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ABSTRACT

Today’s networks are often characterized by a free aggregation of independent nodes. Thus,

the possibility increases that a sel�sh party operates a node, which may violate the collabor-

ative protocol in order to increase a personal bene�t. If such violations di�er from the system

goals they can even be considered as attack. Current fault-tolerance techniques may weaken

the harmful impact to some degree but they cannot always prevent them. Furthermore, the

several architectures di�er in their fault-tolerance capabilities. This emphasizes the need for

approaches able to achieve collaboration from sel�sh nodes in distributed systems.

In this PhD thesis, we consider the problem of attaining a targeted level of collaboration in

a distributed architecture deployed over rational sel�sh nodes. They have interest in deviating

from the collaborative protocol to increase a personal bene�t. In order to cover a broad spec-

trum of systems, we do not modify the collaborative protocol itself. Instead, we propose to add

a monitoring logic to inspect the correctness of a node’s behaviour. The designer of the mon-

itoring system is faced with a complex and dynamic situation. He needs to consider aspects

such as the speci�c circumstances (e.g. message tra�c), the inspection e�ort or the node’s in-

dividual preferences. Furthermore, he should consider that each agent could be aware of the

other agents’ preferences as well as sel�shness and perform strategic choices consequently.

This complex and interdependent setup corresponds to a class of Game Theory (GT) known as

Inspection Games (IG). They model the general situation where an inspector veri�es through

inspections the correct behaviour of another party, called inspectee. However, inspections are

costly and the inspector’s resources are limited. Hence, a complete surveillance is not possible

and an inspector will try to minimize the inspections.

In this thesis, the initial IG model is enriched by the possibility that a violation is not de-

tected during an inspection (false negatives). Applied to distributed systems, the IG is used

to model the network participants’ strategy choice. As outcome, it enables to calculate sys-

tem parameters to attain the desired collaboration value. The approach is designed as generic

framework. It can be therefore applied to any architecture considering any sel�sh goal and

any reliability technique. For the sake of concreteness, we will discuss the IG approach by

means of the illustrative case of a Publish/Subscribe architecture.

The IG framework of this thesis secures the whole collaborative protocol by a monitoring

approach. This represents a new way in terms of reliability mechanisms. The applicability is

furthermore supported by the software library RCourse. Simplifying robustness evaluations

of distributed systems, it is suitable for model veri�cation and parameter calibration.

��������: Reliability, availability, and security · Network management · Modeling of

distributed systems · Game Theory · Inspection Games
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RÉ SUMÉ

Les réseaux actuels sont souvent caractérisés par une intégration dynamique de nœuds étran-

gers. La possibilité qu’une entité dissidente égoïste exploite un nœud augmente alors, ce qui

peut constituer une violation du protocole de collaboration en vue d’accroître un avantage

personnel. Si de telles violations di�èrent des objectifs du système, elles peuvent même être

considérées comme une attaque. Si des techniques de tolérance aux fautes existent pour a�ai-

blir l’impact sur le système, celui-ci ne peut pas totalement se prémunir de ce type d’attaque.

Cela justi�e la nécessité d’une approche pour maintenir un degré de collaboration nœuds

égoïstes dans les systèmes distribues.

Dans cette thèse, nous considérons le problème d’atteindre un niveau ciblé de collaboration

dans une architecture répartie intégrant des nœuds égoïstes, qui ont intérêt à violer le proto-

cole de collaboration pour tirer parti du système. L’architecture et le protocole seront modi�es

le moins possible. Un mécanisme d’inspection de chaque nœud sera mis en place pour décider

de la légitimité de ses interactions avec ses voisins. Le concepteur du système d’inspection est

confronté avec une situation complexe. Il doit corréler plusieurs aspects tels que les circons-

tances particulières de l’environnement ou des préférences individuelles du nœud. En outre, il

doit tenir compte du fait que les nœuds peuvent connaitre l’état de ses voisins et construire ses

décisions en conséquence. La surveillance proposée dans cette thèse correspond à une classe

de modèles de la théorie des jeux connus sous le nom « Inspection Game » (IG). Ils modé-

lisent la situation générale où un « inspecteur » véri�e par des inspections du comportement

correct d’une autre partie, appelée « inspectee ». Toutefois, les inspections sont coûteuses et

les ressources de l’inspecteur sont limitées. Par conséquent, une surveillance complète n’est

pas envisageable et un inspecteur tentera de minimiser les inspections.

Dans cette thèse, le modèle initial IG est enrichi par la possibilité d’apparition de faux né-

gatifs, c’est à dire la probabilité qu’une violation ne soit pas détectée lors d’une inspection.

Appliqué sur des systèmes distribués, cette approche permet de modéliser les choix collabo-

ratifs de chacun des acteurs (violer le protocole ou pas, inspecter ou pas). Comme résultat,

le modèle IG retourne les paramètres du système pour atteindre le niveau de collaboration

souhaité. L’approche est conçue comme un « framework ». Elle peut donc s’adapter à toutes

les architectures et toutes les techniques de �abilité. Cette approche IG sera présentée à l’aide

d’un exemple concret d’architecture Publish/Subscribe.

L’approche du jeu d’inspection de cette thèse pour objectif de sécuriser l’ensemble du pro-

tocole de collaboration. Ceci constitue un nouveau concept de mécanisme de �abilité. A�n

de permettre une large application, la généralité de cette approche est renforcée par la contri-

bution RCourse. En simpli�ant les évaluations de la robustesse des systèmes, elle permet la

véri�cation de l’approche IG et le calibrage des paramètres du système.

�������� : Fiabilité, disponibilité et sécurité · Gestion de réseaux ·Modélisation des sys-

tèmes répartis · Théorie des jeux · Inspection Games
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ZUSAMMENFAS SUNG

Heutige Netzwerke entstehen häu�g durch einen dynamischen Zusammenschluss von Kno-

ten. Dabei steigt die Wahrscheinlichkeit, dass ein Knoten von egoistischen Individuen betrie-

benwirdwelche bewusst das Protokoll verletzen um ein persönliches Ziel zu verfolgen. Dieses

Verhalten kann nicht nur als schädlich sondern auch als Angri� betrachtet werden. Die Feh-

lertoleranz aktueller Systeme kann die negativen Auswirkungen abschwächen jedoch nicht

vollständig verhindern. Aktuelle Systeme unterscheiden sich in diesem Punkt zumTeil drama-

tisch. Dies verdeutlicht den Bedarf von Systemen, die aktiv eine Befolgung des kollaborativen

Protokolls aufrechterhalten und damit die korrekte Funktion eines verteilten Systems.

In dieser Dissertation betrachten wir das Problem ein bestimmtes Kooperationsniveau von

egoistischen Knoten eines verteilten Systems zu erreichen. Für eine möglichst hohe Anwend-

barkeit wird das System selbst so wenig wie möglich verändert. Stattdessen überwacht ein

Monitoring-Ansatz die Korrektheit des Verhaltens der einzelnen Knoten. Der Designer des

Monitoring-Systems ist mit einer komplexen und dynamischen Situation konfrontiert. Er

muss Aspekte berücksichtigen wie den aktuellen Systemzustand (z.B. Nachrichtenverkehr),

Inspektionsaufwand oder individuelle Ziele eines egoistischen Knotens. Dies führt zu einer

komplexen, gegenseitigen und möglicherweise interaktiven Entscheidungslandschaft für die

Monitoring-Logik und Knoten. Dies entspricht exakt einer Klasse der Spieltheorie: Inspection

Games (IG). IGs modellieren die generelle Situation wo ein inspector durch Inspektionen das

korrekte Verhalten eines anderen Individuums, dem inspectee, überprüft, welches vom vorge-

gebenen Protokoll abweichen möchte um einen individuellen Nutzen zu erhöhen. Aufgrund

begrenzter Ressourcen versucht der inspector die Anzahl der Inspektionen zu reduzieren.

In der Dissertation wurden IGs als Lösungsvorschlag für das gegebene Problem auf ver-

teilte Systeme adaptiert. Dazu wurde das initiale IG Modell zunächst durch die Möglichkeit

erweitert, dass Protokollverstöße während einer Inspektion nicht entdeckt werden (false ne-

gatives). Der IG Ansatz ermöglicht die Modellierung des Kooperationsverhaltens in verteilten

Systemen und die Berechnung von Systemparametern um das anvisierte Kooperationsniveau

zu erreichen. Der Ansatz ist als generisches Framework konzipiert und kann individuellen

Bedürfnissen angepasst werden. Dies umfasst insbesondere die Systemarchitektur, das indivi-

duelle Ziel und verwendete Techniken. Die gesamte Thematikwird in derDissertation anhand

eines konkreten Anwendungsbeispiels mit Publish/Subscribe Systemen diskutiert.

Der IG Ansatz überwacht die Korrektheit des gesamten Kooperationsprotokolls. Dies stellt

hinsichtlich der Funktionsfähigkeit eines Systems einen neuen Ansatz dar. Die Anwendbar-

keit wird weiterhin durch RCourse unterstützt, einer Software-Bibliothek, welche Simulatio-

nen hinsichtlich der Robustheit verteilter Systeme vereinfacht. Daher eignet es sich insbeson-

dere zur Bewertung des IG Ansatzes und Kalibrierung von Parametern.

����������� : Zuverlässigkeit, Verfügbarkeit, und Sicherheit · Netzwerkmanagement ·

Modellierung von Computerarchitekturen · Spieltheorie · Inspection Games
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1
I N TRODUCT ION

This chapter gives a thematic introduction and an overview to the thesis’ contributions.

�.� ����������

The today’s distributed systems are realized as a mere enactment of a collaborative protocol.

This protocol is typically implemented in the application logic and represents the system’s

objective. Violations of the protocol are considered as harmful due to the reduction of the

system’s performance. However, this is possible by sel�shness-driven individuals, who follow

personal objectives. With full administrative power over their machines, also called peers

in the remainder, they are able to modify the application logic or encumber its execution.

Direct physical access is not needed. Administrative power can also be obtained by malicious

code (worms, viruses etc.) that take advantage of a system’s vulnerability�. In fact, even

software can operate sel�shly. An example is a peer with limited energy resources, where a

scheduler reduces the performance of speci�c applications to reduce the energy consumption.

In general, sel�shness-driven protocol violations are even considered as system attack [�, �].

Faults (e.g. caused by hard-/software) can result to failures of collaborative interactions

in distributed systems. These are also denoted as Byzantine failure [�]. In a larger scale, the

probability that one of the peers is faulty increases strongly [�]. This may be exploited by

sel�sh individuals by trying to hide their harmful behaviour behind Byzantine failures. Then,

the probability of undetected sel�shness-driven protocol violations is increased. Furthermore,

tolerating Byzantine failures and sel�shness plays an increasing role to achieve interoperab-

ility of the heterogeneous system landscape, a key aspect of future middeware systems [�].

Fault-tolerance techniques can reduce the impact of sel�sh-driven actions. However, they

cannot fully avoid or tolerate them. This emphasizes the need for reliability approaches that

take the possibility of sel�shness-driven peers into account.

Aiyer et al. [�] introduced under the nameBARmodel –Byzantine, Altruistic, Rational (BAR)

an abstract development concept. Sel�sh (rational) peers are considered already during the

system design among cooperative (altruistic) peers and Byzantine failures. Such property is

also denoted as BAR tolerance. A full collaboration is not necessarily needed by the sel�sh

peers. The system inherent reliability (e.g. redundancy) can be leveraged, which reduces the

needed resources for the BAR tolerance mechanism. To this end, the system designer con-

siders a targeted collaboration level. It is meant to be an average since sel�shness-driven

peers cannot be forced to collaborate. They may even sacri�ce themselves for the personal

goal accepting any consequences up to an expulsion from the system. Recent research activit-

ies addressed the problem of sel�sh behaviour in general (see for instance [�, ��, ��]). However,

� The amount of threats given by malicious code is continuously growing. See for example the Kaspersky Security

Bulletin ���� & Malware Evolution Report [�].

�
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Figure �.�: Limiting bandwidth is a realistic issue. The functionality is integrated in the settings of the

P�P software BitTorrent (left) as well as in the low-budget router D-Link DIR-��� (right).

there is no work existent for a BAR tolerance design that takes also a behaviour analysis into

account to achieve a targeted collaboration level.

Approaches to avoid or tolerate sel�sh behaviour are manifold. They comprise for example

trust- (e.g. [��, ��]) and reputation-based contributions (e.g. [��]) or introduce detection mech-

anisms (e.g. [��, ��]). In contrary, approaches for modelling systems with sel�sh peers are sim-

ilar and typically done with Game Theory (GT). It enables to model the complex situations

with circular dependencies. Hence, it is suitable for a behaviour analysis as done in this thesis.

To this end, a concrete system is used as exemplary use case. Possible candidates are for ex-

ample real world applications or mere communication models. An interesting compromise

is Publish/Subscribe (pub/sub). It combines a communication paradigm (high generality) with

the functioning of the BitTorrent system (real world relation). Thus, pub/sub represents an

ideal representative of distributed systems for the thesis’ studies.

������� �������� : ����������� ����� ��������� ���� ���������� Let us

consider now a scenario that illustrates the problem of sel�shness-driven individuals in dis-

tributed systems. The scenario consists of distributed video streaming based on the peer-to-

peer (P�P) application BitTorrent. The content dissemination (or a good portion of it) is done

by the peers itself, which reduces the expenses for a complex server infrastructure. This scen-

ario corresponds to an existing service, known under the name BitTorrent Live�. However,

such video streaming systems are still under active research. In order to improve the through-

put in presence of failures, they address among others general reliability approaches (see for

example [��, ��, ��]) or the workload balancing and optimization (e.g. [��, ��]).

In this scenario, a sel�sh user has the personal goal of reducing the utilization of communic-

ation resources by limiting the outgoing bandwidth. This represents the problem of message

loss since some network messages are omitted if the limit is reached. BitTorrent provides

bandwidth limitation even as a settings feature in the application user interface (see �gure

�.� left). Furthermore, it can be realized at the network side without special knowledge. As

an example, �gure �.� shows on the right side the control panel of the router D-Link DIR-���

(about �� �). These examples show that message drops is a realistic issue for P�P systems.

� http://live.bittorrent.com/
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�.� �������� �����������

For a better understanding of the remainder, some thematic context is shortly clari�ed here.

�.�.� A Clari�cation of Terminology

This section targets to unify the reader’s interpretation of important terms used in this work.

������������� , ����������� �� ����������? Dependability has several character-

izations in literature. De�nitions of two works are shown below. These are the one of Laprie

[��] (upper quotation) and the IFIP WG ��.� on dependable computing [��] (lower quotation):

D������������

Computer system dependability is the quality of the delivered service such that reli-

ance can justi�ably be placed on the service.

... the trustworthiness of a computing system which allows reliance to be justi�ably

placed on the service it delivers.

Further taxonomies that structure terms such as dependability, reliability, fault-tolerance

or survivability were proposed by Al-Kuwaiti et al. [��] and Avizienis et al. [��]. Based on the

de�nitions of the literature we interpret the term dependability as the following characteriza-

tion: A service should – to some qualitative degree – exactly ful�l the service as it is speci�ed and

therefore expected. The term dependability is not further discussed since it is considered as

too abstract for concrete evaluations in this thesis. Instead, we focus on the other two notions

– reliability and robustness – for the study of BAR tolerance in the remainder of the thesis.

To this end, we rely on the de�nitions of the IEEE standard glossary for software engineering

terminology [��]:

R����������

The ability of a system or component to perform its required functions under stated

conditions for a speci�ed period of time.

R���������

The degree to which a system or component can function correctly in the presence

of invalid inputs or stressful environmental conditions.

Three major di�erences can be identi�ed in these de�nitions. First, reliability focuses on

the ability to perform speci�ed operations, while robustness considers the degree of correct

system functioning. Second, the notion of reliability assumes stated conditions. This spe-

ci�es a broad range such as the ability to tolerate failures, system dynamics or to guarantee

a speci�ed amount of service quality (e.g. latencies). In contrast, robustness rather considers

fault-tolerance issues, which may lead to stressful working conditions for the system. Finally,

the de�nitions di�er in the considered duration. Reliability takes account of stated condi-

tions only for a speci�ed period of time, while robustness assumes the stressful conditions as
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not limited in time. To summarize, reliability has a qualitative character. It considered as the

ability to perform the system operation “to some degree”. In contrary, robustness has a quant-

itative character and denotes the degree of system functioning under stressful conditions.

Reliability is also explained by means of safety and liveness properties. They were initially

introduced by Lamport [��] as an abstract approach to characterize correct operation of dis-

tributed systems. They are outline in the following or the sake of completeness. However,

analogue to dependability, they will not be further used in the thesis due to their abstractness.

S�����/L������� P���������

A safety property is one which states that something will not happen. ... A liveness

property is one which states that something must happen.

������ ��� (���������) �������� In contrast to the IEEE standard glossary for soft-

ware engineering terminology [��], we do not consider that a fault may only be caused by a

defect in hardware or an incorrect logic. Instead, we follow for this thesis the comprehensive

taxonomy of faults of Azinienis et al. [��], who state that faults actually cause any type of

failures. Hence, this taxonomy comprises all faults, that may a�ect a system during its life.

For example, a fault may – among others – not only be caused by hard- or software but also by

human actions or natural phenomena. In this context, we denote failures as the direct result

of a fault, i.e. the system performed an erroneous action, is in an erroneous state or even not

able to ful�l the functions within speci�ed requirements. Occurring in distributing systems,

failures may harmfully a�ect the mutual collaborative interaction and thus, the functioning

of the whole distributed system itself. This is denoted as Byzantine failure. This term is well-

known in the computer science community and relies on the Byzantine Generals Problem [�].

For ease of comprehension, we will consider also the term failure as synonym for Byzantine

failures int the remainder of the thesis.

������� ��������� In order to characterize the notion sel�sh behaviour, we follow

the de�nition of rational behaviour from Nielson et al. [�], whose classi�cation of peers in

a distributed system is based on game theoretic model and mechanism design [�]. Their

classi�cation, visualized in �gure �.�, distinguishes between peers that do strategize and those

that do not strategize. Peers that do strategize can be further divided into rational (with system

peers in distributed 

systems

do not strategize

altruistic or 

obient
faulty

do strategize

rational irrational

Figure �.�: The �gure illustrates a classi�cation from Nielson et al. [�], which is used in the thesis. In
this context, sel�sh behaviour is considered as synonym to rational behaviour, assuming
further a personal goal that diverges from the system goal(s).
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knowledge) and irrational ones (without or only incomplete system knowledge). Rational

peers are therefore strategizing peers, which use their knowledge about the system to act in a

sel�sh way (increase personal bene�t). In contrary, irrational peers a�ect the system without

being aware of the complete system mechanics, e.g. a Denial-of-Service (DoS) attack.

In this thesis, a peer’s sel�sh behaviour considered as the behaviour of a rational peer that

follows personal objectives. Hence, a peer is considered as sel�sh if its behaviour di�ers from

the expected one speci�ed by the collaborative protocol. To be more precise, this means the

case where a Proof-of-Misbehaviour (PoM) is detected.

A sel�sh peer’s objective is assumed to be divergent from the system goals. Hence, it is

harmful for the system functioning and can be considered as an attack [�, �]. Ideally, it should

be always possible to distinguish between sel�sh behaviour and a failure. This is not always

possible due to the peer’s ability to hide the malicious actions behind a failure (e.g. pretending

message losses). However, if some degree is exceeded – being a real failure or not – a peer can

be considered malicious just as a sel�sh one. Sel�sh behaviour is not necessarily caused by

human beings but can also be caused software logic. One example has already beenmentioned

in the introduction, where a scheduler a�ects the functioning (e.g. in terms of communication

resources) in order to reduce the energy consumption.

Nielsen et al. discussed [�] three generalmechanisms against sel�shness. Eliminating sel�sh

behaviour as a concern (e.g. out-of-band trust, trusted software) is not always applicable. Genu-

ine incentives give peers collaboration incentives by the system design. An example is the en-

cryption of message content for a data storage service. Being unable to distinguish the owner,

a peer will abstain from deleting others’ data to save on its resources. Arti�cial incentives

always make use of auditing to detect misbehaviours and give some kind of collaboration in-

centive. Typical examples are the collection of proofs of misbehaviours (PoM) or reputation

tables in combination with punishments (e.g. excluding a malicious peer from the system)

when a misbehaviour is detected.

��� ��������� The BAR model [�] was introduced as abstract development model. It

speci�es that rational (sel�sh) behaviour should be considered already during the system

design process among Byzantine failures and altruistic (collaborative) peers. In other words,

a BAR tolerant system is assumed to implement fault-tolerance techniques as well as tech-

niques against sel�sh behaviour in order to tolerate or prevent violations from the collab-

orative protocol. The BAR model increases the general reliability of a system but it lacks

in preciseness due to its abstract de�nition. Therefore, the thesis intends to �ll this gap by

providing a structured approach to maintain BAR tolerance mechanisms. This vision is de-

tailed hereafter.

�.�.� The Publish/Subscribe Paradigm

The Publish/Subscribe (pub/sub) paradigm realizes application-layer multicast (ALM) com-

munication. It provides an event-based interaction-style characterized by full decoupling in

time, space and synchronization [��]. Thus, it is also considered as event-based middleware

for the development of distributed applications (see for instance [��, ��, ��]). Pub/sub sys-
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Figure �.�: Graphical overview to the Publish/Subscribe communication paradigm showing the

interaction-style (left) and the position in the network stack (right).

tems realize the decoupling between a set of content producers, called publishers, and a set of

content consumers, called subscribers, by means of an intermediate logical component, called

Noti�cation Service (NS).

In pub/sub systems, the subscriber can subscribe to a multicast group of interest by inform-

ing the NS. Similarly, the publisher can publish an event message (or just event) by transferring

it to the NS, which is then responsible to the delivery to interested subscribers. The process

of identifying the interested set of peers is called subscription matching. The actual NS func-

tioning remains a black box for the interacting publishers and subscribers.

The simplest NS realization is a single component or peer, which represents a client/server

architecture. However, more advanced system consider usually a distributed architecture

where the noti�cation responsibility is distributed over di�erent noti�er peers. Indeed, they

may also hold di�erent roles. A peer may be publisher, subscriber and noti�er at the same

time, depending on the speci�c implementation. Due to the pub/sub logic at the application

layer, overlay networks is maintained being independent from the implementation details

of underlying network layers. Therefore, applications over networks such as the internet

are possible without requiring specialized hardware or protocols. The pub/sub paradigm is

illustrated in �gure �.� from the interaction-style (left in �gure) as well as technical point of

view (left in �gure), i.e. position in the network stack.

The pub/sub paradigm has attracted much research e�ort over the last decade, leading to

a large number of heterogeneous systems. The �rst systems followed a deterministic dis-

semination� structure and targeted mainly core aspects such as subscription type (e.g. topic-,

content-based) or overlay organization. Later on, unstructured approaches [��, ��, ��] intro-

duced systems with non-deterministic dissemination� schemes. Among general architectural

developments, researchers focussed also on other aspects such as scalability [��], reliability

[��], quality of service [��] or security [��]. Furthermore, distributed optimization algorithms

have been applied to Publish/Subscribe [��]. Worth to mention is also the PSIRP project�,

which tries to redesign the internet architecture from a pub/sub point of view. Several works

reviewed the research (e.g. [��, ��, ��]) and outlined architectural speci�cations.

� In deterministic systems, the communication relations are calculated by a deterministic algorithm. Hence, the

dissemination structure is �xed and can be reproduced.

� Non-deterministic dissemination makes always use (to some degree) of randomness such as random walks result-

ing in a dynamic dissemination structure.

� http://psirp.hiit.�/
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������ Several works considered sel�sh behaviour and introduced systems that are BAR

tolerant to some degree. Typically, sel�shness aspects focus only on speci�c sel�sh goals

and circumstances (see for example [��, �, ��]). Other threats are ignored and they are not

considered to be coupled with other techniques or reliability mechanisms. Furthermore, im-

plementing subsequently mechanisms with regard to other sel�sh goals becomes complicated

due to the deep protocol modi�cations. To summarize, there is a design gap in terms of reliab-

ility mechanism considerations between the high level BAR model and the low level system

implementations. This is illustrated in �gure �.� left.

The vision of this thesis (�gure �.� right) is to �ll this gap by providing a design concept

that supports the development of a system’s BAR tolerance capabilities. To this end, two

requirements are given and the corresponding

�. A solution approach shall be abstract enough to cover any Byzantine failure, any sel�sh

goal and any system architecture. At the same time, it shall be precise enough to achieve

speci�c implementations.

�. It should be able to leverage given reliability mechanisms or technique by attaining a

targeted collaboration level of sel�shness-driven peers.

����������� In order to cover the vision’s �rst requirement, a solution approach will

be formulated as framework to achieves a �exibility in terms used mechanisms. In this con-

text, genuine mechanisms are not possible. They require deep adaptions of system internal

processes and are therefore in con�ict with the abstractness of the vision. Hence, a distributed

systems’ functioning shall be a�ected as little as possible to increase the applicability to di�er-

ent system architectures. To this end, an arti�cial mechanism, a system monitoring approach

will be used, which controls the peers’ interactions in combination with giving collaboration

incentives. The monitoring of all interactions is considered as too costly for the general case

and performed by sampling. The principle of this monitoring approach is shown in �gure

Thesis' Vision 
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specific solutions.
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Figure �.�: Vision: The objective is a design concept to enable a system deployment over sel�sh peers
to attain a targeted collaboration level.
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inspection target 
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(operating on the 
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Figure �.�: General approach: An inspection target maintains a peer’s collaboration proofs. It is con-

trolled by an inspector, who gives collaboration incentives (punishment) in case of detected
PoM. The desired collaboration level is reached by an appropriate inspection rate.

�.�. The system itself is considered as a black box and its original functioning is kept basically

unchanged. Instead, a data structure denoted as inspection target maintains proofs of a peer’s

behaviour. It is controlled during an inspection by an inspector, which works on behalf of the

system administrator. He has the power to stimulate a collaboration by positive incentives

(rewards) for collaboration or negative incentives (punishment) in case of detected misbeha-

viours. The latter one is a common technique (see for instance [��, ��]) and thus used in this

thesis. Finally, a desired collaboration level is reached by an appropriate rate of inspections.

The determination of the inspection rate is a challenging task due to the behavioural in-

terdependencies of the peer (violating or not) and inspector (inspecting or not). However,

the monitoring approach corresponds directly to a class of Game Theory (GT): Inspection

Games (IG). Hence, it makes sense to leverage the power of GT to model the complex and

interdependent decision landscape. The modelling of the players’ (the peer and the inspector)

behavioural choice as IG enables a behaviour analysis of the players. As outcome, a system

designer is able to calculate an inspection rate to reach the desired collaboration value.

During the thesis, the IG approach is applied to an illustrative use case. To this end, we con-

sider the aforementioned sel�shness-driven message drops scenario and Publish/Subscribe

development progress

BAR tolerant 
pub/sub system

Inspection Game framework  

Publish/Subscribe as use case system
     with selfishness-driven message drops
           

Specification of reliability mechanism(s)

Modelling as Inspection Game

Outcome: System parameters
           to achieve targeted level  
           of collaboration
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Figure �.�: Methodology: The IG is considered as framework for the system design. The application to
an illustrative use case shows the utilization in detail and how collaboration is achieved.
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as system type. As a communication paradigm, it provides naturally a broad applicability.

Furthermore, it realizes Application Layer Multicast (ALM) communication. This represents

directly the BitTorrent application of the scenario with the multicast groups as the several

video streams. Thus, pub/sub is considered as ideal system candidate. The IG application in

the thesis stays general but provides at the same time a relation to an illustrative real world

application. The methodology to meet the vision is illustrated in �gure �.�.

�.� �������� ���������� � �������������

�������� ���������� In the context the thesis’ vision, the main research challenge

can be formulated as in the following:

M��� R������� C��������

Enable the deployment of a distributed system over sel�sh peers and obtain a tar-

geted collaboration level in average.

This challenge is similarly abstract as the vision itself and opens a bunch of further research

questions. For example, what types of distributed system architectures are available and what

are there general reliability capabilities. A crucial aspect concerns the sel�shness-driven viola-

tions and the impact on the collaborative protocol or, in otherwords, on thewhole functioning

of a speci�c system. Further aspects to examine are how to integrate the speci�c mechanisms

in a theoretic model, how does it perform under real world conditions and how could it be

realized in current applications. The possible research question are manifold. However, there

is a general design principle recognizable. During the top-down design it is important to have

a mutual calibration feedback between the system behaviour and the theoretical model. For

example, determine a system’s BAR tolerance capabilities has in�uence on the targeted col-

laboration level. At the same time, it must be examined if the theoretical model’s outcome

corresponds the expectations, possibly resulting in further calibrations and evaluations.

In order to meet the broad main challenge, it is split into three straightforward research

challenges that are listed hereafter. The �rst challenge (A) evaluates the reliability of current

systems as part of the state-of-the-art. As we will see later, some preparations are needed,

resulting in two further tasks (A.�) and (A.�). Challenge (B) refers to quantitative evaluations

such as the system impact of sel�shness-driven violations. It represents the practical side

of the aforementioned principle, the mutual feedback during system design. Challenge (C)

comprises not only the (generic) theoretical framework but also an application to distributed

systems. It represents therefore the theoretical side of the design principle and the main

research contribution.

(A) Evaluate the BAR tolerance capabilities of current distributed systems.

(A.�) Provide an architectural classi�cation during the evaluation.

(A.�) Specify possible failures that can be used as evaluation metrics.

(B) Develop a tool that supports the simulative evaluation of sel�shly operating peers’ impact

on the system functioning.
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(C) Develop an approach to attain a targeted (average) level of collaboration if a distributed

system is deployed over sel�sh peers.

������������� �� ��� ������ The thesis’ contributions are directly related to the re-

search challenges. They interact as described before in the top-down design principle, which

is illustrated in �gure �.�. The interactions of the contributions are outlined here and will be

detailed during the conclusion of the thesis (chapter ��).

• Preparations for comprehensive evaluation

Related to the tasks (A.�) and (A.�), this contribution serves as preparations to the BAR

tolerance evaluation of challenge (A). It is presented in part �� and comprises of an archi-

tectural classi�cation and a taxonomy of elementary failures. Thus, this contribution

discusses the lacks of current system and introduces preparations for a BAR tolerance

evaluation. It was published in [��] and is part of [��].

