. Dans-le-chapitre-trois, nous présenterons l'étude réalisée pour localiser les nanofils de silicium sur des surfaces Si0 2 et Si 3 N 4 micro-structurées sur substrats silicium

K. K. Jain, Nanotechnology in clinical laboratory diagnostics, Clinica Chimica Acta, vol.358, issue.1-2, p.37, 2005.
DOI : 10.1016/j.cccn.2005.03.014

. Title, Procedure for the analysis of biological substances in a conductive liquid medium " (GENFET) Authors, French Patent n° 94 08688

E. Souteyrand, J. P. Cloarec, J. R. Martin, C. Wilson, I. Lawrence et al., Direct Detection of the Hybridization of Synthetic Homo-Oligomer DNA Sequences by Field Effect, The Journal of Physical Chemistry B, vol.101, issue.15, p.2980, 1997.
DOI : 10.1021/jp963056h

F. Bessueille, V. Dugas, J. Cloarec, V. Vikulov, and E. Souteyrand, Assessment of porous silicon substrate for well-characterised sensitive DNA chip implement, Biosensors and Bioelectronics, vol.21, issue.6, p.908, 2005.
DOI : 10.1016/j.bios.2005.02.007

F. Patolsky and C. M. Lieber, Nanowire nanosensors, Materials Today, vol.8, issue.4, p.20, 2005.
DOI : 10.1016/S1369-7021(05)00791-1

E. Stern, J. F. Klemic, D. A. Routenberg, P. N. Wyrembak, D. B. Turner-evans et al., Label-free immunodetection with CMOS-compatible semiconducting nanowires, Nature, vol.28, issue.7127, p.519, 2007.
DOI : 10.1038/nature05498

Y. Cui, Q. Wei, H. Park, and C. M. Lieber, Nanowire Nanosensors for Highly Sensitive and Selective Detection of Biological and Chemical Species, Science, vol.293, issue.5533, p.1289, 2001.
DOI : 10.1126/science.1062711

W. Chen, C. H. Tzang, J. Tang, M. Yang, and S. T. Lee, Covalently linked deoxyribonucleic acid with multiwall carbon nanotubes: Synthesis and characterization, Applied Physics Letters, vol.86, issue.10, p.103114, 2005.
DOI : 10.1063/1.1880439

W. U. Wang, C. Chen, K. Lin, Y. Fang, C. M. Lieber-chen et al., Label-free detection of smallmolecule ? protein interactions by using nanowire nanosensors Silicon nanowire field-effect transistor-based biosensors for biomedical diagnosis and cellular recording investigation Label-free electrical detection using carbon nanotube-based biosensors Carbon nanotube transistors for biosensing applications Highly sensitive ion detection using Si single-electron transistors A silicon nanowire ion-sensitive field-effect transistor with elementary charge sensitivity Detection of DNA of genetically modified maize by a silicon nanowire field-effect transistor Recent development of nano-materials used in DNA biosensors, Advances in Natural Sciences: Nanoscience and Nanotechnology. [9] N. Field, E. Sensors, F. Patolsky, and P. Brian, " N anowire -Based Devices in the Life Sciences, pp.6-10, 2005.

Y. Wang, H. Xu, J. Zhang, and G. Li, Electrochemical Sensors for Clinic Analysis, Sensors, vol.8, issue.4, pp.2043-2081, 2008.
DOI : 10.3390/s8042043

D. V. Dao, K. Nakamura, T. T. Bui, and S. Sugiyama, Micro/nano-mechanical sensors and actuators based on SOI-MEMS technology, Advances in Natural Sciences: Nanoscience and Nanotechnology, p.13001, 2010.
DOI : 10.1088/2043-6254/1/1/013001

A. Motayed, J. E. Bonevich, S. Krylyuk, A. Davydov, G. Aluri et al., Correlation between the performance and microstructure of Ti/Al/Ti/Au Ohmic contacts to p-type silicon nanowires, Nanotechnology, vol.22, issue.7, p.75206, 2011.
DOI : 10.1088/0957-4484/22/7/075206

M. H. Abouzar, Characterisation of capacitive field-effect sensors with a nanocrystalline-diamond film as transducer material for multi-parameter sensing, Biosensors and Bioelectronics, vol.24, issue.5, pp.1298-304, 2009.
DOI : 10.1016/j.bios.2008.07.056

B. Salhi, The collagen assisted self-assembly of silicon nanowires, Nanotechnology, vol.20, issue.23, p.235601, 2009.
DOI : 10.1088/0957-4484/20/23/235601

URL : https://hal.archives-ouvertes.fr/hal-00473380

P. Ir, P. B. Em, and F. Ee, ISFET , Theory and Practice, pp.1-26, 2003.

E. Gongadze, S. Petersen, U. Beck, and U. Van-rienen, Classical Models of the Interface between an Electrode and an Electrolyte, 2009.

