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Abstract

Medical images have been widely used in modern medicine to depict the anatomy or

function for both clinical purposes and for studying normal anatomy. Analyzing medical

images e�ciently and with high accuracy is a crucial step. The high-dimensionality

and the non-linear nature of medical imaging data makes their analysis a di�cult and

challenging problem. In this thesis, we address the medical image analysis from the

viewpoint of statistical learning theory and we concentrate especially on the use of

regularization methods and graph representation and comparison.

First, we approach the problem of graph representation and comparison for analyzing

medical images. Graphs are a commonly used technique to represent data with inherited

structure. Exploiting these data, requires the ability to e�cie ntly compare and represent

graphs. Unfortunately, standard solutions to these problems are eitherNP-hard, hard to

parametrize and adapt to the problem at hand or not expressive enough. Graphkernels,

which have been introduced in the machine learning community the last decade, are a

promising solution to the aforementioned problems.

Despite the signi�cant progress in the design and improvement of graphkernels in the

past few years, existing graph kernels focus on either unlabeled or discretely labeled

graphs, while e�cient and expressive representation and comparison ofgraphs with com-

plex labels, such as real numbers and high-dimensional vectors, remains an open research

problem. We introduce a novel method, thepyramid quantized Weisfeiler-Lehman graph

representation to tackle the graph comparison and representation problem for continu-

ous vector labeled graphs. Our algorithm considers statistics of subtree patterns based

on the Weisfeiler-Lehman algorithm and uses a pyramid quantization strategy to deter-

mine a logarithmic number of discrete labellings. As a result, we approximate a graph

representation with continuous or vector valued labels as a sequence ofgraphs discrete

labels with increasing granularity. We evaluate our proposed algorithm on two di�erent

tasks with real datasets, on a fMRI analysis task and on the generic problemof 3D shape

classi�cation.
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Second, we examine di�erent regularization methods for analyzing medical images, and

more speci�cally MRI data. Regularization methods are a powerful tool for improving

the predicted performance and avoid over�tting by introducing additional information

to an ill-posed problem, such as the analysis of medical images. Towards this direction,

we introduce a novel regularization method, thek-support regularized Support Vector

Machine. This algorithm extends the `1 regularized SVM to a mixed norm of both `1

and `2 norms. This enables the use of a correlated sparsity regularization with the power

of the SVM framework. We evaluate our novel algorithm in a neuromuscular disease

classi�cation task using MRI-based markers. We furthermore explorethe importance of

di�usion tensor imaging for the discrimination between neuromuscular conditions.

Overall, as graphs are fundamental mathematical objects and regularization methods are

widely used to control ill-pose problems, both thepyramid quantized Weisfeiler-Lehman

graph representationand the k-support regularized SVMare potentially applicable to a

wide range of applications domains in computer vision, analysis of medical images and

data mining.

Keywords: Weisfeiler-Lehman algorithm, graph kernels, regularization,k-support norm,

MRI, DTI, 3D shape classi�cation



R�esum�e

Les images m�edicales ont largement utilis�ees en m�edicine moderne a�n de repr�esenter

l'anatomie ou les fonctions, �a la fois dans un objectif cliniques ou d'�etude de l'anato-

mie normale. L'analyse e�cace et pr�ecise d' images m�edicales est une�etape critique.

La dimensionnalit�e �el�ev�ee et le caract�ere non-lin�eaire des d onn�ees d'imagerie m�edicale

rendent leur analyse di�cile. Dans cette th�ese, nous nous int�er essons �a l'analyse d'images

m�edicales du point de vue de la th�eorie statistique de l'appretissage et nous concentrons

sp�ecialement sur l'utilisation de m�ethodes de r�egularisation et de la repr�esentation et

comparaison des graphes.

Tout d'abord, nous nous int�eressons un probl�eme de repr�esentationet comparaison des

graphes pour l'analyse des images m�edicales et de fa�con plus g�en�erale. Les graphes sont

une technique largement utilis�ee pour la repr�esentation des donn�ees ayant une structure

h�erit�ee. L'exploitation des ces donn�ees n�ecessite la capacit�e de comparer et repr�esenter

e�cacement des graphes. Malheureusement, les solutions usuelles�a ces probl�emes sont

soit NP-complets, di�ciles �a param�etrer et �a adapter au probl�eme d onn�ee, soit insu�-

samment expressives. Les noyaux sur graphes, introduits �a la communaut�e de l'appren-

tissage statistique au cours de la derni�ere d�ecennie, o�rent unesolution promettante aux

probl�emes mentionn�es ci-dessus.

Malgr�e le progr�es signi�catif dans le domaine de la conception et am�elioration des noyaux

sur graphes au cours des derni�eres ann�ees, les noyaux sur graphes existants se concentrent

�a des graphes non-labellis�es ou labellis�es de fa�con dicr�ete, tandis que la repr�esentation

et comparaison e�caces et expressives de graphes avec des labels complexe, comme des

nombres r�eels ou des vecteurs �a grande dimension, demeure une probl�eme de recherch

ouvert. Nous introduisons une nouvelle m�ethode, l'algorithme de Weisfeiler-Lehman py-

ramidal et quanti��e (pyramid quantized Weisfeiler-Lehman algorithm ), a�n d'aborder

le probl�eme de la repr�esentation et comparaison des graphes labellis�es pqr des vecteurs

continus. Notre algorithme consid�ere les statistiques de motifs sousarbre, bas�e sur l'al-

gorithme Weisfeiler-Lehman ; il utilise une strat�egie de quanti�c ation pyramidale pour

11
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d�eterminer un nombre logarithmique de labels discrets. Par cons�equent, nous approxi-

mons une repr�esentation de graphe avec des labels continus ou vecteur, comme une

s�equence de graphes avec des labels discr�ets de plus en plus granulaires. Nous �evaluons

notre algorithme propos�e sur deux tâches di��erentes et des bases des donn�ees r�eelles :

un tâch�e d'une analyse IRMf et une tâche de probl�eme g�en�eriq ue de la classi�cation de

formes en trois dimensions.

Ensuite, nous examinons di��erentes m�ethodes de r�egularisation pour analyser les images

m�edicales, et plus sp�eci�quement des donn�ees d'IRM. Les m�ethodes de r�egularisation

sont un outil puissant pour l'am�elioration de la performance pr�edite et pour �eviter le

sur-apprentissage via l'introduction d'informations additionelles �a un probl�eme mal-pos�e

tel que l'analyse d'images m�edicales. Dans cette direction, nous introduisons une nou-

velle m�ethode de r�egularisation, la k-support regularized Support Vector Machine (les

machines �a vecteurs de support r�egularis�ees k-support). Cet algorithme �etend la SVM

r�egularis�ee `1 �a une norme mixte de toutes les deux normes̀1 et `2. Ceci permet l'utilisa-

tion d'une r�egularisation parcimonieuse corr�el�ee �a la puissance des SVM. Nous �evaluons

notre original algorithme sur une tâche de classi�cation de maladies neuromusculaires,

en utilisant des marqueurs �a base de IRM. Par la suite, nous explorons l'importance de

l'imagerie du tenseur de di�usion pour la discrimination entre les conditions neuromus-

culaires.

Globalement, les graphes �etqnt des objets math�ematiques fondamentaux et les m�ethodes

de r�egularisation �etant largement utilis�ees pour contrôler des pr obl�emes mal-pos�es, l' al-

gorithme de Weisfeiler-Lehman pyramidal et quanti��e (pyramid quant ized Weisfeiler-

Lehman algorithm) et la SVM r�egularis�ees k-support (k-support regular ized SVM),

pourraient bien être appliqu�es sur un grand �eventail d'applicati ons dans les domaines

de vision arti�cielle, l'analyse d'images m�edicales et l'exploration de donn�ees.

Mots-clefs : algorithme Weisfeiler-Lehman, noyaux de graphes, r�egularisation, norme

k-support, IRM, IDT, classi�cation de la forme en trois dimensions.
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Chapter 1

Introduction

1.1 Motivation

Medical imaging consists of a number of di�erent techniques that create images of the

human body showing anatomy or function and are used for clinical purposes, such as

diagnosing or monitoring the progression of a disease, or for studying normalanatomy

and physiology. Over the years, di�erent modalities of medical imaginghave been de-

veloped, including (a) x-ray based methods - such as conventional x-rays, computed

tomography and mammography - (b) magnetic resonance imaging (MRI) - such as T1-

weighted images and di�usion tensor imaging - (c) molecular imaging - such as positron

emission tomography (PET) - and (d) ultrasound, each with their own advantages and

disadvantages. They are widely used in daily clinical routines, due to the fact that are

generally non-invasive, relatively fast, allowing to image the human body and providing

relevant anatomical or function information to the doctor, while minimi zing the patient's

discomfort.

The medical imaging �eld continuously improves as technology evolves providing more

accurate and rich information. In order to extract the relevant informat ion and provide

it to the physician, analyzing medical images is an essential step in modern medicine.

The high dimensionality and the non-linearity of the data makes medicalimage analysis

a di�cult and challenging problem. In this thesis, we approach medical image analysis

from the perspective of statistical learning theory [Vapnik, 1995, Hastie et al., 2009] and

more speci�cally we focus on the use of graph representation and di�erent regularization

methods.

Graphs are a general, powerful, 
exible and natural way to mathematically represent

complex data with integrated structure. A graph consists of a set of nodes { which
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represents the objects of interest { and a set of edges { which represents the relations

between them [Diestel, 2010, Gibbons, 1985]. For example, a molecule can be represented

as graph by taking the atoms as nodes, while when a pair of atoms is connectedwith a

bond this relationship can be represented with an edge. Extra information, such as the

type of the chemical bond in the previous example, can be incorporated into the graph

as labels in the edges. Applications involving graph representation are numerous and

they occur in a number of di�erent �elds. We list below examples from a number of

representative �elds.

Computer vision and biomedical imaging Graphs have been widely used in com-

puter vision problems over the past decades. There are often used forrepresenting

images { either as grid of pixels or as a graph of adjacency regions or segmented parts {

and for solving problems, such as segmentation [Greig et al., 1989] or �nding correspon-

dences between two images [Torresani et al., 2008]. Graphs are also used in biomedical

image analysis to represent and model organs, such as the brain [Ng et al., 2012a, Rao

et al., 2010], which can potentially be used in diagnosis or studying the human body.

Bioinformatics Advances in technology in the last 15 years allow the generation of

vast amount of genome sequences and gene expression levels, as well as thedetection

of biomolecular interactions. These various data produce various typesof graph rep-

resentations, such as protein-protein interactions [Canutescu et al., 2003], metabolic

pathways [Wagner and Fell, 2001], transcriptional pathways and evolutionary relation-

ships [Goldstein, 1979]. A number of interesting questions raise from the analysis of these

graphs such as which genes regulate others, how the phenotype is in
uenced, whether

we can we predict the interaction between a pair of proteins based on their structure,

etc. These graph representations can contain complex labels and incomplete information

making their analysis a challenging task.

Social networks The wide spread use of internet in more and more domains with

more and more people, the augmentation of email exchange, the expand of new means

of communications such as blogs, social networks or instant messages, create a vast

amount of data that can be represented as graphs. The analysis of these networks is

both of scienti�c and commercial interest. On the one hand, psychologists want to

study the complex social dynamics among humans and biologists want to explore the

social rules in a group of animals. On the other hand, industries want toanalyze these

networks for marketing purposes. Detecting in
uential individu als in a group of people

is relevant for marketing, as companies could then focus their advertising e�orts on these

individuals, which can in
uence the behavior of the whole group.

Chemoinformatics Chemistry is another domain where graph representation and

graph comparison is applied [Hapke, 2005]. Finding chemical compounds with a speci�c
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property is a common problem in chemistry and pharmacology. A common assumption

is that molecules with similar structure share also similar functional properties and as

chemical molecules have been widely represented as graph { where atoms represent ver-

tices and bonds represent the edges { so being able to compare graphs and�nd similarity

among them is a crucial problem in chemoinformatics.

On the other hand, regularization, in the �elds of machine learning and statistics, refers

to the process of introducing additional information in order to solve an ill-posed prob-

lem or to prevent over�tting [ Hastie et al., 2009]. This information usually has the

form of a penalty on the complexity of the learned model or restrictionsfor smoothness.

Regularizers have been extensively used in various problems, amongthem the recon-

struction of PET images [Kaufman and Neumaier, 1996], image segmentation [Woolrich

et al., 2005] and classi�cation or regression problems.

In this thesis, we focus on the following tasks: (a) the analysis of fMRI data through the

representation as labeled graphs and (b) the analysis of MRI data using regularization

methods. Towards this direction, we also introduce two novel learning algorithms, the

pyramid quantized Weisfeiler-Lehman graph representationand the k-support regularized

SVM.

1.2 Statistical learning

Given a set of n paired observations f (x i ; yi )g1� i � n 2 Rd � R that is assumed to be

independent and identically drawn from the joint distribution pXY , the goal of statistical

learning is to learn a function f (x) 2 F for predicting the output y given the input x.

This prediction function f (x) is built via the evaluation of a loss function L (f (x); y)

that penalizes errors in prediction. This leads us to a criterion forchoosingf , the risk

or generalization error of the prediction function which is de�ned as:

R(f ) =
Z

L (f (x); y)dpXY (x; y); (1.1)

where L is a loss function andpXY is the joint distribution, covering the probability of

a label and an input being uncover together. Ideally, we would like tolearn a prediction

function f that will minimize the risk. However, since the joint probability pXY is

unknown, the risk is also unknown. Nonetheless we can approximate the risk R(f ) and

empirically calculate it through the given set of paired observation f (x i ; yi )g1� i � n 2

Rd � R, that is called the training set. Assuming that the training set is sampled

independently and from the same joint distribution pXY (i.e. the i.i.d assumption holds)



26 Chapter 1 Introduction

then the risk can be approximated as follows:

R(f ) � R̂ (f ) =
1
n

nX

i =1

L (f (x i ); yi ) (1.2)

Equation 1.2 is called theempirical risk and asn ! 1 , the empirical risk will approach

the true risk, R̂ (f ) ! R (f ) and we have statistical consistency for an estimator that

returns arg minf 2F R̂ (f ).

In real datasets we always have �nite sample sizes, so choosing a prediction function

f 2 F that minimizes the empirical risk (see Equation 1.2), often leads to over�tting .

This means that the empirical risk R̂ is much lower that the real risk R. One way to

avoid over�tting on the training dataset and being able to generalize well on new data

is by adding a regularization term � 
( f ), where f 2 F is the prediction function we

would like to learn, � is a scalar parameter that controls the degree of regularization and


 : F ! R is a scalar valued function that penalizes the \complexity" of the prediction

function. A number of regularizers have been proposed in the literature, among them

the Tikhonov regularization [Tikhonov, 1943], the LASSO [Tibshirani , 1996] and Elastic

Net [Zou and Hastie, 2005]. By adding the regularization term to the empirical risk

from Equation 1.2 the problem is formulated as follows:

arg min
f 2F

� 
( f ) +
1
n

nX

i =1

L (f (x i ); yi ) (1.3)

For the problem de�ned in Equation 1.3 in this thesis we examine novel combinations

of regularizers and prediction functions for the analysis of medical images. We justify

those choices both theoretically and empirically in the following chapters.

