pro (25.24 joules and 16.6 joules for transformer.TransformerImpl.transform,
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respectively). Therefore, the difference in percentage is 3.97% and 3.65%, respectively. On

the same machine, the variance in percentage is 1.93% and 2.24%, respectively.

These results outline the importance of using percentages when comparing energy con-

suming of software code. This is mainly due to the different hardware that machines use,

thus consuming different amount of energy while still keeping similar energy trends and

distribution in software.

However, due to the high overhead of the instrumentation version of JALEN and the

noise introduced by byte code instrumentation, we decide to use the statistical sampling

version of JALEN in the remainder of this chapter.

4.4.2 Detecting Energy Hotspots in Software

The goal of our approach is to detect where the energy is being spend in software, or energy

hotspots. This detection allows developers and other users to understand where and how

the energy is consumed, and also to detect abnormal functioning in applications (e.g., energy

bugs).

We illustrate our approach with examples of complex applications: Jetty web server and

Dacapo benchmark suite [BGH+06]. We use version 9.0.4.v20130625 of Jetty distribution,

and Dacapo version 9.12. As with our previous experiences, we run our experiments on

a Dell OptiPlex 745 workstation with an Intel Core 2 Duo 6600 processor at 2.40 GHz and

running Lubuntu Linux 13.04 64 bits, version 1.6 of PowerAPI, and Java 7. Energy data are

calculated every 500 milliseconds, and the sampling interval is at 10 ms.

Jetty Web Server

Jetty web server is a lightweight application server and javax.servlet container. It is an exam-

ple of real world complex application, counting 105,156 source lines of code (SLOC) of Java

in the version we use for our study. We stress Jetty’s asynchronous REST web application

example (async-rest) using ApacheBench. The latter uses 25 concurrent users with 100,000

requests. We run the experiment 5 times, for around 205 seconds in total execution time (the

first run at 54 seconds, then the then the others run at 37 seconds in average due mainly to

the Java JVM’s JIT functionality).

Results are presented in Figure 4.11. The graph portrays the top 10 most consuming

methods in term of CPU energy consumption in the X-axis. The left Y-axis (thus the bars)

represents the energy consumed during the execution of the experiment in percentage of the

total energy consumed at all measured Jetty methods. The right Y-axis (thus the line) repre-

sents the number of invocations of the methods. JALEN’s STS provides the latter number.

The first observation is that the 10 most energy consuming methods of Jetty in this

experiment consume the vast majority of the energy, 92.18%. Specifically, two meth-

ods consume nearly 60% of the energy: org.eclipse.jetty.util.BlockingArrayQueue.poll
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Figure 4.11: Energy consumption of the 10 most energy consuming methods of Jetty in our

experiment.

(29.92%) and org.eclipse.jetty.util.resource.JarFileResource.exists (29.88%).

Five other methods (util.resource.JarFileResource.newConnection,

io.SelectorManager$ManagedSelector.select, io.ChannelEndPoint.flush,

server.ServerConnector.accept, and io.SelectorManager$ManagedSelector.wakeup) con-

sume between 3% and 11%, while the energy consumption of the remaining methods is

negligible (less then 1%).

In contrast, the same methods are also the most invoked. Nevertheless, we observe

that two methods have a high invocation number with lower energy consumption. This is

the case for io.SelectorManager$ManagedSelector.select and server.ServerConnector.accept

methods. The former is the most invocated, 43,624 times and consumes 7% of the total

energy (or 487.34 joules on our configuration). The latter is invocated 13,250 times and con-

sumes 3.38% of the total energy (or 236.28 joules).

In order to understand better the energy hotspots in software, we introduce energy per

invocation (epi) unit, which is the energy consumed by one invocation of a method, and

is calculated by dividing the energy consumption by the number of invocation. The two

most invoked methods have therefore a low epi in comparison with less invocated methods

(and sometimes less energy consuming methods). Figure 4.12 outlines the epi of the 10 most

energy consuming methods in our experiment. We observe that in average, the epi of most

methods is between 0.4 and 0.5 joule, with the notable exception of the two most invocated

methods.
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Figure 4.12: Energy per invocation (epi) of the 10 most energy consuming methods of Jetty

in our experiment.

In addition to detecting hotspots at the methods level, our approach can detect most

energy consuming classes. Figure 4.13 outlines the 6 most consuming classes of Jetty during

our experimentation. These 6 methods consume together 96.02% of the total energy con-

sumed by Jetty classes. The remaining 129 classes consume the rest, 3.97%. We observe that

two classes consumes more than 70% of the energy: util.resource.JarFileResource (40.93%,

2 methods invoked) and util.BlockingArrayQueue (30.07%, 4 methods invoked). These two

classes are averaged sized classes with the former counting 291 SLOC and the latter 691

SLOC.

Our benchmark stress scenario can explain these results. The former stresses Jetty’s

asynchronous rest web application example. This web application uses Jetty asynchronous

HTTP client and the asynchronous servlets 3.0 API, to call an eBay restful web service as explained

in [Wil]. When the initial request passes to the servlet, it is detected as the first dispatch, thus

the request is suspended and a queue list (to accumulate results of requests) is added as a

request attribute. This explains the energy consumption of util.BlockingArrayQueue class

and its methods. After the suspension, the servlet creates and sends an asynchronous HTTP

exchange for each request, and when all responses are received, the results are retrieved and

a response is generated. The calls for util.resource.JarFileResource class, and its exists

method which checks whether a represented resource jar exists, and its newConnection

method that is used for connecting to JAR resources, are explained by the need to access

Jetty’s own jar files and the web application’s jar files. The experiment is run multiple times,
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Figure 4.13: Energy consumption in percentage of the 6 most energy consuming classes of

Jetty in our experiment.

and the asynchronous example is a relatively a small example, therefore this jar access is

notable in term of total energy consumption percentage.

Dacapo Benchmark

Dacapo benchmark is a benchmark suite for Java that uses real world and open source appli-

cations. We use Dacapo version 9.12, and select 5 benchmarks that represents a variety of

execution scenarios of Java applications, ranging from XML transformation, to Java classes

analysis, SVG image manipulation and JDBC benchmark. The benchmarks and their behav-

ior as explained in [dac] are the following:

• avrora: simulates a number of programs run on a grid of AVR microcontrollers.

• batik: produces a number of Scalable Vector Graphics (SVG) images based on the unit

tests in Apache Batik.

• h2: executes a JDBC bench-like in-memory benchmark, executing a number of trans-

actions against a model of a banking application.

• pmd: analyzes a set of Java classes for a range of source code problems.
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• xalan: transforms XML documents into HTML.

We report the energy consumption of methods of the benchmark tests in Figure 4.14. The

results show different patterns of the energy distribution between methods of each bench-

mark, and are explained by the nature of each benchmark. The pmd, Xalan and Avrora

benchmarks outline strong concentration of the energy consumption in one or few methods.

In Xalan, org.apache.xalan.templates.ElemLiteralResult.execute method consumes nearly

23% of the energy, twice or three times more then the next most consuming methods. The

same pattern is happening with pmd and Avrora benchmarks. These three benchmarks call

a small number of methods frequently and for longer periods of time, thus accumulating

energy consumption in few methods.

On the other hand, Batik and h2 benchmarks show a logarithmic distribution of energy

between methods, where energy consumption is more evenly distributed between the top

most consuming methods. These two benchmarks consist on generating SVG images and

executing database transactions, therefore calling multiple methods for smaller periods of

time.

4.5 Discussions and Limitations

From our work and experiments on monitoring energy consumption at code level, we can

better understand the energy consumption and distribution in software. In particular, our

approach can detect energy hotspots in software and identify where the energy is spent at

code level. The learning we got and limitations of our work are summarized in the next

paragraphs.

4.5.1 Code level monitoring allows energy hotspot detections

The main conclusion of our work is that our approach allows developers to detect energy

hotspots in software code. Experimentations (see Section 4.4.2) on both simple algorithms

(e.g., Towers of Hanoi), complex software (e.g., Jetty web server), and on different real world

scenarios (e.g., the Dacapo benchmarks), show the potential of our approach in energy code

profiling.

We argue that the information provided by JALEN on energy consumption of software

code can help developers to investigate alternative implementations of their classes and

methods in order to reduce the energy footprint of their applications. By keeping track of

the energy footprint of classes and methods, we think that development tools (e.g., coding

completion systems, documentation, debuggers, etc.) could be extended to help developers

to build greener software. Related work in [Hin12] proposes to keep track of the energy con-

sumption of software across its versions. However, the author does not measure energy at

the code level and uses a hardware power meter for measurement. Investigating the energy
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(a) Avrora benchmark.
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(b) Batik benchmark.
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(c) h2 benchmark.
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(d) pmd benchmark.
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(e) Xalan benchmark.

