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Summary

Stochastic geometry is a powerful tool to model large wireless networks with high
variation of node locations. In this framework, a common assumption is that
the node locations form a realization of a Poisson Point Process (PPP). Using
available results on the Laplace transform of the Shot Noise processes associ-
ating with PPPs, one can obtain closed form expressions of many performance
metrics of interest such as the Medium Access Probability (MAP), the Coverage
Probability (COP) and the Spatial Density of Throughput (SDT). However, in
many wireless network deployments, there is a Carrier Sensing (CS) mechanism
to refrain nodes which are too close to each other from transmitting at the same
time. In these network, the process of nodes concurrently transmitting at any
time does not form a realization of a PPP any more, and this makes the analysis
of the network performance a challenging problem.

The aim of this dissertation is to study this problem in two directions. In the
first direction, we provide a comprehensive stochastic geometry framework based
on Point Processes with exclusion to model the transmitting nodes in different
types of wireless networks with CS mechanism. The considered networks are
Carrier Sensing Multiple Access (CSMA) networks with perfect CS, Cognitive
Radio networks where secondary users use Carrier Sensing to detect primary
users, and CSMA networks with imperfect CS mechanism. For the first two
cases, we provide approximations of the main network performance metrics,
namely the MAP, the COP and the SDT. For the last case, we give analytic
bounds on the critical spatial density of nodes where CSMA starts to behave
like ALOHA (i.e. the process of concurrent transmitting nodes in the network
forms a realization of a PPP). Although this phenomenon has been studied
earlier by means of simulations, no analytic result was known to the best of our
knowledge.

In the second direction, we go deeper into the problem of studying the dis-
tribution of points patterns of the Point Processes associated with the classi-
cal Matérn type II and Matérn type III models [Matérn 68]. These are the
two models that are used to model CSMA networks with perfect CS. Although
these model were introduced long ago and have many applications in many disci-
plines, the distribution of the points patterns in their associated Point Processes
in general and the Laplace transform of the corresponding Shot Noise processes
are still open problems. We prove that the probability generating functional of
this Point Process, when properly parameterized, is the unique solution of some
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systems of differential functional equations. Using these systems of equations,
one can get a lower bound and an upper bound on these generating functional.
This result can then be applied to the stochastic geometry framework mentioned
above to further bridge the gap between analytic mathematical frameworks and
practical network deployments.



Sommaire

La géométrie stochastique est un outil puissant pour modéliser des grands
réseaux sans fil avec une grande variation de la position des nœuds. Dans ce
cadre, une hypothèse courante est que l’emplacement des nœuds forme une
réalisation d’un processus ponctuel de Poisson (PPP). En utilisant les résultats
disponibles concernant la transformée de Laplace du processus bruit de grenaille
associé à des PPPs, on peut obtenir des solutions de forme fermée des métriques
de performance de réseau telles que la probabilité d’accès au médium (MAP),
la probabilité de couverture (COP) et de la densité spatiale de débit (SDT). Ce-
pendant, dans de nombreux déploiements de réseaux sans fil, il y a un mécanisme
de détection des porteuses(CS) pour empêcher nœuds qui sont trop proches les
uns des autres de transmettre en même temps. Dans ces réseaux, le processus
des nœuds qui transmettent simultanément à tout moment ne forme plus une
réalisation d’un PPP, ce qui rend l’analyse des performances des réseaux dans ces
cas, un problème difficile. L’objectif de cette thèse est d’étudier ce problème dans
deux directions. Dans la première direction, nous proposons un cadre complet
de la géométrie stochastique qui utilise des processus ponctuels avec exclusion
pour modéliser des transmetteurs dans différents types de réseaux sans fil avec
un mécanisme de CS. Les réseaux considérés sont les réseaux à accès multiple en
cherchant à détecter une porteuse (Carrier Sensing Multiple Access-CSMA) avec
un mécanisme de détection (CS) parfait, les réseaux de radio-communications
cognitifs où les utilisateurs secondaires utilisent la détection de porteuse pour
détecter les utilisateurs principaux et les réseaux CSMA avec un CS imparfait.
Pour les deux premiers cas, nous dérivons des approximations des métriques
de performances principales de réseau, c’est-à-dire la MAP, la COP et la SDT.
Pour le dernier cas, nous donnons des bornes sur la densité spatiale critique des
nœuds où CSMA commence à se comporter comme ALOHA (c’est-à-dire le pro-
cessus de des nœuds qui transmettent simultanément dans le réseau forme une
réalisation d’un PPP). Bien que ce phénomène ait été étudié auparavant par
simulations, aucun résultat d’analyse n’a été connu à de notre connaissance.
Dans la seconde direction, nous étudions la distribution processus ponctuel s
associés avec les classique Matérn modèles de type II et type III [Matérn 68].
Ce sont les deux modèles utilisés pour modéliser les réseaux CSMA avec un
CS parfait. Bien que ces modèles aient été introduits il y a longtemps et qu’ils
aient de nombreuses applications dans de nombreuses disciplines, la distribu-
tion de leurs processus ponctuels associés et la transformation de Laplace des
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processus bruit de grenaille correspondant est encore un problème ouvert. Nous
montrons ici que la fonctionnelle génératrice des probabilités de ces processus
ponctuels, lorsqu’elle est correctement paramétrée, est la solution unique de
certain système d’équations différentielles. Grace à l’utilisation de ce système
d’équations, on peut obtenir une borne inférieure et une borne supérieure de ces
fonctionnelle. Ce résultat peut ensuite être appliqué au cadre de la géométrie
stochastique mentionnée ci-dessus pour mieux connecter les cadres d’analyse
mathématiques et les déploiements de réseaux pratiques.



Preface

Wireless networks are collections of terminals wishing to communicate with each
other using radio signals. Nowadays, they become more and more pervasive
due to their ability to handle mobility, their flexibility and their low cost. The
operation of wireless networks is quite different from that of wired networks in
the way that different transmissions interact with each other. In wired networks,
if two terminals share the same cable, their signal will be completely destroyed
when they transmit at the same time; however, if they do not share the same
cable, they can transmit independently without interfering with each other. In
wireless networks, all transmissions take place in a common air medium and they
interact in a semi-destructive way in the sense that a transmission is successful
if and only if (iff) its signal power is strong enough compared to the total
interference signal power from other terminals in the network.

In all networks, no matter wired or wireless, there is always a need for a
set of rules to coordinate the transmissions in such a way that the resources
are employed efficiently. These sets of rules are called Multiple Access Control
(MAC) protocols. A good analogy is to think of a communication network as a
network of roads in a city, transmissions as cars travelling on the roads and the
corresponding MAC protocol as the system of traffic lights which dictates which
cars can run and which cars have to stop and wait. Due to the difference alluded
to above, the MAC protocols of wireless networks are very different in nature
from those of wired networks. For this reason, the modelling and analysis of
MAC protocols for wireless networks have attracted a lot of attentions over the
last decades, from the 1970’s.

In the very first studies [13, 4], the point of view is mostly adopted from
the analysis of wired networks. It is assumed that the common air medium
is a broadcast medium, so that terminals behave as if they were sharing a
common cable. When a terminal transmits, all other terminals can “see“ it and
if another terminal transmits at the same time, the signals will collide and both
transmissions will be lost. Of course, when two terminals are far away, due to the
decaying of radio signal power, they may not always ”see” each other and hence
the above assumption only holds when the considered network is small. One
step further to model the interference more accurately is to consider only the
strongest interferers. In this viewpoint, a transmission is successful iff there is no
strong interferer transmitting at the same time. This gives rise to the notion of
spatial reuse, i.e. if two terminals are far apart enough, their interference to each
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other is small and they can transmit at the same time, thus reusing the space
resource [14]. Nevertheless, such an approach neglects the fact that interference
does add up and sometimes the total interference from a large number of weak
interferers can still be strong enough to destroy the tagged signal. Hence, this
approach is only applicable for medium scale networks, where the number of
weak interferers is small. During the last few years, Stochastic geometry has
gained its popularity as an effective tool to model the aggregated interference in
large scale wireless networks quite accurately. By presenting the positions of the
terminals as a random collection of points in the plane, which is referred to as a
point process in the stochastic geometry literature, the aggregated interference
from all other terminals to the tagged terminal can be expressed as a Shot-Noise
process at that terminal. The analysis of the network of interest can be carried
out using the knowledge about the statistical distribution of this Shot-Noise
process [6].

So far, most of the applications of stochastic geometry in wireless network
modelling and analysis have been limited by the technical need to use Pois-
son point processes to model terminals locations. The popularity of Poisson
point processes stems from their tractability and from the fact that they can
model quite accurately the terminals locations of a popular MAC protocol-the
ALOHA protocol. By tractability we mean that the Laplace transforms of the
corresponding Shot-Noise processes, which contain all the knowledge about their
statistical distribution, can be computed in closed-form. These closed-form ex-
pressions can then be used to compute many performance metrics of interest of
the networks. On the other hand, not all MAC protocols can be modelled using
Poisson point processes. More specifically, the points of a Poisson point pro-
cess in disjoint areas are distributed independently of each other. This is linked
to the independent behaviour of terminals, i.e. each terminal acts on their
own without taking any notice of the actions of the others, which is usually
found in ALOHA protocols. In other protocols, there is usually some coordi-
nation among terminals in order to utilize network resources (time, frequency,
energy, etc.) more efficiently. An example is the Carrier Sensing Multiple Access
(CSMA) protocol where each terminal has the ”listen before talk” type of be-
haviour. When a terminal has a message to transmit, it first senses the common
air medium to see if there is any strong interferer nearby who is transmitting. If
there is, it has to refrain from transmitting and wait for a random period before
it can start another attempt. Another example where PPPs fail to provide an
appropriate model is the modelling of Cognitive Radio Networks, a new wire-
less communication paradigm which has emerged during the last few years as
a response to the problem of bandwidth scarcity. In these networks, there are
two classes of terminals: the primary and the secondary, where the primary ter-
minals have higher priority than the secondary ones. Each secondary terminal
wishing to transmit has to monitor the common air medium (carrier sensing)
and at the presence of a nearby active primary terminal, it has to refrain its
own transmission, hence giving up the air medium to the primary terminal.

The first aim of this thesis is to propose appropriate models for the kinds of
networks alluded to above, namely the CSMA Networks and the Cognitive Radio
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Networks using various MAC schemes. All the results in this directions are
systematically presented in Chapter 2 after a brief introduction of the Stochastic
Geometry framework in Chapter 1.

The proposed model for CSMA Networks can be any exclusion based model,
i.e. PPs where points are in some sense far from each other, but we focus on the
Matérn models of type II and type III (see definitions in Sections 2.1, 3.1) due
to their close connection to Poisson Point Processes. This modelling is discussed
in detail in Section 2.1, where an heuristic analysis of the Matérn type II model
case is also provided.

The modelling of Cognitive Radio Networks is the focus of Section 2.2. In
these networks, there is a wide range of options for the employed MAC schemes.
A common feature of these schemes is that the secondary transmissions should
avoid the primary transmissions. Within this constraint, any MAC scheme can
be used in each class. For example, one can use Time Division Multiple Access
to schedule primary terminals transmissions and ALOHA to schedule secondary
terminals transmissions; one could also use CSMA for primary terminals and
tree based protocols for secondary ones or vice versa, etc. We only consider here
three representatives of this class of models:

• the network with a single primary terminal and a population of secondary
terminals using the ALOHA MAC protocol;

• the network with a population of primary terminals and a population of
secondary terminals both using the ALOHA MAC protocol; and

• the network with a population of primary terminals and a population of
secondary terminals both using the CSMA MAC protocol.

The proposed models here are doubly stochastic PPPs [27, Section 5. 2] where
the first level of randomness represents the locations of the primary terminals
and the second level represents the locations of secondary terminals. These
models are presented in the increasing order of their complexity.

Coming back to CSMA, it is worth noting that the carrier sensing in all
CSMA Networks is imperfect due to the propagation delay. More concretely,
the propagation delay is the small time it takes for radio signal to travel from
a terminal to another one who is monitoring the air medium. If the monitoring
terminal decides to start transmitting before this delay, both transmissions will
collide and both will be lost. In most cases, there are mechanisms to minimize
this effect and to guarantee that the carrier sensing is as nearly perfect as
possible. Thus, the exclusion based models, which implicitly assume perfect
carrier sensing, are applicable in these cases. Nevertheless, there are instances of
CSMA Networks where these mechanisms are not available. For these networks,
simulation studies show that if the intensity of terminals is too high, there will
be congestion and the terminal locations pattern will break down to that of
an ALOHA network, signalling a failure of the carrier sensing mechanism. We
quantify this phenomenon by providing an upper bound and a lower bound of
the critical intensity where the CSMA type of behaviour starts breaking down to
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the ALOHA type of behaviour in Section 2.3. The model used in this analysis is,
however, closer to the doubly stochastic models used in the analysis of Cognitive
Radio Networks than the exclusion based models. In fact, it can be considered as
a multilevel-stochastic system, where there are many class of terminal and each
level of randomness represents the locations of the terminals in the same class
. All terminals in the same class start their transmissions at roughly the same
time, i.e. within an interval equals the propagation delay, and only terminals
in different classes can sense each other. For this reason, the section containing
this analysis is placed right after the section containing the analysis of Cognitive
Radio Networks.

In all of the above models, an important feature is the spatial separation
between terminals caused by the carrier sensing. As we will see, the analysis
of these models is not as successful as that of the ALOHA model. The reason
is that the probabilistic law of their points locations is not fully understood, or
more concretely, the Laplace transform of the corresponding Shot-Noise process
is not known. This motivates us to dwell deeper into the problem of study-
ing this probability law, which is characterized by their probability generating
functionals, in Chapter 3.

The probability generating functional is an important notion in the theory
of point processes. All the knowledge about the distribution of a point process
can be systematically deduced from it in the same way as all the knowledge
about the distribution of a random variable can be deduced from its probability
generating function [11, Section 9. 4] or [27, p. 115]. In particular, the Laplace
transform of the Shot-Noise process associated with a point process can be
straightforwardly computed from its probability generating functional.

In particular, the non-Poisson Point Processes that we study are the Matérn
type II and type III models. By varying their density of points, we prove that
their probability generating functionals are the unique solutions of two systems
of differential equations.

The structure the second Chapter is as follows. The rigorous constructions
of the Matérn models of type II and type III are given in Section 3.1. The main
results are then provided in Section 3.2. Section 3.3 contains the discussion of all
these results in a special context where the point processes are stationary. This
is usually an interesting and important case since most networks are deployed
in a statistically even manner.

For the sake of completeness, a short discussion about the theory of point
processes is provided in the appendices where all the notions which are used
throughout this thesis are briefly introduced.



Chapter 1

Stochastic Geometry and

the Modelling of Wireless

Networks

In this chapter is a brief introduction of the stochastic geometry framework used
in the modelling of wireless networks. We first recall in Section 1.1 some basic
notions that characterize the operation of a wireless network such as the path
loss, the fading, the Signal to Interference and Noise Ratio, the Multiple Access
Control protocols, etc. Then, we demonstrate the modelling of these notions
in the context of a large scale wireless network by using notions in Stochastic
Geometry in Section 1.2. The materials presented here can be regarded as the
background for the next chapter.

1.1 Preliminaries on Wireless Communication

1.1.1 Basic Notions

Consider a simple network which consists of a transmitting terminal (t.t.) T
and a receiving terminal (r.t.) R. T wants to send some information to R. This
information, when transmitted via the air medium, might be distorted by the
ambient noise. When the noise is too large, the signal will be so distorted that
R cannot detect the original information. R can only receive a message from
T successfully if the signal to noise ratio (SNR) is larger than some threshold
T , which depends on the employed coding scheme, where the SNR is the ratio
between the received signal power and the ambient noise power [31, Section
3. 1].

Furthermore, the received signal power at R is usually not the same as the
transmitted power at T; it is modified by two factors, the path-loss and the
(multipath) fading. The path-loss comes from the that the power of a radio

13



14 CHAPTER 1. STOCHASTIC GEOMETRY FRAMEWORK

Figure 1.1: An example of multipath fading. The scatterers are the buildings,
the landscape, the trees, ect. This is a rich scattering environlent, so the fading
will be Rayleigh if there is no direct path from the t.t. (the antena) to the r.t. (the
car) and it will be Rician otherwise. Picture taken from http://www.ice.rwth-
aachen.de/research/algorithms-projects/entry/detail/rake-receivers/

wave decays as it travels further. This loss of power is measured by the path-
loss function l(r), with r the distance that the radio wave has to travel. The
fading represents the effect that a radio wave may be reflected by many objects
on its way propagating to the r.t. As all the path-loss functions used in practice
are integrable and this often leads to nice analytical results, we assume that
this condition holds throughout this thesis. Several copies of the same signal
are then received, each following different paths. They may add up in either
a constructive way or a destructive way, thus making the signal power either
stronger or weaker. This is formalized by the random fading F . Hence, if the
distance between T and R is r and T transmits a signal with power P , the

received signal power at R is PFl(r). The corresponding SNR is then PFl(r)
N

with N the ambient noise power.

EXAMPLE of models for path loss and fading.

• The log-distance path loss model and its variants [31, p. 18]: a simple
path loss model that is widely used in the literature is the log-distance
path loss model where l1(r) = (Ar)α. The parameter α is called the path
loss exponent which is assumed to be greater than 2. Note that this is a
simplified model that makes no sense when r is small. To take care of this
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problem, some other variants which give roughly the same value for large
r are proposed, for example l2(r) = (Amax(r0, r))

α and l3(r) = (1+Ar)α.

• Fading

– The Rayleigh fading [31, p. 36] is a quite accurate model for fading in
rich scattering environment where there is no line of sight between the
transmitter and the receiver and there are many independently lo-
cated objects (scatterers) that attenuate, reflect, refract, and diffract
the signal. This is also a quite common assumption in analytical
works since the probabilistic law of the random fading is known in
a quite simple closed-form. In particular, the random fading here is
the square of the magnitude of a complex circular Gaussian random
variable, which is an exponential r.v. of some parameter µ. The rea-
son behind the quite unnatural formulation above is that the radio
wave at any location is usually viewed as the value of the electric
field at that location, which is expressed as a complex value. Thus
the fraction of signal coming from many scattered and reflected paths
are represented by a large number of independent complex r.v.s. The
aggregated signal, which is the sum of such complex r.v.s, is then a
circular Gaussian complex r.v. thanks to the Central Limit Theorem.
The random fading is then defined as the square of the magnitude of
this r.v. since we are only interested in the signal power.

– The Rician fading [31, p. 36] models the fading in the environments
where beside a large number of independent scatterers, there is a
strong line of sight between the transmitter and the receiver. The
random fading in this case is the square of the magnitude of a com-
plex r.v. which consists of two independent components. The first
component, which corresponds to the line of sight path, is a complex
r.v. of fixed magnitude and uniform phase and the second component
is a circular Gaussian complex r.v. corresponding to the scattered
paths. The distribution of the random fading in this case is called
the Rician distribution.