1.3 Thesis outline

The thesis is organized as follows: we �rst concentrate on the graph comparison prob-

lem and on our proposed method that e�ciently compares graphs with continuous or

vector labels, the pyramid quantized Weisfeiler-Lehman algorithm. To the best of our

knowledge, this is the �rst method for e�ciently comparing graphs w ith continuous

vector labels. In Chapter 2 we start by introducing basic notations and background

from graph theory (see Section2.1) and we then explore the graph comparison problem

in detail (see Section2.2 and Section 2.3). In Chapter 3 we introduce our novel algo-

rithm, the pyramid quantized Weisfeiler-Lehman algorithm. Our algorithm is based on

the Weisfeiler-Lehman test of isomorphism, described in Section3.1, which was recently

employed as a graph kernel to compare graphs with discrete labels (seeSection 3.2). In



Chapter 1 Introduction 27

order to make use of the e�ciency of the Weisfeler-Lehman algorithm and apply it to

continuous or vector labeled graphs, in Section3.3 we present a pyramid quantization

strategy and transform the graph representation with continuous or vectorvalued labels

as a sequence of graphs with increasingly granular discrete labels. Finally, we explore

di�erent tactics for combining information from the various pyramid qu antization levels

in Section 3.4.

In Chapter 4 we evaluate our proposed algorithm on two di�erent tasks. The �rst

one, described in Section4.1, is from the area of fMRI analysis and its objective is to

discriminate between cocaine abusers and healthy control subjects. The second one,

described in Section4.2, is from the area of 3D shape classi�cation. In this task, we use

two datasets with 3D meshes, one that comes from the medical area, whose objective is

to discriminate between healthy and patient subjects that su�er from a neuromuscular

dystrophy, while in the second dataset we tackle a multiclass problem of generic object

classi�cation.

Apart from the graph comparison problem, in Chapter 5 we explore di�erent regular-

ization methods for analyzing medical images, and more speci�cally MRI data. In Sec-

tion 5.1 we present the regularizers under investigation and we also introduce our novel

learning algorithm the k-support regularized SVM(see Section5.1.3.2). In our �rst ex-

periment in Section5.2, we investigate the use of regularization methods, the well-known

LASSO and Elastic Net and the newly introduced k-support norm with squared loss,

in the analysis of fMRI images. In the following Section5.3, we evaluate our newly

introduced learning algorithm, the k-support regularized SVMin the discriminative task

of neuromuscular disease classi�cation using features extracted fromT1-weighted, T2-

weighted and di�usion tensor imaging. Although DTI imaging is widely used in neu-

roimaging studies, it has been recently introduced in the clinical analysis of the calf

muscle and we also investigate its signi�cance for neuromuscular classi�cation. Finally,

in Chapter 6, we conclude the thesis by summarizing the contributions (Section 6.1) and

by o�ering some future perspectives (Section6.2).

1.4 Published work appearing in this thesis

This thesis contains material, modi�ed or in extended form, from several published

articles. We list these publications below, indicating the corresponding sections of this

manuscript.

� Katerina Gkirtzou, Jean Honorio, Dimitris Samaras, Rita Goldstein, and Matthew B.

Blaschko. MRI Analysis with Sparse Weisfeiler-Lehman Graph Statistics. In 4th
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International Workhop on Machine Learning in Medical Imaging, Nagoya, Japan,

September 2013a

Parts from Section 3.3.1 and 3.4.2 from Chapter 3 and Section4.1 is based on the

work presented in this paper.

� Katerina Gkirtzou, Jean Honorio, Dimitris Samaras, Rita Goldstein, and Matthew B.

Blaschko. FMRI analysis of cocaine addiction using k-support sparsity. In Inter-

national Symposium on Biomedical Imaging, San Francisco, USA, January 2013b

Section 5.2 of Chapter 5 is based on the work presented in this paper.

� Katerina Gkirtzou, Jean-Fran�cois Deux, Guillaume Bassez, Aristeidis Sotiras, Alain

Rahmouni, Thibault Varacca, Nikos Paragios, and Matthew B. Blaschko. Sparse

classi�cation with MRI based markers for neuromuscular disease categorization.

In 4th International Workhop on Machine Learning in Medical Imaging, Nagoya,

Japan, September 2013c

Section5.1.3.2and Section5.3 of Chapter 5 is based on the work presented in this

paper.

Certain parts of this thesis are based on unpublished work done in collaboration with

other researchers. \Data-guided binning" from Section3.3.1, Section3.3.2, Section3.3.3

and Section3.4.1 are based on unpublished research with Matthew B. Blaschko. Mate-

rial in Section 4.2 is based on unpublished research with Nikos Paragios and Matthew

B. Blaschko.



Chapter 2

Related work on graph

comparison

Graphs are commonly used to represent objects and the relationships among them in

a general, powerful and 
exible way. Graphs consist of a set of nodes,which typically

represents the objects of interest, and a set of edges, which expresses the relationships

among the objects. Graph representations are widely employed in a number of areas,

such as bioinfomatics, social network analysis,etc. (for more details see Section1.1).

In this chapter we explore the graph comparison problem in detail. We �rst introduce

key concepts and notation from graph theory in Section2.1 and we then review the most

related work on the graph comparison problem, which can be classi�ed in the following

categories, (a) graph comparison methods (Section2.2) and (b) graph kernel methods

(Section 2.3).

2.1 Graph theory basics and notation

In order to understand the importance of graphs and especially the problem of graph

comparison, we will need some basic background of graph theory. In this section we will

de�ne the terminology and the basic notation that will be used for the rest of the thesis.

Most of the graph-theoretic terminology follows the monograph of Diestel [Diestel, 2010]

or the monograph of Gibbons [Gibbons, 1985].

29
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2.1.1 Directed, undirected and labeled graphs and subgraphs

De�nition 2.1 (Graph). A graph G is a pair of sets (V; E), where V is the vertex set

and its elements are calledvertices (also known as nodes or points) andE � V � V is

the edge setwhich represents a binary relation onV and its elements are callededges

(also known as arcs or lines).

The order or size of a graph G is de�ned as the number of verticesjV j. Graphs are

�nite, in�nite, countable and so on according to their order.

De�nition 2.2 (Directed and Undirected graph). A graph G = ( V; E) is called

directed when the edge setE consists ofordered pairs of vertices, that is (u; v) 2 E is

considered to be directed fromu to v and u; v 2 V . When the edge setE contains

unordered pairs , that is ( u; v) 2 E and (v; u) 2 E are considered to be the same edge

8u; v 2 V , it is called undirected.

��
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��

(a) Directed Graph

��

��

��

��

��

��

��

(b) Undirected Graph

��

��
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��

(c) Induced Subgraph

Figure 2.1: Figure 2.1(a) shows an example of a di-
rected graph with V = f 1; 2; 3; 4; 5; 6; 7g and E =
f (1; 2); (1; 4); (2; 3); (2; 6); (3; 6); (4; 1); (4; 2); (4; 3); (5; 5); (5; 7)g. Figure 2.1(b) shows
an undirected graph similar to the direct graph of Figure 2.1(a). Figure 2.1(c) shows
the induced subgraph of the graph from Figure2.1(a) when V 0 = f 1; 2; 4; 5; 7g.

Figure 2.1(a) and Figure 2.1(b) show examples of directed and undirected graphs respec-

tively. The vertices are represented with circles, while edges are represented as arrows

for the directed graph and as lines for the undirected one. When a graph does not

contain multiple edges between the same pair of nodes (and of the same direction in a

directed graph) as well asself-loops{ edges from a vertex to itself { then it is called

simple graph. In this thesis, we mainly focus on simple graphs.

A graph can have labels on its nodes and/or on its edges and in this case the graph is

called labeled.

De�nition 2.3 (Labeled Graph). A labeledgraph is de�ned as a triplet G = ( V; E; L ),

where V is the vertex set, E is the edge set andL : X ! � is a function assigning a

label from an alphabet � to each element of the set X , which can be either V , E or

V [ E depending on whether only nodes, only edges or both are labeled.
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(b) Edge-labeled
Graph

������������

�������	����

�
����

�
��������

������

���
��

�
��������

��������

������������������

������

������

(c) Node and edge labeled
Graph

Figure 2.2: Figure 2.2(a) shows a molecule of acetaminophen as an example of node-
labeled graph, Figure 2.2(b) shows a 
ow network as example of edge-labeled graph,
while Figure 2.2(c) shows an abstract map, where nodes represent di�erent cities, edges
represent connections between cities and the distance between them is used as edge
label, as an example of graph with labels in both nodes and edges.

A graph with labels on its nodes is callednode-labeled, a graph with labels on its edges

is callededge-labeled. The most common cases of labeled graphs are theweighted graphs

where each edge is associated with a continuous value, also known asweight. Exam-

ples of node-labeled, edge-labeled and both node and edge labeled graphscan be seen

in Figure 2.2.

De�nition 2.4 (Induced subgraph). A graph G0 = ( V 0; E 0) is a subgraphof G =

(V; E) if V 0 � V and E 0 � E and is denoted asG0 � G. Given a setV 0 � V the subgraph

of G that is inducedby V 0 is the graphG0 = ( V 0; E 0) whereE 0 = f (u; v) 2 E : u; v 2 V 0g.

An example of an induced subgraphcan be seen in Figure2.1(c)

2.1.2 Neighborhood in graphs

Given an edgee = ( u; v) 2 E , we say that e is incident with u or v when u or v is an

end-point of the edgee and nodesu; v are said to beadjacent or neighbors. Similarly,

when two edgesei 6= ej share a common node then they are also adjacent.
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De�nition 2.5 (Neighborhood and Degree of node). The neighborhoodof a vertex

v in a graph G, denoted asN (v), is the induced subgraph ofG consisting of all vertices

adjacent to v and all edges connecting two such vertices. Thedegreeof a vertex u,

denoted asd(u), is the number of edges incident withu.
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Figure 2.3: The neighborhood of nodef (in red color) is the set of nodesf c; d; e; gg
depicted with green color. The degree of this nodef is four.

An example of the neighborhood of a node and its degree can be seen in Figure 2.3. The

neighborhood information of a graph is commonly represented as an adjacencymatrix,

which is de�ned as follows:

De�nition 2.6 (Adjacency matrix). The adjacency matrix A = ( A ij )n� n of a graph

G = ( V; E) is de�ned as :

A ij =

(
1 if (ui ; uj ) 2 E ,

0 otherwise
(2.1)

where ui and uj are nodes fromG.

2.1.3 Walks, paths, cycles, trees, subtrees and subtree patterns

De�nition 2.7 (Walk, path and cycle). A walk w of length l in a graph G = ( V; E)

is a sequence of nodes and adjacent edges (v1; e1; v2; e2; : : : ; el � 1; vl ) such that ei =

(vi ; vi +1 ) 8i 1 � i � (l � 1). A path is a walk that contains only distinct nodes, while a

cycle is a closed walk, wherev1 = vl .

Sometimes in the literature the walk is also called a path, in that casethe path is then

called a simple path. Illustrations of a walk, a path and a cycle on a graph can be found

in Figure 2.4.

De�nition 2.8 (Connected and disconnected graph). A graph G = ( V; E) is said

to be connectedif for every pair of distinct vertices u; v 2 V there is a path joining them.

A graph that is not connected is referred to asdisconnected. The distance between two

vertices u; v 2 V in graph G = ( V; E) is length of the shortest path from u to v in G, or

1 if such path does not exist.
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(a) Graph Walk
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(b) Graph Path
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(c) Graph Cycle

Figure 2.4: On the undirected graphs G shown above we represent with red arrows
examples of a walk from nodea to node f in Figure 2.4(a), a path from node a to node
f in Figure 2.4(b) and a cycle from nodea in Figure 2.4(c).

De�nition 2.9 (Forest, tree and subtree). A graph G when it has no cycles is called

acyclic or forest. A connected forest is calledtree. A rooted tree is a tree with a speci�ed

root vertex v0. A subtreeis a subgraph of a graph that contains no cycles. When it has

also a designated root node is calledrooted subtree.

The height of a rooted tree or subtree is the maximum distance between the designated

root vertex and any other node in the tree or subtree respectively.Similarly to the way

of the notion of walk is extending the notion of path by allowing nodes [Bach, 2008]

extended the notion of subtrees tosubtree patterns, also known astree-walks, which can

have nodes that are equal.
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Figure 2.5: On the right is the initial graph and on the left a subtree pattern of height
2 rooted at vertex g, depicted with red color. It should be noted that the repetitions
of vertices on the subtree pattern allows the pattern to be cycle-free.

De�nition 2.10 (Subtree patterns). Subtree patternsare labeled trees extracted from

a labeled graphG for a given depth h and a given vertexv. The vertices in the subtree

pattern are labeled in accordance of the labels of the initial vertices in G, so the labels

of neighbors in the subtree pattern are also neighbors in theG. The subtree pattern

is represented by a tree structureT over the vertex set f 1; : : : ; jT jg and a sequence of

consistent but possibly non distinct labelsL 2 V jT j .

An example of subtree pattern is shown in Figure2.5.

2.1.4 Graph and subgraph Isomorphism

The �rst step towards graph comparison is the ability to check whether two graphs are

identical or not. The problem of deciding that is called graph isomorphismand is de�ned

as follows:

De�nition 2.11 (Graph Isomorphism). Let G = ( V; E) and G0 = ( V 0; E 0) be two

graphs. We call G and G0 isomorphic and write G ' G0, if there exists a bijection

� : V ! V 0 with ( u; v) 2 E , (� (u); � (v)) 2 E 0 8u; v 2 V .
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Figure 2.6: Two isomorphic representations of theK 3;3 graph.

Such a map� is called isomorphism and if G = G0 it is called automorphism. Figure 2.6

shows two graphs which are isomorphic, each being a representation of the well known

K 3;3 graph.1 Apart from deciding whether two graphs are identical or not, one could

determine whether the graphG contains a subgraph that is isomorphic toG0, a problem

know as subgraph isomorphism.

De�nition 2.12 (Subgraph Isomorphism). Let G = ( V; E) and G0 = ( V 0; E 0) be

two graphs. We callG0 subgraph isomorphicto G, if there is a subgraphG0 = ( V0; E0) �

G : V0 � V; E0 = E \ (V0 � V0) such that exists a bijection � : V0 ! V 0 with ( u; v) 2

E0 , (� (u); � (v)) 2 E 0 8u; v 2 V0.

2.2 Graph comparison methods

As graphs are rich representations of data with inherited structure,they are consequently

a promising tool in many domains, as we have already seen in Section1.1. A common

and challenging problem when dealing with graphs is to be able to comparethem and

provide a similarity measurement, a problem well-known asgraph comparison.

De�nition 2.13 (Graph Comparison). Given a setGof graphs, the problem of graph

comparison is de�ned as a function

k : G � G ! R

such that k(G; G0) for G; G0 2 G quanti�es the similarity of G and G0.

In this section we review classical approaches to this problem.

2.2.1 Isomorphism-based methods

A �rst approach towards this problem is to quantify whether two graphs are identical,

i.e. isomorphic (see De�nition 2.11). This produce a binary similarity measure, which
1The K i;j is a special family of graphs, known as bipartite graphs, that it i s possible to partition the

vertices of the graph G into two subsets V1 and V2 such that every edge of G connects a vertex in V1 to
a vertex in V2 and i; j is the degree of every vertex in the V1 and V2 respectively.
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equals to 1 when the two graphs are isomorphic, otherwise equals to 0. Despite the

fact that this idea of graph isomorphic is intuitive, no e�cient algorit hm is known for

it. The graph isomorphism problem is known to be within NP, but neith er a proof of

NP-completeness nor a polynomial time algorithm are known [Garey and Johnson, 1979,

Chapter 7]. Other similarity measures are based on concepts related toisomorphism,

such as subgraph isomorphism or the largest common subgraph. Subgraph isomorphism

(see De�nition 2.12) is analogous to graph isomorphism but it could be used also when

two graphs have di�erent sizes. Unlike, the graph isomorphism problem, the subgraph

isomorphism problem has been proven to be NP-complete [Garey and Johnson, 1979,

Section 3.2.1]. A similarity measure can also be de�ned based on the sizeof the largest

common subgraph in two graphs. Unfortunately, also the problem of �nding the max-

imum common subgraph is known to be NP-hard [Garey and Johnson, 1979, Section

3.3].