Figure 4.14: Percentage of CPU energy consumption of the top 10 most energy consuming

methods of 5 Dacapo benchmarks.

consumption of software across versions and at the code level allows more accurate feed-

back of the energy hotspots responsible for the rise (or fall) of the energy consumption in the

application.

4.5.2 Statistical sampling and instrumentation are both accurate approaches

In our experiments in Section 4.4.1, we find that using byte code instrumentation or sta-

tistical sampling offers accurate and valid energy information at code level. Similar match

between CPU time and energy consumption is demonstrated in Figure 4.7 which validates
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the accuracy of instrumentation (this is the case because the software uses 100% of the CPU

all the time, therefore rendering the energy consumption of software a function of time as

demonstrated in Chapter 3). The statistical sampling version is also validated as reported in

Section 4.4.1 with a variation of only 1.3% between energy values calculated by JALEN and

CPU time estimations of HPROF profiler.

These results also show the validity and accuracy of our energy models (see Section 4.2).

Both implementations of JALEN, byte code instrumentation and statistical sampling, uses

the same energy models. Even though we use two different and radical implementations of

the same models, we get similar energy consumption results (when taking into account the

overhead of instrumentation as outlined in Section 4.3.2).

4.5.3 Prefer percentage over energy raw values

Energy consumption of software code is measured in joules, and is the energy consumed by

hardware due to tasks initiated by software. As such, changing hardware will also change

the raw energy values even for the same software code. The same experiment run on dif-

ferent hardware produces different energy values due to the physical nature of hardware

components (for example, running the same program on a laptop or on a server).

However, percentages values do not change with hardware, as software code is running

the same tasks and using hardware resources accordingly. Our experiment in Section 4.4.1

and in Figure 4.10 illustrates the limited impact of changing hardware on the percentage

distribution of the energy consumption in software code. The goal of our approach is to

observe trends in energy consumption and profile applications to detect energy hotspots.

Therefore, we argue that using percentages when comparing energy consumption of meth-

ods and classes is more useful and representative than raw values.

4.5.4 Prefer statistical sampling over byte code instrumentation

One major advantage of using the statistical sampling version of JALEN is its negligible over-

head cost. Our results in Section 4.4.1 show a low overhead for sampling (at around 3%), in

comparison to the high overhead of instrumentation (at around 130%). This overhead crip-

ples any real world uses of instrumentation for energy measurements. However, we found

that sampling provides also accurate enough values for detecting energy trends and energy

hotspots. Therefore, using statistical sampling offers the best tradeoff between accuracy of

results and low overhead.

Besides execution overhead, byte code instrumentation pollutes the energy results of each

method by the energy cost of the instrumentation code itself. Without normalizing the re-

sults and removing this additional cost (that is dependent on the energy cost of the instru-

mentation code, and on the number of times it is executed), energy results are not correctly

reported as we show in Section 4.3.2. The energy consumption of small methods is reported
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as higher than it is, and frequently executed methods have a high overhead due to the addi-

tional cost of multiple execution of the instrumentation code.

4.6 Summary

In this chapter, we present energy models in order to estimate the energy consumption of

software at the code level. Our approach uses energy models and offers a high accuracy

as seen in Section 4.4.1. Our models are implemented by a software energy profiler named

JALEN. The latter allows measuring the energy consumption of blocks of code at the granu-

larity of methods. We implement two versions of JALEN, one that uses byte code instrumen-

tation and another that uses statistical sampling technics. Both offer good accuracy, however

the latters has less impact on the application’s code and execution in comparison to instru-

mentation.

Based on our models and on JALEN, we conduct series of experimentations aimed to de-

tect energy hotspots in software. Our results show that changing the configuration machine

also changes the energy consumption, but the distribution of energy between methods re-

mains the same (see Section 4.4.1). We detect the most energy consuming methods as seen in

our experiments in Section 4.4.2. We also introduce the energy per invocation (epi) measure-

ment unit (see Section 4.4.2), which allows viewing hotspots in term of individual method

execution. Finally, we outline energy consumption trends and hotspots in real world and

diverse applications in the Dacapo benchmark suit (see Section 4.4.2).

4.7 The Need for Energy Evolution Modeling

Our experiments in Section 4.4 reports on the energy distribution and hotspots of software

code in a specified context. It allows identifying the most energy consuming methods or

classes when executing software with a fixed set of parameters and configuration. Our ap-

proach is similar to screenshots, where we take an energy snapshot of software code. Al-

though this is useful for energy debugging, energy optimization and helps developers write

more energy efficient code, it lacks execution variability.

When modifying the input parameters of an application, we expect that energy con-

sumption will also vary. This variation may increase energy consumption, decrease it, or

even not change at all. Knowing the impact of varying input parameters on the energy con-

sumption of applications is useful for adaptive software, and for software in evolving envi-

ronments. This also is important for software libraries as they are used by multiple applica-

tions. Each of these applications use the libraries using different input parameters, therefore

having the energy consumption model based on input parameters is relevant. However,

developers do not have any empirical results, nor tools or approaches in order to study the
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impact of this variation on the energy consumption. In the next chapter, we propose an ap-

proach and tools to model the energy evolution of software code based on the variability of

their input parameters.
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5.1 Introduction

Measuring the energy consumption of software is the first step into producing energy effi-

cient code. We demonstrated in the previous chapters (see Chapter 3 and 4) our approaches,

methodologies and tools in order to take a snapshot of the energy consumption of software.

These snapshots vary in granularity, estimating the energy consumption of a whole applica-

tion down to providing detailed reports on how much each portion of code consumes.

Nevertheless, the energy information reported by our approaches is static, e.g., values

are related to an execution of software in one specific configuration. Changing a parameter

in a method or modifying an input parameter therefore requires a new execution of the ap-

plication in order to get the new energy consumption and the impact of this change. Thus,

what if developers had tools to empirically measure the energy consumption of their soft-

ware code, and get empirical data about the energy evolution trends in their code? And

also get the impact of changing input data and parameters on the energy consumption of

methods? These data can be used to diagnose the code to detect energy bugs, understand

the energy distribution of the application, or establish an energy profile or classification of

software.

Our contribution is therefore proposing approaches and tools in order to automatically

infer the energy models of software methods based on their input parameters. This can par-

tially be done manually by modifying a parameter then measuring the energy consumption

using our approaches and tools from Chapters 3 and 4. This is time consuming, and in par-

ticular limited to the set of parameters the developer use, but most importantly it has limited

additional value to the developers community.

However, one main motivation of automating these measurements is software libraries.

The latter are used by other software and therefore improvement in their energy efficiency

would benefit to a large pool of applications. Benchmarking libraries for their energy con-

sumption and proposing empirical models of the evolution of their energy consumption are

win-win situations for software developers. We already proved in our previous chapters that

running software on different machines does not change the energy distribution between

their software methods (see Section 4.4.1). Thus, proposing an empirical model of the evolu-

tion of energy consumption of software code is relevant, and can be used by the developers’

community without having to benchmark again software libraries on developers’ and users’

configurations.

In this chapter, we propose our approach of inferring the energy evolution model of

software code in Section 5.3.1. We then describe our automatic benchmarking framework,

JALEN UNIT, in Section 5.3. In Section 5.4, we report the results of our experimentations

using JALEN UNIT. Finally, the results and our approach are discussed in Section 5.5.
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5.2 Modeling Approach

Our approach models the energy evolution trend of a software method by running bench-

marks on a method while modifying its parameters. Concretely, we provide the energy

evolution model of a method based on the evolution of its parameters. This provides a re-

lational table between methods and their energy model, therefore allowing developers to

choose the best energy efficient method for their software. In details, we vary the value of

the input parameters of methods and measure their energy consumption using each of these

values. At the end, we obtain the energy consumption of the method for each value of its

parameters, therefore allowing us to have an energy evolution view of the method.

To illustrate our approach, we measure the energy consumption evolution of an RSA

algorithm and outline the advantage of code level modeling. Then we use Google Guava’s

Joiner.join method to illustrate how one method can have different energy evolution

models. The experimentations are done on a Dell OptiPlex 745 with an Intel Core 2 Duo

6600 processor at 2.40 GHz and running Lubuntu Linux 13.04, version 1.6 of POWERAPI,

the statistical sampling version of JALEN, and Java 7. We collect energy data each 500 mil-

liseconds and the sampling interval is at 10 ms.

5.2.1 Code level modeling

We take an RSA asymmetric encryption/decryption algorithm [RSA78] and measure its en-

ergy consumption while varying the length of the RSA public and private keys. RSA algo-

rithm is a example of an algorithm where its input parameters (here, the RSA key) impact the

functionnality of the said algorithm, e.g., in term of security, robustness of encryption, and

speed of encryption/decryption process. The algorithm generates an RSA key, then encrypts

and decrypts 10 times a random BigInteger with a bit length of 10,000. We use our applica-

tion level library and our code level agent, JALEN to measure the energy consumption of the

RSA algorithm.