– The Nakagami fading [36] was first proposed by Nakagami because it
matches empirical data for short wave ionospheric propagation. The
distribution of the random fading is the Nakagami distribution, which
is closely related to the Gamma distribution. The Nakagami model
can model accurately the fading in many wireless communication sce-
narios where the signal is composed of several i.i.d. components, each
following the Rayleigh fading model. Such scenarios can arise in ei-
ther (a) the maximum ratio diversity combining where the fading in
each diversity branch is Rayleigh or (b) in multipath scattering envi-
ronments with relatively large delay-time spreads and with different
clusters of reflected waves so that the aggregated signal from each
cluster is Rayleigh.
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Remark 1.1 For notational convenience, we incorporate the transmission power
into the fading. Thus, if the original fading power is an exponential r.v. of pa-
rameter µ (Rayleigh fading) and the transmission power is P , the new “fading”
is an exponential r.v. of parameter µ/P . This “fading” is sometimes called the
virtual power [6, p. 4].

Remark 1.2 For analysis simplicity, we always assume Rayleigh fading in all
the models considered in this chapter.

Usually, a network does not contain only one t.t.-r.t. pair but several such
pairs co-located in some domain. By the pervasive nature of radio wave, the
signal from one t.t. does not only propagate to its intended r.t. but also to
other r.t.s. This signal then interferes with the intended signal at these r.t.s,
making it harder for them to receive their intended message.

Let (Ti, Ri), i = 1, . . . n be n t.t.-r.t. pairs in the same network. We assume
that all the t.t.s transmit at the same time with the same unit power. Hence, the
signal from Ti is received at Ri as the intended signal with power PFiil(|Ri−Ti|)
and is received at other Rj as interference with power PFij l(|Rj − Ti|), where
Fij is the fading from Ti to Rj . With this notation, the aggregated interference
at Ri is the sum of all the interference signal powers from all other t.t.s, i.e.
Ii =

∑

j 6=i PFij l(|Ri − Tj |).
For the r.t.s, a way to deal with interference is to treat it as ambient noise.

The intended signal can be successfully received if the Signal to Interference and
Noise (SINR) is larger than the decoding threshold T , i.e.

SINRi :=
Fiil(|Ri − Ti|)

N + Ii
> T

EXAMPLE. Consider a network with three t.t.-r.t. pairs (Ri, Ti) with i =
1, 2, 3. The geometrical pattern of these terminals is as in Figure 1.2. It is
assumed further that there is no fading, so that Fij = 1 for any 1 ≤ i, j ≤ 3;
the path loss exponent α = 3; the decoding threshold T is 1; and there is no
ambient noise.

If all three t.t.s transmit at the same time, the SINR at each r.t. is

SINRi =
r−3

r−3 + (2r)−3
=

8

9
< 1.

So, none of the r.t.s can successfully decode its intended message.
If only two of the t.t.s transmit, which we suppose without loss of generality

(w.l.o.g.) to be T1 and T2, The SINR at R1 is

SINR1 =
r−3

r−3
= 1,

and the SINR at R2 is

SINR2 =
r−3

(2r)−3
= 8 > 1.

So, only R2 can successfully receive its message.
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Figure 1.2: The positions of 3 t.t.-r.t.s, where the six points are positioned at
the six vertices of a regular hexagon in this order T1, R1, T2, R2, T3, R3. The
solid arrows are the intended links, the dashed arrows are the interference links.
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1.1.2 MAC Protocols

Given that excessive interference can lead to low SINR and poor signal reception,
it is then necessary to have a set of rules to allocate the common air medium to
all of the t.t.s in the network, which is called a Multiple Access Control (MAC)
protocol. We list below three groups of such protocols.

• The TDMA protocol[13] lets only one terminal transmit at a time so
that the terminals do not interfere with each other. TDMA is mostly
found in 2G cellular systems such as GMS, D-AMPS, PDC, iDEN. The
advantage of TDMA is that it is very easy to analyse and implement.
Its disadvantage is that it utilizes network resources, which is time in
this case, poorly. A fixed time slot is preallocated to each terminal and
the latter is allowed to transmit only in this slot. So, if a terminal does
not have anything to transmit, its allocated slot is wasted. This waste
is even larger for networks which have a lot of terminals, but the traffic
load of each terminal is very small and irregular (bursty networks). A
way to improve TDMA is to have token passing. Another way is to use
reservation algorithms. TDMA and its variants are conflict-free protocols,
i.e. the transmissions are organized in such a way that they do not interfere
with each other (another example of conflict-free protocols is Frequency
Division Multiple Access (FDMA), where transmissions are separated in
the frequency domain). Taking into account the fact that traffic demand
is usually irregular, another approach to the design of MAC protocols is
to allow terminals to access the common medium randomly based on their
loads and try to avoid interference by-the-fly. This leads to the random
access protocols.

• The ALOHA protocol is the first random access MAC protocol for ra-
dio communication. It is first introduced in the ALOHAnet project of
the University of Hawaii [4]. It has now become one of the most widely
deployed and the most studied random access protocol due to its simple
design. Some more sophisticated variants of ALOHA can be found in
many wireless network deployments such as in the 2G systems for channel
requesting or in the GPRS for user packet traffic handling. Even many
3G network designs reflect an increasing use of ALOHA random access
for user packet data as well as for signalling and control purposes. The
behaviour of a terminal in this protocol is as follows. It always transmits
whenever it has a new packet. Then, it waits for some time for an acknowl-
edge message (the ACK message). If the ACK message is not received,
this terminal concludes that its message is not successfully received and
hence retransmits its message at some later time (backlogging).

There is also a slotted version of the ALOHA protocol, where time is syn-
chronized into slots. The transmissions are forced to start at the beginning
and to finish at the end of each slot. The purpose of this constraint is to
minimize the time the transmissions of different terminals overlap (and
hence interfere) with each other.
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In conclusion, the virtue of ALOHA is simplicity. But this simplicity also
leads to quite poor performance. Many studies have confirmed that the
throughput of networks using ALOHA is quite low. One way to cope with
this is to use hybrid schemes, where ALOHA is used in light load scenar-
ios and a conflict-free protocol is used when the load is heavy. Another
way is to use ALOHA in reservation algorithms where it is used to make
reservations and whoever succeeds reserving the medium transmits freely
without interference. The low throughput of ALOHA is mitigated by the
very short reservation period compared to the transmission period.

• Another well-known class of random access protocols is the Carrier Sens-
ing Multiple Access (CSMA) protocols. The poor performance of ALOHA
is accounted for by the “impolite” behavior of terminals using that pro-
tocol, i.e. it transmits immediately whenever it has a message, taking no
consideration of the others. On the other hand, a simple “listen before
talk” rule, which is the design philosophy of CSMA, can benefit all. In
CSMA, a terminal is required to listen for some time before transmitting
its own message. If during this time the medium becomes busy, it has to
refrain its own transmission.

The first protocols of this kind are introduced and analysed in a series of
papers [15, 29, 30] by L. Kleinrock and F.A. Tobagi. Different variants
of CSMA differ from each other in many aspects. We give here a non
exhaustive list of the most important ingredients that constitute these
differences.

– Persistence: when a terminal has a new message and it senses the
medium busy, it can either (a) wait for some random “back-off” time
then sense the medium again, which results in the non persistent
CSMA; or (b) continuously monitor the medium and start transmit-
ting once the medium becomes idle, which results in the persistent
CSMA.

– Slot: when a terminal transmits, it takes some short time (the prop-
agation delay) before other terminals can actually “see” it. Thus,
a collision can still happen if there is another nearby terminal who
starts its transmission during this time window. This effect can be
minimized by synchronizing the time into slots, where the slot du-
ration is equal to the maximum propagation delay. Terminals are
forced to start transmitting only at the beginning of each slot so that
other terminals can see them at the end of this slot. Note that the
slots here are much shorter than the time to transmit a message and
are hence sometimes called the mini slots.

– Collision Detection: once a terminal transmits, it holds the common
medium for a duration which is long enough to transmit its packet. If
a collision occurs, this whole transmission period is wasted. Thus, it
will be better if terminals can detect collision during their transmis-
sions so that they can stop transmitting immediately once collisions
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are detected and release the common medium for other terminals to
use. This results in the CSMA/Collision detection (CD) protocol.

It is quite interesting to know that although CSMA is originally designed
for radio communications, its popularity is attached to a class of wired
networks, the Local Area Networks (LANs) [26, p. 102]. In LANs, ter-
minals are all connected to a common wired infrastructure. This allows
Carrier Sensing and Collision Detection to be implemented easily and ef-
ficiently. As a result, the performance of CSMA in these environments,
when properly tuned, is quite high. The performance of CSMA for wire-
less networks is, however, subjected to the hidden terminal effect. This is
the situation where there is a nearby terminal which will cause collision
but the sensing terminal cannot detect it because of deep fading. Never-
theless, CSMA still provides wireless transmissions with better protection
from interference than ALOHA.

1.2 Stochastic Geometry Framework—the Pos-

sion Case

The power of exploiting a Stochjastic Geometry framework lies in its ability to
model the irregularity of terminals locations in large networks and to accurately
model the effect of interference, taking into account all interferers. We illustrate
these advantages by a classical problem that is set within this framework: the
analysis of a slotted ALOHA network. All the tools and results from stochastic
geometry employed in this section are provided in Appendix A for the sake of
being self-contained. For a more complete treatment on the theory of stochastic
geometry and point processes,we refer the reader to [27, 11].

1.2.1 The Spatial Model

In slotted ALOHA, time is synchronized into slots and messages are divided into
packets in such a way that one packet can be completely transmitted within one
slot. Any t.t. having a packet arriving during a slot schedules it for transmission
in the next slot. If by the end of that slot, the t.t. does not receive the ACK
for the transmitted packet, it assumes that there has been a collision and the
packet will be scheduled to be transmitted in some later slot (backlogging).
These mechanisms are captured in the following assumptions.

Assumptions

The terminal locations are assumed to form a realization of a Poisson Point
Process (PPP) ( see Appendix A). This means that the distributions of these
locations in disjoint areas are mutually independent. This is a reasonable as-
sumption for networks with high level of irregularity such as mobile ad hoc



1.2. STOCHASTIC GEOMETRY FRAMEWORK—THE POSSION CASE21

networks (MANETs) and unplanned dense wifi networks. Furthermore, we as-
sume that each terminal has an intended r.t. associated with it. This is usually
referred to as the bi-pole model in the literature [6].

The transmission dynamic is modelled as follows. Each terminal is assumed
to always have some message to transmit. In each slot, it decides to transmit
or not with probability p. The t.t.s that decide to transmit in a given slot are
called the active t.t.s in that slot. This choice is independent of its choices at
other slots and is independent of the choices of other t.t.s. This means that
we make no distinction between newly generated messages and backlogged mes-
sages and we say that the system has an offered load of p message per terminal
per slot, which accounts for both newly generated messages and backlogged
messages. The offered load is normally larger than the arrival load, which ac-
counts for only newly generated messages. In fact, the exact modelling of the
transmitting process of ALOHA (and any random access based MAC protocol)
is very complicated. Hence, one has to make necessary simplifications to make
the model more tractable. The assumption that the choice of each terminal is
independent of each other is linked to the “impolite” behaviour of terminals in
ALOHA alluded to in Subsection 1.1.2.

The fading between each pair of terminals is assumed to be independent of
other pairs. As noted before, we assume Rayleigh fading for analytical simplicity,
so the fading value is an exponential r.v. of parameter µ > 0 for each pair of
terminals.

Problem Formulation

We now formulate the above assumptions in the language of stochastic geometry.
The modelling consists of taking a snapshot of the system at a typical time
slot. The system is represented by marked Poisson point process (MPPP, see
Appendix A) with i.i.d. marks {(x,u(x))} for which the ground process Φ = {x}
has intensity λ and represents the locations of the t.t.s. For each x, the mark
u(x) =

(

r(x), e(x), f(x)
)

where

• r(x) : the relative location w.r.t. x of its r.t., which is a uniformly dis-
tributed vector in the plane of fixed norm r. The absolute location of the
r.t. is x+ r(x).

• e(x) : the indicator of the event that x chooses to transmit in the current
slot, which is a {0, 1} value r.v. with distribution P(e(x) = 1) = p. The
set of all active terminals is D(Φ) = {x ∈ Φ s.t. e(x) = 1}. D(Φ) is an
independent thinning of the homogeneous PPP Φ of intensity λ, hence it
is also a homogeneous PPP but of intensity λp.

• f(x) = {fi(x), i = 1, 2, . . .} are i.i.d. exponential r.v.s of parameter µ which
represent the fading from x to the r.t.s of other terminals. As Φ is a PPP,
we can sort the points in it in the increasing order of their distances from
x. In this order, we can write Φ = {x1, x2, . . .} with x1 = x. Then fi(x)
is the fading from x to the r.t. of xi (namely xi + r(xi)). For notational
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simplicity, we regard these marks as a function f(x, y) taking pairs of
points (x, y) in Φ as its argument.

Let l be the path-loss function. Consider a typical t.t. x in Φ, by the SINR con-
dition discussed in Subsection 1.1.1, its r.t. can successfully receive its message
iff it chooses to transmit, i.e. e(x) = 1, and

SINR(x) :=
f(x, x)l(r)

N + I(x)
> T, (1.2.1)

where N is the ambient noise power, T is the decoding threshold and I(x) is the
Shot Noise (SN) interference process at the r.t. of x (namely x + r(x)), which
is defined as

I(x) =
∑

y∈D(Φ)\x

f(y, x)l(|y − x− r(x)|). (1.2.2)

The performance metrics we want to compute here are the coverage probabil-
ity and the average throughput. Note that D(Φ) is stationary (Appendix A.1.4)
, these metrics can be defined by considering a typical terminal x.

• The coverage probability (COP) is the probability that the SINR at the
r.t. of a typical active terminal is higher than the decoding threshold T ,
i.e.

pCOP := Px,D(Φ) (SINR(x) > T ) = Po,D(Φ) (SINR(o) > T ) , (1.2.3)

where Px,D(Φ) is the Palm distribution of D(Φ) given a point at x and o
is the centre of the plane (i.e. the origin of the coordinates we use).

• The average throughput (AT, denoted as T in the bellow formula) is the
average number of successful transmissions taking place in the network
per unit of area per time slot, i.e.

T = E





∑

x∈D(Φ)∩B

1SINR(x)>T



 , (1.2.4)

where B is any subset of R2 of unit area. Note that this choice of B is
only possible because D(Φ) is stationary.

One should always bear in mind that these two metrics described above are
the averages taken over all possible geometric configurations of the terminal
locations. They are not necessarily identical to the time averaged performances
that a given node in the network experiences. More specifically, the COP is not
necessarily equal to the ratio between the number of successful transmissions
over a long period of time and number of transmissions over a long period of
time; the average throughput is not necessarily equal to the average number
of successful transmissions taking place in a fixed area of the network over a
long period of time. This is only true when there is enough mobility in the
network, so that the realizations of the terminal locations in different time slots
are mutually independent or at least they form an ergodic system of PPs.
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Figure 1.3: A snapshot of an ALOHA bi-pole network. The circles are the
position of the t.t.s, which form a realization of a PPP of intensity .2 on a
10 × 10 square. Each t.t. has an arrow pointning to its intended r.t., which is
represented by a cross.
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1.2.2 Analysis

This Subsection contains the computations of the coverage probability and the
average throughput.

Proposition 1.1 Under the conditions given in Subsection 1.2.1, the coverage
probability of a typical t.t., which is given the right to transmit in the current
slot is

pCOP = exp

{

−µ
T

l(r)

}

exp

{

−λ

∫

R2

yT l(|y|)

T l(|y|) + l(r)
dy

}

. (1.2.5)

Proof. As f(o, o) is an exponential r.v. of parameter µ, we can write

Po,D(Φ)

(

SINR(o) > T
)

= Po,D(Φ)

(

f(o, o)l(r)

N +
∑

y∈D(Φ)\{x} f(y, o)l(|y − r(o)|)
> T

)

= Po,D(Φ)



f(o, o) > T





N

l(r)
+

∑

y∈D(Φ)\{x}

f(y, o)
l(|y − r(o)|)

l(r)









= Eo,D(Φ)



exp







−µT





N

l(r)
+

∑

y∈D(Φ)\{x}

f(y, o)
l(|y − r(o)|)

l(r)















= exp

{

−µT
N

l(r)

}

Eo,D(Φ)



exp







−µT





∑

y∈D(Φ)\{x}

f(y, o)
l(|y − r(o)|)

l(r)















= exp

{

−µT
N

l(r)

}

Eo,D(Φ)





∏

y∈D(Φ)\{x}

exp

{

−µT

(

f(y, o)
l(|y − r(o)|)

l(r)

)}



 .

Under its Palm distribution given o, by Slivnyak’s theorem o ∈ D(Φ) a.s. and
D(Φ) \ x forms a realization of an homogeneous PPP of the same intensity.
Furthermore, {f(x, o), x ∈ D(Φ)} can be regarded as independent marks of the
points in D(Φ) where each mark is exponentially distributed with parameter µ.
Hence, let F denotes the σ-algebra generated by the realization of the points in
D(Φ),

Eo,D(Φ)





∏

y∈D(Φ)\x

exp

{

−µT

(

f(y, o)
l(|y − r(o)|)

l(r)

)} ∣

∣

∣

∣

F , r(o)





=
∏

y∈D(Φ)\x

E

[

exp

{

−µT

(

f(y, o)
l(|y − r(o)|)

l(r)

)}]

=
∏

y∈D(Φ)\x

l(r)

T l(|y − r(o)|) + l(r)
.
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Then by taking expectation w.r.t. F and using Theorem A.1, we get

Eo,D(Φ)





∏

y∈D(Φ)\x

exp

{

−µT

(

f(y, o)
l(|y − r(o)|)

l(r)

)} ∣

∣

∣

∣

r(o)





= E





∏

y∈D(Φ)\x

l(r)

T l(|y − r(o)|) + l(r)

∣

∣

∣

∣

r(o)



 = GD(Φ)

(

l(r)

T l(|.− r(o)|) + l(r)

)

= exp

{

−λp

∫

R2

(

1−
l(r)

T l(|y − r(o)|) + l(r)

)

dy

}

= exp

{

−λp

∫

R2

T l(|y − r(o)|)

T l(|y − r(o)|) + l(r)
dy

}

,

where GD(Φ) is the p.g.fl of D(Φ). By changing variable from y to y − r(o), we
have

∫

R2

T l(|y − r(o)|)

T l(|y − r(o)|) + l(r)
dy =

∫

R2

T l(|y|)

T l(|y|) + l(r)
dy

for every possible value of r(o) and the conclusion follows directly. �

Proposition 1.2 Under the conditions given in Subsection 1.2.1, the average
throughput of the network is

T = λppCOP. (1.2.6)

Proof. By Campbell’s formula,

E





∑

x∈D(Φ)∩B

1SINR(x)>T



 =

∫

B

Px,D(Φ) (SINR(x) > T )λpdx.

As Px,D(Φ) (SINR(x) > T ) = Po,D(Φ) (SINR(o) > T ) = pCOP for every x in R
2,

T = E





∑

x∈D(Φ)∩B

1SINR(x)>T





= λppCOP.