2.2.2 Graph edit distances

Apart from being computationally expensive, similarity measures based on concepts of

isomorphism have another disadvantage. They are too restrictive in the sense that the

graphs have to be exactly identical or they should share large identicalsubgraphs, in

order to be consider similar. This is an important problem when we produce graphs

from noisy data. More 
exible similarity measures that have been proposed in the

literature as part of the inexact graph matching problem are similarity measures based

on graph edit distances (GED) [Gao et al., 2010]. These GED algorithms are based

on the concept of transformation a graph to another one by a �nite sequence ofgraph

edit operations, such as node addition or deletion, edge addition or deletion and node

or edge relabeling. These operations can have di�erent costs and the similarity measure

is de�ned by the least-cost edit operation sequence. Figure2.7 illustrates an example

of graph edit distance methodology for a pair of node labeled graphs. Unfortunately,

�nding the optimal cost for a particular application is a hard problem, si nce it requires

solving NP-complete problems as intermediate steps.

2.3 Graph kernel methods

As we have seen in Section2.2 the �rst approaches proposed to solve the graph compar-

ison problem su�er from intractable computational time, since in the worst case they

require exponential runtime, or are hard to parametrize. Another family of approaches,

that have been introduced the past few years, come from the statistical learning per-

spective. This family of approaches, known asGraph Kernels, tackles both the problem
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Figure 2.7: Example of the graph edit distances methods. Given two labeled graphs
G; G

0
a sequence of graph edit operations are applied to transformG to G

0
. More

speci�cally, the �rst operation is node deletion with its adjacency edges, the second
operation is node addition, then edge addition, followed by an edge deletion and a node
relabeling.

of graph representation and graph comparison through the exploitation of the graph

topology by decomposing the graph into substructures and aggregating statistics over

these substructures. This strategy considers a measure of similarity between the graphs

as a form of inner product.

Graph kernels are instances of the family of the R-convolution kernelsby [Haussler,

1999]. R-convolution kernels are a generic way of constructing kernels ona set whose

elements are discrete structures such as strings, trees and graphs. The idea is based

of decomposing the complex object into discrete structures and compare the respective

objects by comparing all pairs of decompositions. Every new decomposition in the

graphs would yield a new graph kernel. A �rst approach would be to decompose the

graphs into all possible subgraphs. However, calculating all subgraphs is at least as hard
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Table 2.1: An overview of the graph kernel methods. From left to right we show the
type of subgraphs used, the algorithm, its complexity when that is known and whether
the kernel works on unlabeled, discretely, continuous or vector labeled graphs. Note
that n is the number of graphs under comparison,v is the maximal number of nodes,e
is the maximal number of edges,h is the height of subtree patterns,d is the maximum
degree andk is the size of graphlets.
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as deciding whether two graphs are isomorphic [G•artner et al. , 2003]. As a result, it is

necessary to limit the decomposition of the graphs only into speci�c types of subgraphs

that are computable in polynomial time [Vishwanathan et al., 2010, Shervashidze et al.,

2011].

There are three main categories of graph kernels, graph kernels based on (a) walks [G•art-

ner et al., 2003] and paths [Borgwardt and Kriegel, 2005], (b) small size subgraphs [Sher-

vashidze et al., 2009] and (c) subtree patterns [Shervashidze et al., 2011]. Table 2.1shows

a summary of the state of the art of graph kernels grouped per category, whilewe review

extensively each of these categories in the following Sections2.3.1, 2.3.2 and 2.3.3.

2.3.1 Graph kernels based on walks and paths

Graph kernels based on walks and paths (see De�nition2.7) count the number of match-

ing pairs of walks and paths in two graphs respectively. Di�erent proposed kernels

use di�erent methods to compute similarities between walks and paths. For example,

G•artner et al. propose a random walk kernel that counts the number of nodes in the

walk which have the same label, which requiresO(v6) computational time for a pair of

graphs [G•artner et al. , 2003], where v is the number of vertices in the graphs. Vish-

wanathan in [Vishwanathan et al., 2010] reduced the runtime complexity of the random

walk kernel for a pair of graphs toO(v3) by restating the problem in terms of Kronecker

products. Although, this is an important gain in e�ciency, allowing to compute kernel

on random walks faster by an order of magnitude, the complexityO(v3) is still too high
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for many applications. Apart from the computation time, kernels based on random walks

have to deal with two extra problems, the tottering problem and the halting problem.

The tottering problem [ Mah�e et al. , 2004] raises from the fact that walks allow the rep-

etitions of nodes and edges, which means that the same node or edge can contribute

repeatedly in the similarity measure. The same can be said for shared cycles or paths

as well. Therefore, the similarity score between two graphs can drastically increase,

although they two graphs do not share many structural elements. The halting prob-

lem [Borgwardt, 2007] also arises from the fact that walks allow the repetitions of nodes.

As the repetition of nodes is allowed, the number of walks within a graph is in�nitely

large. In order to halt the problem, a decaying factor is commonly used to downweight

longer walks. The e�ect of this decaying factor is that longer walks are completely

neglected compared to shorter walks.

The marginalized graph kernel [Mah�e et al. , 2004] proposed two extensions on the ran-

dom walk kernels to overcome both the tottering problem and reduce their computation

time. They modify the label of each vertex with the use of the Morgan index [Morgan,

1965], which is de�ned as

De�nition 2.14 (Morgan Index). Given a graph G = ( V; E), the Morgan index of

order k for node v 2 V is de�ned as

M k (G; v) =

(
1 if k = 0
P

v02 N (v) M k� 1(v0) otherwise.
(2.2)

Note that the Morgan index of order k for a node v is the number of walks of length

k starting at v in that graph G. So incorporating the Morgan index into the label of

each vertex, it increases the speci�city of labels by adding information with the number

of walks staring at that vertex. In addition, they proposed a modi�cation to prevent

the walk from coming back to a vertex that was just visited. Another approach based

on dynamic programming to speed up the computations of the random walk kernel was

proposed in [Harchaoui and Bach, 2007], at the cost of considering only walks of �xed

size.

[Borgwardt and Kriegel, 2005] proposed a graph kernel that compares the length of

shortest path between pairs of nodes with matching source and sink labels in two graphs,

which requires O(v4) complexity time. Ralaivola in [ Ralaivola et al., 2005] proposed a

specialized graph kernel for chemoinformatics. Their approach is basedon molecular

�ngerprinting techniques and counts labeled paths of lengthp that can be retrieved by

depth-�rst search from each vertex. This can be an e�cient approach for graphs with

an average node degree of 2 or 3.
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2.3.2 Graph kernels on small size subgraphs

A number of graph kernels have been proposed in the literature that arebased on lim-

ited size subgraph structures calledgraphlets. A naive computation of all graphlets of

a graph, without considering labels, requiresO(vk ) computations, where v is the num-

ber of nodes andk is the size of subgraphs, usuallyk 2 f 3; 4; 5g. Since enumerating

all graphlets is prohibitively expensive, even for smallk values, [Shervashidze et al.,

2009] showed that sampling a �xed number of graphlets su�ces to bound the deviation

of the empirical estimates of the graphlet distribution from the true distribution and

for graphs of degree bounded byd, the exact number of all graphlets of sizek can be

determined in time O(vdk� 1). Another kernel is the cyclic pattern kernels [Horv�ath

et al., 2004], which counts pairs of matching cyclic and tree patterns in two graphs. In

the general case, the cyclic pattern kernel is NP-hard, but in speci�c cases the kernel

can be computed e�ciently. Finally [ Costa and De Grave, 2010] proposed the neigh-

borhood subgraph pairwise distance kernel, which decomposes a graph into all pairs of

neighborhood subgraphs of small radiusr at increasing distancesd.

2.3.3 Graph kernels on subtree patterns

In 2003, Ramon and G•artner were the �rst to introduce a graph kernel basedon subtree

patterns [Ramon and Gaertner, 2003]. The Ramon-G•artner subtree kernel with subtree

height h compares all pairs of nodes from two labeled graphs by iteratively comparing

their neighborhoods. Although the subtree kernel is more expressive than kernels based

on walks, unfortunately it is computationally expensive. For a set of n graphs it re-

quires O(n2v2h4d), where v is the number of nodes,h is the height of subtree patterns

considered andd is the maximum node degree in the graph set. Both subtree kernels by

Mah�e and Vert [ Mah�e and Vert , 2009] and Bach [Bach, 2008] re�ne the Ramon-G•artner

subtree kernel for application in chemoinformatics and hand-written digit recognition

respectively. In [Mah�e and Vert , 2009], Mah�e and Vert proposed a new kernel with a

parameter to control the complexity of the subtrees used as features to represent the

graphs. This parameter allows to smoothly combine graph kernels based onwalks and

kernels based on subtrees. In [Bach, 2008], Bach proposed a graph kernel that considers

� -ary subtrees with most � children per node. Unfortunately, the complexity of both

kernels are still exponential in the smoothing anda parameter respectively, and both

kernels are feasible on small size graphs only. Recently a new kernelwith subtree pat-

terns was introduced by Shervashidze [Shervashidze et al., 2011]. The Weisfeiler-Lehman

subtree kernel uses the Weisfeiler-Lehman test of isomorphism [Weisfeiler and Lehman,

1968] to e�ciently compute subtree patterns up to height h for discretely labeled graphs.
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For n pairs of discretely labeled graphs, the Weisfeiler-Lehman subtreekernel requires

O(nhe + n2hv), where e is the maximal number of edges,v is the maximal number of

vertices and considers subtree patterns up to heighth.





Chapter 3

The pyramid quantized

Weisfeiler-Lehman graph

representation

Chapter 2 presented the problem of graph comparison in detail. The majority of the

methods focus on either unlabeled or discretely labeled graphs, while an e�cient and

expressive representation and comparison of graphs with complex labels, such as real

numbers and high-dimensional vectors, remains an open research problem.

In this chapter we introduce a novel method,the pyramid quantized Weisfeiler-Lehman

graph representation that compares labeled graphs with complex labels. Our method

makes use of the e�ciency of the Weisfeiler-Lehman kernel [Shervashidze et al., 2011]

for discrete labels by considering a pyramid quantization strategy that approximates the

continuous or vector labeled graphs with a sequence of discretely labeled graphs.

Firstly, we introduce the Weisfeiler-Lehman test of isomorphism, and then we explore

how key concepts of the test is used in the framework of the Weisfeiler-Lehman kernel

for comparing discrete labeled graphs in Section3.1 and in Section 3.2, respectively.

Then in Section 3.3 we present our pyramid quantization scheme and we conclude by

exploring di�erent strategies for combing the pyramid levels in Section 3.4.

3.1 The Weisfeiler-Lehman test of isomorphism

Our proposed algorithm uses the statistics introduced by the Weisfeiler-Lehman kernel,

which exploits the key concepts from the Weisfeiler-Lehman test ofisomorphism [We-

isfeiler and Lehman, 1968] and more speci�cally its one dimensional variant. Given

43
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Algorithm 3.1 The one dimensional Weisfeiler-Lehman test of graph isomorphism
Require: Two graphs, G = ( V; E; L ), G0 = ( V 0; E 0; L 0), with discrete labelings L : V 7!

� and L 0 : V 0 7! � over vertices, where � is a vertex label set and the maximum
number of iterations h.

1: i  0
2: repeat
3: if i = 0 then

f Multiset-label initialization g
4: M i (v) := l0(v) = L (v).
5: else if i � 1 then

f Multiset-label determination g
6: Assign a multiset-label M i (v) to each nodev in G and G0 which consists of the

multiset f l i � 1(u)ju 2 N (v)g, where N (v) denotes the neighbor set ofv.
f Sorting each multiset g

7: Sort the elements inM i (v) in ascending order.
8: Concatenate the elements inM i (v) into a string si (v).
9: Add l i � 1(v) as a pre�x to si (v).

f Sorting the set of multisets g
10: Sort all of the strings si (v) for all v from G and G0 in ascending order.

f Label compression via hashing g
11: Map each string si (v) to a new compressed label using a functionf : � � 7! �

such that f (si (v)) = f (si (w)) () si (v) = si (w).
f Relabeling g

12: Set l i (v) := f (si (v)) for all nodes in G and G0.
13: end if
14: i  i + 1
15: until f l i (v)jv 2 Vg 6= f l i (v0)jv0 2 V 0g or i > h

two graphs G and G0 the Weisfeiler-Lehman test of isomorphism determines whether

they are isomorphic or not. Algorithm 3.1 provides pseudocode for the one dimensional

Weisfeiler-Lehman test of graph isomorphism.

The key idea of the Weisfeiler-Lehman test of graph isomorphism is theconstruction of

augmented node labels from all the neighbor nodes and the compression into new short

labels. This process is repeated until either the label sets of the two graphs under com-

parison di�er or the maximum number of iterations has been reached. If the two label

sets di�er, then the two graphs are non-isomorphic, while if the maximum number of

iterations is reached and the two label sets don't di�er, then the test was not able to de-

termine that they are not isomorphic. [Cai et al., 1989] provide examples of graphs that

cannot be distinguished by this algorithm or its higher-dimensional variants. Figure 3.1

shows all steps of the Weisfeiler-Lehman test of graph isomorphism for iteration i = 1

given the two labeled graphsG and G0 shown in Figure 3.1(a). Note that in this �gure

the nodes in the two graphs have been initially labeled by their corresponding degree

of node d(v) (see De�nition 2.5). Moreover the two graphs G and G0 would directly
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be identi�ed as non-isomorphic by the Weisfeiler-Lehman test, as their label sets di�er

from the beginning.
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(a) Given labeled graphs G and G0.
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(b) Iteration i = 1 - Multi-label determination and sorting. Lines 6 to 9 in Algorithm 3.1
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(c) Iteration i = 1 - Label compression via
hashing. Line 11 in Algorithm 3.1
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(d) Iteration i = 1 - Relabeling graphs G and G0. Line 12
in Algorithm 3.1

Figure 3.1: An illustration of the computation of the Weisfeiler-Lehman test of graph
isomorphism for the iteration i = 1. Note that the label of each nodev is its degree of
node d(v).

A straightforward de�nition and implementation of the mapping function f : � � ! �,

in order to be an injective function, is to sort all the strings si (v) 8v 2 f V [ V 0g

and to keep a counter variable that records the number of unique strings that f has

already compressed. Sof assigns the current value of the aforementioned counter to a

string when the string has already been compressed, while when a new string occurs, we

increment the counter by one and assign the new value as a compressed label. The sorting

of the elements with each multisetM i (v) (Line 7 in Algorithm 3.1) allows us to de�ne

the same stringsi (v) for two nodes that share the same connectivity and label pattern

independent of the order of accessing their respective neighbor nodes in the construction

of the multiset, while the sorting of the strings si (v) (Line 10in Algorithm 3.1) guarantees
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Algorithm 3.2 Sorting each multiset at iteration i
1: for all graphs G = ( V; E) do
2: for all nodesu 2 V do
3: for all nodesv 2 N (u) do
4: append the pair (G; u) to bucket l i � 1(v). 1

5: end for
6: si (u)  l i � 1(u)
7: end for
8: end for
9: for k = 1 ! j � � j do

10: for all (G; u) in bucket k do
11: append k to si (u) in G
12: end for
13: end for

that all identical strings will be mapped to the same compressed labels, as they occur

in blocks. This implementation requires that the alphabet � has to b e su�ciently large

in order for f to be injective. For two graphs G = ( V; E) and G0 = ( V 0; E 0) of order

jV j = jV 0j = v, j� j = 2v is su�cient. Of course any other injective mapping could be

used and will give an equivalent result. Finally, it should be noted that in Algorithm 3.1

the same node labeling functionl0; : : : ; lh has been used form bothG and G0 in order not

to overlap the notation. The same simpli�ed notation will be used through the chapter

assuming without loss of generality that the domain of these functionsl0; : : : ; lh is the

set of all nodes in the input graphs. In the case of Algorithm3.1 the domain is de�ned

in V [ V 0

Complexity The e�ciency of the compression of the labels via the hashing scheme

described above depends on the complexity of the sorting method. Given the fact that

the labels of the graphs are discrete and their cardinality is upper-bounded by j� j = 2v,

the counting sort algorithm is appropriate for sorting the multisets. T he counting sort

algorithm has a complexity of O(n + k), where n is the number of elements to be sorted

and k the number of buckets. In our case the number of elements to be sorted for the

multisets M i (v) (Line 7 in Algorithm 3.1) is in the worst case linear to the maximal

number of edgese and if we select ak = O(e), we end up with a complexity of O(e).

