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Abstract

Medical images have been widely used in modern medicine to depithe anatomy or
function for both clinical purposes and for studying normal anatomy. Analyzing medical
images e ciently and with high accuracy is a crucial step. The high-dimensionality
and the non-linear nature of medical imaging data makes their analysis a diult and
challenging problem. In this thesis, we address the medical image analis from the
viewpoint of statistical learning theory and we concentrate especiall on the use of
regularization methods and graph representation and comparison.

First, we approach the problem of graph representation and comparison for angking
medical images. Graphs are a commonly used technique to represent @atvith inherited
structure. Exploiting these data, requires the ability to e cie ntly compare and represent
graphs. Unfortunately, standard solutions to these problems are eitheNP-hard, hard to
parametrize and adapt to the problem at hand or not expressive enough. Grapkernels,
which have been introduced in the machine learning community tke last decade, are a
promising solution to the aforementioned problems.

Despite the signi cant progress in the design and improvement of graphkernels in the
past few years, existing graph kernels focus on either unlabeled origtretely labeled
graphs, while e cient and expressive representation and comparison ofjraphs with com-
plex labels, such as real numbers and high-dimensional vectors, renma an open research
problem. We introduce a novel method, thepyramid quantized Weisfeiler-Lehman graph
representation to tackle the graph comparison and representation problem for continu-
ous vector labeled graphs. Our algorithm considers statistics of subtie patterns based
on the Weisfeiler-Lehman algorithm and uses a pyramid quantization straegy to deter-
mine a logarithmic number of discrete labellings. As a result, we apprximate a graph
representation with continuous or vector valued labels as a sequence gfaphs discrete
labels with increasing granularity. We evaluate our proposed algorithm on wo di erent
tasks with real datasets, on a fMRI analysis task and on the generic problernf 3D shape

classi cation.
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Second, we examine di erent regularization methods for analyzing meidal images, and
more speci cally MRI data. Regularization methods are a powerful tool for improving
the predicted performance and avoid over tting by introducing additional information
to an ill-posed problem, such as the analysis of medical images. Towardis direction,
we introduce a novel regularization method, thek-support regularized Support Vector
Machine. This algorithm extends the “; regularized SVM to a mixed norm of both
and "2 norms. This enables the use of a correlated sparsity regularization wit the power
of the SVM framework. We evaluate our novel algorithm in a neuromuscular déease
classi cation task using MRI-based markers. We furthermore explorethe importance of
di usion tensor imaging for the discrimination between neuromuscuhbr conditions.

Overall, as graphs are fundamental mathematical objects and regularization mthods are
widely used to control ill-pose problems, both thepyramid quantized Weisfeiler-Lehman
graph representationand the k-support regularized SVMare potentially applicable to a
wide range of applications domains in computer vision, analysis of medicamages and
data mining.

Keywords: Weisfeiler-Lehman algorithm, graph kernels, regularization k-support norm,
MRI, DTI, 3D shape classi cation



Resune

Les images nedicales ont largement utili’es en nmedicine modera a n de repesenter
l'anatomie ou les fonctions, a la fois dans un obijectif cliniques ou cetude de l'anato-
mie normale. L'analyse e cace et pecise d' images nedicales est unetape critique.
La dimensionnalie ekwee et le caractre non-lireaire des d onrees d'imagerie nedicale
rendent leur analyse di cile. Dans cette these, nous nous ineressonsa l'analyse d'images
nmedicales du point de vue de la treorie statistique de l'appretissage et nous concentrons
specialement sur l'utilisation de nethodes de egularisation et de la repesentation et
comparaison des graphes.

Tout d'abord, nhous nous ineressons un probeme de repesentationet comparaison des
graphes pour lI'analyse des images nedicales et de facon plus gereral Les graphes sont
une technique largement utiliee pour la repesentation des domees ayant une structure
keriee. L'exploitation des ces donrees recessite la capacie de comparer et repesenter
e cacement des graphes. Malheureusement, les solutions usuellases probemes sont
soit NP-complets, di cilesa pararnetrer eta adapter au probeme d onree, soit insu -
samment expressives. Les noyaux sur graphes, introduitsa la comumaut de l'appren-
tissage statistique au cours de la dernere decennie, o rent unesolution promettante aux
probemes mentionres ci-dessus.

Malge le proges signi catif dans le domaine de la conception et anelioration des noyaux
sur graphes au cours des derneres anrees, les hoyaux sur graphessants se concentrent
a des graphes non-labelliees ou labellies de facon dicete, tardis que la repesentation
et comparaison e caces et expressives de graphes avec des labels coexg, comme des
nombres eels ou des vecteursa grande dimension, demeure une giseme de recherch
ouvert. Nous introduisons une nouvelle nethode, I'algorithme de Wesfeiler-Lehman py-
ramidal et quantie (pyramid quantized Weisfeiler-Lehman algorithm ), an d'aborder
le probkEme de la repesentation et comparaison des graphes labellis pgr des vecteurs
continus. Notre algorithme consicere les statistiques de motifs sousrbre, base sur l'al-
gorithme Weisfeiler-Lehman ; il utilise une strakgie de quanti c ation pyramidale pour

11
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ceterminer un nombre logarithmique de labels discrets. Par consguent, nous approxi-
mons une repesentation de graphe avec des labels continus ou vectelcomme une
f£quence de graphes avec des labels discets de plus en plus gusaires. Nousevaluons
notre algorithme propos sur deux tAches dierentes et des bases ds donrees eelles :
un tacke d'une analyse IRMf et une tache de probeme gererique de la classi cation de
formes en trois dimensions.

Ensuite, nous examinons dierentes nethodes de egularisation pour analyser les images
nmedicales, et plus speci quement des donrees d'IRM. Les nethodes de egularisation
sont un outil puissant pour l'anelioration de la performance pedite et poureviter le
sur-apprentissage via l'introduction d'informations additionellesa un probeme mal-pos
tel que l'analyse d'images nedicales. Dans cette direction, nous tnoduisons une nou-
velle methode de egularisation, la k-support regularized Support Vector Machine (les
machinesa vecteurs de support egulariges k-support). Cet agorithme etend la SVM
egularise "1a une norme mixte de toutes les deux normes; et “». Ceci permet l'utilisa-
tion d'une egularisation parcimonieuse corekea la puissance des SVM. Nousevaluons
notre original algorithme sur une tache de classi cation de maladies newmusculaires,
en utilisant des marqueursa base de IRM. Par la suite, nous exploros l'importance de
l'imagerie du tenseur de di usion pour la discrimination entre les conditions neuromus-
culaires.

Globalement, les graphesetgnt des objets mattematiques fondameraux et les nethodes
de egularisationetant largement utili’ees pour contréler des pr obemes mal-poss, I' al-
gorithme de Weisfeiler-Lehman pyramidal et quantie (pyramid quant ized Weisfeiler-
Lehman algorithm) et la SVM egulariees k-support (k-support regularized SVM),
pourraient bien étre appliqwes sur un grand eventail d'applicati ons dans les domaines
de vision arti cielle, I'analyse d'images nedicales et I'exploration de donrees.

Mots-clefs : algorithme Weisfeiler-Lehman, noyaux de graphes, egularisation, norne
k-support, IRM, IDT, classi cation de la forme en trois dimensions.
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Chapter 1

Introduction

1.1 Motivation

Medical imaging consists of a number of di erent techniques that crate images of the
human body showing anatomy or function and are used for clinical purposessuch as
diagnosing or monitoring the progression of a disease, or for studying normalnatomy
and physiology. Over the years, di erent modalities of medical imaginghave been de-
veloped, including (@) x-ray based methods - such as conventional x-rays, computed
tomography and mammography - (©) magnetic resonance imaging (MRI) - such as T1-
weighted images and di usion tensor imaging - €) molecular imaging - such as positron
emission tomography (PET) - and (d) ultrasound, each with their own advantages and
disadvantages. They are widely used in daily clinical routines, dued the fact that are
generally non-invasive, relatively fast, allowing to image the human lody and providing
relevant anatomical or function information to the doctor, while minimi zing the patient's
discomfort.

The medical imaging eld continuously improves as technology evolves mviding more

accurate and rich information. In order to extract the relevant informat ion and provide
it to the physician, analyzing medical images is an essential step in odern medicine.
The high dimensionality and the non-linearity of the data makes medicalimage analysis
a di cult and challenging problem. In this thesis, we approach medical image analysis
from the perspective of statistical learning theory Mapnik, 1995 Hastie et al., 2009 and
more speci cally we focus on the use of graph representation and di enat regularization

methods.

Graphs are a general, powerful, exible and natural way to mathematicaly represent
complex data with integrated structure. A graph consists of a set of noégs { which

23



24 Chapter 1 Introduction

represents the objects of interest { and a set of edges { which repsents the relations
between them Diestel, 2010 Gibbons, 1985. For example, a molecule can be represented
as graph by taking the atoms as nodes, while when a pair of atoms is connectadth a
bond this relationship can be represented with an edge. Extra informtion, such as the
type of the chemical bond in the previous example, can be incorporatechio the graph
as labels in the edges. Applications involving graph representation are umerous and
they occur in a number of dierent elds. We list below examples from a number of
representative elds.

Computer vision and biomedical imaging Graphs have been widely used in com-
puter vision problems over the past decades. There are often used foepresenting
images { either as grid of pixels or as a graph of adjacency regions or segmentedr{s {
and for solving problems, such as segmentatiordreig et al., 1989 or nding correspon-
dences between two imagesTprresani et al., 2008. Graphs are also used in biomedical
image analysis to represent and model organs, such as the braiN et al., 20123 Rao
et al., 2010, which can potentially be used in diagnosis or studying the human boy

Bioinformatics  Advances in technology in the last 15 years allow the generation of
vast amount of genome sequences and gene expression levels, as well asditection
of biomolecular interactions. These various data produce various type®f graph rep-
resentations, such as protein-protein interactions Canutescu et al, 2003, metabolic
pathways [Wagner and Fell, 2001], transcriptional pathways and evolutionary relation-
ships [Goldstein, 1979. A number of interesting questions raise from the analysis of these
graphs such as which genes regulate others, how the phenotype is in need, whether
we can we predict the interaction between a pair of proteins based on #ir structure,
etc. These graph representations can contain complex labels and incompleteformation
making their analysis a challenging task.

Social networks The wide spread use of internet in more and more domains with
more and more people, the augmentation of email exchange, the expand of new ares
of communications such as blogs, social networks or instant messages, crea vast
amount of data that can be represented as graphs. The analysis of these neaivks is
both of scientic and commercial interest. On the one hand, psychologits want to
study the complex social dynamics among humans and biologists want to exgre the
social rules in a group of animals. On the other hand, industries want toanalyze these
networks for marketing purposes. Detecting in uential individu als in a group of people
is relevant for marketing, as companies could then focus their adversing e orts on these
individuals, which can in uence the behavior of the whole group.

Chemoinformatics  Chemistry is another domain where graph representation and
graph comparison is applied Hapke, 2005. Finding chemical compounds with a specic
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property is a common problem in chemistry and pharmacology. A common assuntjpn
is that molecules with similar structure share also similar functional properties and as
chemical molecules have been widely represented as graph { whereoats represent ver-
tices and bonds represent the edges { so being able to compare graphs and similarity
among them is a crucial problem in chemoinformatics.

On the other hand, regularization, in the elds of machine learning and gatistics, refers
to the process of introducing additional information in order to solve an ill-posed prob-
lem or to prevent over tting [ Hastie et al., 2009. This information usually has the

form of a penalty on the complexity of the learned model or restrictionsfor smoothness.
Regularizers have been extensively used in various problems, amorigem the recon-
struction of PET images [Kaufman and Neumaier, 1994, image segmentation YWoolrich

et al., 2009 and classi cation or regression problems.

In this thesis, we focus on the following tasks: §) the analysis of fMRI data through the
representation as labeled graphs andh) the analysis of MRI data using regularization
methods. Towards this direction, we also introduce two novel larning algorithms, the
pyramid quantized Weisfeiler-Lehman graph representatiorand the k-support regularized
SVM.

1.2 Statistical learning

Given a set of n paired observationsf (xi;Vyi)g1 i n 2 RY R that is assumed to be
independent and identically drawn from the joint distribution pxy , the goal of statistical
learning is to learn a function f (x) 2 F for predicting the output y given the input x.
This prediction function f (x) is built via the evaluation of a loss function L (f (x);y)
that penalizes errors in prediction. This leads us to a criterion forchoosingf , the risk
or generalization error of the prediction function which is de ned as:
Z
R(f)= L{EX);y)dpxy (X;y); 1.1

whereL is a loss function andpyy is the joint distribution, covering the probability of

a label and an input being uncover together. Ideally, we would like tolearn a prediction
function f that will minimize the risk. However, since the joint probability pxy is
unknown, the risk is also unknown. Nonetheless we can approximatehe risk R (f ) and
empirically calculate it through the given set of paired observationf(Xi;yi)g1 i n 2
RY R, that is called the training set. Assuming that the training set is sampled
independently and from the same joint distribution pxy (i.e. the i.i.d assumption holds)
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then the risk can be approximated as follows:

X
R(D R(O)= 1 LE0)iw) (12)
i=1

Equation 1.2 s called the empirical risk and asn! 1 , the empirical risk will approach
the true risk, R(f) ' R (f) and we have statistical consistency for an estimator that
returns argmin o R ().

In real datasets we always have nite sample sizes, so choosing a plietion function
f 2 F that minimizes the empirical risk (see Equation 1.2), often leads to over tting .
This means that the empirical risk R is much lower that the real risk R. One way to
avoid over tting on the training dataset and being able to generalize well on new data
is by adding a regularization term ( f), wheref 2 F is the prediction function we
would like to learn, is a scalar parameter that controls the degree of regularization and

F ! R is a scalar valued function that penalizes the \complexity" of the prediction
function. A number of regularizers have been proposed in the literaire, among them
the Tikhonov regularization [Tikhonov, 1943, the LASSO [Tibshirani, 1996 and Elastic
Net [Zou and Hastie 2005. By adding the regularization term to the empirical risk
from Equation 1.2 the problem is formulated as follows:

xo
argfrr%iFn (f)+ % L(f (Xi):;Vyi) (2.3)
i=1

For the problem de ned in Equation 1.3 in this thesis we examine novel combinations
of regularizers and prediction functions for the analysis of medical image We justify
those choices both theoretically and empirically in the following clapters.