• Reliability evaluation of pub/sub systems

Also presented in part �� as part of the state-of-the-art, this contribution evaluates the

BAR tolerance capabilities of current pub/sub systems. It is related to challenge (A) and

performs the evaluation in a qualitative way based on the prior work, the architectural

classi�cation and a taxonomy of failures. This contribution was published in [��].

• RCourse: An extension library for peersim to robustness evaluations

RCourse represents the practical contribution in terms of the aforementioned design

principle. It simpli�es simulative studies with a special focus on robustness capabilities

to enable quickly launched evaluations. Hence, it serves as tool to evaluate the impact

of sel�shness-driven violations and to verify the IG approach or parameter calibrations.

Furthermore, it provides simulation scenarios that are based on the BAR tolerance eval-

uation. Thus, RCourse is suitable to enrich it by quantifying information. Published in

[��], RCourse addresses challenge (B) and is introduced in part ���.

• Inspection Game approach to deploy distributed systems over sel�sh peers

The whole part �� is related to research challenge (C) and introduces with the enhanced

IG approach (chapter �) a solution approach. It is preceded among others by GT found-

ations and is followed by a discussion with regard to real world applications. During

An Inspection Game Framework for Networked Architectures 

PART III: PRACTICALLY EVALUATING ROBUSTNESS

RCourse: Robustness Benchmarking Library for Peersim

PART II: STATE-OF-THE-ART

Preparations for Comprehensive Evaluation

Evaluation of BAR Tolerance Capabilities

PART IV: ACHIEVEMENT COLLABORATION WITH!
                 INSPECTION GAMES 

Inspection Game Adaptation to Distributed Systems 

Figure �.�: Thematical overview to the main contributions of the thesis
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the GT considerations, the initial IG model is extended by false negatives and Nash

equilibria calculations are introduced for all games. The extended game types are ap-

propriate to model and analyze the interdependent strategy choice of sel�sh players

with resource limitation constraints. By applying the IG approach to distributed sys-

tems, it represents the theoretic counterpart to RCourse. In combination they are able

to realize the thesis’ vision and to achieve BAR tolerant system implementations begin-

ning from an abstract starting point. The GT foundations are published in [��, ��].

�.� ��������� �� ��� ������

The current part introduced among others the thematic context and the thesis’ research chal-

lenges. The remainder structured as indicated in the following.

���� �� presents the current state-of-the-art in terms tolerating sel�shness-driven harm-

ful impact on the system functioning. The following two chapters are related to this objective:

• Chapter � discusses the related work of the scienti�c community with regard to the

research challenges.

• Chapter � reviews BAR tolerance capabilities of �� systems. This chapter is dedicated

to meet challenges (A), (A.�) and (A.�).

���� ��� introduces an approach for practically evaluating the robustness of distributed

systems with Publish/Subscribe in particular:

• Chapter � details the RCourse library, which intends to meet challenge (B).

���� �� is related to research challenge (C), i.e. attaining a speci�c degree of collabora-

tion for distributed systems being deployed over sel�sh peers. This part consists of several

considerations as outlined in the following:

• Chapter � provides theoretic foundations used by the IG approach in the remainder.

• Chapter � discusses several aspects that need to be considered for the application of the

IG to distributed systems.

• Chapter � introduces the IG approach as possible solution for research challenge (C).

All game and implementation details are provided that are needed for a realization.

• Chapter � presents an enhanced dynamic IG approach, which is based on the one of the

foregoing chapter �. Hence, this chapter focuses on the di�erences to the initial one.

• Chapter � discusses the applicability of the IG to real world systems as well as the

meaning for user and administrator.
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���� � �nalizes the thesis with two chapters:

• Chapter �� concludes the thesis by discussion the meaning of the contributions in terms

of the research challenges.

• Chapter �� provides some possible future work related the main contribution, i.e. the

IG approach to attain a targeted collaboration level.
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Part II

S TATE -O F -THE -ART IN DEAL ING WI TH

SEL F I SHNES S -DR I VEN PEER S

The previous part served as thematic introduction. This part is determines now

the current state-of-the-art in terms of BAR tolerance capabilities of distributed

systems. At �rst, the related work is discussed. Then, a set of works are reviewed

to evaluate their reliability capabilities.

O�������

� R������W��� ������ ��� R������� C��������� . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ��

�.� Challenge A: Reliability & BAR Tolerance Evaluations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ��

�.� Challenge B: Robustness Evaluations of Distributed Systems . . . . . . . . . . . . . . . . . . . . . . . ��

�.� Challenge C: Tolerating Sel�sh Peers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ��

�.� Inspection Games for Reliable Distributed Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ��

�.� Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ��

� A S����� �� BAR T�������� �� D���������� S������ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ��

�.� Structure for Comprehensive Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ��
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�.�.� Taxonomy of Byzantine Failure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ��
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�.�.� A Qualitative Reliability Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ��

�.� Meaning for the Research Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ��

�.� Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ��
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2
RELATED WORK AROUND THE RE SEARCH CHALLENGES

This chapter introduces related work around the research challenges stated before and also

for Inspection Games due to its critical role for the thesis’ solution approach.

�.� ��������� � : ����������� � ��� ��������� �����������

We discuss now the related work for research challenge (A), the BAR tolerance evaluation of

distributed systems. This section covers also the tasks (A.�) and (A.�) since, as we will see,

a BAR tolerance evaluation is not available. Several reliability related works are presented

before as an outline to the vast progress in this �eld.

����������� Reliability has been a design issue from the beginning of the distributed

systems development. In fact, Freeman [��] discussed already in the year ���� – far before

modern and �exible networked architectures – design concepts to achieve reliable software.

Lamport formulated in ���� safety/liveness properties� [��] as abstract requirement for reli-

able systems and a variety of works addressed further foundations or reliable systems (see

for instance [��, �, ��, ��, ��, ��, ��, ��]). In the following decades, the research community

developed several practical approaches to reach reliability in distributed systems. General

fault-tolerance [��, ��, ��, ��, ��, ��, ��] was addressed (typically using redundancy and cryp-

tography) but also speci�c issues such as recovery from failures [��, ��], security [��, ��, ��],

trust and reputation [��, ��, ��, ��], accountability [��] and Quality of Service (QoS) [��, ��].

The contributions are manifold but can roughly be separated into general reliability concepts

(e.g. [��, ��, ��]) and speci�c approaches or implementations (e.g. [��, ��]). During the last

years, the scienti�c community draw increasing attention the problem of sel�sh peers – in

addition to (Byzantine) fault-tolerance – for system reliability and security. Nielson et al.

characterized in [�] the notion of rationality in the context of sel�shness driven attacks. The

BAR model was proposed by Aiyer et al. [�] as an abstract development concept to deal with

sel�shness already during systems design. It was applied to several systems (e.g. [��, ��]) and

a broad range of works considered sel�shness. A closer look will be given in section �.�.

��� ��������� ����������� Several surveys reviewed the numerous contributions

in the domain of reliability and BAR tolerance. In the beginning, they focused on general

methodologies and mechanisms [��, ��, ��]. More recent overviewing works aggregate the

foregoing research works and discuss rather general shortcomings, analysis models or re-

liability concepts. In other words, they concentrate on the review of reliability evaluation

� “A safety property is one which states that something will not happen. ... A liveness property is one which states that

something must happen.”

��
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models. This corresponds also to a recent survey [��] of Isa et al. The authors argue the need

for an intermediation approach to correlate reliability models with performance aspects. In

their work, they review existing metamodels and discuss di�erences in terms of concepts,

modelling and analysis. A further survey of Tyagi and Sharma [��] estimated the reliability

of component based systems in terms of their

• scope, e.g. component based systems, Service Oriented Architectures (SOA),

• models, e.g. path or state based models,

• technique, e.g. algebraic methods, mathematical formulas,

• validation scheme, e.g. fully validated, validation through experiments,

• and noticeable features.

This framework was used to review �� approaches but speci�c reliability details (e.g. evalua-

tion results) are not mentioned. In this context, a recent survey of Pai [��] reviews software

reliability models. He observed among others the common assumption for white-box models

that component reliability is available while they are actually still under research. Another

work of Golash [��] reviews the reliability mechanisms that are specially tailored to ether-

net based systems. He discusses among others appropriate approaches for speci�c scenarios

as well as di�erent network structures such as point-to-point, Frame Relay or Multiprotocol

Label Switching (MPLS). Further surveys intend to clarify notion, terminology and interpreta-

tion [��, ��], consider shortcomings of design concepts for reliability prediction [��] or focus

on speci�c issues or environments. The latter one comprises for example data transport re-

liability in wireless sensor networks [��], patterns for security and reliability standards[��]

or low-level memory error correction techniques [��]. Several books review reliability in

(distributed) software systems (see for instance [��, ��]). They basically present, discuss and

compare general (network) reliability concepts and implementation techniques (redundancy,

coding, failure recovery etc.). One further work is worth to be mentioned: Esposito et al.

introduced in [��] an approach for a reliable and time-sensitive pub/sub middleware. They

reviewed as preparation the reliability of �� pub/sub systems and introduced a taxonomy of

Byzantine faults. However, their review is not fully satisfying for the study of this thesis. Im-

portant failures such as packet loss or link/node crashes were considered but no sel�sh peers

or other possibilities with negative impact. Modi�ed event content, injection of unauthorized

messages and varying publishing rates (e.g. in streaming applications) are examples for miss-

ing scenarios. In addition, the taxonomy mixes peer failures (e.g. link anomalies, node crash)

with more enhanced failure scenarios such as node churn� or network partitioning.

To summarize, the given surveys concentrate basically on reliability evaluation concepts

and models. There is currently no work available that reviews the actual reliability capabil-

ities in a comprehensive way considering elementary failure types. Similarly, the additional

possibility of sel�sh-driven peers and correspondingly needed mechanisms – BAR tolerance

� Node churn denotes the naturally dynamics of the system, i.e. entering/leaving peers. However, if some degree

is exceeded, it may harmfully a�ect the system functioning.
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Table �.�: The heterogeneity of overviewing works hinders the architectural comparability of Publish/-

Subscribe systems.

Liu and Plale [��] Baldoni et al. [��] Carzaniga et al. [��]

System Architecture

- Client/Server Model

- P�P Model

Overlay Infrastructure

- Broker Overlay

- P�P Structured Overlay

- P�P Unstructured Overlay

- Overlay for Mobile Networks

- Overlay for Sensor Networks

Architecture

- Hierarchical Client/Server

- Acyclic P�P

- General P�P

- Hybrid

Event Distribution Scheme

- Multicast

Event Routing

- Flooding

- Selective

- Gossiping

Routing Strategies

- Subscription Forwarding

- Advertisement Forwarding

– is not covered. This shows the lack of a comprehensive BAR tolerance evaluation and un-

derline the need for research challenges (A) and (A.�).

Despite the extensive research in the domain of reliability and dependability, there are still

ambiguities in terms of notions and interpretations. The authors of the two aforementioned

works [��, ��] identi�ed this lack and targeted to counteract this situation. They compare sev-

eral attributes as well as de�nitions, clarify possibly overlapping interpretations determine

characteristics for common concepts (e.g. fault-tolerance, security). However, they concen-

trate only on reliability, security and similar aspects. A heterogeneous interpretation is also

given for the architectural speci�cation of distributed systems. An example is shown in table

�.� for three works, which are reviewing pub/sub systems. Only two comparable architectural

dimensions are shown here: the overlay organization and the routing (or dissemination) tech-

nique. Nevertheless, strong distinctions are in focus and terminology are noticeable. This

heterogeneity hinders architectural comparisons. Overviewing books such as Distributed

Systems: Concepts and Design [��] or the Peer to Peer Handbook [��] present primarily the

general architectural concepts. Other aspects (e.g. data model, techniques to adapt system

dynamics). This emphasizes the need for challenge (A.�), an architectural classi�cation, as

preparation for a BAR tolerance evaluation.

�.� ��������� � : ���������� ����������� �� ����������� �������

To quantify a system’s robustness with regard to failures or the impact of sel�sh behaviour,

theoretical analyses such as [��] are not completely satisfying. The modelling is challeng-

ing and possibly not appropriate for all evaluation metrics. A common alternative is bench-

marking through experimental evaluations. However, basically all works in the literature

considering robustness benchmarks focus on the benchmarking model and its speci�cation.

They address among others the speci�cation of an appropriate fault-load (e.g. [��, ��]) and

fault-injection (e.g. [��]). Evaluating works concern only speci�c aspects or circumstances.

Examples are robustness evaluations of web service interfaces [��] or the routing in non-

collaborative opportunistic networks [��]. An exception is the the recent work of Kim and
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Anderson [��] who present an extensive robustness evaluation of a set of distributed systems.

They examined �� network types (random and hypergrid graphs, etc.) with three peer removal

attacks (random, high-degree, high-centrality) and present more than ��� result graphs. This

vast evaluation frames well the systems’ robustness in terms of crashing peers or their com-

munication links. However, it does not cover other systems or failures. Nevertheless, the

complexity of this work emphasizes the sense of individually adapted evaluations. Industry-

standard benchmarks such as the SPECjms����� concentrate on performance related evalu-

ations (see also [��]). Thus, robustness evaluations are typically done by means of network

simulation environments (e.g. Omnet++�), which may provide some visualization capabilities.

However, there is currently no work that eases robustness evaluations as a whole. Such ap-

proach should comprise among other simulation scenarios for several failures, measurement

value aggregation as well as analysis. The lack of such an approach underlines the need for

research challenge (B) to ease robustness evaluations with regard to sel�sh peers.

�.� ��������� � : ���������� ������� �����

We consider now the important challenge (C), i.e. achieving a targeted degree of collaboration

from sel�sh peers in distributed systems. Due to the tremendous amount of works dealing

with sel�shness, this section highlights only the major approaches. They can be roughly

distinguished in game theoretic and non game theoretic, each one with subdivisions, which

is illustrated in �gure �.�. This separation represents also the structure of this section, while

Inspection Games are discussed independently due to the similarity to the thesis vision &

methodology.

Game Theoretic Approaches

The majority of works considering sel�sh peers are done in the context of game theoretic

modeling. This frequent utilization of Game Theory (GT) can be explained by its de�nition:

“... the study of mathematical models of con�ict and cooperation between intelligent rational

decision-makers.” [���]. Hence, GT is well-suited for the analysis of sel�sh peers’ behaviour

in collaborative environments, possibly forming complex situations with circular dependen-

cies. Modern GT started in the context of economic analyses with von Neumann’s and Mor-

gensterns book [���]. Later on, the research community in this �eld achieved many classes of

games (a recent overview is given in [���, ���, ���, ���]). GT found application in economics

and other disciplines such as political sciences or biology. Shenker [���] discussed GT and

sel�shness in ���� as one of the �rst for distributed systems. However, the scienti�c com-

munity picked it e�ectively up in the early ����’s, at �rst dealing with general challenges

[���, ���, ���, ��, �, ��].

������������� ��� �������� ������ The GT research community developed a set

of works to face the problem of sel�shness. Typically, they consider speci�c reliability and

� http://www.spec.org/jms����/

� http://www.omnetpp.org
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Non Game Theory Game Theory

Speci!c Solutions and Analyses

General Protocol/System Reliability

Misbehaviour Detection

Trust and Reputation

Accounting

Figure �.�: Outline of the relation of approaches suitable to face sel�sh peers in distributed systems.

Note that this distribution outlines only the author’s impression of the reviewed works.

security issues with regard to decision making in real-world situations. Several works ad-

dress the exemplary scenario of the thesis, i.e. the correct packet forwarding in networks

consisting of sel�sh peers. For example, Mei and Stefa introduce with Give�Get [��] two for-

warding algorithms. Both protect cryptographically the packet transfer, which is separated

in three phases: message generation, relay and test. With game-theoretical considerations

they formally show that their protocols attain Nash equilibria and that no player has interest

in violating, i.e. dropping messages.

Another interesting work is FlightPath [��], which addresses to reduce jitter� as possibil-

ity for sel�shness-driven violations in the context of streaming applications. The authors

examine approximate equilibria (instead of targeting strict Nash equilibria) for designing in-

centives to limit sel�sh behaviour. To this end, the message transfer between two peers are

among others cryptographically secured (e.g. by encrypted promises). The FlightPath system

is analyzed and evaluated used the e-equilibrium�. The approximate equilibria approach pro-

vides some �exibility to handle dynamic situations such as node churn. The experimentations

show a functioning in case of ��% malicious and ��% sel�shly acting peers.

A further interesting work is the cartel maintenance framework Han et al. [���], which is

based on repeated games. Here, participants of a cartel agree to some contract for a minimum

degree of (average) collaboration and a punishment for non-collaboration. In the considered

use case, each participant has a time slot for Media Access Control (MAC) of a wireless net-

work. The collaboration degree is determined by observing the media access. If the collabo-

ration falls below the agreed threshold, all noticing participants choose a non-collaboration

strategy that reduces the players outcome of the game�. The cartel approach is an elegant

way to attain a (minimum degree of) collaboration in a distributed way. However, the whole

gamemechanism relies on a shared resource (here: media access) for estimating collaboration

� In the context of internet streaming, jitter denotes the varying delivery delays such that the receiving packets do

not arrive in time (too early or late). Hence, bu�ers are typically used as compensation.

� In such an equilibrium, rational sel�sh players deviate only if they expect to bene�t by more than a factor of e.

� Non-collaboration strategies are not further speci�ed in the paper. An example by accessing the media during

the violating peer’s time slot.
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and triggering punishments. Other violations (message drops, access spoo�ng etc.) require

further modi�cations.

The approaches introduced here address packet forwarding (see also [��, ���, ���, ���]).

Other works target further aspects such as routing [���, ���, ���], resource/bandwidth alloca-

tion [���, ���, ���, ���, ���, ���], multicast dissemination [���, ���], load-balancing [���], service

orchestration [���, ���, ���] or wireless sensor networks [���, ���]. They cover several char-

acterizations such as (non-)zero-sum, (non-)cooperative, Bayesian, di�erential, single-round

or repeated games. Recent overviews to IT-related models and applications can be found in

[���, ���, ���, ���, ���] and the references therein. Although numerous works are given in the

literature, they represent only solution approaches for speci�c issues. Hence, they are not

able to secure a whole collaborative protocol as addressed by challenge (C).

������������� ��� ������� �������� ��� ������ ����������� Some contri-

bution such as the one of Saleh and Debbabi [���] face the problem of sel�sh peers from a

more comprehensive point of view. Their contribution is based on some prior work (e.g. [���])

and follows the idea of using games in logic speci�cations. This idea was initially proposed

by Lorenz [���]. Saleh and Debbabi introduce a modeling framework of security protocols

with concepts of game semantics. It models the speci�c protocol functionalities (e.g. digitally

signing a message) as strategies over a game tree that represents the protocol. This approach

enables a system designer to express a broad range of security properties (secrecy, authenti-

cation, fairness, etc.) and to specify and verify the resulting (cryptographic) protocols.

Proposing a general game-theoretic framework, Moscibroda et al. [���] study the e�ciency

reduction of a system consisting of sel�sh peers in case of malicious behaviour. The collab-

oration incentive is given by the impact of malicious peers, which reduce the sel�sh peers’

utility. The introduce the term price of malice, which is “... the ratio between the social welfare

or performance achieved by a sel�sh system containing a number of malicious players and the

social welfare achieved by an entirely sel�sh society.” Hence, in contrast to the price of anarchy

the reference point is orthogonal. It is not a socially optimal welfare but the welfare of system

consisting of sel�sh peers. This framework is applied to an abstract network graph playing a

virus inoculation game (installing anti-virus software or not). The authors study the bounds

of the price of malice and a fear factor in terms of utility loss through malicious peers.

These two approaches are examples for a large number of GT approaches that address gen-

eral reliability issues. Similar works to secure collaborative network protocols are for example

[���, ���, ���, ���] and several approaches for general reliability analysis of distributed sys-

tems are available (see for instance [���, ���, ���, ���, ���]). These works represent important

contributions and can indeed be (partially) used as mechanism against sel�sh peers. How-

ever, they remain either protocols for speci�c issues or they represent too general analyses

for concrete applications. Thus, they are interpret as not fully su�cient with regard to the

thesis vision and research challenge (C) in particular.
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Non Game Theoretic Approaches

Non game theoretically approaches use typically basic techniques such as redundancy and

cryptography to increase the reliability/security of a system. For example, the work of Garg

and Grosu [���] introduces a way to secure multicast dissemination systems that are based

on the Shapley Value mechanism [���]. To this end, they implement signatures for message

authentication and auditing/veri�cation to detect cheating of the peers. As further example,

Fotiou et al. [���] discuss security requirements, attacks and possible cryptographic solutions

in rendezvous node based P�P systems. Such approaches are only capable to harden speci�c

aspects of a system. Therefore, we concentrate now on three predominant approaches of the

scienti�c literature that intends to facemalicious actions, possibly caused by sel�sh behaviour.

This is misbehaviour detection, trust and reputation systems and accounting methods.

������������ ��������� Detection systems only focus on the detection of misbe-

haviours but also to make them known to other participants in the system. In a recent work

of Serrat et al. [��] for example, so-called watchdogs at a peer can detect misbehaviours dur-

ing interactions with the others. The watchdog is assumed to be collaborative to some degree,

i.e. to disseminate information about sel�sh peers. In this context, the network is modelled

with continuous time Markov chains to study the dissemination performances in terms of

speed and message overhead. A work related to the vision of this thesis is the work of Cristea

et al. [��]. They propose an architectural model, which combines monitoring with analysis

and response mechanisms. The data are assumed to be continuously collected in real-time

by an external monitoring system. The basic idea of the authors is the data analysis to detect

failures by pattern matching and to predict failures, e.g. by using arti�cial intelligence (neural

networks, moving average distributions etc.). Other works concern misbehaviour detection

in terms of packet forwarding [���], backo� algorithms and media access [��, ���] in wireless

networks or the detection of colluding attackers [���, ���]. More information can be found in

the recent review of Raghuvanshi et al. [���]. The detection of misbehaviours is considered

to be combined with further mechanisms such as failure-recovery or collaboration incentives

(punishments, rewards etc.). In contrary to this concept, the thesis targets to prevent failues

by giving collaboration incentives. Hence, the cannot directly serve as solution approach for

research challenge (C) but could be an alternative or extension to monitoring techniques.

����� ��� ���������� ������� A further approach against malicious attacks or self-

ish behaviour are Trust Management Systems (TMS) [���, ���], typically realizing reputation

systems [���]. They aggregate and distribute feedback about the peers’ behaviour to calculate

reputation values. These quantify the peers’ trustworthiness and serve as decision support in

terms of collaboration. Thus, the collaboration is encouraged in a passive way. A peer can de-

cide to work only with trusted peers, e.g. by denying requests from untrusted ones. A typical

approach is the work of Shah and Pâris [���]. They enable trusted relations for the Bittorrent

protocol by means of a local and a global score. The local score is determined by surveying

the collaboration result (e.g. packet forwarding). The global score is maintained by tracker

peers, which only assist in communication by providing complete membership information.
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The global trust score is attached to each reply of a communication request and thus automati-

cally disseminated to the peers in the network. The recent CAST system of Li et al. [���] intro-

duces a context-aware approach forMANETs. By aggregating various contextual information

(e.g. communication channel status, battery status), they are able to distinguish between ma-

licious behaviour and faulty peers. With the CONFIDENT mechanism [���], Buchegger and

Le Boudec introduce an extension to Dynamic Source Routing (DSR) protocols for the speci�c

use case of correct packet forwarding. It consists of four major components�. They monitor

the correct forwarding and exchange positive (collaboration) as well as negative (violations)

feedback with other peers for a trust value calculation. Evaluations show a functioning of up

to ��%malicious peers in the system. However, falsi�ed misbehaviours (false positive) can be

exchanged to blame other peers. This is solved by the similar CORE mechanism [���], which

exchanges only positive feedback for the reputation calculation. Apart from that, it uses also

surveillance and reputations to evaluate a peer’s trustworthiness. Other approaches (see for

instance [���, ���, ���, ���]) use similar mechanisms as those that were outlined here. Several

surveys [���, ���, ���, ���, ���, ���] review trust and reputation systems.

Trust and reputation systems are indeed a promising approach with respect to challenge

(C). This especially due to the loose coupling of the application logic and a given (passive) col-

laboration incentive. Reaching a targeted collaboration is generally imaginable but requires

further research. Two major drawbacks are noticeable: The reputation is determined over

time, possibly leading to a low reactivity, and the reputation is very simplistic (typically a

collaboration or trust value). Hence, such approaches not able to take the complex decision

landscape (possibly strategies over time) of sel�sh peers into account.

���������� ���������� Accountingmethods model the interactions of peers within

economic model, typically using some kind of virtual currency (other notions are credits,

debts or tokens). An example is the PastryGrid system of Abbes et al. [���] in the context of

grid systems. Each machine has a budget. The resource usage of other machines (in terms of

computation or communication services) has a cost value and reduces the budget. Similarly,

the budget can be increased by cooperating (selling own resources). Sel�sh behaviour, i.e.

predominantly using the others’ resources, is prevented by a limited budget. Being zero or

a negative value, a peer must collaborate before using the others’ resources. Further exam-

ples with economic models are [���, ���, ���, ���]. Accounting methods are an elegant way

to reach collaboration and indeed practically used by applications such as Bittorrent clients.

They are usually developed as built-in mechanisms, which hinders the adaptability and in-

tegration with other mechanisms. Furthermore, accounting mechanisms are not approaches

for reliability from a comprehensive point of view. The focus typically on speci�c aspects

relevant for a fair system functioning such as a up-/download ratio. They suitable for other

threats possibly caused by sel�sh peers, e.g. attacks or malicious behaviour (e.g. content

pollution, message drops). Thus, they are considered as not fully su�cient for challenge (C).

� The four components are a Monitor, a Reputation System, a Trust Manager, and a Path Manager. For further

details, the interested reader is referred to the paper.
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�.� ���������� ����� ��� �������� ����������� �������

The IG was initially introduced Dresher in ���� [���] in its simplest form: a two-player, non-

zero-sum game. Further details to this class of games can be found in [���, ���]. Adaptations of

the IG come under names such as Pursuit-Evasion [���] or Customs and Smuggler games [���].

The di�erent variants can be seen as belonging to the wider class of Search Games (see [���]).

In this context, Cheung et al. proposed in a recent survey of autonomous search models [���]

a taxonomy structured around the three main components: the model of the searcher agent

(the inspector), of the target agent (the inspectee) and of the environment. Similar to general

GT, the majority of works are dedicated to IG model. For example, the inspectee can observe

inspections and choose a strategy according to his self-interest [���]. In [���], the authors

generalize Gale’s Theorem, in which each of two players has N resources that can only be

used once during N stages. Other works considering IGs are [���, ���, ���, ���, ���, ���, ���].

IGs were used for instance in industrial auditing for quality control and maintenance, tax

inspection or crime control [���, ���]. Only few works are related to IT-related problems. For

example, Chung et al. published recently [���] a survey of Search and Pursuit-Evasion Games

in mobile robotics. They present among others fundamental results, discuss �eld implemen-

tations and highlight open problems. Another work of Antoniades et al. [���] targets on

agent control, also formulated as Search and Pursuit-Evasion Game. In the context of digital

surveillance by drones, the authors present heuristic strategies to detect and capture evaders.

Over the last years, research e�ort was spent to the IG models. Unfortunately, there is

currently no work available with applications to communication infrastructures, ensuring

the reliable functioning of communication protocols or research challenge (C) in particular.

An adaptation of the basic IG model of Dresher is however reachable with some further e�ort.

This consists basically in an extension by false negatives (non detection of misbehaviours) due

to limited resources.

�.� �������

This chapter introduced relatedworkwith regard to the thesis’ research challenges. The given

works related to challenge (A), a BAR tolerance evaluation, draw a clear picture. Although

a multitude of works addresses reliability, evaluations or corresponding surveys, there is no

work providing a comprehensive evaluation of BAR tolerance capabilities. Given works con-

centrate only on evaluation models/concepts, focus only on speci�c aspects (e.g. link/node

crash) and lack in the consideration of sel�shness. In addition, there are still some ambiguities

in the interpretation of terminology and architecture.

The situation is similar for challenge (B), evaluating robustness capabilities of distributed

systems. The given works discuss benchmarking models (e.g. fault injection) or evaluate the

robustness only for speci�c circumstances. Only one recent contribution evaluates by a vast

simulative study the capabilities of �� network types – however, only in terms of link/node

crash (with three types though). This shows the need for an approach that eases simulative

robustness studies as a whole, which represents challenge (B).
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Numerous works dealed with sel�shness in distributed system, which is related to research

challenge (C). The related work was discussed by separating game theoretic and other ap-

praoches. The majority of works to contribute by of GT models for speci�c application sce-

narios. Only few GT works have a broader point of view as needed for challenge (C) to secure

a whole collaborative protocol. The broad utilization of GT is comprehensible since this disci-

pline deals by de�nition with models of cooperation between intelligent rational players. The

discussed non GT works represent three predominant types of approaches: misbehaviour de-

tection, trust and reputation as well as accounting systems. The amount of works dealing

with sel�shness is tremendous. However, there are several drawbacks with regard to the

thesis’ vision. The game models are not directly applicable, they are too speci�c or provide

too general analyses. Hence, the given works are not suitable for the thesis’ monitoring ap-

proach and not satisfying for challenge (C). In contrary to other game models, Inspection

Games found only little application in distributed systems and a directly suitable work is not

available. Nevertheless, the general game model �ts well to the thesis’ methodology and will

be used, after some needed adaptation, as solution approach for challenge (C).
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3
A SURVEY OF BAR TOLERANCE IN D I STR I BU TED SY STEMS

In this chapter, we review the BAR tolerance capabilities of a set of systems as representatives

for distributed systems. As discussed in the last chapter, a comprehensive comparison is

hindered due to several reasons. Hence, some preparations for the evaluation are introduced

beforehand, which represent at the same time the evaluation structure.

�.� ��������� ��� ������������� ����������

The preparations for a BAR tolerance evaluation consist of an architectural classi�cation and

a taxonomy of elementary failures of a peer. They will be detailed in the following.