Analytical pseudocode for the counting algorithm is provided in Algorithm 3.2. Sorting

the resulting strings si (v) (Line 10 in Algorithm 3.1) is also of time complexity O(e) via

the radix sort algorithm. As the Weisfeiler-Lehman test runs in h iterations the total

runtime is O(he).

1Note that in the pair ( G; u) by G we declare the identi�er of the graph G in the graph dataset.
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Link with subtree patterns There is a strong link between the compressed labels

and subtree patterns (see De�nition 2.10). More speci�cally a compressed labell i (v)

corresponds to a subtree pattern rooted at nodev of height i . For example, in Figure 3.1

if a node has a new compressed label, 9, this means that there is a subtree pattern of

height 1 rooted at this node, where this root node has label 3 and its neighbor nodes

have labels 1, 2 and 3 respectively.

3.2 The linear Weisfeiler-Lehman subtree kernel

As mentioned above in Section3.1 the Weisfeiler-Lehman test of graph isomorphism is

iterative. For each iteration i , we obtain new compressed labelsl i (v) for all nodes v as

we have seen in Line12 in Algorithm 3.1. We emphasize that the labeling is concordant

between the graphs under comparison, that means if and only if the nodesin G and G0

have identical string si (v), they will get identical new labels l i (v). These compressed

labels, i.e. the subtree patterns, have been recently employed in a kernelfor graph

comparison, the Weisfeiler-Lehman subtree kernel [Shervashidze et al., 2011, De�nition

4] which is de�ned as follows:

De�nition 3.1 (The linear Weisfeiler-Lehman subtree kernel). Let G and G0 be

graphs. De�ne � i � � as the set of symbols that occur as node labels at least once inG

or G0 at the end of the i -th iteration of the Weisfeiler-Lehman algorithm. Let � 0 be the

set of original node labels ofG and G0. Assume all � i are pairwise disjoint. Without

loss of generality, assume that every �i = f � i 1; : : : ; � i j � i jg is ordered. De�ne a map

� i : f G; G0g � � i ! N such that � i (G; � ij ) is the number of occurrences of the letter� ij

in the graph G.

The linear Weisfeiler-Lehman subtree kernel on two graphsG and G0 with h iterations

is de�ned as

k(h)
l � W Lsubtree (G; G0) =



� (h) (G); � (h) (G

0)
�

(3.1)

where

� (h) (G) =
�
� 0(G; � 01); : : : ; � 0(G; � 0j� 0 j); : : : ; � h(G; � h1); : : : ; � h(G; � hj� h j)

�
(3.2)

and

� (h) (G
0) =

�
� 0(G0; � 01); : : : ; � 0(G0; � 0j� 0 j); : : : ; � h(G0; � h1); : : : ; � h(G0; � hj� h j)

�
(3.3)
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Table 3.1: An example of the linear Weifeiler-Lehman subtree kernel between the two
graphs shown in Figure3.1(a) for subtree patterns up to depth h = 1. The �rst row
shows the labels encountered up to depthh = 1, which contains the original node labels
� 0 as well as the compressed node labels �1 for the iteration i = 1. The second and
the third row contains the histogram over the labels for graph G and G0 respectively,
while the fourth row shows the �nal kernel value between the givengraphs.

Original node
labels � 0z }| {

Compressed node labels � 1z }| {

Labels f � 0; � 1g = f 1; 2, 3, 4, 5, 6, 7, 8, 9, 10, 11g
� (1) (G) = (3, 1, 3, 0, 3, 0, 1, 1, 1, 1, 0)
� (1) (G0) = (2, 2, 3, 1, 1, 1, 2, 0, 1, 0, 1)

k(1)
l � W Lsubtree (G; G0) =



� (h) (G); � (h) (G0)

�
= 23

Note that the features � (h) are histograms of the original and compressed labels,i.e. his-

tograms of subtree patterns of depths 0; : : : ; h. Table 3.1 shows an example of the linear

Weisfeiler-Lehman subtree kernelk(1)
l � W Lsubtree (G; G0) and their respective features� (1)

between the two graph G; G0 shown in Figure 3.1(a) for subtree patterns up to depth

h = 1.

Complexity A key advantage of these statistics� (h) (G) is that they are computable in

linear time in the number of edges in the graphs and in the depth of the subtree patterns.

More speci�cally, for n graphs and subtree patterns of depth up toh, the complexity of a

joint computation of all statistics over all graphs is O(nhe+ n2hv), wheree is the maximal

number of edges, andv the maximal number of vertices [Shervashidze et al., 2011,

Theorem 7]. This complexity can be achieved by processing alln graphs simultaneously,

meaning conducting the steps of multiset label determination, sorting each multiset,

label compression and relabeling of Algorithm3.1 for all n graphs simultaneously. After

we have calculate the� (h) feature explicitly on each graph G, we can calculate the

pairwise inner products e�ciently. Moreover the use of an e�cien t hashing scheme allows

the algorithm to enumerate relevant (non-zero) dimensions of an exponentially sized

feature space e�ciently. In this way, the matching can be done in constant time, and

the hash needs only to store patterns present in the graph instances,thereby maintaining

constant complexity across iterations. As before, in order for the mapping schemef to

be injective, a su�ciently large label set � is required. In the c ase ofn graphs and h

iterations, j� j = nv(h + 1) su�ces.

Memory requirements in practice The memory requirements of these statistics

� (h) (G) in practice depends on the used learning setting. In the case of an inductive

learning setting, where initially a kernel is computed over only the training set of graphs,

in order to classify any test graph the explicit mapping schemef occurred in the training
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set is required. That means that one needs to maintain record of all the mappings

l i (v) = f (si (v)) for each iteration i and for each distinct si (v), ending with a O(neh)

memory in the worst case. In contrast, if a trasductive setting is used, where the

test set is already known, the kernel matrix of the whole date set (both training and

testing) can be computed without having to keep the mappingf , minimizing the memory

requirements.

In addition to these computational bene�ts, linear Weisfeiler-Lehman graph kernels have

been shown to perform comparably to or better than a number of more computationally

complex kernels [Shervashidze et al., 2011]. Finally, we note that the linear Weisfeiler-

Lehman algorithm at depth 0 computes exactly the bag of words representation com-

monly used in natural language processing [Harris, 1954, Ko, 2012] and computer vi-

sion [Qiu, Fei-fei, 2005].

3.3 The pyramid quantization strategy for continuous la-

bels

The Weisfeiler-Lehman algorithm is e�cient precisely because it makes use of a dis-

crete labeling over nodes, which enables an e�cient hashing scheme in order to scale

linearly in the number of edges and in the height of subtree patterns.A problem occurs

when extending this method to continuous vector labeled graphs. Toovercome this,

we propose a pyramid quantization strategy similar to the one used by [Grauman and

Darrell , 2007a,b] to determine a logarithmic number of discrete labelings with increasing

granularity for which we run the Weisfeiler-Lehman algorithm. In other words, we ap-

proximate a graph representation with continuous valued labels as a sequence of graphs

with discrete labels of increasing granularity.

3.3.1 The pyramid quantization strategy

Given a vector labeled graphG = ( V; E; L ), whereL : V ! Rd is the function assigning a

d-dimensional vector label to each vertex, we want to derive a hierarchical decomposition

of Rd as multi-resolution quantizations. The multi-resolution quantizati ons will then be

used to determine the discrete labeling of increasing granularity. This can be expressed

as a two step process, �rst we construct a quantization functionQ(l ) : Rd ! � (l )
0 that

will encode theRd into a quantization of a given resolution j� (l )
0 j = 2 l . The quantization

function Q(l ) is repeated for l 2 f 0; : : : ; Lg to determine multi-resolutions of increasing

granularity, where L = dlog2 De, D � j V j = v is the number of unique values in the



50 Chapter 3 The pyramid quantized Weisfeiler-Lehman graph representation

image2 of the setV under L . Note that the single quantization bin for Q(0) is big enough

so that all data points from the image of the set V under L receive the same discrete

label, while as quantization resolution moves from coarser to �ner, we end up with Q(L )

that contains quantization bins that are small enough so each unique data point from

the image of the setV under L falls into its own quantization bin.

The second step is to compose the quantization functionQ(l ) with the labeling function

L ; 8l 2 f 0; : : : ; Lg, so we can approximate our initial vector labeled graphG as a

sequence of graphs with discrete labels of increasing granularity:

G = ( V; E; L )
Q( l ) � L

�
�

G(0) ; : : : ; G(L )
�

=
�

(V; E; L (0) ); : : : ; (V; E; L (L ) )
�

; (3.4)

where L (l ) : V ! � (l )
0 is de�ned to be Q(l ) � L , and � (l )

0 is the discrete label alpha-

bet for a given level l of quantization. Note that the topology of the graph does not

change in the sequence of graphs, only the continuous labels are discretized. To achieve

the discretization of the labels, we explore two di�erent strategies for the quantization

function: (a) a �xed binning scheme and (b) a data guided one in the following sections.

3.3.1.1 Fixed Binning

In the �xed binning scheme the quantization function recursively decomposed into quan-

tization resolution, where in each quantization level the bins that partition the space

are half the size in all d dimensions of the input space compared to the previous one.

The number of bin of eachQ(l ) ) is given by r (l ) =
�

D
2l

p
d

� d
, where D is the number of

unique values in the image of the vertex setV under label function L . The �xed binning

scheme can be performed e�ciently in high dimensions using, e.g.k-d trees [Bentley,

1975]. The complexity of the resulting quantization is bounded by O(dmax(v; k)L ),

whered is the dimension of the input space,v is the number of vertices to be quantized,

k is the maximum histogram index value in a single dimension andL is the number of

pyramid levels [Grauman and Darrell, 2007a]. With constraining k � v and ensuring

that L is logarithmic in v, we end up with a simpli�ed complexity of O(dv logv).

3.3.1.2 Data guided binning

The idea of data guided binning is to derive a hierarchical butdata-dependentdecom-

position of the feature space that will encode the multi-dimensionalfeatures as multi-

resolution histograms with non-uniformly shaped bins. The �rst step in this scheme
2Note that when we are interested in the quantization of the Rd given a set of vector labeled graphs

G = f Gi = ( Vi ; E i ; L i )g1� i � n , where L i : Vi ! Rd , then D is number of unique values in the union of
the images of the label functions L i 8i 2 f 1; : : : ; ng.
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is to generate the structure of the data guided pyramid hierarchy that will de�ne the

bin placements. To achieve this we perform an agglomerative hierarchical clustering on

image of the vertex setV under the labeling function L using the Ward's minimum

variance method [Ward, 1963].3 Ward's methods minimizes the total within-cluster sum

of squares criterion which is de�ned as follow for two clustersi; j :

d(i; j ) =

s
2ni nj

(ni + nj )
kx i � x j k2 (3.5)

where ni and nj are the number of elements in clustersi and j , x i and x j are the

centroids of clusters i and j and k � k2 denotes the Euclidean distance. At the initial

step, all clusters are singletons (i.e. clusters containing a single unique point). Then

we apply the algorithm recursively and at each step the pair of clusterswith minimum

between-cluster distance given from Equation3.5 are merged.

Once the data guided bins have been constructed (i.e. the centroid of each cluster in all

L levels has been determined), we can embed eachd-dimensional data point ci 2 Rd 8i

to the multi-resolution quantization bins of L levels, where in each levell there are

2l bins. In order for a point ci to be mapped at the correct bins at the quantization

pyramid, we need to compare it to the two appropriate centroids at eachl pyramid

level using the Euclidean distance and pushed down the hierarchical tree along that

branch that is rooted with the closest centroid at each level. At each comparison with

the centroids, we also keep a record of a binary bin indexp with its path along the

quantization pyramid. As the quantization pyramid has L level, in total 2L distances

must be computed between a point and the pyramid's bin centroids. Concerning the

space requirements, this approach requiresO(2L ) = O(v) d-dimensional feature vectors

to store for all the bin centroids of the hierarchical pyramid, sinceL is logarithmic in

v, and O(L) = O(log2 v) binary indexes for a set ofv feature vectors. Note that the

bin centroids are calculated only once using the Ward's method during the training.

Finally, any other hierarchical clustering technique, could also be used without changing

the main idea.

In Figure 3.2, we illustrate the di�erence between the two pyramid quantizati on strate-

gies de�ned above for the same 2D space. In Figure3.2(a) we see that the space is

partitioned into uniform-shaped bins, while in Figure 3.2(b) the data themselves deter-

mine the partitioning, as a result the bins better decompose the space into clusters.

3 In practice when the input space is very large, we can randomly select a subset of representative
data to perform the agglomerative hierarchical clustering.
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(a) Fixed binning
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(b) Data guided binning

Figure 3.2: An illustration of the two di�erent strategies of quantization of a comple x
space. Both Figures3.2(a) and 3.2(b) depict the space partition boundaries for two
resolution levels for the same 2D space. In both �gures, the left plot contains the
coarser resolution level, while the right plot contains the �ner one. In Figure 3.2(a) the
complex space is carved into uniformly-shaped partitions, while inFigure 3.2(b), the
data guide the resulting partition of the complex space. As a result, the bins on the
right are better positioned to decompose the space based on the data clusters.

3.3.2 The intersection Weisfeiler-Lehman subtree kernel

Independent of the binning strategy we follow, each graph with vectorvalued labels after

the pyramid quantization step described in Section3.3.1 is represented as a sequence of

graphs with nested quantizations of increasing granularity of discretelabels as described

in Equation 3.4. We run the Weifeiler-Lehman algorithm on each graph G(l ) of the

sequence in order to produce the features� (l )
(h) of subtree patterns up to a given height

h.

De�nition 3.2 (The intersection Weisfeiler-Lehman subtree kernel).

Let G(l ) = ( V; E; L (l ) ) and G0(l ) = ( V 0; E 0; L 0(l ) ) be two graphs of the same quantization

level l , where L (l ) : V ! � (l )
0 and L 0(l ) : V 0 ! � (l )

0 , of two vector labeled graphs

G = ( V; E; L ) and G0 = ( V 0; E 0; L 0), where L : V ! Rd and L 0 : V 0 ! Rd. De�ne

� (l )
i � � (l ) as the set of symbols that occur as node labels at least once inG(l ) or G0(l )
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at the end of the i -th iteration of the Weisfeiler-Lehman algorithm. Let � (l )
0 be the set

of original node labels ofG(l ) and G0(l ) . Assume all � (l )
i are pairwise disjoint. Without

loss of generality, assume that every �(l )i = f � (l )
i 1 ; : : : ; � (l )

i j� ( l )
i j

g is ordered. De�ne a map

� i : f G(l ) ; G0(l )g � � (l )
i ! N such that � i (G(l ) ; � (l )

ij ) is the number of occurrences of the

letter � (l )
ij in the graph G(l ) .