1.3 Thesis outline

The thesis is organized as follows: we rst concentrate on the graph comp&on prob-
lem and on our proposed method that e ciently compares graphs with continuous or
vector labels, the pyramid quantized Weisfeiler-Lehman algorithm To the best of our
knowledge, this is the rst method for e ciently comparing graphs w ith continuous
vector labels. In Chapter 2 we start by introducing basic notations and background
from graph theory (see Section2.1) and we then explore the graph comparison problem
in detail (see Section2.2 and Section2.3). In Chapter 3 we introduce our novel algo-
rithm, the pyramid quantized Weisfeiler-Lehman algorithm Our algorithm is based on
the Weisfeiler-Lehman test of isomorphism, described in Sectiof3.1, which was recently
employed as a graph kernel to compare graphs with discrete labels (s&ection 3.2). In
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order to make use of the e ciency of the Weisfeler-Lehman algorithm and aly it to
continuous or vector labeled graphs, in Sectior8.3 we present a pyramid quantization
strategy and transform the graph representation with continuous or vectorvalued labels
as a sequence of graphs with increasingly granular discrete labels. Filly, we explore
di erent tactics for combining information from the various pyramid qu antization levels
in Section 3.4.

In Chapter 4 we evaluate our proposed algorithm on two dierent tasks. The rst
one, described in Sectiom.], is from the area of fMRI analysis and its objective is to
discriminate between cocaine abusers and healthy control subjectsThe second one,
described in Section4.2, is from the area of 3D shape classi cation. In this task, we use
two datasets with 3D meshes, one that comes from the medical area, whose ebfive is
to discriminate between healthy and patient subjects that su er from a neuromuscular
dystrophy, while in the second dataset we tackle a multiclass proble of generic object
classi cation.

Apart from the graph comparison problem, in Chapter 5 we explore di erent regular-
ization methods for analyzing medical images, and more speci cally MRI dta. In Sec-
tion 5.1 we present the regularizers under investigation and we also introdee our novel
learning algorithm the k-support regularized SVM(see Section5.1.3.2. In our rst ex-
periment in Section 5.2, we investigate the use of regularization methods, the well-known
LASSO and Elastic Net and the newly introduced k-support norm with squared loss,
in the analysis of fMRI images. In the following Section5.3, we evaluate our newly
introduced learning algorithm, the k-support regularized SVMin the discriminative task
of neuromuscular disease classi cation using features extracted froni1-weighted, T2-
weighted and di usion tensor imaging. Although DTI imaging is widely used in neu-
roimaging studies, it has been recently introduced in the clinial analysis of the calf
muscle and we also investigate its signi cance for neuromuscular classation. Finally,
in Chapter 6, we conclude the thesis by summarizing the contributions (Sectin 6.1) and
by o ering some future perspectives (Section6.2).

1.4 Published work appearing in this thesis

This thesis contains material, modi ed or in extended form, from sewral published
articles. We list these publications below, indicating the corresponding sections of this
manuscript.

Katerina Gkirtzou, Jean Honorio, Dimitris Samaras, Rita Goldstein, and M atthew B.
Blaschko. MRI Analysis with Sparse Weisfeiler-Lehman Graph Statistts. In 4th
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International Workhop on Machine Learning in Medical Imaging, Nagoya, Japan,
September 2013a

Parts from Section 3.3.1and 3.4.2from Chapter 3 and Section4.1is based on the
work presented in this paper.

Katerina Gkirtzou, Jean Honorio, Dimitris Samaras, Rita Goldstein, and M atthew B.
Blaschko. FMRI analysis of cocaine addiction using k-support sparsity In Inter-
national Symposium on Biomedical Imaging San Francisco, USA, January 2013b
Section 5.2 of Chapter 5 is based on the work presented in this paper.

Katerina Gkirtzou, Jean-Frarcois Deux, Guillaume Bassez, Aristeidis Sotiras, Alain
Rahmouni, Thibault Varacca, Nikos Paragios, and Matthew B. Blaschko. Sparse
classi cation with MRI based markers for neuromuscular disease categaration.

In 4th International Workhop on Machine Learning in Medical Imaging, Nagoya,

Japan, September 2013c

Section5.1.3.2and Section5.3 of Chapter 5 is based on the work presented in this
paper.

Certain parts of this thesis are based on unpublished work done in colladration with

other researchers. \Data-guided binning" from Section3.3.1, Section3.3.2 Section3.3.3

and Section3.4.1 are based on unpublished research with Matthew B. Blaschko. Mate-

rial in Section 4.2 is based on unpublished research with Nikos Paragios and Matthew
B. Blaschko.



Chapter 2

Related work on graph
comparison

Graphs are commonly used to represent objects and the relationships amg them in
a general, powerful and exible way. Graphs consist of a set of nodesyhich typically
represents the objects of interest, and a set of edges, which exgses the relationships
among the objects. Graph representations are widely employed in a maber of areas,
such as bioinfomatics, social network analysisetc. (for more details see Sectiorl.1).

In this chapter we explore the graph comparison problem in detail. We rst introduce
key concepts and notation from graph theory in Section2.1 and we then review the most
related work on the graph comparison problem, which can be classi ed in tk following
categories, @) graph comparison methods (Section2.2) and (b) graph kernel methods
(Section 2.3).

2.1 Graph theory basics and notation

In order to understand the importance of graphs and especially the prolm of graph
comparison, we will need some basic background of graph theory. In this séan we will
de ne the terminology and the basic notation that will be used for the res of the thesis.
Most of the graph-theoretic terminology follows the monograph of Diestel Diestel, 2017
or the monograph of Gibbons {Gibbons, 1985.

29
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2.1.1 Directed, undirected and labeled graphs and subgraphs

De nition 2.1  (Graph). A graph G is a pair of sets {; E), where V is the vertex set
and its elements are calledvertices (also known as nodes or points) ande  V Vs
the edge setwhich represents a binary relation onV and its elements are callededges
(also known as arcs or lines).

The order or size of a graph G is de ned as the number of verticesjVj. Graphs are
nite, in nite, countable and so on according to their order.

De nition 2.2  (Directed and Undirected graph). A graph G = (V;E) is called
directed when the edge setE consists ofordered pairs of vertices, that is (u;v) 2 E is
considered to be directed fromu to v and u;v 2 V. When the edge setE contains
unordered pairs, that is (u;v) 2 E and (v;u) 2 E are considered to be the same edge
8u;v 2 V, it is called undirected.

who Foeq ¢

(a) Directed Graph (b) Undirected Graph (c) Induced Subgraph
Figure  2.1: Figure 2.1(a) shows an example of a di-
rected graph with \% = f1,2;3;4;5;6; 79 and E =

f(1;2);(1;4);(2;3); (2;6); (3;6); (4;1); (4: 2); (4:3);(5;5); (5, 7)g.  Figure 2.1(b) shows
an undirected graph similar to the direct graph of Figure 2.1(a). Figure 2.1(c) shows
the induced subgraph of the graph from Figure2.1(a) whenV°= f1;2;4;5;7g.

Figure 2.1(a) and Figure 2.1(b) show examples of directed and undirected graphs respec-
tively. The vertices are represented with circles, while edge are represented as arrows
for the directed graph and as lines for the undirected one. When a graph @ks not
contain multiple edges between the same pair of nodes (and of the samerektion in a
directed graph) as well asself-loops{ edges from a vertex to itself { then it is called
simple graph In this thesis, we mainly focus on simple graphs.

A graph can have labels on its nodes and/or on its edges and in this case the graps

called labeled

De nition 2.3  (Labeled Graph). A labeledgraph is de ned as a triplet G = (V;E;L),
where V is the vertex set, E is the edge set andL : X ! is a function assigning a
label from an alphabet to each element of the set X, which can be eitherV, E or
V [ E depending on whether only nodes, only edges or both are labeled.
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(a) Node-labeled (b)  Edge-labeled (c) Node and edge labeled
Graph Graph Graph

Figure 2.2:  Figure 2.2(a) shows a molecule of acetaminophen as an example of node-
labeled graph, Figure2.2(b) shows a ow network as example of edge-labeled graph,
while Figure 2.2(c) shows an abstract map, where nodes represent di erent cities, eps
represent connections between cities and the distance betweemdm is used as edge
label, as an example of graph with labels in both nodes and edges.

A graph with labels on its nodes is callednode-labeled a graph with labels on its edges
is called edge-labeled The most common cases of labeled graphs are theeighted graphs
where each edge is associated with a continuous value, also known wagight Exam-
ples of node-labeled, edge-labeled and both node and edge labeled graghs be seen
in Figure 2.2

De nition 2.4  (Induced subgraph). A graph G°= (V®E9 is a subgraphof G =
(V;E)if VO V andE? E andisdenotedasz® G. GivenasetV? V the subgraph
of G that is inducedby Vis the graph G°= (V% E9 whereE®= f(u;v) 2 E :u;v 2 VY.

An example of aninduced subgraphcan be seen in Figure2.1(c)
2.1.2 Neighborhood in graphs
Given an edgee = (u;v) 2 E, we say that e is incident with u or v when u or v is an

end-point of the edgee and nodesu;v are said to beadjacent or neighbors. Similarly,
when two edgese; 6 g share a common node then they are also adjacent.
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De nition 2.5  (Neighborhood and Degree of node). The neighborhoodof a vertex
v in a graph G, denoted asN (v), is the induced subgraph ofG consisting of all vertices
adjacent to v and all edges connecting two such vertices. Thelegree of a vertex u,
denoted asd(u), is the number of edges incident withu.

Figure 2.3: The neighborhood of nodef (in red color) is the set of nodesfc;d; e; @
depicted with green color. The degree of this nodé is four.

An example of the neighborhood of a node and its degree can be seen in Figw.3. The
neighborhood information of a graph is commonly represented as an adjacenceyatrix,
which is de ned as follows:

De nition 2.6  (Adjacency matrix). The adjacency matrix A = (Ajj )n n Of a graph
G=(V;E)isdened as :

1 if (u;u) 2 E,

Aj = .
0 otherwise

(2.1)

where u; and u; are nodes fromG.

2.1.3 Walks, paths, cycles, trees, subtrees and subtree patterns

De nition 2.7  (Walk, path and cycle). A walkw of length | in a graph G = (V; E)
is a sequence of nodes and adjacent edges:;(e1;Vz;€2;:::;€ 1;V|) such that g =
(vi;vis1) 811 i (I 1). A pathis a walk that contains only distinct nodes, while a
cycleis a closed walk, wherevi = v;.

Sometimes in the literature the walk is also called a path, in that casehe path is then
called a simple path. lllustrations of a walk, a path and a cycle on a graph an be found
in Figure 2.4.

De nition 2.8  (Connected and disconnected graph). A graph G = (V;E) is said
to be connectedif for every pair of distinct vertices u;v 2 V there is a path joining them.
A graph that is not connected is referred to asdisconnected The distance between two
verticesu;v 2 V in graph G = (V; E) is length of the shortest path fromu to v in G, or
1 if such path does not exist.
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O/
}
O—-O—-0O0—-0-0-0-0

(a) Graph Walk

'
O—~0O—~0—-0-0

(b) Graph Path

|
O=~O—~0O—~O—0O—C—0

(c) Graph Cycle

Figure 2.4: On the undirected graphs G shown above we represent with red arrows
examples of a walk from nodea to nodef in Figure 2.4(a), a path from node a to node
f in Figure 2.4(b) and a cycle from nodea in Figure 2.4(c).

De nition 2.9  (Forest, tree and subtree). A graph G when it has no cycles is called
acyclic or forest. A connected forest is calledree. A rooted treeis atree with a speci ed
root vertex vg. A subtreeis a subgraph of a graph that contains no cycles. When it has
also a designated root node is calledooted subtree

The heightof a rooted tree or subtree is the maximum distance between the degnated
root vertex and any other node in the tree or subtree respectively.Similarly to the way
of the notion of walk is extending the notion of path by allowing nodes Bach, 2009
extended the notion of subtrees tosubtree patterns also known astree-walks which can
have nodes that are equal.
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Figure 2.5: On the right is the initial graph and on the left a subtree pattern of height
2 rooted at vertex g, depicted with red color. It should be noted that the repetitions
of vertices on the subtree pattern allows the pattern to be cycle+fee.

De nition 2.10  (Subtree patterns).  Subtree patternsare labeled trees extracted from
a labeled graphG for a given depth h and a given vertexv. The vertices in the subtree
pattern are labeled in accordance of the labels of the initial verticesni G, so the labels
of neighbors in the subtree pattern are also neighbors in thes. The subtree pattern

consistent but possibly non distinct labelsL 2 ViTi,

An example of subtree pattern is shown in Figure2.5.

2.1.4 Graph and subgraph Isomorphism

The rst step towards graph comparison is the ability to check whether two graphs are
identical or not. The problem of deciding that is called graph isomorphismand is de ned
as follows:

De nition 2.11  (Graph Isomorphism).  Let G = (V;E) and G°= (V%EY be two
graphs. We call G and GP isomorphic and write G ' G if there exists a bijection
V1 VOwith (u;v) 2 E, ( (u); (v)) 2 E%8u;v2V.
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Figure 2.6:  Two isomorphic representations of theK 3.3 graph.

Such a map is calledisomorphismand if G = Git is called automorphism. Figure 2.6
shows two graphs which are isomorphic, each being a representation dfi¢ well known
K 3.3 graph.!’ Apart from deciding whether two graphs are identical or not, one could
determine whether the graphG contains a subgraph that is isomorphic toG® a problem
know as subgraph isomorphism

De nition 2.12  (Subgraph Isomorphism).  Let G = (V;E) and G°= (V%EQ be
two graphs. We call G®subgraph isomorphido G, if there is a subgraphGg = ( Vo: Eo)
G:Vo V;Eo=E\ (Vo Vo) such that exists a bijection :Vp! VOowith (u;v) 2
Eo, ( (u); (v)) 2 E%8u;v 2 V.

2.2 Graph comparison methods

As graphs are rich representations of data with inherited structure,they are consequently
a promising tool in many domains, as we have already seen in Sectiadhl. A common
and challenging problem when dealing with graphs is to be able to comparthem and
provide a similarity measurement, a problem well-known asgraph comparison

De nition 2.13  (Graph Comparison).  Given a setG of graphs, the problem of graph
comparison is de ned as a function

k:G G! R

such that k(G; G9 for G; G°2 G quanti es the similarity of G and G°
In this section we review classical approaches to this problem.

2.2.1 Isomorphism-based methods

A rst approach towards this problem is to quantify whether two graphs are identical,
i.e. isomorphic (see De nition 2.11). This produce a binary similarity measure, which

The K; is a special family of graphs, known as bipartite graphs, that it i s possible to partition the
vertices of the graph G into two subsets V; and V. such that every edge of G connects a vertex in V; to
a vertex in V, and i;j is the degree of every vertex in the Vi and V, respectively.
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equals to 1 when the two graphs are isomorphic, otherwise equals to 0. Bgite the
fact that this idea of graph isomorphic is intuitive, no e cient algorit hm is known for
it. The graph isomorphism problem is known to be within NP, but neither a proof of
NP-completeness nor a polynomial time algorithm are known@Garey and Johnson 1979
Chapter 7]. Other similarity measures are based on concepts related tsomorphism,
such as subgraph isomorphism or the largest common subgraph. Subgraph isombigm
(see De nition 2.12) is analogous to graph isomorphism but it could be used also when
two graphs have di erent sizes. Unlike, the graph isomorphism problen, the subgraph
isomorphism problem has been proven to be NP-completeGarey and Johnson 1979
Section 3.2.1]. A similarity measure can also be de ned based on the siz# the largest
common subgraph in two graphs. Unfortunately, also the problem of nding the max-
imum common subgraph is known to be NP-hard Garey and Johnson 1979 Section
3.3].