�

From the two proofs above, we see that there are four components that make
up a successful analysis.

1 Given a realization of the t.t.s locations, there is a representation of the
coverage probability as a product of a function taken over all points of the
process of active t.t.s.
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2 The expectation over all possible geometrical configurations of the process
of active t.t.s under its Palm distribution of the aforementioned product
is a probability generating functional (p.g.fl) of this PP.

3 This p.g.fl is computed using known results in stochastic geometry.

4 The computation of the average throughput is based on Campbell’s for-
mula.

Among these, the second and the fourth points are always true for models using
any type of PPs to model the active t.t.s, the first point holds if that PP has
independent fading marks, while the third point is true only for the Poisson
case. As we will see in the next sections, this is the main reason that makes the
analysis using different types of PPs to model the active t.t.s not as successful
as in the Poisson case.

Bibliographical note

The analysis in Section 1.2 is based on [5]



Chapter 2

Wireless Network

Modelling using

Non-Poisson Point

Processes

We gather in this chapter one of the two main contributions of this thesis-the
modelling of wireless networks using non-Poisson PPs. In particular, we con-
sider here three kinds of networks: the perfect CSMA Networks (Section 2.1),
the Cognitive Radio Networks (Section 2.2) and the imperfect CSMA Networks
(Section 2.3). In these networks, there is always some degree of spatial sepa-
ration, which makes it impossible to use PPPs to model them. The analysis
presented here is also the main motivation for our developments in Chapter 3.

2.1 Analysis of CSMA Networks

The analysis of the slotted ALOHA protocol benefits from the fact that an
independent thinning of a PPP is again another PPP. In most of the other
random access MAC protocols, terminals do no act independently, but adjust
their behaviour to the situation in their neighbourhood. The CSMA protocol
introduced in Subsection 1.1.2 is a very fine example of such protocols. Our
object here is to extend the framework demonstrated in the last section to the
case of CSMA, and by doing so we point out the main difficulties that one has
to overcome when using stochastic geometry to analyse MAC protocols other
than ALOHA.

27
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2.1.1 Spatial Model

In CSMA, each t.t. having a packet to transmit does not transmit right away as
in ALOHA, but monitors the network for sometime. If the medium is free until
the end of this period, it can then transmit. Otherwise, it will reschedule its
packet to a future time. This entails the following assumptions on the spatial
model of the network.

Assumptions

All the basic assumptions are the same as in the model of the slotted ALOHA
protocol, except the transmission process. As explained earlier, the exact trans-
mission process of any random access MAC protocol is very complicated and
the crucial point to a successful modelling is to identify the typical behaviour
of the system. If the typical behaviour of ALOHA is the independence between
terminals actions, the typical behaviour of CSMA is spatial separation. In other
words, due to Carrier Sensing, a terminal can “see” other t.t.s if the power of
the signals received at the tagged terminal is higher than some certain value
called the Carrier Sensing threshold. For two terminals which can “see” each
other, if one terminal transmits first, the other will see it when it attempts to
make a transmission. These two terminals cannot transmit at the same time in
a network using CSMA.

Thus, a key point in the spatial modelling of CSMA Networks is to find a
proper PP to represent the set of active t.t.s. This PP does not only have to have
the spatial separation property but also has to be able to reflect the irregular
nature of the terminals locations. Ideally, it should be a subset (thinning) of
a PPP, since the set of active t.t.s is a subset of the set of all terminals in the
network, which is modelled by a PPP.

Within these criteria, there are two natural candidates that have been advo-
cated for the last few years, the Matérn type II and the Matérn type III model,
with a preference over the former due to the belief that it is more tractable. For
the sake of easy reading, we only provide here brief and informal descriptions
of these two models, leaving the formal constructions to Section 3.1.

Both models give each terminal an additional, artificial attribute which is
a random real number in [0, 1]. For the reason explained in Subsection 3.1.1,
we call this attribute the timer of the terminal, which is used in the retention
procedure in the following way. We start with the Matérn type II model. In its
retention procedure, each terminal compares its timer to those of the terminals
it “sees” and it will be retained iff its timer has the smallest value. The retention
procedure of the Matérn type III model is slightly more complicated. We first
order the terminals in the increasing order of their timers (this can be done
easily when there are finitely many terminals, the construction for infinitely
many terminals is given in Subsection 3.1.3). Then we start afresh with an
empty domain (i.e. the plane with no point in it), in which we sequentially add
terminals in the aforementioned order. For each newly added terminal, we only
keep it (or equivalently retain it) if it “sees” no terminal which has already been
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retained. Otherwise this terminal is rejected and erased.
In conclusion, the assumptions that we use for the analysis are:

• the time is slotted;

• the network consists of t.t.-r.t. pairs, where the locations of the t.t.s form
a realization of a PPP;

• we assume independent Rayleigh fading, i.e. the fading between pairs of
terminals are i.i.d. exponential r.v. of parameter µ; and

• the terminals that actually transmit in the current slot form a realization
of either (a) a Matérn type II model or (b) a Matérn type III model.

The next step is to formulate the above assumptions in the stochastic geometry
language.

Problem Formulation

We take a snapshot of the system at a typical time slot. The locations of all
t.t.s are represented by a MPPP with i.i.d. marks {(x,u(x))} with its ground
process Φ = {x} representing the locations of the t.t.s. For each x, the mark
u(x) contains

• r(x) : the relative location w.r.t. x of its intended r.t. , which is a uniformly
distributed random vector of fixed norm r in the plane;

• t(x) : the timer of x, which is uniformly distributed in [0, 1];

• f(x) = {fi(x), i = 1, 2, . . .} are i.i.d. exponential r.v.s of parameter µ which
represent the fading from x to the r.t.s of other t.t.s in the network, which
can be regarded as a function f(x, y) taking ordered pairs of points (x, y)
in Φ as its parameter; and

• g(x) = {gi(x), i = 1, 2, . . .} are i.i.d. exponential r.v.s of parameter µ/2.
{g(x), x ∈ Φ} and f are independent. The purpose of these r.v.s will be
explained shortly below.

We want to construct a family of i.i.d. exponential r.v.s {g(x, y), (x, y) are
unordered pairs in Φ} of parameter µ which represents the fading from the
t.t. at x to the t.t. at y. These fading values are used in the carrier sensing
process modelling as follows. We associate gi(x) to y and gj(y) to x in the
same way as fi(x) is associated to y and fj(y) is associated to x. Then we take
g(x, y) = min(gi(x), gj(y)). We can easily verify that g(x, y) is independent for
every unordered pair (x, y) in Φ and that

P(g(x, y) > a) = P(gi(x) > a and gj(y) > a) = e−µa/2e−µa/2 = e−µa.

Moreover, this newly constructed family of r.v.s and f are independent due to
the independence of g and f. Two terminals at x and y are then said to “see”
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each other, which is written as Ccs(x, y) = 1 in the notation of Section 3.1.1,
iff g(x, y)l(|x − y|) > ρ with ρ be the sensing threshold and l is the path loss
function. As g(x, y)l(|x − y|) is the received signal power at one of the two
terminals at x and y, given that the other terminal is transmitting, the random
relation Ccs is a quite faithful model of the real carrier sensing process. Note
that Ccs is what we call the random conflict relation in Section 3.1.1.

The collection of active t.t.s is represented by either (a) MII(Φ, Ccs) or (b)
MIII(Φ, Ccs) (see definitions in 3.1.

Consider a typical terminal x in Φ. If it chooses to transmit in the current
slot, the SINR at its r.t. will be

SINRII(x) =
f(x, x)l(r)

N + III(x)
(2.1.1)

in case (a) and be

SINRIII(x) =
f(x, x)l(r

N + IIII(x)
(2.1.2)

in case (b). In the above formula, N is the ambient noise power and III(x),
IIII(x) are the SN interference processes at x+r(x) corresponding toMII(Φ, Ccs)
and MIII(Φ, Ccs) respectively,

III(x) =
∑

y∈MII(Φ,Ccs)\x

f(y, x)l(|y − x− r(x)|); (2.1.3)

IIII(x) =
∑

y∈MIII(Φ,Ccs)\x

f(y, x)l(|y − x− r(x)|). (2.1.4)

We consider three performance metrics, the medium access probability MAP,
the coverage probability COP and the average throughput AT. By the discussion
in Section 3.3, we know that under the assumptions given at the beginning of
this subsection, both MII(Φ, Ccs) and MIII(Φ, Ccs) are stationary. Hence, the
interested metrics can be defined by considering a typical terminal located at
the centre o of the plane w.l.o.g..

• The MAP is the probability that a typical terminal transmits in a typical
time slot, which is

pMAP,II := Px,Φ(x ∈ MII(Φ, Ccs)) = Po,Φ(o ∈ MII(Φ, Ccs)) (2.1.5)

in case (a) and is

pMAP,III := Px,Φ(x ∈ MIII(Φ, Ccs)) = Po,Φ(o ∈ MIII(Φ, Ccs)) (2.1.6)

in case (b) for any point x, where Px,Φ is the Palm distribution given a
point at x of Φ. It is equivalent to the access probability p of ALOHA.
Unlike p, the MAP of CSMA is not known a priory and hence needs to be
computed explicitly.
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• The COP is the probability that the SINR at the r.t. of a typical terminal
is higher than the decoding threshold T , given that this terminal is active.
In the other words, the COP for case (a) is

pCOP,II = Px,MII(Φ,Ccs)(SINRII(x) > T )

= Po,MII(Φ,Ccs)(SINRII(o) > T ) (2.1.7)

and for case (b) is

pCOP,III = Px,MIII(Φ,Ccs)(SINRIII(x) > T )

= Po,MIII(Φ,Ccs)(SINRIII(o) > T ), (2.1.8)

for any point x. Px,MII
and Px,MII

are the Palm distributions given a
point at x of MII(Φ, Ccs) and MIII(Φ, Ccs) correspondingly.

• The AT is the average number of successful transmissions taking place in
the network per slot and per unit of area, which can be defined as

TII = E





∑

x∈B∩MII(Φ,Ccs)

1SINRII(x)>T



 (2.1.9)

in case (a) and as

TIII = E





∑

x∈B∩MIII(Φ,Ccs)

1SINRIII(x)>T



 , (2.1.10)

in case (b) with B be any Borel set of unit area.

As with ALOHA, we would like to stress that the above metrics are the averages
over all possible geometry configurations of the network and are not necessarily
equal to the averages over time. This is only true if there is enough mobility in
the network.

2.1.2 Probability Generating Functionals Representations

of the Performance Metrics

Now we compute the metrics defined above in terms of the p.g.fls of the corre-
sponding Matérn type II and type III models.

Proposition 2.1 Under the conditions given in Subsection 2.1.1, the medium
access probability of a typical t.t. is

pMAP,II = (πr2)−1 d

ds
GMII(Φ,Ccs)(e

−s1|.|<r )

∣

∣

∣

∣

s=0

for case (a) and is

pMAP,III = (πr2)−1 d

ds
GMIII(Φ,Ccs)(e

−s1|.|<r )

∣

∣

∣

∣

s=0

in case (b).
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Proof. The proofs for case (a) and case (b) are similar. Hence, we only present
the first one. By Campbell’s formula and by stationarity,

E [|MII(Φ, Ccs) ∩B(o, r)|] = E





∑

x∈B(o,r)

1x∈MII(Φ,Ccs)





=

∫

B(o,r)

Px,Φ (x ∈ MII(Φ, Ccs)) dx

= |B(o, r)|Po,Φ (o ∈ MII(Φ, Ccs)) = 2πr2pMAP,II,

for every r > 0 with B(o, r) the ball centred at o having radius r. By application
of Proposition A.5, we have

d

ds
GMIII(Φ,Ccs)(e

−s1|.|<r )
∣

∣

∣

s=0
= E [|MII(Φ, Ccs) ∩B(o, r)|] ,

which directly implies (2.1.11). �

Proposition 2.2 Under the conditions given in Subsection 2.1.1, the coverage
probability of a typical active t.t. is

pCOP,II = exp

{

−µ
TN

l(r)

}

G!
o,MII(Φ,Ccs)

(

l(r)

T l(|.− re|) + l(r)

)

(2.1.11)

for case (a) and

pCOP,III = exp

{

−µ
TN

l(r)

}

G!
o,MIII(Φ,Ccs)

(

l(r)

T l(|.− re|) + l(r)

)

(2.1.12)

for case (b), where o is the centre of the plane and e is a vector of unit length
in the plane.

Proof. The proofs for both case are similar to the proof of Proposition 1.1. The
only difference is that there is no closed form formula for the p.g.fls. �

Proposition 2.3 Under the conditions given in Subsection 2.1.1, the AT of the
network is

TII = λpMAP,IIpCOP,II (2.1.13)

in case (a) and is

TIII = λpMAP,IIIpCOP,III (2.1.14)

in case (b).

Proof. This proof is similar to the proof of Proposition 1.2, which makes use of
Campbell’s formula. �
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Figure 2.1: The set of all t.t.s in a dense network. The locations of the t.t.s
are the circles. Each t.t. has an arrow pointing to its intended r.t. The distance
from a t.t. to its r.t. is 1.



34 CHAPTER 2. NON POSSION CASE

Figure 2.2: The set of active t.t.s in the previous dense CSMA Network. On
the left is case (a) where the process of active t.t.s is modelled by the Matérn
type II model. On the right is case (b) where this process is modelled by the
Matérn type III model. There is no fading, l(r) = r−4 and ρ = 1/16. We see
that in (b) there are two more active t.t.s than (a).

2.1.3 Poisson Approximation of the Matérn type II Model

An heuristic method to compute the above p.g.fls is to approximate the reduced
Palm distributions of the involved PPs by the distributions of the PPPs of the
same intensity measures. However, such an approach is only applicable to the
Matérn type II model since we can only compute the intensity under the reduced
Palm distributions of this model explicitly. We start with the MAP.

Proposition 2.4 Under the conditions given in Subsection 2.1.1, the MAP of
a typical t.t. in (a) case is

pMAP,II =
1− exp{−λN}

λN
, (2.1.15)

where

N = 2π

∫ ∞

0

exp{−
µρ

l(r)
}rdr. (2.1.16)
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Proof. Consider the distribution of Φ under its Palm distribution given o. Given
that the timer t(o) of this point is t, the probability that o ∈ MII(Φ) is

Po,Φ(o ∈ MII(Φ) | t(o) = t) = Po,Φ(Ccs(o, x) = 0 or t(x) ≥ t for all x ∈ Φ)

= Eo,Φ

[

∏

x∈Φ

1Ccs(o,x)=0 or t(x)≥t

]

= Eo,Φ

[

∏

x∈Φ

(

1− 1Ccs(o,x)=11t(x)<t

)

]

.

Denoting F the σ-algebra generated by the realization of the points in Φ,

Eo,Φ

[

∏

x∈Φ

(

1− 1Ccs(o,x)=11t(x)<t

)

∣

∣

∣

∣

F

]

=
∏

x∈Φ

E
[

1− 1Ccs(o,x)=11t(x)<t

]

=
∏

x∈Φ

(

1− exp

{

−
µρ

l(|x|)

}

t

)

.

Hence,

Po,Φ(o ∈ MII(Φ) | t(o) = t) = Eo,Φ

[

∏

x∈Φ

(

1− exp

{

−
µρ

l(|x|)

}

t

)

]

= exp

{

−λt

∫

R2

exp

{

−
µρ

l(|x|)

}

dx

}

= exp
{

−λtN
}

,

as
∫

R2

exp

{

−
µρ

l(|x|)

}

dx =

∫ ∞

0

exp

{

−
µρ

l(r)

}

π2rdr = N .

The proposition follows by taking integration w.r.t. t from 0 to 1. �

Remark 2.1 Although the closed form expression derived in the above proposi-
tion is correct as confirmed by Proposition 3.8, its derivation is not rigorous. In
fact, it is based on the implicit assumption that there is a realization of Φ and
MII(Φ, Ccs) in the same probability space in such a way that the Palm distri-
bution given o of the latter can be expressed as a conditional Palm distribution
of the former given that it has a point at o and that this point belongs to the
latter. Such a claim is, in fact, quite hard to prove. By default, this assumption
is used for all other results in this subsection.

Proposition 2.5 The intensity measure of MII(Φ, Ccs) under its reduced Palm
distribution given o is b(λ, |x|)λdx where

b(λ, r) =
2

λ(N −N 2(r))

(

1− e−λN

N
−

1− e−λ(2N−N 2(r))

2N −N 2(r)

)

(1− e−
µρ
l(r) )N

1− e−λN
,

(2.1.17)
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and

N 2(r) =

∫ 2π

0

∫ ∞

0

exp

{

−µρ

(

1

l(z)
+

1

l(
√

z2 + r2 − 2rz cos(θ))

)}

zdzdθ.

(2.1.18)

Proof. There are two methods to obtain this result. We present here the first one
which consists of using the implicit assumption alluded to above. The second
one makes use of Corollary 3.3.

First, we rewrite b(λ, |x|) as

b(λ, |x|) := Po,x,Φ (x ∈ MII(Φ, Ccs) and o ∈ MII(Φ, Ccs) | o ∈ MII(Φ, Ccs))

=
Po,x,Φ (x ∈ MII(Φ, Ccs) and o ∈ MII(Φ, Ccs))

Po,Φ (o ∈ MII(Φ, Ccs))
.

The numerator is computed as follow,

Po,x,Φ (o ∈ MII(Φ, Ccs))

= Eo,x,Φ



1Ccs(o,x)=0

∏

y∈Φ\{o,x}

1Ccs(o,y)=0 or t(y)≥t(o)1Ccs(x,y)=0 or t(y)≥t(x)





By conditioning on F , t(o) and t(x),

Eo,x,Φ

[

1Ccs(o,x)=0

∏

y∈Φ\{o,x}

1Ccs(o,y)=0 or t(y)≥t(o)1Ccs(x,y)=0 or t(y)≥t(x)

∣

∣

∣

∣

F , t(o)

, t(x)

]

= E
[

1Ccs(o,x)=0

]

∏

y∈Φ\{o,x}

E
[

1Ccs(o,y)=0 or t(y)≥t(o)1Ccs(x,y)=0 or t(y)≥t(x)

]

=
(

1− e−µρ/l(|x|)
)

∏

y∈Φ\{o,x}

(

1− E
[

1Ccs(o,y)=11t(y)<t(o)

]

− E
[

1Ccs(o,y)=11t(y)<t(x)

]

+ E
[

1Ccs(o,y)=11t(y)<t(o)1Ccs(o,y)=11t(y)<t(x)

]

)

=

(

1− exp

{

−
µρ

l(|x|)

})

∏

y∈Φ\{o,x}

(

1− exp

{

−
µρ

l(|y|)

}

t(o)− exp

{

−
µρ

l(|y − x|)

}

t(x)

+ exp

{

−µρ

(

1

l(|y|)
+

1

l(|y − x|)

)}

min(t(o), t(x))

)

.
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By Slivnyak’s theorem, Φ \ {o, x} is distributed as a PPP of intensity λ under
Po,x,Φ, so

Eo,x,Φ

[

∏

y∈Φ\{o,x}

(

1− e−µρ/l(|y|)t(o)− e−µρ/l(|y−x|)t(x) + e−µρ( 1
l(|y|)+

1
l(|y−x|) )

min(t(o), t(x))
)∣

∣

∣t(o), t(x)

]

= exp

{

−λ

∫

R2

(

e−µρ/l(|y|)t(o) + e−µρ/l(|y−x|)t(x)− e−µρ( 1
l(|y|)+

1
l(|y−x|) )

min(t(o), t(x))
)

dy

}

.