The intersection Weisfeiler-Lehman subtree kernel on two graphsG and G0 with h iter-

ations is de�ned as

k(h)
i � W Lsubtree (G(l ) ; G0(l ) ) = I

�
� (l )

(h) (G
(l ) ); � (l )

(h) (G
0(l ) )

�
(3.6)

where

� (l )
(h) (G

(l ) ) =
�

� 0(G(l ) ; � (l )
01 ); : : : ; � 0(G(l ) ; � (l )

0j� ( l )
0 j

); : : : ; � h(G(l ) ; � (l )
h1); : : : ; � h(G(l ) ; � (l )

hj� ( l )
h j

)
�

� (l )
(h) (G

0(l ) ) =
�

� 0(G0(l ) ; � (l )
01 ); : : : ; � 0(G0(l ) ; � (l )

0j� ( l )
0 j

); : : : ; � h(G0(l ) ; � (l )
h1); : : : ; � h(G0(l ) ; � (l )

hj� ( l )
h j

)
�

and

I
�

� (l )
(h) (G

(l ) ); � (l )
(h) (G

0(l ) )
�

=
hX

i =0

j� ( l )
i jX

j =1

min
�

� i (G(l ) ; � (l )
ij ); � i (G0(l ) ; � (l )

ij )
�

(3.7)

Note that the features � (l )
(h) are histograms of the original and compressed labels,i.e. his-

tograms of subtree patterns of depths 0; : : : ; h for a given quantization level l , while the

intersection Weisfeiler-Lehman subtree kernel counts the overlap of features� (l )
(h) between

two graphs G(l ) = ( V; E; L (l ) ) and G0(l ) = ( V 0; E 0; L 0(l ) ) which match at the given quan-

tization level l . Note that the intersection Weisfeiler-Lehman kernel for a given binning

resolution l is a positive-de�nite similarity function [ Odone et al., 2005].4

An example of the quantization step of the pyramid quantized Weisfeiler-Lehman graph

representation is illustrated in Figure 3.3. Given the graphs G = ( V; E; L ); G0 =

(V 0; E 0; L 0) with continuous vector labels in their nodes, i.e. L : V ! Rd and L 0 :

V 0 ! Rd, shown in Figure 3.3(a), the �rst step is to determine the hierarchical decom-

position of the labeled space given, for example, by the data guided binning strategy.

The red and green line in Figure3.3(b) depict the thresholds for achieving two di�erent

quantization resolutions with two and and four discrete labels, respectively. For these

two quantization resolutions we end up with a sequence of discretized labels for each

4We could also use the linear kernel over the subtree patterns, but the histogram intersection kernel
has been shown to give better results [Odone et al., 2005].
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(d) Relabeled graphs of the quantization level 2 with
22 = 4 number of discrete labels.

Figure 3.3: An illustration of the quantization step of the pyramid quantized
Weisfeiler-Lehman graph representation. Figure3.3(a) shows the two given multi-
dimensional labeled graphs under comparisonG = ( V; E; L ) and G0 = ( V 0; E 0; L 0),
where L : V ! R2, L 0 : V 0 ! R2 and the label of each nodev is de�ned as its
degree of noded(v) and the summation of the degree of nodes of its neighborhoods
Nv , i.e. L (v) = [ d(v);

P
u2 N v

d(u)]. Figure 3.2(b) shows the hierarchical decomposi-
tion of the multi-dimensional labeled space given by the data guided binning strategy
(see Section3.3.1.2). With the green and red line are depicted the thresholds for achiev-
ing two di�erent quantization resolutions with two and and four discr ete labels respec-
tively. Figure 3.3(c) shows the two relabeled discretized graphsG(1) = ( V; E; L (1) )
and G0(1) = ( V 0; E 0; L 0(1) ), where L (1) : V ! � (1)

0 , L 0(1) : V 0 ! � (1)
0 and j� (1)

0 j = 2
is the coarser resolution levell = 1 with two labels, while Figure 3.3(d) shows the
two relabeled discretized graphsG(2) = ( V; E; L (2) ) and G0(2) = ( V 0; E 0; L 0(2) ), where
L (2) : V ! � (2)

0 , L 0(2) : V 0 ! � (2)
0 and j� (2)

0 j = 4 is the �ner resolution level l = 2 with
four labels.
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graph

G = ( V; E; L )
Q( l ) � L

�
l 2 f 1; 2g

�
G(1) ; G(2)

�
=

�
(V; E; L (1) ); (V; E; L (2) )

�

and

G0 = ( V 0; E 0; L 0)
Q( l ) �L 0

�
l 2 f 1; 2g

�
G0(1) ; G0(2)

�
=

�
(V 0; E 0; L 0(1) ); (V 0; E 0; L 0(2) )

�

also shown in Figure3.3(c) and in Figure 3.3(d), where L (l ) : V ! � (l )
0 and L 0(l ) : V 0 !

� (l )
0 , while j� (1)

0 j = 2 is the coarser resolution with two labels andj� (2)
0 j = 4 is the �ner

resolution with four labels. For each levell of the graph sequence the Weisfeiler-Lehman

algorithm is applied to produce the � (l )
(h) (G

(l ) ), while for each pair f G(l ) ; G0(l )g for all

quantization levels l the intersection Weisfeiler-Lehman subtree kernel will determine

the similarity between the two graphs for that level of quantization.

3.3.3 The monotonicity property of the pyramid quantized Weisfeiler -

Lehman kernel

We may show the following monotonicity property of the pyramid quanti zed Weisfeiler-

Lehman kernel described in Section3.3.2 :

Theorem 3.3. Monotonicity property of the pyramid quantized Weisfeile r-

Lehman kernel with the granularity of the node labeling

The Weisfeiler-Lehman algorithm for a given heighth of subtree patterns produces his-

tograms whose intersection are monotonically decreasing in thegranularity of the graph

node labeling:

8l; G (l ) ; G0(l )
h
I

�
� l

(h) (G
(l ) ); � l

(h) (G
0(l ) )

�
� I

�
� l+1

(h) (G(l+1) ); � l+1
(h) (G0(l+1) )

�
i
i

; (3.8)

where � l
(h) (G

(l ) ) is the histogram of subtree patterns of heighth computed at pyramid

level l , and level l + 1 is more granular.

Proof. We �rst note that the number of subtree patterns of a given depth, h, of the

Weisfeiler-Lehman algorithm is dependent only on the topology of the graph,and not

on the graph labeling:

k� l
(h) (G

(l ) )k1 = v � (h + 1) 8l (3.9)

wherev is the number of vertices in the graphs. We next note that the numberof vertex

labels is strictly monotonic in the pyramid level, j� l j < j� l+1 j, and that for each label

� 2 � l at level l , there exist a non-empty set of labelsS � � l+1 at level l + 1 such that
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L l+1 (u) 2 S () L l (u) = � . To complete the proof, we observe that

8G(l ) 8l
h�

k� l
(h) (G

(l ) )k1 = k� l+1
(h) (G(l+1) )k1

�
^

�
k� l

(h) (G
(l ) )k0 < k� l+1

(h) (G(l+1) )k0

�i

=) 8 G(l ) ; G0(l ) 8l
h
I

�
� l

(h) (G
(l ) ); � l

(h) (G
0(l ) )

�
� I

�
� l+1

(h) (G(l+1) ); � l+1
(h) (G0(l+1) )

�i
;

(3.10)

where k � k0 is the `0 pseudo norm.

As the Weisfeiler-Lehman algorithm with h = 0 specializes to the bag of words model,

we have as a result that our graph kernel for continuous vector valued node labels strictly

generalizes the pyramid match kernel [Grauman and Darrell, 2007a].

3.4 Exploring the pyramid quantized Weisfeiler-Lehman

features

Given a set of vector labeled graphsG = f Gi = ( Vi ; E i ; L i )g1� i � n whereL : V ! Rd and

a classi�cation label Yi for each graphGi , we want to classify them through the informa-

tion created by the Weisfeiler-Lehman algorithm after the quantization of each the vector

labeled graph into a sequence of discrete labeled graphs with increasing granularity as

described in Section3.3. In order to maximize their classi�cation performance and ex-

plore better the pyramid quantized Weisfeiler-Lehman features weexamine two di�erent

approaches, one through the combination of the intersection Weisfeiler-Lehman kernel

of the di�erent pyramid levels in Section 3.4.1 and another through the evaluation of

each individual subtree pattern � (l )
(h) of the Weisfeiler-Lehman algorithm in Section3.4.2.

3.4.1 The pyramid quantized Weisfeiler-Lehman kernel

Applying the intersection Weisfeiler-Lehman subtree kernel (see De�nition 3.2) for each

pair of graphs G(l ) ; G0(l ) for all the pyramid levels from Equation 3.4, we end up with

a sequence of intersection Weisfeiler-Lehman kernels for a given height h of subtree

patterns : �
K (0)

(h) (G
(0) ; G0(0) ); : : : ; K (L )

(h) (G(l ) ; G0(L ) )
�

(3.11)

whereK (l )
(h) (G

(l ) ; G0(l ) ) = I
�

� (l )
(h) (G

(l ) ); � (l )
(h) (G

0(l ) )
�

. Since we have a sequence of Weisfeiler-

Lehman kernels from the di�erent quantization levels and taking also into consideration

the observation by [Lanckriet et al. , 2004] that using multiple kernels instead of a single

one can enhance the interpretability of a decision function and improve its performance,
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we would like to combine this sequence of kernels into a single one.A convenient ap-

proach is to consider that the kernelK (G; G0) is actually a convex combination ofbasis

kernels:

K (h) (G; G0) =
LX

l=0

dl K
(l )
(h) (G

(l ) ; G0(l ) ); with dl � 0;
LX

l=0

dl = 1 : (3.12)

For determining the weights dl we consider two di�erent approaches a automatic way

through the framework of multiple kernel learning and another through a �xed weight

scheme. Remember that for a single kernel, wheref x i ; yi gn
i =1 is the learning set with x i

belongs to some input spaceX and yi 2 Y is the target value for pattern x i the solution

of the learning problem has the form :

f (x) =
nX

i =1

� i K (x; x i ) + � (3.13)

3.4.1.1 Multiple kernel learning

The automatic determination of the weights dl of the linear combination of our multiple

kernelsK (l )
(h) (G

(l ) ; G0(l ) ) as well as the coe�cients � i ; � in a single optimization problem is

known as the multiple kernel learning (MKL) problem [Zien and Ong, 2007, Sonnenburg

et al., 2006, Lanckriet et al. , 2004, Rakotomamonjy et al., 2008]. The multiple kernel

learning approach addresses the problem through a weighted̀2 norm regularization

formula. In addition, a `1 norm is posed as a constraint on the kernel weightsai . This

additional constraint encourages sparse set of basis kernels as an inherited property from

the `1 norm. The primal MKL problem is de�ned as

min
f f l g;�;� i ;dl

1
2

LX

l=0

1
dl

jj f l jj2
H l

+ C
nX

i =1

� i

s.t. yi

LX

l=0

f l (G
(l )
i ) + yi � � 1 � � i 8i (3.14)

� i � 0 8i

LX

l=0

dl = 1 ; dl � 0 8l

where each functionf l belongs to a di�erent RKHS H l associated with a kernelK (l )
(k) .

Note that the smaller the dl is, the smoother f l should be. When dl = 0, jj f l jjH l is

also equal to zero to yield a �nite objective value. MKL transforms the problem into a

smooth and convex optimization problem and uses a gradient descent approach to solve

it.
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3.4.1.2 Fixed weight kernel

Due to the constraint of the `1 norm on the weight the multiple kernel learning leads

to sparse solutions, which sometimes could result in poor performances when all the

pyramid level contain approximately equal important information. In ord er to overcome

this problem we additionally consider a �xed weight scheme for combing the di�erent

pyramid levels of the quantized Weisfeiler-Lehman kernel, and morespeci�cally an equal

weight. That mean that the �nal kernel is de�ned as

K (h) (G; G0) =
LX

l=0

dl K
(l )
(h) (G

(l ) ; G0(l ) ); where dl =
1

L + 1
: (3.15)

3.4.1.3 Visualization

As the pyramid quantized Weisfeiler-Lehman kernel is de�ned to bea linear combination

of the intersections of the histograms of subtree patterns up to a givenheight h and as

the intersection kernel can be considered as a \quasi-linear" kernel [Vedaldi et al., 2009],

we may use these properties to develop visualizations that approximate the learned

discriminant functions. We note that a discriminant function for cl assc has the form:

f c(G) = b+
LX

l=0

dl

X

j

� lj I
�

� (l )
(h) (G

(l )
j ); � (l )

(h) (G
(l ) )

�
� b+

LX

l=0

dl hwl ; � (l )
(h) (G

(l ) )i (3.16)

where l indexes the levels of the pyramid andj indexes over the samples in the training

set. At each pyramid level l there is exactly one subtree pattern of heighth rooted

at each vertex of the graph. We may generate for each vertexv a visualization of

the function by coloring each vertex by the weight in wi corresponding to the subtree

pattern rooted at that node. We may additionally sum the weights over all levels of the

Weisfeiler-Lehman iterations. Due to the bias term,b, the visualizations show only the

relative contribution of a region of the graph to the discriminant funct ion.

3.4.2 Elastic net on the pyramid quantized Weisfeiler-Lehman subtre e

features

In order to explore the contribution of each quantized Weisfeiler-Lehman subtree feature

� (l )
(h) (G

(l ) ) for all the quantized pyramid levels l and for all depths up to depth h, we make

use of the statistical estimator Elastic Net, which is described in detail in Section 5.1.2.

We note that the Elastic Net combines`1 with `2 regularization in order to appropriately

trade o� sparsity with a low variance estimator in the case of correlated signals. Formally,
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if � (l )
(h) (G

(l )
i ) is a feature vector of subtree pattern up to heighth for a given quantization

level l for a graph Gi , the elastic net computes

�̂ = arg min
� 2 Rd

� 2k� k2
2 + � 1k� k1 +

1
n

nX

i =1

�
h�; � (l )

(h) (G
(l )
i )i � yi

� 2
; (3.17)

where � 1, � 2 � 0 are scalar regularization parameters. This objective includes the

lasso [Tibshirani , 1996] and ridge regression [Tikhonov, 1963] as special cases by setting

� 2 or � 1 to zero, respectively. We can see this as a tradeo� between the high degree

of sparsity achieved by the lasso, and the low variance estimates achieved by ridge

regression.

Visualization Visualizations of the learned discriminant functions is easy to obtain

when the Elastic Net is employed over the pyramid quantized Weisfeiler-Lehman subtree

patterns. Each voxel is associated with aL � h subtree patterns, whereL is the number

of quantization levels of the label space andh is the height of subtree patterns created by

the Weisfeiler-Lehman algorithm, and we just need to sum up their respective weights

bi as provided by the Elastic Net.