The results, in Figure 5.1a, show an exponential rise in the energy consumption of the

RSA algorithm when increasing the RSA key length. Even though these numbers show the

evolution of the energy consumption of the RSA algorithm, we want to understand which

portion of the code is responsible for the exponential increase. Therefore, we use the sta-

tistical sampling version of JALEN to measure the energy consumption of the classes and

methods of the RSA algorithm. Results, in Figure 5.1b, show that two methods are respon-

sible for the majority of the energy consumption: java.math.BigInteger.oddModPow,

and java.math.BigInteger.montReduce. From these methods, oddModPow have a

clear exponential increase, while montReduce follows a logarithmic growth.

What these resutls outline is the importance of code level measurement over only ap-

plication level measurement. The exponential energy evolution in Figure 5.1a is therefore

explained and identified in Figure 5.1b when benchmarking at code level. It allows us to
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Figure 5.1: Evolution of the energy consumption of RSA asymmetric encryption/decryption

according to key length.

discover that java.math.BigInteger.oddModPow method is the culprit of the exponen-

tial evolution. The results also show that varying the RSA key length exponentially impacts

energy consumption, and that we manage to model this evolution down to the code level.

RSA encryption/decryption algorithm is an exponential one as described in [RSA78]. There-

fore, our experiment results provide additional validation to our measurement approach. In

particular, the method responsible for the exponential growth in energy consumption in

our implementation of RSA algorithm is the method that does the exponential calculation,

oddModPow.

Next, we report on how a same method can have different implementations, thus differ-

ent energy models.

5.2.2 One method, different models

We infer the energy evolution model of Google Guava’s [gua] Joiner.join method. The

join method in the Joiner class is an example of an overloaded method. It has 5 different

implementations in the Joiner class, and 9 in total including the implementations in the

MapJoiner inner class. Join method calls a method named appendTo, which is also over-

loaded and implemented 10 times in Joiner class, and 19 times including implementations

in the inner class. When joining 2 strings, the join method calls 18 times other methods

and constructors of the Google Guava library. Therefore, the complexity of a method with a

straightforward algorithm makes Joiner.join method a perfect example for establishing

energy consumption model.

We use version 14.0.1 of the library, and stress the join method of

com.google.common.base.Joiner class by varying its parameters. We collect

measurements of the evolution of energy consumption. The join method takes two or
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more strings and joins them to return a bigger string. We vary the size of the strings while

joining two strings, and also vary the number of strings while having a fixed string size.

For each of these two experiments, we generate a random string that we use during

the join call. We run the join stress one million times with the generated string, and repeat

the stress 10 times with different strings of the same size. Finally, we record the energy

consumption of the overall execution.

Varying String Size

We first vary the size of the two strings to join, from zero (empty strings) to 4,000

characters with a hop of 100. Results in Figure 5.2 show the distribution of the en-

ergy consumption of the join method. The method itself, and most of the methods it

calls, consumes negligible energy (decreasing from 2.60% to 1.23%). On the other hand,

common.base.Joiner.appendTo method consumes nearly all the energy (from 97.16%

up to 98.69%), and grows linearly with the increase of the size of the strings to join. These

results show that the join method delegates practically all of its work to the appendTo

method, which effectively performs the join (by using Java’s internal methods).

40000 500 1000 1500 2000 2500 3000 3500

3400

0

500

1000

1500

2000

2500

3000

String size (number of characters)

E
n

er
g

y
 (

jo
u

le
)

com.google.common.base.Joiner$2.appendTo

Figure 5.2: Energy consumption of Guava’s join method when varying the string size.

Varying Strings Number

We then vary the number of strings to join while maintaining a fixed string size (i.e., 100

characters). We vary the number of strings from 2 to 50 strings. The energy consumption

results (see Figure 5.3) also show that Joiner.appendTo method consumes most of the

energy (going from 97.14% to 99.36%). However, the energy evolution when varying the
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number of strings is not growing linearly as we saw when varying the string size. Instead,

it alternates phases of constant energy consumption with others of direct increase.
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Figure 5.3: Energy consumption of Guava’s join method when varying the number of

strings.

These numbers are explained by the implementation of the appendTo method. It cycles

through the strings to join (given in parameter as an iterable collection) and appends it to an

appendable object also given in parameter. The join method uses a StringBuilder object

for joining the strings, therefore calling the append method of the StringBuilder class

(implementing java.lang.Appendable.append interface). When joining two strings

while varying the strings size, the collection’s length stays the same (2 elements), while the

size of the strings object is growing. Therefore, the append is a linear function to the size of

the strings as shown in Figure 5.2.

However, when varying the number of strings, the JVM is required to allocate memory

for these strings. The strings in the string builder object are stored as an array of characters,

and the JVM doubles the size of the array (until the new characters fits in the array) when

appending new characters exceeding the initial size of the array [mem]. By default, the

buffer size is 8192 characters in the JVM. Our experiment is run 10 times therefore reaching

the limits of the buffer when joining 8 strings of 100 characters each (totaling more than 8000

characters). When the limit is reached, the JVM doubles the buffer allocation allowing more

memory for joining the strings. This explains the burst of energy consumption when joining

9 strings in Figure 5.3. The joining of the strings has stable energy consumption and bursts of

energy occur when the JVM needs to increase its buffer. This allocation occurs at a doubling

interval, thus after joining 8, 16, 32, 64, etc. strings.

These results demonstrate the high potential of energy modeling in providing energy

profiles of software code. We, therefore, propose a benchmarking framework called JALEN

UNIT. The framework automatically stresses and benchmarks methods of an application
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while varying their parameters. It does so by using software injectors and empirically mea-

suring the energy consumption of each execution. The next section describes in details our

framework, its approach and implementation.

5.3 Jalen Unit: Modeling Software Methods Energy Consumption

JALEN UNIT is an energy framework that generates energy models for software code based

on empirical benchmarks. In this section, we explain our approach and architecture of JALEN

UNIT, then describe its implementation.

5.3.1 Approach

Automating the generation and execution of energy benchmarks of methods invokes multi-

ple challenges:

• Injecting valid parameters in benchmarked methods in order to have relevant execu-

tion and measurements.

• Modifying injected parameters using various strategies, therefore allowing different

energy evolution models based on the software domain and context.

• Managing multiple parameters in methods, thus allowing understanding which pa-

rameter has the highest impact on energy consumption evolution in the method.

• Accessing, filtering and invoking methods with proper assessors. This is due to differ-

ent encapsulation in Java software, therefore some methods and constructors require

special care or filtering in benchmarking.

• And generating valid benchmarks and energy evolution models from the results.

JALEN UNIT provides benchmarks for modeling the energy consumption of software

methods through automatic empirical benchmarking as illustrated in Figure 5.4. For in-

stance, it generates individual benchmarks for each method in a software library, and for

each of its parameters. These benchmarks allow stressing the method based on a set of

values for its parameters. These values are determined through different injectors, and

multi-parameters methods are managed through different strategies. Next, all generated

benchmarks are executed. For each, we measure its energy consumption, then the results

are aggregated and analyzed to produce the method’s energy profile and evolution model.

Concretely, JALEN UNIT cycles through every package, class, and method in a Java li-

brary. For each method and each of its parameters, an energy benchmark is created following

an evolution strategy for the benchmarked parameter. The benchmark is then executed and

JALEN (see Chapter 4) is used to measure its energy consumption. Finally, energy data for
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Figure 5.4: Jalen Unit approach.

the benchmark and the evolution of parameters is generated as an output file that is later

plotted as a graph.

Next, we detail the implementation of our framework, then present our scenario and

results obtained by JALEN UNIT framework.

5.3.2 Implementation

JALEN UNIT is built as a Java application that loops over all methods in a Java software

library and generates energy benchmarks. The latter are then executed and their energy

consumption is measured using JALEN automatically.

In details, JALEN UNIT generates and runs a benchmark for each method while vary-

ing its parameters. This variation of parameters is done through injectors implemented for

Java primitive and object types. The framework can, therefore, be extended with user spe-

cific injectors describing alternative evolution strategies. Java objects can be benchmarked

automatically if their injector model is implemented in the framework.

We implemented standard injectors for primitive types: Integer, Double, Long, Float,

Boolean, and Character, in addition to the String object. We prefer to implement our own

injector instead of using existing injectors, such as YETI [yet], because we want to provide

different strategies for benchmarking and testing methods. YETI performs random testing.

This provides a good strategy for detecting abnormal behavior in software code (such as

exceptions or huge CPU load for certain values). However, it does not offer a comprehensive

strategy for evaluating the energy evolution of methods by input parameters.
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For example, we develop an injector for integers where the integer values evolve with an

increment, from a start value to an end value (e.g., integer values from 10 to 100 with a hop

of 10 leads to 10 benchmarks with values of 10, 20, . . . to 100). Another injector for integers

evolves the integer randomly using the Math.random method in Java. Although integers

are all of the same size, changing their value impacts the execution of methods, therefore

their energy consumption. For example, an integer parameter that is used as an end value to

a for-loop may have a high impact because increasing its value implies that tasks are being

executed for longer period of time and consuming more energy.