�.�.� Architectural Classi�cation Scheme

The classi�cation scheme consists of nine architectural architectural dimensions, which are

described in the following. They are clearly arranged in table �.� providing example categories

for each dimension. For illustration reasons, these nine dimensions are exemplary applied

to a sample of four systems in table �.�. To design these architectural dimensions of the

classi�cation, previous surveys as well as other overviewing works around pub/sub such as

[��, ���, ���] were aggregated. The following criteria were used:

�. The dimensions should not overlap.

�. The dimensions should be su�cient to fully classify a set of �� works of the literature

that considered as important.

�. The dimensions should completely cover all options for the �� selected works, that are

critical for the functioning of a system .

������������ ����� The subscriptionmodel enables the speci�cation of interest. Com-

monmodels are topic-, content- [��] and type-based [���], which mainly di�er in their expres-

siveness. Topics represent only whole multicast groups by means of a unique identi�er, while

content-based models classify event messages not by an attribute but rather by the content

itself. This enables a more �ne grained speci�cation of interest up to single messages at the

price of higher resource usage. Type-based subscription models are rather related to (object-

oriented) application developers and can easily be deployed on top of a content-based model.

An event represents an object related to a speci�c type. Hence, it can implement attributes

andmethods, which brings improvements such as type-safety. Other examples are XML- [���]

or context-based [���] subscription models. More details can be found in [��].

��
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Table �.�: Overview of the Publish/Subscribe architectural classi�cation scheme.

A������������ D�������� E������ C���������

Subscription Model
- topic-based - content-based

- type-based - context-based

Event Data Model

- serialized

- tagged

- untagged binary

Matching Algorithm

- Predicate indexing, e.g.

- lookup tables

- Hanson et al.’s algorithm [���]

- Testing network, e.g.

- matching trees

- binary decision diagrams

Overlay Organization

- hierarchical

- P�P

- structured P�P (S-P�P)

- unstructured P�P (U-P�P)

- P�P broker overlay (BO)

- clustered

Dissemination Technique

- subscription/event �ooding

- selective

- selective �ltering

- rendezvous node based

- basic/informed gossiping

Adaptation Technique
- active

- passive

Communication Technique

- RPC

- socket connection

- web services

Underlay Awareness
- proximity-awareness

- quality-awareness

Quality of Service

- reliability (guaranteed delivery)

- delivery semantics, e.g. best-e�ort or exactly once

- latency/bandwidth guarantees

����� ���� ����� The event data model speci�es the representation of event messages

in the system. In systems with a high rate of published events, the data model can cause

signi�cant delays due to the amount of messages to be processed. The event data model can

be classi�ed into three general types. Tagged formats such as XML structure information

hierarchically into �elds that are accessed by an identi�er (tag). On the contrary, untagged

binary formats (e.g. IP or TCP header) provide a �xed structure, which makes processing

e�cient as lookup costs are constant. A comparison of tagged and untagged binary format

has been done by The Gryphon Team [��]. Serialized formats such as the Java serialization

format can represent complex information such as objects in object-oriented programming

languages. However, they are computationally intensive compared to simple event messages.
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�������� ��������� Matching algorithms are used to identify the subscribers that

are interested in a given event (subscription matching). They gain in importance in large-scale

systems as the amount of subscriptions and/or processed events increase(s). Then, similar to

event data processing, the subscription matching may require a signi�cant amount of time.

Subscription matching algorithms can be classi�ed into two main groups [���], predicate in-

dexing algorithms and testing network algorithms. Predicate indexing algorithms divide sub-

scriptions into their elemental constraints, which are then used to identify a matching event

message. Testing network algorithms use subscriptions to create e�cient data structure for

the matching process [���]. Examples are matching trees [���, ��] and binary decision dia-

grams. A formal comparison and analysis of matching algorithms is given in [���].

������� ������������ This speci�es the organization of the logical overlay infras-

tructure. It includes among others the choice of communication partners and the group man-

agement policy. Thus, it has a strong correlation with the dissemination technique. Three

common types are hierarchical systems, which follow the client/server principle, P�P sys-

tems with a �at hierarchy and clustering approaches. The hierarchical organization (e.g. in

form of a tree) enables logarithmic hop counts on the logical overlay. P�P systems can be fur-

ther divided into structured and unstructured systems [��]. Structured Peer-to-Peer (S-P�P)

overlays use a deterministic approach to set up a static dissemination structure. In contrast,

Unstructured Peer-to-Peer (U-P�P) overlays use non-deterministic techniques such as random

walks create a dynamic dissemination structure. Clustered overlay organization de�nes inde-

pendent domains of administrative control. They are typically used to increase performance

or scalability. Another organization option are Broker Overlays (BO) [���, ��], which distin-

guish between peers that publish/subscribe (clients) and forward (servers). The latter type

of peers are also called brokers. Client peers have exactly one broker as their access point

to the overlay network (which is in turn realized by brokers). BOs can be interpret as a hy-

brid between a one-level-hierarchical and a P�P overlay. Therefore, they are classi�ed here

as subdivision of P�P overlays by aggregating the clients’ interests into the peer (�gure �.�).

������������� �������� The dissemination technique speci�es the routing of mes-

sages in the overlay network. It is a crucial factor of the scalability of the system. Flooding

algorithms forward a received message to all known peers and we distinguish between event

�ooding and subscription �ooding. Selective algorithms make use of a deterministic routing

process. In selective/�ltering, the subscription matching is done in a decentral way: a peer

forwards events only to those outgoing links that have (matching) subscribers behind it. In

...

S S

P

S S P

...

Figure �.�: Transformation of broker overlays to P�P overlays by aggregating interests of clients.
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selective/rendezvous, a speci�c peer (the rendezvous node or r-node) is responsible for sub-

scription matching of an event. It is typically chosen by applying a mathematical function

such as a hash functions on parameters of the event (e.g. topic identi�er). All events of an

event group are sent to the rendezvous node, which is aware of subscribers and forwards the

event to them. Thus, a dissemination tree is realized, also known as DHT-based approach

[��]. Basic gossiping follows the principle of epidemic algorithms [���], in which events are

forwarded to a set of randomly chosen overlay links. In informed gossiping, this set is partially

de�ned in a deterministic way, e.g. to form a logical ring for a guaranteed delivery.

���������� �������� Two methods are possible to enable a system’s adaption to

topological changes. Here, we focus only on failure situation, omitting the case where a peers

logs o� correctly. The active way checks the state of another peer by sending periodically a

heartbeat message. If the recipient fails to respond within a speci�ed time window, it is

considered as having left the system – the system must thus be adapted to this new state.

With the passive method, a peer identi�es the need for adaptation reactively when observing

a deviation from standard behaviour. Common triggers are timeouts or exceeded thresholds.

������������� �������� This dimension de�nes how the communication is tech-

nically performed. It does not a�ect the overlay structure but may have signi�cant in�u-

ence on its characteristics such as performance or interoperability. Three common types are

mentioned here. Socket connections are a platform-independent possibility for data exchange.

They enable e�cient communication by reducing the communication overhead, while the

message format is not speci�ed. A Remote Procedure Call (RPC) enables function calls in dis-

tributed environments, e.g. the event noti�cation call at a peer. Many RPC implementations

are available, which are not necessarily compatible to each other. Furthermore, web services

can, similar to RPC, request launching a function on a remote peer. They are standardized and

enable the integration of heterogeneous programming languages and systems.

�������� ��������� An underlay-aware system has knowledge about the underlying

physical network, which allows an overlay optimization. The underlay-awareness can be

classi�ed as proximity-based (e.g. hop distance, knowledge about subnets/clustering) and

quality-based (e.g. bandwidth usage, round-trip-time). These types are not mutually exclusive

and a system may combine several approaches.

������ �� ������� Quality of Service (QoS) mechanisms target to provide guarantees

for speci�c quality aspects, which is however hardened by the loosely coupled communica-

tion. Therefore, the operation is often done in a best-e�ort mode. Research e�orts aimed at

extending pub/sub systems to make QoS guarantees possible[��, ��]. Mahambra et al. have

proposed a QoS taxonomy for event-based middleware in [��], consisting of guarantees for

latency (L), bandwidth (B), reliability (R), delivery semantics (DS) and message ordering (MO).

Due to space constrains, the abbreviations indicated in brackets are used for classi�cations

in tabular form such as table �.�. Note that in this example only R is indicated since no other

QoS mechanisms are implemented.
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Table �.�: Exemplary classi�cation of three pub/sub systems and the dissemination system basic gos-

siping (A=active, P=passive, R=reliability, NM=not mentioned, (..)=implem.-dependent).
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Scribe [�] topic
NM
(tagged)

lookup
table

S-P�P
selective
(rendevous)

A NM — R

Gryphon [��] content
untagged
binary

predicate
matching

BO/S-P�P
selective
(�ltering)

P NM prox. R

SpiderCast [��] topics NM NM U-P�P
gossiping
(informed)

A NM — R

Basic
Gossiping *

— — — U-P�P
gossiping
(basic)

P NM — R

*Basic gossiping is a pure dissemination technique and may be used to realized Publish/Subscribe systems. Thus, only

general characteristics are given. Note that the classi�cation of all dimensions depends on the speci�c implementation.

�.�.� Classifying Scribe and Gossiping

The two systems that are used during the thesis – Scribe and (basic) gossiping – are part of

the exemplary classi�cation in table �.�. The pub/sub system Scribe realizes a deterministic

tree-based dissemination style on the network overlay, using the location-based routing ser-

vice Pastry [���]. Hence, it is classi�ed as a selective dissemination systemwith a rendezvous

node and as S-P�P in terms of overlay organization. Scribe uses topics and for subscription

matching, maintained by a subscription table. The topic id is represented by a hash value

(SHA-�) of the textual topic name and the creator’s name. TCP is used as message protocol,

however, the actual event data model is kept implementation speci�c. Here and in the remain-

der, we assume commonly tagged formats such as XML or JSON. Although relying on TCP,

Scribe implements (through Pastry) with periodic heartbeats an active adaption technique.

Together with retransmissions in case of message losses (through TCP), the system provides

QoS only to some degree in terms of reliability. Finally, speci�c communication techniques

are not mentioned and Scribe provides no underlay awareness.

Since basic gossiping is not a pub/sub but a pure dissemination system, the correspond-

ing dimension are blanked out with “–” in table �.�. Nevertheless, to make it comparable to

Scribe, we assume the same values (i.e. topic-based, tagged and a lookup table). Furthermore,

it realizes a clique network and di�ers thus to Scribe in terms of the system architecture. By re-

alizing a non-deterministic structure based on randomness it is classi�ed as U-P�P. Gossiping

provides a passive adaptation techniques based on timeouts.

�.�.� Taxonomy of Byzantine Failures

A taxonomy of Byzantine failures is introduced as further preparation for the review. The

taxonomy is listed below is distinguishes between operation and message anomalies. To sup-
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port evaluations from a comprehensive point of view, the taxonomy consists of elementary

failures, which may in turn lead to more enhanced failure scenarios.

• Operation Anomalies

– Link/Node unavailability: A communication link or peer is temporarily unavail-

able and can no longer interact with the system.

– Link/Node crash: A communication link or the whole peer crashes (with all links).

It does not interact anymore with the system and needs to be restarted.

• Message Anomalies

– Delay: The forwarding of a message is delayed, the message is delivered later than

expected.

– Information Leak: The message header and/or body are fully readable allow to

draw conclusions as preparation for an attack.

– Loss: A message is lost while being delivered to subscribers (e.g. while being

transmitted through a lossy link or at the peer between transmissions).

– Content Pollution: A message of arbitrary content (or type) is sent to a set of over-

lay neighbours, polluting the actual information in the system.

– Misusage: Protocol coherent messages are used in an arbitrary way (e.g. repeated

sending), possibly disturbing the system function.

– Tampering: The message (header and/or body) is modi�ed while being delivered

but remains protocol coherent.

Information leaks are not directly a danger for the reliability but important with respect to

privacy and security. The gained knowledge can be used to design a sel�sh strategy. There-

fore, it should be prevented in addition to the other failures. Message Misusage is manifold

and kept abstract here. An example is (in combination with Message Tampering) the sending

of a falsi�ed DNS response to get control over the address translation for a set of peers. These

failures can cause more complex failure situations; some examples are the following:

• Catastrophic Failures: A speci�c failure appears simultaneously at a large number of

peers. This may for example arrive for the failures Link/Node Crash, Message Loss or

Message Tampering.

• Node Churn Attacks: Node churn represents actually the typical dynamics of a dis-

tributed system, i.e. joining/leaving peers. This can be exploited for system attacks

by producing unnaturally high churn rates by continuously (mis-)using leave/join mes-

sages of a group of peers. Then, the system functioning is a�ected due to the extra

resources and time needed for disseminating changes in the network.

• Network Partitioning: The overlay network gets split into independent networks due to

crashes of a communication link or the whole peer. The events originating in a partition

can no longer be transmitted to the others.

• Message Ordering: Messages are not received in the same order as they were sent.
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After introducing the preparations, we will review some works to evaluate their BAR tol-

erance capabilities. To this end, the evaluation model is described in the beginning. The

evaluation is then presented and �nally its meaning for system development discussed.

�.�.� The Simple Comprehensive Reliability Evaluation Model

The Simple Comprehensive Reliability Evaluation (sCRE) model enables a qualitative reliabil-

ity evaluation considering the architectural classi�cation and failures based on the taxonomy.

This allows to draw conclusions between the system architecture and reliability aspects. Eval-

uations with the sCRE model are user-centric, i.e. the failures or architectural dimensions can

be freely chosen. Nevertheless, the architectural dimensions Dissemination Technique and

Overlay Organization should generally be considered due to their critical role in the function-

ing of the system. In addition, we also consider here the Subscriptions Type. The failures of the

taxonomy of failures are adopted with the following modi�cations. First, the failure Message

Delays is not considered since resulting failure scenarios (e.g. Message Ordering) are typically

not a�ecting the system’s general functioning. In the context of the video streaming scenario,

we assume some bu�ers to compensate this failure. Moreover, as link and node crashes have

a similar in�uence on the system (a node crash implies the crash of all of its links), they are

considered as one failure type. The dimensions used by the sCRE model are the following,

which are shown on the right-hand side in the evaluation table �.�.

• Failure A: Link/Node Crash

• Failure B: Message Loss

• Failure C: Message Tampering

• Failure D: Content Pollution

• Failure E: Message Misuse

• Failure F: Information Leak

• Failure G: Sel�sh Behaviour

The evaluation with the sCRE model is done in a qualitative way and comprises “ ” (yes)

and “ ” (no) as possible values. A “ ” indicates the presence of techniques against the

regarding type of failure but not does not necessarily guarantee that the impact is completely

avoided/tolerated. The symbol “ ” is used if mechanisms for the corresponding failure are

not implemented or not mentioned. This qualitative evaluation does not reveal the robustness

capabilities but enable a visualization of the systems’ reliability capabilities (i.e. considered

failures during system design) in a clearly arranged way. Hence, it contributes to determine

the current state-of-the-art by revealing reliability issues in terms of the thesis’ vision.
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�.�.� A Qualitative Reliability Evaluation

Several systems are evaluated that were proposed over the last ten years. The studied sample

is composed of �� pub/sub systems and � pure dissemination algorithms, selected based on

their popularity (estimated from their number of citations), date of publication (more recent

works were favored) and thematic representativeness. The results are presented in table �.�.

Clear conclusions can be drawn from the evaluation. Almost all systems implement at best

techniques against the common elementary failures link/node crash and message loss. Tech-

niques against sel�sh behaviour are in general not considered. The only exception is Flight-

Path, a dissemination algorithm for streaming applications, thanks to its implementation of

the BAR model. However, a closer look reveals a number of clear limitations. FlightPath sup-

ports only one streaming source per multicast group and uses a tracker that is responsible

for subscription matching (each of both, source and tracker, is assumed to be deployed on a

dedicated peer). The message transfers are appropriately secured, however, the behaviour of

the tracker peer is not. The reliability for the multicast groups can no longer be guaranteed

if the corresponding tracker itself is malicious or sel�sh.

The evaluation reveals a dramatic situation, which is interpret as in the following. Dis-

tributed systems provide some inherent reliability capabilities (depending on the architecture).

Further functionalities, e.g. to tolerate failure type C (Message Tampering) or F (Information

Leak) are considered as optional and implemented on demand. However, some techniques or

failure types such as E (Message Misuse) or G (Sel�sh Behaviour) require deep architectural

modi�cations. Thus, the consideration of reliability techniques as optional modules is not

feasible in general. Furthermore, especially in complex systems, the interaction of the several

implemented techniques can be hard to determine. This emphasizes the need for an approach

that is abstract enough to cover the complexity but precise enough to take into account the

speci�c techniques or sel�sh goals.

�.� ������� ��� ��� �������� ����������

The BAR tolerance evaluation developed before addresses the research challenge (A) of the

thesis with the architectural classi�cation related to (A.�) and the taxonomy of failures related

to (A.�). In the thesis’ research context, the evaluation (and the related work) showed that self-

ishness in distributed system is only slightly considered by some recent systems�. It showed

furthermore how reliability mechanisms are typically considered for distributed systems. Ba-

sic capabilities are a result of the system architecture. In contrary, the lack of reliability is

usually interpret (taking approaches of the related work discussion into account) as the con-

sideration of mechanisms as optional modules during system design. However, this is not

always feasible due to possibly deep architectural modi�cations. Several mechanisms in such

complex systems can even interfere each other (e.g. redundancy and QoS). This emphasizes

the need for more comprehensive reliability approaches as for example the one described in

the thesis’ vision.

� The system FlightPath [��] is based on preceding developments.
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Table �.�: The evaluation shows BAR tolerance capabilities of examined systems.
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Pub/Sub Systems

SIENA [��] Content
Selective
(Filtering)

Hierarchical
& S-P�P

Scribe [�] Topic
Selective
(Rendezvous)

S-P�P

Bayeux [���] Topic
Selective
(Rendezvous)

S-P�P 6

Hermes [���] Type
Selective
(Rendezvous)

BO/S-P�P

Narada
Brokering [���]

Topic 4 Selective
(Filtering)

S-P�P
(Clustered)

5

Gryphon [��] Content
Selective
(Filtering)

BO/S-P�P

IndiQoS [��] Type
Selective
(Rendezvous)

BO/S-P�P

Sub-�-Sub [��] Content
Gossiping
(Informed)

U-P�P
(Clustered)

REDS [���] Content
Selective
(Filtering)

BO/S-P�P

Anceaume
et al. [���]

Content
Sel. (Filtering)
& Gossiping14

Hierarchical
& U-P�P14

14

Baldoni
et al. [���] 1 Content

Selective
(Filtering)

S-P�P

TERA [��] Topic
Selective
(Filtering) 7

U-P�P
(Clustered)

7

SpiderCast [��] Topic
Gossiping
(Informed)

U-P�P

F-A P/S [���] Content
Selective
(Filtering)

S-P�P 10 10

CAPS [���] 2 Content
Selective
(Rendezvous)

S-P�P

Jafarpour
et al. [���]

Content
Selective
(Filtering)

BO/S-P�P
(Clustered)

Boonma and
Suzuki [���]

Topic
Selective
(Filtering)

S-P�P 9

Esposito
et al. [��] 3 Topic

Sel. (Rendezv.)
& IP Multicast8

S-P�P
(Clustered)

LIPSIN [���] Topic
Selective
(Filtering)

BO/S-P�P

Kazemzadeh and
Jacobsen [���]

Content
Selective
(Filtering)

S-P�P

Pure Dissemination Systems

Peercast [��] —
Selective
(Filtering)

Hierarchical

CREW [���] — Gossiping U-P�P

Voulgaris and
van Steen [���]

—
Gossiping
(Informed)

U-P�P

FlightPath [��] — Gossiping U-P�P 11 12 13

Schroeter et al.
et al. [���]

—
Flooding
& Gossiping (Inf.)

BO/S-P�P

1 Based on SIENA. 2 Based on Chord. 3 Based on Scribe. 4 Supports also JMS, JXTA and Xpath queries. 5 Monitors
quality information (e.g. bandwidth) and provides a security module, both can be used as base for anti-rational-techniques.
6 Four protocols are introduced; the used one provides quality-based underlay awareness. 7 It is distinguished
between outer and inner-cluster dissemination can be choosen by the administrator. 8 IP Multicast is used as inner-cluster
technique to increase dissemination e�ciency. 9 QoS capabilities enable to retransmit messages in case of failures.
between transfers is not revealed. 12 A tracker manages only one subscriber per multicast group. Signed messages avoid
non authorized message generation. 13 FlightPath uses proofs of misbehaviour (PoM) and punishments.
14 This work compares a leader-based against gossip-like epidemic algorithm (may provide redundant path).
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This chapter evaluated BAR tolerance capabilities of a sample of current distributed systems.

To this end, �� pub/sub systems and � pure dissemination systems were reviewed. To enable a

comprehensive evaluation, some preparations were introduced beforehand: an architectural

classi�cation scheme and a taxonomy of elementary failures of a peer. It turned out that al-

most no system tolerates more failures than link/node crash and message loss in the proposed

form. One exception is the system FlightPath [��]. It considers the BAR concept during sys-

tem design but has still important drawbacks. The scienti�c community started to address the

problem of sel�shness-drivenmisbehaviours. Typically, reliability techniques are proposed as

optional modules (e.g. encrypted communication), which is not always reasonable or possible.

An interesting less-invasive yet powerful alternative is the monitoring approach introduced

in this thesis.
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Part III

P RACT ICALLY EVALUAT ING ROBUSTNES S OF P UB / SUB
SY STEMS

Addressing research challenge (B), this part introduces the RCourse benchmark-

ing library. It serves as mean for practical evaluation of a system’s capabilities to

tolerate the impact of sel�shness-driven violations.

O�������

� RC�����: R��������� B����������� ���� ��� P������ S�������� . . . . . . . . . . . . . . . . . . ��

�.� A Short Excursus To Pub/Sub Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .��
�.�.� Scribe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ��
�.�.� Gossiping . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ��

�.� Underlying Research Principles For Practical Evaluations . . . . . . . . . . . . . . . . . . . . . . . . . . ��
�.� Overview to RCourse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ��

�.�.� Design Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ��
�.�.� RCourse Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ��

�.� Simulative Evaluations with RCourse and Peersim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ��
�.�.� Utilization and Experimentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ��
�.�.� A Note to Multi-Process Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ��
�.�.� Adaptation to Individual Measurements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .��

�.� Meaning for the Research Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ��

�.� Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ��
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4
RCOURSE : ROBUSTNES S ST UD I E S W I TH THE PEER S IM S IMULATOR

This chapter introduces the RCourse library for the Peersim simulation environment. It

targets to simplify simulative studies in terms of robustness of performance. Furthermore,

RCourse enables to enrich the evaluation of the last chapter with quantifying information.

Before detailing RCourse, two pub/sub algorithms are outlined. They are used for all exem-

plary simulations in this chapter and for the evaluations of the IG approach of part ���.

�.� � ����� �������� �� ���/��� �������

Two pub/sub systems are detailed in the following that will be used in the remainder of the

thesis and in the exemplary RCourse experimentation in particular. This is Scribe and a sys-

tem based on basic gossiping. They di�er signi�cantly in their dissemination style. In short,

Scribe realizes an e�cient dissemination but lacks in fault-tolerance mechanism. In contrary,

gossiping has higher system inherent fault-tolerance capabilities but is less e�cient due to

some redundancy. This is illustrated in �gure �.�.

fault-tolerance in terms of message loss

dissemination

efficiency

highlow

low

high
Scribe

(deterministic dissemination) 

Basic Gossiping

(non-deterministic dissemination)

Figure �.�: The two pub/sub algorithms are oppositional in terms of reliability and e�ciency.

�.�.� Scribe

The Scribe system [�] is one of the �rst pub/sub systems and realizes topic-based application

layer multicast. The routing on overlay level is done by the id-based routing service Pastry

[���], realizing a dissemination with O(logN) forwarding steps to the target peer. Scribe is

characterized by a deterministic structure, i.e. it uses deterministic algorithms to calculate

the next hop on the dissemination path. This deterministic structure leads to a tree-based dis-

semination approach, which is also denoted as rendezvous node – or r-node – based approach.

��
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1 Process calls publish operation to a specific group1 Process calls subscription operation to a specific group

2
Message is sent to next forwarder node (on the route to 

the rendezvous node) and to subscribed children nodes
2

Subsciption is sent to next forwarder node (on the route to  

the rendezvous node), which updates his subscription table

3 Message is forwarded to subscribed children nodes3 Rendezvous node updates his subscription table

Operation: Publish to GroupOperation: Subscription to Group

1 2

2

2

3

3

3

32

312

Figure �.�: The Scribe system has a tree-based dissemination style. Two operations are exemplary

illustrated for a multicast group: the subscription (left) and the publishing (right).

Here, publisher and subscriber send their messages to the r-node, making it to the root node

of a tree for one multicast group. Thus, the r-node is responsible for subscription matching

in last instance. A peer holds implicitly the role of a rendezvous node for a speci�c multicast

group if his overlay id is equal or the closest one to an identi�er, which is typically a hash

value of the topic descriptor of the multicast group. Figure �.� shows the dissemination prin-

ciple of the Scribe system exemplary for two operations, the subscription and publishing. If

a peer on the route to the r-node receives a subscription, he adds the subscribing peer to his

subscription list. Afterwards, he subscribes himself to the group. If a peer on the route to the

r-node receives a published event message, it its further transferred to the r-node but also to

interested peers in the subscription list (if any). The functioning of the Scribe system should

only be outlined here; the reader is referred to [�] for further speci�c details.

Scribe has been chosen due to its e�cient dissemination technique. In other words, it has

only limited fault-tolerance capabilities (only link/node crashes) and no further redundancy

techniques are implemented. Therefore, the impact of faults is directly shown without being

moderated by fault-tolerance techniques.

�.�.� Gossiping

Gossiping is an information dissemination protocol, which relies on the fundamental man-

ner of epidemic algorithms [���, ���]. It is characterized by a non-deterministic structure,

which makes use of some randomness during dissemination (dynamic dissemination struc-

ture). Hence, the message delivery can only probabilistically be guaranteed.

Current approaches (e.g. [��, ��, ���]) have only a partial view on the network containing

possible candidates for a message transfer. It is maintained by membership protocols, which

provide a peer sampling service [���, ���]). In an optimal case, all partial views should form

a connected random graph. Hence, membership protocols are a critical component for the

dissemination quality several approaches were developed in the in recent years. Examples

are Cyclon [���], Scamp [���], Vicinity [���], HyParView [���] and X-Bot [���]. Typical

partial view sizes are about ��-��, although the size has only limited impact system attributes
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d-links r-links

Figure �.�: Informed gossiping realizes a deterministic dissemination ring based on the overlay ids.

Further random transfers (r-links) improve the dissemination speed.

[���, ���]. The partial view typically holds additional information such as the subscriptions

of a peer, which are exchanged during the procedure of the membership protocol.

The dissemination di�ers mainly in the way how these peers are chosen from the partial

view for a message transfer. Two general types are basic and deterministic gossiping. In basic

gossiping, the peers are randomly selected for the message transfer. In contrary, informed

gossiping combines the probabilistic manner with a deterministic structure. Typically, the dis-

semination is done to randomly chosen peers (r-links) and to deterministically chosen peers

(d-links), illustrated in �gure �.�. The RingCast approach [���] uses for example the d-links

to create a dissemination ring (to guarantee a delivery), while r-links speed up the delivery.

Two parameters (see also [��]) are crucial for the performance of gossiping systems:

• Fanout: The fanout value de�nes the amount of peers, which are chosen from the partial

view as target for the dissemination of a message. Typical fanout values are about �-�

for informed gossiping and �-�� in basic gossiping. Then, a delivery is probabilistically

guaranteed [���]. A probabilistic calculation of the delivery is given in [���].

• Maximum Rounds: This value de�nes, similarly to the Time-To-Live (TTL) value in IP-

networks, how long a message shall circulate in the network. Therefore, it means a

trade-o� between resource usage and delivery probability.

The random dissemination of basic gossiping results in a homogeneous load distribution. Fur-

thermore, the redundancy in dissemination creates inherent fault-tolerance capabilities. Due

to these reasons, basic gossiping is used in the remainder of the thesis for all experimentations.

Cyclon [���] is used as membership protocol due to its frequent usage in research works.

�.� ���������� �������� ���������� ��� ��������� �����������

In contrast to the BAR tolerance evaluation, a system designer must – due to the given di-

versity – concentrate on a subset of sel�shness-driven violations that shall be considered. To

this end, he chooses the corresponding reliability mechanisms, which are parametrized with

regard to the designers’ objectives, i.e. the targeted collaboration level. This is challenging

since the mechanisms may interact each other and the given systems have di�erent inher-

ent reliability capabilities. Hence, in order to develop BAR tolerance mechanisms, a system
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designer must examine the system behaviour in presence of failure situations and reliability

mechanisms. A typical way to do this are simulative studies.

In this context and to reach the main research challenge, a design principle was mentioned

in the introduction (see section �.�, page ��). A mutual feedback should be considered between

the practical system behaviour evaluation and the theoretical model of reliability mechanisms.

In other words, a simulation determines the impact of failures or sel�shness-driven violations

on the system behaviour and enables to adjust the mechanism parameters correspondingly.

By easing simulative studies, RCourse represents the practical side of this design principle. To

be more speci�c, the practical side of this design principle must enable the system designer

to perform the following tasks:

• Evaluate the isolated impact of failures caused by speci�c sel�shness-driven violations

on the system behaviour considering or not reliability mechanisms.

• Evaluate the system behaviour under user speci�c circumstances (e.g. dynamics) con-

sidering or not reliability mechanisms.

The system designer uses simulations as a tool within the development process of BAR tol-

erance mechanisms. The following design principles are formulated to meet the designer’s

practical needs in terms of the main research challenge.

�. Simplicity of utilization

Performing simulations shall be simpli�ed asmuch as possible to provide time andwork

gains. Ideally, they should be able to be launched once the peer logic is implemented.

�. Isolated failure evaluation

The impact of speci�c failures (comprising also sel�sh behaviour) on the system be-

haviour shall be evaluated independently from others.

�. Adaptability to individual needs

Due to the diversity of sel�shness-driven violations, a system designer shall be able to

easily adapt the simulation to individual needs.