D. L. Chapman, LI. A contribution to the theory of electrocapillarity, Philosophical Magazine Series, vol.6, issue.25 148, pp.475-481, 1913.

D. Presented, Fabrication and Characterization of Silicon Nanowire Field Effect Sensors, 2009.

P. Bergveld, Development of an Ion-Sensitive Solid-State Device for Neurophysiological Measurements, IEEE Transactions on Biomedical Engineering, vol.17, issue.1, pp.70-71, 1970.
DOI : 10.1109/TBME.1970.4502688

J. Janata, Principles of Chemical Sensors, 2ème éditi, 2009.

S. Dzyadevych, A. P. Soldatkin, A. El-'skaya, C. Martelet, and N. Jaffrezic-renault, Enzyme biosensors based on ion-selective field-effect transistors, Analytica Chimica Acta, vol.568, issue.1-2, pp.248-58, 2006.
DOI : 10.1016/j.aca.2005.11.057

URL : https://hal.archives-ouvertes.fr/hal-00140605

Y. Sohn and Y. T. Kim, Field-effect-transistor type C-reactive protein sensor using cysteine-tagged protein G, Electronics Letters, vol.44, issue.16, pp.955-956, 2008.
DOI : 10.1049/el:20080720

Y. C. Liu, Specific and reversible immobilization of histidine-tagged proteins on functionalized silicon nanowires, Nanotechnology, vol.21, issue.24, p.245105, 2010.
DOI : 10.1088/0957-4484/21/24/245105

E. Souteyrand, Direct Detection of the Hybridization of Synthetic Homo-Oligomer DNA Sequences by Field Effect, The Journal of Physical Chemistry B, vol.101, issue.15, pp.2980-2985, 1997.
DOI : 10.1021/jp963056h

D. S. Kim, An FET-type charge sensor for highly sensitive detection of DNA sequence, Biosensors and Bioelectronics, vol.20, issue.1, pp.69-74, 2004.
DOI : 10.1016/j.bios.2004.01.025

K. Potje-kamloth, Semiconductor Junction Gas Sensors, Chemical Reviews, vol.108, issue.2, pp.367-99, 2008.
DOI : 10.1021/cr0681086

L. Yijiang, M. Meyyappan, and L. Jing, A carbon-nanotube-based sensor array for formaldehyde detection, Nanotechnology, vol.22, issue.5

N. Jaffrezic-renault, Thèse Docteur de l ' Ecole Polytechnique Spécialité : Physique Etude et réalisation de transistors à nanotubes de carbone pour la détection sélective de gaz, 2011.

H. L. Störmer, K. Baldwin, .. C. Gossard, and W. Wiegmann, Modulation???doped field???effect transistor based on a two???dimensional hole gas, Applied Physics Letters, vol.44, issue.11, p.1062, 1984.
DOI : 10.1063/1.94643

F. Demami, L. Ni, R. Rogel, A. C. Salaun, and L. Pichon, Procedia Engineering Silicon nanowires synthesis for chemical sensor applications, pp.3-6, 2010.

Y. Cui, Q. Wei, H. Park, and C. M. Lieber, Nanowire Nanosensors for Highly Sensitive and Selective Detection of Biological and Chemical Species, Science, vol.293, issue.5533, pp.1289-92, 2001.
DOI : 10.1126/science.1062711

J. Hahm and C. M. Lieber, Direct Ultrasensitive Electrical Detection of DNA and DNA Sequence Variations Using Nanowire Nanosensors, Nano Letters, vol.4, issue.1, pp.51-54, 2004.
DOI : 10.1021/nl034853b

G. Zheng, F. Patolsky, Y. Cui, W. U. Wang, and C. M. Lieber, Multiplexed electrical detection of cancer markers with nanowire sensor arrays, Nature Biotechnology, vol.249, issue.10, pp.1294-301, 2005.
DOI : 10.1021/ac049479u