Injectors for other types also implement different evolution strategies, such as varying

the length of a string object parameter randomly, or from a start value to an end value, or

choosing the characters of the string from a subset of the alphabet. The evolution strategies

are endless, and offer the advantage of better flexibility and extendibility of the framework.

This flexibility is also useful for domain specific applications, where random testing is not

representative of the real world workload. By providing extensible framework and providing

freedom of choice in method evolution model strategies, we propose a framework that can

be customized for specific needs. Therefore, better representative energy evolution models

can be empirically achieved.

Concretely, an injector is a Java class implementing the Iterator and JalenModel

interfaces. The latter adds additional methods to the iterator next and hasNext methods,

such as a getDefaultValue method that returns an object of a default value of the injector.

The following listing outlines the default integer injector (more examples of injectors are

available in Appendix A):

1 package j a l e n . model ;

2 import j ava . u t i l . I t e r a t o r ;

3

4 public c l a s s IntegerModel implements JalenModel , I t e r a t o r {

5 private f i n a l i n t s t a r t , end , increment ;

6 private i n t current ;

7

8 public IntegerModel ( i n t s t a r t , i n t end , i n t increment ) {

9 t h i s . s t a r t = s t a r t ;

10 t h i s . end = end ;

11 t h i s . increment = increment ;

12 t h i s . current = s t a r t ;

13 }

14

15 @Override

16 public boolean hasNext ( ) {

17 return t h i s . current <= t h i s . end ;

18 }

19

20 @Override

21 public Object next ( ) {

22 i n t r e s u l t = t h i s . current ;

23 t h i s . current += t h i s . increment ;

24 return r e s u l t ;
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25 }

26

27 @Override

28 public void remove ( ) { }

29

30 @Override

31 public Object getDefaultValue ( ) {

32 return t h i s . s t a r t ;

33 }

34 }

Multi-parameters methods are managed by varying one parameter alone, while the oth-

ers have default fixed values. Others strategies are possible, such as varying multiple pa-

rameters while fixing the values of some, or modifying all parameters randomly. Our initial

implementation, however, uses only the first strategy for multi-parameters methods.

Benchmarks are then run and their energy consumption is measured using our code

level measurement tool, JALEN (see Chapter 4). Finally, the generated energy results are

aggregated and the energy evolution model of method is inferred.

In the next section, we conduct experiments to infer the energy evolution model of meth-

ods in a Java software library.

5.4 Inferring Automatically the Energy Model of Software Li-

braries

We run our JALEN UNIT framework on the Violin Strings Java library [Sch]. This library is a

collection of 138 methods (with many being overloaded) designed for manipulating strings.

It extends the functionalities offered by java.lang.String by offering methods usually

found in other programming languages such as C++.

The methods of the library use different input parameters: strings, characters, integers

or booleans. We use our default injectors for these types. In particular, the strings injector

model injects strings with different sizes, ranging from a start length of 100 up to 1,000 char-

acters with a hop of 200. The integer, float, double and long injectors’ models inject numbers

ranging from 100 to 1000 with a hop of 200. The character injector model injects a random

character of the 26 characters of the English alphabet. Finally, the boolean injector model

injects both true and false values. Each benchmark is finally run multiple times and result

values are reported in the next paragraphs.

The experimentation is done on a Dell OptiPlex 745 with an Intel Core 2 Duo 6600 pro-

cessor at 2.40 GHz and running Lubuntu Linux 13.04, version 1.6 of POWERAPI, the statis-

tical version of JALEN, and Java 7. Energy data are calculated each 500 milliseconds and the

sampling interval is at 10 ms.

Next, we present the results of a selection of methods of the Violin Strings library bench-

marked using JALEN UNIT.
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5.4.1 One-parameter method: Reverse

The reverse method reverses the sequence of characters of the input string. The bench-

mark runs the reverse method 1,000,000 times in order to get enough execution time for

estimating the energy consumption. This is due to the limitation of the underlying POWER-

API monitoring cycle, where a minimum cycle of 500 milliseconds is required for accurate

measurements

The method is run 1,000,000 times.

The implementation code of the reverse method is as follow:

1 public s t a t i c S t r i n g reverse ( S t r i n g s ) {

2 S t r i n g B u f f e r buf = new S t r i n g B u f f e r ( s ) ;

3 buf . reverse ( ) ;

4 return buf . t o S t r i n g ( ) ;

5 }

Results in Figure 5.5c show a logarithmic evolution model of the method when varying

the number of characters of the input string. This is due to the underlying call to Java’s

StringBuffer.reverse method which loops over all characters in the string (a for-loop

to the size of the string) and produces a string buffer containing the reverse of the string

(which is then casted as a string).

5.4.2 Two-parameters methods: Copies & Center

Copies

The copies method takes an input string and an input number, nCopies, and generates a

string consisting of nCopies of the input string. The method is run 100,000 times.

The implementation code of the copies method is as follow:

1 public s t a t i c S t r i n g copies ( S t r i n g s , i n t nCopies ) {

2 i n t l s = s . length ( ) ;

3 i f ( nCopies < 1) {

4 return " " ;

5 }

6 S t r i n g B u f f e r buf = new S t r i n g B u f f e r ( l s ∗nCopies ) ;

7 for ( i n t n = 0 ; n < nCopies ; n++) {

8 buf . append ( s ) ;

9 }

10 return buf . t o S t r i n g ( ) ;

11 }

Results in Figures 5.5a and 5.5b show a clear linear evolution of the energy consumption

when varying the size of the string (while fixing the number of copies to 100), and when

varying the number of copies (while fixing the size of the string to 100 characters). In details,
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Figure 5.5: Energy evolution model of four methods from the Violin String Java library
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the method first creates a string buffer of a size equal to nCopies ⇥ size of the string. Then

it appends the string nCopies times in a for-loop using Java’s append method. The append

method calls the String.getChars method which in turn calls System.arraycopy. Fi-

nally, System.arraycopy method does the copy. The code of these methods, in particular

copies method, explains the energy consumption while evolving the size of the string to

copy. In particular, a bigger string requires more energy to append it to the StringBuffer

object (thus a bigger loop over the characters array to copy). And a higher number of copies

means the same repetitive task is executed multiple times, therefore the energy evolves lin-

early.

Center

There are two methods named center: one with two parameters (e.g., a string and an in-

teger), and one with three (e.g., a string, an integer and a character). Both center methods

center a string given in parameter within a new string of a given length (the latter is the

integer parameter). The first center method adds blank spaces around the method, while

the other takes a character in parameter and uses it for padding. Both center methods are

run 300,000 times.

The implementation code of both methods is as follow:

1 public s t a t i c S t r i n g c e n t e r ( S t r i n g s , i n t len ) {

2 return c e n t e r ( s , len , ’ ’ ) ;

3 }

4

5 public s t a t i c S t r i n g c e n t e r ( S t r i n g s , i n t len , char pad ) {

6 i n t s t a r t ;

7 i n t l s = s . length ( ) ;

8 i f ( len < 1) {

9 return " " ;

10 }

11 char [ ] buf = new char [ len ] ;

12 for ( i n t i = 0 ; i < len ; i ++) {

13 buf [ i ] = pad ;

14 }

15 i f ( len > l s ) {

16 s t a r t = ( len−l s ) / 2 ;

17 s . getChars ( 0 , l s , buf , s t a r t ) ;

18 }

19 e lse {

20 s t a r t = ( l s−len ) / 2 ;

21 s . getChars ( s t a r t , s t a r t +len , buf , 0 ) ;

22 }

23 return new S t r i n g ( buf ) ;

24 }

Results in Figures 5.5d and 5.5e show different patterns in energy evolution based on

input parameters. However, the evolution is similar for both centermethods when varying
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the string and the integer parameters (whether blank or random characters are used for

padding). The higher energy consumption for the center method with blank paddings is

due to an additional method call. This is because the center method with two parameters

is a wrapper to its overloaded method with an additional character parameter. The space

character (for blank padding) is used as a parameter in the method code.

The energy models when varying the string size of the center method and when varying

the integer are linear. This is explained by the use of the integer parameter as an end value in

a for-loop. The evolution in this case is linear because the code executed in the loop is adding

the padding character in an array cell. On the other hand, String.getChars method is

called upon the string parameter. And as seen with copies method (see Section 5.4.2),

String.getChars calls System.arraycopy that copies the array of characters, therefore

the linear evolution.

5.4.3 Three-parameters variation: Translate

There is four translate methods in the Violin Strings library. The methods convert all of the

string’s characters which are contained in the input set of characters to the corresponding character

in the output set of characters. The four variations of the method are due to three combinations

with two additional parameters: a pad character and a boolean for ignoring the case of

characters. The benchmark runs the method 1,000 times.