Chapter 4

Applications of the pyramid

quantized Weisfeiler-Lehman

graph representation in

neuroimaging and shape

classi�cation

As we have seen in Section1.1, many problem domains can be naturally represented with

graphs. The widespread use of graphs requires the development of e�cient methods for

representation and comparison. Although many algorithms have been developed the last

decades for graph comparison between either unlabeled or discrete labeled graphs, as

we have seen in Section2, the e�cient and expressive representation and comparison of

graphs with continuous and/or high-dimensional vectors labels remains an open research

problem. In Chapter 3 we tackled the graph comparison problem with continuous or

high-dimensional vector labels with the introduction of the pyramid quantized Weisfeiler-

Lehman graph representation. In this chapter, we evaluate this representation using

real data from two di�erent domains. The �rst evaluation, described i n Section 4.1,

comes from the fMRI analysis area and its objective is to discriminatebetween cocaine

abusers and healthy control subjects, while in Section4.2, we use two datasets with 3D

shape meshes. For the �rst dataset the objective is to discriminatebetween healthy

and patients subjects that su�er from a neuromuscular dystrophy, while in the second

dataset we tackle the problem of multiclass object classi�cation.
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4.1 The pyramid quantized Weisfeiler-Lehman graph rep-

resentation in fMRI analysis

4.1.1 Introduction

In this section we evaluate the pyramid quantized Weisfeiler-Lehman graph represen-

tation in an fMRI data analysis problem. The functional magnetic resonanceimaging

(fMRI) is a wide spread, non-invasive modality used in the �eld of neuroimaging that

measures brain activity by detecting associated changes in blood 
ow. The goal of fMRI

data analysis is to detect relationships between brain activation and the designed task

the subject performs during the scan. Depending on the speci�csof the problem under

investigation this goal can be translated as di�erent objectives, such aslocalizing regions

of the brain that participate in the speci�c task, or determining conn ectivity networks

that correspond to brain function or even making predictions about psychological or

disease states.

A number of discriminative learning approaches have been applied tofMRI analysis

including the wide spread generalized linear model [Bartels et al., 2007, Bartels and

Zeki, 2004a], support vector machines [Song et al., 2011, LaConte et al., 2005], inde-

pendent component analysis [Bartels and Zeki, 2004b, 2005] and kernel canonical cor-

relation [Hardoon et al., 2007, Blaschko et al., 2009, 2011]. All these methods have to

deal with (a) data that lie in a high-dimensional space, with ten of thousands of voxels,

(b) a small number of samples, due to the high cost and time consuming nature of the

fMRI acquisition procedure, and (c) high levels of noise that arise from di�erent sources,

such as system noise and random neural activity. In order to overcome the problem of

curse of dimensionality, some approaches select features either by aprede�ned set of re-

gions of interest (ROIs) using either prior knowledge [Demirci et al., 2008, Wang et al.,

2003], or statistical methods [Mitchell et al. , 2004, Tahmasebi et al., 2012] such as a

t-test [Mitchell et al. , 2004], analysis of variance (ANOVA) [Cox and Savoy, 2003]. The

main disadvantages in the use of ROIs are (a) such regions are frequently de�ned within

a reference space, which raises the issue of misregistrations, (b) in practice people might

perform \double dipping" [ Kriegeskorte et al., 2009] in the data in order to �nd the set

of ROIs and hence signi�cantly skew the results and (c) in the case of absence of prior

knowledge they are unde�ned. Therefore, fully exploratory methods are preferred.

fMRI analysis is particularly suited to sparsity regularization due t o the intrinsic high

dimensional nature of fMRI data and the expense of collecting large numbers of sam-

ples. Moreover, sparsity regularization methods do not require a prede�ned set of ROIs,
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are fully exploratory and are also mathematical appealing. Previous works that have

explored sparsity regularization in fMRI include [Carroll et al. , 2009, Ng et al., 2012b].

Although the aforementioned methods perform well in analyzing fMRI data, they treat

the fMRI prediction as a linear combination of functions over individual voxels, ignoring

either the 3D structure of the brain and they cannot capture potentially complex inter-

actions between voxels. On the other hand, graph-theoretic methodscan model such

information through the rich representations of networks of data, and are consequently

a promising representation for neural populations. The most common use in the fMRI

analysis is modeling the network of brain connectivity [Supekar et al., 2008, Liu et al. ,

2008], under both healthy conditions (e.g. age-related changes [Fair et al. , 2009, Supekar

et al., 2009]) and diseases (e.g. Alzheimer's [Supekar et al., 2008] or Schizophrenia [Liu

et al., 2008]), and the network's analysis, including modularity, small-worldness and the

existence of highly connected network hubs. Graph kernel methodshave also been used

in fMRI connectivity graphs for brain decoding [Mokhtari and Hossein-Zadeh, 2013].

In this section, we approach the fMRI analysis by representing fMRI recordings as

graphs, and we use thepyramid quantized Weisfeiler-Lehman graph representationto

learn from the interconnections between voxels. Our approach has an enriched capacity

to model such dependencies by considering interconnections between voxels which may

be functionally important.

The remaining of the section is organized as follows: in Section4.1.2we present the data

that we use in this study, Section4.1.3 is dedicated to the methodology, in Section4.1.4

we show the experimental setting and the results, and we concludein Section 4.1.5with

a discussion over the obtained results and the perspectives of this work.

4.1.2 Cocaine Addiction Dataset

The cocaine addiction dataset consists of the contrast maps from 16 cocaineaddicted

individuals and 17 control subjects performing a neuropsychological experiment, called

a drug Stroop experiment [Goldstein et al., 2009]. The drug Stroop experiment has a

block design, that included six sessions, with each of them havingdi�erent conditions.

The two varying conditions are the monetary reward (50g, 25g and 0g) and the cue

shown (drug words, neutral words). The session consists of an initialscreen displaying

the monetary reward and then presenting a sequence of forty words in four di�erent

colors (yellow, blue, red or green). The subject was instructed topress one of four but-

tons matching the color of the word they had just read. The subjects were rewarded

for correct performance depending on the monetary condition. The fMRIdata were ac-

quired a 4Tesla whole-body Varian/Siemens system. The blood-oxygen-level dependent
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(BOLD) responses were measured as a function of time using a T2*-weighted single-shot

gradient-echo EPI sequence (TE/TR=20/1600ms, 4mm slice thickness, 1mm gap, typi-

cally 33 coronal slices, 20cm FOV, 64� 64 matrix size, 3:1 � 3:1mm in-plane resolution,

90� 
ip angle, 200kHz bandwidth with ramp sampling, 128 time points and 4 dummy

scans to be discarded to avoid non-equilibrium e�ects in the fMRI signal). Padding

was used to minimize subject motion, which was also monitored immediately after each

fMRI run [ Honorio et al., 2012].

The subjects that complied to the following requirements: motion < 2mm translation,

< 2� rotation and at least 50% performance in an unrelated task [Goldstein et al., 2009],

where include in this study. The Statistical Parametric Mapping (SPM2) toolbox [Fris-

ton et al., 2007] was used to preprocess the imaging data and to produce the contrast

maps before the analysis with the regularization methods. The preprocessing included a

six-parameter rigid body transformation (3 rotations, 3 translations) for image realign-

ment and to correct for head motion, spatially registration to the standard Talairach

frame using a voxel size of 3� 3 � 3mm3, an 8mm full-width half-maximum Gaussian

kernel to smooth the data in order to reduce the amount of spatial noise aswell as the

impact of small inaccuracies in the spatial registration across subjects.

In order to compute contrast maps for each subject, experimental condition and session,

a general linear model (GLM) with box-car design convolved with a canonical hemo-

dynamic response function (HRF), low-pass �lters (HRF) and high-pass�lters (cut-o�

frequency: 1/520s) was used. The GLM contained a single regressor for each of six

sessions corresponding to one of three monetary reward conditions (50g, 25g, 0g) and

one of two cues (drug words, neutral words). In addition, six motion regressors (3 ro-

tations, 3 translations) were included for all event related tasks. Inorder to compute

a single contrast map for each subject and experimental condition, the contrast maps

that were produced by the GLMs (per subject, experimental condition and session) were

averaged. After computing these average contrast maps and before using them in our

pipeline, grand mean scaling [Friston et al. , 2007] was applied independently per subject

and experimental condition, since scale between di�erent subjects can signi�cantly dif-

fer. Note that in our experiments, we use only one image per subject and experimental

condition. In this study, we focus on the monetary conditions only, andmore speci�-

cally the session of 50g following [Honorio et al., 2012] and the discriminative task is to

classify the subject as cocaine addicted or control.
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Algorithm 4.1 The statistical learning pipeline for fMRI analysis with sparse subgraph
statistics.
Require: Training set D = f (vi ; yi ); i = 1 ; : : : ; ng.

1: Compute �̂ lin from the objective in Equation (5.4) with x lin � vecv.
2: Construct k-nearest neighbor graphs for all training samples from the voxels associ-

ated with non-zero �̂ lin

3: for each level in the quantization pyramid do
4: Label the nodes of all graphs according to the quantization of the voxel value.
5: Compute the Weisfeiler-Lehman statistics for the given quantizationlevel over all

graphs and aggregate them into the feature vector� graph (v).
6: end for
7: Compute �̂ graph from the objective in Equation (5.4) with xgraph = � graph (v).

4.1.3 Methodology

Our approach for fMRI analysis enriches the capacity to model non-linear dependencies

between voxels, through the representation of an fMRI recording as a graph. The sta-

tistical learning pipeline of our approach can be seen in Algorithm4.1. In order to make

use of a rich graph representation several design choices must be made:(i) the learning

algorithm, (ii) the graph construction, (iii) the node labeling and (i v) the graph statistics

employed as a feature representation, which we address in the following paragraphs.

Sparsity Regularization As our statistical estimator, we have made use of the Elas-

tic Net (for more details see Section5.1.2). The Elastic Net combines `1 with `2 regu-

larization in order to appropriately trade o� sparsity with a low variance estimator in

the case of correlated signals. This method is particularly appropriatein fMRI where

nearby voxels are likely to be correlated, and regions responsible fora given function or

behavior distributed across multiple voxels. Furthermore, it is typical that the majority

of voxels in the brain are not discriminative of a speci�c output. Note that one could

use thek-support norm as a regularizer as we consider in a later section of this thesis,

but we have used a more established statistical approach in this section. We make use of

the Elastic Net twice in our learning pipeline (see Algorithm 4.1). In the �rst instance,

we use the Elastic Net on the raw voxel values to determine a subsetof voxels on which

we build a graph representation, speci�cally those with non-zero�̂ lin . Our model selec-

tion step has typically chosen approximately 103 voxels for this stage. We subsequently

compute subgraph statistics over this graph to generate a feature vector, � graph (v). Fi-

nally, we use the Elastic Net on these subgraph statistics in order to determine our �nal

prediction function, with a model selection step to determine appropriate values for � 1

and � 2.
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Graph Construction To construct the graph representation, we have made use of

k-nearest neighbor graphs on the voxels that were selected by an initialtraining of the

Elastic Net (see Line 1 in Algorithm 4.1). We symmetrize the k-nn relationship by

considering the edges to indicate an undirected graph structure. While other models

of connectivity are of interest [Sporns, 2010, Wee et al., 2011], we have found that the

use of k-nearest neighbors to determine the graph topology yields good performance

in general. Furthermore, the subtree statistics considered hereimplicitly account for

longer distance connections for su�ciently deep subtree patterns. We set k = 5 in all

experiments.

Continuous node labels To enrich our graph representations of the fMRI contrast

maps, we take advantage of the activation information. At each voxel selected by the

Elastic Net for the construction of the graph, we label it with its activat ion. Since the

activation has continuous values, our graph representation is transformedto a continuous

labeled graph.

Graph statistics Since the fMRI contrast maps are represented as graphs with contin-

uous labels on the vertices, we explore thepyramid quantized Weisfeiler-Lehman graph

representation introduced in Chapter 3. We quantized the continuous activation labels

with the �xed-binning strategy (see Section 3.3.1.1), ending with a sequence of discretely

labeled graphs with increasing granularity. Through the e�cient Weis feiler-Lehman al-

gorithm, we aggregate statistics of subtree patterns of di�erent depthh for all the levels

of quantization. Finally, we control the complexity of our prediction wh ile modeling

non-linear interactions between voxels by adding a sparsity regularizer (the Elastic Net)

over the statistics of subtree patterns (see Line7 in Algorithm 4.1).

We are able to learn in a fully exploratory fashion without restricting our prediction,

e.g., to a pre-de�ned region of interest or a connected component. Overall, we represent

fMRI data as graphs over voxels, and compare the resulting graphs with anovel method

that combines elements of the Weis�eler-Lehman graph kernel [Shervashidze et al., 2011]

and the pyramid match kernel [Grauman and Darrell, 2007a], a method that achieves the

computational advantages of e�cient graph kernels while extending the representation

to continuous node labels.
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Table 4.1: Mean accuracy over the hold-out data of 50 trials of thepyramid quantized
Weisfeiler-Lehman graph representationfor four di�erent subtree pattern depths, h 2
f 0; 1; 2; 3g. Maximum performance is achieved with subtree patterns up to depth two.

Pyramid Quantized Weifeiler-Lehman

h 0 1 2 3
Accuracy 54.00% 57.14% 64.28% 63.42%

4.1.4 Results

We use the same experimental setup, a random splitting scheme with 50 trials, to esti-

mate the classi�cation performance ofpyramid quantized Weisfeiler-Lehman graph rep-

resentation and the baseline method on the cocaine addiction dataset. In each trial,a

random selection of 80% of the data are used for training, while the remaining 20% are

used to estimate the performance.

In Table 4.1 we show the performance of thepyramid quantized Weisfeiler-Lehman

graph representationfor four di�erent depths of subtree patterns (see Chapter 3). Our

approach achieves a mean accuracy of 64:28% for subtree patterns up to depth two. We

also compare our proposed technique with three other methods on the same dataset:

(i) Gaussian kernel ridge regression, (ii) the Elastic Net with raw voxels as features, and

(iii) the Elastic Net with raw voxels and pyramid quantized Weisfeiler-Lehmansubtree

features concatenated in a joint feature vector. In Figure4.1 we show the mean accuracy

of the �nal system and the standard error. Pyramid quantized Weisfeiler-Lehman graph

representation outperforms the rest of the methods. With a Wilcoxon signed rank test

between the Elastic Net with raw voxels and thepyramid quantized Weisfeiler-Lehman

graph representationwe determine that our proposed method is statistically signi�cantly

better (p = 0 :02). Additionally, a reduction of over 14% in classi�cation error is recorded

between the Elastic Net on the raw voxels and our method.

Intermediate Accuracies In order to explore the behavior of thepyramid quantized

Weisfeiler-Lehman graph representationfor di�erent combinations of quantization and

depths of subtree patterns, we estimated the mean accuracies per quantized pyramid

level and per subtree pattern depth, as shown in Figure4.2. Figure 4.2 gives insight

into the e�ect of the depth of the subtree patterns on the degree of quantization that

gives maximal performance. With subtree patterns of depthh = 0, the method reduces

to a simple pyramid bag of words model, and a relatively high granularityquantization

works best. With subtree patterns of depth two or greater, accuraciesare highest with

a very coarse quantization and information appears to be represented primarily in the
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Figure 4.1: Mean accuracy and standard error on the cocaine addiction dataset.
The compared methods are (left to right) Gaussian kernel ridge regression (GKRR),
the Elastic Net on raw voxels, pyramid quantized Weisfeiler-Lehman(WLpyramid),
and the Elastic Net with a concatenation of the raw voxels and thepyramid quantized
Weisfeiler-Lehman features (Combined EN+WL). The horizontal red line indicates
chance performance. Thepyramid quantized Weisfeiler-Lehmanfeatures perform better
than Gaussian kernel ridge regression and the Elastic Net on raw voxels with statistical
signi�cance.
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Figure 4.2: A heat map representation of the intermediate mean accuracies over the
hold-out data of 50 trials for all the quantized pyramid levels and for four di�erent
depths of the subtree patterns,h 2 f 0; 1; 2; 3g. This �gure shows that in the bag of
words model, we need a large vocabulary, while as the depth of the Weisfeiler-Lehman
algorithm increases, accuracies are highest for low granularity quantization. The �nal
algorithm learns across all depths and quantization levels automatically. (Figure best
viewed in color.)

relationships between voxels. We note, however, that the results in Table 4.1 and in Fig-

ure 4.1 are computed with the concatenation of features computed from all quantization

levels, and an appropriate combination of subtree features across all quantization levels

and depths of subtree patterns was selected by the Elastic Net.
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Figure 4.3: A visualization of the areas of the brain selected by Elastic Net. The
selected regions correspond to areas previously implicated as being related to addic-
tion [Goldstein et al., 2009].