2.2.2 Graph edit distances

Apart from being computationally expensive, similarity measures basd on concepts of
isomorphism have another disadvantage. They are too restrictive in tle sense that the
graphs have to be exactly identical or they should share large identicabubgraphs, in
order to be consider similar. This is an important problem when we prauce graphs
from noisy data. More exible similarity measures that have been propogd in the
literature as part of the inexact graph matching problem are similarity measures based
on graph edit distances (GED) [Gao et al, 201J. These GED algorithms are based
on the concept of transformation a graph to another one by a nite sequence ofraph
edit operations, such as node addition or deletion, edge addition or del&in and node
or edge relabeling. These operations can have di erent costs and the sikarity measure
is de ned by the least-cost edit operation sequence. Figure.7 illustrates an example
of graph edit distance methodology for a pair of node labeled graphs. Unfortuately,
nding the optimal cost for a particular application is a hard problem, si nce it requires
solving NP-complete problems as intermediate steps.

2.3 Graph kernel methods

As we have seen in Sectio.2 the rst approaches proposed to solve the graph compar

ison problem su er from intractable computational time, since in the worst case they
require exponential runtime, or are hard to parametrize. Another family of approaches,
that have been introduced the past few years, come from the statistial learning per-
spective. This family of approaches, known assraph Kernels, tackles both the problem
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Figuge 2.7: Example of the graph edit distances methods. Given two Iabelged graphs
G;G a sequence of graph edit operations are applied to transfornG to G. More
speci cally, the rst operation is node deletion with its adjacency edges, the second
operation is node addition, then edge addition, followed by an edge del&in and a node
relabeling.

of graph representation and graph comparison through the exploitation of the grap
topology by decomposing the graph into substructures and aggregating statiics over
these substructures. This strategy considers a measure of similéy between the graphs
as a form of inner product.

Graph kernels are instances of the family of the R-convolution kerneldy [Haussler,
1999. R-convolution kernels are a generic way of constructing kernels oa set whose
elements are discrete structures such as strings, trees and graphghe idea is based
of decomposing the complex object into discrete structures and congre the respective
objects by comparing all pairs of decompositions. Every new decomposith in the
graphs would yield a new graph kernel. A rst approach would be to decompos the
graphs into all possible subgraphs. However, calculating all subgraphs iat least as hard
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Table 2.1:  An overview of the graph kernel methods. From left to right we show the
type of subgraphs used, the algorithm, its complexity when that is knavn and whether
the kernel works on unlabeled, discretely, continuous or vector labed graphs. Note
that n is the number of graphs under comparisony is the maximal number of nodes,e
is the maximal number of edgesh is the height of subtree patterns,d is the maximum
degree andk is the size of graphlets.

Y > 9
.;@@ & &F & ,§°° <
$ S & $ N &
& S S & & ¥
o1 [Gartner et al. , 2003 O(n*Vv®) X X X X
== [Mate et al., 2004 X X
= [Vishwanathan et al., 2010 o(n?v®) X X X X
Z7| [Borgwardt and Kriegel , 2005 Oo(nv%) X X X X
gy [Ralaivola et al., 2005 X X
T [Honath et al. , 2004 X X
< —| [Shervashidze et al, 2009 O(vd* 1) X
& 8] [Costa and De Grave, 2010 X X
=7l [Ramon and Gaertner, 2003 O(n?v?h4") X X
$ | [Bach, 2008 X X
587 [Mafe and Vert , 2009 X X
" a *‘EJ [Shervashidze et al, 2011] O(nhe + n2hv) X X

as deciding whether two graphs are isomorphicGartner et al., 2003. As a result, it is

necessary to limit the decomposition of the graphs only into speci ¢ ypes of subgraphs
that are computable in polynomial time [Vishwanathan et al., 201Q Shervashidze et al.

2011.

There are three main categories of graph kernels, graph kernels based aa) (valks [Gart-
ner et al., 2003 and paths [Borgwardt and Kriegel, 2003, (b) small size subgraphs $her-
vashidze et al, 2009 and (c) subtree patterns [Shervashidze et al.201]. Table 2.1 shows
a summary of the state of the art of graph kernels grouped per category, whileve review
extensively each of these categories in the following Sectioris3.1, 2.3.2and 2.3.3

2.3.1 Graph kernels based on walks and paths

Graph kernels based on walks and paths (see De nitior2.7) count the number of match-
ing pairs of walks and paths in two graphs respectively. Dierent proposed kernels
use di erent methods to compute similarities between walks and @aths. For example,
Gartner et al. propose a random walk kernel that counts the number of nodes in the
walk which have the same label, which require€(v®) computational time for a pair of
graphs [Gartner et al., 2003, where v is the number of vertices in the graphs. Vish-
wanathan in [Vishwanathan et al., 201Q reduced the runtime complexity of the random
walk kernel for a pair of graphs to O(v®) by restating the problem in terms of Kronecker
products. Although, this is an important gain in e ciency, allowing to compute kernel
on random walks faster by an order of magnitude, the complexityO(v3) is still too high
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for many applications. Apart from the computation time, kernels based on rardom walks
have to deal with two extra problems, the tottering problem and the halting problem

The tottering problem [ Mate et al., 2004 raises from the fact that walks allow the rep-
etitions of nodes and edges, which means that the same node or edge can cimite
repeatedly in the similarity measure. The same can be said for sharedycles or paths
as well. Therefore, the similarity score between two graphs can drasgtally increase,
although they two graphs do not share many structural elements. The haling prob-
lem [Borgwardt, 2007 also arises from the fact that walks allow the repetitions of nodes.
As the repetition of nodes is allowed, the number of walks within a grap is in nitely
large. In order to halt the problem, a decaying factor is commonly used @ downweight
longer walks. The e ect of this decaying factor is that longer walks are corpletely
neglected compared to shorter walks.

The marginalized graph kernel Mate et al., 2004 proposed two extensions on the ran-
dom walk kernels to overcome both the tottering problem and reduce tleir computation
time. They modify the label of each vertex with the use of the Morgan irdex [Morgan,
19643, which is de ned as

De nition 2.14  (Morgan Index). Given a graph G = (V;E), the Morgan index of
order k for nodev 2 V is de ned as
( 1 ifk=0
M (Giv)= P _ (2.2)
van (v Mk 1(v)  otherwise.

Note that the Morgan index of order k for a nodev is the number of walks of length
k starting at v in that graph G. So incorporating the Morgan index into the label of
each vertex, it increases the speci city of labels by adding information with the number
of walks staring at that vertex. In addition, they proposed a modi cation to prevent
the walk from coming back to a vertex that was just visited. Another approach based
on dynamic programming to speed up the computations of the random walk keral was
proposed in Harchaoui and Bach 2007, at the cost of considering only walks of xed
size.

[Borgwardt and Kriegel, 2005 proposed a graph kernel that compares the length of
shortest path between pairs of nodes with matching source and sink ladis in two graphs,
which requires O(v#) complexity time. Ralaivola in [ Ralaivola et al., 2003 proposed a
specialized graph kernel for chemoinformatics. Their approach is basedn molecular
ngerprinting technigues and counts labeled paths of lengthp that can be retrieved by
depth- rst search from each vertex. This can be an e cient approach for graphs with
an average node degree of 2 or 3.
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2.3.2 Graph kernels on small size subgraphs

A number of graph kernels have been proposed in the literature that ardased on lim-
ited size subgraph structures calledgraphlets A naive computation of all graphlets of
a graph, without considering labels, requiresO(vK) computations, where v is the num-
ber of nodes andk is the size of subgraphs, usuallyk 2 f 3;4;5g. Since enumerating
all graphlets is prohibitively expensive, even for smallk values, Shervashidze et al,
2009 showed that sampling a xed number of graphlets su ces to bound the deviation
of the empirical estimates of the graphlet distribution from the true distribution and
for graphs of degree bounded by, the exact number of all graphlets of sizek can be
determined in time O(vd® 1). Another kernel is the cyclic pattern kernels [Honath
et al., 2004, which counts pairs of matching cyclic and tree patterns in two grapts. In
the general case, the cyclic pattern kernel is NP-hard, but in speai cases the kernel
can be computed e ciently. Finally [ Costa and De Grave 2010 proposed the neigh-
borhood subgraph pairwise distance kernel, which decomposes a grapito all pairs of
neighborhood subgraphs of small radius at increasing distancesd.

2.3.3 Graph kernels on subtree patterns

In 2003, Ramon and Gartner were the rst to introduce a graph kernel basedon subtree
patterns [Ramon and Gaertner, 2003. The Ramon-Gartner subtree kernel with subtree
height h compares all pairs of nodes from two labeled graphs by iteratively companig
their neighborhoods. Although the subtree kernel is more expresge than kernels based
on walks, unfortunately it is computationally expensive. For a set ofn graphs it re-
quires O(n2v2h4Y), where v is the number of nodes h is the height of subtree patterns
considered andd is the maximum node degree in the graph set. Both subtree kernels by
Make and Vert [ Male and Vert, 2009 and Bach [Bach, 200§ re ne the Ramon-Gartner
subtree kernel for application in chemoinformatics and hand-written digit recognition
respectively. In [Male and Vert, 2009, Mate and Vert proposed a new kernel with a
parameter to control the complexity of the subtrees used as featuresot represent the
graphs. This parameter allows to smoothly combine graph kernels based omalks and
kernels based on subtrees. InHach, 200§, Bach proposed a graph kernel that considers
-ary subtrees with most children per node. Unfortunately, the complexity of both
kernels are still exponential in the smoothing anda parameter respectively, and both
kernels are feasible on small size graphs only. Recently a new kerngith subtree pat-
terns was introduced by Shervashidze$hervashidze et al. 2011. The Weisfeiler-Lehman
subtree kernel uses the Weisfeiler-Lehman test of isomorphisnWeisfeiler and Lehman
1968 to e ciently compute subtree patterns up to height h for discretely labeled graphs.
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For n pairs of discretely labeled graphs, the Weisfeiler-Lehman subtre&ernel requires
O(nhe + n?hv), where e is the maximal number of edgesy is the maximal number of
vertices and considers subtree patterns up to heighh.






Chapter 3

The pyramid quantized
Weisfeiler-Lehman graph
representation

Chapter 2 presented the problem of graph comparison in detail. The majority of the
methods focus on either unlabeled or discretely labeled graphs, vk an e cient and
expressive representation and comparison of graphs with complex labelsuch as real
numbers and high-dimensional vectors, remains an open research probie

In this chapter we introduce a novel method,the pyramid quantized Weisfeiler-Lehman
graph representationthat compares labeled graphs with complex labels. Our method
makes use of the e ciency of the Weisfeiler-Lehman kernel $hervashidze et al. 20117
for discrete labels by considering a pyramid quantization strategy that approximates the
continuous or vector labeled graphs with a sequence of discretely lalssl graphs.

Firstly, we introduce the Weisfeiler-Lehman test of isomorphism and then we explore
how key concepts of the test is used in the framework of the Weisfat-Lehman kernel
for comparing discrete labeled graphs in Sectior8.1 and in Section 3.2, respectively.
Then in Section 3.3 we present our pyramid quantization scheme and we conclude by
exploring di erent strategies for combing the pyramid levels in Section 3.4.

3.1 The Weisfeiler-Lehman test of isomorphism

Our proposed algorithm uses the statistics introduced by the Weisgiler-Lehman kernel,
which exploits the key concepts from the Weisfeiler-Lehman test oisomorphism [We-
isfeiler and Lehman 1969 and more speci cally its one dimensional variant. Given

43
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Algorithm 3.1  The one dimensional Weisfeiler-Lehman test of graph isomorphism
Require: Two graphs, G = (V;E;L), G%= (V2 ES%LY, with discrete labelingsL :V 7!
and L9: V97! over vertices, where is a vertex label set and the maximum
number of iterations h.

i O
2: repeat
3: if i =0 then
f Multiset-label initialization g
4: Mi(Vv) := lg(v) = L(v).
5. elseif i 1then
f Multiset-label determination g
6: Assign a multiset-label M;(v) to each nodev in G and G®which consists of the
multiset fl; 1(u)ju 2 N (v)g, where N (v) denotes the neighbor set ofv.
f Sorting each multiset g
7 Sort the elements inM;(v) in ascending order.
: Concatenate the elements inM;(v) into a string s;(v).
9 Add |; 1(v) as a pre x to s;(v).
f Sorting the set of multisets g
10: Sort all of the strings s;(v) for all v from G and G%in ascending order.
f Label compression via hashing g
11: Map each string s;(v) to a new compressed label using a functiori : 7!
such that f (sj(v)) = f (sj(w)) ( si(v) = sj(w).
f Relabeling g
12: Setli(v) := f (si(v)) for all nodes in G and G°
13:  end if
14: i i+l

15: until fli(v)jv 2 Vg6 fl;(v9jv°2 VY or i>h

two graphs G and G° the Weisfeiler-Lehman test of isomorphism determines whether
they are isomorphic or not. Algorithm 3.1 provides pseudocode for the one dimensional
Weisfeiler-Lehman test of graph isomorphism.

The key idea of the Weisfeiler-Lehman test of graph isomorphism is theonstruction of
augmented node labels from all the neighbor nodes and the compressiorténnew short
labels. This process is repeated until either the label sets of #two graphs under com-
parison di er or the maximum number of iterations has been reached. If he two label
sets di er, then the two graphs are non-isomorphic, while if the maxmum number of
iterations is reached and the two label sets don't di er, then the test was not able to de-
termine that they are not isomorphic. [Cai et al., 1989 provide examples of graphs that
cannot be distinguished by this algorithm or its higher-dimensional vaiants. Figure 3.1
shows all steps of the Weisfeiler-Lehman test of graph isomorphism fotdration i = 1
given the two labeled graphsG and G shown in Figure 3.1(a). Note that in this gure
the nodes in the two graphs have been initially labeled by their coresponding degree
of node d(v) (see De nition 2.5). Moreover the two graphs G and G° would directly
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be identi ed as non-isomorphic by the Weisfeiler-Lehman test, as tkeir label sets di er
from the beginning.

S

(a) Given labeled graphs G and G°.

TS

(b) lteration i =1 - Multi-label determination and sorting. Lines 6 to 9 in Algorithm 3.1
(c) lteration i = 1 - Label compression via (d) lteration i =1 - Relabeling graphs G and GO Line 12
hashing. Line 11 in Algorithm 3.1 in Algorithm 3.1

Figure 3.1: An illustration of the computation of the Weisfeiler-Lehman test of graph
isomorphism for the iteration i = 1. Note that the label of each nodev is its degree of
node d(v).