Since
∫

R2

e−µρ/l(|y|)dy =

∫

R2

e−µρ/l(|y−x|)dy = N

and
∫

R2

e−µρ( 1
l(|y|)+

1
l(|y−x|) )dy = N 2(|x|)

for every x, we then have

Po,x,Φ (o ∈ MII(Φ, Ccs) | t(o), t(x))

=
(

1− e−µρ/l(|x|)
)

exp{−λt(o)N − λt(x)N + λmin(t(o), t(x))N 2(|x|)}.

By taking integration w.r.t. t(o) and t(x) from 0 to 1, we get

Po,x,Φ (o ∈ MII(Φ, Ccs))

=
2

λ(N −N 2(r))

(

1− e−λN

λN
−

1− e−λ(2N−N 2(r))

λ(2N −N 2(r))

)

(

1− e−
µρ
l(r)

)

.

As the denominator is 1−e−λN

λN
, (2.1.17) follows directly. �

Then, the Poisson approximation gives us:

Proposition 2.6 By approximating the reduced Palm distribution of MII(Φ, Ccs)
given a point at o by that of a PPP of intensity measure b(λ, |x|)λdx, the COP
of a typical t.t. and the AT of the network in (a) case are approximated as

pCOP,II ≈ exp

{

−µ
TN

l(r)
+ λ

∫

R2

T l(|y − er|

T l(|y − er|) + l(r)
b(λ, |y|)dy

}

, (2.1.19)

and

TII ≈ exp

{

−µ
TN

l(r)
+ λ

∫

R2

T l(|y − er|

T l(|y − er|) + l(r)
b(λ, |y|)dy

}

(1− e−
µρ
l(r) )N

1− e−λN
.

(2.1.20)
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Proof. The proof of (2.1.19) is a corollary of Proposition 2.2 and Theorem A.1.
The proof of (2.1.20) is a corollary of (2.1.19), Proposition 2.4 and Proposition
2.3. �

As we can see, the basis of the above heuristic analysis is the assumption
that the Palm distribution given o of MII(Φ, Ccs) can be approximated by the
distribution of a PPP of intensity measure b(λ, |x|)λdx. It is then important
to check the accuracy of this assumption. We do so by computing the p.g.fls
of MII(Φ, Ccs) under Po,MII(Φ,Ccs) by (i) Monte Carlo method and (ii) by the
approximating formulas for different classes of functions v. We then check the
consistency of the obtained results. Below are the plots of the results for (a)

the functions va,r = 1|x|>r, (b) the functions vb,r = |x|4

r+|x|4 and (c) the functions

vc,r = 1− exp{−r|x|4}. For these plots, we assume that the path-loss function
is l(|x|) = |x|−4 and the other parameters are µ = ρ = 1. In all there cases,
we observe good matches between the results obtained by two computation
methods.

2.2 Analysis of Cognitive Radio Networks

The radio frequencies have always been a scarce resource in wireless commu-
nication. Traditionally, this resource is preallocated to each application (such
as radio navigation, TV, aeronautical radio navigation, bluetooth, etc.) and to
each network operator if the concerning application is for commercial purposes
by regulatory bodies such as the FCC in the US, the OFCOM in the UK, the
CEPT in Europe, the IDA in Singapore, etc. The report of the FCC special
taskforce [1] in 2004, followed up by studies of other regulatory bodies all over
the world shows that most of the allocated frequencies such as the military,
the amateur radio and the paging frequencies, are inefficiently utilized, while
cellular network bands are overloaded all over the world. An answer to this
problem is the Dynamic Spectrum Access (DSA) [7], where bandwidth hungry
applications are allowed to use the insufficiently utilized allocated frequencies,
given that they do not cause to much degradation to the performance of the
licensed applications.

Cognitive Radio (CR), a new wireless communication paradigm first intro-
duced by J. Mitola in his thesis dissertation [18], is a major enabler of DSA.
CR devices are wireless terminals that are able to monitor their network envi-
ronment and configure their radio-system parameters accordingly. In the DSA
context, a network, which is referred to as a CR Network from now on, consists
of two classes of terminals: the primary terminals which are the devices of the
licensed application and the secondary terminals which are the CR devices. Us-
ing their cognitive engine, the secondary terminals can detect the active primary
terminals and try to be as far from the latter as possible by adjusting their radio
transmission parameters. This leads to the spatial separation between the ac-
tive primary terminals and the secondary terminals, a behaviour that the PPPs
clearly fail to provide an accurate model. Moreover, each class (either primary
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Figure 2.3: The plots of p.g.fls under the reduced Palm distribution of
MII(Φ, Ccs) for different test function va,r. From top to bottom: plot of
G!

o,MII(Φ,Ccs)
(va,r) for r from 0, 1, plot of G!

o,MII(Φ,Ccs)
(vb,r) for r from 0, 1,

plot of G!
o,MII(Φ,Ccs)

(vc,r) for r from 0, 1; with va,r(x) = 1|x|>r, vb,r(x) =
|x|4

r+|x|4 ,

vc,r(x) = 1− exp{−r|x|4}.
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or secondary) may employ different MAC schemes, entailing other behaviours
that also need to be accounted for in the spatial modelling. For illustration, we
consider here the analysis of three CR Networks of this type,

• the single primary-ALOHA secondary (S/A) network features a single
primary t.t.-r.t. pair and a population of secondary t.t.-r.t. pairs using
ALOHA to schedule their transmissions. In fact, this is a quite simple
case which is presented here only to illustrate the modelling of the spatial
separation between primary and secondary t.t.s and to prepare for the
more involved models.

• the ALOHA primary-ALOHA secondary (A/A) network features a pop-
ulation of primary t.t.-r.t. pairs together with a population of secondary
t.t.-r.t. pairs. Both of them schedule their transmissions using ALOHA.

• the CSMA primary-CSMA secondary (C/C) network features a population
of primary t.t.-r.t. pairs together with a population of secondary t.t.-r.t.
pairs. Both of them schedule their transmissions using CSMA.

2.2.1 Spatial Modelling

The spatial separation between the primary and the secondary terminals is mod-
elled in the same way as we model the carrier sensing in CSMA, i.e. each active
primary t.t. is surrounded by a protection zone, which is dictated by a protec-
tion parameter. This parameter is equivalent to the carrier sensing threshold in
CSMA. Given this, the three CR Networks mentioned in the previous subsec-
tion are modelled by three different doubly stochastic PPPs [27, Section 5. 2].
In these PPs, the first level of randomness is the realization of the primary
terminals locations; conditioned on this, the second level is the realization of
secondary terminals locations.

Remark 2.2 Although they are modelled similarly, the spatial separation in
CR Networks and the carrier sensing in CSMA are very different in terms of
physical requirements and implementations. In fact, the former is based on
channel detection, whose physical design is a very active research domain, which
is beyond the scope of this thesis.

Assumptions

The assumptions are summarized below on a case by case basis.

• S/A: there is one primary t.t. at the centre of the plane. Around the
primary t.t., we enforce a ’soft’ protection zone which takes into account
both path loss and fading in the same manner that we model the carrier
sensing in CSMA.
The process of secondary terminals is a PPP. Those that fall within the
protection zone are automatically silenced. The others decide to transmit
independently according to ALOHA.
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• A/A: the locations of primary terminals are represented by a PPP and
they decides to transmit independently according to ALOHA. Thus, the
locations of the active primary terminals are represented by an indepen-
dent thinning of a PPP, which is again another PPP. Around each active
primary t.t., we enforce a ’soft’ protection zone as in the previous case.
The process of secondary terminals is also a PPP. Those that fall within
any of the protection zones are automatically silenced. The others decide
to transmit independently according to ALOHA. Thus, the process of ac-
tive secondary terminals forms a realization of a Cox PP, [27], driven by
the random measure that takes value 0 inside the protection zones.

• C/C: in the doubly stochastic PP representing this model, the process of
primary terminals and the process of secondary terminals are two inde-
pendent PPPs. The protection zones are modelled in the same manner as
in the two above models. The process of active primary terminals can be
modelled by the Matérn model of either type II or type III as in Subsec-
tion 2.1.1. The secondary terminals that fall within any of the protection
zones of the active primary terminals are automatically silenced. As the
others decide to transmit according to CSMA, they are represented by the
Matérn model of either type II or type III corresponding to the Cox PP
representing the secondary terminals who are not automatically silenced.
We consider here only the case where the Matérn type II is used for both
classes.

Problem Formulation

In the S/A network, there is only one primary t.t. whose location is represented
by a point at the centre o of the plane, and a population of secondary t.t.s
whose locations are represented by an homogeneous PPP Φs of intensity λs.
The additional attributes of each t.t. are:

• with the primary t.t.,

– an intended primary r.t. r, whose position is a uniformly distributed
vector of norm rp;

– the fading fpp to the intended primary r.t. which is an exponential
r.v. of parameter µp;

– the fading {gps,i} to the secondary t.t.s, which is a family of i.i.d.
exponential r.v.s of parameter µp. These r.v.s are associated to the
secondary t.t.s by first sorting the points in Φs in the increasing order
of the distance to the centre and then gps,i is given to the ith t.t. in
this ordering. These fading values are used to model the cognitive
channel detection;

– the fading {fps,i} to the secondary r.t.s, which is a family of i.i.d.
exponential r.v.s of parameter µp. These r.v.s are associated to the
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Figure 2.4: A snapshot of a CR S/A Network. It features a primary t.t. at the
centre and a population of secondary t.t.s using ALOHA. Each t.t. has an arrow
to its intended r.t. There is no fading. Other parameters are rp = 1.5, rs = .5,
l(r) = r−4, ρ = 2−4. The shaded disk is the protection zone of the primary t.t.
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Figure 2.5: A snapshot of a CR A/A Network. It features a population of
primary t.t.s and a population of secondary t.t.s, both using ALOHA. There
is no fading. Other parameters are l(r) = r−4, ρ = 2−4. The positions of the
active primary t.t.s are the red crosses. The blue disks are the protection zones
of the primary t.t.s. The positions of the active secondary t.t.s are the small
green circles. To keep the figure simple we do not plot the positions of the r.t.s.
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Figure 2.6: A snapshot of a CR C/C Network. It features a population of
primary t.t.s and a population of secondary t.t.s, both using CSMA. There is
no fading. Other parameters are l(r) = r−4, ρ = 2−4, ρp = 5−4, ρs = 1. The
positions of the active primary t.t.s are the red crosses. The blue disks are
the protection zones of the primary t.t.s. The positions of the active secondary
t.t.s are the blue crosses surrounded by the dotted circles which represents the
protection zones of the secondary t.t.s enforced by CSMA. To keep the figure
simple we do not plot the positions of the r.t.s.
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secondary r.t.s by first sorting the points in Φs in the increasing order
of the distance to the centre and then fps,i is given to the r.t. of the
ith t.t. in this ordering (see below for the secondary r.t.s);

• with a secondary t.t. x,

– the relative location r(x) w.r.t. x of the intended r.t. which is a
uniformly distributed vector in the plane of norm r;

– a {0, 1}-value r.v. e(x) which takes value 1 with probability ps. x
transmits in the current slot iff e(x) = 1;

– the fading fsp(x) to the primary r.t. which is an exponential r.v. of
parameter µs; and

– the fading {fss,i(x)} to the secondary r.t.s, which is a family of i.i.d.
exponential r.v.s of parameter µs. These fading values are associated
to the secondary r.t.s in the same manner as we do with {fps,i}.

For each t.t., its attributes are mutually independent; and the attributes of
the t.t.s, considered as random vectors, are mutually independent too. For
notational convenience, the {gps,i} and {fps,i} values are considered as two
function gps and fps that takes points in Φs as parameter, and the values
{{fss,i(x)}, x ∈ Φs} are considered as a function fss that takes elements of
Φ2

s as parameter.
The primary t.t. is assumed to always transmit. This is a relevant assump-

tion since the system behaviour when the primary t.t. does not transmit is
merely that of an ALOHA network. A secondary t.t. at x is within the protec-
tion zone of the primary t.t. iff ES/A(x) := 1gps(x)l(|x|)<ρ = 0, where ρ is the
detection threshold and l is the path loss. Thus, the process of secondary t.t.s
which are not silenced by this criteria is Ψs,S/A := {x ∈ Φs s.t. ES/A(x) = 1}.
The process of active secondary t.t.s is hence

Φp,S/A := {x ∈ Ψs,S/A s.t. e(x) = 1} = {x ∈ Φs s.t. ES/A(x)e(x) = 1}.

The SINR at the primary r.t. is

SINRp(o) =
fppl(rp)

N + Is,S/A(o)
,

and at the secondary r.t. corresponding to a secondary t.t. in Φs,S/A positioned
at x is

SINRs,S/A(x) =
fssl(rs)

N + fps(x)l(|x+ r(x)|) + Is,S/A(x)
.

In the above formulas, Is,S/A(.) is the SN interference associated to the active
secondary t.t.s, which is

∑

y∈Φs,S/A\{x}

fss(y, x)l(|y − x− r(x)|)
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for every x in Φs,S/A and is

∑

y∈Φs,S/A

fsp(y, x)l(|y − r(o)|)

for o.
Note that in this model, by the presence of the primary t.t. at the centre and

by the spatial separation requirement, Φs,S/A is not a stationary PP. Thus, one
cannot define the performance metrics by considering a typical t.t. Instead, we
define these metrics as functions and measures in R

2. In particular, the MAP
function of the secondary t.t. is

pMAP,s,S/A(x) := Px,Φs
(ES/A(x)e(x) = 1), (2.2.1)

the COP of the primary t.t. is

pCOP,p,S/A := P
(

SINRp(o) > T
)

, (2.2.2)

the COP function of the secondary t.t.s is

pCOP,s,S/A(x) = Px,Φs,S/A

(

SINRs(x) > T
)

, (2.2.3)

and the AT measure of the secondary t.t.s is

Ts,S/A(B) = E





∑

x∈B∩Φs,S/A

1SINRs(x)>T



 . (2.2.4)

In the A/A network , the locations of the primary t.t.s and the locations of the
secondary t.t.s are represented by two independent homogeneous PPPs Φp and
Φs of intensities λp and λs, respectively. The attributes of these t.t.s are:

• for each t.t. (either primary or secondary) located at x,

– the relative location r(x) of its intended r.t, which is a uniformly
distributed random vector of norm rp if x is primary and of norm rs
if x is secondary;

– the {0, 1}-value r.v. e(x) indicating whether x chooses to transmit in
the current time slot or not. P

(

e(x) = 1
)

equals pp if x is primary
and equals ps if x is secondary.

• the function fps (fpp) taking elements in Φp × Φs (Φ2
p) as parameter and

representing the fading from primary t.t.s to secondary (primary) r.t.s.
The realization of fps (fpp) at each (x, y) ∈ Φp × Φs (Φ2

p) is independent
and is an exponential r.v. of parameter µp.

• the function fsp (fss) taking elements in Φs × Φp (Φ2
s) as parameter and

representing the fading from primary t.t.s to primary r.t.s. The realiza-
tion of fps (fss) at each (x, y) ∈ Φs × Φp (Φ2

s) is independent and is an
exponential r.v. of parameter µs.
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• the function gps taking elements in Φp×Φs as parameter and representing
the fading from primary t.t.s to secondary t.t.s. The realization of fps
at each (x, y) ∈ Φp × Φs is independent and is an exponential r.v. of
parameter µp. These fading is used in the modelling of the cognitive
channel detection.

• the functions fpp, fps, fsp, fss, gps are constructed in the same way as we
construct the function fss in the S/A model.

All the elements listed above are mutually independent.
The primary t.t.s schedule their transmissions using ALOHA. The process

of active primary t.t.s is Φp,A/A := {x ∈ Φp s.t. e(x) = 1}. A secondary t.t. at
x is automatically silenced iff

EA/A(x) :=
∏

y∈Φp,A/A

1gps(y,x)l(|y−x|)<ρ = 0.

The remaining secondary t.t.s are Ψs,A/A := {x ∈ Φs s.t. EA/A(x) = 1} and
the active secondary t.t.s are

Φs,A/A := {x ∈ Ψs,A/A s.t. e(x) = 1} = {x ∈ Φs s.t. EA/A(x)e(x) = 1}.

The SINR at the intended r.t. associated to the t.t. positioned at x is

SINRp,A/A(x) :=
fpp(x, x)l(rp)

N + Ipp,A/A(x) + Isp,A/A(x)

if x is primary and is

SINRs,A/A(x) :=
fss(x, x)l(rs)

N + Ips,A/A(x) + Iss,A/A(x)

if x is secondary. The SN interference power are respectively

Ipp,A/A(x) :=
∑

y∈Φp,A/A\{x}

fpp(y, x)l(|y − x− r(x)|);

Isp,A/A(x) :=
∑

y∈Φs,A/A

fsp(y, x)l(|y − x− r(x)|);

Ips,A/A(x) :=
∑

y∈Φp,A/A

fps(y, x)l(|y − x− r(x)|);

Iss,A/A(x) :=
∑

y∈Φs,A/A\{x}

fss(y, x)l(|y − x− r(x)|).

Fortunately, both Φp,A/A and Φs,A/A are stationary. Thus, we can consider a
typical primary (or secondary) t.t. to define the system performance metrics.
In particular, we are interested in:

• for primary t.t.s,
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– the COP: pCOP,p,A/A := Po,Φp,A/A
(SINRp,A/A(x) > T );

– the AT: Tp,A/A := E[
∑

x∈B∩Φp,A/A
1SINRp,A/A(x)>T ] for any Borel set

B of unit area;

• for secondary t.t.s,

– the MAP: pMAP,s,A/A := Po,Φs
(EA/A(x)e(x) = 1);

– the COP: pCOP,p,A/A := Po,Φs,A/A
(SINRs,A/A(x) > T );

– the AT: Ts,A/A := E[
∑

x∈B∩Φs,A/A
1SINRs,A/A(x)>T ] for any Borel set

B of unit area;

In the C/C Network, the basic settings, i.e. the process of primary t.t.s,
the process of secondary t.t.s and their attributes, are the same as in the A/A
network with some modifications:

• the {0, 1}-value r.v. e(x) is replaced by the uniform r.v. t(x) taking value
in [0, 1]. This r.v. is used in the determination of the Matérn type II
model, which is used to model the set of active t.t.s determined by the
CSMA protocol.

• apart from the functions fpp, fps, fsp, fss, we have the function gpp (gss)
taking unordered pair of t.t.s in Φp (Φs) as parameter. For each unordered
pair (x, y) in Φp (Φs), gpp(x, y) (gss(x, y)) is an independent exponential
r.v. of parameter µp (µs) that representing the fading from the t.t. at x
to the t.t. at y and vice-versa. These two functions are constructed in the
same way as in the construction of the function g in Subsection 2.1.1. The
above fading values are used in the modelling of CSMA carrier sensing.