The signature of all four translate methods is as follow:

1 public s t a t i c S t r i n g t r a n s l a t e ( S t r i n g s , S t r i n g s e t i n , S t r i n g setout , char pad ,

2 boolean ignoreCase ) ;

3 public s t a t i c S t r i n g t r a n s l a t e ( S t r i n g s , S t r i n g s e t i n , S t r i n g setout , char pad ) ;

4 public s t a t i c S t r i n g t r a n s l a t e ( S t r i n g s , S t r i n g s e t i n , S t r i n g setout ,

5 boolean ignoreCase ) ;

6 public s t a t i c S t r i n g t r a n s l a t e ( S t r i n g s , S t r i n g s e t i n , S t r i n g s e t o u t ) ;

The implementation code of the translate method is as follow:

1 public s t a t i c S t r i n g t r a n s l a t e ( S t r i n g s , S t r i n g s e t i n , S t r i n g setout , char pad ,

2 boolean ignoreCase ) {

3 i n t l s = s . length ( ) ;

4 i n t l o u t = s e t o u t . length ( ) ;

5 char [ ] buf = new char [ l s ] ;

6 s . getChars ( 0 , l s , buf , 0 ) ;

7 i n t pos = 0 ;

8 i n t n ;

9 while ( ( pos = indexOfAnyOf ( s , s e t i n , pos , ignoreCase ) ) >= 0 ) {

10 n = indexOf ( s e t i n , buf [ pos ] , ignoreCase ) ;

11 i f ( n >= l o u t ) {

12 buf [ pos ] = pad ;

13 }

14 e lse {

15 buf [ pos ] = s e t o u t . charAt ( n ) ;
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16 }

17 pos ++;

18 }

19 return new S t r i n g ( buf ) ;

20 }

The results in Figure 5.5f show the energy evolution when varying the first three pa-

rameters of the method. We notice that the model is linear when varying the length of the

input string (first parameter), and the length of the input set of characters (second parameter,

setin). The model is constant when varying the length of the output set of characters (third

parameter, setout).

In particular, the third parameter, setout, is used only twice in the method: once to

get its length, and another time to get a character at a given position in an if/else condi-

tion. Both usages are relatively simple to execute, therefore consuming little energy, thus

explaining the low impact of varying this parameter and the flat evolution of the energy

consumption. On the other hand, varying the string to convert (first parameter) or the in-

put set of characters (second parameter) has a linear impact on the energy consumption.

ViolinString.indexOfAnyOf method is called upon the first and second parameters,

and String.getChars method is called upon the first one too in the implementation of

the translate method. indexOfAnyOf implementation also calls String.getChars on

the setin parameter. The latter method uses System.arraycopy in order to copy an array

of objects (e.g., here an array of characters), and is responsible for linear energy evolution as

we reported in Section 5.4.2 with the copies method.

5.5 Discussions

Our work on modeling the energy consumption evolution of software code based on input

parameters, allows us to have an additional layer of understanding of the energy consump-

tion and distribution in software. But also, it provides us with methodologies and tools to

acknowledge the impact of input parameters on energy consumption. Therefore, providing

energy efficient software cannot be restrained to coding more efficient code for a certain set

of fixed parameters. Our results show higher complexity in the distribution of energy in

software code, the importance of taking into account the implementation of Java’s JVM, and

the side effects that may happen. The learning we got from our work is summarized in the

next paragraphs.

5.5.1 Model energy evolution through empirical benchmarking

The first conclusion of our work is that we can model the energy consumption evolution

of software code through empirical benchmarking. In our approach, we show the valid-

ity of empirical benchmarking when studying the evolution of the RSA asymmetric en-

cryption/decryption algorithm (see Section 5.2.1). The energy consumption evolution is
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exponential and is on par with the exponential complexity of the algorithm. In addition,

monitoring the evolution at software code allows detecting the methods responsible for the

exponential evolution, and the implementation source code of these methods validates our

approach.

We take this empirical benchmarking a step forward by automating its execution

through our approach and our framework, JALEN UNIT. This automation yields challenges

into providing representative models, mainly because we model energy evolution based on

input parameters. Therefore, we propose different strategies for varying input parameters,

and keep the choice of the strategy to the execution context. This decision allows more rep-

resentative benchmarks and thus more usable energy evolution models.

5.5.2 Side effects are not negligible

The second conclusion we learn from our experiments is that side effects are not negligible.

This is particularly present in software requiring a virtual machine, such as Java software.

The characteristics of the Java virtual machine impacts the energy consumption evolution

as we see in the Joiner.join experiments in Section 5.2.2. When varying the number of

strings in the Joiner.join method, energy evolution alternates phases of constant energy

consumption with direct increase phases. This is explained by the characteristics of the JVM

itself, which allocates memory for appending strings in a fixed size buffer. When the number

of strings is higher, the JVM allocates a bigger buffer, therefore requiring additional energy

consumption on phases (see Figure 5.3).

5.5.3 Impact of Java’s JVM and system calls

In addition to side effects due to the JVM’s characteristics, our experiments show the impact

of the JVM’s core methods and implementation, and those of system calls. In particular,

our results on the Violin Strings library (see Section 5.4) show how the evolution of string

manipulation methods is impacted by the JVM’s methods it calls. The library’s copies

method uses Java’s append method, which in turn calls String.getChars. The latter

finally uses System.arraycopy to perform characters’ copies. Therefore, a bigger string

to copy requires more loops over the string characters in System.arraycopy, leading to

linear energy evolution based on the string size.

By analyzing the source code of the benchmarked methods, we see similar explanation

of the energy consumption evolution. Translate method is another example where both

the method’s own implementation and JVM’s methods have an impact on the energy evo-

lution modeling. One of its parameters, the string setout, has little impact on the energy

evolution. This is because it is used in a context where the evolution of its size has negligible

impact on the performance and complexity, thus energy consumption, of the method. How-

ever, two other parameters, strings s and setin, have linear impact because the execution of

the method ultimately calls System.arraycopy on these parameters.

110



5.6. Summary

Our results show the importance of the underlying Java JVM implementation and func-

tioning in order to better understand the energy consumption, distribution and evolution in

software. Providing energy efficient software is therefore dependent on this knowledge and

on the lessons we learn from our approach and experimentations.

5.5.4 Limitations

JALEN UNIT framework allows modeling energy consumption evolution of software code.

Our results are promising into understanding energy interaction in software, however some

limitations are to be noted.

First, our framework benchmarks methods individually; therefore interactions between

methods are not studied here. The impact of varying the parameters on other methods is an

interesting topic we will be addressing as future work.

In addition, our model is inferred through empirical benchmarking but its mathematical

analysis and notation is still manual. Automatic analysis of the empirical data and the infer-

ring of the mathematical O notation, and specific evolution formulas are the next direction

in our work. Ideally, a mathematical formula would provide the energy consumption of a

method based on the values of its parameters. In addition, using analysis technics, such as

Principal Component Analysis (PCA) or the least squares method, could help in correlating

the impact of the variation of multiple parameters on the energy consumption of the method.

Finally, our framework infers energy evolution models based on CPU energy. How-

ever, more hardware components are involved in the execution of software, in particular the

disk, memory and network. We are currently extending our framework into expanding the

evolution model into these components. In Chapter 3, we showed that network energy is

negligible compared to the CPU energy. However, disk and memory energy may account

for a considerable part of energy consumption in desktop machines. Therefore, it is impor-

tant to study the effects of these hardware components on the energy evolution model of

methods while varying their parameters.

5.6 Summary

In this chapter, we propose an approach in order to automatically infer the energy models

of software methods based on their input parameters. Our approach is implemented for

Java applications in a framework called JALEN UNIT. The latter cycles through methods in

an application or software library, and generates benchmarks for each method and each of

its parameters. The benchmarks are then run following evolution strategies for parameters,

and their energy consumption is measured using JALEN (see Chapter 4).

Our approach is motivated by the variation of the energy consumption of software when

varying their input parameters (see Section 5.3.1). Our approach allows the understanding
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of which methods are responsible for the general energy evolution, and how each of these

methods evolves when varying their input parameters (see Section 5.2.1). In addition, we

report on how varying different parameters affects the energy consumption of a method (see

Section 5.2.2). Finally, we study the Violin Strings Java library and automatically infer the

energy model of four of its methods, then explain the generated different energy evolution

models by analyzing their source code (see Section 5.4).
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Chapter 6

Conclusion and Perspectives

“We believe in the systematic understanding of the physical world through observation and

experimentation, through argument and debate."-Alteran Woman, Stargate: The Ark of Truth
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In this chapter, we summarize our thesis dissertation by discussing the challenges and

goals addressed, and then we outline our contributions. Next, we discuss our short-term

and long-term perspectives into energy measurement and management of software, mid-

dleware, and hardware devices. Finally, we present the list of our publications during this

thesis.