A straightforward de nition and implementation of the mapping function f : (I
in order to be an injective function, is to sort all the strings sij(v) 8v 2 fV [ V4
and to keep a counter variable that records the number of unique strigs that f has
already compressed. Sé assigns the current value of the aforementioned counter to a
string when the string has already been compressed, while when a&w string occurs, we
increment the counter by one and assign the new value as a compresseddhbThe sorting
of the elements with each multisetM;(v) (Line 7 in Algorithm 3.1) allows us to de ne
the same strings;j(v) for two nodes that share the same connectivity and label pattern
independent of the order of accessing their respective neighbor des in the construction

of the multiset, while the sorting of the strings s;(v) (Line 10in Algorithm 3.1) guarantees
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Algorithm 3.2  Sorting each multiset at iteration i
1: for all graphsG = (V;E) do
2. for all nodesu 2 V do

3 for all nodesv 2 N(u) do
4: append the pair (G;u) to bucket I; 1(v). !
5: end for

6: si(u) i 2(u)

7. end for

8: end for

9 for k=11j j do

10. for all (G;u) in bucket k do
11: appendk to sj(u) in G

12:  end for

13: end for

that all identical strings will be mapped to the same compressed labsl as they occur
in blocks. This implementation requires that the alphabet has to b e su ciently large

in order for f to be injective. For two graphs G = (V;E) and G°= (V%E9 of order
jVi=jVYy=v,j j=2vis sucient. Of course any other injective mapping could be
used and will give an equivalent result. Finally, it should be noted that in Algorithm 3.1

set of all nodes in the input graphs. In the case of Algorithm3.1 the domain is de ned
inVvI[ Ve

Complexity ~ The e ciency of the compression of the labels via the hashing scheme
described above depends on the complexity of the sorting method. i€en the fact that
the labels of the graphs are discrete and their cardinality is upper-bunded byj j=2v,
the counting sort algorithm is appropriate for sorting the multisets. T he counting sort
algorithm has a complexity of O(n + k), where n is the number of elements to be sorted
and k the number of buckets. In our case the number of elements to be sordefor the
multisets Mi(v) (Line 7 in Algorithm 3.1) is in the worst case linear to the maximal
number of edgese and if we select ak = O(e), we end up with a complexity of O(e).
Analytical pseudocode for the counting algorithm is provided in Algorithm 3.2. Sorting
the resulting strings s;(v) (Line 10in Algorithm 3.1) is also of time complexity O(e) via
the radix sort algorithm. As the Weisfeiler-Lehman test runs in h iterations the total
runtime is O(he).

!Note that in the pair ( G;u) by G we declare the identi er of the graph G in the graph dataset.
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Link with subtree patterns There is a strong link between the compressed labels
and subtree patterns (see De nition 2.10. More speci cally a compressed labell;(v)
corresponds to a subtree pattern rooted at noder of heighti. For example, in Figure 3.1

if a node has a new compressed label, 9, this means that there is a sub¢ pattern of
height 1 rooted at this node, where this root node has label 3 and its righbor nodes
have labels 1, 2 and 3 respectively.

3.2 The linear Weisfeiler-Lehman subtree kernel

As mentioned above in Section3.1 the Weisfeiler-Lehman test of graph isomorphism is
iterative. For each iteration i, we obtain new compressed labelg(v) for all nodesv as
we have seen in Lin€l2 in Algorithm 3.1. We emphasize that the labeling is concordant
between the graphs under comparison, that means if and only if the nodeis G and G°
have identical string s;(v), they will get identical new labels I;(v). These compressed
labels, i.e. the subtree patterns, have been recently employed in a kernelor graph
comparison, the Weisfeiler-Lehman subtree kernel§hervashidze et al. 2011, De nition
4] which is de ned as follows:

De nition 3.1  (The linear Weisfeiler-Lehman subtree kernel). Let G and Gbe
graphs. Dene as the set of symbols that occur as node labels at least once i
or GPat the end of the i-th iteration of the Weisfeiler-Lehman algorithm. Let ¢ be the
set of original node labels ofG and G° Assume all ; are pairwise disjoint. Without

i :1G;GY i ! Nsuchthat {(G; j)isthe number of occurrences of the letter j;
in the graph G.

The linear Weisfeiler-Lehman subtree kernel on two graphss and G°with h iterations

is de ned as
kI(h)WLsubtree (G;G()Z (h)(G); (h)(G() (3.1)
where
Mm(G) = 0o(G; 01);::5 oG5 g o)iiiis n(Gy h1)iiiis n(GS oy ) (3.2)
and

MG = o(GY o1);iits o(G% g o)iiiis n(GS n1)iiit w(G% k) (3.3)
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Table 3.1: An example of the linear Weifeiler-Lehman subtree kernel betweente two
graphs shown in Figure3.1(a) for subtree patterns up to depth h = 1. The rst row
shows the labels encountered up to deptln = 1, which contains the original node labels

o as well as the compressed node labels; for the iteration i = 1. The second and
the third row contains the histogram over the labels for graph G and G° respectively,
while the fourth row shows the nal kernel value between the givengraphs.

Original node
label C d.node label
al ‘?IS_O{ 5 ompresse }TIO e labels 1 {
Labelsf o; 10 = f1, 2, 3, 4, 5 6, 7, 8 9 10, 1d
) (G) = (3 1, 3, 0, 3, 0 1, 1, 1, 1, 0)
0 (GY = (2, 2 3 1, 1, 1, 2, 0, 1, 0, 1
kI(l)WLsubtree (G; GC) = (h)(G); (h)(Gcb =23

Note that the features () are histograms of the original and compressed labelsg. his-
tograms of subtree patterns of depths 0:::; h. Table 3.1 shows an example of the linear
Weisfeiler-Lehman subtree kernelkl(l)wLsulotree (G;GY and their respective features ;)
between the two graph G; G® shown in Figure 3.1(a) for subtree patterns up to depth
h=1.

Complexity A key advantage of these statistics ()(G) is that they are computable in

linear time in the number of edges in the graphs and in the depth of the gbtree patterns.

More speci cally, for n graphs and subtree patterns of depth up toh, the complexity of a

joint computation of all statistics over all graphs is O(nhe+ n2hv), where eis the maximal

number of edges, andv the maximal number of vertices Bhervashidze et al. 2011,

Theorem 7]. This complexity can be achieved by processing afl graphs simultaneously,
meaning conducting the steps of multiset label determination, soring each multiset,

label compression and relabeling of Algorithm3.1 for all n graphs simultaneously. After
we have calculate the (h) feature explicitly on each graph G, we can calculate the
pairwise inner products e ciently. Moreover the use of an e cien t hashing scheme allows
the algorithm to enumerate relevant (non-zero) dimensions of an expondially sized

feature space e ciently. In this way, the matching can be done in corstant time, and

the hash needs only to store patterns present in the graph instanceghereby maintaining

constant complexity across iterations. As before, in order for the mappig schemef to

be injective, a su ciently large label set is required. In the ¢ ase ofn graphs andh

iterations, j j = nv(h+1) su ces.

Memory requirements in practice The memory requirements of these statistics
) (G) in practice depends on the used learning setting. In the case of an ductive

learning setting, where initially a kernel is computed over only the training set of graphs,

in order to classify any test graph the explicit mapping schemd occurred in the training
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set is required. That means that one needs to maintain record of all the mppings
li(v) = f(si(v)) for each iteration i and for each distinct s;(v), ending with a O(neh)
memory in the worst case. In contrast, if a trasductive setting is ued, where the
test set is already known, the kernel matrix of the whole date set (boh training and
testing) can be computed without having to keep the mappingf , minimizing the memory
requirements.

In addition to these computational bene ts, linear Weisfeiler-Lehman graph kernels have
been shown to perform comparably to or better than a number of more comptationally

complex kernels Ehervashidze et al. 201]]. Finally, we note that the linear Weisfeiler-

Lehman algorithm at depth O computes exactly the bag of words representatin com-
monly used in natural language processingHarris, 1954 Ko, 2013 and computer vi-
sion [Qiu, Fei-fei, 2009.

3.3 The pyramid quantization strategy for continuous la-
bels

The Weisfeiler-Lehman algorithm is e cient precisely because it makes use of a dis-
crete labeling over nodes, which enables an e cient hashing scmee in order to scale
linearly in the number of edges and in the height of subtree patterns.A problem occurs

when extending this method to continuous vector labeled graphs. Toovercome this,

we propose a pyramid quantization strategy similar to the one used by Grauman and

Darrell, 20073b] to determine a logarithmic number of discrete labelings with inceasing
granularity for which we run the Weisfeiler-Lehman algorithm. In other words, we ap-
proximate a graph representation with continuous valued labels as a semgnce of graphs
with discrete labels of increasing granularity.

3.3.1 The pyramid quantization strategy

Given a vector labeled graphG = (V; E;L), whereL : V ! RYis the function assigning a
d-dimensional vector label to each vertex, we want to derive a hieraifgical decomposition
of RY as multi-resolution quantizations. The multi-resolution quantizati ons will then be
used to determine the discrete labeling of increasing granularity This can be expressed
as a two step process, rst we construct a quantization functionQ® : R4 1 () that

will encode theRY into a quantization of a given resolution j g)j = 2'. The quantization

granularity, where L = dog,De, D j Vj = v is the number of unique values in the
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imagée? of the setV under L. Note that the single quantization bin for Q© is big enough
so that all data points from the image of the setV under L receive the same discrete
label, while as quantization resolution moves from coarser to ner, we ed up with Q(-)
that contains quantization bins that are small enough so each unique data pait from
the image of the setV under L falls into its own quantization bin.

The second step is to compose the quantization functio(") with the labeling function

sequence of graphs with discrete labels of increasing granularity:

ML
G=(V:E:L)°

GO = (VE;L@) (v E LG (3.4)
where LO : v 1 (Vis dened to be QI L, and { is the discrete label alpha-
bet for a given levell of quantization. Note that the topology of the graph does not
change in the sequence of graphs, only the continuous labels are disdeetd. To achieve
the discretization of the labels, we explore two di erent strategies for the quantization
function: (a) a xed binning scheme and (b) a data guided one in the following sections.

3.3.1.1 Fixed Binning

In the xed binning scheme the quantization function recursively decomposed into quan-
tization resolution, where in each quantization level the bins that patition the space
are half the size in alld dimensions of the input space compared to the previous one.
The number of bin of eachQ") is given by r() = TIBﬁ , where D is the number of
unigue values in the image of the vertex se¥ under label function L. The xed binning
scheme can be performed e ciently in high dimensions using, e.gk-d trees Bentley,
1979. The complexity of the resulting quantization is bounded by O(d max(v;k)L),
whered is the dimension of the input space\v is the number of vertices to be quantized,
k is the maximum histogram index value in a single dimension and. is the number of
pyramid levels [Grauman and Darrell, 20074. With constraining k v and ensuring

that L is logarithmic in v, we end up with a simpli ed complexity of O(dvlogv).

3.3.1.2 Data guided binning

The idea of data guided binning is to derive a hierarchical butdata-dependentdecom-
position of the feature space that will encode the multi-dimensionalfeatures as multi-
resolution histograms with non-uniformly shaped bins. The rst step in this scheme

ZNote that when we are interested in the quantization of the RY given a set of vector labeled graphs
G =fGi =(Vi;Ei;Li)o1 i n, whereL; : V! RY, then D is number of unique values in the union of
the images of the label functions L; 8i 2f 1;:::;ng.
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is to generate the structure of the data guided pyramid hierarchy that will de ne the
bin placements. To achieve this we perform an agglomerative hierarcha clustering on
image of the vertex setV under the labeling function L using the Ward's minimum
variance method Ward, 1963.% Ward's methods minimizes the total within-cluster sum
of squares criterion which is de ned as follow for two clusters;j :

S

2N ik (3.5)

d(i;j ) = m
where n; and n; are the number of elements in clusters and j, X; and X; are the
centroids of clustersi and j and k k, denotes the Euclidean distance. At the initial
step, all clusters are singletons i(e. clusters containing a single unique point). Then
we apply the algorithm recursively and at each step the pair of clustersvith minimum
between-cluster distance given from Equation3.5 are merged.

Once the data guided bins have been constructed.g. the centroid of each cluster in all
L levels has been determined), we can embed eadhdimensional data point ¢; 2 RY 8i

to the multi-resolution quantization bins of L levels, where in each level there are
2 bins. In order for a point ¢; to be mapped at the correct bins at the quantization
pyramid, we need to compare it to the two appropriate centroids at eachl pyramid

level using the Euclidean distance and pushed down the hierarcbal tree along that
branch that is rooted with the closest centroid at each level. At each omparison with

the centroids, we also keep a record of a binary bin indey with its path along the

quantization pyramid. As the quantization pyramid has L level, in total 2L distances
must be computed between a point and the pyramid's bin centroids. ©ncerning the
space requirements, this approach require®(2-) = O(v) d-dimensional feature vectors
to store for all the bin centroids of the hierarchical pyramid, sincel is logarithmic in

v, and O(L) = O(log, V) binary indexes for a set ofv feature vectors. Note that the
bin centroids are calculated only once using the Ward's method durig the training.

Finally, any other hierarchical clustering technique, could also ke used without changing
the main idea.

In Figure 3.2, we illustrate the di erence between the two pyramid quantization strate-
gies de ned above for the same 2D space. In Figur&.2(a) we see that the space is
partitioned into uniform-shaped bins, while in Figure 3.2(b) the data themselves deter-
mine the partitioning, as a result the bins better decompose the spaz into clusters.

3In practice when the input space is very large, we can randomly select a subset of representative
data to perform the agglomerative hierarchical clustering.
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(b) Data guided binning

Figure 3.2: An illustration of the two di erent strategies of quantization of a comple x
space. Both Figures3.2(a) and 3.2(b) depict the space partition boundaries for two
resolution levels for the same 2D space. In both gures, the left plot cotains the
coarser resolution level, while the right plot contains the ner one. In Figure 3.2(a) the
complex space is carved into uniformly-shaped partitions, while inFigure 3.2(b), the
data guide the resulting partition of the complex space. As a result, he bins on the
right are better positioned to decompose the space based on the data chass.

3.3.2 The intersection Weisfeiler-Lehman subtree kernel

Independent of the binning strategy we follow, each graph with vectonalued labels after
the pyramid quantization step described in Section3.3.1is represented as a sequence of
graphs with nested quantizations of increasing granularity of discretdabels as described
in Equation 3.4 We run the Weifeiler-Lehman algorithm on each graphG{) of the

sequence in order to produce the featuresglh)) of subtree patterns up to a given height

h.

De nition 3.2  (The intersection Weisfeiler-Lehman subtree kernel).