As in the A/A model, all the elements listed in the attributes are mutually
independent. We define in Φp and Φs two random conflict relations Ccs,p and
Ccs,p by

Ccs,p(x, y) = 1gpp(x,y)l(|x−y|)>ρp

for each unordered pair (x, y) in Φp and

Ccs,s(x, y) = 1gss(x,y)l(|x−y|)>ρs

for each unordered pair (x, y) in Φs, where ρp and ρs are the CSMA carrier
sensing thresholds of the primary and the secondary CSMA protocols respec-
tively.

The process of active primary t.t.s is represented by the Matérn type II
model of the PPPRCR (Φp, Ccs,p) (see subsection 3.1.1 for its definition), namely
Φp,C/C := MII(Φp, Ccs,p). A secondary t.t. at x is silenced iff

EC/C(x) :=
∏

y∈Φp,C/C

1gps(y,x)l(|y−x|)<ρ = 0,
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with ρ is the cognitive carrier sensing threshold. The remaining t.t.s are Ψs,C/C :=
{x ∈ Φs s.t. EC/C = 1} and the active secondary t.t.s are

Φs,C/C := MII(Ψs,C/C , Cs,cs|Ψs,C/C
),

where Cs,cs|Ψs,C/C
is the restriction of Cs,cs to Ψs,C/C .

The SINR at the intended r.t. of an active t.t. at x is

SINRp,C/C =
fpp(x, x)l(rp)

N + Ip,C/C(x) + Is,C/C(x)

if x is primary and is

SINRs,C/C =
fss(x, x)l(rs)

N + Ip,C/C(x) + Is,C/C(x)

if x is secondary. The SN interference power are respectively,

Ipp,C/C(x) :=
∑

y∈Φp,C/C\{x}

fpp(y, x)l(|y − x− r(x)|);

Isp,C/C(x) :=
∑

y∈Φs,C/C

fsp(y, x)l(|y − x− r(x)|);

Ips,C/C(x) :=
∑

y∈Φp,C/C

fps(y, x)l(|y − x− r(x)|);

Iss,C/C(x) :=
∑

y∈Φs,C/C\{x}

fss(y, x)l(|y − x− r(x)|).

As the model defined here is also stationary, the performance metrics are then
defined in the same manner as in the A/A model, namely

• for primary t.t.s,

– the MAP: pMAP,s,C/C := Po,Φs
(o ∈ Φp,C/C)

– the COP: pCOP,p,C/C := Po,Φp,C/C
(SINRp,C/C(x) > T );

– the AT: Tp,C/C := E[
∑

x∈B∩Φp,C/C
1SINRp,C/C(x)>T ] for any Borel set

B of unit area;

• for secondary t.t.s,

– the MAP: pMAP,s,C/C := Po,Φs
(o ∈ Φs,C/C);

– the COP: pCOP,p,C/C := Po,Φs,C/C
(SINRs,C/C(x) > T );

– the AT: Ts,C/C := E[
∑

x∈B∩Φs,C/C
1SINRs,C/C(x)>T ] for any Borel set

B of unit area.
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Remark 2.3 In the above three models, we use different parameters, namely
λp and λs, pp and ps, rp and rs, µp and µs, for each class. This reflects the fact
that the primary and the secondary terminals may use different radio-system
parameters. In particular, primary terminals in underutilized frequencies are
usually sparsely deployed and they rarely use the air medium while secondary
applications usually deploy a large population of terminals, who access the air
medium quite frequently. More over, CR terminals deployed by secondary ap-
plications are usually small devices with weak signal power. Hence, they have
quite small transmission range. To model correctly these facts, we usually take
λp < λs, pp < ps, rp > rs and µp < µs (recall in Section 1.1 that the parameter
µ of the fading r.v. takes into account the transmitting power and the stronger
is the power, the smaller is µ).

2.2.2 Analysis

The S/A network

Proposition 2.7 The MAP function of the secondary t.t.s under the S/A model
is

pMAP,s,S/A(x) = (1− exp{−µpρl(|x|)}) ps. (2.2.5)

Proof. We have

Px,Φs(x ∈ Φs,S/A) = Px,Φs

(

ES/A(x)e(x) = 1
)

= Px,Φs

(

ES/A(x) = 1
)

Px,Φs

(

e(x) = 1
)

= Px,Φs

(

gsp(x)l(|x|) < ρ
)

ps

=
(

1− exp{−µpρl(|x|)}
)

ps.

�

Since each secondary t.t. senses the network independently, the process of
active secondary t.t.s forms an independent thinning of the process of all sec-
ondary t.t.s with the thinning probability only depends on the location of the
terminal. As the latter forms an homogeneous PPP of intensity λs, the former
is an inhomogeneous PPP of intensity measure λs

(

1− exp{−µpρ|x−RI
0|

α}
)

dx
and we can use Theorem A.1 to get,

Proposition 2.8 The COP of the primary t.t. in S/A model is

pCOP,p,A/S =exp

{

−
µpTN

l(rp)
− λs

∫

R2

µpT l(|x− rpe|)

µpT l(|x− rpe|) + µsl(|rp|)
(

1− exp

{

−
µpρ

l(|x|)

})

psdx

}

. (2.2.6)

Proof. First notice that the distribution of Φs is invariant under rotations, so
we can assume w.l.o.g. that r(o) = rpe We want to compute the following
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probability:

P
(

SINRp,S/A(o) > T
)

= P

(

fppl(rp)

N + Is,S/A(o)
> T

)

.

Using the fact that fpp is an exponential r.v. with parameter µ which is inde-
pendent of all other random elements involved in the formula of SINRp,S/A,

P
(

SINRp,S/A(o) > T
)

= E

[

exp

{

−
µpT (N + Is,S/A(o))

l(rp)

}]

= exp

{

−
µpTN

l(rp)

}

E

[

exp

{

−
µpT (Is,S/A(o))

l(rp)

}]

.

For the second term in the last equality,

E

[

exp

{

−
µpTIs,S/A(o)

l(rp)

}]

= E



exp







−
µpT

(

∑

x∈Φs,S/A
fsp(x)l|(x− r(o)|)

)

l(rp)











= E



exp







−µpT





∑

x∈Φs,S/A

fsp(x)
l|(x− r(o)|)

l(rp)















= E

[

exp

{

−µpT

(

∑

x∈Φs

ES/A(x)e(x)fsp(x)
l|(x− r(o)|)

l(rp)

)}]

= E

[

∏

x∈Φs

exp

{

−µpT

(

ES/A(x)e(x)fsp(x)
l|(x− r(o)|)

l(rp)

)}

]

.

As ES/A(x), e(x), fsp(x) can be regarded as independent marks of Φs, we use
Theorem A.1 to get

E

[

∏

x∈Φs

exp

{

−µpT

(

ES/A(x)e(x)fsp(x)
l|(x− r(o)|)

l(rp)

)}

]

= exp

{

−λs

∫

R2

(

1− E

[

exp

{

−µpT

(

ES/A(x)e(x)fsp(x)
l|(x− r(o)|)

l(rp)

)}])

dx

}

.

We can easily compute

1− E

[

exp

{

−µpT

(

ES/A(x)e(x)fsp(x)
l|(x− r(o)|)

l(rp)

)}]

=
µpT l(|x− r(o)|)

µpT l(|x− r(o)|) + µsl(|rp|)

(

1− exp

{

−
µpρ

l(|x|)

})

ps.

The conclusion follows directly by using r(o) = rpe. �
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Proposition 2.9 The COP function of the secondary t.t.s in the S/A model is

pCOP,s,S/A(x) =
exp

{

−µsTN
l(rs)

}

2π

∫ 2π

0

µpl(rs)

µpl(rs) + µsT l(|x+ rsSθ(e)|))

exp







−λs

∫

R2

T l(|y − x− rsSθ(e)|)
(

1−exp
{

− µpρ
l(|y|)

})

ps

T l(|y − x− rsSθ(e)|) + l(rs)
dx







dθ,

(2.2.7)

where Sθ denotes the rotation of angle θ and e is a fixed unit vector.

Proof. We need to compute

Px,Φs,S/A
(SINRs,S/A(x) > T )

= Px,Φs,S/A

(

fss(x, x)l(rs)

N + fps(x)l(|x+ r(x)|) + Is,S/A(x)
> T

)

= Px,Φs,S/A

(

fss(x, x) >
T
(

N + fps(x)l(|x+ r(x)|) + Is,S/A(x)
)

l(rs)

)

= Ex,Φs,S/A

[

exp

{

−µsT

(

N + fps(x)l(|x+ r(x)|) + Is,S/A(x)
)

l(rs)

}]

= exp

{

−
µsTN

l(rs)

}

Ex,Φs,S/A

[

exp

{

−µsT

(

fps(x)l(|x+ r(x)|) + Is,S/A(x)
)

l(rs)

}]

.

Note that given r(x), fps(x)l(x+r(x)) is independent of Is,S/A(x) under Px,Φs,S/A
.

Hence,

Ex,Φs,S/A

[

exp

{

−µsT

(

fps(x)l(|x+ r(x)|) + Is,S/A(x)
)

l(rs)

}

∣

∣

∣

∣

r(x)

]

= Ex,Φs,S/A

[

exp

{

−µsT
fps(x)l(|x+ r(x)|)

l(rs)

} ∣

∣

∣

∣

r(x)

]

Ex,Φs,S/A

[

exp

{

−µsT
Is,S/A(x)

l(rs)

} ∣

∣

∣

∣

r(x)

]

.

Putting r(x) = rsSθ(e), the first term is

Ex,Φs,S/A

[

exp

{

−µsT
fps(x)l(|x+ r(x)|)

l(rs)

}∣

∣

∣

∣

r(x)

]

=
µpl(rs)

µsl(rs)+µpT l(|x+ rsSθ(e)|)
,
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since fps(x) is an exponential r.v. with parameter µp. The second term is

Ex,Φs,S/A

[

exp

{

−µsT
Is,S/A(x)

l(rs)

} ∣

∣

∣

∣

r(x)

]

= Ex,Φs,S/A

[

exp

{

−µsT

∑

y∈Φs,S/A
fss(y, x)l(|y − x− r(x)|)

l(rs)

}

∣

∣

∣

∣

r(x)

]

= Ex,Φs,S/A





∏

y∈Φs,S/A

exp

{

−µsT
fss(y, x)l(|y − x− r(x)|)

l(rs)

} ∣

∣

∣

∣

r(x)



 .

Since Φs,S/A is a PPP of intensity measure
(

1− exp
{

− µsρ
l(|y|)

})

psdx and the

thinning from Φs to Φs,S/A is independent of fss, we can consider fss(y, x) as
independent exponential marks with parameter µs of the points in Φs,S/A. We
then apply Slivnyak’s theorem to get

Ex,Φs,S/A





∏

y∈Φs,S/A

exp

{

−µsT
fss(y, x)l(|y − x− r(x)|)

l(rs)

} ∣

∣

∣

∣

r(x)





= exp

{

−λs

∫

R2

(

1− E

[

exp

{

−µsT
fss(y, x)l(|y − x− r(x)|)

l(rs)

} ∣

∣

∣

∣

r(x)

])

(

1− exp

{

−
µsρ

l(|y|)

})

psdx

}

.

Now notice that r(x) can be expressed as rsSθ(e),

1− E

[

exp

{

−µsT
fss(y, x)l(|y − x− r(x)|)

l(rs)

} ∣

∣

∣

∣

r(x)

]

=
T l(|y − x− rsSθ(e)|)

T l(|y − x− rsSθ(e)|) + l(rs)
,

and the conclusion follows directly. �

Proposition 2.10 The average throughput measure of the secondary t.t.s in
the S/A model is

Ts,S/A(B) = λs

∫

B

pMAP,s,S/A(x)pCOP,s,S/A(x)dx.

Proof. This is just a corollary of Campbell’s formula (see [27] or [6]) and Propo-
sitions 2.7 and 2.9. �

The A/A network

Proposition 2.11 The MAP of a typical secondary t.t. in the A/A model is

pMAP,s,A/A = exp

{

−λppp

∫

R2

exp

{

−
µpρ

l(|y|)

}

dy

}

. (2.2.8)
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Proof. First we have,

Po,Φs(EA/A(x) = 1 and e(x) = 1) = psEo,Φs





∏

y∈Φp,A/A

1gps(y,o)l(|y|)<ρ



 .

Let F be the σ-algebra generated by the realization of Φp, by the independence
of Φp and Φs

Eo,Φs





∏

y∈Φp,A/A

1gps(y,o)l(|y|)<ρ

∣

∣

∣

∣

∣

F



 = Eo,Φs





∏

y∈Φp

e(y)1gps(y,o)l(|y|)<ρ

∣

∣

∣

∣

∣

F





=
∏

y∈Φp

pp

(

1− exp

{

−
µpρ

l(|y|)

})

.

Hence,

pMAP,s,A/A = psE





∏

y∈Φp

pp

(

1− exp

{

−
µpρ

l(|y|)

})





= ps exp

{

−λppp

∫

R2

exp

{

−
µpρ

l(|y|)

}

dy

}

.

�

Proposition 2.12 The COP of a typical t.t. in the A/A model is upper bounded
by

pCOP,p,A/A ≤ exp

{

−µp
TN

l(rp)

}

(

e−λpppc(rp,µp,µp) −

(

1− e−λspsc(rp,µs,µp)
)

c(rp, µs, µp)

∫

R2

µpT l(|x− r(o)|)

µpT l(|x− r(o)|) + µsl(rp)

(

1− eµpρ/l(|x|)
)

exp

{

−λppp

∫

R2

T l(|y − r(o)|) + l(rp)e
µpρ/l(|y−x|)

l(rp) + T l(|y − r(o)|)
dy

}

dx

)

(2.2.9)

with r(o) = rpe for primary t.t.s and

pCOP,s,A/A

≤ pp exp

{

−
µsTN

l(rs)

}(

exp

{

−λppp

∫

R2

µsT l(|y − r(o)|) + µpl(rs)e
−µpρ/l(|y|)

µpl(rs) + µsT l(|y − r(o)|)
dy

}

−

(

1− e−λspsc(rs,µs,µs)
)

c(rs, µs, µs)

∫

R2

T l(|x− r(o)|)

T l(|x− r(o)|) + l(rs)
exp

{

−λppp

∫

R2

(

1−
µpl(rs)

(

1− e−µpρ/l(|y|)
) (

1− e−µpρ/l(|y−x|)
)

µpl(rs) + µsT l(|y − r(o)|)

)

dy

}

dx

)

p−1
MAP,s,A/A

(2.2.10)
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with r(o) = rse for secondary t.t.s, where

c(r, µ1, µ2) =

∫

R2

µ2T l(|y − re|)

µ1l(r) + µ2T l(|y − re|)
dy. (2.2.11)

Proof. We first note that the distribution of all PPs considered here are invariant
under rotations ( and hence so is their Palm distributions, see [27, p. 123]), so
for a t.t. located at o, we can take r(o) = rpe if o is primary and r(o) = rse if o
is secondary. For o primary, let Fp and Fs be the σ-algebras generated by the
realizations of Φp,A/A and Φs respectively,

Po,Φp,A/A
(SINRp(o) > T | Fp,Fs,gps, r(o))

= Po,Φp,A/A

(

fppl(rp)

N + Ipp(o) + Isp(o)
> T

∣

∣

∣
Fp,Fs,gps, r(o)

)

= Eo,Φp,A/A

[

exp

{

−µp

T
(

N + Ipp(o) + Isp(o)
)

l(rp)

}

∣

∣

∣Fp,Fs,gps, r(o)

]

= exp

{

−µp
TN

l(rp)

}

Eo,Φp,A/A

[

exp

{

−µp
TIpp(o)

l(rp)

}

∣

∣

∣Fp,Fs,gps, r(o)

]

Eo,Φp,A/A

[

exp

{

−µp
TIsp(o)

l(rp)

}

∣

∣

∣
Fp,Fs,gps, r(o)

]

Moreover,

Eo,Φp,A/A

[

exp

{

−µp
TIpp(o)

l(rp)

}

∣

∣

∣Fp,Fs,gps, r(o)

]

= Eo,Φp,A/A



exp







−µp

T
(

∑

x∈Φp,A/A\{o} fpp(x, o)l(|x− r(o)|)
)

l(rp)







∣

∣

∣

∣

∣

Fp,Fs, r(o)





=
∏

x∈Φp,A/A\{o}

E

[

exp

{

−µp
Tfpp(x, o)l(|x− r(o)|)

l(rp)

}]

=
∏

x∈Φp,A/A\{o}

l(rp)

l(rp) + T l(|x− r(o)|)
=

∏

y∈Φp,A/A\{o}

l(rp)

l(rp) + T l(|y − r(o)|)
,

(2.2.12)
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and

Eo,Φp,A/A

[

exp

{

−µp
TIsp(o)

l(rp)

}

∣

∣

∣Fp,Fs,gps, r(o)

]

= Eo,Φp,A/A



exp







−µp

T
(

∑

x∈Φs,A/A
fsp(x, o)l(|x− r(o)|)

)

l(rp)







∣

∣

∣

∣

∣

Fp,Fs,gps, r(o)





= Eo,Φp,A/A

[

exp

{

−µp

T
(
∑

x∈Φs
EA/A(x)fsp(x, o)l(|x− r(o)|)

)

l(rp)

}∣

∣

∣

∣

∣

Fp,Fs,gps, r(o)

]

= Eo,Φp,A/A

[

∏

x∈Φs

E

[

exp

{

−µp

TEA/A(x)fsp(x, o)l(|x− r(o)|)

l(rp)

}]

∣

∣

∣

∣

∣

Fp,Fs,gps, r(o)

]

.

Given Fp and gps, EA/A(x) takes value in {0, 1} a.s. for every x, so

E

[

exp

{

−µp

TEA/A(x)fsp(x, o)l(|x− r(o)|)

l(rp)

}]

= E

[

exp

{

−µp
Tfsp(x, o)l(|x− r(o)|)

l(rp)

}

EA/A(x) + 1− EA/A(x)

]

=
µsl(rp)

µpT l(|x− r(o)|) + µsl(rp)
EA/A(x) + 1− EA/A(x)

= 1−
µpT l(|x− r(o)|)

µpT l(|x− r(o)|) + µsl(rp)
EA/A(x)dx.

Hence, by Theorem A.1,

Eo,Φp,A/A

[

exp

{

−µp
TIsp(o)

l(rp)

}

∣

∣

∣Fp,gps, r(o)

]

= exp

{

−λsps

∫

R2

(

1−
µsl(rp)

µpT l(|x− r(o)|) + µsl(rp)

)

EA/A(x)dx

}

= exp

{

−λsps

∫

R2

µpT l(|x− r(o)|)

µpT l(|x− r(o)|) + µsl(rp)
EA/A(x)dx

}

.