Several simulation environments are available to meet these principles, each one providing in-

dividual characteristics; examples are Omnet++�, PlanetLab�, ns-�� or NetSim�. The Peersim

simulator� [���] has been developed for the study of overlay networks in particular. Since pub-

/sub realizes overlay networks, it is a good option for the evaluations in this thesis. Peersim

omits the simulation of the actual network stack and is as open-source software available for

free usage. However, there is currently no extension for statistical result aggregation and anal-

ysis available for Peersim. Thus, performing network simulations requires additional work

to obtain practically usable results. Furthermore, no benchmarking application for Peersim

speci�cally targeting robustness is available. RCourse serves as an approach to �ll this gap.

� http://www.omnetpp.org/

� https://www.planet-lab.org/

� http://www.nsnam.org/

� http://tetcos.com/

� http://peersim.sourceforge.net/
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Enriching the simulation environment Peersim, RCourse contributes to meet research chal-

lenge (B) and the design principles stated before. Therefore, RCourse targets to simplify sim-

ulative studies with a special focus on robustness and performance aspects. Although it is

especially prepared for studies on pub/sub systems (for example, it comes with several pre-

implemented pub/sub algorithms), it is designed to be easily adaptable to evaluations of P�P

systems in general. RCourse is, as Peersim, freely available under the GPLv� open-source

license and downloadable at the Sourceforge project page�.

�.�.� Design Goals

The development of RCourse strictly considered the following four design goals, which are

directly based on the principles mentioned before.

�. Time/work savings

As many tasks as possible shall be automated in order to spare work/time to the user.

�. Architectural modularity

Each step of a simulative study shall be adaptable to speci�c user needs.

�. Stand-alone simulations in terms of robustness and performance

The RCourse library shall enable complete simulative studies in terms of robustness

and performance without requiring other software products or further calculations.

�. Free tool for research community

RCourse shall be designed as a free tool and available under an open-source license.

Figure �.� illustrates the simulation work�ow with the supported steps by RCourse (continu-

ous lines) as well as the possibilities for individual adaptations (dashed lines). RCourse enables

time/work savings (goal �.) already beginning with the �rst work�ow step – the development

of the dissemination algorithms that shall be simulated. By means of a set of Java classes,

RCourse provides among others functionalities for data aggregation and write-out. Thus, the

user can concentrate on the development of the algorithm itself, all other steps may be taken

over by RCourse components. Further support is given for example by means of pre-de�ned

simulation scenarios and scripts in the R programming language. They analyze the simula-

tion result data set and automatically generate result graphs as pdf �les. The design goal �.

was reached by modularizing the RCourse components among the work�ow steps. This loose

coupling results in a modular architecture and facilitates the adaptation of the di�erent steps

to user speci�c needs. In order to ful�ll goal �., the RCourse library is complete in the sense

that a simulative study can be directly launched once the algorithm development is completed.

Indeed, two pub/sub systems have been developed for use with RCourse, which are included

in the library. These are Scribe and gossiping that were described before. RCourse provides a

basic as well as informed gossiping implementation, based on the membership protocols Cy-

clon [���] and also HyParView [���]. RCourse is primarily targeting the computer networks

� http://rcourse.sourceforge.net/
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Figure �.�: RCourse supports the user in the work�ow of simulative studies by performing up to all

steps after the algorithm development. Each step can be individually adapted (dashed lines).

research community. Thus, in order to ful�ll design goal �., it makes only use of free software

– indeed, this is only Peersim and the programming languages Java as well as R – and is itself

published as open source under the GPLv� license. As mentioned before, the RCourse library

as well as additional �les (scenario/graph overview, example result �les etc.) are available for

download on the RCourse project homepage.

�.�.� RCourse Components

RCourse is realized as a loose coupling of basically three components:

• A set of Java classes support the user among others in value aggregation and write out

as SQLite result �les.

• Pre-de�ned simulation scenarios can be directly used to simulate and evaluate a system

after �nishing the development of the dissemination algorithm.

• Analysis scripts (written in the R programming language) aggregate the SQLite result

�les, analyze the data and generate result graphs as pdf �les.

A simulation that makes full use of these components is completely reduced to the develop-

ment of the dissemination algorithm. For a given algorithm, the development concerns ba-

sically the implementation of a measurement value aggregation and write-out. Simulations

can then be executed using the pre-de�ned scenarios and result graphs created by means of

R analysis scripts. These components will now be explained in more detail.

���� ������� The Java classes of RCoursemainly provide six essential components. They

are indicated in �gure �.� and outlined in the following.

• The class RCParamStorage holds simulation-wide con�guration parameters as well as

other global values and is accessible by the peers.

• RCTra�cGenerator and RCTurbulenceGenerator are helper classes for the simulation:

RCTra�cGenerator generates an appropriate workload and RCTurbulenceGenerator cre-

ates di�erent stressful situations such as crashing nodes and node churn.
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Figure �.�: RCourse Java library consists of six main classes.

• The class RCStatsCont represents the container for measurement values. It must be

maintained by each simulated peer in order to record measurement values.

• The RCObserver plays a key role in RCourse. It collects at speci�ed time points all

measurement containers and passes them to the RCResultWriter.

• The RCResultWriter class extends RCResultWriterBase (not shown in �gure �.�) and gen-

erates the SQLite result �le (as well as the csv �le output if de�ned in the con�guration).

To make a Peersim algorithm compatible with RCourse, a user needs to maintain the RC-

StatsCont and RCParamStorage objects. The interaction with the other classes such as RC-

Tra�cGenerator is realized through a Java interface (that also needs to be implemented) and

speci�ed in the con�guration �les. For more details, please refer to the reference implemen-

tations of RCourse, which are available on the project’s website.

����������� ���������� ��������� In order to enable quickly launched simula-

tions, the RCourse provides a set of simulation scenarios as Peersim con�guration �les. For

each considered failure type, they consist of one or more Experimentation Scenarios. Each

such scenario enables the automated generation of some result graphs. The term simulation

scenario is also used as synonym to Experimentation Scenario in the remainder of the the-

sis. An overview of these scenarios is shown in table �.�. Appendix A (see table A.�, page

���) details these scenarios by providing all possible result graphs of RCourse in list form.

The scenarios are based on the failure types of the BAR tolerance evaluation. However, the

two failures D (Content Pollution) and F (Information Leak) are ignored. The reason is that

they can easily be avoided by techniques such as access control or cryptography mechanisms.

The scenarios are simplistic to some degree to enable drawing conclusions from the speci�c

failure. For representative results, the use of real world workload and failure traces is rec-

ommended, e.g. those of the Failure Trace Archive�. This is currently not yet supported by

� http://fta.inria.fr/apache�-default/pmwiki/index.php
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Table �.�: The pre-de�ned scenarios of RCourse base on the taxonomy of failures introduced before.
Failure Type Experimentation Scenario

 ES1.1 Standard Operation

 ES1.2 Standard Operation (Network Size Variation)

 ES1.2 Standard Operation (Fanout Variation)

 ES2.1 Catastropic Node Crash

 ES2.2 Catastropic Node Crash (Crash Size Variation)

 ES3.1 Catastropic Message Loss

 ES3.2 Catastropic Message Loss (Malicious Nodes Variation)

 ES3.3 Message Loss

 ES3.4 Message Loss  (Message Loss Variation)

Failure C          

Message Tampering
 ES4 Message Tampering

Failure D             

Content Pollution
 ES5 ---

 ES6.1 Node Churn

 ES6.2 Node Churn (no publish)

 ES6.3 Node Churn (with publish)

 ES6.4 Node Churn (Churn Rate Variation, no publish)

 ES6.5 Node Churn (Churn Rate Variation, with publish)

Failure F     

Information Leak
 ES7 ---

 ES8.1 Selfish Message Loss

 ES8.2 Selfish Message Tampering

Failure G             

Selfish Behaviour

< failure-free >

Failure E              

Node Churn

Failure A         

Link/Node Crash

Failure B           

Message Loss

RCourse but an implementation is facilitated thanks to the architectural modularity: only the

RCTra�cGenerator as well as RCTurbulenceGenerator need to be adapted.

� �������� ������� RCourse provides scripts in the programming language R to pro-

cess the simulation result analysis. This concerns basically the read-in of SQLite data �les for

an automatic graph generation. All analysis scripts have been developed corresponding to

the pre-de�ned scenarios. One script initiates the analysis for each scenario�, while several

�les are responsible for the graph generation. The analysis is be structured into four general

phases, which are shown� in �gure �.�. In phase (I), the user initiates the analysis for a simu-

lation scenario by calling the corresponding analysis script, which invokes further script �les.

Phase (II) is dedicated to the accomplishment of two important tasks. First, the simulation

result �les are read-in. Second, further information such as variance or standard variation

are calculated for all numeric values. These information are then directly used for the graph

generation in phase (III). As an example, the script for the Experimentation Scenario ES�.�

considering a Loss Rate Variation (LRV) in terms of message loss is shown in the appendix in

listing A.� (page ���). After phase (III), all result graphs are available and can directly be used

for presentation purposes. As an impression, a sample result graphs are shown in the next

section in �gure �.� (page ��).

�.� ���������� ����������� ���� ������� ��� �������

After an outline, we focus now on the practical utilization to launch simulations.

� The scripts have the naming scheme diRgrams_*.r, with ’*’ being replaced for a speci�c scenario.

� Please note that this �gure is a simpli�ed visualization to convey the logical process.
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data readin

and pre-

processing

scenario 

graph

generation

scenario 

script call

default 

values

diRgrams_ES1.1.r

diRgrams_ES3.2.r

diRgrams_all.r

readin__global-final.r

readin__global-percycle.r

readin__perNode-final.r

ES1.1-D1.3_DisseminationCompletion_perc.r

ES3.1-D1.3_MessageLoss-DisseminationCompletion_perc.r

ES6.4-D2.2_NodeChurnCRVWP-NetworkStress.r

ES1.1_D1.3__DisseminationCompletion_perc.pdf

ES3.1_D1.3__MessageLoss-DisseminationCompletion_perc.pdf

ES6.4_D2.2__NodeChurnCRVWP-NetworkStress.pdf

(I) (II) (III)

scenario

configuration

uses

uses

Figure �.�: The result analysis with R scripts is organized in � phases: the analysis scripts are started

in phase (I), the result �les are processed in phase (II) and pdf result graphs are generated
in phase (III).

private void deliverToChildren(ScribeDataMessage sdm, ...

                              boolean deliverToMyself) { case ScribeDataMessage.LEAVE_REQUEST: // unsubscription

... if (printDbgInfo) 

// delivery to upper layer System.out.println("LEAVE_REQUEST");

if (rlistener != null){ msgStats.increaseMsgReceivedCounter_Unsubscribe();

   rlistener.receive(sdm);

} // update msg statistics  

msgStats.getMsgDeliveryHops().add( sdm.deliveryHops ); if( isOverlayMsg )

msgStats.getMsgOverlayHops_Unsubscribe().add(  

// set information for delivery percentage calculation sdm.pastryHops

if( ps.isComplexDlvPrctCalc() ) { );

 // complex delivery calculation sdm.pastryHops = 0;

// (more precise, for dynamic networks) ...

msgStats.getDeliveredList().add( 

new MLEntry(sdm)

);

} else {               public void publish(String groupid, Object content) {

   // simple delivery (# of receivers is known a priori) ...

   msgStats.increaseMsgCounter_Delivered();    msgStats.increaseMsgSentCounter_Notify();

} mypastry.send(Util.strToPastryID(groupid), sdm);

... ...

} }

Figure �.�: Three examples show the utilization of RCourse components in the source code. The related
code is indicated in blue/italic.

�.�.� Utilization and Experimentation

The setup and utilization of RCourse is now detailed among all steps of the simulation work-

�ow. This is done by means of the scenario ES�.� Message Loss with Loss Rate Variation,which

corresponds to the example scenario of the introduction.

����������� : ������� �� ��� ������� The RCourse library consists of three fold-

ers, each one providing the content for a RCourse component. The Java classes are stored in

folder src/, the scenario de�nitions in con�g/ and the R analysis scripts in folder analysis/. The

Java classes need only to be referenced in the Peersim project and the scenario de�nitions are

used by specifying them when launching a simulation. Similarly, the analysis scripts are used

by calling the appropriate one within the R user interface. Thus, a typical RCourse library

setup may consist of just copying the RCourse folder into the simulation project folder and

calling/referencing the �les when needed.
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��������� ����������� A crucial task is the source code extension to record mea-

surement values. To this end, each peer must maintain a RCStatsCont container object and

implement all method calls for value aggregation. Figure �.� shows the interaction with the

data container for three examples with the Scribe system, indicating the RCourse related code

in blue/italic. The shortest example (bottom-right in �gure) records the amount of published

messages and themedium one (up-right) the actionswhen an unsubscribemessage is received.

This is the counter of received messages and a counter for overlay hops. The biggest example

(left in �gure) shows the recording of themessage dissemination time in terms of overlay hops

as well as the delivery completion as a percentage. Please note that RCourse provides two

types of calculation for the latter value. The simple method uses the con�guration parame-

ters to calculate the number of packets that should be delivered. Here, the message publishing

must start after a subscription phase (plus some stabilization time) to provide correct values.

The complex method calculates delivery completion based on the current situation of sub-

scriptions and published messages in the system. Therefore, it is slower and computationally

more intensive but also more suitable for dynamic workload situations such as node churn.

The three examples only outline the interaction with RCourse in the Java source code. For

more information, the reader is referred to the source codes of the exemplary applications to

the Scribe and gossiping systems (see project website indicated in footnote before).

����������� ��� ���������� ����������� The utilization of RCourse and Peer-

sim is shown for the Eclipse Integrated Development Environment (IDE) in �gure �.�. In

general, three information must be speci�ed that are listed below. The con�guration �les

contain the actual con�guration and are shown in appendix A in listing A.� (rcourse_Base.txt)

on page ��� and listing A.� (ES�.�-MessageLossLRV.txt) on page ���.

• con�g/rcourse_Base.txt

This con�guration �le de�nes the general network setup and the structure of each

peer’s stack of protocols.

• con�g/Scribe/ES�.�-MessageLossLRV.txt

The second con�g �le represents the scenario and comprises all scenario-related pa-

rameters such as time steps for the observer execution or workload generation.

• rcourse.distrProcId = 1

The distrProcId parameter de�nes the id for the current simulation in case of parallel

processing. See section �.�.� for more information.

Important are the terms simulation run and experiment repetition. A simulation run means

the execution of one simulation with a speci�c set of parameters. An experiment repetition

represents the execution of a simulation scenario as a whole, which may consist of multiple

simulation runs. The amount of simulation runs is automatically calculated based on the con-

�guration �le (experiment repetitions times the amount of parameter sets caused by possibly

speci�ed value ranges). Each run is processed independently from the others. Furthermore,

a generated SQLite �le encapsulates all results of one experiment repetition.

To launch simulations, RCourse must be executed with peersim.rangesim.RangeSimulator

as main class instead of the default class peersim.Simulator. This is due to the fact that several
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Figure �.�: If using the Eclipse IDE for running simulations, Experimentation Scenarios may be de�ned
as presets as shown here for ES�.�.

scenarios use value ranges for speci�c parameters, which is not supported by the default

class. The RangeSimulator o�ers this feature for the con�guration �le. For example, the

entry range.malNodeP rcourse.malNodeProb;�:�|�.� means that the value of range.malNodeP

varies from � to � with steps of �.�. Then, the RangeSimulator performs �� simulation runs,

each one with a di�erent range.malNodeP value.

���� �������� ��� ����� ���������� To start the analysis of simulation results,

scenario scripts need to be called (stored in folder analysis/ ). Each of them is related to an

Experimentation Scenario and responsible for the generation of all related graphs. Scenario

scripts have the naming scheme diRgrams_*.r, with “*” being replaced by the corresponding

scenario abbreviation. For example, the script �le diRgrams_ES�.�.r is related to Experimen-

tation Scenario ES�.�. Scenario scripts make use of further scenario con�gurations, that are

also prepared as R scripts (stored in folder analysis/con�g/ ). Furthermore, some default values

being de�ned in analysis/util/default_values.r. These �les should be checked before starting

the analysis process. As example, the �le diRgrams_ES�.�.r is shown in listing A.� on page ���.

After a successful execution, several result graphs are generated as pdf �les. Figure �.� shows

three examples, which have been generated with the Scribe system [�]. These graphs serve

only as an impression; graphs for all scenarios (Scribe and basic gossiping) are available on

the RCourse project page. The upper graph in �gure �.� is related to the prior discussed exam-

ple scenario ES�.�, showing the graph D�.� Delivery Loss Rate with the amount of malicious

nodes in the systems on the x-axis and the delivery loss on the y-axis.

�.�.� A Note on Multi-Process Simulations

Modern processors have multiple cores and/or central processing units (CPU), a feature that

could be used for simulations by implementing parallel processing. However, Peersim only

allows the single-threaded execution of a simulation. RCourse enables parallel processing

through a parallel execution of independent simulation runs. This can even take place on

di�erent machines by means of parallelizing experiment repetitions. This workaround makes

sense since a simulation should be repeated several times to achieve representative results. Let

us assume for instance that we have �ve cores at our disposal and a simulation that should

be repeated ten times, i.e. ten overall experiment repetitions. For the sake of simplicity, it is

assumed that each experiment repetition consists of only one simulation run. Then, each core
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Figure �.�: Some example graphs are shown for the Scribe [�] system, which have been generated with
RCourse. This is the (sorted) node stress distribution (upper graph), the distribution of sub-
scription table entries (middle graph) and message loss due to sel�shness-driven message
drops (bottom graph).
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Figure �.��: Peersim supports only single-threaded simulations. However, RCourse enables a parallel
simulation to some degree and an automated result aggregation.

could execute sequentially two simulations. This is realized by setting the rcourse.distrProcId

and simulation.experiments parameters in the con�guration �le. The �rst parameter only

a�ects the name of the result �le (important for R analysis scripts). Thus, each experiment

repetition should have a unique value. The parameter simulation.experiments corresponds to a

parameter that de�nes the number of experiment repetitions for the corresponding execution

of Peersim. This results in parallel processing on all cores and in the generation of ten SQLite

result �les. They are then aggregated by the R scripts and used for result graph generation.

The functioning of this multi-process example is shown in �gure �.��.

�.�.� Adaptation to Individual Measurements

RCourse records already a wide range of measurement values, which are clearly arranged in

the �le RCResultWriter.java. In addition, it is speci�cally designed to be easily adaptable to

individual values. To this end, onemay extend the RCStatsCont data container. Then, only two

components of RCourse have to bemodi�ed to let it record a new value. First, the RCStatsCont

class must be extended by the new value to be recorded. This may also include appropriate

methods to add data to the container object. Please note that the RCStatsCont.mergeStats(...)

method may have to be modi�ed as well depending on the value type. It is called by the

RCObserver to merge the statistical values of all peers into one data container with global

values (e.g. summarized counter values). Hence, it must be adapted if the new value considers

network-wide values such as the average dissemination delay or even more complex data

structures (linked lists, vectors etc.). The second component to modify is the RCResultWriter

class, which is responsible for writing out all values. The required modi�cation consists in

adding the new value as an additional database column. Finally, the scripts for read-in, data

analysis and result graph generation must be adapted to make use of the new value(s).
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�.� ������� ��� ��� �������� ����������

RCourse meets research challenge (B) by simplifying each step in the simulation work�ow.

This eases simulative studies with a focus on fault-tolerance issues. Providing simulation

scenarios related to speci�c failure types, robustness evaluations can be quickly launched.

This is now illustrated by a short evaluation. As before, we consider again the simulation

scenario ES�.� Catastrophic Message Loss. It corresponds to the video streaming scenario with

sel�shness-driven message drops mentioned in the introduction. The results are shown in

�gure �.�� for Scribe (upper graph) and basic gossiping (lower graph). Message loss indicates

the violation probability, e.g. �.�means to collaborate only for �.� (��%). The lack of Scribe’s

fault-tolerance results in a fast decrease of the system functioning. In contrary, the redundant

dissemination of gossiping can tolerate the failures to some degree. This changes at a loss rate

of about ��%where the delivered messages decrease dramatically. This short study illustrates

the bene�t of RCourse to reveal the individual robustness capabilities. Furthermore, it shows

the need for individual targeted collaboration levels, as de�ned for challenge (C).

RCourse contributes also to challenge (A) thanks to the pre-de�ned scenarios that base

on the BAR tolerance evaluation of the last chapter. It enables to enrich the still qualitative

evaluation with quantitative information. This is exemplary shown in table �.� using the

Figure �.��: The graphs show evaluation results of sel�shness-driven message drops of Scribe (upper
graph) and basic gossiping (lower graph). Latter one used a fanout value of ��.
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Table �.�: RCourse enables to enrich BAR tolerance evaluations by quantitative values. This is shown

(with regard to the prior simulative study) for violation probabilities �.� and �.�.
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Basic

Gossiping
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evaluations of �gure �.��. A sel�sh peer dropping messages could hide behind the Byzantine

failures link/node crash and message loss and the table shows the system functioning in case

of ��% and ��% lost messages, i.e. violation probability �.� and �.� respectively.

�.� �������

This chapter introduced the RCourse library that meets research challenge (B). After a short

outline, its components were described as well as the utilization to perform simulative studies.

Two pub/sub algorithms were detailed in the beginning of this chapter – Scribe and basic gos-

siping. They were used for all exemplary result graphs and will also be used in the remainder

of the thesis. The RCourse library targets to support the user in performing simulative studies

of distributed systems’ robustness and performance. By focusing only on the logic implemen-

tation – the rest is take over by RCourse – the user is able to quickly achieve simulation

results.
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Part IV

ACH I EV ING COLLABORAT ION WI TH INSPECT ION GAMES

This part is dedicated to the solution approach for research challenge (C), i.e.

enabling a system deployment over sel�sh peers. To this end, a basic two-player

Inspection Game (IG) is at �rst adapted to the needs of distributed systems. Then,

some practical issues for an application to distributed systems are discussed in

chapter �. A solution approach for challenge (C) is introduced in chapter �, which

is enhanced in chapter � by the capability to adapt to system dynamics. Finally,

we discuss the real world applicability of the IG approach.
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5
ADAPT ING IN SPECT ION GAMES TO THE NEEDS OF D I STR I BU TED

SY STEMS

The utilization of Inspection Games (IG) as solution approach for distributed systems was

argued in the introduction (see section �.� in particular). However, the related work discussion

demonstrated that there is currently no appropriate IGmodel available. Therefore, this issue is

addressed now by adapting the basic IG to our needs. To this end, the considerations comprise

the extension by false negatives (non-detected violations) as well as generalizations up to

games with m inspectors and n inspectees. All derivations are based on the basic two-player

IG, which is introduced in the beginning.

�.� � ����� ���������� ���������� ����

The IG is now detailed in its initial form as introduced by Dresher [���]: a two-player zero-

sum game. It is denoted as G(1, 1) in the remainder. An Inspection Game (IG) consists of two

players: the inspectee and the inspector. A strategy for a player is a complete plan of actions

throughout the game. The goal of every player consists in adopting a strategy that maximizes

his own payo�, which represents the outcome of the game. Each player takes into account

that it depends also upon the other players’ chosen strategy. The Nash equilibrium (NE) is a

solution that describes a steady state condition of the game. It corresponds to a combination

of strategies, a strategy pro�le, such that no individual player would be better o� by changing

his own strategy unilaterally.

Game Setup

The inspector’s set of strategies is { Inspect , Do not inspect }, i.e. he can choose between

inspecting or not. Analogue, the inspectee represents the sel�sh peer and can choose between

violating or not with the strategy set {Violate , Do not violate }. The players have to choose

their strategy simultaneously (or equivalently such that they do not have any hint about the

other’s move before their own move). With real world distributed systems in mind, we do

not use zero-sum payo�s but use more realistic ones. To this end, we assume for the sake of

simplicity the following:

�. The case without violation and without inspection does not bring any damage nor ben-

e�t to any player.

�. Violation will bring the inspectee a positive bene�t b if not detected but, if detected, it

will bring him also a loss −a with |a| > |b|.

�. The inspection has a �xed cost−c for the inspector, but not detecting a violation would

cost him a damage −d with |d| > |c|.

��
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Figure �.�: The extensive form for an IG with one inspector and one inspectee.

Table �.� indicates the four possible states of a�airs and the corresponding payo�s for the

players. In each cell, the pair (x, y)means that the �rst player (the inspectee) obtains a payo�

x, while the second player (the inspector) obtains a payo� y. The table represents the IG in

the so called normal form: the rows correspond to the possible moves of the inspectee (the

inspectee’s pure strategies), the columns correspond to the possible moves of the inspector

(the inspector’s pure strategies). The structure of the game can also be represented in extensive

form as shown in �gure �.�.

Since b > 0 and 0 > (b − a), the inspectee will prefer to violate when the other does

not inspect and not to violate when the other inspects. Conversely, since −c > −d, the

inspector will prefer to inspect when the other violates and not to inspect when the other

does not violate.

Game Solution: Nash Equilibrium at Indi�erence Strategies

Due to the circular structure of the players’ preferences, they cannot determine in advance

their own best pure strategy. They have to resort to a suitable randomization between the

two choices so as to maximize the expected payo�, taking into account that the other will

act accordingly. In other terms, each one will have to adopt a mixed strategy (de�ned by a

probability distribution over the pure strategies). This mixed strategy will have to force the

other party into adopting a strategy from which he has no incentives to deviate. This joint

mixed strategy will represent the NE of the game. Each party’s strategy at equilibrium is also

called indi�erence strategy. This is due to the fact that the other party’s expected payo� will

not change whatever mix of his own pure strategy is adopted. For example, let us consider

the situation where an inspector chooses a mixed strategy that induces indi�erence in the

inspectee. Then, all strategies of the inspectee will result in an equal payo� for the inspector.

Table �.�: The payo� matrix for the basic Inspection Game shows the four possible results.

I��������

Inspect Do not inspect

I��������
Violate ( b − a , −c ) ( b , −d )

Do not violate ( 0 , −c ) ( 0 , 0 )
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Suppose now that the inspectee adopts the violation choice with probability p, and that

the inspector adopts the inspection choice with probability q. Then, the solution of the game

can be found by computing the pair (p, q) with is characterized by the following. Neither the

inspectee can change his expected payo� by deviating from p, nor the inspector can change

his expected payo� by deviating from q. If the inspectee wants to induce the indi�erence in

the inspector, he will have to set his own parameter p so as to equalize two aspects. This is the

expected inspector’s payo� for an inspection and the inspector’s payo� for lack of inspection.

Similarly, if the inspector wants to induce the indi�erence in the inspectee, he will have to

set his own parameter q so as to equalize the expected inspectee’s payo� for a violation and

the inspectee’s payo� for lack of violation. Altogether we have

(−c) = p(−d)

q(b − a) + (1 − q)b = 0

from which we get the simple solution ( p⇤, q⇤) given by

p⇤ =
c

d

q⇤ =
b

a

Notice that q⇤ is determined by the quantities de�ning the payo�s of the inspectee. In the

expression, the bene�t b for an undetected violation competes with the loss a for the detected

one. Similarly, p⇤ is determined by the quantities de�ning the payo�s of the inspector and the

cost for an inspection plays the opposite role to the avoided damage d. It is worth to remark

that the expression for q⇤ is a legal expression for a probability only if a ≥ b. Analogue, the

expression for p⇤ is a probability only if d ≥ c, which is granted by the de�nition of the game.

�.� �������������� �� ��� ����� ���������� ���������� ����

Distributed systems consist of multiple participants and works in the GT literature present

indeed game models with multiple inspectees. For example, Avenhaus and Kilgour [���] dis-

cussed a three-person non-zero sum IG with one inspector and two inspectees. However, the

environmental setting is more complicated than the one of the thesis’ monitoring approach.

They study how the game’s equilibrium depends on the convexity/concavity of a function

representing the inspection e�ort. Another work worth to mention with regard to a general-

ization is the contribution of Hohzaki [���]. It is formulated in the context of the International

Atomic Energy Agency (IAEA) and directly based on the aforementioned paper of Avenhaus

and Kilgour. Hohzaki introduces an IG with n inspectees and the complex situation that an

inspector is characterized by several attributes (e.g. nationality). Then, the game model aims

to calculate an optimal assignment (partitioning) of the inspection e�ort to the inspectees, i.e.

certain facilities in an inspectee’s country. However, the e�ort cannot be partitioned in our

simpler case. Due to these di�erences, the given models do not ful�ll our needs of a mere

generalization of the basic IG. These IG models G(�,n), G(m,�) and G(m,n)) are presented now

with a straightforward re-derivation of the solutions.
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�.�.� Game G(�, n) – One Inspector, n Inspectees

Game Setup

Let us consider now a (n + 1)-player simultaneous single-round IG, which consists of one

inspector and n inspectees. It has the same three payo� assumptions as the basic one (see

list in game setup section). As in the basic IG, q indicates the probability that the inspector

decides to perform the inspection. Then, the inspection is done on a single randomly chosen

inspectee and each inspectee has a probability 1
n to be inspected. The inspectees, from now

on inspectee 1,· · · , inspectee n, have respectively probability p1, · · · , pn of violating the rule.

The solution of this game is represented by the values of q⇤, p⇤1 , · · · p⇤n of the above (n + 1)

parameters at the NE. For the sake of comprehensibility, we assume a symmetry between the

inspectees, i.e. the same solution parameters p⇤ = p⇤1 = · · · = p⇤n. The tree diagram in

�gure �.� shows the di�erent game result possibilities for n = 2.

Game Solution

An important point for the solution is that there is no coupling between inspectees. An in-

spectee’s payo� does not depend on the other inspectee’s choices. Furthermore, this game

does not have, in general, Nash equilibria in pure strategies. Therefore, the players have to

�nd the equilibrium in mixed strategies. The inspectees have to choose the strategy which

induces indi�erence in the inspector. The inspector has to choose the strategy which induces

indi�erence in the inspectees. The results can be derived through simple considerations.

���������’� ������������ The inspectees have to equalize the expected inspector’s

payo� for an inspection to the inspector’s payo� for lack of inspection. This means that p⇤

will have to satisfy the simple equation equalizing

• the impact (value times probability) on the inspector for undetected violations due to

lack of inspection

• with the balance between the impact of an unfruitful inspection and the one of a fully

or partially successful inspection.