6.1 Summary of the Dissertation

Modern software and computer configurations are increasingly distributed, use a variety

of devices, and require the usage of software services, either cloud-based or local. These

software and devices are constantly powered up and connected, from mobiles devices (e.g.,

115



Chapter 6. Conclusion and Perspectives

smartphones always-on), to servers in data centers (i.e., required to have high availability),

and desktop computers (e.g., always powered on during work hours or leisure time). Users

own multiple devices, all connected to each other, such as a mobile smartphone and a lap-

top computer, and use Internet services or cloud-based storage and software. In these new

usages, managing energy for this variety of devices and software requires new adaptation

strategies. The middleware layer is an optimal candidate to manage this variability in term

of software implementation and hardware characteristics.

However, managing energy cannot be efficiently done if energy itself is not measured

and considered as a first class requirement. Existing energy management approaches use

resources utilization information in order to provide coarse-grained, domain-limited ap-

proaches that only work under a set of conditions and configurations. A first step into

offering energy efficient software and devices, and into managing energy consumption of

these services, is to accurately measure energy. A second step is to understand how energy

is being consumed, where it is being spent, and thhe energy distribution between software,

and between software code.

In this thesis, we addressed these challenges and provided energy models, energy mea-

surement and modeling approaches and tools. We also studied software energy and provide

better knowledge of energy consumption and distribution in software based on our experi-

mentations.

We provide energy models in order to accurately estimate the energy consumption of

software (e.g., applications, processes), and of software code (e.g., classes and methods).

These models have a low margin of error, therefore answering the criteria of accurate measure-

ments we identified in our state-of-the art study for energy measurements (see Chapter 2).

Our models are also fine-grained and can be tailored into providing the energy consumption

of software as black box, or at the granularity of portions of code or methods. This fine gran-

ularity is also another criteria identified during our study, and helps energy management

approaches offer more in-depth solutions for energy optimization. It also contributes to our

second main step of understanding energy in software.

We also develop energy measurement and modeling approaches and tools for software.

In particular, we propose a software-only approach for estimating the energy consumption

of applications, i.e., JALEN, therefore answering the software-centric approaches criteria in our

study. JALEN is a software capable of measuring the energy consumption of portions of code

in applications, such as classes and methods. A software framework, JALEN UNIT, is based

on the measurement tool JALEN, and proposes to model the energy evolution of software

methods based on their input parameters. This modeling is done through the generation

and execution of benchmarks for each of the method’s parameters. The implementation of

both of our tools have low impact on user experience, therefore answering the reduce user

experience impact criteria identified in the state-of-the art study.

Finally, our energy models and software measurement and modeling approaches and

tools, are used to validate or recuse common belief and knowledge on software energy. In
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particular, we validate that network energy cost is negligible compared to the CPU cost on

a desktop computer, and that our models and implementation tools offer accurate results in

comparison to hardware power meters. How software is written and the parameters of com-

pilation impact energy consumption, such as JIT compilation of the Java virtual machine, or

the optimization flags of GCC and G++ compilers. We validate that native compiled code

is always more energy efficient than interpreted code and virtual machine based code, and

the implementation algorithm of an application have an impact on energy consumption.

This impact is even more important and complex when several factors impact energy con-

sumption, such as choosing a programming language, compiler options, implementation

algorithm, the usage of a virtual machine, and the characteristics and internal functioning

of the said virtual machine. We addressed these factors and provided experimentations and

analysis in order to help developers understand the energy consumption of their software,

and therefore write more energy efficient software.

6.2 Contributions

The contributions of this thesis are summarized as follows:

6.2.1 Energy Models for Software

The energy models we proposed allow measuring the energy consumption of software at

different granularity. We provide energy models for two levels: application level, and code

level. The former provides the energy consumption of software as system processes, i.e., as

black boxes; while the latter measures the energy consumption of software code, i.e., classes

and methods. Our energy models are software-only, therefore no hardware meter is needed

to provide energy measurements. The latters are also accurate with a margin of error varying

between 0.5% up to 3% for complex software in comparison with a hardware power meter.

Our models use hardware and software resources utilization in order to provide an estima-

tion of the energy consumption of software and software code. In addition, we propose an

approach to infer the energy evolution model of software code based on its input parame-

ters. Our approach automatically generates energy benchmarks for software methods and

models their energy evolution through empirical benchmarking.

Our contribution in energy models for software answers the challenges we identified in

our study of the state-of-the art by providing:

• Accurate measurements: the margin of error of our energy models is low at around 0.5%

and up to 3% for estimating the energy consumption at application level. Measure-

ments at code level add in a 1.3% margin of error. Therefore, our models offer accurate

estimations of the energy consumption in comparison to direct energy measurements

using hardware power meters.
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• Fine-grained energy model: our models estimate the energy consumption of software,

and also software code. We propose fine-grained energy models that can estimate the

energy consumption of blocks of code, such as software methods.

• Software-centric approach: the models we propose do not require any hardware invest-

ment. They provide accurate and fine-grained estimations using only software means

such as data collected from software and operating systems.

6.2.2 Energy Measurement Approaches and Tools

We develop energy measurement approaches and tools based on our proposed energy mod-

els. We build two main tools: JALEN and JALEN UNIT, for measuring the energy consump-

tion of software code, and for inferring the energy evolution model of software code based

on empirical benchmarking, respectively.

JALEN is a software energy profiler that hooks into the Java Virtual Machine during its

start and monitors resources utilization of Java applications at code level, i.e., it monitors

resources utilization of methods and classes. It then applies our energy models based on the

collected data in order to estimate the energy consumption of software code. The statisti-

cal sampling version of JALEN is also light on the running application’s resources with an

execution time overhead of around 3%.

JALEN UNIT is an energy framework for modeling the energy evolution of software

code based on its input parameters. It cycles through all classes and methods in a Java

application or library, then generates energy evolution benchmarks for each method and

each of its parameters. The variation evolution of the parameters is done through software

injectors and based on different evolution strategies. Finally, the benchmarks are run and

their energy consumption is measured and an energy evolution model is inferred.

Our contribution in energy measurement tools answers the following limitations (in ad-

dition to those answered by our energy models, see Section 6.2.1):

• Software-centric approach: both of our energy measurement tools, JALEN and JALEN

UNIT, do not require any hardware power meter or other hardware investment. The

tools are software programs that collect data of hardware and software resources uti-

lizations through software means (e.g., OS or JVM APIs, reading the application’s files,

etc.).

• Reduce user experience impact: our tools have a low overhead at around 3%. In particular,

the statistical sampling version of JALEN does not modify the monitored software and

does not interfere with its execution. The impact on user experience is minimal, and

energy is measured transparently throughout the execution of the application.
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6.2.3 Lessons on Software Energy Consumption

Our work is not only limited into providing energy models and measurement approaches

and tools, then validating them using empirical experimentations. Our contribution is also

a series of experimentations aimed to validate or recuse common belief on energy consump-

tion of software, and to better understand this energy consumption and the energy distribu-

tion in software code.

The main lessons we learned are the following:

• Energy models can estimate the energy consumption of software, even at code level,

with an accuracy similar to hardware meters. This also comes with an advantage of

software-only approach that can be used easily in various configurations and deployed

at large scale (see Chapters 4 and 3).

• Network Ethernet energy consumption is negligible compared to the CPU on desk-

top computers. Our experiments back up state-of-the art results and we found that

the CPU consumes much more energy then the Ethernet network card in a network-

intensive benchmark (see Chapter 3).

• Energy consumption is not linear with CPU utilization, mainly due to the energy opti-

mizations at software and hardware layers. DVFS allows the CPU to vary its frequency

and voltage in order to reduce its energy consumption, and modern CPUs are multi-

cores. Therefore CPU utilization or CPU time cannot replace energy estimations or

measurements (see Chapter 3).

• When monitoring energy consumption, it is always better to use non-disturbing mea-

surement tools in order to reduce the impact of the monitored software. In this

case, statistical sampling is better suited than modifying the application (for example

through byte code instrumentation), and it also provides accurate results (see Chap-

ter 4).

• Energy consumption is strongly related to the hardware, therefore raw energy values

(e.g., in joules or watt) are not relevant for comparing efficient software. It is prefer-

able to use energy percentages between software and between software methods (see

Chapters 4 and 3).

• The implementation algorithm, the programming language and the program param-

eters are factors that impact the energy consumption of software. A same software

system has different energy consumption if it is implemented in a different program-

ming language, or using a different algorithm. Compilers and compilation options

also have an impact on energy consumption, and native code is always more energy

efficient than interpreted code or virtual machine based code. Finally, varying the

parameters values impacts the energy consumption with different evolution patterns

based on which parameters are varied (see Chapters 3, 4 and 5).
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• Side effects and the impact of the operating system and virtual machines are not to be

neglected. They have a high impact in energy consumption and the good understand-

ing of how system or JVM methods are implemented, allows writing better energy

efficient software. The JVM, for example, uses JIT compilation in order to optimize the

execution of certain portions of code (such as recursive and repetitive loops), which ul-

timately leads to less energy impact of the virtualization from the JVM. (see Chapters 3

and 5)

6.3 Perspectives

6.3.1 Short Term Perspectives

Our contributions to energy measurement, estimation and modeling open doors for addi-

tional contributions. In particular, more challenges still need to be tackled in order to provide

even more insights on energy consumption in software.