As exp{−x} ≤ 1− (1− exp{−y})xy for every 0 ≤ x ≤ y and

0 ≤

∫

R2

µpT l(|x− r(o)|)

µpT l(|x− r(o)|) + µsl(rp)
EA/A(x)dx

≤

∫

R2

µpT l(|x− r(o)|)

µpT l(|x− r(o)|) + µsl(rp)
dx = c(rp, µs, µp) a.s. ,
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we have,

Eo,Φp,A/A

[

exp

{

−µp
TIsp(o)

l(rp)

}

∣

∣

∣Fp,gps, r(o)

]

≤ 1−
(

1− e−λspsc(rp,µs,µp)
)

∫

R2

µpTl(|x−r(o)|)
µpTl(|x−r(o)|)+µsl(rp)

EA/A(x)dx

c(rp, µs, µp)
.

Combine this with (2.2.12),

Po,Φp,A/A
(SINRp(o) > T | Fp,gps, r(o))

≤ exp

{

−µp
TN

l(rp)

}

∏

y∈Φp,A/A\{o}

l(rp)

l(rp) + T l(|y − r(o)|)

(

1−

(

1− e−λspsc(rp,µs,µp)
)

c(rp, µs, µp)

∫

R2

µpT l(|x− r(o)|)

µpT l(|x− r(o)|) + µsl(rp)
EA/A(x)dx

)

.

As
EA/A(x) = 1gps(o,x)l(|x|)<ρ

∏

y∈Φp,A/A\{o}

1gps(y,x)l(|y−x|)<ρ

by definition, by Slivnyak’s theorem and Theorem A.1

Eo,Φp,A/A





∏

y∈Φp,A/A\{o}

l(rp)

l(rp) + T l(|y − r(o)|)
EA/A(x)





= Eo,Φp,A/A





∏

y∈Φp,A/A\{o}

l(rp)

l(rp) + T l(|y − r(o)|)

∏

y∈Φp,A/A\{o}

1gps(y,x)l(|y−x|)<ρ

1gps(o,x)l(|x|)>ρ

]

= Eo,Φp,A/A









∏

y∈Φp,A/A\{o}

l(rp)1gps(y,x)l(|y−x|)<ρ

l(rp) + T l(|y − r(o)|)



1gps(o,x)l(|x|)>ρ





= Eo,Φp,A/A









∏

y∈Φp,A/A\{o}

l(rp)
(

1− eµpρ/l(|y−x|)
)

l(rp) + T l(|y − r(o)|)





(

1− eµpρ/l(|x|)
)





=
(

1− eµpρ/l(|x|)
)

exp

{

−λppp

∫

R2

T l(|y − r(o)|) + l(rp)e
µpρ/l(|y−x|)

l(rp) + T l(|y − r(o)|)
dy

}

and

Eo,Φp,A/A





∏

y∈Φp,A/A\{o}

l(rp)

l(rp) + T l(|y − r(o)|)



 = e−λpppc(rp,µp,µp).
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So,

Po,Φp,A/A
(SINRp(o) > T ) ≤ exp

{

−µp
TN

l(rp)

}

(

e−λpppc(rp,µp,µp) −

(

1− e−λspsc(rp,µs,µp)
)

c(rp, µs, µp)

∫

R2

µpT l(|x− r(o)|)

µpT l(|x− r(o)|) + µsl(rp)

(

1− eµpρ/l(|x|)
)

exp

{

−λppp

∫

R2

T l(|y − r(o)|) + l(rp)e
µpρ/l(|y−x|)

l(rp) + T l(|y − r(o)|)
dy

}

dx

)

.

For a typical active secondary t.t., note that

Po,Φs,A/A
(SINRo(x) > T ) = Po,Φs(SINRo(x) > T | e(o) = 1, EA/A(o) = 1)

=
Po,Φs(SINRo(x) > T, e(o) = 1, EA/A(o) = 1)

pMAP,s,A/A
.

By the same arguments as with the primary t.t.

Po,Φs
(SINRo(x) > T, e(o) = 1, EA/A(o) = 1 | Fp,Fs,gps, r(o))

= exp

{

−
µsTN

l(rs)

}

Eo,Φs

[

exp

{

−µsT
Ips(o)

l(rs)

}

EA/A(o)

∣

∣

∣

∣

∣

Fp,Fs,gps, r(o)

]

E
!
o,Φs

[

exp

{

−µsT
Iss(o)

l(rs)

}

∣

∣

∣

∣

∣

Fp,Fs,gps, r(o)

]

.

The second term above is computed as

Eo,Φs

[

exp

{

−µsT
Ips(o)

l(rs)

}

EA/A(o)

∣

∣

∣

∣

∣

Fp,Fs,gps, r(o)

]

=
∏

y∈Φp

E

[

exp

{

µsTfps(y, o)l(|y − r(o)|)

l(rs)

}]

∏

y∈Φp

1gps(y,o)l(|y|)<ρ

=
∏

y∈Φp

µpl(rs)

µpl(rs) + µsT l(|y − r(o)|)

∏

y∈Φp

1gps(y,o)l(|y|)<ρ

=
∏

y∈Φp

µpl(rs)1gps(y,o)l(|y|)<ρ

µpl(rs) + µsT l(|y − r(o)|)
.
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For the third term,

Eo,Φs

[

exp

{

−µsT
Iss(o)

l(rs)

}

∣

∣

∣

∣

∣

Fp,Fs,gps, r(o)

]

=
∏

x∈Φs\{o}

E

[

exp

{

−
µsTfss(x, o)l(|x− r(o)|)

l(rs)
EA/A(x)e(x)

}]

=
∏

x∈Φs\{o}

(

1−

(

1− E

[

exp

{

−
µsTfss(x, o)l(|x− r(o)|)

l(rs)

}])

EA/A(x)e(x)

)

=
∏

x∈Φs\{o}

(

1−
l(rs)

l(rs) + T l(|x− r(o)|)
EA/A(x)e(x)

)

.

Hence, by Theorem A.1,

Eo,Φs

[

exp

{

−µsT
Iss(o)

l(rs)

}

∣

∣

∣

∣

∣

Fp,gps, r(o)

]

= exp

{

−λsps

∫

R2

T l(|x− r(o)|)

T l(|x− r(o)|) + l(rs)
EA/A(x)dx

}

≤ 1−

(

1− e−λspsc(rs,µs,µs)
)

c(rs, µs, µs)

∫

R2

T l(|x− r(o)|)

T l(|x− r(o)|) + l(rs)
EA/A(x)dx.

Note that Fp, Fs, gps and r(o) are mutually independent, by combining the
three terms and taking expectation w.r.t. Fs, we get

Po,Φs

(

SINRo(x) > T, e(o)EA/A(o) = 1 | Fp,gps, r(o)
)

≤ pp exp

{

−
µsTN

l(rs)

}

∏

y∈Φp

µpl(rs)1gps(y,o)l(|y|)<ρ

µpl(rs) + µsT l(|y − r(o)|)

(

1−

(

1− e−λspsc(rs,µs,µs)
)

c(rs, µs, µs)

∫

R2

T l(|x− r(o)|)

T l(|x− r(o)|) + l(rs)
EA/A(x)dx

)

.

By Theorem A.1, we take expectation w.r.t. Fp and gps to get,

Eo,Φs





∏

y∈Φp

µpl(rs)1gps(y,o)l(|y|)<ρ

µpl(rs) + µsT l(|y − r(o)|)

∣

∣

∣

∣

∣

r(o)





= E





∏

y∈Φp

µpl(rs)1gps(y,o)l(|y|)<ρ

µpl(rs) + µsT l(|y − r(o)|)

∣

∣

∣

∣

∣

r(o)





= exp

{

−λppp

∫

R2

µsT l(|y − r(o)|) + l(rs)e
−µpρ/l(|y|)

µpl(rs) + µsT l(|y − r(o)|)
dy

}

,
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and

E





∏

y∈Φp

µpl(rs)1gps(y,o)l(|y|)<ρ

µpl(rs) + µsT l(|y − r(o)|)
EA/A(x)

∣

∣

∣

∣

∣

r(o)





= E





∏

y∈Φp

µpl(rs)1gps(y,o)l(|y|)<ρ1gps(y,x)l(|y−x|)<ρ

µpl(rs) + µsT l(|y − r(o)|)

∣

∣

∣

∣

∣

r(o)





= exp

{

−λppp

∫

R2

(

1−
µpl(rs)

(

1− e−µpρ/l(|y|)
) (

1− e−µpρ/l(|y−x|)
)

µpl(rs) + µsT l(|y − r(o)|)

)

dy

}

.

Hence,

Po,Φs
(SINRs(o) > T,E(x) = 1, t(x) = 1)

≤ pp exp

{

−
µsTN

l(rs)

}(

exp

{

−λppp

∫

R2

µsT l(|y − r(o)|) + l(rs)e
−µpρ/l(|y|)

µpl(rs) + µsT l(|y − r(o)|)
dy

}

−

(

1− e−λspsc(rs,µs,µs)
)

c(rs, µs, µs)

∫

R2

T l(|x− r(o)|)

T l(|x− r(o)|) + l(rs)
exp

{

−λppp

∫

R2

(

1−
µpl(rs)

(

1− e−µpρ/l(|y|)
) (

1− e−µpρ/l(|y−x|)
)

µpl(rs) + µsT l(|y − r(o)|)

)

dy

}

dx

)

.

This implies the conclusion directly. �

Proposition 2.13 In the A/A CR Network, the AT of primary t.t.s is

Tp,A/A = pppCOP,p,A/A, (2.2.13)

and the AT of secondary t.t.s is

Tp,A/A = pMAP,s,A/ApCOP,s,A/A. (2.2.14)

Proof. This is a corollary of Campbell’s formula, Propositions 2.11 and 2.12. �

The C/C network

The analysis of the C/C network in general is very complicated. Nevertheless,
in the special case where µp = µs and ρp = ρs = ρ, there is a lower bound of
the union of Φp,C/C and Φs,C/C , which can be represented as the Matérn type
II model of some other PPP. Starting from that, an heuristic analysis can be
carried out in the same spirit as the analysis in Subsection 2.1.3, which serves
as an optimistic estimation of the C/C model. We present below this analysis.

Let Φall = Φp ∪ Φs and

Ccs,all := Ccs,p ∪ Ccs,s ∪ {(x, y) ∈ Φp × Φs s.t. 1gps(x,y)l(|yx|)>ρ}.
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Every point x in Φall is associated with a virtual timer tv(x) which equals

t(x)
λp

λp+λs
if x ∈ Φp and equals

λp

λp+λs
+ t(x) λs

λp+λs
if x ∈ Φs. This virtual timer

is used in the determination of the Matérn type II model of Φall. Then

Proposition 2.14 When µp = µs and ρp = ρs = ρ, we have

(

Φp,C/C ∪ Φs,C/C

)

⊇ MII(Φall, Ccs,all); (2.2.15)

Φp,C/C = Tλp/(λp+λs)

(

MII(Φall, Ccs,all)
)

; (2.2.16)

Φp,C/C ⊇ Tλp/(λp+λs),1

(

MII(Φall, Ccs,all)
)

. (2.2.17)

Proof. As Φp = Tλp/(λp+λs)(Φall), (2.2.16) follows from the properties given in
Subsection 3.1.4.

For (2.2.17), take any x in Tλp/(λp+λs),1

(

MII(Φall, Ccs,all)
)

, we have by defi-
nition that λp/(λp+λs) ≤ tv(x) ≤ 1 and Ccs,all(x, y) = 0 for all y in Ttv(x)(Φall).
As Ttv(x)(Φall) = Φp ∪ Tt(x)(Φs), this is equivalent to Ccs,all(x, y) = 0 for all
y in Φp and for all y in Tt(x)(Φs). Since Φp ⊇ MII(Φp, Ccs,p), we deduce that
x ∈ Ψs. Since Φs ⊇ Ψs, we have that Tt(x)(Φs) ⊇ Tt(x)(Ψs) which implies that
x ∈ MII(Ψs, Ccs,s|Ψs

) = Φs,C/C .
(2.2.15) is directly deduced from (2.2.16) and (2.2.17). �

From now on, we assume that Φp,C/C ≈ Tλp/(λp+λs),1

(

MII(Φall, Ccs,all)
)

and
(

Φp,C/C ∪ Φs,C/C

)

≈ MII(Φall, Ccs,all). Under these assumptions,

Proposition 2.15 The MAP for a typical t.t. is

pp,MAP,C/C =
1− exp{−λpN}

λpN
, (2.2.18)

for primary t.t.s and

pp,MAP,C/C ≈
1− exp{−λsN}

λsN
e−λpN (2.2.19)

for secondary t.t.s. Where

N =

∫

R2

exp

{

−
µρ

l(|x|)

}

dx = 2π

∫ ∞

0

exp

{

−
µρ

l(x)

}

xdx. (2.2.20)

Proof. From Proposition 2.14, we have

pMAP,p,C/C = Po,Φp(o ∈ Φp,C/C)

= Po,Φall

(

o ∈ MII(Φall, Ccs,all)

∣

∣

∣

∣

tv(x) ∈

[

0,
λp

λp + λs

])

;

pMAP,s,C/C = Po,Φs
(o ∈ Φs,C/C)

≈ Po,Φall

(

o ∈ MII(Φall, Ccs,all)

∣

∣

∣

∣

tv(x) ∈

[

λp

λp + λs
, 1

])

.



62 CHAPTER 2. NON POSSION CASE

By the same argument as in Proposition 2.4,

Po,Φall

(

o ∈ MII(Φall, Ccs,all)
∣

∣

∣tv(x) = t
)

= exp
{

−(λp + λs)tN
}

.

We then integrate the above formula w.r.t. t from 0 to
λp

λp+λs
to get pMAP,p,C/C

and w.r.t. t from
λp

λp+λs
to 1 to get pMAP,s,C/C. �

To compute the COP of the primary and the secondary t.t.s, we need the
following representations

SINRp,C/C(x) =
fpp(x, x)l(rp)

N + Ipp,C/C(x) + Isp,C/C(x)

=
fall(x, x)l(rp)

N + Iall(x, r(x))
for x ∈ Φp,C/C ;

SINRs,C/C(x) =
fss(x, x)l(rs)

N + Ips,C/C(x) + Iss,C/C(x)

=
fall(x, x)l(rs)

N + Iall(x, r(x))
for x ∈ Φs,C/C ,

where Iall(x, r(x)) =
∑

y∈MII(Φall,Ccs,all)
fall(y, x)l(|y − x − r(x)|) and fall is a

function in Φ2
all such that

fall(x, y) = fpp(x, y) for (x, y) ∈ Φ2
p;

fall(x, y) = fps(x, y) for (x, y) ∈ Φp × Φs;

fall(x, y) = fsp(x, y) for (x, y) ∈ Φs × Φp;

fall(x, y) = fss(x, y) for (x, y) ∈ Φ2
s.

Since µp = µs = µ, {fall(x, y), (x, y) ∈ Φ2
all} are i.i.d. exponential r.v.s of

parameter µ. Then we have the Palm representation

Po,Φp,C/C
(SINRp,C/C(o) > T )

= Po,MII(Φall,Ccs,all)

(

fall(x, x)l(rp)

N + Iall(x)

∣

∣

∣

∣

tv(x) ∈

[

0,
λp

λp + λs

])

;

Po,Φs,C/C
(SINRs,C/C(o) > T )

= Po,MII(Φall,Ccs,all)

(

fall(x, x)l(rp)

N + Iall(x)

∣

∣

∣

∣

tv(x) ∈

[

λp

λp + λs
, 1

])

.

To compute the above conditional probability, we need to know the Palm dis-
tribution of MII(Φall, Ccs,all) given a point at o with virtual timer t. In the
same spirit of the analysis in Subsection 2.1.3, we first compute the intensity of
MII(Φall, Ccs,all) under this distribution.

Proposition 2.16 Let λv = λp+λs. The intensity measure of MII(Φall, Ccs,all)
under its Palm distribution given a point at o with virtual timer mark tv(o) = t
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is

b(x, t, λv) =

(

1− e−tλvN 2(x)

λvN 2(x)
+ e−tλvN 2(x)

1− e(1−t)λvN

λvN

)

(

1− e−
µρ

l(|x|)

)

,

(2.2.21)

where N 2 is defined in Proposition 2.5.

Proof. The argument is the same as in the proof of Proposition 2.5, except that
we do not take expectation w.r.t. the virtual timer of o. In particular

Po,x,Φall

(

o ∈ MII(Φall, Ccs,all) and x ∈ MII(Φall, Ccs,all)
∣

∣

∣
tv(o) = t, tv(x) = t′

)

= 1t>t′e
−tλvN e−t′λv(N−N 2(|x|)) + 1t≤t′e

−t′λvN e−tλv(N−N 2(|x|)).

Taking expectation w.r.t. tv(x),

Po,x,Φall

(

o ∈ MII(Φall, Ccs,all) and x ∈ MII(Φall, Ccs,all)
∣

∣

∣tv(o) = t
)

=

(∫ t

0

e−tλvN e−t′λv(N−N 2(|x|))dt′ +

∫ 1

t

e−t′λvN e−tλv(N−N 2(|x|))dt′
)

(

1− e−
µρ

l(|x|)

)

=



e−tλvN
1− e−tλv

(

N−N 2(|x|)
)

λv(N −N 2(|x|))
+ e−tλvN

1− e−(1−t)λvN

λvN
e−tλv(N−N 2(|x|))





(

1− e−
µρ

l(|x|)

)

.

On the other hand,

Po,Φall

(

o ∈ MII

∣

∣

∣tv(o) = t
)

= e−tλvN .

Hence,

Po,x,Φall

(

o ∈ MII(Φall, Ccs,all)
∣

∣

∣x ∈ MII(Φall, Ccs,all) and tv(o) = t
)

=
Po,x,Φall

(

o ∈ MII(Φall, Ccs,all) and x ∈ MII(Φall, Ccs,all)
∣

∣

∣tv(xo) = t
)

Po,Φall

(

o ∈ MII

∣

∣

∣
tv(o) = t

)

=

(

1− e−tλv(N−N 2(|x|))

λv

(

N −N 2(|x|)
) +

1− e−(1−t)λvN

λvN
e−tλv(N−N 2(|x|))

)

(

1− e−
µρ

l(|x|)

)

.

This implies the conclusion directly. �

This suggests us to approximate the Palm distribution of MII(Φall, Ccs,all)
given a point at o with virtual timer tv(o) = t by an inhomogeneous PPP of
intensity measure b(|x|, t, λv)dx.
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Proposition 2.17 By approximating the Palm distribution of MII(Φall, Ccs,all)
given a point at o with virtual timer tv(o) = t by that of an inhomogeneous PPP
of intensity measure b(|x|, t, λv)dx. The COP of primary and secondary t.t.s
are respectively:

1. for primary t.t.s,

pCOP,p,C/C =

∫ λp/λv

0
exp

{

−µNT
l(rp)

−
∫

R2

Tl(|x−rpe|)
Tl(|x−rpe|)+l(rp)

b(x, t, λv)dx
}

dt

1−e−tλpN

1−e−λvN

;

(2.2.22)

2. and for secondary t.t.s,

pCOP,s,C/C =

∫ 1

λp/λv
exp

{

−µNT
l(rs)

−
∫

R2

Tl(|x−rse|)
Tl(|x−rse|)+l(rs)

b(x, t, λv)dx
}

dt

e−tλpN (1−e−tλsN )
1−e−λvN

.