The impact for no-inspection is given by the expected number of the violations of n inspectees

times the damage d created by each one: i.e. by np ⇥ d. The impact for inspection is given

by the constant cost c plus the impact of the undetected violations. In this case, the inspector

is securing with certainty only one inspectee. Hence, the impact of the undetected violations

is given by the expected number of violations p of the remaining inspectees. The inspection

impact is therefore c + (n − 1)pd. The resulting indi�erence equation is

npd = c + d(n − 1)p

and thus

p⇤ =
c

d
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Figure �.�: Inspection Game G(1, 2) in extensive form.

Notice that the optimal p is the same as the one for a single inspectee: the presence of further

inspectees does not change the best strategy of one inspectee. This is is a natural consequence

of the lack of coupling between inspectees.

���������’� ������������ Analogue to the inspectee, the inspector needs to make

each inspectee indi�erent. To this end, he equalizes the expected payo� for the inspectees’

violation and the expected payo� for non-violation. Looking at the structure of the game one

can observe that they consider the inspection to another inspectee as equivalent to no inspec-

tion at all. Hence, the inspector has to behave as if each of them were playing against him

an e�ective two-player game G(1, 1) game with rescaled parameters. We can describe this

e�ective game by introducing an e�ective probability of inspection qe f f =
q
n . The extensive

form of this game is the same as the one shown in �gure �.� except that the probability q is

substituted by qe f f = q
n . The inspectee’s indi�erence is obtained equalizing the impact for

non violation, which is null, to the impact of violation. The latter one is given by the balance

between the detected one and the undetected one. In case of a violation, there will always be

a bene�t for the inspectee. The impact is therefore given by b added to the impact of the loss

(loss times probability of inspection qe f f =
q
n ). The indi�erence equation is

b − a
q

n
= 0

hence

q⇤ =
b
a
n

The factor 1
n results from the fact that one inspector is shared by two inspectees. Asmentioned

before, there is no in�uence on p due to the lack of coupling among the inspectees. The

presence in q of a factor n represents the situation where each inspectee can see this IG as a

two-player game with e�ective loss a
n .

�.�.� Game G(m,�) – m Inspectors, One Inspectee

Game Setup

Beside the assumptions �. to �. already adopted so far, we are also forced to postulate some

coupling between inspectors. They must share the damage of any occurring violation which
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Figure �.�: Inspection Game G(2, 1) in extensive form.

goes undetected (i.e. detected by none). A detailed formulation is represented in �gure �.� in

extensive form for the exemplary case of m = 2 inspectors and n = 1 inspectee.

Game Solution

We can exclude the possibility of NE in pure strategies because all the pure strategy pro�les

have at least one player which would bene�t from switching strategy unilaterally. The in-

spectee would prefer to violate when no inspection occurs and each inspector would prefer

to inspect when there is a violation. We will exploit the symmetry between the inspectors

since we know that the equilibrium is of the form q⇤1 = · · · = q⇤m = q⇤.

���������’� ������������ The equation for the inspectee’s indi�erence should equal-

ize the impact for no violation, which is null, to the impact for violation. This in turn is given

by the balance between the impact of detection and that of non detection. Since the bene�t

for violation is always present (be the violation detected or not), the balance is obtained by

subtracting from b the impact of loss only (probability times value of loss). The probability

of detection by at least one of the inspectors is 1 − (1 − q)m, hence the overall indi�erence

equation is

b − a(1 − (1 − q)m) = 0

which has solution for q⇤ such that

(1 − q⇤)m = 1 −
b

a

and therefore

q⇤ = 1 − (1 −
b

a
)

1
m

���������’� ������������ The inspector’s indi�erence equation should equalize the

impact of inspection (given by a constant cost value c) to the impact of no inspection. The

latter corresponds to the expected value of the number of violations by the only inspectee

when no other inspector is inspecting. Hence, the indi�erence equation is

c = dp(1 − q)m−1
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which has solution for

p⇤ =
c
d

(1 − q⇤)m−1

or explicitly – taking into account that at the equilibrium value (1 − q⇤) = (1 − b
a )

1
m – for

p⇤ =
c
d

(1 − b
a )

m−1
m

�.�.� Game G(m,n) - m Inspectors, n Inspectees

In the gamewith m uncoordinated inspectors and n (non interacting) inspectees, the presence

of n inspectees reduces the probability of any inspector visiting the i-th inspectee from qi to

q
e f f
i = qi

n . Hereafter, exploiting the symmetry among inspectors, we will use q in place of qi.

Exploiting the symmetry among inspectees, we will use p in place of pi.

���������’� ������������ The indi�erence equation for each inspectee, which is used

here to determine q, is

b − a(1 − (1 −
q

n
)m) = 0

which has solution for

(1 −
q⇤

n
)m = 1 −

b

a

and thus

q⇤ = n
(

1 − (1 −
b

a
)

1
m
)

The result is analogue to G(m, 1) except that q is replaced by the e�ective qe f f =
q
n .

���������’� ������������ The inspectors’ indi�erence equation which is used here

to determine p, should equalize

• the impact of no inspection. This corresponds to d times the expected value of the

number n of inspectees’ violations going undetected by the other (m-�) inspectors.

• the impact of inspection. This is given by a constant cost plus the individual damage

times the expected value of the number (n-�) of inspectees’ violations going undetected

by the other (m-�) inspectors.

In both cases, the answer depends on two aspects. This is the expected number of undetected

violations when each inspectees violates the rule with probability p and that each inspector

performs an inspection with probability q – a quantity which we can call u(m, q, n, p). The

indi�erence equation will equate the following two impacts

d u(m − 1, q, n, p) = c + d u((m − 1), q, (n − 1), p)

which can be rearranged so that

c

d
= u((m − 1), q, n, p)− u((m − 1), p, (n − 1), q)
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The di�erence at the second member represents the expected number of extra undetected

violations, which occur when an inspector does not inspect. The missing inspection does

not produce any extra undetected violations if the peer, which would be inspected, does not

violate the rule, or if that peer is already inspected by the other inspectors. In other words, the

missing inspection leaves one extra inspectee violating undetected only when that inspectee

does perform the violation and the other (m− 1) inspectors do not detect it. The former event

happens with probability p and the latter with probability (1 − q
n )

m−1 (since each inspector

has probability
q
n of falling over that inspectee). Hence the indi�erence equation is

c

d
= p(1 −

q

n
)m−1

and has solution for

p⇤ =
c
d

(1 − q
n )

m−1

Overall, substituting q⇤, we have

p⇤ =
c
d

(1 − b
a )

m−1
m

To summarize results of this section, the solution for all games are listed in table �.�. No-

tice that the p⇤ of the various G(·, n) is equal to that of the corresponding G(·, 1). Adding or

removing inspectees does not change the p⇤ because there is no coupling between inspectees.

On the contrary, the q⇤ of the various G(·, n) is n times larger than that of the corresponding

G(·, 1). Multiplying the inspectees’ number by n does change q⇤ since it requires a propor-

tional increase in the inspectors’ e�ort. Notice as well that both p⇤ and q⇤ of the G(m, ·) are

reduced with respect to the corresponding G(1, ·). This is coherent with an increased and

joint inspectors’ pressure.

Table �.�: Solutions for all IGs up to m inspectors and n inspectees. p⇤ indicates the inspectee’s equi-
librium violation probability and q⇤ the inspector’s equilibrium inspection probability.

p⇤ q⇤

G(1, 1) P ⌘ c
d Q ⌘ b

a

G(1, n) P nQ

G(m, 1)
P

(1−Q)
m−1

m
1 − (1 − Q)

1
m

G(m, n)
P

(1−Q)
m−1

m
n
(

1 − (1 − Q)
1
m
)

�.� ���������� ����� ���� ����� ���������

In real-world applications, a system designer is faced with limited resources (e.g. limited

processing or memory capabilities of machines in distributed systems). Thus, violations are

possibly not detected during an inspection, denoted here as false negatives. This is addressed
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now by enriching the four IGs by a �nite probability of non-detection. The enriched version of

the game with one inspectee and one inspector G(1, 1) is exemplary shown in �gure �.�. Sim-

ilar extensions can be devised for the others. We will indicate the corresponding games with

false negatives by Γ(·, ·). Their NE can be found by straightforward considerations. Let us

indicate by g the probability that an inspection does detect a violation that actually occurred.

False positives are assumed to be not possible. When an inspection detects a violation, there

is no doubt that the violation occurred.

A �rst key observation for the development of the more general cases G(·, ·) concerns

the inspectee’s indi�erence equation used to determine q⇤. Whenever an inspector sets the

probability of inspection to the value q, the inspectee perceives an e�ective probability gq.

Notice that due to this fact, all values q in the equations for the G(·, ·) are substituted by gq

in the equations for the Γ(·, ·). Thus, the equilibrium values q⇤ for the inspectors in all the

games G(·, ·) will be rescaled by a factor 1/g. For this reason we have to discuss in detail

only the inspector’s indi�erence equation in the following cases.

�.�.� Game Γ(�, �) – One Inspector, One Inspectee

The equilibrium equation for the inspector in Γ(1, 1) changes slightly with respect to G(1, 1).

The payo� for the inspection is not simply (−c). Instead, it is decremented by the term

(−d)(1 − g)p due to possible inspection failure. The overall indi�erence equation is thus

−c + (−d)(1 − g)p = (−d)p or c = pdg . It has the solution

p⇤ =
c

gd

valid for gd ≥ c. As anticipated above the solution value for q, valid for ga ≥ b, is instead

q⇤ =
b

ga

The solutions p⇤ and q⇤ are equal to the solution values for G(1, 1) rescaled by a factor 1/g.

This represents an increased violation rate and a correspondingly increased inspection rate.

Figure �.�: The Inspection Game Γ(1, 1) is shown in extensive form. It corresponds to G(1, 1) but is
extended by the possibility of false negatives.
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�.�.� Game Γ(�, n) – One Inspector, n Inspectees

For the inspector’s indi�erence equation in the game Γ(1, n), we have the non-inspection

side npd of the equality. This represents the expected value of the damage from a set of n

independent inspectee choosing to violate with probability p. The inspection side consists

of the inspection costs also present in G(1, n), i.e. c + d(n − 1)p, plus the failed inspection

term (1 − g)pd. Hence, the indi�erence equation is

npd = c + d(n − 1)p + (1 − g)pd

⌘ pd = c + (1 − g)pd

which is equivalent to gpd = c. It provides the solution

p⇤ =
c

gd

As anticipated above, the solution value for q is instead

q⇤ = n
b

ga

Again, the two solutions p⇤ and q⇤ are equal to those of G(1, n) rescaled by a factor 1/g.

�.�.� Game Γ(m, �) – m Inspectors, One Inspectee

Anticipating the prior results, the solution value for q ( inspectee’s indi�erence) is such that

(1 − gq⇤)m = 1 −
b

a

and its explicit form can be found in table �.�. As for p, the inspector’s indi�erence equation

should equalize the impact of inspection to the impact of no inspection. The latter term

corresponds to the expected impact of the violation (probability times impact) by the only

inspectee when no other inspector performs a successful inspection. This is represented by

(−d)p(1 − gq)m−1, while the successful inspection has probability gq. The impact of an

inspection is given by the constant cost (−c) plus the expected inspection failure. For the

latter one, there is only a damage (−d) if the inspectee violates (probability p), the inspection

fails (probability 1 − g) and no other inspector performs a successful inspection (probability

(1 − gq)m−1). Hence, the indi�erence equation is

c + dp(1 − g)(1 − gq)m−1 = dp(1 − gq)(m−1)

with solution

p⇤ =
c

gd(1 − gq)(m−1)

In terms of the solution q⇤ it is

p⇤ =
c

gd(1 − b
a )

(m−1)/m

As before, the two solutions p⇤ and q⇤ are equal to those of G(m, 1) rescaled by a factor 1/g.
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Table �.�: Summary of the results for the Inspection Games Γ(·, ·), i.e. G(·, ·) enriched by false neg-
atives. Notice that solutions of Γ(·, ·) are equal to those of G(·, ·) divided by a factor g.

g p⇤ g q⇤

Γ(1, 1) P ⌘ c
d Q ⌘ b

a

Γ(1, n) P nQ

Γ(m, 1)
P

(1−Q)
m−1

m
1 − (1 − Q)

1
m

Γ(m, n)
P

(1−Q)
m−1

m
n
(

1 − (1 − Q)
1
m
)

�.�.� Game Γ(m, n) – m Inspectors, n Inspectees

The solution for q yielded by the inspectee indi�erence is presented in the following equation.

It is analogue to Γ(m, 1) but with q replaced by q/n. The explicit form is shown in table �.�.

✓

1 − g
q⇤

n

◆m

= 1 −
b

a

The inspectors’ indi�erence equation to determine p should equalize two information. On

the one hand, this is the expected impact (on a single inspector) in case of no inspection. This

corresponds to d times the expected value of the inspectees’ violations going undetected by

the other m-� inspectors. On the other hand, it is the expected impact (on a single inspector)

of inspection. Considering the derivation of G(m, n), the value (−c) of the certain cost for an

inspection and needs to be equated with the expected impact of the extra detected violation.

The latter one represents the damage (−d) times the violation probability p times successful

detection probability g of a violation undetected by the other inspectors. This leads to

c = d p g (1 − g
q

n
)m−1

or
c

gd
= p (1 − g

q

n
)m−1

and has the solution

p⇤ =
c

gd

(1 − g
q
n )

m−1

Overall, substituting q⇤, we have

p⇤ =
c

gd

(1 − b
a )

m−1
m

Again, the solution values p⇤ and q⇤ are equal to those of G(m, 1) rescaled by a factor 1/g.

The results for the games Γ(·, ·) are summarized in table �.�, they are equal to the solution

values for the corresponding G(·, ·) rescaled by a factor 1/g. It represents an increased

violation rate and a correspondingly increased inspection rate.
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The derivation showed that the solutions of Γ(·, ·) are equal to those of G(·, ·) divided by

a factor g. This is due to the following reasons. The function g has two impacts on the

game Γ(1, 1). This is an increased violation rate (some violations are undetected) and an

increased inspection rate. Both increases are in balance, which causes the rescaling for this

game. The game with n inspectees Γ(1, n) is played by each inspectee as two-player game

due to their independence among each other. For an inspectee i, the inspection of another

inspectee j is considered as no inspection. Hence, the rescaling is directly transferred to

this generalization. Similarly, the game Γ(m, 1) can also be considered as a �-� game since

the inspectors work on the administrator’s behalf and share a damage d. Thus, they appear

as one inspector with a correspondingly adapted inspection rate. The rescaling of Γ(m, n)

follows then straightforward considerations.

�.� �������

This chapter introduced the game theoretic foundations for the remainder chapters. The

initial two-player game G(1, 1) of Dresher [���] was introduced in the beginning. It was then

generalized up to G(m, n) with m inspectors and n inspectees. All games G(·, ·) were then

extended by the possibility of false negatives (not detected violations). This is represented by

function g and the corresponding games denoted as Γ(·, ·). The solutions, Nash equilibria

in form of indi�erence strategies, are given for all games. The games Γ(·, ·) with possibly

multiple players provide an IG model that is suitable for an application to distributed systems.
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6
ON THE IN SPECT ION GAME APPL ICAT ION TO D I STR I BU TED

SY STEMS

This chapter discusses now some issues that arise during an application to real world systems.

It focuses on twomajor aspects: the IGmodel itself and possible implementations. Please note

that this discussion does not intend to be exhaustive. Instead, it targets to call the reader’s

attention to the most relevant issues. This is meant as a preparation for an IG application.

�.� ���������� ���� �����

At �rst, we consider several aspects related to the IG model.

�.�.� Independency of Players and Games

As for the the IGs of the last chapter, we assume that all players are independent: the strategy

choice of one player has no in�uence on those of the others. Nevertheless, since all inspectors

work on the system administrator behalf, there is some inherent relation among the inspect-

ors.

The IG type such as Γ(1, 1) or Γ(m, n) depends on the players’ point of view, i.e. with

who the game is actually played. Let us consider again �gure �.� (page ��) for the game

G(�,�) with one inspector and two inspectees�. If the inspector does not inspect, the system

damage caused by the inspectees’ violations (if any) is summed up. Here, it is assumed that

both inspectees are controlled with only one inspection. This is not realistic: in real world

distributed systems, each inspection causes some inspection costs. Hence, the game G(�,�) or

in general G(�,n) can be considered for the inspector as a set of independent �-� games, one per

inspectee. This is similar for the generalization G(m,�), shown as game G(�,�) in �gure �.� on

page ��. A violation is punished only once even if both inspectors detect the violation at the

same time. In other words, the m inspectors appear for the inspectee as one inspector with

a correspondingly higher inspection probability. This is also denoted as E�ective Inspection

Probability (EIP) in the remainder. Hence, the generalized game G(m,�) can also be considered

as a �-� gamewith all m inspectors representing one inspector with the EIP value as inspection

probability.

To summarize, all IG generalizations can be considered as sets of �-� games. From the in-

spector’s point of view, he playsmultiple games (one per inspectee) since all are independently

played. Analogue, the inspectee fears to be inspected by any inspector, whose exact number

a�ect the EIP, i.e. the violation detection probability. The EIP value is also a�ected by the

way how inspectees are selected for an inspection. This is addressed by the next paragraph.

� The games G(·, ·) are only used here since the corresponding �gures have already been discussed.

��
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Figure �.�: This �gure illustrates synchronized (left) and not synchronized (right) inspectors in terms
of the inspectee selection. The id space is represented in a two-dimensional way with dots
as inspectees. The dashed squares indicate the assignment of id regions to an inspector.

�.�.� Synchronization of Inspectors

In general, an inspectee may be controlled by multiple inspectors at the same time if no

mechanisms are implemented to avoid it. Such double inspections bring – in our case with only

unique punishments – no bene�t for the games G(·, ·). For Γ(·, ·), they yield only a slight

increase of the violation detection probability. Hence, double inspections are considered as

a waste of resources. To avoid them, inspectors should coordinate their inspectee selection.

This is denoted synchronization of inspectors in the remainder. It can be realized statically (e.g.

assignment of id ranges) or dynamically based on some runtime criteria (e.g. hop distance).

Let us consider the term Inspection View (IV) as the set of inspectees that represent in-

spection candidates for an inspector. Figure �.� illustrates the inspector synchronization for a

two-dimensional id space (e.g. the IP address or overlay id) with the inspection candidates as

black dots. Synchronized inspectors are shown left in the �gure: the id space is separated into

four equal IVs, each one assigned to exactly one inspector. On the right side, the inspectors

are not synchronized and id regions not assigned to an inspector are indicated grey. Double

inspections are possible when the inspectee is inside of overlapping IVs. This is shown for

candidate �, who is assigned for two inspectors. Candidate � and � are assigned to only one

inspector and candidate � can violate without fearing to be punished (inspections will not oc-

cur). The separation of the id space is a comfortable yet e�cient way to attain synchronized

inspectors. It is in particular e�cient for systems with id based routing such as the Scribe

system. Further systems are reviewed in the survey of Lemmon et al. [���]. In general, it is

not applicable in systems with non-deterministic dissemination such as gossiping. An altern-

ative is the setup of the IV based on the network distance (e.g. hops). Then, a separation takes

place in the space dimension, i.e. the network topography. In such systems, a system designer

should be aware that non-assigned inspectees may also arrive through failure situations or

even system dynamics (e.g. node churn). This is not the case for approaches with id space

separation.
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Figure �.�: This thesis considers for the sake of simplicity a linear dependency between violation oppor-

tunities and possible violation bene�t. However, non-linear relations are generally possible.

�.�.� Payo� in the Real World

For an IG application, we are faced with the question what payo� actually means in the real

world? In general, it is supposed to precisely quantify the players’ outcome of a game and is

established by payo� values. These values are crucial for the general IG mechanics, however,

the interpretation of real world conditions and the mapping to appropriate values is a hard

task due to the context dependency. This comprises several aspects such as the system state

or individual preferences. Therefore, it is challenging task and an important drawback.

The complexity is now shortly outlined. The inspection procedure is known to the in-

spector. Hence, function g and the inspection costs c can be evaluated in an – to some degree

– objective way for the average case. To determine the system damage, the actual impact of

a peer’s violation and the meaning of the serviceability loss needs to be evaluated. This can

be done with simulative studies. In contrary, the speci�cation of the inspectee’s bene�t b and

the punishment a is di�cult. They depend completely on the inspectee’s individual personal

goal(s). The values are typically determined by the system designer’s correct interpretation.

This is challenging and more objective approaches should be used. Feedback mechanisms

may support the designer’s choice or even specify the values dynamically. A simple example

is the inspection rate adaptation until a desired collaboration is reached�.

A further aspect concerns the question howworth a violation is over time for the inspectee.

Intuitively, there is a linear relation: the more violation possibilities are, the more violation

bene�t is possible. This is illustrated in �gure �.�. However, non-linear dependencies are also

possible as indicated on the right side of the �gure. The wave curve represents a relation

to the time of the day. The dotted step-like curve represents a situation, where for example

an internet connection contract provides a graded price in terms of data consumption. The

dashed curve corresponds to a situation where especially the �rst violations have a high be-

ne�t. An example is a tampered response to an initial DNS request in order to redirect the

further communication to a fake server.

� Studies of such mechanisms are actually not in the scope of this thesis. However, an exemplary simulation result

of this mechanism is presented in �gure �.� (page ���) during the discussion of chapter �.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0083/these.pdf 

© [T.R. Mayer], [2013], INSA de Lyon, tous droits réservés



�� �� ��� ���������� ���� ����������� �� ����������� �������

�.�.� Inspection Games for Continuous Operation

In contrary to IGs distributed systems are supposed to operate inde�nitely. An approach to

cope with this problem is outlined in �gure �.�, where the several operations are split into

groups. Each group is related to a speci�c game and each game is played independently from

the other ones. Then, a game strategy is chosen for each game, which is applied to all cor-

responding operations.The inspectee needs to collect collaboration proofs for each operation,

which are denoted as proof messages. To this end, we introduce a container, the inspection

target. It stores the proof messages for a game and is controlled during an inspection by

the inspector. The size of the inspection target is a game parameter and should ideally be

able to store all proof messages related to a game. In order to obtain stable violation bene�t

values over time, a system designer should target equally composed games in terms of proof

messages. One possibility is a game splitting method based on the amount of operations (load-

driven split). Other common methods are based on time (e.g. periodical split), operation type

(type-driven split) or even network message content (semantic-driven split). In addition to

the game splitting method, equally composed games can also be achieved by means of the

inspection target. Providing an appropriate or a dynamic size the inspection target is able to

tolerate �uctuations in terms of proof messages.

In distributed systems, we cannot expect that the users are aware of playing games or that

they are independently played. Hence, we specify three further assumptions:

�. For real world systems, users are informed about an IG and its mechanics (except the

other player’s strategy) as reliability method, for example in the settings user interface.

�. The game players are informed about possible inspections and punishments.

�. The players can draw conclusions from circumstances such as undergone inspections.

As we will see in the next paragraph, this is important for the practical objective of research

challenge (C). Nevertheless, the games itself remain independent and their outcome has no

in�uence on the other games’ strategy choice. Especially strategies over multiple games re-

main impossible. This would change the game characterization to evolutionary games and

require another IG model.

�.�.� General Principle for Collaboration Achievement

IGs of the GT literature focus on the Nash equilibrium analysis in terms of payo� values. This

was also done in the prior chapter � for G(·, ·) and Γ(·, ·), respectively. However, correspond-

ing to research challenge (C), the system administrator has the practical objective to achieve

a targeted collaboration 1 − p in average. Hence, the collaboration value becomes for the

inspector more important than the payo� value itself. In this context, the IG model enables to

calculate an appropriate inspection strategy for the inspector. This strategy yields in a shift

of the NE to a strategy combination that corresponds to the targeted level of collaboration.

For a better understanding, let us introduce the term Best Response Strategy (BRS). It de-

notes the strategy that results in maximal possible payo�, given the imaginary situation that
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Figure �.�: The IG must be adapted to a possibly in�nite operation of distributed systems. To this end,
each of the the operations is mapped to single game and each game is then independently
played. The inspection target holds collaboration proofs and is controlled by the inspector.

the other player’s strategy is known. Considering the assumptions of the last paragraph, the

players can approximate the other player’s strategy – not in real time but over several games.

With such approximation, the rational inspectee is able to calculate a BRS in order to increase

the own payo�. This rationality, i.e. trying to optimize the payo�, is then leveraged by the

inspector. By means of the IG mechanics, he is able to specify and inspection strategy that

leads to the desired collaboration value 1 − p. In more detail, the inspector choses a strategy

such that the inspectee’s BRS lies exactly at the target collaboration value 1 − p.

�.� ���������� ���� ��������������

As counterpart to the last section, we discuss now some possible implementations. This com-

prises the inspection architecture, the collaboration incentive and some game characteristics.

�.�.� Inspector & Inspection Architecture

Still dealing with two types of individuals, the following question comes up: How can the IG

be realized in terms of the network architecture with multiple user machines? This is answered

by considering two aspects separately: the inspector and the inspection architecture.

�������������� �� ��� ��������� The inspector logic can be implemented in sev-

eral ways. Figure �.� illustrates two general approaches. On the left side, the inspector is

realized as individual peer beside the inspectee peer. They are loosely coupled over the net-

work in terms of inspections. On the right side, the inspector is realized as a network layer

within the inspectee’s peer. These approaches have several advantages and drawbacks, which

are outlined in the following. Please note that they are only examples; other solutions (e.g.

mobile software agents moving over the inspectees’ peers) are possible.

Systems with independent inspector peers are very �exible. The amount of inspectors can

be easily adapted to the corresponding needs. However, it requires some overhead due to

the inspections over network but also in terms of inspector synchronization. The example
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Dissemination Algorithm

Application

Further Network Layer

Dissemination Algorithm

Inspection Game Layer

loose coupling through network connection

Inspection Game Layer

Dissemination Algorithm

Further Network Layer

Application

inspectee node inspector node inspectee node

Further Network Layer

Figure �.�: Two possible inspector implementations are illustrated: as individual peers (with possibly
multiple inspector instances on the peer) and as network layer at the inspectee’s peer.

with an inspector as network layer, the inspector is directly present at the inspectee. Hence,

local inspections are e�ciently performed since there is no overhead in terms of network

communication. Even the full monitoring of all network messages passing the layer is in

general possible. However, the inspector competes with the inspectee for the same limited

resources possibly a�ecting the application’s performance. In a worst case, the inspectee may

even be encouraged to circumvent the reliability mechanisms.

���������� ������������ Four exemplary inspection architectures are illustrated in

�gure �.�. Examples �) and �) represent the two discussed inspector implementations, i.e. �)

as independent node and �) as network layer at the inspectee. They represent P�P based sys-

tems, while �) and �) also correspond to more centralized architectures. Example �) provides

exactly one inspector on a dedicated machine, which lies – for illustrative reasons – outside

of the actual system. A realistic scenario is drawn by example �): several dedicated inspect-

ors (e.g. a server infrastructure) control the inspectees in the system. Heres, inspectors are

synchronized, although not in an optimal way (double inspection are possible).

�.�.� Collaboration Proofs & Incentives

In any case, some (secured) logic is required at the inspectee’s machine in order to maintain

proofs of the behaviour and to monitor system values. This is shown in �gure �.� (left), where

the logic as well as the inspection target is considered as part of an additional network layer.

A further example is a database with some secured logic, where a table entry contains proofs

for the processing of database queries. The realization as network layer of this example is also

suitable to directly apply collaboration incentives. This is shown on the right side in �gure

�.� with two examples for negative incentives, i.e. punishments. The �rst one is a reduction

of the messages passing the layer and the second one an expulsion form the system.

We consider in this thesis only negative collaboration incentives by means of punishments.

Positive ones (rewards for collaboration) are also possible; however, they do not change the

IG mechanics in our case. The incentive mechanisms that are arti�cially added (such as the
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inspectee inspector

3) 4)

1)

1 2 3

1
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3

Figure �.�: Four exemplary inspection architectures are illustrated.

network layer of �gure �.�) are denoted as arti�cial incentives. In contrary, genuine incentive

represent mechanisms that are given by the system design itself. Another possibility is the

elimination of the sel�shness concern itself, e.g. by out-of-band trust mechanisms such as

contracts. The interested reader is referred to the work of Nielson et al. [�] for further details

about collaboration incentive classi�cations.

�.�.� Game Characteristics

The last sections discussed some theoretic and practical aspects, however, independently from

each other. We outline now the glue, which brings all together to a usable game implement-

ation. To this end, let us consider the term game characteristics. It denotes the further imple-

mentation details that describe how the game is played. They comprise the following points,

which are detailed afterwards.

• mode of inspection initiation

• when a game is initiated
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Application
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Figure �.�: A network layer can be added to the inspectee for maintaining collaboration proofs. It may

also monitor system values or impose punishments as collaboration incentive.

• who is actually playing a game

• what is controlled during an inspection

���� �������������� : ���� The game mode speci�es which player initiates the in-

spection. Two modes are in general possible, described from the viewpoint of the inspectee:

In systems with a reactive game mode, an inspectee waits until an inspector requests a

collaboration. The inspectee can fully concentrate on the actual system operation and proves

the collaboration reactively to an inspection request. In reactive mode, the power about the

inspection kept by the system designer and is is initiated either externally or internally. With

an external initiation, there are some external individuals such as game masters as shown

in �gure �.� (left). They do not actively participate at the system operation but induce the

inspection. In case of the internal initiation, the inspectors inside the actual system decide

when to initiate the inspection (�gure �.� right).

In systems with a proactive game mode, the inspectees decide on their ownwhen to transfer

collaboration proofs to an inspector (see �gure �.�). The system designer imposes an inspec-

tion policy to specify when an inspection must be initiated or which inspector is responsible.

game master

Inspection!

game master

Inspection!

OK

OK

OK

OK
OK

Inspection!

Inspection!

Inspection!

Inspection!

Figure �.�: Two possibilities for a reactive game mode are shown. The left �gure shows an external
inspection initiation. Here, an external individual or logic (here a game master) instructs
the actual inspector to perform an inspection. The right �gure shows the internal initiation,
where the inspectors decide on their own to induce the inspection.
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Here, my collaboration proofs!

Everything OK!

Figure �.�: In proactive systems, the inspectees decide themselves when to prove correct behaviour in
terms of the collaborative protocol. To this end, they transmit on their own – corresponding
to an assigned policy – collaboration proofs to an inspector.