4.1.5 Discussion

Figure 4.3 shows the areas selected by the Elastic Net, while Figure4.4 and Figure 4.5

show the visualizations of the learned functions for the Elastic Net on raw voxels and the

quantized Weisfeiler-Lehman graph representationrespectively. Note that Elastic Net

on the raw voxels was able to select the rostral anterior cingulate cortex (rostral ACC),

an important region as our neuroscientist mentioned (for more details seeSection5.2.4).

Although our method works in an implicitly high dimensional space, we empirically

observe that Elastic Net regularization controls the complexity at each stage of the

pipeline. The �rst learning step selects approximately 1100 voxels. Using the pyramid

quantized Weifeiler-Lehman graph representation, we generate a feature vector of length

6 � 105, but with a sparsity of � 2%. The second application of Elastic Net selects

only � 2K dimensions. In each step, the method retains complexity much lower than

a \simple" linear function over tens of thousands of voxels as has been proposed in

previous works.
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(a) Elastic Net on raw voxels - Control

(b) Elastic Net on raw voxels - Cocaine

Figure 4.4: A visualization of the function learned by Elastic net for control and
cocaine subjects over the raw voxels. The visualization is illustrated over a graph,
whose construction is described in Section4.1.3, just for comparison with Figure 4.5.
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(a) Weisfeiler-Lehman - Control

(b) Weisfeiler-Lehman - Cocaine

Figure 4.5: A visualization of the function learned by the pyramid quantized
Weisfeiler-Lehman graph representation applied to control and cocaineaddicted sub-
jects.
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Several broad observations are apparent from our quantitative results. From Table 4.1,

we note that subtree patterns up to depth two seem to perform best,and that deeper

subtree patterns begin to reduce average performance. This indicates that the big-O

complexity of the graph representation is only slightly higher than using a simple linear

function. The proposed method performs signi�cantly better than th e Gaussian kernel

ridge regression and the Elastic Net baselines (see Table4.1 and Figure 4.1). In our

�nal experiment of combining the raw voxel values with the subtree pattern features, we

found that performance decreased slightly from that of only consideringsubtree pattern

features.

In this work, we have presented a fully automated, statistically sound method for classi�-

cation of brain states with graph representations, using thepyramid quantized Weisfeiler-

Lehman graph representation. The method was evaluated on a real world dataset and

outperformed other machine learning techniques with statistical signi�cance, including

kernel ridge regression and the Elastic Net. This validates the primary hypothesis of

this work: that the interconnections between voxels can contain additional information

about brain structure that is not apparent in a linear function on the raw voxel values.

4.2 3D shape classi�cation

4.2.1 Introduction

Three-dimensional objects are extensively used in a numerous areas, such as computer

games, biomedical research studies, CAD models and cultural heritage.Examples with

applications that use 3D objects can been seen in Figure4.6. Their widespread incorpo-

ration in many areas generates the need to store, classify and retrieve them automatically

and e�ciently. 3D surface models, also known as 3D shapes, representa 3D object by a

�nite set of surface points in 3D space, connected by various geometric entities such as

triangles, curved surfaces,etc.

In previous proposed methods, the three-dimensional objects are commonly associated

with a 3D descriptor. There are three wide categories of 3D descriptors(a) feature-

based methods, (b) view-based methods, and (c) graph-based methods. Feature-based

methods represent objects as histograms of statistics of global features[Elad et al.,

2002, Mahmoudi and Sapiro, 2008, Kokkinos et al., 2012], such as volume, moments

and geodesic distance, or local features [Lee et al., 2005, Castellani et al., 2008], such

as curvature and normals. The advantage of feature-based methods is that they are

computationally e�cient, as they represent a potentially complex 3D ob ject by only a

few dimensions. On the other hand, view-based methods use multi-viewpoint projections
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to produce a number of rendered images, the combination of which formsa global object

descriptor [Ohbuchi and Furuya, 2010]. Finally, graph-based methods use only the

topological properties of the 3D object in its representation, such as Reeb graphs [Hilaga

et al., 2001] and skeleton graphs [Sundar et al., 2003]. The disadvantage of these methods

is that are computationally expensive and can be sensitive to small topological changes.

In our approach, we denote that the 3D surface models can be viewed as graphsG(V; E),

where the �nite set of points in the 3D space will represent the vertices V and the

connection between two points in order to form triangles or curved surfaces will represent

the edgesE. This perspective speci�es the topology of a graph, but does not explicitly

encode relative vertex positions or other geometric properties. Therefore, we extend

the notion of the graph to incorporate node labels that encode properties, such as local

curvature of the surface. In order to incorporate this representation in a statistical

learning framework, we interpret 3D shapes as continuous vector labeled graphs and

use thepyramid quantized Weisfeiler-Lehman kernel, introduced in Chapter 3, to learn

the classi�cation functions. We overcome the problem of computational ine�ciency and

oversensitivity to topological changes by representing graphs usingstatistics of subtree

patterns.

The remainder of this section is structured as follows: In Section4.2.2 we present the

two 3D shape datasets, a dataset from medical imaging and a dataset from the semantic

shape classi�cation tasks, in Section4.2.3we introduce the local features of the 3D shapes

that are used as continuous vector labels in their graph representation,in Section 4.2.4

we present an overview of the pipeline strategy used in this problem, in Section 4.2.5we

report the experimental results on two aforementioned datasets and weconclude with a

discussion in Section4.2.6.

4.2.2 3D shapes datasets

We evaluate thepyramid quantized WeisfeThe obtained volumes had a size of 64� 64 �

20 voxels and a voxel resolution of 3.125mm � 3.125mm � 7mm. T1- and T2-weighted

MR images were acquired at the same time. As a consequence, the image volumes are

naturally co-registered. iler-Lehman kernelon two 3D surface shape categorization tasks.

In the �rst task, we address the problem of categorizing shapes extracted from segmented

medical images of calf muscle. The discriminative task is to determine the presence or

absence of neuromuscular dystrophy. In the second task, we address the problem of

semantic shape categorization based on the SHREC 2013 data set.
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(a) 3D game - CC 3.0 BY Canoe1967

(b) Chemoinformatics

(c) Cultural heritage

Figure 4.6: Examples of application that use 3D objects. Figure4.6(a) show an screen-
shot from the video gameSecond lifethat stimulates a virtual 3D world. Figure 4.6(b)
show a screen-shot from the on-line puzzle video gameFoldit that uses 3D protein
structure to understand how proteins fold for the use of drug development. Figure 4.6(c)
shows theDigital Michelangelo project from Standford that aims to digitize cultural
artifacts for cataloging, conservation and restoration.
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(a) Healthy subject

(b) Patient

Figure 4.7: T1-weighted MR images of the calf from a healthy and patient subject.
On the top, Figure 4.7(a) shows a slice of the MR image from a healthy subject, while
on the bottom, Figure 4.7(b) shows a slice of the MR image from a patient with a
neuromuscular disease.
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Figure 4.8: An example of an T1 weighted MR image with the seven segmented
muscles of the calf. Each color represents a single muscle. Yellow represents the anterior
tibialis, cyan the extensor digitorum longus, magenta the peroneous longus, white the
posterior tibialis, blue the soleus, green the lateral gastrocnemius, and red the edial
gastrocnemius. (Figure best viewed in color.)
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(a) Without decimation (b) With decimation

Figure 4.9: An example from the neuromuscular dystrophy dataset for soleus muscle
before and after the decimation pre-processing step. On the left,Figure 4.9(a) shows
the soleus muscle before the decimation procedure, while on the right Figure 4.9(b)
show the soleus muscle after the decimation procedure.

4.2.2.1 Neuromuscular Dystrophy Dataset

The neuromuscular dystrophy dataset consists of 41 subjects: 27 are a�ected by a

neuromuscular dystrophy (either facioscapulohumeral muscular dystrophy or myotonic

muscular dystrophy type 1), while the remaining 14 subjects are healthy. In a clinical

context, this a large sample size. The subjects were imaged in the calf using a 1.5 T

MRI scanner. The obtained volumes had a size of 64� 64 � 20 voxels and a voxel

resolution of 3:125mm� 3:125mm� 7mm. An example of the T1-weighted MR images

of the calf from a healthy and patient subject can be seen in Figure4.7. It is not

immediately apparent from these images whether zero, one, or both subjects have a

neuromuscular dystrophy even to experts; a con�rmation is achievedby an invasive

muscle biopsy. The T1 weighted MR images were manually segmented by anexpert

separating 7 important calf muscle groups: 1) soleus (SOL), 2) lateral gastrocnemius

(LG), 3) medial gastrocnemius (MG), 4) posterior tibialis (TP), 5) anter ior tibialis (AT),

6) extensor digitorum longus (EDL), and 7) peroneous longus (PL). An example of the

segmented muscle can be seen in Figure4.8. It is planned to automate this process

in future work. In the meantime, the overall approach provides a strategy to avoid an

invasive biopsy.

Each segmented muscle is then transformed into a 3D surface mesh using the itk-snp

program.1 Consequently, the exported 3D meshes consist of a huge number of vertices

and edges and require a decimation pre-processing step (for more details see in paragraph

\Decimation preprocessing" in Section 4.2.2.3 and Figure 4.9). Figure 4.11 shows an

example of the seven segmented muscles of the calf as 3D surfaces meshes from a healthy

1http://www.itksnap.org/pmwiki/pmwiki.php
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(a) Without decimation (b) With decimation

Figure 4.10: An example from the SHREC 2013 dataset for the biped class before
and after the decimation pre-processing step. On the left, Figure4.10(a) shows the
biped 3D shape before the decimation procedure. while on the right4.10(b) shows the
shape biped 3D shape after the decimation procedure.

subject, on the left, and a patient, on the right respectively, after the prepocessing

procedure of decimation is applied. Finally, we should note that the discriminative

task for this dataset is to distinguish between patients of neuromuscular dystrophy and

healthy subjects.

4.2.2.2 SHREC 2013 dataset

The SHREC 2013 dataset was selected from the SHREC 2013 Contest\Large-Scale Par-

tial Shape Retrieval Track Using Simulated Range Images"track.2 Although the initial

dataset consists of a target set and a query set, that contains full large-scale models and

partial views of the models respectively, we focus only on the targetset where a ground-

truth was easily accessible. The dataset consists of 20 classes of generic objects, which

are in alphabetical order: 1) bed, 2) bicycle, 3) biped, 4) biplane, 5) bird, 6) bottle,

7) car, 8) cellphone, 9) chair, 10) cup, 11) desklamp, 12) �sh, 13) 
oorlamp, 14) insect,

15) monoplane, 16) mug, 17) phone 18) quadruped, 19) sofa and 20) wheelchair. Each

class contains 18 di�erent large-scale models, resulting in a total of 360objects. Ex-

amples from each class of the SHREC 2013 dataset after the preprocessing decimation

step (for more details see paragraph \Decimation preprocessing" in Section 4.2.2.3) is

2http://dataset.dcc.uchile.cl/
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(a) Edial Gastrocnemius

(b) Lateral Gastrocnemius

(c) Soleus

Figure 4.11: An example of the seven segmented muscles of the calf as 3D surface
meshes from a healthy subject on the left and from a patient with neuromuscular disease
on the right (continued).
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(d) Anterior Tibialis (e) Extensor Digitorum Longus

(f) Peroneous Longus (g) Posterior Tibialis

Figure 4.11: An example of the seven segmented muscles of the calf as 3D surface
meshes from a healthy subject on the left and from a patient with neuromuscular disease
on the right.

illustrated in Figure 4.12. Finally, we should note that the task is to categorize each

object among the 20 di�erent semantic classes using a one-vs-rest approach.

4.2.2.3 Decimation preprocessing

Both the neuromuscular dystrophy dataset and the SHREC 2013 dataset consistof 3D

meshes with a very big number of vertices and edges. For example for the neuromuscular

dystrophy dataset for soleus muscle the average number of vertices is25430 and the

average number of edges is 76291, while for the SHREC2013 dataset the average number

of vertices is 10446 and the average number of edges is 29920. Since the Weisfeiler-

Lehman algorithm is quadratic to the number of edges and linear to number ofvertices

(see paragraph \Complexity" in Section 3.1), a larger number of vertices and edges
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(a) Bed (b) Bicycle (c) Biped (d) Biplane

(e) Bird (f) Bottle (g) Car (h) Cellphone

(i) Chair (j) Cup (k) Desklamp (l) Fish

(m) Floorlamp (n) Insect (o) Monoplane (p) Mug

(q) Phone (r) Quadruped (s) Sofa (t) Wheelchair

Figure 4.12: Examples of each of the 20 classes of the SHREC 2013 dataset after the
decimation preprocessing step.

could make the computation infeasible. For these reasons a decimation preprocessing

was performed to simplify the 3D shapes in both datasets. Additionally,in the context

of the pyramid Weisfeiler-Lehman graph representation, decimation can be viewed as

an important source of regularization. For the neuromuscular dystrophy dataset the

3D meshes were simpli�ed with the decimation algorithm incorporated in the itk-snap

program, keeping on average 4308 number of vertices and 13598 number of edges. For

the SHREC 2013 dataset the 3D meshes were simpli�ed to 500 faces using theqslim

program [Garland and Heckbert, 1997, 1998], keeping on average 350 vertices and 819

edges. Examples of the 3D meshes before and after the decimation process are shown
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in Figure 4.9and in Figure 4.10for the neuromuscular dystrophy dataset and the SHREC

2013 dataset, respectively. Overall, this preprocessing step increases the speed of the

algorithm and works also a regularizer on the pyramid quantized Weisfeiler-Lehman

graph representation.

4.2.3 Node Labels' description

As we denoted above, we view the 3D surface meshes as labeled graphsG = ( V; E; L ),

where L : V ! Rd is the label function and the label of each vertex is de�ned as a

concatenation of a number of local properties of the 3D surface mesh. In this section we

present the local properties used as labels on the vertices.

4.2.3.1 Curvature

The �rst attributes we select are the two principal curvatures k1 and k2 of each vertex

of the 3D surface mesh, which are attached as a 2D continuous vector features. The

normal curvature kn of a surface in some direction is de�ned as the reciprocal of the

radius of the circle that best approximates a normal slice of surface inthat direction.

Speci�cally, the normal curvature is de�ned as

kn =
�

s t
�

 
k1 0

0 k2

!  
s

t

!

(4.1)

where k1 and k2 are the principal curvatures and
�

s t
�

is the unit-length vector in the

local tangent plane that express the principal directions, i.e. thedirections in which the

normal curvature reaches its minimum and maximum. We estimate the value at each

vertex as a weighted average over the principal curvature features ofthe immediately

adjacent triangulated faces [Rusinkiewicz, 2004]. Examples of the two principal curva-

tures on each node are shown in Figure4.13 for a bottle object from the SHREC2013

dataset, while Figure 4.14 shows the minimum curvature feature on the muscle soleus

of the calf from the neuromuscular dataset for a patient with a neuromuscular disease

and a healthy subject.