(2.2.23)

Proof.
Since MII(Φall, Ccs,all) invariant under rotations, so do its Palm distributions.
We can assume w.l.o.g. that r(o) = re. We first compute the COP of a typical
user conditioned on its timer t. Proceed as in Proposition 2.8 and using the fact
that the receiver is uniformly distributed in the circle of radius r centred at o,
we have:

Po,MII(Φall,Ccs,all)

(

f(o, o)l(r)

N + Iall
(

o, r(o)
) > T

∣

∣

∣

∣

tv(o) = t

)

≈ exp

{

−
µNT

l(rp)
−

∫

R2

T l(|x− re|)

T l(|x− re|) + l(r)
b(x, t, λv)dx

}

We write the COP of a typical primary t.t. as

pCOP,p,C/C = Po,MII(Φall,Ccs,all)

(

f(o, o)l(rp)

N + Iall
(

o, r(o)
) > T

∣

∣

∣

∣

tv(o) ∈

[

0,
λp

λv

]

)

=
Po,MII(Φall,Ccs,all)

(

f(o,o)l(rp)
N+Iall(o,r(o))

> T and tv(o) ∈
[

0,
λp

λv

])

Po,MII(Φall,Ccs,all)

(

tv(o) ∈
[

0,
λp

λv

]) .

The numerator is computed as

∫

λp
λv

0

exp

{

−
µNT

l(rp)
−

∫

R2

T l(|x− rpe|)

T l(|x− rpe|) + l(rp)
b(x, t, λv)dx

}

dt,
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while the denominator is

Po,MII(Φall,Ccs,all)

(

tv(o) ∈

[

0,
λp

λv

])

= Po,Φall

(

tv(o) ∈

[

0,
λp

λv

] ∣

∣

∣

∣

o ∈ MII(Φall, Ccs,all)

)

=
Po,Φall

(

tv(o) ∈
[

0,
λp

λv

]

and o ∈ MII(Φall, Ccs,all)
)

Po,Φall

(

o ∈ MII(Φall, Ccs,all)
)

=

∫

λp
λv
0 e−tλvNdt
∫ 1

0
e−λvNdt

=
1− e−λpN

1− e−λvN
.

Hence,

pCOP,p,C/C =

∫

λp
λv
0 exp

{

−µNT
l(rp)

−
∫

R2

Tl(|x−rpe|)
Tl(|x−rpe|+l(rp)

b(x, t, λv)dx
}

dt

1−e−λpN

1−e−λvN

.

The COP of secondary t.t. is computed similarly. �

Corollary 2.1 The AT of primary and secondary t.t.s in the C/C model are:

1. for primary t.t.s,

Tp,C/C = λv

∫

λp
λv

0

exp

{

−
µNT

l(rp)
−

∫

R2

T l(|x− rpe|)

T l(|x− rpe|) + l(rp)
b(x, t, λv)dx

}

dt;

2. for secondary t.t.s,

Ts,C/C = λv

∫ 1

λp
λv

exp

{

−
µNT

l(rs)
−

∫

R2

T l(|x− rse|)

T l(|x− rse|) + l(rs)
b(x, t, λv)dx

}

dt.

Proof. This is a direct corollary of Proposition 2.15, 2.17 and Campbell formula.
�

2.3 When does CSMA Become ALOHA

In the model of CSMA Networks in Section 2.1, we assume perfect separation
between active t.t.s, i.e. there is always a minimum “distance” between any
two active t.t.s. In fact, this is only an idealized assumption which may never
be found in practice, as any two t.t.s transmitting within a time period smaller
than the propagation delay can not “see” each other and there will be no spa-
tial separation between them. Hence, there should always be some mechanism,
which we refer to as congestion control mechanism, to avoid the situation where
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many nearby t.t.s transmit within one propagation delay interval (congestion).
For instance, in the IEEE 802.11a CSMA based protocol, the congestion con-
trol mechanism is the adaptive Collision Window [16, 2]. Each t.t. wishing to
transmit has to maintain a back-off counter which is originally uniformly gener-
ated from 0 to its Collision Window. After each back-off period that it sees the
medium free, it decrements its back-off counter by 1. The duration of the sens-
ing period is specified by the protocol. A t.t. can start transmitting its message
once its counter expires. After that, it has to wait for an ACK message from
its receiver. If the ACK is missing, it will assume that there is a congestion and
have to double its Collision Window. Then it has to repeat the above procedure
to retransmit its message until this message is successfully received.

Nevertheless, in some applications, it is impossible to implement such con-
gestion control mechanisms. In particular, we consider here the IEEE 802.11p
protocol, a half-clocked version of the IEEE 802.11a protocol used in Dedicated
Short Range Communications (DSCR) in vehicular communications . Due to
the broadcast nature of the messages in DSCR, there is no ACK message and
hence the t.t.s cannot adapt the Collision Window accordingly. As a result,
IEEE 802.11p uses a static Collision Window value which is equal to 15 [3].

Given its use for safety applications, the performance of such a broadcast
scheme has received a lot of attention lately. In particular, many studies have
observed that the IEEE 802.11p MAC has serious issues with congestion at high
device densities. Authors in [8, 9, 35, 12] have observed undesirable message
collisions and long delays between successful message receptions at high densi-
ties. Moreover, it is observed that message decoding fails frequently even for
messages transmitted from a t.t. close-by. This indicates that when the device
density is high, this CSMA based protocol somehow ceases to function appropri-
ately. A recent work [28] shows by simulations that when device density grows
high, the behaviour of IEEE 802.11p MAC appears more similar to ALOHA, a
protocol without any sensing of other transmissions, than to CSMA.

Our object in this section is to take one step further in this direction. In
particular, we quantify the above result by providing analytical bounds for the
critical device intensity where the CSMA behaviour start breaking down to
that of ALOHA. By doing that, we also show that the fundamental reason for
CSMA-based IEEE 802.11p to behave like ALOHA is the finite granularity of
the Collision Window size since there always exists a non-negligible probability
that t.t.s may choose the same back-off counter and hence transmit at the same
time.

2.3.1 Spatial Modelling

Basic assumptions

Although the IEEE 802.11p is an asynchronous protocol, to keep the analy-
sis from being too complex we consider here a synchronous slotted time model
where time is divided into slots of constant duration. Each slot has three compo-
nents: it starts with an Inter Frame Spacing (IFS) period, followed by a number
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(the maximum number is determined by the Collision Window, W ) of Back-off
slots, and then the packet transmission period. Note that different slots may
have slightly different durations depending on the actual back-off slots used.
We ignore such differences for simplicity since a back-off slot (9µs) is negligible
as compared to the packet transmission time. In other words, we assume the
back-off slots to be of zero duration.

A major difference from the models considered earlier in this thesis is that
we consider here the the time dependency between realizations of t.t.s locations
in successive time slot (in previous models the realizations of t.t.s locations
in different time slots are mutually independent). This dependency can be
described as bellows.

In each slot, there is an influx of fresh terminals who arrive in the system
with a packet to transmit. Their locations are represented by a PPP of intensity
λ. The process of fresh terminals in different time slots are assume to be i.i.d.
Each freshly arriving terminal participates in the channel contention protocol,
which is abstracted from the CSMA mechanism in IEEE 802.11p MAC oper-
ation [15]. Each terminal arrives with a random back-off counter value chosen
randomly from 0 to W , which is a fixed system parameter (15 in DSRC). If the
back-off counter of a packet happens to be 0, the transmission happens imme-
diately after IFS, without going through the back-off process. If the back-off
counter is not zero, the terminal, assumed to be at position x, senses whether
the medium is busy, i.e. whether there is another terminal transmitting within
a neighbourhood B(x, r) (a ball of radius r around x), which we refer to as
the sensing area of this terminal. Suppose that the tagged terminal at x has
back-off counter w > 0 at the beginning of the time slot t. There are two pos-
sibilities here: (a) if, after q (q < w) back-off slots, the counter of one of the
other terminals within its sensing area expires and the other terminal starts to
transmit; then the counter of the tagged terminal is w− q+1 at this expiration
time (since the tagged terminal decrements its counter by 1 at the beginning
of each back-off slot) and is frozen until the end of the busy period; the tagged
terminal will thus re-enter the competition in slot t + 1 with a new back-off
counter w− q− 1. (b) If the tagged terminal detects no activity in the network
during w backoff slots, it transmits in the current slot and leaves the system.
An example is presented in Figure 2.7 to visualize this mechanism. Note that
by this abstraction, we implicitly assume that there is no fading. This is a legiti-
mate assumption since we are in the context of vehicular communications, there
is usually a strong line of sight between vehicles and the transmission ranges
are relatively small.

It is worth noting that this model is very similar to the A/A Cognitive
model in the sense that the terminals are divided into different classes (in this
model each class consists of all the terminals having the same back-off counter)
and the spatial separation is enforced inter-class but not intra-class. The two
models are, however, different in two aspects: (a) the number of classes, in this
model we have W + 1 classes while the A/A model has only 2 classes; (b) the
distribution of the terminals in each class in this model can not be modelled
by PPPs as in the A/A model. Nevertheless, thanks to this similarity between
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A single slotPrevious slot

IFS − initial
silent time

A backoff slot

Packet Transmission
time

Backoff
time

Figure 2.7: The back-off process of a typical terminal. It initially has back-off
counter value 8. After an IFS, it senses the medium free for 4 back-off slots
and decrements its counter value by 1 at the beginning of each slot. It senses
the medium becoming busy during the fifth slot and freeze its counter at 3.
Once the medium become free again, it resumes the counting down process. It
continues until its counter value equals to 0 and then transmits. The duration
between two long bars is a transmission slot, which consists of an IFS, then
several back-off slots (the interval between two small bars), then a frozen period
if the medium is busy or a transmission if the back-off counter expires.

them, in the analysis of this model we can use the technique which proves to be
successful in the analysis of the A/A model.

Problem Formulation

At the beginning of each slot, we take a snapshot of the system. Let Φt (Ψt)
be the set of t.t.s freshly arriving (having messages waiting to be scheduled) at
slot t and Φt

i (Ψ
t
i) be the set of such t.t.s with counter equal to i (i = 0, . . . ,W ).

{Φt, t = 1, 2, · · · } is assumed to be a family of independent PPPs of intensity
λ. As the back-off counters are independent marks of Φt, Φt

i, i = 0, . . .W ,
t = 1, 2, . . ., are independent PPPs of intensity λ/(W + 1). The point process
of t.t.s with counter i that transmit in slot t is

Πt
i =

{

x ∈ Ψt
i s.t. C(x,Π

t
k), k < i

}

.

We also identify the t.t.s which will decrement their counter to j (j < i) after
the current slot. Let Ξt

i,j be the process of such t.t.s,

Ξt
i,j =

{

x ∈ Ψt
i s.t. C(x,Π

t
k), k < i− j − 2 and C(x,Πt

i−j−1)
}

,

where C(y,Θ) is the event B(y, r) ∩ Θ = ∅ for every point y and every PP Θ
and E is the complement of the event E . The parameter r is the carrier sensing
range.

The following relations between the PPs defined above hold for every t > 0
and completely define the evolution of the system:
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• For every i ≤ W , Πt
i ∪ {Ξt

i,j}
i−1
j=0 form a partition of Ψt

i: each t.t. in Ψt
i

either transmits in the current slot or decreases its counter from i to some
0 ≤ j < i.

• Φt
W = Ψt

W : only freshly arriving t.t.s can take counter W .

• For every i < W , Φt+1
i ∪{Ξt

j,i}
W
j=i+1 form a partition of Ψt+1

i : each t.t. in
Ψt

i either freshly arrives into the system or has its counter decreased from
some j > i to i during the last time slot.

• Πt
0 = Ψt

0: t.t.s with counter 0 always transmit.

Note that when W = 0, the system corresponds to independent Poisson
arrivals/transmissions in each slot without any contention or back-off.

Remark 2.4 The system of PPs {(Ψt
0, . . . ,Ψ

t
W )}∞t=1 is a Markov process in the

sense that given (Ψt
0, . . . ,Ψ

t
W ), {(Ψk

0 , . . . ,Ψ
k
W )}∞k=t+1, and {(Ψk

0 , . . . ,Ψ
k
W )}t−1

k=0,
are independent. We do not know whether this Markov process is ergodic and
what is its invariant distribution. Instead, our purpose is only to extract some
partial information about the limit of the distribution of this system when t goes
to ∞, which is enough to establish bounds on the critical intensities.

2.3.2 Critical intensity

Consider a scenario where the t.t.s of Ψt
0 (i.e. the t.t.s that have a counter value

of 0 at the beginning of slot t) cover most of the space within their Carrier
Sensing zones. In such a scenario, most t.t.s would only be able to decrement
their counters by 1 in each slot. Consequently, at slot t′ > t+W , the Ψt′

0 t.t.s
would be the union of t.t.s that arrived with a counter value k in slot t′ − k
for some k from 0 to W . Notice that the active t.t.s then become the union of
independent Poisson Point processes Ψt′−k

k with the same intensity λ/(W + 1),
which all transmit in the current slot. Hence, the process of transmitters forms
a Poisson point process of with intensity λ and CSMA has a very negligible role
in the process. Thus, an important quantity of interest is the fraction of space,
denoted by (1− ǫ), that is covered by the carrier sensing regions of the t.t.s in
Ψt

0. For a small ǫ, we refer to the system at this stage as (1− ǫ) ALOHA.
We define

λǫ,W := inf{λ s.t. lim sup
t→∞

P
(

C(o,Ψt
0)
)

≤ ǫ}, (2.3.1)

with o the origin of the domain. As all the PPs considered here are stationary,
we can replace o in the above definition by any other point x of the domain.
This is the smallest t.t. intensity for which the system is (1− ǫ) ALOHA when
the Collision Window value is W .

Note that for ALOHA, λǫ,0 = 1
‖B(0,r)‖ ln(

1
ǫ ). This follows from the fact

that the probability that there are no point of a PPP of intensity λ in the ball
B(0, r) is e−λ|B(0,r)|. In the rest of this section, we provide bounds for λǫ,W ,
the intensity at which the system is (1− ǫ)-ALOHA.
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In order to obtain bounds for λǫ,W , we first describe two other PPs related
to Ψt

0 that have much simpler structures. For any t > W , for each k from 0
to W , let Ωt

k,0 be the PPs of the terminals which arrive in the system at time
t−k, with counter value k and get to counter value 0 at time t by decrementing
their counters by 1 in each of the k time slots from t− k to t− 1:

Ωt
k = {x ∈ Φt−k

k s.t. C(x,Ψt−i
0 ), i = 1 . . . k − 1}.

For k = 1 to W − 1, let

Υt
k := {x ∈

W
⋃

j=k+1

Φt−k
j s.t. ∃1 ≤ l ≤ k, C(x,Ψt−l

0 )}

be the set of t.t.s arriving at time t − k with counter values larger than k and
decreasing their counters by more than 1 in at least one of the next k time slots.
The following lemma gives a lower bound and an upper bound on Ψt

0.

Lemma 2.1 For every t > W , the following inclusions hold a.s.,

W+1
⋃

k=1

Ωt
k ⊆ Ψt

0 ⊆

(

W
⋃

k=0

Φt−k
k

)

∪

(

W−1
⋃

k=1

Υt
k

)

. (2.3.2)

Proof. Note that Ωt
k ⊆ Ψt

0 for every k from 0 to W by definition, so the first
inclusion follows directly. For the second inclusion, take any x in Ψt

0. It can
either (a) arrive in the system at time t − k with counter k for some k from 0

to W , which means that x ∈
(

⋃W
k=0 Φ

t−k
k

)

, or (b) arrive in the system at time

k with some counter l ( 0 < k < l ≤ W ). In case (b), x must decrements its
counter by more than 1 in at least 1 of the k slots t − k, t − k + 1, . . ., t − 1.
This is equivalent to x ∈ Υt

k. The second inclusion then follows directly. �

Using this lemma, we can bound λǫ,W as follows,

Theorem 2.1 Let ǫ < (W + 1)/2 be a small positive number. Then

λǫ,W ≤ λǫ,W
u :=

W + 1

2πr2
ln
(

ρ(ǫ)
)

, (2.3.3)

where ρ(ǫ) is the largest solution of the equation

xW+1 −
W + 1

2
xW +

W + 1

2
= ǫ−1, (2.3.4)

and

λǫ,W ≥ λǫ,W
d :=

ι(W, ǫ)

2πr2
, (2.3.5)

where ι(W, ǫ) is the unique positive solution of the equation

x



1 +
W (W − 1)

6
(

ex − W+1
2

(

e
Wx
W+1 − 1

))



 = − ln(ǫ). (2.3.6)
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Proof. The main idea of this proof is to bound lim supt→∞ P(C(o,Ψt
0)). For

this purpose, we first notice that C(o,Θ) implies C(o,Θ′) if Θ ⊇ Θ′, and that
C(o,

⋃n
i=1 Θi) is equivalent to the union of C(o,Θ1), . . . , C(o,Θn) for any n PPs

Θ1, . . . ,Θn.
We start with the upper bound. By Lemma 2.1,

P
(

C(o,Ψt
0)
)

≤ P

(

C
(

o,Ωt
0,0

)

, . . . , C
(

o,Ωt
W,0

)

)

.

Given a realization of Ψt−W
0 , . . . ,Ψt−1

0 , the PPs Ωt
0,0, . . . ,Ω

t
W,0 are W + 1 in-

dependent PPPs. The conditional intensity of Ωt
k,0 is λ

W+1

∏k
i=1 1C(x,Ψt−i

0 )
dx,

with the convention that the product over the empty set is 1. Hence,

P
(

C(o,Ψt
0)
)

≤ E

[

exp

{

−
λ

W + 1

∫

B(o,r)

W+1
∑

k=1

k−1
∏

i=1

1
C(x,Ψt−i

0 )
dx

}]

.

Moreover, as
k−1
∏

i=1

1
C(x,Ψt−i

0 )
≥ max

(

1−
k−1
∑

i=1

1C(x,Ψt−i
0 ), 0

)

for every x, we have

W+1
∑

k=1

k−1
∏

i=1

1
C(x,Ψt−i

0 )
= 1 +

W+1
∑

k=2

k−1
∏

i=1

1
C(x,Ψt−i

0 )

≥ 1 + max

(

W −
W
∑

k=1

(W − k + 1)1C(x,Ψt−k
0 ), 0

)

.

So,

exp

{

−
λ

W + 1

∫

B(o,r)

W+1
∑

k=1

k−1
∏

i=1

1C(x,Ψt−i)
dx

}

≤ exp

{

−
λ

T (W + 1)

(

2πr2+

∫

B(o,r)

max

(

W−
W
∑

k=1

(W − k + 1)1C(x,Ψt−k
0 ), 0

)

dx

)}

= exp

{

−
λ

T (W + 1)

(

(W + 1)2πr2−

∫

B(o,r)

min

(

W
∑

k=1

(W − k + 1)1C(x,Ψt−k
0 ),W

)

dx

)}

a.s.