Let GO = (V;E;LM) and G = (VO E® L) he two graphs of the same quantization

level I, where LO : v 1§ and LAY - vor I of two vector labeled graphs

G = (V;E;L) and G%°= (VCE®LY, whereL : V! RYand L?: vVO! RY. Dene
M as the set of symbols that occur as node labels at least once &(") or G
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at the end of the i-th iteration of the Weisfeiler-Lehman algorithm. Let 8) be the set

)
|

of original node labels ofG(") and G1). Assume all are pairwise disjoint. Without

loss of generality, assume that every i(') =f i('l); i _(_')(l)_g is ordered. De ne a map
i
1 feM;cWg 1 N such that (GO; iﬁ')) is the number of occurrences of the

M

letter ; in the graph G(.

The intersection Weisfeiler-Lehman subtree kernel on two graph$s and G®with h iter-
ations is de ned as

h | |
K wisusree (GG = 1 (1 (GM); (6T (3.6)
where
| | | | |
G = oGV gz oGV )i w (@D (i w (@ Y )
I o) hi '
| | | | |
Gy = oGW; i o(GW; Wy (G s (@0 V)
0 o' hj i
and
w0
| | . | |
N (R (I min (GY; ) (GW; ) 3.7)
i=0 j=1

Note that the features Elh)) are histograms of the original and compressed labelgg. his-

tograms of subtree patterns of depths 0:::; h for a given quantization level I, while the
intersection Weisfeiler-Lehman subtree kernel counts the ovdap of features Elh)) between
two graphs GO = (V;E; L") and GW = (v EC L) which match at the given quan-
tization level |. Note that the intersection Weisfeiler-Lehman kernel for a given biming

resolution | is a positive-de nite similarity function [ Odone et al, 2005.*

An example of the quantization step of the pyramid quantized Weisfeile-Lehman graph
representation is illustrated in Figure 3.3. Given the graphs G = (V;E;L);G° =
(VEE®LY with continuous vector labels in their nodes,i.e. L : V! RY and L°:
VOl RY, shown in Figure 3.3(a), the rst step is to determine the hierarchical decom-
position of the labeled space given, for example, by the data guided biring strategy.
The red and green line in Figure3.3(b) depict the thresholds for achieving two di erent
guantization resolutions with two and and four discrete labels, respetively. For these
two quantization resolutions we end up with a sequence of discreted labels for each

“We could also use the linear kernel over the subtree patterns, but the histogram intersection kernel
has been shown to give better results Pdone et al., 2005.
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TS

(a) Initial graphs with multi-dimensional labels.

| | 2 Labels

| 4 Labels

[ [ 1 [ 1 [ 1
[3 6] [37] [24] [2 5] [2 6] [12] [13]

(b) Hierarchical decomposition of the multi-dimensional s  pace.

TP TS

(c) Relabeled graphs of the quantization level 1 with  (d) Relabeled graphs of the quantization level 2 with
2! = 2 number of discrete labels. 22 = 4 number of discrete labels.

Figure 3.3:  An illustration of the quantization step of the pyramid quantized
Weisfeiler-Lehman graph representation. Figure3.3(a) shows the two given multi-
dimensional labeled graphs under comparisorG = (V;E;L) and G° = (V%E%LO,
whereL : V! R2 L%: V01 R2and the label of each nodev is de ned as its
degree of noded(v) angl the summation of the degree of nodes of its neighborhoods
Ny, i.e. L(v) = [d(v); 2y, d(u)]. Figure 3.2(b) shows the hierarchical decomposi-
tion of the multi-dimensional labeled space given by the data guided bining strategy
(see Sectior.3.1.2. With the green and red line are depicted the thresholds for achiev
ing two di erent quantization resolutions with two and and four discr ete labels respec-
tively. Figure 3.3(c) shows the two relabeled discretized graphss® = (V;E;L®)
and GI = (VEECLM) where L® :v 1 O o yor O gpgj Wij=2
is the coarser resolution levell = 1 with two labels, while Figure 3.3(d) shows the
two relabeled discretized graphsG@ = (V;E;L@) and G1 = (V®E® L) where
L@ v @ 1 yor @ andj @Dj=4isthe ner resolution level | = 2 with
four labels.
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graph
QL 1 2 1 2
G=(V;E;L) GW;G@ = (V;E;LW);(V;E;L?)
12f1;2g
and
QLo
Go= (VeESLY G™;6® = (vVOESLW); (VAESL®)
12f1;2g

also shown in Figure3.3(c) and in Figure 3.3(d), whereL() : v ! g) and L9V ; vO1

8), while | gl)j = 2 is the coarser resolution with two labels andj gz)j =4 is the ner
resolution with four labels. For each levell of the graph sequence the Weisfeiler-Lehman
algorithm is applied to produce the E'h))(G(')), while for each pair f G!); GXg for all
guantization levels | the intersection Weisfeiler-Lehman subtree kernel will detemine

the similarity between the two graphs for that level of quantization.

3.3.3 The monotonicity property of the pyramid quantized Weisfeiler -
Lehman kernel

We may show the following monotonicity property of the pyramid quantized Weisfeiler-
Lehman kernel described in Sectior8.3.2:

Theorem 3.3. Monotonicity property of the pyramid quantized Weisfeile r-
Lehman kernel with the granularity of the node labeling
The Weisfeiler-Lehnman algorithm for a given heighth of subtree patterns produces his-
tograms whose intersection are monotonically decreasing in thgranularity of the graph
node labeling:

h [
8,660 1 (G (G 1 Gy ey i (38

where '(h)(G(')) is the histogram of subtree patterns of heighh computed at pyramid
levell, and levell + 1 is more granular.

Proof. We rst note that the number of subtree patterns of a given depth, h, of the
Weisfeiler-Lehman algorithm is dependent only on the topology of the graphand not
on the graph labeling:

kK (n(GMki=v (h+1) 8l (3.9)

wherev is the number of vertices in the graphs. We next note that the numberof vertex
labels is strictly monotonic in the pyramid level, j 'j < j '*1j, and that for each label
2 !atlevel |, there exist a non-empty set of labelsS  '*1 at level | + 1 such that
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L"Tw)2S 0 L '(uy= . To complete the proof, we observe that
h i
8c 8l k I(h)(G(I;])k1= k '(;§(G<'+1>)k1 Ak (GMko < k '(;§(G<'+1>)kq
|
=)8 G06W a1 (G (&M 1 Gy ety
(3.10)

wherek kg is the "o pseudo norm. O

As the Weisfeiler-Lehman algorithm with h = 0 specializes to the bag of words model,
we have as a result that our graph kernel for continuous vector valued nogllabels strictly
generalizes the pyramid match kernel Grauman and Darrell, 20074.

3.4 Exploring the pyramid quantized Weisfeiler-Lehman
features

Given a set of vector labeled graph$s = fG; = (Vi;Ei;Li)g1 i n whereL : V! RY%and
a classi cation label Y; for each graphG;, we want to classify them through the informa-
tion created by the Weisfeiler-Lehman algorithm after the quantization of each the vector
labeled graph into a sequence of discrete labeled graphs with incréag granularity as
described in Section3.3. In order to maximize their classi cation performance and ex-
plore better the pyramid quantized Weisfeiler-Lehman features weexamine two di erent
approaches, one through the combination of the intersection WeisfeileLehman kernel
of the di erent pyramid levels in Section 3.4.1 and another through the evaluation of

each individual subtree pattern é'h)) of the Weisfeiler-Lehman algorithm in Section3.4.2

3.4.1 The pyramid quantized Weisfeiler-Lehman kernel

Applying the intersection Weisfeiler-Lehman subtree kernel (ge De nition 3.2) for each
pair of graphs G(); GI) for all the pyramid levels from Equation 3.4, we end up with
a sequence of intersection Weisfeiler-Lehman kernels for a givereight h of subtree

patterns :
0 L
K m(G@;c0);::: k() (G0; 61 (3.12)
whereK((L))(G(');Gq')) = | E'h))(G(')); E'h))(Gq')) . Since we have a sequence of Weisfeiler-

Lehman kernels from the di erent quantization levels and taking also nto consideration
the observation by [Lanckriet et al., 2004 that using multiple kernels instead of a single
one can enhance the interpretability of a decision function and impree its performance,
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we would like to combine this sequence of kernels into a single oneA convenient ap-
proach is to consider that the kernelK (G; G9 is actually a convex combination of basis
kernels:

b 0 S

K n)(G;GY = d|K(h)(G(');GQ')); with d 0,  d =1: (3.12)

1=0 1=0
For determining the weights d; we consider two di erent approaches a automatic way
through the framework of multiple kernel learning and another through a xed weight
scheme Remember that for a single kernel, wherd X;;yiglL, is the learning set with x;
belongs to some input spaceX andy; 2 Y is the target value for pattern x; the solution
of the learning problem has the form :

X

f(x)= iK (X xi) + (3.13)
i=1

3.4.1.1 Multiple kernel learning

The automatic determination of the weights d; of the linear combination of our multiple
kernelsk ((L))(G('); G1)) as well as the coe cients ;; in a single optimization problem is
known as the multiple kernel learning (MKL) problem [Zien and Ong 2007, Sonnenburg
et al.,, 2006 Lanckriet et al., 2004 Rakotomamonjy et al., 200§. The multiple kernel
learning approach addresses the problem through a weighted, norm regularization
formula. In addition, a "1 norm is posed as a constraint on the kernel weights;. This
additional constraint encourages sparse set of basis kernels as an inhet property from
the "1 norm. The primal MKL problem is de ned as

min }Xh 1jjfjj2 +an i
ffig:; i;d|2|=0 d HIH, =1 I
styi f6M+y 1 8 (3.14)
1=0
i 08
X
d| =1; d| 0 8l

1=0

where each functionf, belongs to a di erent RKHS H; associated with a kerneIK((L)).
Note that the smaller the d; is, the smootherf| should be. Whend, = 0, jjfjjn, is
also equal to zero to yield a nite objective value. MKL transforms the problem into a
smooth and convex optimization problem and uses a gradient descent approla¢o solve

it.
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3.4.1.2 Fixed weight kernel

Due to the constraint of the "1 norm on the weight the multiple kernel learning leads
to sparse solutions, which sometimes could result in poor performames when all the
pyramid level contain approximately equal important information. In ord er to overcome
this problem we additionally consider a xed weight scheme for combiry the di erent

pyramid levels of the quantized Weisfeiler-Lehman kernel, and morspeci cally an equal
weight. That mean that the nal kernel is de ned as

1 -
L+1°

X
Km(GGY=  dK{) (G";GW); whered, =
=0

(3.15)

3.4.1.3 Visualization

As the pyramid quantized Weisfeiler-Lehman kernel is de ned to bea linear combination
of the intersections of the histograms of subtree patterns up to a givereight h and as
the intersection kernel can be considered as a \quasi-linear" kerrig¢Vedaldi et al., 2009,
we may use these properties to develop visualizations that approxiate the learned
discriminant functions. We note that a discriminant function for cl assc has the form:

X 0 (aMy. O x 0
fo(G)= b+  d j | (G): (@GD) b+ dibw; (G (3.16)

o j (h) (h) o (h)
wherel| indexes the levels of the pyramid and indexes over the samples in the training
set. At each pyramid level | there is exactly one subtree pattern of heighth rooted
at each vertex of the graph. We may generate for each vertex a visualization of
the function by coloring each vertex by the weight in w; corresponding to the subtree
pattern rooted at that node. We may additionally sum the weights over all levels of the
Weisfeiler-Lehman iterations. Due to the bias term, b, the visualizations show only the

relative contribution of a region of the graph to the discriminant function.

3.4.2 Elastic net on the pyramid quantized Weisfeiler-Lehman subtre e
features

In order to explore the contribution of each quantized Weisfeiler-Ldyman subtree feature
0]
(h)

use of the statistical estimator Elastic Net, which is described in etail in Section 5.1.2

(GM) for all the quantized pyramid levels | and for all depths up to depth h, we make

We note that the Elastic Net combines™; with ~, regularization in order to appropriately
trade o sparsity with a low variance estimator in the case of correlated sgnals. Formally,
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if E'h))(Gi(')) is a feature vector of subtree pattern up to heighth for a given quantization

level | for a graph G;j, the elastic net computes

"zargmin ok K3+ 1k ky+ 1% h; GG “. (3.17)
2Rd n._
where 1, » 0 are scalar regularization parameters. This objective includes the
lasso [Tibshirani, 1994 and ridge regressionTikhonov, 1963 as special cases by setting
2 Oor 1 to zero, respectively. We can see this as a tradeo between the highetjree
of sparsity achieved by the lasso, and the low variance estimates achied by ridge
regression.

Visualization Visualizations of the learned discriminant functions is easy to obtain
when the Elastic Net is employed over the pyramid quantized Weiséiler-Lehman subtree
patterns. Each voxel is associated with & h subtree patterns, whereL is the number
of quantization levels of the label space andh is the height of subtree patterns created by
the Weisfeiler-Lehman algorithm, and we just need to sum up their repective weights
b as provided by the Elastic Net.






Chapter 4

Applications of the pyramid
guantized Weisfeiler-Lehman
graph representation in
neuroimaging and shape
classi cation

As we have seen in Sectiod.1, many problem domains can be naturally represented with
graphs. The widespread use of graphs requires the development of e ent methods for
representation and comparison. Although many algorithms have been develaul the last
decades for graph comparison between either unlabeled or discrete ldbd graphs, as
we have seen in Sectior2, the e cient and expressive representation and comparison of
graphs with continuous and/or high-dimensional vectors labels remains an opn research
problem. In Chapter 3 we tackled the graph comparison problem with continuous or
high-dimensional vector labels with the introduction of the pyramid quantized Weisfeiler-
Lehman graph representation In this chapter, we evaluate this representation using
real data from two di erent domains. The rst evaluation, described i n Section 4.1,

comes from the fMRI analysis area and its objective is to discriminatebetween cocaine
abusers and healthy control subjects, while in Sectiort.2, we use two datasets with 3D
shape meshes. For the rst dataset the objective is to discriminatebetween healthy
and patients subjects that su er from a neuromuscular dystrophy, while in the second
dataset we tackle the problem of multiclass object classi cation.

61
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4.1 The pyramid quantized Weisfeiler-Lehman graph rep-
resentation in fMRI analysis

4.1.1 Introduction

In this section we evaluate the pyramid quantized Weisfeiler-Lehnan graph represen-
tation in an fMRI data analysis problem. The functional magnetic resonanceimaging

(fMRI) is a wide spread, non-invasive modality used in the eld of neuroimaging that

measures brain activity by detecting associated changes in blood w. The goal of fMRI

data analysis is to detect relationships between brain activation and he designed task
the subject performs during the scan. Depending on the speci c®f the problem under
investigation this goal can be translated as di erent objectives, such adocalizing regions
of the brain that participate in the speci ¢ task, or determining conn ectivity networks

that correspond to brain function or even making predictions about psytological or
disease states.