Inspectees in proactive systems have gain some �exibility. They can coordinate the inspec-

tions with the current work load or further interests (e.g. energy e�ciency). However, a

drawback is the higher maintenance overhead to verify if the inspectees adhere to the policy.

���� �������������� : ���� The second implementation characteristic is related to

the question when an inspection shall be initiated. The general possibilities are outlined in

the (non-exhaustive) schema shown in �gure �.�. An inspection probability could be initiated

depending on some time constraints (e.g. periodical inspections) or on the time of the day.

The inspections may also depend on some values or system parameters. An example is the

message load or the �uctuations of an inspectee’s inspection regularity (in proactive systems).

Context-driven approaches initiate an inspection depending on the given environmental cir-

cumstances. Imagine for example a Mobile Ad-Hoc Network (MANET), where an inspection

could be done if an inspectee comes into the reach of an inspector.

���� �������������� : ��� A further question to be clari�ed consists in the selection

of the other player. This means the question which inspectee(s) is chosen by the inspector in

the reactive mode and which inspector(s) is chosen by the inspectee in the proactive mode. As

Inducing 
Inspections

time

driven

value 

driven

context

driven

periodicallyrandomly
schema

based

Figure �.�: Several (not mutually exclusive) ways to initiate an inspection are possible.
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a short recall, note again that all players are assumed to work independently. Implementation

possibilities for this characteristic are manifold but three are shortly outlined. An intuitive

approach is the randomized choice. It is fast in terms of computation and distributes the

inspection load equally over all (known) players. However, it ignores the speci�c architectural

circumstances and system states. Another possibility is to choose the other player in terms of

the distance. This approach reduces the network load used for inspections by increasing the

locality of the game. A further approach, applicable only for the reactive game mode, is the

inspectee selection based on the amount of detected violations. Such feedback mechanism

enables the IG to adapt the inspection resources to the danger for the system (in terms of

protocol violations).

���� �������������� : ���� The last point is related to the question what is actually

controlled during an inspection. This depends on the considered sel�sh goals. For example,

in the use case of this thesis we consider message drops, i.e. the correct message transfer is

veri�ed. To this end, the IG approach makes use of some secured logging that serves as proof

for the peer’s behaviour. Secured logging is indeed under active research. The interested

reader is referred to [���, ���, ���, ���] and the references therein.

�.� �������

This chapter serves as connection between theory, the game theoretical foundations, and

practice, an IG application to distributed systems. A possible application was discussed with

regard to two aspects. At �rst, several aspect and modi�cations of the IG model were con-

sidered that arise for a practical utilization. Second, some realization details and implement-

ation possibilities were introduced.

The discussion identi�ed bene�cial aspects but also challenges for an application. An im-

portant outcome is the insight that all IG generalizations can be considered as sets of inde-

pendent two-player games. This simpli�es themodelling and analysis. A signi�cant challenge

is the determination of appropriate payo� values and game parameters in general. They are

crucial for the IG mechanics but depend on the individual user preferences and system states.
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7
AN INSPECT ION GAME FRAMEWORK FOR D I STR I BU TED SY STEMS

This chapter introduces an application of the Inspection Game (IG) with false negatives Γ(·, ·)

to distributed systems as solution approach for research challenge (C). In order to provide

an illustrative use case, we consider the video streaming scenario of the introduction with

sel�shness-driven message drops. Furthermore, we use the two pub/sub systems Scribe and

basic gossiping for an application.

�.� �������� ��������

In order to modify a given system as less as possible, we add a network layer at the inspectee’s

machine. To reduce the possibility of vulnerabilities, it provides merely some secured logic

responsible for two tasks. At �rst, it deposits proofs of the peer’s system interaction into

a inspection target, which has a �xed size to ease the comprehensibility. Furthermore, the

logic is responsible to apply a punishment as collaboration incentive. The actual inspector is

realized as independent peer, loosely coupled with the inspectees. The architectural overview

of this approach is shown in �gure �.�.

The IG is operated in (internal) reactive mode, i.e. the inspectors initiate the inspections.

This is done time-dependently in a periodical way. In other words, the system operation is split

into time intervals T, each one related to one game. With all games being played sequentially,

the IG can be considered as a sliding window moving over the several intervals. The length

of a time interval T itself is not relevant since it serves only as point of reference. However,

for the sake of simplicity, an equal interval T is assumed for all inspectees and inspectors.

The system consists of m inspectors and n inspectees. Each inspector selects randomly

(covering the whole id space) ni inspectees for an inspection per interval T to support a

Dissemination Algorithm

Application

Further Network Layer Further Network Layer

Dissemination Algorithm

inspection through network connection

inspectee node inspector node

Inspection Game Layer

inspection 
procedure

violation 
detection
function

model 
parameters

Inspection Game Layer

inspection 
target

Figure �.�: An architectural overview is shown left in the �gure. Dark boxes show the most important
parts to be speci�ed during an application of the framework. The corresponding inspection
architecture is shown on the right side.

��
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broad range of systems. Hence, the inspectors are not synchronized. Furthermore, all played

IGs are considered as �-� games as described in the previous chapter. Therefore, this approach

is related to the IG as presented in the extensive form in �gure �.� (page ��).

�.� ���������� ������ �� ���������� ��������� : ������ �������

Before providing details of the IG mechanics, we introduce a possible implementation of the

inspection target and procedure. It targets to harden the system against sel�shness-driven

messages drops as described in the scenario of the introduction. Please note that the details

presented here represent only one example for possible reliability mechanisms.

�.�.� Inspection Target

The inspection target stores proof messages that prove a peer’s behaviour in a First-In-First-

Out (FIFO) manner and is also denoted as proof history. With an amount of r stored proof

messages per message transfer and a history size h, the inspection target is able to secure h
r

of such operations. All messages are assumed to be cryptographically secured.

The inspection target is used to enable the detection of possible protocol violations in terms

of two aspects. First, the hop-to-hop transfer itself is protected. Second, the existence of an

omitted forwarding is checked. The hop-to-hop transfer protection is realized by a simpli�ed

version of the one presented in [��]: cryptographically secured promises and acknowledge-

ments. A transfer from peer A to peer B consists of the following four phases. Note that all

messages are digitally signed, which is omitted here for the sake of clarity if it is not essential

part of the phase.

�. Peer A wants to sends a signature of the message to be sent as promise to peer B.

�. Peer B responds with to the promise.

�. Peer A sends the actual message.

�. Peer B replies the correct reception with another acknowledgement.

inspector

inspector

inspectee

inspectee comm.-partner

Request copy of inspection target from inspectee

2

1

Transfer of  inspection target copy

Inspection procedure

6

5

Punishment in case of detected violation

Inspection procedure

4

3

Punishment in case of detected violation

2

1

3

4

5

6

1
6

2

5

43

Figure �.�: The inspection sequence of a two player Inspection Game is shown in the context of a
distributed system (left) and schematically focusing on the players’ interactions (right).
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Both peers store the received r = 2 messages (the actual message is part of a receiver’s

proof message). In the remainder, we consider a history size h = 200 and thus, 200
2

= 100

message transfers are secured. This value as well as other values used later, are chosen only

for illustrative and comprehensibility reasons.

The second aspect checks whether a message has been correctly forwarded. An inspectee

is only allowed to drop a message in each of these cases:

(a) A message with the corresponding ID has already been handled.

(b) The TTL value is zero to avoid unlimited disseminations.

(c) There are no subscribers behind the remaining outgoing links.

The TTL value is typically in the message header. To control (c), we assume the existence of

a secured Next Hop Table (NHT), a data structure that maintains the possible next hops. This

could be for example the routing table (Scribe) or the partial view (gossiping). Furthermore,

we assume that changes in the NHT are tracked for one time interval to prevent covering

violation tracks by system dynamics. Secured NHTs are under active research; see for ex-

ample the secured peer sampling of Jesi et al. [��] for gossip-based systems. With the NHT

information and the proof messages, a correct forwarding can be veri�ed.

�.�.� Inspection Sequence & Procedure

In the context of an inspection we denote with inspection sequence the several interactions

with other network participants. Furthermore, we denote with inspection procedure those

operations needed to control an inspectee’s inspection target.

The inspection sequence is outlined in �gure �.�. An inspector requests at �rst a copy of

the inspection target. After receiving it, he requests also a copy of the inspection targets of

those communication partners that have proof messages in the inspectee’s history. Then, they

are controlled (inspection procedure). In case of a detected violation, the inspector disposes

a punishment, which is applied by the secured logic at the inspectee’s peer. Note that any

inspectee’s non-collaboration during the inspection sequence is treated as violation.

The inspection procedure consists of controlling the two aforementioned aspects as shown

in �gure �.�. Each message transfer related to the inspection is secured as for the hop-to-

hop transfer itself. We omit these messages for the ease of comprehensibility. To verify a

hop-to-hop transfer, the inspector controls not only the r proof messages of the inspectee

but also the other r messages of the corresponding communication partner. Overall, two

histories are controlled during one inspection. The second part (correct message forwarding)

is veri�ed by requesting the NHT and controlling it among the proof history. For example, an

inspector controls among others if the receiving peer had – at the corresponding time point

– a subscription in the NHT of the sending peer. To ease the comprehensibility, we assume

this forwarding veri�cation is done during the control of the two histories and covered by

the corresponding cost values. Then, the costs for the inspection of one peer consists of the

control of two histories.
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Figure �.�: Overview to the inspection procedure.

�.� ���� � �������������� �������

We introduce now all details needed for an application of the IG framework to pub/sub sys-

tems. All variables and functions as well as their values used for the simulative evaluation

are clearly arranged in table �.�. As mentioned before, the values listed in this table have been

only chosen for the sake of comprehensibility and illustrative reasons.

�.�.� Speci�cation of Payo� Values

The IG payo� values are determined as detailed in the following.

• b: violation bene�t

As incentive for a violation, we assume the inspectee considering that violating (i.e.

dropping a message) is worth twice as collaborating (i.e. forwarding a message). This

is modelled by the weighting value wb = 2. The bene�t b depends on wb and on the

message load l and is de�ned as:

b = wbl (�.�)

• d: non-detection costs

The damage represents the costs to the system in case of non-detected violations. It is

equally shared over all m inspectors since they work on the system designer’s behalf

and inherently collaborate therefore to some degree. In order to cover any system

architecture, we assume the simpli�ed situation where the violating inspectee is in

the middle of the dissemination route, i.e. he a�ects the half of all n ⇤ gs subscribers.

Again, a weighting value wd enables individual parameter adjustments. Note that, due

to the message load dependency, the assumption |d| > |c| of the abstract game model

(see page ��) is not always guaranteed. The cost value is de�ned as:

d =
wdlngs

2m
(�.�)
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• c: inspection costs

The inspection costs value depends on mechanisms used for the inspection target. Con-

sidering the prior described concept of a proof history as inspection target, an inspector

needs to control two proof histories (the one of the inspectee plus its corresponding

entries of the communication partners) for the inspection of one inspectee. For the

sake of simplicity, we assume that the inspection of one secured transfer has a unitary

cost value. Then, the cost value is determined as in the following:

c =
2h

r
(�.�)

• a: punishment costs

The punishment costs represent the decrease of the inspectee’s payo� due to a detected

misbehaviour. It does not depend on the system architecture and can be speci�ed by

the system designer. As discussed before, the punishment (as well as the bene�t) de-

pends on an individual inspectee’s importance and preferences. Here, this cost value is

calculated relative to the non-detection costs for the whole systems. Therefore, since d

represents the costs divided by m, it is multiplied again with m.

a = wadm (�.�)

�.�.� EIP & MEIP: E�ective Inspection Probabilities

All inspectors operate independently but work on the system administrators behalf. Hence,

they collaborate in some sense. For an inspection, each inspector selects a set of ni inspectees.

From a practical point of view, an inspectee fears to be inspected by any inspector. For the

sake of comprehensibility and to cover all architectures, we consider the simple case of not

synchronized inspectors. This means that all ni inspectees are randomly chosen over the

whole id space for an inspection. As a result, double inspections are possible.

Punishments are only done once per game. Thus, double inspections can be e�ectively

represented as single inspections with a correspondingly increased inspection probability.

This forms an EIP for the inspectee and is described by function s (or EIP function) in equation

�.�. The calculated value denotes the ratio of inspectees in the system that are in average

inspected per T for given q and ni. For example, �.�� means that a quarter of all inspectees

are inspected per T and a value �.� that an inspection arrives twice per T.

s(q, ni) = 1 −

✓

n − qni

n

◆m

(�.�)

Similarly, theMaximal E�ective Inspection Probability (MEIP) describes themaximal amount

of the inspectees that can be inspected per T. It serves therefore as upper bound for the EIP

value and is shown in equation �.�. The MEIP requires that all inspectors are perfectly syn-

chronized (no double inspections) and that they choose a value q = 1.

s⇤(q = 1, ni) =
qmni

n
(�.�)

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0083/these.pdf 

© [T.R. Mayer], [2013], INSA de Lyon, tous droits réservés



�� �� ���������� ���� ��������� ��� ����������� �������

Table �.�: Summary of notation with values used in the example application of the Inspection Game.

Variable System Values Description

n ��� potentially malicious sel�sh peers in system (inspectees)

m � trusted peers in system (inspectors)

T — a time interval in reference to which all calculations are relatively done

Tinsp — time interval between two inspections

Tsa f e — time interval needed for replacing all proof messages

ti — multiplier for T so that ti ⇤ T = Tinsp

ts — multiplier for T so that ts ⇤ T = Tsa f e

q game strategy probability of an inspector to perform an inspection

p game strategy probability of an inspectee to violate

ni �� amount of inspectees to be inspected by an inspector

r � amount of proof messages to be stored in the history

h ��� entry size of the proof message history

g �� amount of multi-cast groups

gs �.� (��%) percentaged amount of multi-cast groups a peer is subscribed to

gp �.�� (��%) percentaged amount of multi-cast groups a publisher is publishing to

pp �.�� (�%) probability to publish a message (one to all gpub ⇤ g disjoint groups)

Variable Payo� Values Description

Scribe Gossiping

l �.� � average transferred messages per T (network load per peer)

c ��� ��� costs for the inspector performing an inspection

a ���� ���� costs for the inspectee that occur due to a punishment

d ��� ��� costs for the system for not detecting defections

b ��.� �� personal bene�t of a peer to defect (deviate from the protocol)

wa � � weighting value for a

wd �� �� weighting value for d

wb � � weighting value for b

Functions Description

g violation detection function

g⇤ violation defection function, bounded to probability values

s calculates the e�ective inspection value (EIP)

s⇤ calculates the maximal e�ective inspection value (MEIP)

C inspector payo� function

I inspectee payo� function

f calculates the inspectee’s best response strategy (BRS)

Since the inspectees are rational and have system knowledge, we assume that the EIP value

is known or communicated by the administrator. Alternatively, an inspectee can monitor the

inspections and calculate an approximation over time.

�.�.� Violation Detection Function g

The function g indicates the probability that – given an inspection on a peer where a violation

occurred within the last interval T – the violation is actually detected, i.e. the PoM is found.

Function g is presented after the clari�cation of some timing details.
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With history �ushing we denote the correct removal of all PoMs from the proof history.

This is done if the peer transfers at least h
r messages and replaces the current proof messages

in the history. Let us consider Tsa f e = T ⇤ ts as the time for the history �ushing relative to

an interval T. Then, ts has the following time value:

ts =
h
r

l
=

h

rl

Similarly, Tinsp = T ⇤ ti is the average time after that a peer is periodically inspected exactly

once. We specify ti as in the following:

s(q, ni)ti = 1

⌘ ti =
1

s(q, ni)

Withe notion of these time intervals, let us now consider the realistic situation where the

inspectee target maximum payo� and assumes periodical inspections. In this case , the in-

spectee can violate Tinsp − Tsa f e but should collaborate afterwards for Tsa f e to �ush out all

violation proofs before the next inspection. Then, a violation is detected during an inspection

if at least one PoM remains in the history. This happens in two cases:

�. The inspectee violates (probability p).

�. The inspectee violated but is still occupied to �ush all violation proofs out of the history

(by collaborating) as preparation for the next expected inspection . This happens with

a probability of
Tsa f e

Tinsp
= ts

ti
.

Furthermore, we need to take into account that the collective of inspectors achieve an amount

of ni ⇤ m inspections done per T and done relative to one inspectee (factor 1
n ). Then, the

detection function g is de�ned as in equation �.�:

g(ni, q, p) =
⇣

p +
Tsa f e

Tinsp

⌘nim

n
(�.�)

=
⇣

p +
ts

ti

⌘nim

n

=
⇣

p +
h
rl
1

s(q,ni)

⌘nim

n

=
⇣

p +
hs(q, ni)

rl

⌘nim

n

Please note that function g may exceed the probability bounds. Hence, the payo� function

makes use of the adapted functions g⇤:

g⇤(ni, q, p) =

8

>

<

>

:

1 i f g(ni, q, p) ≥ 1

g(ni, q, p) else

(�.�)
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�.�.� Payo� Functions

With the detection function g⇤ we are now able to specify the complete payo� functions for

the inspector and inspectee. They are created by directly transferring the IG in extensive

form (see �gure �.�, page ��) into equations. These complete payo� functions are shown in

equation �.� with C(p, q) for the inspector and with I(p, s⇤(q, p)) for the inspectee. Please

note that the inspectee needs to consider the EIP value instead of q.

C( p, q ) = p

 

q
⇣

g⇤(q, p)(−c) + (1 − g⇤(q, p))(−d − c)
⌘

+ (1 − q)(−d)

!

+ (1 − p)

 

q(−c)

!

I( p, q ⌘ s⇤(p, q) ) = p

 

q
⇣

g⇤(q, p)(b − a) + (1 − g⇤(q, p))b
⌘

+ (1 − q)b

!

(�.�)

The payo� functions are essential for the inspector’s practical objective to attain a targeted

degree of collaboration 1 − p. To this end, the inspector leverages the inspectee’s rationality

to choose a payo� maximizing strategy. In other words, the inspectee will choose the best

response strategy (BRS) given that the inspector’s strategy q is known. The inspectee’s BRS

calculation for a given q is formalized in equation �.�� (the inspector’s BRS is analogue but

not shown here). Knowing this equation, the inspector needs to determine a value q such that

the targeted inspectee’s strategy p represents a BRS. The determination of such a value q can

in our case be carried out by examining the whole strategy space. In more complex situations,

e.g. when the strategy consists of a combination of multiple values, a solution could be found

by optimization algorithms.

f( q ) = {p | I(p, q) = max
p2[0,1]

I(p, q)} (�.��)

�.� ��� ������ ��� ��������� ��������

Payo� matrices (see for instance table �.�, page ��) are a common mean to outline and evalu-

ate two player games. This is visualized with best response strategy (BRS) graphs to provide

a mean for graphical system analysis. The players’ BRS, i.e. the strategy with maximal pos-

sible payo�, is indicated with regard to a given strategy of the other player. The curves are

calculated as de�ned in equation �.�� for the inspector and in an analogue way for the in-

spectee. BRS graphs are outlined in �gure �.�. The continuous line shows the inspector’s BRS

for a given p while the dashed line represents the inspectee’s BRS for a given q. Finally, a

NE is given at the strategy combination where both lines are crossing. Please note that the

inspectee (fearing to be inspected by any inspector) must consider the EIP value instead of q.

The strength of BRS graphs lies in illustrating the players’ (cost-optimal) strategy decision

landscape in a comprehensible way. This is shown in �gure �.� outlining the players’ be-

haviour for the IG approach with the values indicated in the notation summary (table �.�).

The two used pub/sub architectures have only small in�uence on the resulting payo� and

are visually identical. Therefore, only the graphs for the Scribe system are presented. The
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higher collaboration:
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Figure �.�: Best response strategy (BRS) graphs present the game result by visualizing the player’s
behaviour in an easy comprehensible way.

players’ strategies are clearly visible in the left graph of �gure �.� by a vertical and horizontal

run of the curves. The NE is indicated at p ⇡ 0.95 (1 − p ⇡ 0.05) for the inspectee and at

q ⇡ 0.14 for the inspector. Due to the high inspection intensity of ni = 20, an inspector is

able to detect an inspectee’s violation for several strategy values p. Hence, it is only worth to

violate for low EIP values. Here, full collaboration is reached at EIP ⇡ 0.14 for Scribe and

EIP ⇡ 0.155 for the gossiping architecture. Both is reached with q ⇡ 0.3. On the right hand

side, �gure �.� shows an example for the suitability of BRS graphs as technique for evaluating

parameter adjustments. Here, a reduced history size shifts the NE point correspondingly.

Note again that the used values (e.g. payo�) were chosen for comprehensibility reasons.

� ���� �� ��� ��� ������ The BRS curves in �gure �.� have apparently di�erent

characteristics: the inspectee’s (dashed) curve is increasing while the inspector’s curve has a

binary nature. Considering the game mechanics (see �gure �.�, page ��), we can determine

the reason. It is obvious that a higher inspection probability increases the violation detection

probability. Thus, an inspectee is encouraged to collaborate for a higher value q. The actual
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Figure �.�: The left BRS graph illustrates the speci�ed IG and the right possible parameter adjustments.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0083/these.pdf 

© [T.R. Mayer], [2013], INSA de Lyon, tous droits réservés



�� �� ���������� ���� ��������� ��� ����������� �������

collaboration value is a�ected by function g, producing an increasing curve. In contrary, the

inspector perform a quasi binary strategy: fully inspecting or fully not inspecting. For situ-

ations p > 0 with d > c, an inspector is encouraged to inspect as much as possible to increase

the violation detection probability. For d < c (e.g. through high collaboration), he prefers to

not inspect. Intuitively, he would switch to fully not inspecting when the expected damage

pd equals the inspection costs. This is indeed the case but in detail slightly more complex. At

the transition point (inspecting to not inspecting), the possibility of false negatives produces

a small anomaly: the inspection probability is increasing for an increasingly collaborating

inspectee. This is shown in the circle(s) in �gure �.�, indicating also two situations S� and S�.

At situation S�, the expected payo� gains by partially not inspecting equals the correspond-

ingly increased losses. The inspector can now improve his payo� by intensifying inspections

and reduce damage caused by non detection. The yielded payo� outbalances the additional

inspection costs. At situation S�, the expected damage pd equals the inspection costs and the

inspector changes to not inspecting for higher collaboration values.

�.� �����������

The IG approach introduced before is now evaluated by a simulative study. This is done

straightforward way beginning with the network setup.

�.�.� Network Setup

The system comprises of m + n peers with m = 5 trusted peers (inspectors) as well as n =

200 sel�sh peers (inspectees). We assume furthermore that each peer has a unique role, either

as inspector or as inspectee. Each inspectee subscribes in T = 20 to gs ⇤ g = 0.1 ⇤ 30

groups and publishes each T (beginning in T = 40) with a probability of pp = 0.04 one

message to gp ⇤ g = 0.25 ⇤ 30 groups. Hence, there are n ⇤ gs ⇤ g = 600 subscriptions in

the system and pp ⇤ n ⇤ gp ⇤ g = 60 new published messages per T. The actual interval

length is not relevant for the IG evaluation. An interval represents a game here but does

Figure �.�: Two networks are used for the application of the Inspection Game: the Scribe system dis-
seminates by means of a tree-based network and basic gossiping creates a clique network.
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not a�ect the game mechanics itself. Instead, an appropriate amount of games should be

considered for representative results. This is the case with a simulation duration of ��� T

and correspondingly ��.��� published messages.

As mentioned before, the two pub/sub systems Scribe and basic gossiping are used for the

evaluation. The latter one makes use of Cyclon [���] as membership protocol with a fanout

of �� and a partial view size of ��. These system realize di�erent network structures, which

are illustrated in simpli�ed form in �gure �.�.

�.�.� Parameter Calibration

Though the two systems realize di�erent architectures, they di�er only in the message load

parameter l for the IG. As an important value for the payo� calculation, it is essential for the

IG mechanics. In the given case of message drops, the message load is not only a�ected by

the architecture but also by some game parameters such as ni. For example, a low e�ective

inspection leads to higher violation rates with correspondingly reduced load value.

In order to specify an appropriate value, we omit a theoretical load analysis for the sake

of comprehensibility. Instead, we use load values obtained from a calibration procedure. The

values l occurring in the explicit expressions of the payo�s are obtained by a Monte Carlo

simulation (using q = 1 and ni = 20) and they indicate the average message load of a peer.

These are a l = 5.8 for the Scribe system and l = 7 for gossiping. An overview is presented

within the simulation results �gure �.� for gossiping in �gure �.� for Scribe. These load values

lead to payo� values that are listed in table �.�. To summarize them, an inspectee in the Scribe

system needs to violate at least 1740
11.6

= 150 times to balance a possible punishment of ����

with a violation bene�t of ��.� (analogue in the gossiping architecture with 1740
11.6

= 150).

Similarly, the system damage of ��� is almost �.� times the inspection costs.

�.�.� Simulation Setup

The simulative evaluation of the IG approach is done with the Peersim simulator [���] and

an adapted version of the RCourse library. Both systems are simulated under the condi-

tions stated before and evaluate the IG approach in terms of the interesting point of cost-

optimal full collaboration. To this end, all inspectors adjust an inspection probability q ⇡ 0.3

(EIP ⇡ 0.14), which �nally results in full collaboration according the IG model. This is

shown in the BRS graph (a) of �gure �.� since it has been generated with the parameters used

for the simulation. The IG is played from the beginning of the simulation. In contrary, the

subscription to multicast groups starts in T = 20. The publishing of information starts in

T = 20 and lasts until the end of the simulation with a duration of ��� time intervals T.

�.�.� Simulation Results

At �rst, the simulation graphs for the EIP values are shortly presented. The main simulation

results concerning the inspectees’ collaboration value are presented afterwards. The graphs

present the inspectees’ values as median with quartiles and are therefore denoted Median
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Quartile (MQ) graphs. Result graphs that show the value distributions of all inspectees (with

arithmetic mean) are denoted Value Distribution (VD) graphs in the remainder. They are

placed in the appendix and only presented here for the sake of clarity.

��������� ���������� ����������� The simulation results concerning the EIP value

are shown in �gure �.�. In addition to the network setup of with ni = 20 and q = 0.3 (centre)

and q = 1 (right), a simulation was also done for the sake of comparison with ni = 1 and

q = 1 (left in �gure). The EIP function (equation �.�, page ��) predicts an e�ective inspection

probability of s(1, 1) = 0.025, s(0.3, 20) = 0.141 and s(1, 20) = 0.41. The MQ result

graphs show that the predicted values are veri�ed with only low variances. However, the VD

graphs (see �gure B.� in the appendix on page ���) show that some values slightly di�er up to

about �.� (��%) from the predictions.
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Figure �.�: These MQ graphs verify the prediction of the EIP function, which are �.���, �.��� and �.��
for the given parameters. The predictions are precise although some outliers exist with up
to about �.� (��%) from the arithmetic mean (see VD graphs in �gure B.�, page ���).

������������� ����������� �� �������/��������� ������������� The sim-

ulation results for gossiping are shown in �gure �.� with the payo� distribution in the �rst

row, the message load distribution in the second row and the collaboration values (1 − p) in

the third row. The dissemination style leads to a homogeneous load distribution for the peers.

Hence, the quartile curves are almost equal to the median. Thus, the prediction of q = 0.3

is precise and su�cient to reach full collaboration at all inspectees. There are some outliers

during a short stabilization period as can be seen in the VD graphs given in the appendix

(�gure B.� on page ���).

The left column in �gure �.� simulation results for Scribe using the same parameters and

graph placement as for gossiping. The additional fourth row shows the collaboration values

(1− p) as VD graph for comprehensibility reasons. Due to Scribe’s to the tree-based dissemin-

ation, the load distribution di�ers strongly to gossiping. There are several �uctuations since

the actual load depends on the position in the tree. Nevertheless, Scribe provides an e�cient

dissemination relative to gossiping (see y-axis scales). The desired collaboration value is ex-

actly reached as shown in the MQ graph. This is veri�ed by the VD graph (bottom in �gure):

the mean hits almost exactly the targeted full collaboration. However, the VD graph reveals

several outliers due to the heterogeneous load distribution. These variances are not visible in

theMQ graphs due to themedian’s statistical robustness. Thus, the predicted inspection value

q = 0.3 (left column), resulting in EIP = 0.14127, is considered not completely su�cient.
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As a comparison, the right column of �gure �.� shows the results with the inspection prob-

ability being dramatically increased from q = 0.3 to q = 1. Here, the amount of inspections

is high enough to prevent violations from the early beginning. This outlines the di�culty in

terms of specifying an appropriate inspection probability value. In systems such as Scribe,

the message load value depends on the position in the dissemination tree. However, this is

typically not known to the IG model (e.g. the root node of a tree is typically elected by a hash

value of the group id and the inspectee’s overlay id). As a result, the tree-based dissemination

such as Scribe always provides a variance in terms of load. Thus, precise predictions of the

needed inspection probability remain di�cult for this IG model.

�.� �������

In this chapter, the IG approach was applied to distributed systems using two Publish/Sub-

scribe systems. The scenario of the introduction with sel�shness-driven message drops was

considered as illustrative use case and details for an application were introduced. The simu-
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Figure �.�: The result graphs for the gossiping system show the inspectees’ payo� (�rst row), message
load (second row) and collaboration values (third row).
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lation addressed among others the inspectees’ collaboration degree and veri�ed the general

functioning of the IG approach. It can already be considered as a promising approach that

reaches the thesis’ vision. The evaluation outlined also some drawbacks caused by the IG

model’s sti�ness: it is not yet able to deal with dynamic conditions. This is addressed in the

next chapter.
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Figure �.�: The graphs show the simulation results for the Scribe system (all corresponding VD graphs
are presented �gure B.� in the appendix on page ���). The results comprise the inspectees’
payo� (�rst row), message load (second row) and collaboration values (third, fourth row).
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8
AN ENHANCED DYNAM IC IN SPECT ION GAME FRAMEWORK

This chapter presents the enhanced Inspection Game (IG) approach that enriches the initial

one of the foregoing chapter by some degree of dynamics. This chapter introduces basic-

ally the several di�erences to the initial approach. For speci�c details (e.g. IG fundamentals,

inspection target details, payo� functions), the reader is referred to the foregoing chapter.