Mathematical Analysis and Notation

A first short-term contribution we are looking at is providing mathematical analysis of the

energy evolution model of software code. Concretely, we plan to propose approaches and

tools for inferring the mathematical formula defining the energy evolution model. This is to

be done in two steps:

• Coarse-grained mathematical models. In this step, we propose mathematical models

similar to the complexity models (e.g., the big O notation). Based on the energy evolu-

tion model generated by our JALEN UNIT framework, we estimate the evolution trend

of the energy consumption and provide a mathematical notation of the said evolution.

• Specific mathematical formulas. Concretely, we plan to provide a detailed mathe-

matical formula in order to calculate the precise energy consumption of software code

based on input parameters. For example, we may have a linear formula for a method

methF with a int parameter param resembling to the following: Energy
param
methF =

23 ⇥ param + 45. Such specific formula would provide developers with a simple

methodology to estimate the energy consumption of their methods executed using

parameters not necessarily benchmarked, e.g., methF being benchmarked for values

ranging from 10 to 10,000, and the formula allows to estimate the energy consumption

for any given parameter value.

This step is trickier for several reasons:

– It requires extensive benchmarking and a set of sufficient results for inferring the

mathematical formula. This requires more benchmark time and results based on

relevant benchmarking data.
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– Energy consumption depends on hardware and the heterogeneous nature of mod-

ern devices and software add an additional layer of difficulty into proposing a

specific formula for software code modeling. In particular, raw energy values (in

watt) change greatly between devices even though percentages distribution in the

same application stays the same (see Chapter 4). On the other hand, using per-

centages make sense when comparing the energy consumption of software code.

It is not relevant for individual methods’ energy consumption evolution.

This calculation for a specific mathematical formula holds challenges, not just mathe-

matical modeling ones, but others inherent to the nature of energy consumption (e.g.,

multiple devices, raw energy vs. percentages, etc.). Principal Component Analysis

(PCA) is a first step into inferring specific mathematical formulas.

Intelligent Benchmarking

Another short-term perspective is more intelligent and efficient benchmarking. In particular,

current-benchmarking strategies for energy evolution modeling involves testing values from

a start point to an end point (with different variation strategies).

A more efficient approach would be benchmarking on the edges or limits of the method’s

parameters. For example, the edges and limits of a method manipulating an X-Y graph with

boundaries can be the X and Y coordinates at the boundaries. This testing at edges can

be complemented by benchmarking unit tests that are already coded by developers. Typi-

cally, unit testing checks the correct execution of methods at their boundaries and in context

situations where errors, abnormal execution or specific values are expected or may occur.

Benchmarking the energy consumption under these circumstances provides us with exten-

sive data and knowledge that we may not have otherwise. In addition, random testing can

be used for values in between the limits and boundaries of methods. The main advantage of

this type of limited benchmarking is to accelerate the generation of energy evolution models.

Develop Energy Models for Mobile and Distributed Devices, and Virtual Machines

Our work in this thesis concentrates on desktop computers, servers, and laptops. In particu-

lar, our experimentations are done on desktop, laptop and workstation machines. However,

the computing landscape is changing into being more mobile, more virtual and more dis-

tributed.

We plan to investigate the validity and accuracy of our energy models in these config-

urations. Then, based on the results of our investigation, we will adapt, modify or develop

new energy models for these environments. Energy in mobile environments has been thor-

oughly studied in the last years and decades. However this environment is rapidly evolving,

whether in term of hardware and software, or in term of usages. Therefore, this requires a

better understanding on the hardware used in their configurations, then applying the same
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approach we developed throughout this thesis in order to model energy consumption. In

addition, distributed environments present the challenge of running an application on mul-

tiple and heterogeneous devices. This makes energy modeling more complex due to the

additional variability of different devices. On the other hand, virtual machines add an addi-

tional layer of complexity due to the emulation of the real hardware by the virtual machine

application. Some hardware features are not always supported in virtual machine guests

(such as DVFS for CPUs), and the virtual machine infrastructure consumes non-negligible

amounts of energy. We plan to tackle these challenges for mobile and distributed devices,

and for virtual machines as short-term perspectives.

6.3.2 Long Term Perspective: Autonomous Energy Management

At long-term, we plan to use the energy models, approaches, and tools we developed

throughout this thesis to manage the energy consumption of software autonomically. The

lessons we learned from our work and experimentations help us shape an argument on

autonomic management of energy. The inherent complexity of the energy dimension, the

diversity of hardware, programming languages, and software, and the side effects and inter-

actions in energy evolution modeling, push us into arguing to put the human outside the loop.

Concretely, managing energy consumption, optimization and reduction, without human in-

teraction.

Although many energy measurement and management approaches argument on the ne-

cessity of keeping the human in the loop, that is providing visual energy information or a form

of energy feedback to users, we argue that users actually does not need, or sometime want,

this type of involvement. Energy is a non-functional requirement in software and devices,

and users actually use the latter for their functionality, e.g., to do actual work or entertain-

ment. Experiments and surveys on end users show that they need high-level abstractions

for managing energy consumption [HSJ09]. Users also tend to stop using energy manage-

ment or measurement tools after an initial excitement of using a novel tool, or what is called

a fad effect. In particular, a number of energy meters were installed in several homes and

researchers observed the reaction of users over a period of time [KG09]. As stated in the

study, some families reported that the impact of the meter changed over time as once interaction de-

creased it consequently lost its importance which made old habits reappear. And that the use of the

meter stopped within the majority of the homes. In a preliminary survey conducted on computer

science researchers and Ph.D. students, 50% of users prefer that software reduce the energy

consumption silently, without interrupting users’ activities. Only 23% want the adaptation

software to ask for confirmation of any adaptation or parameters modifications. We suspect

the numbers for silent energy management to be higher for the general public other then

computer-centric scientists. Therefore, our perspective is in proposing a software platform

to manage software and hardware energy consumption autonomously and without interac-

tion from users.
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An energy-aware autonomous approach should therefore imitate the human body

metabolism: the platform needs to be transparent to the user and to devices and applica-

tions, but without limiting users’ high-level, non-direct energy decisions. In the human

body, when energy becomes low, the system starts by using its reserves and notifying the

human about the situation (e.g., the human feels hunger). Therefore, the human could ap-

ply high-level decisions, such as eating (to recharge his energy and reserves), or reduce his

activity, or go to sleep (low power mode). We therefore believe that energy managament ap-

proaches should take inspiration from biologic systems and provide a similar autonomous

functioning for energy-awareness because the complexity of systems is rapidly increasing.

This inspiration could also take the shape of studying the execution context of software and

autonomously learn from it through machine learning technics. Monitoring energy con-

sumption and detecting where and how the energy is spend, efficiently distributing energy

between software and hardware, or adapting software code and components and modify-

ing hardware parameters based on energy levels, all are to be done autonomously without

human involvement. Users would only take high-level business-related decisions, while the

essential of energy monitoring and management is achieved autonomously and invisible to

users’ sight.

6.4 Publications

Our work in this thesis has been published in recognized journals, conferences, and work-

shops. Here is the list of our most important publications:

Journals

• Adel Noureddine, Romain Rouvoy, and Lionel Seinturier. Monitoring Energy Hotspots

in Software. In Automated Software Engineering journal. Accepted with major revision

on February 2014.

• Adel Noureddine, Romain Rouvoy, and Lionel Seinturier. A Review of Energy Measure-

ment Approaches. In ACM SIGOPS Operating Systems Review journal (OSR). Volume

47, Issue 3, pages 42-49, December 2013.

• Adel Noureddine, Romain Rouvoy, and Lionel Seinturier. A Review of Middleware Ap-

proaches for Energy Management in Distributed Environments. In Software: Practice and

Experience journal (SPE). Volume 43, Issue 9, pages 1071-1100, September 2013. Impact

factor: 1.008.

Conferences and Workshops

• Adel Noureddine, Romain Rouvoy, and Lionel Seinturier. Unit Testing of Energy Con-

sumption of Software Libraries. In Software Engineering Aspects of Green Comput-
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ing track of the 29th Annual ACM Symposium on Applied Computing (SAC’14).

Gyeongju, South Korea, March 2014. Acceptance rate: 24%.