A number of discriminative learning approaches have been applied tdMRI analysis
including the wide spread generalized linear modelHartels et al., 2007, Bartels and
Zeki, 20044, support vector machines Bong et al, 2011, LaConte et al., 2009, inde-
pendent component analysis Bartels and Zeki, 2004k 2005 and kernel canonical cor-
relation [Hardoon et al.,, 2007, Blaschko et al, 2009 2011. All these methods have to
deal with (a) data that lie in a high-dimensional space, with ten of thousands of voxés,
(b) a small number of samples, due to the high cost and time consuming nate of the
fMRI acquisition procedure, and (c) high levels of noise that arise from di erent sources,
such as system noise and random neural activity. In order to overcome th problem of
curse of dimensionality, some approaches select features either bypaede ned set of re-
gions of interest (ROIs) using either prior knowledge Pemirci et al., 2008 Wang et al.,
2003, or statistical methods [Mitchell et al., 2004 Tahmasebi et al, 2013 such as a
t-test [Mitchell et al., 2004, analysis of variance (ANOVA) [Cox and Savoy 2003. The
main disadvantages in the use of ROIs ared) such regions are frequently de ned within
a reference space, which raises the issue of misregistration$) {n practice people might
perform \double dipping" [ Kriegeskorte et al, 2009 in the data in order to nd the set
of ROIs and hence signi cantly skew the results and €) in the case of absence of prior
knowledge they are unde ned. Therefore, fully exploratory methods are preferred.

fMRI analysis is particularly suited to sparsity regularization due to the intrinsic high
dimensional nature of fMRI data and the expense of collecting large numérs of sam-
ples. Moreover, sparsity regularization methods do not require a pede ned set of ROls,
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are fully exploratory and are also mathematical appealing. Previous works tht have
explored sparsity regularization in fMRI include [Carroll et al., 2009 Ng et al., 20124.

Although the aforementioned methods perform well in analyzing fMRI data, they treat
the fMRI prediction as a linear combination of functions over individual voxels, ignoring
either the 3D structure of the brain and they cannot capture potentially complex inter-
actions between voxels. On the other hand, graph-theoretic methodsan model such
information through the rich representations of networks of data, and are cosequently
a promising representation for neural populations. The most common usenithe fMRI
analysis is modeling the network of brain connectivity Supekar et al, 2008 Liu et al.,
2004, under both healthy conditions (e.g. age-related changesHair et al., 2009 Supekar
et al., 2009) and diseases €.g. Alzheimer's [Supekar et al, 200§ or Schizophrenia Liu
et al., 2009), and the network's analysis, including modularity, small-worldness and the
existence of highly connected network hubs. Graph kernel methodkave also been used
in fMRI connectivity graphs for brain decoding [Mokhtari and Hossein-Zadeh 2013.

In this section, we approach the fMRI analysis by representing fMRI recordings as
graphs, and we use thepyramid quantized Weisfeiler-Lehman graph representatiorto
learn from the interconnections between voxels. Our approach has an eiched capacity
to model such dependencies by considering interconnections tweeen voxels which may
be functionally important.

The remaining of the section is organized as follows: in Sectiof.1.2we present the data
that we use in this study, Section4.1.3is dedicated to the methodology, in Sectiord.1.4
we show the experimental setting and the results, and we concludie Section 4.1.5with
a discussion over the obtained results and the perspectives of thiwork.

4.1.2 Cocaine Addiction Dataset

The cocaine addiction dataset consists of the contrast maps from 16 cocaireddicted

individuals and 17 control subjects performing a neuropsychological eperiment, called
a drug Stroop experiment [Goldstein et al.,, 2009. The drug Stroop experiment has a
block design, that included six sessions, with each of them havingi erent conditions.

The two varying conditions are the monetary reward (503, 259 and 0g) and the cue
shown (drug words, neutral words). The session consists of an initiadcreen displaying
the monetary reward and then presenting a sequence of forty words inofir di erent

colors (yellow, blue, red or green). The subject was instructed tqress one of four but-
tons matching the color of the word they had just read. The subjects wee rewarded
for correct performance depending on the monetary condition. The fMRIdata were ac-
quired a 4Tesla whole-body Varian/Siemens system. The blood-oxgen-level dependent
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(BOLD) responses were measured as a function of time using a T2*-weigét single-shot
gradient-echo EPI sequence (TE/TR=20/1600ms, 4mm slice thickness, 1mm gaptypi-

cally 33 coronal slices, 20cm FOV, 64 64 matrix size, 31 3:1mm in-plane resolution,
90 ip angle, 200kHz bandwidth with ramp sampling, 128 time points and 4 dummy
scans to be discarded to avoid non-equilibrium e ects in the fMRI signal). Padding
was used to minimize subject motion, which was also monitored immediely after each
fMRI run [ Honorio et al., 2013.

The subjects that complied to the following requirements: motion< 2mm translation,

< 2 rotation and at least 50% performance in an unrelated task Goldstein et al., 2009,
where include in this study. The Statistical Parametric Mapping (SPM2) toolbox [Fris-
ton et al., 2007 was used to preprocess the imaging data and to produce the contrast
maps before the analysis with the regularization methods. The preproessing included a
six-parameter rigid body transformation (3 rotations, 3 translations) for image realign-
ment and to correct for head motion, spatially registration to the standard Talairach
frame using a voxel size of 3 3 3mm?3, an 8mm full-width half-maximum Gaussian
kernel to smooth the data in order to reduce the amount of spatial noise asvell as the
impact of small inaccuracies in the spatial registration across subjects

In order to compute contrast maps for each subject, experimental condiion and session,
a general linear model (GLM) with box-car design convolved with a canorgal hemo-
dynamic response function (HRF), low-pass Iters (HRF) and high-pass lters (cut-o
frequency: 1/520s) was used. The GLM contained a single regressor for each ok s
sessions corresponding to one of three monetary reward conditions ($025g, Og) and
one of two cues (drug words, neutral words). In addition, six motion regessors (3 ro-
tations, 3 translations) were included for all event related tasks. Inorder to compute
a single contrast map for each subject and experimental condition, the antrast maps
that were produced by the GLMs (per subject, experimental condiion and session) were
averaged. After computing these average contrast maps and before usingpém in our
pipeline, grand mean scaling ffriston et al., 2007] was applied independently per subject
and experimental condition, since scale between di erent subjes can signi cantly dif-
fer. Note that in our experiments, we use only one image per subject andxperimental
condition. In this study, we focus on the monetary conditions only, andmore speci -
cally the session of 5@ following [Honorio et al., 2017 and the discriminative task is to
classify the subject as cocaine addicted or control.
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Algorithm 4.1  The statistical learning pipeline for fMRI analysis with sparse sulgraph
statistics.
Require: Training set D = f(vi;y;);i =1;:::;ng.

1. Compute "in from the objective in Equation (5.4) with X,  vecv.

2. Construct k-nearest neighbor graphs for all training samples from the voxels asscci

ated with non-zero ",

3: for each level in the quantization pyramid do

4:  Label the nodes of all graphs according to the quantization of the voxel vale.

5.  Compute the Weisfeiler-Lehman statistics for the given quantizationlevel over all

graphs and aggregate them into the feature vector grapn (V).
6: end for
7. Compute Agraph from the objective in Equation (5.4) with Xgraph =  graph (V)-

4.1.3 Methodology

Our approach for fMRI analysis enriches the capacity to model non-linar dependencies
between voxels, through the representation of an fMRI recording as a gph. The sta-
tistical learning pipeline of our approach can be seen in Algorithm4.1. In order to make
use of a rich graph representation several design choices must be made:the learning
algorithm, (ii) the graph construction, (iii) the node labeling and (i v) the graph statistics
employed as a feature representation, which we address in the follong paragraphs.

Sparsity Regularization As our statistical estimator, we have made use of the Elas-
tic Net (for more details see Section5.1.2). The Elastic Net combines "1 with “, regu-
larization in order to appropriately trade o sparsity with a low variance estimator in
the case of correlated signals. This method is particularly appropriatein fMRI where
nearby voxels are likely to be correlated, and regions responsible fa given function or
behavior distributed across multiple voxels. Furthermore, it is typical that the majority
of voxels in the brain are not discriminative of a speci c output. Note that one could
use the k-support norm as a regularizer as we consider in a later section of this #sis,
but we have used a more established statistical approach in this seicin. We make use of
the Elastic Net twice in our learning pipeline (see Algorithm 4.1). In the rst instance,
we use the Elastic Net on the raw voxel values to determine a subsedf voxels on which
we build a graph representation, speci cally those with non-zero”};,. Our model selec-
tion step has typically chosen approximately 16 voxels for this stage. We subsequently
compute subgraph statistics over this graph to generate a feature veot, grapn (V). Fi-
nally, we use the Elastic Net on these subgraph statistics in order to dtermine our nal
prediction function, with a model selection step to determine agpropriate values for 1
and ».
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Graph Construction To construct the graph representation, we have made use of
k-nearest neighbor graphs on the voxels that were selected by an initigraining of the
Elastic Net (see Line 1 in Algorithm 4.1). We symmetrize the k-nn relationship by
considering the edges to indicate an undirected graph structure. Wile other models
of connectivity are of interest [Sporns 201Q Wee et al, 2011, we have found that the
use of k-nearest neighbors to determine the graph topology yields good performae
in general. Furthermore, the subtree statistics considered herémplicitly account for
longer distance connections for su ciently deep subtree patterns. We setk = 5 in all
experiments.

Continuous node labels To enrich our graph representations of the fMRI contrast
maps, we take advantage of the activation information. At each voxel select by the
Elastic Net for the construction of the graph, we label it with its activat ion. Since the
activation has continuous values, our graph representation is transformetb a continuous
labeled graph.

Graph statistics Since the fMRI contrast maps are represented as graphs with contin-
uous labels on the vertices, we explore th@yramid quantized Weisfeiler-Lehman graph
representation introduced in Chapter 3. We quantized the continuous activation labels
with the xed-binning strategy (see Section 3.3.1.1), ending with a sequence of discretely
labeled graphs with increasing granularity. Through the e cient Weis feiler-Lehman al-
gorithm, we aggregate statistics of subtree patterns of di erent depthh for all the levels
of quantization. Finally, we control the complexity of our prediction wh ile modeling
non-linear interactions between voxels by adding a sparsity regulazer (the Elastic Net)
over the statistics of subtree patterns (see Line7 in Algorithm 4.1).

We are able to learn in a fully exploratory fashion without restricting our prediction,
e.g., to a pre-de ned region of interest or a connected component. Ovall, we represent
fMRI data as graphs over voxels, and compare the resulting graphs with @ovel method
that combines elements of the Weis eler-Lehman graph kernel$hervashidze et al, 2011
and the pyramid match kernel [Grauman and Darrell, 20074, a method that achieves the
computational advantages of e cient graph kernels while extending the representation
to continuous node labels.
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Table 4.1: Mean accuracy over the hold-out data of 50 trials of thepyramid quantized
Weisfeiler-Lehman graph representationfor four di erent subtree pattern depths, h 2
f0; 1; 2; 3g. Maximum performance is achieved with subtree patterns up to deplt two.

] Pyramid Quantized Weifeiler-Lehman \
h 0 1 2 3
Accuracy | 54.00% | 57.14%| 64.28% | 63.42%

4.1.4 Results

We use the same experimental setup, a random splitting scheme wit50 trials, to esti-

mate the classi cation performance ofpyramid quantized Weisfeiler-Lehman graph rep-
resentation and the baseline method on the cocaine addiction dataset. In each triala

random selection of 80% of the data are used for training, while the remainig 20% are
used to estimate the performance.

In Table 4.1 we show the performance of thepyramid quantized Weisfeiler-Lehman
graph representationfor four di erent depths of subtree patterns (see Chapter 3). Our
approach achieves a mean accuracy of 62B% for subtree patterns up to depth two. We
also compare our proposed technique with three other methods on the sandataset:
(i) Gaussian kernel ridge regression, (ii) the Elastic Net with raw \oxels as features, and
(i) the Elastic Net with raw voxels and pyramid quantized Weisfeiler-Lehmansubtree
features concatenated in a joint feature vector. In Figure4.1we show the mean accuracy
of the nal system and the standard error. Pyramid quantized Weisfeiler-Lehman graph
representation outperforms the rest of the methods. With a Wilcoxon signed rank tes
between the Elastic Net with raw voxels and thepyramid quantized Weisfeiler-Lehman
graph representationwe determine that our proposed method is statistically signi cantly
better (p = 0:02). Additionally, a reduction of over 14% in classi cation error is recorded
between the Elastic Net on the raw voxels and our method.

Intermediate Accuracies In order to explore the behavior of the pyramid quantized
Weisfeiler-Lehman graph representationfor di erent combinations of quantization and
depths of subtree patterns, we estimated the mean accuracies per gutized pyramid
level and per subtree pattern depth, as shown in Figure4.2. Figure 4.2 gives insight
into the e ect of the depth of the subtree patterns on the degree of gantization that
gives maximal performance. With subtree patterns of depthh = 0, the method reduces
to a simple pyramid bag of words model, and a relatively high granularity quantization
works best. With subtree patterns of depth two or greater, accuraciesare highest with
a very coarse quantization and information appears to be represented pmarily in the
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Figure 4.1: Mean accuracy and standard error on the cocaine addiction dataset.
The compared methods are (left to right) Gaussian kernel ridge regreson (GKRR),
the Elastic Net on raw voxels, pyramid quantized Weisfeiler-Lehman (WLpyramid),
and the Elastic Net with a concatenation of the raw voxels and thepyramid quantized
Weisfeiler-Lehman features (Combined EN+WL). The horizontal red line indicates
chance performance. Theyramid quantized Weisfeiler-Lehmanfeatures perform better
than Gaussian kernel ridge regression and the Elastic Net on raw voxelsith statistical
signi cance.

Accuracy of Quantized Pyramid Levels

Subtree Depth h

| | |
15 13 11 9 7 5 3 1
Quanatized Pyramid Levels

Figure 4.2: A heat map representation of the intermediate mean accuracies over the
hold-out data of 50 trials for all the quantized pyramid levels and for four di erent
depths of the subtree patterns,h 2 f 0;1;2;3g. This gure shows that in the bag of
words model, we need a large vocabulary, while as the depth of the Wé&ler-Lehman
algorithm increases, accuracies are highest for low granularity quantizéabn. The nal
algorithm learns across all depths and quantization levels automatically. Figure best
viewed in color.)

relationships between voxels. We note, however, that the resudtin Table 4.1 and in Fig-
ure 4.1 are computed with the concatenation of features computed from all quantiation
levels, and an appropriate combination of subtree features across all quaizition levels
and depths of subtree patterns was selected by the Elastic Net.
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Figure 4.3: A visualization of the areas of the brain selected by Elastic Net. The
selected regions correspond to areas previously implicated as beinglated to addic-
tion [Goldstein et al., 2009.