Y. Cui, Q. Wei, H. Park, and C. M. Lieber, Nanowire Nanosensors for Highly Sensitive and Selective Detection of Biological and Chemical Species, Science, vol.293, issue.5533, pp.1289-1292, 2001.
DOI : 10.1126/science.1062711

G. Zheng, F. Patolsky, Y. Cui, W. U. Wang, and C. M. Lieber, Multiplexed electrical detection of cancer markers with nanowire sensor arrays, Nature Biotechnology, vol.249, issue.10, pp.1294-301, 2005.
DOI : 10.1021/ac049479u

F. Patolsky, G. Zheng, O. Hayden, M. Lakadamyali, X. Zhuang et al., Electrical detection of single viruses, Proceedings of the National Academy of Sciences, vol.101, issue.39, pp.1-6, 2004.
DOI : 10.1073/pnas.0406159101

T. Cohen-karni, B. P. Timko, L. E. Weiss, and C. M. Lieber, Flexible electrical recording from cells using nanowire transistor arrays, Proceedings of the National Academy of Sciences of the United States of America, pp.7309-7322, 2009.
DOI : 10.1073/pnas.0902752106

X. Duan, Intracellular recordings of action potentials by an extracellular nanoscale field-effect transistor, Nature Nanotechnology, vol.470, issue.3, pp.174-183, 2012.
DOI : 10.1038/nnano.2011.223

F. Patolsky, G. Zheng, and C. M. Lieber, Fabrication of silicon nanowire devices for ultrasensitive, label-free, real-time detection of biological and chemical species, Nature Protocols, vol.430, issue.4, pp.1711-1735, 2006.
DOI : 10.1038/nprot.2006.227

R. Gao, Outside Looking In: Nanotube Transistor Intracellular Sensors, Nano Letters, vol.12, issue.6, pp.3329-3362, 2012.
DOI : 10.1021/nl301623p

T. Cohen-karni, D. Casanova, J. F. Cahoon, Q. Qing, D. C. Bell et al., Synthetically Encoded Ultrashort-Channel Nanowire Transistors for Fast, Pointlike Cellular Signal Detection, Nano Letters, vol.12, issue.5, pp.2639-2683, 2012.
DOI : 10.1021/nl3011337

Z. Li, Y. Chen, X. Li, T. I. Kamins, K. Nauka et al., Sequence-Specific Label-Free DNA Sensors Based on Silicon Nanowires, Nano Letters, vol.4, issue.2, pp.10-12, 2004.
DOI : 10.1021/nl034958e

G. Zhang, A. Agarwal, K. D. Buddharaju, N. Singh, and Z. Gao, Highly sensitive sensors for alkali metal ions based on complementary-metal-oxide-semiconductor-compatible silicon nanowires, Applied Physics Letters, vol.90, issue.23, p.233903, 2007.
DOI : 10.1063/1.2746962

E. Stern, Label-free immunodetection with CMOS-compatible semiconducting nanowires, Nature, vol.28, issue.7127, pp.519-522, 2007.
DOI : 10.1038/nature05498

S. Liu and X. Guo, Carbon nanomaterials field-effect-transistor-based biosensors, NPG Asia Materials, vol.26, issue.8, p.23, 2012.
DOI : 10.1038/am.2012.42

K. Besteman, J. Lee, F. G. Wiertz, H. Heering, and C. Dekker, Enzyme-Coated Carbon Nanotubes as Single-Molecule Biosensors, Nano Letters, vol.3, issue.6, pp.727-730, 2003.
DOI : 10.1021/nl034139u

L. Goux-capes, D. Filoramo, J. Cote, J. Bourgoin, and . Patillon, Coupling carbon nanotubes through DNA linker using a biological recognition complex, physica status solidi (a), vol.43, issue.6, pp.1132-1136, 2006.
DOI : 10.1002/pssa.200566164

URL : https://hal.archives-ouvertes.fr/hal-00169639

X. Xiong, L. Jaberansari, M. G. Hahm, A. Busnaina, and Y. J. Jung, Building Highly Organized Single-Walled-Carbon-Nanotube Networks Using Template-Guided Fluidic Assembly, Small, vol.109, issue.12, pp.2006-2016, 2007.
DOI : 10.1002/smll.200700292