• Adel Noureddine, Aurelien Bourdon, Romain Rouvoy, and Lionel Seinturier. Runtime

Monitoring of Software Energy Hotspots. In the 27th International Conference on Au-

tomated Software Engineering (ASE’12). Pages 160-169. Essen, Germany, September

2012. Acceptance rate: 15%.

• Adel Noureddine, Aurelien Bourdon, Romain Rouvoy, and Lionel Seinturier. A Pre-

liminary Study of the Impact of Software Engineering on GreenIT. In the First International

Workshop on Green and Sustainable Software (GREENS’12/ICSE’12). Zurich, Switzer-

land, June 2012. Acceptance rate: 41%.

• Aurelien Bourdon, Adel Noureddine, Romain Rouvoy, and Lionel Seinturier. Linux:

Understanding Process-Level Power Consumption. Invited speaker at the 2nd Interna-

tional Workshop on Green Computing Middleware (GCM’11/Middleware’11). Lis-

bon, Portugal, December 2011.

• Adel Noureddine, Romain Rouvoy, and Lionel Seinturier. Supporting energy-driven

adaptations in distributed environments. In the First Workshop on Middleware and Archi-

tectures for Autonomic and Sustainable Computing (MAASC’11/NOTERE’11). Paris,

France, May 2011.

Presentations and Talks

• Adel Noureddine, Romain Rouvoy, and Lionel Seinturier. Mesure et modélisation de

l’énergie logicielle. In 4th Green Days @ Lille. Lille, France, November 2013.

• Adel Noureddine, Aurelien Bourdon, Romain Rouvoy, and Lionel Seinturier. Runtime

Monitoring of Software Energy Hotspots. In Conférence d’informatique en Parallélisme,

Architecture et Système (ComPAS’13). Grenoble, France, January 2013.

• Adel Noureddine. "Why Humans Can’t Green Computers", An Autonomous Green Ap-

proach for Distributed Environments. Talk at the 10th Belgian-Netherlands software evo-

lution seminar (BENEVOL’11). Brussels, Belgium, December 2011.

Other Publications

• Aurelien Bourdon, Adel Noureddine, Romain Rouvoy, and Lionel Seinturier. Power-

API: A Software Library to Monitor the Energy Consumed at the Process-Level. In ERCIM

News magazine, No. 92. January 2013.

• Adel Noureddine, Aurelien Bourdon, Romain Rouvoy, and Lionel Seinturier. e-

Surgeon: Diagnosing Energy Leaks of Application Servers. INRIA Research Report. Jan-

uary 2012.

124



Bibliography

[Ale] AlertMe. http://www.alertme.com/smart_energy. 28, 36

[ant] ANTS Performance profiler. http://www.red-gate.com/products/dotnet-

development/ants-performance-profiler/. 36

[aqt] AQtime Pro. http://smartbear.com/products/development-

tools/performance-profiling/. 36, 37

[ASG10] Yuvraj Agarwal, Stefan Savage, and Rajesh Gupta. Sleepserver: a software-

only approach for reducing the energy consumption of pcs within enterprise

environments. In Proceedings of the 2010 conference on USENIX annual technical

conference, pages 22–22, Berkeley, CA, USA, 2010. USENIX Association. 12, 16,

25, 26

[asm] Asm. http://asm.ow2.org/. 73

[BGH+06] S. M. Blackburn, R. Garner, C. Hoffman, A. M. Khan, K. S. McKinley, R. Bentzur,

A. Diwan, D. Feinberg, D. Frampton, S. Z. Guyer, M. Hirzel, A. Hosking,

M. Jump, H. Lee, J. E. B. Moss, A. Phansalkar, D. Stefanović, T. VanDrunen,
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Appendix A

Jalen Unit Injectors

We report here the code for the default JALEN UNIT injectors: integer, character, string and

boolean.

The default integer injector:

1 package j a l e n . model ;

2 import j ava . u t i l . I t e r a t o r ;

3

4 public c l a s s IntegerModel implements JalenModel , I t e r a t o r {

5 private f i n a l i n t s t a r t , end , increment ;

6 private i n t current ;

7

8 public IntegerModel ( i n t s t a r t , i n t end , i n t increment ) {

9 t h i s . s t a r t = s t a r t ;

10 t h i s . end = end ;

11 t h i s . increment = increment ;

12 t h i s . current = s t a r t ;

13 }

14

15 @Override

16 public boolean hasNext ( ) {

17 return t h i s . current <= t h i s . end ;

18 }

19

20 @Override

21 public Object next ( ) {

22 i n t r e s u l t = t h i s . current ;

23 t h i s . current += t h i s . increment ;

24 return r e s u l t ;

25 }

26

27 @Override

28 public void remove ( ) { }

29

30 @Override
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31 public Object getDefaultValue ( ) {

32 return t h i s . s t a r t ;

33 }

34 }

The default character injector:

1 package j a l e n . model ;

2 import j ava . u t i l . I t e r a t o r ;

3 import j ava . u t i l . Random ;

4

5 public c l a s s CharModel implements JalenModel , I t e r a t o r {

6 private f i n a l i n t end , current ;

7 private char theChar ;

8

9 public CharModel ( i n t end ) {

10 t h i s . end = end ;

11 t h i s . current = 0 ;

12 t h i s . theChar = t h i s . generateChar ( ) ;

13 }

14

15 public char generateChar ( ) {

16 Random r = new Random ( ) ;

17 S t r i n g alphabet = " abcdefghijklmnopqrstuvwxyz " ;

18 char c = alphabet . charAt ( r . n e x t I n t ( alphabet . length ( ) ) ) ;

19 t h i s . current ++;

20 return c ;

21 }

22

23 @Override

24 public boolean hasNext ( ) {

25 return h is . current <= t h i s . end ;

26 }

27

28 @Override

29 public Object next ( ) {

30 return t h i s . generateChar ( ) ;

31 }

32

33 @Override

34 public void remove ( ) { }

35

36 @Override

37 public Object getDefaultValue ( ) {

38 return t h i s . generateChar ( ) ;

39 }

40 }

The default string injector:

1 package j a l e n . model ;

2 import j ava . u t i l . I t e r a t o r ;
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3 import j ava . u t i l . Random ;

4

5 public c l a s s StringSizeModel implements JalenModel , I t e r a t o r {

6 private f i n a l i n t s t a r t , end , increment ;

7 private i n t current ;

8 private S t r i n g t h e S t r i n g ;

9

10 public StringSizeModel ( i n t s t a r t , i n t end , i n t increment ) {

11 t h i s . s t a r t = s t a r t ;

12 t h i s . end = end ;

13 t h i s . increment = increment ;

14 t h i s . current = s t a r t ;

15 t h i s . t h e S t r i n g = t h i s . g e n e r a t e S t r i n g ( t h i s . s t a r t ) ;

16 }

17

18 public S t r i n g g e n e r a t e S t r i n g ( i n t s i z e ) {

19 i f ( s i z e == 0)

20 return " " ;

21 Random r = new Random ( ) ;

22 S t r i n g s = " " , a lphabet = " abcdefghijklmnopqrstuvwxyz " ;

23 for ( i n t i =0 ; i < s i z e ; i ++) {

24 s += alphabet . charAt ( r . n e x t I n t ( alphabet . length ( ) ) ) ;

25 }

26 return s ;

27 }

28

29 @Override

30 public boolean hasNext ( ) {

31 return t h i s . t h e S t r i n g . length ( ) <= t h i s . end ;

32 }

33

34 @Override

35 public Object next ( ) {

36 S t r i n g r e s u l t = t h i s . t h e S t r i n g ;

37 t h i s . t h e S t r i n g += t h i s . g e n e r a t e S t r i n g ( t h i s . increment ) ;

38 return r e s u l t ;

39 }

40

41 @Override

42 public void remove ( ) { }

43

44 @Override

45 public Object getDefaultValue ( ) {

46 return t h i s . g e n e r a t e S t r i n g ( t h i s . s t a r t ) ;

47 }

48 }

The default boolean injector:

1 package j a l e n . model ;

2 import j ava . u t i l . I t e r a t o r ;

3
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4 public c l a s s BooleanModel implements JalenModel , I t e r a t o r {

5 private boolean theBoolean ;

6 private boolean hasnext ;

7 private i n t counterBoolean ;

8

9 public BooleanModel ( ) {

10 t h i s . theBoolean = t rue ;

11 t h i s . hasnext = t rue ;

12 i n t counterBoolean = 0 ;

13 }

14

15 @Override

16 public boolean hasNext ( ) {

17 return t h i s . counterBoolean <= 1 ;

18 }

19

20 @Override

21 public Object next ( ) {

22 boolean r e s u l t ;

23 i f ( t h i s . counterBoolean == 0)

24 r e s u l t = t rue ;

25 e lse

26 r e s u l t = f a l s e ;

27 t h i s . counterBoolean ++;

28 return r e s u l t ;

29 }

30

31 @Override

32 public void remove ( ) { }

33

34 @Override

35 public Object getDefaultValue ( ) {

36 return true ;

37 }

38 }
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