4.1.5 Discussion

Figure 4.3 shows the areas selected by the Elastic Net, while Figurd.4 and Figure 4.5
show the visualizations of the learned functions for the Elastic Net on aw voxels and the
guantized Weisfeiler-Lehman graph representatiorrespectively. Note that Elastic Net
on the raw voxels was able to select the rostral anterior cingulate corte (rostral ACC),
an important region as our neuroscientist mentioned (for more details seSection5.2.4).

Although our method works in an implicitly high dimensional space, we enpirically
observe that Elastic Net regularization controls the complexity at each sage of the
pipeline. The rst learning step selects approximately 1100 voxed. Using the pyramid
guantized Weifeiler-Lehman graph representationwe generate a feature vector of length
6 10°, but with a sparsity of 2%. The second application of Elastic Net selects
only 2K dimensions. In each step, the method retains complexity much baer than
a \simple" linear function over tens of thousands of voxels as has beenrpposed in
previous works.
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(a) Elastic Net on raw voxels - Control

(b) Elastic Net on raw voxels - Cocaine

Figure 4.4: A visualization of the function learned by Elastic net for control and
cocaine subjects over the raw voxels. The visualization is illusated over a graph,
whose construction is described in Sectiod.1.3 just for comparison with Figure 4.5.
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(a) Weisfeiler-Lehman - Control

(b) Weisfeiler-Lehman - Cocaine

Figure 4.5: A visualization of the function learned by the pyramid quantized
Weisfeiler-Lehman graph representation applied to control and cocaineddicted sub-
jects.
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Several broad observations are apparent from our quantitative results. Fom Table 4.1,

we note that subtree patterns up to depth two seem to perform bestand that deeper
subtree patterns begin to reduce average performance. This indicas that the big-O

complexity of the graph representation is only slightly higher than using a simple linear
function. The proposed method performs signi cantly better than the Gaussian kernel
ridge regression and the Elastic Net baselines (see Tablk.1l and Figure 4.1). In our

nal experiment of combining the raw voxel values with the subtree pattern features, we
found that performance decreased slightly from that of only consideringsubtree pattern

features.

In this work, we have presented a fully automated, statistically sound method for classi -
cation of brain states with graph representations, using thepyramid quantized Weisfeiler-
Lehman graph representation The method was evaluated on a real world dataset and
outperformed other machine learning techniques with statistical gni cance, including
kernel ridge regression and the Elastic Net. This validates the primay hypothesis of
this work: that the interconnections between voxels can contain addional information
about brain structure that is not apparent in a linear function on the raw voxel values.

4.2 3D shape classi cation

4.2.1 Introduction

Three-dimensional objects are extensively used in a numerous areasuch as computer
games, biomedical research studies, CAD models and cultural heritageExamples with
applications that use 3D objects can been seen in Figuré.6. Their widespread incorpo-
ration in many areas generates the need to store, classify and retrievéiém automatically
and e ciently. 3D surface models, also known as 3D shapes, represerat 3D object by a
nite set of surface points in 3D space, connected by various geometricngities such as
triangles, curved surfacesgetc.

In previous proposed methods, the three-dimensional objects are canonly associated
with a 3D descriptor. There are three wide categories of 3D descriptorga) feature-
based methods, ) view-based methods, and €) graph-based methods. Feature-based
methods represent objects as histograms of statistics of global featurd&lad et al.,
2002 Mahmoudi and Sapiro, 2008 Kokkinos et al., 2013, such as volume, moments
and geodesic distance, or local featured ge et al, 2005 Castellani et al., 200§, such
as curvature and normals. The advantage of feature-based methods is that gy are
computationally e cient, as they represent a potentially complex 3D ob ject by only a
few dimensions. On the other hand, view-based methods use multiiewpoint projections
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to produce a number of rendered images, the combination of which forma global object
descriptor [Ohbuchi and Furuya, 201Q. Finally, graph-based methods use only the
topological properties of the 3D object in its representation, such as Rdegraphs Hilaga
et al., 2007 and skeleton graphs $undar et al., 2003. The disadvantage of these methods
is that are computationally expensive and can be sensitive to small topalgical changes.

In our approach, we denote that the 3D surface models can be viewed as grap@gV; E),
where the nite set of points in the 3D space will represent the vetices V and the
connection between two points in order to form triangles or curved sufaces will represent
the edgeskE. This perspective speci es the topology of a graph, but does not exptiitly
encode relative vertex positions or other geometric properties. Thefore, we extend
the notion of the graph to incorporate node labels that encode propertiessuch as local
curvature of the surface. In order to incorporate this representationin a statistical
learning framework, we interpret 3D shapes as continuous vector labetegraphs and
use thepyramid quantized Weisfeiler-Lehman kernelintroduced in Chapter 3, to learn
the classi cation functions. We overcome the problem of computational he ciency and
oversensitivity to topological changes by representing graphs usingtatistics of subtree
patterns.

The remainder of this section is structured as follows: In Sectiord.2.2 we present the
two 3D shape datasets, a dataset from medical imaging and a dataset from the s&ntic
shape classi cation tasks, in Sectio4.2.3we introduce the local features of the 3D shapes
that are used as continuous vector labels in their graph representationin Section 4.2.4
we present an overview of the pipeline strategy used in this probla, in Section 4.2.5we
report the experimental results on two aforementioned datasets and weonclude with a
discussion in Sectiord.2.6.

4.2.2 3D shapes datasets

We evaluate the pyramid quantized WeisfeThe obtained volumes had a size of 6464

20 voxels and a voxel resolution of 3.12bm  3.125mm  7mm. T1- and T2-weighted
MR images were acquired at the same time. As a consequence, the image vods are
naturally co-registered. iler-Lehman kernelon two 3D surface shape categorization tasks.
In the rsttask, we address the problem of categorizing shapes extra@d from segmented
medical images of calf muscle. The discriminative task is to deternme the presence or
absence of neuromuscular dystrophy. In the second task, we addressettproblem of
semantic shape categorization based on the SHREC 2013 data set.
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(a) 3D game - CC 3.0 BY Canoel967

(b) Chemoinformatics

(c) Cultural heritage

Figure 4.6: Examples of application that use 3D objects. Figure4.6(a) show an screen-
shot from the video gameSecond lifethat stimulates a virtual 3D world. Figure 4.6(b)
show a screen-shot from the on-line puzzle video gameoldit that uses 3D protein
structure to understand how proteins fold for the use of drug devedpment. Figure 4.6(c)
shows the Digital Michelangelo project from Standford that aims to digitize cultural
artifacts for cataloging, conservation and restoration.
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(a) Healthy subject

(b) Patient

Figure 4.7: T1l-weighted MR images of the calf from a healthy and patient subject.
On the top, Figure 4.7(a) shows a slice of the MR image from a healthy subject, while
on the bottom, Figure 4.7(b) shows a slice of the MR image from a patient with a
neuromuscular disease.
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Figure 4.8: An example of an T1 weighted MR image with the seven segmented
muscles of the calf. Each color represents a single muscle. Yelloepresents the anterior
tibialis, cyan the extensor digitorum longus, magenta the peroneous longs} white the
posterior tibialis, blue the soleus, green the lateral gastrocnemiysand red the edial
gastrocnemius. (Figure best viewed in color.)
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(a) Without decimation (b) With decimation

Figure 4.9: An example from the neuromuscular dystrophy dataset for soleus muscle
before and after the decimation pre-processing step. On the leftirigure 4.9(a) shows
the soleus muscle before the decimation procedure, while on thegtt Figure 4.9(b)
show the soleus muscle after the decimation procedure.

4.2.2.1 Neuromuscular Dystrophy Dataset

The neuromuscular dystrophy dataset consists of 41 subjects: 27 are aésd by a
neuromuscular dystrophy (either facioscapulohumeral muscular dysophy or myotonic
muscular dystrophy type 1), while the remaining 14 subjects are hedahy. In a clinical
context, this a large sample size. The subjects were imaged in the dalising a 1.5 T
MRI scanner. The obtained volumes had a size of 64 64 20 voxels and a voxel
resolution of 3125mm 3:125mm 7mm. An example of the T1-weighted MR images
of the calf from a healthy and patient subject can be seen in Figured.7. It is not
immediately apparent from these images whether zero, one, or both subjés have a
neuromuscular dystrophy even to experts; a conrmation is achievedby an invasive
muscle biopsy. The T1 weighted MR images were manually segmented by aexpert
separating 7 important calf muscle groups: 1) soleus (SOL), 2) lateral gastmnemius
(LG), 3) medial gastrocnemius (MG), 4) posterior tibialis (TP), 5) anter ior tibialis (AT),
6) extensor digitorum longus (EDL), and 7) peroneous longus (PL). An example of he
segmented muscle can be seen in Figu#.8. It is planned to automate this process
in future work. In the meantime, the overall approach provides a stategy to avoid an
invasive biopsy.

Each segmented muscle is then transformed into a 3D surface mesh ngithe itk-snp
program.! Consequently, the exported 3D meshes consist of a huge number of viegs
and edges and require a decimation pre-processing step (for more @#s see in paragraph
\Decimation preprocessing" in Section 4.2.2.3 and Figure 4.9). Figure 4.11 shows an
example of the seven segmented muscles of the calf as 3D surfaces medhem a healthy

Lhitp:/www.itksnap.org/pmwiki/pmwiki.php
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(a) Without decimation (b) With decimation

Figure 4.10: An example from the SHREC 2013 dataset for the biped class before
and after the decimation pre-processing step. On the left, Figure4.10(a) shows the
biped 3D shape before the decimation procedure. while on the right.10(b) shows the
shape biped 3D shape after the decimation procedure.

subject, on the left, and a patient, on the right respectively, after the prepocessing
procedure of decimation is applied. Finally, we should note that the dscriminative
task for this dataset is to distinguish between patients of neuromusalar dystrophy and
healthy subjects.

42.2.2 SHREC 2013 dataset

The SHREC 2013 dataset was selected from the SHREC 2013 Contedfarge-Scale Par-
tial Shape Retrieval Track Using Simulated Range Imagestrack.? Although the initial
dataset consists of a target set and a query set, that contains full largeesale models and
partial views of the models respectively, we focus only on the targeset where a ground-
truth was easily accessible. The dataset consists of 20 classes of geoerbjects, which
are in alphabetical order: 1) bed, 2) bicycle, 3) biped, 4) biplane, 5) bid, 6) bottle,
7) car, 8) cellphone, 9) chair, 10) cup, 11) desklamp, 12) sh, 13) oorlamp, 14) ingct,
15) monoplane, 16) mug, 17) phone 18) quadruped, 19) sofa and 20) wheelchair. Each
class contains 18 di erent large-scale models, resulting in a total of 36@bjects. Ex-
amples from each class of the SHREC 2013 dataset after the preprocessingcoheation
step (for more details see paragraph \Decimation preprocessing” in Seitin 4.2.2.3 is

2http://dataset.dcc.uchile.cl/
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(a) Edial Gastrocnemius

(b) Lateral Gastrocnemius

(c) Soleus

Figure 4.11: An example of the seven segmented muscles of the calf as 3D surface
meshes from a healthy subject on the left and from a patient with neuomuscular disease
on the right (continued).
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(d) Anterior Tibialis (e) Extensor Digitorum Longus
(f) Peroneous Longus (g) Posterior Tibialis

Figure 4.11: An example of the seven segmented muscles of the calf as 3D surface
meshes from a healthy subject on the left and from a patient with neuomuscular disease
on the right.

illustrated in Figure 4.12 Finally, we should note that the task is to categorize each
object among the 20 di erent semantic classes using a one-vs-rest apgach.

4.2.2.3 Decimation preprocessing

Both the neuromuscular dystrophy dataset and the SHREC 2013 dataset consistf 3D
meshes with a very big number of vertices and edges. For example fané neuromuscular
dystrophy dataset for soleus muscle the average number of vertices B5430 and the
average number of edges is 76291, while for the SHREC2013 dataset the average n@&mb
of vertices is 10446 and the average number of edges is 29920. Since the Wdgsfei
Lehman algorithm is quadratic to the number of edges and linear to number ofertices
(see paragraph \Complexity" in Section 3.1), a larger number of vertices and edges
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(a) Bed

(e) Bird

(i) Chair

(m) Floorlamp

(g) Phone

Figure 4.12:

(b) Bicycle

(f) Bottle

() Cup

(n) Insect

(r) Quadruped

decimation preprocessing step.

(c) Biped

(9) Car

(k) Desklamp

(o) Monoplane

(s) Sofa

(d) Biplane

(h) Cellphone

(I) Fish

(P) Mug

(t) Wheelchair

Examples of each of the 20 classes of the SHREC 2013 dataset after the

could make the computation infeasible. For these reasons a decimation @processing

was performed to simplify the 3D shapes in both datasets. Additionally,in the context

of the pyramid Weisfeiler-Lehman graph representation decimation can be viewed as

an important source of regularization. For the neuromuscular dystrophy datset the

3D meshes were simpli ed with the decimation algorithm incorporated n the itk-snap

program, keeping on average 4308 number of vertices and 13598 number of edges. For
the SHREC 2013 dataset the 3D meshes were simpli ed to 500 faces using thslim
program [Garland and Heckbert, 1997 199§, keeping on average 350 vertices and 819

edges. Examples of the 3D meshes before and after the decimation prosese shown
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in Figure 4.9and in Figure 4.10for the neuromuscular dystrophy dataset and the SHREC
2013 dataset, respectively. Overall, this preprocessing step ineases the speed of the
algorithm and works also a regularizer on the pyramid quantized Weisfedr-Lehman

graph representation.

4.2.3 Node Labels' description

As we denoted above, we view the 3D surface meshes as labeled graghs (V;E;L),
whereL : V I RYis the label function and the label of each vertex is de ned as a
concatenation of a number of local properties of the 3D surface mesh. In th section we
present the local properties used as labels on the vertices.

4.2.3.1 Curvature

The rst attributes we select are the two principal curvatures k; and k, of each vertex
of the 3D surface mesh, which are attached as a 2D continuous vector featige The
normal curvature k, of a surface in some direction is de ned as the reciprocal of the
radius of the circle that best approximates a normal slice of surface irthat direction.
Speci cally, the normal curvature is de ned as
! !
k1 0 S

kn= s t 4.1
n N (4.1)

where ki and ko are the principal curvatures and s t is the unit-length vector in the
local tangent plane that express the principal directions, i.e. thedirections in which the
normal curvature reaches its minimum and maximum. We estimate the valie at each
vertex as a weighted average over the principal curvature features athe immediately
adjacent triangulated faces Rusinkiewicz, 2004. Examples of the two principal curva-
tures on each node are shown in Figur&.13 for a bottle object from the SHREC2013
dataset, while Figure 4.14 shows the minimum curvature feature on the muscle soleus
of the calf from the neuromuscular dataset for a patient with a neuromusalar disease
and a healthy subject.