�.� �������� �������� � ����������� �� ��� ������� ��������

The improvements address two important shortcomings of the initial version: varying mes-

sage load as well as varying inspection rates. The enhanced IG approach considers not only

the same scenario as the initial version, it has also basically the same characterization. It as

played in (internal) reactive mode, i.e. the inspectors initiate the inspections. The continu-

ous operation is also faced with periodical game splittings, i.e. the operation time is equally

splitted into time intervals T. However, there are two major di�erences, which are detailed

afterwards. These are the adaptation to system dynamics (covering the aforementioned short-

comings) and a change of the inspection architecture.

�.�.� Inspection Architecture as Additional Network Layer

The initial IG approach has some secured logic as network layer at the inspectee’s machine.

Hence, it makes sense to deploy directly the full inspector logic, e.g. as part of the applica-

tion. The resulting inspection architecture is illustrated in �gure �.�. With this architecture,

each inspectee has inherently an inspector assigned. Furthermore, it makes sense to inspect

inspections are done locally due to direct deployment
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Figure �.�: In the enhanced IG approach, an inspector is completely deployed at the inspectee’s peer
(left in �gure). The resulting inspection architecture is shown right in the �gure. Inspectors
control only the local inspectee, which creates sets of two-player games.
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always the local inspectee due to the e�cient local inspection. Then, the whole IG logic is

encapsulated into each peer. In other words, we deal with sets of two-player games.

This architectural type has several advantages compared to the initial approach. In addi-

tion to the e�cient inspection at least of the local inspectee’s inspection target, the inspectors

uniquely assigned to an inspectee in terms of inspections. Hence, they are inherently syn-

chronized and double inspections are not possible. This simpli�es also the IG model: the EIP

and MEIP values can be omitted. Now, only the one assigned inspector’s strategy q must be

considered by an inspectee during the own strategy choice. This supports the system designer

applying the IG to individual needs and simpli�es BRS graphs as mean for system analysis.

�.�.� Adaptation to System Dynamics

In order to attain a dynamic IG model, the enhanced version has the following objective: a

whole interval T shall be secured by providing proofs for all operations within such time interval.

To this end, the inspection target will be – in contrary to the initial IG approach – dynamic

in its size. This normalizes the meaning of a peer’s position in the dissemination structure.

Those with a high message load need to maintain a correspondingly large inspection target.

As we will see in the next section, this objective has also a simplifying e�ect on the violation

detection function g.

The enhanced version does not use a parameter calibration. Instead, all payo� values are

calculated in a dynamic way by adapting the current system state. This is done by monit-

oring the message load value. Furthermore, a more stable approximation is calculated over

time. The monitored message load is in the following denoted as l0 and the approximation

l+. Similarly, the players monitor the other player’s behaviour in order to approximate the

strategy over time. This is wanted by the system designer to sharpen the inspectee’s pos-

sible calculations. The inspectee is informed when an inspection occurs, while the inspector

approximates by means of detected violations. This information is denoted as q+ and p+,

respectively. The calculation of these values will be detailed in the next section.

�.� ������������� �� ���� �������

The details of the enhanced IG approach’s major di�erences to the initial one are introduced

now. As in the last chapter, all variables and their values are clearly arranged in table �.�.

�.�.� Inspection Target

The enhanced IG version uses the same inspection target mechanism as the initial version; it

is thus not detailed here. However, the di�erent inspection architecture causes a slight change

of the inspection sequence, which is visualized in �gure �.�. Being physically present at the

inspectee, an inspector makes only a copy of the local inspection target. Then, he requests

copies of those communication partners indicated in the local one. The actual control of

the inspectee (inspection procedure) is done and a punishment induced in case of a detected

PoM. A small implementation detail shall be mentioned here. The delay of requesting and
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Punishment in case of detected violation5Send inspection target copy

4

3
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Figure �.�: The inspection sequence of the enhanced IG is shown in the context of a inspection archi-

tecture (left) and schematically focusing on the players’ interactions (right).

transmitting the copy of the others may lead to a loss of the last recent proof messages and

thus possibly a PoM. To cope with this problem, the inspection target contains a further

backup history. Proof messages that should actually be removed from the history will be

deposited in the backup history, again in a FIFO manner. However, this additional history

serves only as mean to make the corresponding messages accessible. Proof messages that are

not related to the corresponding IG are ignored.

The proof history is dynamic in size. It can be considered as a data structure such as a

linked list, which grows with the message load that actual occurred. However, for the payo�

calculation, a history size must be determined for a game, whose exact message load value

is not yet known. Therefore, an expected history size is used as shown in equation �.�. The

expected history size h+ considers an expected load value l+ multiplied with the amount of

proof messages r per message transfer. The value h+ will be used during the payo� value

speci�cation, while the expected load l+ is detailed afterwards in section �.�.�.

h+ = rl+ (�.�)

�.�.� Payo� Values

The payo� values di�er from those of the last chapter in terms of two aspects: the monitoring

of the message load value (represented by l0) and the the omission of the EIP value. Here, we

concentrate rather on these di�erences in the explanations. For further information about

their composition, the reader is referred to the initial IG (section �.�.�, page ��).

• b: violation bene�t

As for the initial IG, violating is considered worth twice as collaborating, designed by

means of a weighting value wb = 2. With the monitored message load, the bene�t

calculated as in the following:

b = l0wb
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• d: non-detection costs (damage)

For the system damage, we assume again that the violating peer is in the middle of the

dissemination route to all n ⇤ gs subscribers. In the initial IG model, m inspectors were

equally sharing the damage, thus having the value m in the denominator. This is not

the case here due to the �xed assignment of an inspector to an inspectee. Hence, m is

omitted and the cost value is de�ned as:

d =
wdl0ngs

2
(�.�)

• c: inspection costs

This cost value depends onmechanisms used for the inspection target and is equal to the

initial version. However, please remember that the history size h is actually a dynamic

value, depending on the message load. Since actual message load is not yet known for

the current game, the cost calculation uses the expected history size of equation �.�:

c =
2h+

r
(�.�)

• a: punishment costs

The punishment costs are again calculated relative to the non-detection costs. Here,

the variable m is – analogue to damage d – omitted due to the pure two-player game:

a = wad (�.�)

�.�.� Value Approximations for System Dynamics

As mentioned the rational players may draw conclusions from the circumstances. Therefore,

they monitor some values and calculate approximation to support their game strategy de-

cision. To this end, several possibilities are available such as the arithmetic mean, a median

calculation or exponential smoothing. The latter one is a well-known technique for time series

of data. Hence, it is appropriate for value approximations over time and will be used here.

The load value approximation l+ for the next IG related to interval T is calculated based on

three values. This is the monitored load value l0 (amount of transferred messages) for T − 1,

its prior approximation and a smoothing factor al . The message load approximation is shown

in equation �.�. For the simplicity’s sake, we omitted the index T and use l+ instead of l+T .

l+ = al l
0
T−1 + (1 − al)l

+
T−1 (�.�)

Similar to the message load for the inspector, the inspection probability represents an im-

portant value for the inspectee, which possibly dynamic. The inspectee approximates for the

BRS calculation a smoothed inspection probability q+. To this end, the inspectee takes into

account if he su�ered or not from an inspection during the last interval, which is represented

by q0T−1 2 {0, 1}. The approximation is done with the same principle as for the message load

and shown in equation �.� (analogue to l+ we omit index T for q+T ).

q+ = aqq0T−1 + (1 − aq)q
+
T−1 (�.�)
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Table �.�: Notation summary with values used during the enhanced Inspection Game application.

Variable Values System Value Description

n ��� amount of peers in system

T — time interval used for calculations

Tinsp — average time interval between two inspections

Tsa f e — average time interval for replacing all proof messages

ti — multiplier for T so that ti ⇤ T = Tinsp

ts — multiplier for T so that ts ⇤ T = Tsa f e

q game strategy probability of an inspector to perform an inspection

p game strategy probability of an inspectee to violate

l0 dynamic value monitored message load value of an interval T

q0 dynamic value monitored value if an inspection happened or not (q0 2 {0, 1})
p0 dynamic value monitored value if a violation happened or not (p0 2 {0, 1})
l+ dynamic value approximation to the message load (# of transferred messages)

q+ dynamic value approximation to the inspector’s strategy q

p+ dynamic value approximation to the inspectee’s strategy p

h+ dynamic value approximation to the expected history size (used for payo� calculation)

h dynamic value size of the proof history (inspection target)

aq �.� smoothing factor for the inspection probability approximation

ap �.� smoothing factor for the violation probability approximation

al �.� smoothing factor for the message load approximation

r � amount of proof messages to secure one hop-to-hop transfer

g �� amount of multi-cast groups in the system

gs �.� (��%) percentaged amount of groups a peer is subscribing to

gp �.�� (��%) percentaged amount of groups a publisher is publishing to

pp �.�� (�%) probability to publish one message to gp ⇤ g groups (basic load)

Variable Values Payo� Values Description

b dynamic value violation bene�t of a peer deviating from the protocol

d dynamic value costs for the system for not detecting violations

c dynamic value costs for the inspector performing an inspection

a dynamic value costs for the inspectee that occur due to a punishment

wa �.� weighting value for a

wd � weighting value for d

wb � weighting value for b

Functions Description

g violation detection function

g⇤ violation detection function, bounded to probability values

In the same way, the inspector may approximate the inspectee’s chosen strategy, the violation

probability p. This is shown in equation �.�with p0T−1 2 {0, 1} for detected violations. To to

take also non-detected violations into account, the factor 1
qg

is added (again, omitting index

T for p+T ).

p+ =
1

qg
(ap p0T−1 + (1 − ap)p+T−1) (�.�)

Approximating the inspectee’s strategy is introduced here for the sake of completeness.

Although not used in the remainder, the inspectee’s strategy is possibly dynamic, too. Then,

such approximation may be used to discover the individual preferences or as basis for feed-

back mechanisms in order to adapt the inspection intensity.
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The low smoothing factors for the strategy approximations aq = aq = 0.1 provide some

smoothness, i.e. statistical robustness against �uctuations. In contrary, the factor am = 0.5

is higher to adapt faster to the message load.

�.�.� Violation Detection Function g

The violation detection function g is substantially a�ected by themodi�cation that the inspec-

tion target is dynamic in size. In order to make the consequences comprehensible, we will

shortly recall the timing details that were discussed for the initial IG in section �.�.� (page ��).

To �ush the proof history, all PoMs need to be removed from proof history, which is done if

the peer transfers at least h
r messages. As in the last chapter, the needed time can be considered

as Tsa f e = T ⇤ ts with ts being detailed in the following. Since function g is used for the

strategy choice, the expected values l+ and h+ are used here.

ts =
h+

r

l+
=

h+

rl+
=

rl+

rl+
= 1

Furthermore, the average time interval between two inspection shall be denoted by Tinsp =

T ⇤ ti with ti being detailed as in the following:

tiq = 1

⌘ ti =
1

q

PoMs are still in the history during an inspection for either of the following two cases. Being

equal to those of the last chapter, they are only listed again for the sake of comprehensibility.

�. The inspectee violates (probability p).

�. The inspectee violated but collaborates now to �ush all violation proofs out of the his-

tory.This happens with a probability of
Tsa f e

Tinsp
= ts

ti
.

With this preparation, we can de�ne function g as shown in equation �.�:

g(q, p) = p +
ts

ti
(�.�)

= p +
1
1
q

= p + q

Here, we can see the e�ect of the dynamic adaptation of the history size able to store all proof

messages for one T. The system dynamics in terms of varying message load is compensated

and the detection probability not any more depending on the proof history or message load

values. Nevertheless, this function may still exceed the probability bounds. Analogue to the

initial IG approach, this will be considered in the adapted function g⇤, which is used for the

payo� functions.

g⇤(q, p) =

8

>

<

>

:

1 i f g(q, p) ≥ 1

g(q, p) else

(�.�)
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Since the EIP value is not used anymore, the inspectee considers the inspector’s strategy q

instead of s⇤(p, q) for payo� functions. These are I( p, q ) for the inspectee and C( p, q ) for

the inspector. Both have the same structure as those of initial IG approach (see section �.�,

page ��) but make use of the formalizations of this chapter (e.g. payo� values, function g).

Please not that, for an implementation, the inspector would replace p by the approximation

value p+and the inspectee q by q+.

The BRS graph based on the payo� functions of the enhanced IG approach is shown in

�gure �.�. The omission of the EIP values increases its comprehensibility: the dashed purple

curve indicates the inspectee’s BRS only with respect to the inspector’s game strategy q. The

inspector’s curve remains without changes: the continuous blue curve indicates his BRS for

a given inspectee’s game strategy p.

Three targeted collaboration values are indicated in this BRS graph together with the cor-

responding inspection probabilities. These are the collaboration value (1 − p) = 0.6 with

the predicted inspection probability of q = 0.2, a collaboration value (1 − p) = 0.8 with the

corresponding inspection probability q = 0.29 and �nally a full collaboration (1 − p) = 1.0,

which is reached at q = 0.45 according to the IG mechanics.

Figure �.�: The graph indicates the players’ best response strategies (BRS) for the enhanced IG ap-
proach and the given parameters (see notation summary). Three inspection probabilities
are indicated with the resulting collaboration degrees according the the IG model.

�.� �����������

After presenting all game details, the enhanced IG is evaluated by a simulation. Again, this is

done with Peersim and an adapted version of RCourse using Scribe and basic gossiping. All

parameter values used during the simulation are indicated in the notation summary.
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�.�.� Network & Simulation Setup

The system consists of n = 200 inspectees but no dedicated inspector peers since the logic

is integrated as IG network layer to the inspectee peers. In order to verify some dynamics,

the simulation lasts ���� time intervals T. The subscriptions as well as generated tra�c is

equal to the initial IG of the last chapter. The �� published messages per T (each one having

in average �� subscribed inspectees) is considered as basic load.

The evaluation especially focuses on the system dynamics. This is done by varying the

message load as well as the inspection probability twice during runtime. Latter one represents

a change of targeted collaboration levels through a varying inspection intensity. A simulation

overview is shown in �gure �.�. The simulation starts with basic load starts in time interval

T = 40 and lasts until the half of the simulation (T = 500). Then, it is increased to the triple

(��� published messages per T). This high load persists until T = 800, where it is decreased

to the double of the basic load (��� published messages per T). This persists until the end

of the simulation. Altogether, the simulation consists of ������ published messages (further

message transfers not included). In addition to the changing message load, the simulation

provides dynamics in terms of the targeted collaboration levels by injecting new inspection

probabilities q during the simulation. The three values are used that were already indicated in

�gure �.�. In the beginning, we target a collaboration value of �.� (q = 0.29). In T = 350, the

targeted degree is changed to �.� (q = 0.20). Full collaboration is then targeted in T = 700,

which lasts until the end of the simulation.

Let us denote the term epoch as a set of sequential time intervals that provide the same para-

meters. By changing two parameters (message load and inspection rate) twice, the simulation

consists of �ve epochs, i.e. four parameter changes (�gure �.�). This dynamics is simplistic

to some degree (e.g. no use real world work load traces). However, it enables to evaluate the

general adaptability of the IG approach and to draw conclusions from its preferences.
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Figure �.�: During the simulation, the message load and inspection rate, are changed twice.
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�.�.� Simulation Results

As in the last chapter, only the MQ graphs (median with quartiles) are presented here, while

the corresponding VD graphs are available in appendix C (page ���). Please note again that

the arithmetic mean in VD graphs is not equal to the median due to statistical reasons.

������������� �� ���������� ����������� Figure �.� shows the inspectees’ ap-

proximations to the varying inspector game strategy. Precise approximations of the three

adjusted inspection probabilities �.��, �.� and �.�� are noticeable (though small variances are

existent). The graph shows also the adaptation speed of the smoothed value. The actual value

is approximated within about �� time intervals with the given parameters.

������� ���� The further simulation results of the enhanced IG approach are shown

in �gure �.�. MQ graphs are given for both the Scribe system (left column) and the gossiping

system (right column). The �rst row shows the message load approximations as described

in the game details section, the middle row the chosen collaboration values and the bottom

row the inspectees’ payo� value. The load graphs clearly show the three adjusted load values.

Here, the Scribe’s e�cient but heterogeneous load distribution provides some variances. In

contrary, all values of the gossiping system are close to the median but has higher load values.

������������� ������ The middle row of �gure �.� shows the simulation results in

terms of the collaboration. Both examined systems attain – despite system dynamics and dif-

ferent dissemination styles – in average the three desired collaboration degrees �.�, �.� and

�.�. This veri�es the general functioning of the IG approach and also the ability to adapt to

system dynamics. A small variance is given of about �.� (quartiles) from the median. The

adaptation speed is with about �� intervals analogue to �gure �.�. This makes sense due to

the importance of the inspection probability approximation for the inspectee. The collabor-

ation graphs have one conspicuous feature: there are some �uctuations for �.�. The reason

is comprehensible by means of the BRS graph (�gure �.�). For a targeted collaboration value

of about 1 − p ⇡ 0.39, it becomes not worth anymore for the inspectee to collaborate. The

value drops directly down to zero. Hence, due to variances, some inspectees consider a tar-
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Figure �.�: The graph shows the inspectees’ approximations to the varying inspector game strategy
in the Scribe system. The curves – median with quartiles – are analogue to the gossiping
system (not shown here). See �gure C.� (page ���) for the corresponding VD graph.
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Figure �.�: The graphs show the simulation results for Scribe (left column) and gossiping (right
column). The corresponding VD graphs are given in the appendix (�gure C.�, page ���).

geted collaboration below this threshold: they do not collaborate anymore. This is clearly

shown in the corresponding VD graphs in �gure C.� (in appendix on page ���). In order to

verify this aspect, a further simulation has been done with an inspection probability slightly

increased by �.��. This results in targeted collaboration values of ⇠ 0.87, ⇠ 0.7 and �.�. The

result graphs are presented in �gure �.�, arranged in the same way as in �gure �.�. Now, the

�uctuation should be reduced. Furthermore, the targeted collaborations are again achieved

as predicted.

������ Although using the same simulation setup, the payo� graphs (bottom row in �g-

ure �.�) are di�ering signi�cantly for both systems. Hence, the di�erent dissemination struc-

ture must be the reason, which is interpret as in the following. In the Scribe system, the het-

erogeneous message load values cause more outliers in terms of the targeted collaboration

value. They are in turn detected and punished and the average payo� keeps negative during
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Figure �.�: The inspection probabilities were increased by �.��, resulting in targeted collaboration val-
ues ⇠ 0.87, ⇠ 0.7 and �.�. Thus, the collaboration value variances are reduced for the
epochs with 1 − p ⇡ 0.7. The VD graphs are shown in �gure C.� (page ���).

the whole simulation. Especially for the targeted full collaboration value the punishments

of detected violations a�ect the whole averaged payo� without being mitigated (or only of

a negligible amount) by the increase through non-detected violations. The payo� values of

the gossiping system are (due to the homogenous load values) more deterministic: the lower

the collaboration value the higher the payo� through violation bene�ts. Similar to the Scribe

system, some outliers are given for full targeted collaboration. The imposed punishments

outbalance the increase of (also possibly not detected) violation bene�ts.

�.� �������

This chapter introduced the enhanced IG approach, which is based on the initial one of the last

chapter �. It enables a system deployment over sel�sh peers, adapting to system dynamics
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such as a varying message load or targeted collaboration levels. Hence, the IG meets the

research challenge (C) stated in the introduction.

The di�erences of the enhanced IG to the initial one consist basically in another inspection

architecture and the ability to cope with system dynamics. The enhanced version realizes the

inspector as network layer at the inspectee’s machine. Furthermore, to cope with dynamics, it

follows the general objective to secure awhole interval T. To this end, all related collaboration

proofs are stored in an inspection target that is dynamic in its size.

The chapter presented all details and showed how to apply the IG framework to a speci�c

use case. A simulative evaluation veri�ed the functioning of the approach. The dynamicswere

evaluated by means of epochs, i.e. phases of not changing system parameters. Adaptations to

new environmental parameters are donewithin about �� time intervals, which can be adjusted

by game parameters.
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9
A D I SCUS S ION OF THE APPL ICAB I L I T Y TO REAL WORLD SY STEMS

After the introduction of the IG approach in the last chapter, we discuss now some real world

aspects. This is the possible implementation into user applications and the practical meaning

as reliability technique for user and administrator.

�.� ��� ���������� ���� �� ����������� ���������

The IG framework is not a reliability technique in itself. Instead, as a monitoring approach,

the implemented mechanisms are taken into account to control the correct functioning of a

peer. All information are integrated into the IG model and collaboration incentives are given

as needed. It is independent from the system architecture and the considered reliability mech-

anisms can be chosen correspondingly to individual needs. The IG framework is versatile and

can for example be applied to any system where logs are generated.

The practical objective of the IG framework is (among a behaviour analysis) to attain a tar-

geted collaboration level. In contrary to the thesis’ assumptions, real world systems provide

typically altruistic peers. Hence, the actually reached collaboration will be (to some degree)

higher than the targeted one. Due to this bene�cial e�ect, the resource utilization can be

further reduced if the actual amount of violations is considered.

Despite its �exibility, the framework design is not a universal remedy. The peer’s goal(s)

and preferences are typically not known but only how to prevent speci�c failures. The mech-

anism choice can also be challenging concerning the trade-o� between reliability and resource

utilization. From a comprehensive point of view, the IG framework has two major challenges:

• Technical: A peer’s misbehaviour must clearly be provable.

This challenge consists of creating secured (not circumventable) proof logs and to provide

means for a secured and correct inspection of these logs.

• Structural: A peer’s individual preferences must be mapped to game parameters.

Preferences such as the violation bene�t are di�ering along the peer’s and unknown to

a system designer. He must estimate them to design appropriate game mechanics.

The technical challenge are under active research and neglected for the discussion here. How-

ever, the structural challenge is an important and unsolved drawback for real world applic-

ation. To demonstrate the proof-of-concept, it was compassed in the thesis by using values

that are equal and supposed to be correct for all peers. This structural drawback will be in

the following (among others) illustrated by means of the BitTorrent application.

���
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Figure �.�: The IG mechanics can interact the user interface, as exemplary shown here for BitTorrent.

�.� ��� ���������� ���� �� ���� ������������

This section discusses the related between and user interfaces. To this end, the BitTorrent

application is used that was presented in the introduction (see �gure �.� left on page �).

�.�.� Meaning for the user

The majority of personal goals require modi�cations of the application logic itself or the infra-

structure. However, some applications provide options that can be considered as sel�shness-

driven violations. An example is the BitTorrent user interface, shown as mockup in �gure �.�.

Limiting or capping up-/download bandwidths is a feature of the application functionality.

Then, only the permitted load is transferred and remaining network messages are dropped.

This has direct impact on IG’s collaboration value p.

However, the user interface can in turn be used to achieve collaboration as illustrated in

�gure �.�. Aminimumupload rate of �� kB/s is required, while the user tries to use � kB/s. Such

regulating mechanism can already be interpreted as punishment by the user. In fact, reducing

the bandwidth has been used in the last chapters as punishment in the IG. The lower part in

the �gure illustrates how a punishment could be realized with quota settings: the download

Figure �.�: Two commonly used examples of user noti�cations are shown.
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Figure �.�: The IG con�guration for the administrator could also be realized as additional area in the

control interface. In this �gure this is shown for the general game parameters.

rate is limited to �� GB for � days. Here, the user is informed within the control interface.

Figure �.� shows two further possibilities: message boxes and an information area in the

main window. Both are commonly used in several applications (e.g. the Firefox browser).

�.�.� Meaning for the system administrator

Similar to the user, the IG can be easily integrated in the administrator interface. An example

is illustrated in �gure �.�. The Game Parameters tab uses the values of the enhanced IG ap-

proach introduced before. The second tab, Mission Central, contains some elements for the

IG operation. Additional tabs can detail further collaboration incentives.

Figure �.� illustrates the Mission Central tab with practical functionalities for the IG oper-

ation. It shows an implementation aspect, denoted here as Permitted Violation Range (PVR)

covering, to trigger automatic warnings and punishments. Its principle is that failures can be

permitted to some degree or time. In the P�P video streaming, this corresponds to a slightly

Figure �.�: An IG control interface allows to specify manual and automatic collaboration incentives
(warnings, punishment etc.). It may also give a statistical overview.
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Figure �.�: The user applications setting cause practical problems for the IG. Two are illustrated in the

right BRS graph, using the values of the user interface mockups.

reduced frame rate. Collaboration values lower than the PVR are prohibited and should be dir-

ectly punished; this region is also denoted as Non-Permitted Violation Range (NPVR). For ex-

ample, warnings are sent if the PVR is used for at least ��%, i.e. for 0.65  (1− p⇤) < 0.665.

Figure �.� (left) illustrates the PVR (using the mockup settings) for the IG with BRS graphs.

The PVR thresholds can for example be determined with simulations by evaluating the reli-

ability capabilities.

This illustrative example shows on the one hand the simplicity of an IG integration into the

application user interface. On the other hand, it brings another question up: How correspond

the user settings to the IG model with payo� and collaboration values in particular? Practically

spoken, why should we require bandwidth limitation value of �� kB/s (e.g. to reach a PVR of

�.��) and not values such as �� kB/s or ��� kB/s? This corresponds to the question of determ-

ining appropriate IG payo� values (and possibly other secondary parameters), which may

be even dynamic. For example, a system may need temporarily a higher bandwidth. Fixed

game parameters (represented through a application’s con�guration) would change the actual

meaning of the parameters for an IG. This shows the challenging aspect since serval circum-

stance or the users’ individual preference are not necessarily known to the administrator. A

promising solution approach are feedback mechanisms to automatically determine parameter

values. This is considered as possible future work but further outlined in the remainder of

the thesis.
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PS

NE

Figure �.�: The IG principle is shown as population with the square as two-dimensional strategy space.

Ideally, the population strategy (PS) moves directly to the Nash equilibrium (NE).

�.� ������ �� ��� ���� ��������� �� ���������� ���� ����������

The IG used in this thesis had the strong assumption of completely independent games. How-

ever, let us consider now the following more realistic assumptions:

• The game type is changed to a repeated or evolutionary game. The IG players’ strategy

may cover several games and the payo� does not necessarily depend on a single game.

• An inspectee is not anymore fully independent but takes into account the other inspect-

ees’ strategies for the own game strategy choice.

Though these assumptions make the game mechanics more complex, the resulting IG model

is closer the real world. Sel�sh individuals may now strategize over time and they may learn

from other inspectees. An example is the situation where a user asks some friends for seem-

ingly bene�cial bandwidth limitation settings of BitTorrent.

The adaption can cause further challenges. For a better understanding, let us consider the

inspectees as a population. For the game designer, it appears as representative agent who

plays the Population Strategy (PS) as mixed strategy. Then, the collaboration incentives shift

the PS to the desired point, e.g. the Nash equilibrium (NE). This is visualized in �gure �.� for

a two dimensional strategy space. However, the strategy dynamics – especially in consider-

ation of the group dynamics – may lead to other movements. Some examples are presented

in �gure �.�. In the following, we denote the term orbit as the abstract characterization of a

random movement converging orbit departing orbit stable Orbit

Figure �.�: The general dynamics of the inspectees strategies may lead to several PS movements.
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Figure �.�: A stable orbit can also be reached by means of a dynamic inspection rate mechanism. The

inspectee’s collaboration value �uctuates around the target collaboration.

PS movement relative to a desired point, here represented by the NE (we omit the intuitive

meaning of moving ’around’ another object). Random movements will not necessarily res-

ult in a stabilized system state as the converging orbit. With a departing orbit, a stabilized

situation is neither reached, while the PS is actually moving continuously away from the NE.

Finally, a stable orbit is characterized by a periodical PS movement.

The PS movements can also be caused by other reasons than group dynamics. Figure �.�

shows the simulation results of a simple feedback mechanism applied to the enhanced IG ap-

proach. Based on an approximation of the inspectee’s violation strategy, the inspection rate is

in-/decreased until a targeted collaboration level (straight green line) is reached. The approx-

imation delay causes the strategy �uctuations around the target collaboration. In the context

of this discussion, these �uctuations represent a stable orbit, while the movement passes even

the target collaboration value itself. In addition to a dynamic PS (or inspectee strategy for the

two player game), also the NE itself can move, which possibly a�ects the targeted collabora-

tion level. A dynamic NE is for example given when essential game parameters (e.g. damage)

change. Analogue to a moving PS, reliability mechanisms may weaken the impact or even

tolerate it. This is not feasible for the general case and the dynamics should be directly taken

into account during the game theoretic considerations.

To summarize, the inspectee’s strategy as well as the NE (i.e. the population strategy)

point should be considered as dynamic values when the IG is applied to real world systems.

The system and strategy states should be evaluated over time and game parameters adapted

appropriately in order to reach the NE and/or the targeted collaboration level. This requires

another modi�ed version of the IG able to handle these dynamics. Such an evolutionary game

model is not in the scope of this thesis and declared here as possible future work.
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Part V

CONCLUS ION AND F U T URE WORK

This last part concludes the thesis by discussing the contributions in terms of the

research challenges. Finally, some possible future work is presented.
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�� C��������� �� ��� T����� . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ���

��.� Preparations & BAR Tolerance Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ���

��.� RCourse Benchmarking Suite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ���

��.� Inspection Game Approach to Achieve Collaboration . . . . . . . . . . . . . . . . . . . . . . . . . . . . ���

��.� Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ���

�� P������� F�����W��� . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ���

��.� Colluding Inspectees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ���

��.� Mapping the Real World to Game Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ���

��.� Evolutionary Game Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ���

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0083/these.pdf 

© [T.R. Mayer], [2013], INSA de Lyon, tous droits réservés



Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0083/these.pdf 

© [T.R. Mayer], [2013], INSA de Lyon, tous droits réservés



10
CONCLUS ION OF THE THES I S

We conclude the thesis now by reviewing the three essential contributions in terms of the

research challenges stated in the introduction.

��.� ������������ � ��� ��������� ����������

Due to their meaning for challenge (A), we consider the preparations for system comparison

and the BAR tolerance evaluation as one contribution. This contribution outlines together

with the related work discussion the state-of-the-art and justi�es the thesis’ main research

challenge. A comprehensive system evaluation in terms of BAR tolerance capabilities was

enabled. An extract is shown in table ��.�, while the full evaluation (see table �.� on page ��)

reviews the BAR tolerance capabilities of �� systems. The evaluation is done in a qualitative

way and is based on previous preparations, an architectural classi�cation and a taxonomy of

failures. Hence, this contribution meets challenge (A) as well as (A.�) and (A.�).