E. Valentin, High-density selective placement methods for carbon nanotubes, Microelectronic Engineering, vol.61, issue.62, pp.491-496, 2002.
DOI : 10.1016/S0167-9317(02)00580-4

G. Pennelli, Top down fabrication of long silicon nanowire devices by means of lateral oxidation, Microelectronic Engineering, vol.86, issue.11, pp.2139-2143, 2009.
DOI : 10.1016/j.mee.2009.02.032

L. L. Talin, F. Hunter, B. Léonard, and . Rokad, Large area, dense silicon nanowire array chemical sensors, Applied Physics Letters, vol.89, issue.15, p.153102, 2006.
DOI : 10.1063/1.2358214

F. Patolsky, G. Zheng, O. Hayden, M. Lakadamyali, X. Zhuang et al., Electrical detection of single viruses, Proceedings of the National Academy of Sciences of the United States of America, pp.14017-14039, 2004.
DOI : 10.1073/pnas.0406159101

X. P. Gao, G. Zheng, and C. M. Lieber, Subthreshold Regime has the Optimal Sensitivity for Nanowire FET Biosensors, Nano Letters, vol.10, issue.2, pp.547-52, 2010.
DOI : 10.1021/nl9034219

R. S. Wagner, W. C. Ellis, P. R. Bandaru, P. Pichanusakorn3-]-u, S. Des et al., An outline of the synthesis and properties of silicon nanowires Présentée par Synthèse et caractérisation de silicium cristallin par croissance VLS pour l ' intégration 3D séquentielle de transistors MOS Controlled Growth and Structures of Molecular-Scale Silicon Nanowires Croissance de nano ls de silicium et de Si/SiGe Directed assembly of nanowires Inkjet-Printed Lines with Well-Defined Morphologies and Low Electrical Resistance on Repellent Pore-Structured Polyimide Films Inkjet printing of transparent, electrically conducting single-walled carbon-nanotube composites, DNA Assisted Assembly of Multisegmented Nanowires, pp.89-024003, 1964.

B. R. Martin, C. D. Keating, M. J. Natan, and T. E. Mallouk, DNA-Directed Assembly of Gold Nanowires on, pp.249-254, 2001.

L. Goux-capes, D. Filoramo, J. Cote, J. Bourgoin, and . Patillon, Coupling carbon nanotubes through DNA linker using a biological recognition complex, physica status solidi (a), vol.43, issue.6, pp.1132-1136, 2006.
DOI : 10.1002/pssa.200566164

URL : https://hal.archives-ouvertes.fr/hal-00169639

M. Chen, L. Guo, R. Ravi, and P. C. Searson, Kinetics of Receptor Directed Assembly of Multisegment Nanowires, The Journal of Physical Chemistry B, vol.110, issue.1, pp.211-217, 2005.
DOI : 10.1021/jp055204m

G. Zhang, DNA Sensing by Silicon Nanowire: Charge Layer Distance Dependence, Nano Letters, vol.8, issue.4, pp.1066-1070, 2008.
DOI : 10.1021/nl072991l

K. Heo, Large-Scale Assembly of Silicon Nanowire Network-Based Devices Using Conventional Microfabrication Facilities, Nano Letters, vol.8, issue.12, pp.4523-4527, 2008.
DOI : 10.1021/nl802570m

E. Valentin, High-density selective placement methods for carbon nanotubes, Microelectronic Engineering, vol.61, issue.62, pp.491-496, 2002.
DOI : 10.1016/S0167-9317(02)00580-4

C. A. Gautier, Directed Assembly of One-Dimensional Nanostructures into Functional Networks, pp.630-633, 2001.

K. Chen, B. Li, and Y. Chen, Silicon nanowire field-effect transistor-based biosensors for biomedical diagnosis and cellular recording investigation, Nano Today, vol.6, issue.2, pp.131-154, 2011.
DOI : 10.1016/j.nantod.2011.02.001

J. Huang, R. Fan, S. Connor, and P. Yang, One-Step Patterning of Aligned Nanowire Arrays by Programmed Dip Coating, Angewandte Chemie International Edition, vol.45, issue.14, pp.2414-2421, 2007.
DOI : 10.1002/anie.200604789

X. Xiong, L. Jaberansari, M. G. Hahm, A. Busnaina, and Y. J. Jung, Building Highly Organized Single-Walled-Carbon-Nanotube Networks Using Template-Guided Fluidic Assembly, Small, vol.109, issue.12, pp.2006-2016, 2007.
DOI : 10.1002/smll.200700292