Apart from the principal curvatures that are used as node attributes in both datasets, in

the SHREC2013 dataset we also used as node attributes local multi-viewpoint rendering

features as de�ned in the following paragraph, but only for the 3D surfacemesh structure

that is enclosed within a given radius of the current node.
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(a) Minimum Curvature (b) Maximum Curvature

Figure 4.13: An example of the two principal curvatures on a bottle object from
the SHREC2013 dataset in a logarithmic scale. On the left, Figure4.13(a) shows
the minimum curvature, while the Figure 4.13(a) on the right shows the maximum
curvature. (Figure best viewed in color.)

(a) Disease (b) Healthy

Figure 4.14: An example of the minimum curvature on the muscle soleus of the
calf from the neuromusclar dystrophy dataset. On the left, Figure 4.14(a) shows the
minimum curvature for a patient with a neuromuscular disease, while on the right Fig-
ure 4.14(b) shows the minimum curvature for a healthy subject. (Figure best viewed
in color.)

4.2.3.2 Multi-viewpoint rendering descriptors

A successful method for 3D shape classi�cation that has been previously proposed,

is based on rendering shapes from multiple viewpoints and developing kernels based

on these rendered images [Ohbuchi and Furuya, 2010]. We complement our continuous

vector labeled graph representation with multi-viewpoint rendering features for the more

complicated SHREC 2013 dataset. As we cannot assume a canonical basis for specifying
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Algorithm 4.2 The statistical learning pipeline for 3D shape with pyramid quantized
Weisfeiler-Lehman kernel.
Require: Training set of D = f (G

0

i ; yi ); i = 1 ; : : : ; ng where G
0

i = ( V
0

i ; E
0

i ) is a graph.
1: Decimate the graphsG

0

i = ( V
0

i ; E
0

i ) into Gi = ( Vi ; E i ) where jV
0

i j � j Vi j and jE
0

i j �
jE i j.

2: Calculate the curvature and/or multi-viewpoint rendering descrip tor for each vertex
and label the graphsGi = ( Vi ; E i ; L i ), where L i : Vi ! Rd .

3: for each level in the quantization pyramid do
4: Label the nodes of all graphs according to the data guided quantization of the

vector label.
5: Compute the Weisfeiler-Lehman statistics for the given quantizationlevel over all

graphs and calculate the intersection kernelk(h)
i � W Lsubtree .

6: end for
7: Combine the kernelsk(h)

i � W Lsubtree across all levels given a prede�ne weighted scheme
or multiple kernel learning.

the 3D coordinates of the surface control points, we use a principal component analysis

step to determine one. The multi-viewpoint rendering descriptor for a given vertex on the

graph is calculated for a given percentage of the radius on the graph. For comparison,

we also develop a multi-viewpoint rendering baseline on the whole graph. Similarly,

we use a principal components analysis step to determine a basis. Wethen render

images in these canonical bases and compute (non-)linear kernels. We have explored

linear, polynomial of 2nd and 3rd degree and Gaussian kernels. As the third and the

second degree polynomial kernel performed best for the muscle and SHREC2013 dataset,

respectively, we use these rendering baselines in Section4.2.5.

4.2.4 Method

As we already mentioned above, we view the 3D surface models as graphsG(V; E),

where V is the �nite set of points in the 3D space and E is the set of connections be-

tween two points in order to form triangles or curved surfaces. We further annotate

each vertex using the local features, de�ned in Section4.2.3, in order to take advantage

of shape's information. Before we incorporate local features as labels on the vertices,

we simplify the mesh, as noted in Section4.2.2.3, due to the large sizes of the graphs.

Since we end up with a continuous vector labeled graphs, we use thepyramid quantized

Weisfeiler-Lehman graph representationwith a data guided binning scheme (see Sec-

tion 3.3.1.2) to create subtree statistics over the graphs for comparison. For all the

levels of quantization, we calculate the intersection kernel over the previous calculated

subtree statistics (see Section3.3.2), resulting in a number of kernels, one per pyramid

level as in Equation 3.11. To combine the kernels from all pyramid levels into one, we
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WLpyramid pyramid BoW Rendering Combined

Accuracy 78.00% 73.00% 75.50% 82.93%
AUC 0.6410 0.6361 0.6300 0.6648

Table 4.2: The mean accuracy and the mean area under the ROC curve (AUC) on
the neuromuscular dystrophy dataset. The compared methods are (leftto right) the
pyramid quantized Weisfeiler-Lehman kernel(WLpyramid), the pyramid bag of words
model (pyramid BoW), the multi-viewpoint rendering images procedure (Rendering)
and a combination of the multi-viewpoint rendering procedure with the pyramid quan-
tized Weisfeiler-Lehman kernel(Combined). Note that the chance is 65.5% accuracy.

follow two di�erent approaches, one for each dataset in order to maximizetheir perfor-

mance. For the neuromuscular dystrophy dataset we use a equal �xed weight strategy

(see Section3.4.1.2), while for the SHREC 2013 dataset we use a multiple kernel learning

approach (see Section3.4.1.1). An overview of the pipeline for the 3D shape dataset

with the pyramid quantized Weisfeiler-Lehman kernelis shown in Algorithm 4.2.

4.2.5 Results

For both datasets we use the same experimental setup, a double cross-validation pro-

cedure. The inner 5 fold cross-validation procedure is used for parameter selection,

while the outer 10 fold cross-validation procedure is used for evaluating the perfor-

mance. We only report results from the outer 10 fold cross-validation procedure. We

also compare thepyramid quantized Weisfeiler-Lehman kernelwith two other methods

on both datasets (a) a pyramid bag of words model, which is thepyramid quantized

Weisfeiler-Lehman kernel for depth h = 0, and (b) a multi-viewpoint rendering proce-

dure (see details in paragraph \Multi-viewpoint rendering descriptor" in Section 4.2.3.2)

following the same experimental setup. We also present the results obtained from the

combination of the best multi-viewpoint rendering representation with the best pyramid

quantized Weisfeiler-Lehman kernel.

The performance for the neuromuscular dystrophy dataset of thepyramid quantized

Weisfeiler-Lehman kernel, as well as the three other methods is shown in Table4.2 and

in Figure 4.15. The performance is evaluated as the mean accuracy and the mean area

under the Receiver Operating Characteristic curve (AUC) in Table 4.2 over a 10 fold

cross validation procedure. The respective ROC curves can be seenin Figure 4.15. The

pyramid quantized Weisfeiler-Lehman kerneloutperforms both the pyramid bag of words

method and the multi-viewpoint image rendering procedure. The overall best perfor-

mance is achieved when we combined thepyramid quantized Weisfeiler-Lehman kernel

with the multi-viewpoint rendering approach with a mean accuracy of approximately

83% and a mean AUC of 0.6648.
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Figure 4.15: The mean area under the ROC curve for the neuromuscular dystrophy
dataset over 10 fold cross-validation procedure. The compared methodsare thepyramid
quantized Weisfeiler-Lehman kernel(WLpyramid) in blue, the pyramid bag of words
model (pyramid BoW) in magenta, the multi-viewpoint rendering images procedure
(Rendering) in red and a combination of the multi-viewpoint rendering procedure with
the quantized Weisfeiler-Lehman pyramid kernel(Combined) in green.

The performance for the SHREC 2013 dataset of thepyramid quantized Weisfeiler-

Lehman kernel, as well as for the other methods is shown in Table4.3 and in Fig-

ure 4.16. The performance is evaluated as the mean area under the Receiver Operating

Characteristic curve (AUC of ROC curve) over a 10 fold cross-validationprocedure.

The overall best performance is achieved when we combined thepyramid quantized

Weisfeiler-Lehman kernelwith the multi-viewpoint rendering images with a mean AUC

of approximately 0:85 across all 20 classes. A Wilcoxon signed-rank test showed that

the combined method performed better than all other methods with high statistical

signi�cance (p < 10� 3).

We further show the learned weight of thepyramid quantized Weisfeiler-Lehman kernel

for the SHREC 2013 dataset in Figure4.17 and in Figure 4.18. Figure 4.17 shows an

example of the learned weights on a 3D object of the bird class for three di�erent subtree

depths (h 2 f 0; 1; 2g) of the Weisfeiler-Lehman algorithm, while Figure 4.18 shows the

learned weight over all levels of thepyramid quantized Weisfeiler-Lehman kernelfor

depth h = 1 for all one-vs-rest classi�ers. Note that the values of the learned weights

increase as the color changes from blue to red.
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(a) Bed
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(b) Bicycle
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(c) Biped
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(d) Biplane
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(e) Bird
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(f) Bottle

Figure 4.16: The Receiver Operating Characteristic Curves for all one-vs-restclas-
si�ers of the SHREC2013 dataset over a 10 fold cross-validation procedure.In blue is
the pyramid quantized Weisfeler-Lehman kernel(WL pyramid Kernel), in magenta a
pyramid bag of words approach (Pyramid Bow), in red is the Render Image descrip-
tor (Render Image Baseline) and in green the combination of thepyramid quantized
Weisfeler-Lehman kernelwith the Render Image descriptor (Combined WL+Render).
(Best viewed in color) (continued)
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(g) Car
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(h) Cellphone
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(i) Chair
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(j) Cup
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(k) Desklamp
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(l) Fish

Figure 4.16: The Receiver Operating Characteristic Curves for all one-vs-restclas-
si�ers of the SHREC2013 dataset over a 10 fold cross-validation procedure.In blue is
the pyramid quantized Weisfeler-Lehman kernel(WL pyramid Kernel), in magenta a
pyramid bag of words approach (Pyramid Bow), in red is the Render Image descrip-
tor (Render Image Baseline) and in green the combination of thepyramid quantized
Weisfeler-Lehman kernelwith the Render Image descriptor (Combined WL+Render).
(Best viewed in color) (continued)
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(m) Floorlamp
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(n) Insect
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(o) Monoplane
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(p) Mug
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(q) Phone
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(r) Quadruped

Figure 4.16: The Receiver Operating Characteristic Curves for all one-vs-restclas-
si�ers of the SHREC2013 dataset over a 10 fold cross-validation procedure.In blue
is the pyramid quantized Weisfeler-Lehman kernel(WL pyramid Kernel), i magenta a
pyramid bag of words approach (Pyramid Bow), in red is the Render Image descrip-
tor (Render Image Baseline) and in green the combination of thepyramid quantized
Weisfeler-Lehman kernelwith the Render Image descriptor (Combined WL+Render).
(Best viewed in color) (continued)
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Class WLpyramid pyramid BoW Rendering Combined

Bird 0.85 0.83 0.85 0.86
Bicycle 0.84 0.87 0.90 0.90
Biped 0.89 0.88 0.99 0.99

Biplane 0.60 0.63 0.68 0.69
Bird 0.73 0.73 0.80 0.80

Bottle 0.76 0.76 0.79 0.80
Car 0.78 0.79 0.80 0.80

CellPhone 0.74 0.80 0.88 0.89
Chair 0.69 0.68 0.70 0.72
Cup 0.85 0.84 0.88 0.88

Desklamp 0.80 0.80 0.88 0.89
Fish 1.00 1.00 1.00 1.00

Floorlamp 0.80 0.77 0.89 0.89
Insect 0.64 0.60 0.62 0.66

Monoplane 0.84 0.82 0.88 0.90
Mug 0.82 0.82 0.85 0.87

Phone 0.83 0.74 0.72 0.83
Quadruped 0.89 0.86 0.97 0.98

Sofa 0.76 0.75 0.74 0.75
Wheelchair 0.81 0.79 0.88 0.90

Average 0.80 0.79 0.84 0.85

Table 4.3: The mean area under the curve on the SHREC 2013 dataset over 10 fold
cross-validation procedure. The compared methods are (left to right) The pyramid
quantized Weisfeiler-Lehman kernel(WLpyramid), the pyramid bag of words model
(pyramid BoW), the multi-viewpoint rendering procedure (Rend ering) and a combina-
tion of the multi-viewpoint rendering procedure with the pyrami d quantizes Weisfeiler-
Lehman kernel (Combined). The Area under the curve is given for all one-vs-rest
classi�ers as well as the average across all classi�ers. In bold are the one-vs-rest classi-
�er where the combined classi�er outperforms the multi-viewpoint rendering procedure.
A Wilcoxon signed-rank test showed that the combined method performed better than
all other methods with high statistical signi�cance ( p < 10� 3).

4.2.6 Discussion

In the neuromuscular dystrophy dataset, thepyramid quantized Weisfeiler-Lehman ker-

nel performs substantially better than both the pyramid Bag of Words approach as well

as the multi-viewpoint rendering technique. These techniques clearly contain comple-

mentary information as the combined method performs best.

We have further con�rmation from the SHREC 2013 dataset that the pyramid quantized

Weisfeiler-Lehman kernel contains complementary information to the multi-viewpoint

rendering baseline. The combined approach gives the best performance in 13 out of the

20 classes, while never performing worse than the baselines. A Wilcoxon signed-rank

test also showed that the combined method performed better than allother methods

with high statistical signi�cance ( p < 10� 3).
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(s) Sofa
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(t) Wheelchair

Figure 4.16: The Receiver Operating Characteristic Curves for all one-vs-restclas-
si�ers of the SHREC2013 dataset over a 10 fold cross-validation procedure.In blue is
the pyramid quantized Weisfeler-Lehman kernel(WL pyramid Kernel), in magenta a
pyramid bag of words approach (Pyramid Bow), in red is the Render Image descrip-
tor (Render Image Baseline) and in green the combination of thepyramid quantized
Weisfeler-Lehman kernelwith the Render Image descriptor (Combined WL+Render).
(Best viewed in color)

As shapes are commonly represented by surface meshes, a natural approachis to use

these graphs for categorization and retrieval. In this section we have shown two such

applications, one on medical image analysis and one on generic 3D shape classi�cation.

The pyramid quantized Weisfeiler-Lehman kernelis a 
exible and e�cient method for

learning from graphs with continuous, vector-valued node labels, such as annotations

of local curvature. Furthermore, visualizations of the learned discriminant function is

feasible, providing rich information about the discriminative power of each 3D shape.

In this work, we have not directly incorporated any features in our node labels captur-

ing surface re
ectance, color, or texture. This is an interesting area for future research.

Learned shape retrieval by discriminative training of a Mahalanobis metric [Weinberger

and Saul, 2009] is another interesting possible future direction. Finally, in this work, we

have made three main contributions (a) we developed a novel framework for shape classi-

�cation based on the interpretation of shape meshes as annotated graphs, (b) we applied

a generalization of the Weisfeiler-Lehman graph kernel to continuous node labels, the

pyramid quantized Weisfeiler-Lehman kernel, and (c) we performed experiments on med-

ical imaging and semantic shape classi�cation tasks, showing that thepyramid quantized

Weisfeiler-Lehman kernelcontains complementary information to baseline methods and

that the best results are achieved by a combination of information sources.
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(a) h = 0 - pyramid Bag of Words

(b) h = 1

(c) h = 2

Figure 4.17: An example of the learned weights of thepyramid quantized Weisfeiler-
Lehman Kernel on a 3D object of the class bird from the SHREC 2013 dataset for three
di�erent subtree depths (h 2 f 0; 1; 2g). The values of the learned weights increase as
the color changes from blue to red. See Section3.4.1.3 for details of the visualization.
(Figure best viewed in color).
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Figure 4.18: Visualization of the learned weights of thepyramid quantized Weisfeiler-
Lehman kernelof subtree patterns with depth h = 1 for each vertex on the 3D surface
mesh per Class-vs-Rest Classi�er for the SHREC2013 dataset. The valuesof the learned
weights increase as the color changes from blue to red. The evaluation of the weight
per vertex is derived in Section3.4.1.3.(Figure best viewed in color.) (continued)
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