The architectural classi�cation normalizes the terms and interpretations of the literature.

Thus, it enables a comprehensive architectural comparison, used by the evaluation to draw

conclusions from the system architecture. The introduced taxonomy consists of elementary

failures of a peer; all further failure scenarios are a direct result. This was an adequate metric

for the qualitative evaluation, able to visualize the BAR tolerance capabilities in a compre-

hensible way. The evaluation revealed that practically all examined systems implement only

basic reliability mechanisms. This is interpret as only a base for optional logic or speci�c

adaptions to user dependent needs.

Table ��.�: The preparations enable a comprehensive reliability evaluation. This is shown here for the
two systems that were used during the thesis – Scribe and Basic Gossiping.
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RCourse is a library for the network simulation environment Peersim. As practical contribu-

tion, it supports the user in performing simulative studies with a special focus on robustness

issues. All essential steps in the simulation work�ow are facilitated or even completely taken

over by RCourse. Meaningful simulations can be launched once the development of the peer’s

logic is completed. It allows to study the impact of sel�shness-driven protocol violations on

the system functioning and meets thus challenge (B). RCourse contributes also to challenge

(C) by interacting with the IG framework. Quickly launched simulations evaluate the func-

tioning of the IG approach and obtain desired information e.g. needed collaboration level. In

addition, RCourse contributes to improve the qualitative BAR tolerance evaluation by facil-

itating the aggregation of more objective quantifying values. To this end, RCourse provides

pre-de�ned simulation scenarios based on the same metrics (the taxonomy of failures). An

example is shown in table ��.� with values from the simulation results of �gure �.�� (page ��),

enriching the prior table ��.�. The additional values indicate the percentage of correct system

functioning in the presence of peers that violate with the probabilities 0.1 and 0.3.

During the study of the thesis, RCourse turned out to be a crucial tool in terms of the IG

model calibration and veri�cation. By starting only one script, the whole simulation work-

�ow was taken over by RCourse, up to the result graph generation (see table A.� in appendix

A for an overview of all graphs). The design principle simplicity of utilization (comprising

also time/work savings) is thus fully realized. The isolation failure evaluation is given by the

pre-de�ned scenarios, which were helpful to identify speci�c reliability capabilities. Being

simplistic to some degree, real world network traces would be an interesting extension. The

principle adaptability to individual needs was reached in two aspects. A system designer can

adapt the logic of a work�ow phase by relying on the given �les (simulation scenarios, ana-

lysis script etc.). He can furthermore, due to the modularity of the work�ow itself, substitute

a whole phase (e.g. result analysis) by individual tools. Overall, RCourse provides a broad �ex-

ibility and provides insights to a distributed system’s behaviour with high time/work savings

at the same time. Ideally, simulation results can be obtained “with one click”.

Table ��.�: RCourse contributes to enrich the evaluation by quantitative information. To this end, it
assists performing quickly launched simulations, also providing pre-de�ned scenarios.
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The enhanced IG framework of chapter � represents a solution approach to meet challenge

(C). Exemplary applied to P�P based video streaming use case, it showed the ability to deploy

system over sel�sh-driven peer and to achieve a targeted collaboration level. An evaluation

veri�ed the functioning considering some system dynamics.

Although the IG framework itself is directly related to challenge (C), the whole part ��

is dedicated to IGs as mean against sel�sh peers. This is done straightforward from theory

to practice. As theoretical contribution, the initial IG of Dresher [���] was generalized and

extended by the the possibility false negatives. This enables to model the realistic situation

where violations are not detected during an inspection due to limited resources. A NE calcula-

tion for all games showed furthermore that the extension shifts the NE linearly proportional

to the probability of non-detection. The introduced models can be used for a broad spec-

trum of (possibly interdisciplinary) applications. The subsequent chapter discusses several

real world implementation details such as inspection architectures. An interesting outcome

was identi�ed for the case where multiple inspections impose only one punishment. Games

with multiple players can be represented as sets of �-� games, which simpli�es the analysis.

After the IG framework as practical contribution, a possible implementation was discussed

by means of the example application BitTorrent. It demonstrates the simplicity of realization

but outlines also challenges and possible future work; the latter one is addressed hereafter.

On the whole, the IG framework enables a new way of achieving reliability in distributed

systems. It is also able to �ll the BAR tolerance system design gap. This is illustrated in �gure

��.�. Using a structured approach for the development process, a system designer reaches a

speci�c implementation beginning with an abstract goal. The framework design provides a

�exibility in terms of used system architecture and mechanisms to consider any sel�sh goal.

development progress

BAR tolerant 

system  

Inspection Game as solution approach for designing BAR tolerant systems

1 System architecture definition

2 Choice of selfish goal(s) to be considered

3
Inspection target & 

procedure specification

4
Choice of targeted degree of 

collaboration and parameter 

calibration (e.g. with RCourse)

5 Inspection Game model: strategy calculation

a
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Figure ��.�: The IG approach represents a framework for the design of BAR tolerance capabilities. As
outcome, it enables to calculate parameters to achieve the targeted collaboration degree.
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The thesis’ contributions have several relations and possible interactions. This is illustrated

by �gure ��.�, outlining also design principle that was mentioned in the introduction to meet

the main research challenge (see chapter �.�, page ��). A mutual exchange should be given

between the actual system behaviour and the theoretical model to reach a speci�c implement-

ation from an abstract starting point. This has been identi�ed during the thesis as important

aspect for the implementation of reliability mechanisms. RCourse interacts with the IGmodel

in terms of parameter calibrations. Quickly launched simulations evaluate system properties

to determine an appropriate collaboration level or payo� values. Based on these parameters,

the IG approach allows a BAR tolerant system design, which can in turn be evaluated with

RCourse (compare also with �gure ��.�). The utilization of Publish/Subscribe was an adequate

use case system. The study could take place at speci�c system implementations that are close

to real world systems. At the same time, the pub/sub paradigm represents the basic user needs

(requesting/consuming information), thus being applicable to a broad range of systems.

The IG contribution has a fundamental research character with a proof-of-concept relev-

ance in terms of real world implementations. Nevertheless, it has a high scienti�c relevance.

The IG approach o�ers a complete newway of designing BAR tolerant systems as a whole. Re-

liabilitymechanisms – system-inherent aswell as arti�cially added – can be consideredwithin

one comprehensive model for the behaviour analysis of sel�sh peers. The IG approach gains

a general purpose applicability and can be applied wherever entities are controlled to avoid

some kind of violations. An example is the inspection of log �les (commonly used router,

operation system etc.) in order to detect violations.

The study demonstrated clearly the principle of the IG framework. A system designer can

bene�t from the IG mechanics for behaviour modelling and parameter calculations. How-

ever, appropriate payo� values must be used. This causes further challenges since sel�sh

peers have inherently individual preferences. These are rarely known, probably not equal

among the peers and could even by dynamic. “Good” and “dynamic” estimations, however

these terms are determined, are thus needed to seriously pass the step to broad real world

applications. Due to the heterogeneity and dynamics, only (semi-)automatic feedback mech-

anisms represent promising approaches.

Preparations and BAR Tolerance Evaluation

  RCourse Benchmarking Library
 - assists the user in simulation workflow (time/work gains)


 - enables to quickly launch simulative evaluations 


  

Inspection Game Approach for Distributed Systems  

 - model a complex and interdependent decision landscape for behaviour analysis


 - calculate parameters to attain targeted degree of collaboration


 - structured approach for the development of BAR tolerance mechanisms

 - architectural classification normalizes 


    heterogeneous notions and interpretations


 - taxonomy of elementary failures of a peer may 


    serve as base for BAR tolerance evaluations


 - evaluation of BAR tolerance capabilities 

 - RCourse: determine an adequate targeted


     collaboration level for the Inspection Game  


 - Inspection Game: create a system model that


     can be evaluated with RCourse


 


Interaction of RCourse and the Inspection Game

Figure ��.�: The graphical overview outlines the relations among the contributions.
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11
POS S I B LE F U T URE WORK

The IG approach provides several possibilities for further research. Three are introduced here

representing signi�cant improvements.

��.� ��������� ����������

Colluding sel�sh inspectees collaborate in terms of their violations in order to reach an overall

objective. In other words, they try to increase the payo� of the group as a whole. As example,

the following scenario may arrive when collaborative interactions of two peers are secured.

Figure ��.� illustrates this threat at two network structures. Let us consider an optimal case for

the sel�sh inspectees where a network segment is fully consisting of colluding peers. Then,

the colluding peers form a colluding black box. The border peers violate by removing any

PoMs and they get (probably) punished. However, due to the missing proofs, the peers’ be-

haviour inside the colluding black box cannot necessarily be clearly proven. In other words,

they could violate among the collaboration and remove or falsify the violation proofs after-

wards. The problem of colluding peers in distributed systems starts to be addressed by the

research community (see for instance [���, ���]). Hence, this issue provides many possibilities

for subsequent research with regard to the IG approach. One example question concerns the

ratio of colluding and non-colluding peers that allows to form the black box. Possible solution

approaches could identify the black box frontiers and isolate it from the network.

: border peer of colluding black box: peer in a network : violating peers inside the colluding black box

Figure ��.�: Colluding peers can create black boxes. The border peers violate and sacri�ce themselves
such that the colluding peers inside may perform undetected violations.

���
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��.� ������� ��� ���� ����� �� ���� ����������

Further possible future work is related to the representation of real world circumstances to

game parameters. As discussed before, a general drawback of the IG approach is the determ-

ination of the payo� values. Among others, they need to represent appropriate user prefer-

ences (e.g. violation bene�t) and also a suitable determination of system damage. This is a

challenging task for the system designer. Especially the meaning of the violation bene�t and

punishment depends on the corresponding users. Furthermore, these values are presumably

varying among the users and possibly even changing over time. These aspects emphasize the

need of further research to support the mapping of real world circumstances to appropriate

payo� values. Ideally, some feedback mechanism(s) would allow a dynamic adaptation to the

individual user preferences. A simple mechanism is already shown in �gure �.� (page ���).

Here, the inspection rate is in-/decreased until the targeted collaboration is reached, while

the strategy approximation delay creates �uctuations around the targeted value. However,

this is only an exemplary mechanism and more elaborated ones are desired.

Another similar issue has been discussed before in this chapter and can be described by the

following question: How to map the application settings and user behaviour to game parameters

such as the collaboration strategy? Again, some feedback mechanisms are imaginable that

adapt the meaning in form of game parameters to the dynamic system state. However, it has

not yet been addressed and is still an open problem for IGs in particular.

��.� ������������ ���� �����

Rational sel�sh individuals in the real world can strategize over time and exchange inform-

ation with other individuals (see also the discussion in section �.�). Hence, a possible im-

provement consists in the extension of the IG approach towards an evolutionary game model.

This complicates the model itself (and thus also the analysis), however, it has several advant-

ages. For example, it enables the analysis of player strategies across several games. Another

example is related to section �.� (page ���) where inspections are considered as a popula-

tion. Sel�sh individuals may be in�uenced by other in their strategy choice, e.g. by exchan-

ging seemingly bene�cial application settings. Then, the PS may be dynamic, possibly not

reaching a targeted strategy value such as the Nash equilibrium or a collaboration level. An

random movement converging orbit departing orbit stable Orbit

Figure ��.�: An evolutionary game model enables game modi�cations to redirect it movements of the
population strategy to a desired point (e.g. Nash equilibrium).
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evolutionary model could then identify such strategy movement. Game parameters could be

dynamically adjusted such that the population’s strategy is redirected to the desired strategy

value. This is illustrated in �gure ��.� with regard to the original movements of �gure �.�

(page ���).
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Part VI

APPEND IX

The appendix provides additional details to several contributions of the thesis.
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A
DETA I L S TO THE RCOURSE L I BRARY COMPONEN TS

Several detail information are here given about the components of the RCourse library in

order to process result data and generate graphs.

Listing A.�: Example source code of the R script to generate the graph D�.� Delivery Loss Rate for Ex-

perimentation Scenario ES�.� Message Loss with Loss Rate Variation.

� # ============================================================

� # RCourse Analysis Script for

� # RCourse Experiment Scenario Diagram ES3.2 D5.1

� # Delivery Loss Rate - Message Loss (Loss Rate Variation)

� #

� # Shows the dissemination completion in overlay hops

� # for different message loss rates.

� #

� # y-axis label: overlay hops

�� # x-axis label: lost messages (in %)

�� # ============================================================

�� library(Hmisc)

�� deliveryLoss_avg <- rep(0, msgDropPropsCount)

�� deliveryLoss_sdev <- rep(0, msgDropPropsCount)

�� deliveryLossCol <- 17

�� deliveryLoss_avg <- mean [ 1:msgDropPropsCount , deliveryLossCol ]

�� deliveryLoss_sdev <- sdev [ 1:msgDropPropsCount , deliveryLossCol ]

�� xaxis <- msgDropProps

��

�� ### ============= plot diagram ==============================

�� pdffilename <- "ES3.2_D5.1__MessageLossLRV-DeliveryLossRate.pdf"

�� fullpdfpath <- sprintf("%s%s", pdffolder, pdffilename)

�� pdf(fullpdfpath, width=w, height=h)

��

�� # plot curves

�� errbar(

�� xaxis,

�� 100 - deliveryLoss_avg,

�� 100 - deliveryLoss_avg + deliveryLoss_sdev,

�� 100 - deliveryLoss_avg - deliveryLoss_sdev,

�� xlim = c( min(msgDropProps), max(msgDropProps) ), ylim = c(0, 100),

�� ylab = "not delivered messages (in %)", xlab = "lost messages (in %)",

�� pch = charSquare, col = colorBlue, bg = colorBlue, axes=FALSE )

��

�� points( xaxis, 100 - deliveryLoss_avg, col=colorBlue, bg=colorBlue, pch=charSquare)

�� lines( xaxis, 100 - deliveryLoss_avg, col=colorBlue, lwd=1, lty = "dashed")

��

�� # print own xaxis labels corresponding to network size variations

�� axis(1, msgDropProps, msgDropProps )

�� axis(2)

�� box()

��

�� mtext(" RCourse Benchmark - ES3.2 Message Loss (Loss Rate Variation) - D5.1 Delivery Loss Rate", adj

=0, line=-1, col="grey" , cex=0.8, outer=TRUE)

�� title(main="Delivery Loss Rate")

��

�� if (gossiping) {

�� source("util/generate_subtitleText.r")

�� mtext(t_subtitleText, line=0.2, col="darkgray", cex=0.7) }

��

�� dev.off()

�� print( sprintf(" Created diagram ’%s’", fullpdfpath) , quote=FALSE )
⇧

���
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Listing A.�: The RCourse con�guration �le ’rcourse_Base.txt’ for Peersim structures the simulated

overlay networks in form of functional layers.

� # =================== LAYERS ===================

� protocol.0link peersim.core.IdleProtocol

�

� protocol.1uniftr peersim.transport.UniformRandomTransport

� protocol.1uniftr.mindelay MINDELAY

� protocol.1uniftr.maxdelay MAXDELAY

�

� protocol.2unreltr peersim.transport.UnreliableTransport

� protocol.2unreltr.drop 0

�� protocol.2unreltr.transport 1uniftr

��

�� protocol.3mspastry overlay.mspastry.MSPastryProtocol

�� protocol.3mspastry.transport 2unreltr

��

�� protocol.4scribe application.scribe.Scribe

�� protocol.4scribe.transport 3mspastry

��

��

�� # =================== INITIALIZERS ===================

�� init.0randlink peersim.dynamics.WireKOut

�� init.0randlink.k K

�� init.0randlink.protocol 0link

��

�� init.1uniqueNodeID overlay.mspastry.CustomDistribution

�� init.1uniqueNodeID.protocol 3mspastry

��

�� init.2statebuilder overlay.mspastry.StateBuilder

�� init.2statebuilder.protocol 3mspastry

�� init.2statebuilder.transport 2unreltr

��

�� # initializer is very important and needed by scribe

�� init.3scribeinitializer application.scribe.ScribeInitializer

�� init.3scribeinitializer.protocol 4scribe

��

��

�� # =================== OBSERVER ===================

�� control.observer rcourse.RCObserver

�� control.observer.protocol 4scribe

�� control.observer.step OBSERVER_STEP

�� control.observer.FINAL
⇧
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Listing A.�: The Experimentation Scenario con�gurations, here for ES�.�, are easy comprehensible.

� #################################################

� #

� # Peersim Configuration Script for

� #

� # RCourse ES3.2 Message Loss (Loss Rate Variation)

� #

� #################################################

�

� # =================== NETWORK ===================

�� K 1 # K wiring - ’known’ connections on the overlay

��

�� NETSIZE 300

�� network.size NETSIZE

�� MINDELAY 0 # optimal situation: no time delays

�� MAXDELAY 0

��

�� # =================== SIMULATION ===================

�� #random.seed 24680

��

�� CYCLES 500

�� TIME_PER_CYCLE 1000

��

�� TRAFFIC_STEP 1*TIME_PER_CYCLE

�� OBSERVER_STEP 5*TIME_PER_CYCLE

��

�� simulation.experiments 10

�� simulation.endtime TIME_PER_CYCLE*CYCLES

�� simulation.logtime 60*TIME_PER_CYCLE

��

�� # =================== RCOURSE ===================

�� #rcourse.distrProcId 1 # recommendation: define this as argument

�� rcourse.resultLog.filenamebase ES3.2-MessageLossLRV

�� rcourse.resultLog.path results/Scribe/ES3.2-MessageLossLRV

�� rcourse.resultLog.writeToDB true

��

�� SUBSR_EXEC_CYCLES 5

�� rcourse.trafficGen.groupCount 100

�� rcourse.trafficGen.subscribeStartCycle 95

�� rcourse.trafficGen.subscribeExecCycles SUBSR_EXEC_CYCLES

�� rcourse.trafficGen.subscriberPerGroupCount 0.05*NETSIZE/SUBSR_EXEC_CYCLES

��

�� rcourse.trafficGen.publishStartCycle 201

�� rcourse.trafficGen.publishExecCycles 200

�� rcourse.trafficGen.msgPerGroupCount 0.2

��

�� control.traffic rcourse.RCTrafficGenerator

�� control.traffic.protocol 4scribe

�� control.traffic.step TRAFFIC_STEP

��

�� # ========= RCOURSE TURBULENCE (message loss, loss rate variation) =========

�� range.1 rcourse.turbulence.dropProb;0:1|0.1

�� rcourse.malNodeProb 1 # malicious nodes probability: all nodes are malicious
⇧
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Listing A.�: The analysis script diRgrams_ES�.�.r is called by the user and invokes all further scripts.

� # ============================================================

� # RCourse Analysis Script for

� #

� # RCourse Scenario ES3.2 - Message Loss (Loss Rate Variation)

� #

� # This script generates diagrams as pdf files

� # for the RCourse experiment scenario ES3.2

� #

� # Define your simulation configuration in the

�� # referenced (or individual) script file.

�� #

�� # ============================================================

��

�� print("", quote=FALSE )

�� print("--- RESULT GRAPH GENERATION FOR ES3.2 ---", quote=FALSE )

��

��

�� # simulation configuration - for usage with rcourse traffic generator

�� source("config/ES3.2_config.r")

��

��

�� # === global / final =========================================

�� source("util/readin__global-final.r") # read in data files

��

�� source("global-final/ES3.2-D2.7_MessageLossLRV-NotificationOverheadRatio.r")

�� source("global-final/ES3.2-D5.1_MessageLossLRV-DeliveryLossRate.r")
⇧
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&&&&&(&delivered&message&percentage&per&cycle&)&

y:&&&&&&delivered&message&percentage&&

x:&&&&&&simulation&cycles&
&&global&/&per&cycle&

27& D2.4&
Network&Stress&per&Cycle&&&(&all&msg&)&&&&&&&&&&&&&&&&&

&&&&&(&absolute&overlay&hop&counts&relative&to&simulation&cycle&)&

y&:&&&&&overlay&hop&count&

x&:&&&&&simulation&cycles&
&&global&/&per&cycle&

28& D4.1&
Clustering&Coefficient&Distribution&&&&&&&&&&&&&&&&&&&&&

&&&&&(&clustering&coefficient&per&node&)&

U
JP
2
P
&

re
la
te
d
&

y&:&&&&clustering&coefficient&

x&:&&&&nodes&in&network&
&&per&node&/&final&

29& D4.3&
Partition&Size&Distribution&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

&&&&&(&nodes&per&partition&)&

y:&&&&&#&nodes&in&partition&

x:&&&&&#&network&partitions&
&&global&/&final&

30& D4.4&
Network&Partitioning&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

&&&&&(&amount&of&partitions&per&amount&of&crashed&nodes&)&

y:&&&&&#&of&partitions&&&

x:&&&&&crashed&nodes&(in&%)&
&&global&/&final&

5&

&

((ES2.2(

(

Catastrophic(Node(Crash(

(((((((Crash(Size(Variation)(

31& D2.7&
Notification&Overhead&Ratio&

&&&&&(&notify&message&hops&per&publish&call&)&

y:&&&&&notify&hops&per&publish&call&

x:&&&&&crashed&nodes&(in&%)&
&&global&/&final&

32& D5.1&
Delivery&Loss&Rate&&&(catastrophic&node&crash)&

&&&&&(&not&delivered&messages&relative&to&crashed&nodes&)&

y:&&&&&not&delivered&messages&(in&%)&

x:&&&&&crashed&nodes&(in&%)&
&&global&/&final&

33& D4.2&
Network&Clustering&Coefficient&&

&&&&&(&clustering&coefficients&for&node&crash&situations&)&

U
JP
2
P
&

re
la
te
d
&

y:&&&&clustering&coefficient&

x&:&&&&crashed&nodes&(in&%)&
&&global&/&final&

34& D4.3&
Partition&Size&Distribution&

(&nodes&per&partition&)&

y:&&&&&#&nodes&in&partition&

x:&&&&&#&network&partitions&
&&global&/&final&

35& D4.4&
Network&Partitioning&&&(catastrophic&node&crash)&

&&&&&(&amount&of&partitions&per&amount&of&crashed&nodes&)&

y:&&&&&#&of&partitions&&

x:&&&&&crashed&nodes&(in&%)&
&&global&/&final&

&

Failure&B&&

Message&Loss&

6&
((ES3.1(

(

Message(Loss(

&&&&&&Loss&rates:&10%&,&20%,&30%&&

36& D1.2&
Dissemination&Completion&&(&absolute&)&&&&&&&&&&

&&&&&(&delivered&message&percentage&per&cycle&)&

y:&&&&&&delivered&messages&

x:&&&&&&simulation&cycles&
&&global&/&per&cycle&&

37& D1.3&
Dissemination&Completion&&(&percentage&)&&&&&&

&&&&&(&delivered&message&percentage&per&cycle&)&

y:&&&&&&delivered&message&percentage&&

x:&&&&&&simulation&cycles&
&&global&/&per&cycle&

38& D2.4&
Network&Stress&per&Cycle&&&(&all&msg&)&&&&&&&&&&&&&&&

&&&&&(&absolute&overlay&hop&counts&relative&to&simulation&cycle&)&

y&:&&&&&overlay&hop&count&

x&:&&&&&simulation&cycles&
&&global&/&per&cycle&

7&
((ES3.2(

(

Message(Loss(

(((((((Loss(Rate(Variation)(

39& D2.7&
Notification&Overhead&Ratio&

&&&&&(&notify&message&hops&per&publish&call&)&

y:&&&&&notify&hops&per&publish&call&

x:&&&&&malicious&nodes&(in&%)&
&&global&/&final&

40& D5.1&
Delivery&Loss&Rate&&&(lossy&nodes)&

&&&&&(&not&delivered&messages&relative&due&to&lossy&links/nodes&)&

y:&&&&&not&delivered&messages&(in&%)&

x:&&&&&malicious&nodes&in&system&(in&%)&
&&global&/&final&

&&&&&

Failure&C&&

Message&Tampering&
8&

((ES4(

(

Message(Tampering(

(((((((Malicious(Nodes(Variation)(
41& D6&

Tampering&Rate&&

&&&&&(&reception&rate&of&modified&messages&)&

y:&&&&&delivered&mod.&messages&&(in&%)&

x:&&&&&malicious&nodes&in&system&(in&%)&
&&global&/&final&

&

Failure&D&&

Content&Pollution &
9& ((ES5( ,,,( ,,,( ,,,( ,,,( ,,,( ,,,(

&

C
e
tte

 th
è
s
e
 e

s
t a

c
c
e
s
s
ib

le
 à

 l'a
d
re

s
s
e
 : h

ttp
://th

e
s
e
s
.in

s
a
-ly

o
n
.fr/p

u
b
lic

a
tio

n
/2

0
1
3
IS

A
L
0
0
8
3
/th

e
s
e
.p

d
f 

©
 [T

.R
. M

a
y
e
r], [2

0
1
3
], IN

S
A

 d
e
 L

y
o
n
, to

u
s
 d

ro
its

 ré
s
e
rv

é
s



�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��
�
�
�
�
�
�
�
�
�
�
�
�
�
�

���

Continuation of table A.�

Failure&E&&

Message&Misuse&

10&
''ES6.1'

'

Node'Churn''

'''''''(no'publish)&&&&&&&&&&&&churn&rate:&&2%'
42& D2.4&

Network&Stress&per&Cycle&&&(&all&msg&)&&&&&&&&&&&&&!&

&&&&&(&absolute&overlay&hop&counts&relative&to&simulation&cycle&)&

y&:&&&&&#&of&handled&messages&

x&:&&&&&simulation&cycles&
&&global&/&per&cycle&

11&
''ES6.2'

'

Node'Churn''

'''''''(with'publish)&&&&&&&&&churn&rate:&&2%'

43& D1.2&
Dissemination&Completion&&(&absolute&)&&&&&&&&&&&&&

&&&&&(&delivered&message&percentage&per&cycle&)&

y:&&&&&&delivered&messages&

x:&&&&&&simulation&cycles&
&&global&/&per&cycle&&

44& D1.3&
Dissemination&Completion&&(&percentage&)&&&&&&

&&&&&(&delivered&message&percentage&per&cycle&)&

y:&&&&&&delivered&message&percentage&&

x:&&&&&&simulation&cycles&
&&global&/&per&cycle&

45& D2.4&
Network&Stress&per&Cycle&&&(&all&msg&)&&&&&&&&&&!&

&&&&&(&absolute&overlay&hop&counts&relative&to&simulation&cycle&)&

y&:&&&&&#&of&handled&messages&

x&:&&&&&simulation&cycles&
&&global&/&per&cycle&

12&
''ES6.3'

'

Node'Churn''

''''''(Churn'Rate'Variation,'no'publish)'
46& D2.2&

Network&Stress&&&(&all&msg&)&

&&&&&(&absolute&overlay&hop&counts&in&the&network&–&all&forwarded&and&direct&msg&)&

y&:&&&&&#&of&handled&messages&

x&:&&&&&churn&rate&(in&%)&

&&global&/&per&cycle&

&per&cycle&only&for&calculation&&&&

&of&appropriate&final&value&

13&

&

&

''ES6.4'

'

Node'Churn'

''''''(Churn'Rate'Variation,'with'publish)'

47& D2.2&
Network&Stress&&&(&all&msg&)&

&&&&&(&absolute&overlay&hop&counts&in&the&network&–&all&forwarded&and&direct&msg&)&

y&:&&&&&#&of&handled&messages&

x&:&&&&&churn&rate&(in&%)&

&&global&/&per&cycle&

&per&cycle&only&for&calculation&&&&

&of&appropriate&final&value&

48& D2.7&
Notification&Overhead&Ratio&

&&&&&(&notify&message&hops&per&publish&call&)&

y:&&&&&notify&hops&per&publish&call&

x:&&&&&churn&rate&(in&%)&
&&global&/&final&

49& D5.1&
Delivery&Loss&Rate&&&(lossy&nodes)&

&&&&&(&not&delivered&messages&relative&due&to&lossy&links/nodes&)&

y:&&&&&not&delivered&messages&(in&%)&

x:&&&&&churn&rate&(in&%)&
&&global&/&final&

&

Failure&F&

Information&Leak&
14& ''ES7' +++' +++' +++' +++' +++' +++'

&

Failure&G&

&Selfish&Behaviour&

15&

&

''ES8.1'

'

Selfish'Message'Loss'

&&&&&&&&&&drop&message&probabilities:&1,&0.66,&0.33'
50& D5.1&

Delivery&Loss&Rate&&&(selfish&drops)&&&&&&&&&&&&&&&&&&&&&&&

&&&&&(&not&delivered&messages&relative&to&malicious&situation&)&

y:&&&&&not&delivered&messages&(in&%)&

x:&&&&&malicious&nodes&in&system&(in&%)&
&&global&/&final&

16&

&

''ES8.2'

'

Selfish'Message'Tampering'

&&&&&&modify&message&probabilities:&1,&0.66,&0.33&
51& D6&

Tampering&Rate&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&&

&&&&&(&reception&rate&of&modified&messages&)&

y:&&&&&delivered&modified&messages&&(in&%)&

x:&&&&&malicious&nodes&in&system&(in&%)&
&&global&/&final&
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B
VD GRAPHS OF THE IN SPECT ION GAME APPROACH

Figure B.�: The VD result graphs for the EIP value evaluation related to those of �gure �.� (page ��).

ni = 20 q = 0.3 ni = 20 q = 1.0

Figure B.�: The VD result graphs for the Scribe system related to those of �gure �.� (page ��).
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ni = 20 q = 0.3

Figure B.�: The VD result graphs for the gossiping system related to those of �gure �.� (page ��).
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C
VD GRAPHS OF THE ENHANCED INSPECT ION GAME APPROACH

Figure C.�: The graph shows the inspectees’ approximations to q and is related to �gure �.� (page ���).

Scribe Basic Gossiping

Figure C.�: The VD graphs correspond to those of �gure �.� (page ���). Please note that the mean
curve di�ers slightly to the medians of �gure �.� with its statistically robustness.
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��� �� ������ �� ��� �������� ���������� ���� ��������

Scribe Basic Gossiping

Figure C.�: These results correspond to those of �gure C.� (and thus also �.� on page ���), however, the
three inspection probabilities are increased by �.��. As result, the variations are strongly
reduced for the epochs with 1 − p ⇡ 0.7.
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