A. Javey, S. Nam, R. S. Friedman, H. Yan, and C. M. Lieber, Layer-by-Layer Assembly of Nanowires for Three-Dimensional, Multifunctional Electronics, Nano Letters, vol.7, issue.3, pp.773-780, 2007.
DOI : 10.1021/nl063056l

M. Liu, Self-assembled magnetic nanowire arrays, Applied Physics Letters, vol.90, issue.10, p.103105, 2007.
DOI : 10.1063/1.2711522

E. M. Freer, O. Grachev, X. Duan, S. Martin, and D. P. Stumbo, High-yield self-limiting single-nanowire assembly with dielectrophoresis, Nature Nanotechnology, vol.5

S. Bk, S. Shekhar, and K. Si, Semiconducting enriched carbon nanotube aligned arrays of tunable density and their electrical transport properties, ACS Nano, vol.5, issue.8, pp.6297-6305, 2011.

A. A. Poghossian, Determination of the pHpzc of insulators surface from capacitance???voltage characteristics of MIS and EIS structures, Sensors and Actuators B: Chemical, vol.44, issue.1-3, pp.551-553, 1997.
DOI : 10.1016/S0925-4005(97)00156-1

R. January, A new approach to pH of point of zero charge measurement : Crystal-face specificity by scanning force microscopy ( SFM ), Science, vol.62, issue.11, pp.1919-1923, 1998.

E. Gongadze, S. Petersen, U. Beck, and U. Van-rienen, Classical Models of the Interface between an Electrode and an Electrolyte, 2009.

B. E. Conway, J. O. Bockris, and I. A. Ammar, The dielectric constant of the solution in the diffuse and Helmholtz double layers at a charged interface in aqueous solution, Transactions of the Faraday Society, vol.47, issue.0, pp.756-766, 1951.
DOI : 10.1039/tf9514700756

P. Ir, P. B. Em, and F. Ee, ISFET , Theory and Practice, pp.1-26, 2003.

J. P. Cloarec, Des mesures d'impédances électrchimiques à la detection directe d'ADN, Thèse, 1997.

. Hbaroumi, Elaboration et caractérisations de nouvelles membranes enzymatiques pour application 'biocapteur' en hémodialyse rénale, Thèse, 2006.

J. Janata, Principles of Chemical Sensors, 2ème éditi, 2009.

A. Carré and V. Lacarrière, Study of surface charge properties of minerals and surface-modified substrates by wettability measurements, pp.1-14, 2006.

. Dans, nous avons utilisé la résine AZ5214, qui peut être utilisée comme résine positive ou négative selon les conditions d'insolation (Figure 3.2)

M. C. Wang, B. D. Gates, and ]. Salhi, Directed assembly of nanowires The collagen assisted self-assembly of silicon nanowires Field-effect-transistor type C-reactive protein sensor using cysteine-tagged protein G Electrostatic and capillary force directed tunable 3D binary micro-and nanoparticle assemblies on surfaces, Materials Today Nanotechnology Electronics Letters Nanotechnology, vol.12, issue.22 22, pp.34-43, 2008.

D. J. Shaw, Introduction to colloid and surface chemistry, 1980.

K. J. Klabunde, Nanoscale materials in chemistry, 2001.

M. J. Gordon and D. Peyrade, Separation of colloidal nanoparticles using capillary immersion forces, Applied Physics Letters, vol.89, issue.5, p.53112, 2006.
DOI : 10.1063/1.2266391

URL : https://hal.archives-ouvertes.fr/hal-00394752

F. Palazon, V. Monnier, Y. Chevolot, E. Souteyrand, and J. Cloarec, NANOTRAPS: Different Approaches for the Precise Placement of Micro and Nano-Objects from a Colloidal Dispersion Onto Nanometric Scale Sites of a Patterned Macroscopic Surface, Journal of Colloid Science and Biotechnology, vol.2, issue.4, 2013.
DOI : 10.1166/jcsb.2013.1064

D. Harame, L. Bousse, J. Shott, and J. , Ion-sensing devices with silicon nitride and borosilicate glass insulators, IEEE Transactions on Electron Devices, vol.34, issue.8, p.1700, 1987.
DOI : 10.1109/T-ED.1987.23140