Apart from the principal curvatures that are used as node attributes in both datasets, in
the SHREC2013 dataset we also used as node attributes local multi-viewgint rendering
features as de ned in the following paragraph, but only for the 3D surfacemesh structure
that is enclosed within a given radius of the current node.
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(a) Minimum Curvature (b) Maximum Curvature

Figure 4.13: An example of the two principal curvatures on a bottle object from
the SHREC2013 dataset in a logarithmic scale. On the left, Figure4.13(a) shows
the minimum curvature, while the Figure 4.13(a) on the right shows the maximum
curvature. (Figure best viewed in color.)

(a) Disease (b) Healthy

Figure 4.14: An example of the minimum curvature on the muscle soleus of the
calf from the neuromusclar dystrophy dataset. On the left, Figure 4.14(a) shows the
minimum curvature for a patient with a neuromuscular disease, whik on the right Fig-
ure 4.14(b) shows the minimum curvature for a healthy subject. (Figure best vewed
in color.)

4.2.3.2 Multi-viewpoint rendering descriptors

A successful method for 3D shape classi cation that has been previouslproposed,
is based on rendering shapes from multiple viewpoints and developinkernels based
on these rendered imagesghbuchi and Furuya, 201J. We complement our continuous
vector labeled graph representation with multi-viewpoint rendering features for the more
complicated SHREC 2013 dataset. As we cannot assume a canonical basis for spgoif
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Algorithm 4.2  The statistical learning pipeline for 3D shape with pyramid quantized
Weisfeiler-Lehman kernel.
Require: Training set of D = f(G?;yi);i =1;:::;ng where G? = (Vio; Eio) is a graph.
1: Decimate the graphsG; = (V.;E.) into G; = (V;;E;) wherejV.j j Vij and jE;]j
JEi].
2: Calculate the curvature and/or multi-viewpoint rendering descrip tor for each vertex
and label the graphsG; = (Vi;Ei;L;), whereL; : Vi ! RY .
3: for each level in the quantization pyramid do
4:  Label the nodes of all graphs according to the data guided quantization of the
vector label.
5.  Compute the Weisfeiler-Lehman statistics for the given quantizationlevel over all
graphs and calculate the intersection kerneki(h)WLsubtree :
6: end for
7: Combine the kernelski(h)\,vl_Sulotree across all levels given a prede ne weighted scheme
or multiple kernel learning.

the 3D coordinates of the surface control points, we use a principal comgnent analysis
step to determine one. The multi-viewpoint rendering descrigor for a given vertex on the
graph is calculated for a given percentage of the radius on the graph. For compison,
we also develop a multi-viewpoint rendering baseline on the whole gph. Similarly,
we use a principal components analysis step to determine a basis. Wen render
images in these canonical bases and compute (non-)linear kernels. WeJeaexplored
linear, polynomial of 2nd and 3rd degree and Gaussian kernels. As the third ahthe
second degree polynomial kernel performed best for the muscle and SHRE013 dataset,
respectively, we use these rendering baselines in Sectidr2.5.

4.2.4 Method

As we already mentioned above, we view the 3D surface models as grapl&V;E),
where V is the nite set of points in the 3D space andE is the set of connections be-
tween two points in order to form triangles or curved surfaces. We futher annotate
each vertex using the local features, de ned in Sectior®.2.3, in order to take advantage
of shape's information. Before we incorporate local features as labels on e¢hvertices,
we simplify the mesh, as noted in Sectiom.2.2.3 due to the large sizes of the graphs.
Since we end up with a continuous vector labeled graphs, we use thg/ramid quantized
Weisfeiler-Lehman graph representationwith a data guided binning scheme (see Sec-
tion 3.3.1.2 to create subtree statistics over the graphs for comparison. For all te
levels of quantization, we calculate the intersection kernel overlie previous calculated
subtree statistics (see SectiorB.3.2), resulting in a number of kernels, one per pyramid
level as in Equation 3.11. To combine the kernels from all pyramid levels into one, we
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] | WLpyramid | pyramid Bow | Rendering | Combined |

Accuracy 78.00% 73.00% 75.50% 82.93%
AUC 0.6410 0.6361 0.6300 0.6648

Table 4.2: The mean accuracy and the mean area under the ROC curve (AUC) on
the neuromuscular dystrophy dataset. The compared methods are (lefto right) the
pyramid quantized Weisfeiler-Lehman kerne(WLpyramid), the pyramid bag of words
model (pyramid BoW), the multi-viewpoint rendering images procedure (Rendering)
and a combination of the multi-viewpoint rendering procedure with the pyramid quan-
tized Weisfeiler-Lehman kernel(Combined). Note that the chance is 65.5% accuracy.

follow two di erent approaches, one for each dataset in order to maximizetheir perfor-
mance. For the neuromuscular dystrophy dataset we use a equal xed weght strategy
(see SectiorB.4.1.2, while for the SHREC 2013 dataset we use a multiple kernel learning
approach (see Sectior3.4.1.1). An overview of the pipeline for the 3D shape dataset
with the pyramid quantized Weisfeiler-Lehman kernelis shown in Algorithm 4.2,

425 Results

For both datasets we use the same experimental setup, a double crosahdation pro-
cedure. The inner 5 fold cross-validation procedure is used for paraeter selection,
while the outer 10 fold cross-validation procedure is used for evaluatig the perfor-
mance. We only report results from the outer 10 fold cross-validation preedure. We
also compare thepyramid quantized Weisfeiler-Lehman kernelwith two other methods
on both datasets @) a pyramid bag of words model, which is thepyramid quantized
Weisfeiler-Lehman kernelfor depth h = 0, and (b) a multi-viewpoint rendering proce-
dure (see details in paragraph \Multi-viewpoint rendering descriptor" in Section 4.2.3.2
following the same experimental setup. We also present the resisl obtained from the
combination of the best multi-viewpoint rendering representation with the best pyramid
quantized Weisfeiler-Lehman kernel

The performance for the neuromuscular dystrophy dataset of thepyramid quantized
Weisfeiler-Lehman kernel as well as the three other methods is shown in Tabl&.2 and

in Figure 4.15 The performance is evaluated as the mean accuracy and the mean area
under the Receiver Operating Characteristic curve (AUC) in Table 4.2 over a 10 fold
cross validation procedure. The respective ROC curves can be seénFigure 4.15 The
pyramid quantized Weisfeiler-Lehman kernebutperforms both the pyramid bag of words
method and the multi-viewpoint image rendering procedure. The eerall best perfor-
mance is achieved when we combined thpyramid quantized Weisfeiler-Lehman kernel
with the multi-viewpoint rendering approach with a mean accuracy of approximately
83% and a mean AUC of 0.6648.
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Figure 4.15: The mean area under the ROC curve for the neuromuscular dystrophy
dataset over 10 fold cross-validation procedure. The compared methodse the pyramid
guantized Weisfeiler-Lehman kernel(WLpyramid) in blue, the pyramid bag of words
model (pyramid BoW) in magenta, the multi-viewpoint rendering images procedure
(Rendering) in red and a combination of the multi-viewpoint rendering procedure with
the quantized Weisfeiler-Lehman pyramid kerne(Combined) in green.

The performance for the SHREC 2013 dataset of thepyramid quantized Weisfeiler-
Lehman kerne| as well as for the other methods is shown in Table4.3 and in Fig-
ure 4.16. The performance is evaluated as the mean area under the Receiver Qpéng
Characteristic curve (AUC of ROC curve) over a 10 fold cross-validation procedure.
The overall best performance is achieved when we combined thpyramid quantized
Weisfeiler-Lehman kernelwith the multi-viewpoint rendering images with a mean AUC

of approximately 0:85 across all 20 classes. A Wilcoxon signed-rank test showed that
the combined method performed better than all other methods with hgh statistical
signi cance (p < 10 3).

We further show the learned weight of thepyramid quantized Weisfeiler-Lehman kernel
for the SHREC 2013 dataset in Figure4.17 and in Figure 4.18 Figure 4.17 shows an
example of the learned weights on a 3D object of the bird class for three dirent subtree

depths (h 2 f 0; 1; 2g) of the Weisfeiler-Lehman algorithm, while Figure 4.18 shows the
learned weight over all levels of thepyramid quantized Weisfeiler-Lehman kernelfor

depth h = 1 for all one-vs-rest classi ers. Note that the values of the learned wights

increase as the color changes from blue to red.
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Figure 4.16:

The Receiver Operating Characteristic Curves for all one-vs-restlas-
si ers of the SHREC2013 dataset over a 10 fold cross-validation procedureln blue is
the pyramid quantized Weisfeler-Lehman kernelWL pyramid Kernel), in magenta a
pyramid bag of words approach (Pyramid Bow), in red is the Render Image dscrip-
tor (Render Image Baseline) and in green the combination of thepyramid quantized
Weisfeler-Lehman kernelwith the Render Image descriptor (Combined WL+Render).

(Best viewed in color) (continued)
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Figure 4.16: The Receiver Operating Characteristic Curves for all one-vs-restlas-
si ers of the SHREC2013 dataset over a 10 fold cross-validation procedureln blue is
the pyramid quantized Weisfeler-Lehman kernelWL pyramid Kernel), in magenta a
pyramid bag of words approach (Pyramid Bow), in red is the Render Image dscrip-
tor (Render Image Baseline) and in green the combination of thepyramid quantized
Weisfeler-Lehman kernelwith the Render Image descriptor (Combined WL+Render).
(Best viewed in color) (continued)
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(Best viewed in color) (continued)
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The Receiver Operating Characteristic Curves for all one-vs-restlas-
si ers of the SHREC2013 dataset over a 10 fold cross-validation procedureln blue
is the pyramid quantized Weisfeler-Lehman kerne(WL pyramid Kernel), i magenta a
pyramid bag of words approach (Pyramid Bow), in red is the Render Image dscrip-
tor (Render Image Baseline) and in green the combination of thepyramid quantized
Weisfeler-Lehman kernelwith the Render Image descriptor (Combined WL+Render).
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| Class | WLpyramid | pyramid Bow | Rendering | Combined |

Bird 0.85 0.83 0.85 0.86
Bicycle 0.84 0.87 0.90 0.90
Biped 0.89 0.88 0.99 0.99
Biplane 0.60 0.63 0.68 0.69

Bird 0.73 0.73 0.80 0.80
Bottle 0.76 0.76 0.79 0.80

Car 0.78 0.79 0.80 0.80

CellPhone 0.74 0.80 0.88 0.89
Chair 0.69 0.68 0.70 0.72
Cup 0.85 0.84 0.88 0.88

Desklamp 0.80 0.80 0.88 0.89
Fish 1.00 1.00 1.00 1.00

Floorlamp 0.80 0.77 0.89 0.89
Insect 0.64 0.60 0.62 0.66

Monoplane 0.84 0.82 0.88 0.90

Mug 0.82 0.82 0.85 0.87

Phone 0.83 0.74 0.72 0.83

Quadruped 0.89 0.86 0.97 0.98

Sofa 0.76 0.75 0.74 0.75

Wheelchair 0.81 0.79 0.88 0.90
] Average H 0.80 \ 0.79 \ 0.84 \ 0.85 \

Table 4.3: The mean area under the curve on the SHREC 2013 dataset over 10 fold
cross-validation procedure. The compared methods are (left to right The pyramid
guantized Weisfeiler-Lehman kernel(WLpyramid), the pyramid bag of words model
(pyramid BoW), the multi-viewpoint rendering procedure (Rend ering) and a combina-
tion of the multi-viewpoint rendering procedure with the pyrami d quantizes Weisfeiler-
Lehman kernel (Combined). The Area under the curve is given for all oness-rest
classi ers as well as the average across all classi ers. In bold are the ows-rest classi-
er where the combined classi er outperforms the multi-viewpoint rendering procedure.
A Wilcoxon signed-rank test showed that the combined method perfomed better than
all other methods with high statistical signi cance (p < 10 3).

4.2.6 Discussion

In the neuromuscular dystrophy dataset, the pyramid quantized Weisfeiler-Lehman ker-
nel performs substantially better than both the pyramid Bag of Words approach as well
as the multi-viewpoint rendering technique. These technique clearly contain comple-
mentary information as the combined method performs best.

We have further con rmation from the SHREC 2013 dataset that the pyramid quantized
Weisfeiler-Lehman kernel contains complementary information to the multi-viewpoint

rendering baseline. The combined approach gives the best performamdin 13 out of the
20 classes, while never performing worse than the baselines. A Wilkon sighed-rank
test also showed that the combined method performed better than allother methods
with high statistical signi cance (p < 10 3).
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Figure 4.16: The Receiver Operating Characteristic Curves for all one-vs-restlas-
si ers of the SHREC2013 dataset over a 10 fold cross-validation procedureln blue is
the pyramid quantized Weisfeler-Lehman kerne(WL pyramid Kernel), in magenta a
pyramid bag of words approach (Pyramid Bow), in red is the Render Image dscrip-
tor (Render Image Baseline) and in green the combination of thepyramid quantized
Weisfeler-Lehman kernelwith the Render Image descriptor (Combined WL+Render).
(Best viewed in color)

As shapes are commonly represented by surface meshes, a natural approdsho use
these graphs for categorization and retrieval. In this section we have siwn two such
applications, one on medical image analysis and one on generic 3D shape clasation.
The pyramid quantized Weisfeiler-Lehnman kernelis a exible and e cient method for

learning from graphs with continuous, vector-valued node labels, sut as annotations
of local curvature. Furthermore, visualizations of the learned disciminant function is
feasible, providing rich information about the discriminative power of each 3D shape.

In this work, we have not directly incorporated any features in our node labels captur-
ing surface re ectance, color, or texture. This is an interesting aea for future research.
Learned shape retrieval by discriminative training of a Mahalanobis metic [Weinberger
and Saul 2009 is another interesting possible future direction. Finally, in this work, we
have made three main contributions @) we developed a novel framework for shape classi-
cation based on the interpretation of shape meshes as annotated graphsh) we applied
a generalization of the Weisfeiler-Lehman graph kernel to continuous nde labels, the
pyramid quantized Weisfeiler-Lehman kerneland (c) we performed experiments on med-
ical imaging and semantic shape classi cation tasks, showing that thgoyramid quantized
Weisfeiler-Lehman kernelcontains complementary information to baseline methods and
that the best results are achieved by a combination of information sourcs.
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(@) h =0 - pyramid Bag of Words

(byh=1

© h=2

Figure 4.17: An example of the learned weights of thepyramid quantized Weisfeiler-
Lehman Kernel on a 3D object of the class bird from the SHREC 2013 dataset for three
di erent subtree depths (h 2 f 0; 1;2g). The values of the learned weights increase as
the color changes from blue to red. See SectioB.4.1.3for details of the visualization.
(Figure best viewed in color).
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Figure 4.18: Visualization of the learned weights of thepyramid quantized Weisfeiler-
Lehman kernelof subtree patterns with depth h = 1 for each vertex on the 3D surface
mesh per Class-vs-Rest Classi er for the SHREC2013 dataset. The values the learned
weights increase as the color changes from blue to red. The evaluation of éhweight
per vertex is derived in Section3.4.1.3(Figure best viewed in color.) (continued)
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