Because et is a convex function, ea ≤ 1− a
b + a

b e
b for any 0 ≤ a ≤ b. Applying

this inequality to the last equation, we get

E

[

exp

{

λ

W + 1

∫

B(o,r)

min

( W
∑

k=1

(W − k + 1)1C(x,Ψt−k
0 ),W

)

dx

}]

≤ 1−
C

WNλ
+

C

WNλ
exp

{

WNλ

W + 1

}

= 1 +
C

WNλ

(

exp

{

WNλ

W + 1

}

− 1

)

,
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where Nλ = λ2πr2 and

C = E

[∫

B(o,r)

min

( W
∑

k=1

(W − k + 1)1C(x,Ψt−k
0 ),W

)

dx

]

≤ E

[∫

B(o,r)

( W
∑

k=1

(W − k + 1)1C(x,Ψt−k
0 )

)

dx

]

=

∫

B(o,r)

( W
∑

k=1

(W − k + 1)P
(

C(x,Ψt−k
0 )

)

)

dx

= 2πr2
( W
∑

k=1

(W − k + 1)P
(

C(x,Ψt−k
0 )

)

)

.

Hence,

P
(

C(o,Φt
0)
)

≤ e−Nλ +
(

e−
Nλ

W+1 − e−Nλ

)

W−1

(

W
∑

k=1

(W − k + 1)P
(

C(x,Ψt−k
0 )

)

)

.

Let τi, i = 1, 2, . . . be a sequence defined by

τt = 1 for t = 1, . . . ,W ; and

τt = e−Nλ +
(

e−
Nλ

W+1 − e−Nλ

)

(

W
∑

k=1

(W − k + 1)τt−k

)

W−1 otherwise .

By an induction argument, we easily show that P (C(o,Ψt
0)) ≤ τt for every

t > 0. So, lim supt→∞ P
(

C(o,Ψt
0)
)

≤ lim supt→∞ τt. We now consider the
characteristic function of the sequence τt, which is

T(Z) := ZW+1 −
(

e−
Nλ

W+1 − e−Nλ

)

(

W
∑

k=1

kZk

)

W−1.

Note that when ǫ < (W + 1)/2 and λ ≥ λǫ,W ,

eNλ −
W + 1

2

(

e
WNλ
W+1 − 1

)

≥ ǫ−1 > 0,

which is equivalent to

1−
W + 1

2

(

e−
Nλ

W+1 − e−Nλ

)

> 0.
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We have

T
′

(Z) = (W + 1)ZW −
(

e−
Nλ

W+1 − e−Nλ

)

(

W
∑

k=1

k2Zk−1

)

W−1

≥ (W + 1)ZW −
(

e−
Nλ

W+1 − e−Nλ

)

(

W
∑

k=1

(W + 1)kZW

)

W−1

= (W + 1)ZW

(

1−
W + 1

2

(

e−
Nλ

W+1 − e−Nλ

)

)

> 0

for all real Z ≥ 1 and

T
′

(1) = 1−
W + 1

2

(

e−
Nλ

W+1 − e−Nλ

)

> 0.

So, let ζ1, . . . , ζW+1 be the W + 1 (complex) roots of T, then |ζi| ≤ 1 for
i = 1, . . . ,W + 1. Since τt can be expressed as

(

eNλ −
W + 1

2

(

e
NλW

W+1 − 1
)

)−1

+ ηiζ
t
i .

for all t for some W + 1 complex values η1, . . . , ηW+1. Then we have that

lim sup
t→∞

P
(

C(o,Ψt
0)
)

≤

(

eNλ −
W + 1

2

(

e
NλW

W+1 − 1
)

)−1

, (2.3.7)

when ǫ < (W + 1)/2 and λ ≥ λǫ,W . The upper bound is concluded by noting
that in this case the above quantity is smaller than ǫ.

For the lower bound, from the second inclusion in Lemma 2.1,

P(C(o,Ψt
0)) ≥ P(C(o,Φt−W

0 ), . . . , C(o,Φt
0), C(o,Υ

t
W−1,0), . . . , C(o,Υ

t
1,0)).

Given a realization of Ψt−W
0 , . . . ,Ψt−1

0 , {Φt−W
W , . . . ,Φt−1

1 } and {Υt
W−1,0, . . . ,Υ

t
1,0}

are 2W − 1 independent PPPs. For k = 0, . . . ,W the (conditional) intensity of

Φt−k
k is λ

W+1 and that of Υt
k,0 is (W−k)λ

W+1

(

1−
∏k

l=1 1C(x,Ψt−l
0 )

)

dx. As

k
∑

l=1

1C(x,Ψt−l
0 ) ≤

(

1−
k
∏

l=1

1
C(x,Ψt−l

0 )

)

a.s.,

we have

P(C(o,Ψt
0)) ≥

W
∏

k=0

e−
Nλ

W+1E

[

W−1
∏

k=1

e
− (W−k)λ

W+1

∫

B(o,r)

(

∑k
l=1 1

C(x,Ψ
t−l
0 )

)

dx

]

.

By Jensen’s inequality,

E

[

W−1
∏

k=1

e
− (W−k)λ

W+1

∫

B(o,r)

(

∑k
l=1 1

C(x,Ψ
t−l
0 )

)

dx

]

≥
W−1
∏

k=1

e−
Nλ

W+1

∑W−1
k=1

∑k
l=1 P(C(o,Ψt−l

0 )).



74 CHAPTER 2. NON POSSION CASE

So,

P(C(o,Ψt
0)) ≥ e−

Nλ
W+1 e−

(W−k)Nλ
W+1

∑k
l=1 P(C(o,Ψt−l

0 )).

Note that

lim sup
t→∞

P(C(o,Ψt−l
0 )) ≤

(

eNλ −
W + 1

2

(

e
NλW

W+1 − 1
)

)−1

,

we deduce that

lim sup
t→∞

P(C(o,Ψt
0)) ≥ lim inf

t→∞
P(C(o,Ψt

0)) ≥ e−
Nλ

W+1

e
−

(W−k)Nλ
W+1

∑k
l=1

(

eNλ−W+1
2

(

e
NλW
W+1 −1

))−1

.

Setting this to ǫ gives us the lower bound. �

Remark 2.5 The lower bound and the upper bound are plotted against ǫ for
different values of W in Figure 2.8. We can see that the bounds are loose for
large W and large ǫ, but they are asymptotically tight as ǫ tends to 0 in the

sense that limǫ→0
λǫ,W
u 2πr2

− ln(ǫ) = limǫ→0
λǫ,W
d 2πr2

− ln(ǫ) = 1. In other words, at small ǫ, a

different value of W does not affect the critical intensity value, which is dictated
by the ALOHA (W = 0) critical intensity.

Bibliographical note

The analysis in Section 2.1 is based on [6, Sect. IV.18]. The greater part of the
results in Section 2.2 are published in [33, 19, 20]. The results in Section 2.3
are in [22], which is going to appear in INFOCOM 2013.
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Figure 2.8: Plot of the critical value for different values of W
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Chapter 3

The Probability Generating

Functionals of Matérn Type

II and Type III Models

The Matérn models of type II and type III are originally introduced in the
seminal work of B.Matérn [17]. These models construct from a PP Φ, whose
points may have conflict with each other, two conflict-free PPs MII(Φ) and
MIII(Φ). Apart from being used in the analysis of CSMA wireless networks
as shown in Section 2.1, they also find applications in other disciplines, such
as material science, geology, forestry, etc. While the type II model is first
introduced by B. Matérn [17], the type III model is known long before and is
widely used under many names. It first appears as the ”Car Parking Problem”
in a paper of Rényi [25]. In applications in network resources allocation, it is
known as the ”Random Interval Packing” [10] or the ”On-line Packing Problem”
, while in physics and material science it is known as the ”Random Adsorption
Model”, see [23] and the citations herein.

As the original Matérn type III construction is only applicable when Φ is
finite, a purpose of this chapter is to exhibit an extension of this model to the
case where Φ is countably finite. Then, we study the p.g.fls (see Appendix A
for their definitions) of MII(Φ) and MIII(Φ) and we prove that under some
mild conditions, these functionals are the unique solutions of some systems of
differential equations. Similar results are also provided for the Palm versions of
these p.g.fls (see Appendix A for the definition of Palm distributions) and for
the special case when the considered PPs are stationary.

3.1 Constructions of the Matérn Models

Given a proposed PP Φ, each of the type II and type III models is made up
of two components: a conflict relation between the points in Φ and a retention

77
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procedure (or equivalently, a construction procedure) to retain these points in
such a way that conflicts do not arise among them. Here, we consider an instance
of these two models where the conflict relation is random and its realizations
at different pairs of points are mutually independent. We start by constructing
such a random conflict relation in Subsection 3.1.1. The original constructions
of Matérn are recalled in Subsection 3.1.2. The extension of the Matérn type
III construction to the case where the number of points is countably infinite is
given in Subsection 3.1.3. We then finish by introducing the notion of Poisson
Rain with Random Conflict Relation in Subsection 3.1.4. This notion provides
us a common structure to study the evolution of the distributions of the Matérn
models when their intensities vary.

3.1.1 Point Process with Random Conflict Relation

In applications that require constructions of conflict-free point processes, there
is always a conflict relation between points and it is required that any two
points with a conflict between them do not appear at the same time in the
constructed processes. Usually, the conflict is a deterministic relation based
on the geometrical interaction between these points. For instance, it can be
required that two points conflict with each other iff the distance between them
is smaller than some threshold d. But for some applications, such as the CSMA
wireless networks presented earlier, the conflict is a random relation.

In particular, a Point Process with Random Conflict Relation (PPRCR) is

a pair (Φ, C) with Φ a PP and C ∈ {0, 1}Φ
2

a random relation in Φ satisfying
the following conditions.

• C is symmetric almost surely (a.s.).

• C is non-reflexive a.s., i.e. C(x, x) = 0 for all x in Φ a.s.

• Given a realization of Φ, {C(x, y), (x, y) unordered pairs of points in Φ}
is a family of independent {0, 1}− value r.v.s and

P
(

C(x, y) = 1|Φ and x, y ∈ Φ
)

= h(x, y),

with h a symmetric function taking value in [0, 1] and satisfying h(x, x) = 0
for any x in the plane.

The existence of a such random structure is not obvious, and we dedicate this
subsection to its construction. Let Ψ = {(x,u(x))} be an independently MPP
such that for each point x, the mark u(x) = {ui(x), i = 1, 2, . . . , } is a sequence
of i.i.d. r.v.s uniformly distributed in [0, 1]. These r.v.s are then associated to
other points in Ψ in the following manner: we first enumerate the points in Ψ
in the increasing order of their distances to x. If there are at least 2 points
with the same distance to x, they are numbered in the counter-clockwise order.
The ith point in this ordering is associated to the r.v. ui(x). We now consider
two points x and y in Ψ, let ui(x) be the r.v. associated to y in the mark of x
and uj(y) be the r.v. associated to x in the mark of y. We let C(x, y) = 1 iff
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min
(

ui(x), uj(y)
)

> 1 −
√

h(x, y). It is then easily verified that (Φ, C) defined
in this manner is a PPRCR, where Φ is the ground PP of Ψ.

Remark 3.1 This construction is adopted from [32]. The name of the model
in [32] is the Random Connection Model (RCM). Although the model considered
here is exactly the same, we do not use the same name since the physical meaning
is different. In RCM, C(x, y) = 1 means that there is a connection between x
and y (which is desirable), while here C(x, y) = 1 means that there is a conflict
between x and y (which is undesirable).

A PPRCR is called a Poisson Point Process with Random Conflict Relation
(PPPRCR) iff its ground process Φ is a PPP. Let Λ be the intensity measure
of Φ, it is easily seen that when (Φ, C) is a PPPRCR, the measure Λ and the
function h are the two parameters that completely determine the distribution
of (Φ, C). In this case, we call (Φ, C) a PPPRCR with intensity measure Λ and
expected conflict function h. Without otherwise stated, we always assume that
Λ is a locally finite measure.

3.1.2 The Original Construction of Matérn

Given a PPPRCR (Φ, C) with intensity measure Λ and expected conflict func-
tion h, the objectives of the Matérn models of type II and III are to construct
from Φ the subsets MII(Φ, C) and MIII(Φ, C) that are conflict-free, i.e. for ev-
ery x, y in Mj(Φ, C), j = II, III we have C(x, y) = 0. In the rest of this chapter,
as there is no confusion, the relation C in the above notations is omitted.

The Matérn Type II Model

The Matérn type II model gives each point x a mark t(x) which takes value in
[0, 1] as an additional attribute of x. This mark is interpreted as the time when
a point ‘arrives’ in the system. For convenience, we refer to it as the timer.
The conflict between any two points is resolved by a competition where the one
arriving earlier wins. Only the winners belong to MII(Φ), i.e.

MII(Φ) = {x ∈ Φ s.t. for all y ∈ Φ, C(x, y) = 1 ⇒ t(x) < t(y)}. (3.1.1)

In the literature this construction is sometimes referred to as the Matérn hard-
core model.

Remark 3.2 Let us consider a simple example, where Φ has 3 points x, y, z, the
conflict relation C is C(x, y) = 1, C(y, z) = 1, C(x, z) = 0. If the timers of the
points in Φ are t(x) = .1, t(y) = .2, t(z) = .3, the Matérn type II model will be
MII(Φ) = {x} by definition. However, we can see that {x, z} is another conflict-
free subset of Φ, which has more points than MII(Φ). In the other words, the
subset retained by the retention procedure of the Matérn type II model is not a
maximal conflict-free subset in the set theoretical sense.
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The Matérn Type III Model

The Matérn type III model is proposed with the purpose of resolving conflicts
while retaining as many points as possible. In this sense, it can be viewed
as an improvement of the Matérn type II model. The intuition behind this
mechanism is as follows: when a point competes with others for space, it does
not need to compete with those points that have already been defeated. When
Φ contains only finitely many points, we can give an explicit construction of
MIII(Φ). First, all the points in Φ are sorted in the increasing order of their
timers. Let {xi, i = 1, 2, . . .} be this ordering. We then construct an increasing

sequence of sets {Φ
(i)
III, i = 1, 2, . . .}:

Φ
(1)
III = {x1}; (3.1.2)

Φ
(i+1)
III =

{

Φ
(i)
III ∪ {xi+1} if C(xi+1, xj) = 0 for all xj ∈ Φ

(i)
III,

Φ
(i)
III otherwise.

(3.1.3)

MIII(Φ) is defined as
⋃∞

i=1 Φ
(i)
III. It is easily seen that MIII(Φ) satisfies

MIII(Φ) = {x ∈ Φ s.t. for all y ∈ MIII(Φ), C(x, y) = 1 ⇒ t(x) < t(y)}.

Remark 3.3 It is not difficult to see that the subset retained by the retention
procedure of the Matérn type III model is a maximal conflict-free subset of Φ.
Indeed, consider a conflict-free subset Ξ of Φ such that MIII(Φ) ⊆ Ξ. Assume
that Ξ \MIII(Φ) 6= ∅, we take a point xj ∈ Ξ \MIII(Φ). As Ξ is conflict-free,

C(xj , y) = 0 for every y in Ξ. Moreover, we have Φ
(j−1)
III ⊆ MIII(Φ) ⊆ Ξ.

So C(xj , y) = 0 for every y in Φ
(j−1)
III , which implies that xj is in MIII(Φ) by

definition, which is a contradiction. So, we must have that Ξ = MIII(Φ), which
means that MIII(Φ) is a maximal conflict-free subset of Φ.

When Φ contains infinitely many points, there are configurations of Φ such
that the type III construction is not applicable. A simple example is when
Φ = Z

+ and t(i) = i−1. In this case, there is no way to sort the points in Φ in
the increasing order of the timers. Nevertheless, the construction of the Matérn
type III model can still be extended to the case where |Φ| = ∞ under some
mild conditions. This construction is more involved and we leave its discussion
to Subsection 3.1.3.

3.1.3 The Infinite Construction of the Matérn type III

Model

Our aim here is to provide an extension of the Matérn type III construction to
the case where Φ is countably infinite. We start by defining the conflict graph
associated to Φ and C. Then we give our extension which is applicable only
when the conflict graph has the finite history property (which will be defined
shortly).
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The Conflict graph

For any two points x and y in Φ, we put a directed edge from x to y if C(x, y) = 1
and t(x) < t(y). Let E be the set of all such edges, i.e.

E = {(x, y) s.t. C(x, y) = 1 and t(x) < t(y)}.

The conflict graph associated to Φ and C is the directed graph G = {Φ, E}. It
is not difficult to check that G is an acyclic graph.

We now define recursively the order ( an asymmetrical, non-reflexive transi-
tive binary relation) ֋ in Φ as

x ֋ y if

{

either (x, y) ∈ E ,

or there exists z ∈ Φ s.t. (z, y) ∈ E and x ֋ z.
(3.1.4)

We call this the ancestor order in Φ. For each x, let

A(x) = {y ∈ Φ s.t. y ֋ x} (3.1.5)

be the set of its ancestors . G is said to have the finite history property if A(x)
is finite for all x in Φ.

The Matérn Type III Extension

Let e be a function from Φ to {0, 1} satisfying

e(x) =











1 if A(x) = ∅,
∏

y∈Φ, (y,x)∈E

(1− e(y)) otherwise . (3.1.6)

We have,

Proposition 3.1 When the conflict graph G has the finite history property,
there exists a unique function e satisfying (3.1.6).

Proof. It is sufficient to show that e(x) is uniquely determined for every x in
Φ. We do so by induction on |A(x)|. The base case is when |A(x)| = 0 so
that e(x) = 1 by definition. Note that such x always exists by the finite history
assumption (the argument is rather simple: if |A(x)| > 0 for all x in Φ, we start
with x0 = x and build an infinite chain {xi, i = 0, 1, . . .} of mutually different
points such that x0 ֋ x1 ֋ x2 · · · . By the transitivity of ֋, we have that
{xi, i = 0, 1, . . .} ⊆ A(x). Thus |A(x)| = ∞, which is a contradiction).

Now suppose that e(x) is uniquely determined for every x ∈ Φ such that
|A(x)| < k. Consider an x ∈ Φ such that |A(x)| = k (if such x exists), then

e(x) =
∏

y∈Φ, s.t. (y,x)∈E

(1− e(y)) (3.1.7)
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by definition. As |A(x)| = k and y ∈ A(x) for all y ∈ Φ such that (y, x) ∈ E , the
left-hand side is a product of finitely many terms. Moreover, as ֋ is an order,
A(y) ⊂ A(x) for all y ∈ A(x). Hence, |A(y)| < |A(x)| = k for all y ∈ A(x),
which implies, by the induction hypothesis, that every e(y) term appearing in
the left-hand side is uniquely determined, and so is e(x). �

The subset MIII(Φ) produced by the Matérn type III model is defined as

MIII(Φ) = {x ∈ Φ s.t. e(x) = 1}. (3.1.8)

It is easily checked that

MIII(Φ) = {x ∈ Φ s.t. for all y ∈ MIII(Φ), C(x, y) = 1 ⇒ t(x) < t(y)},

and that when Φ contains finitely many points, the PP constructed in this
manner and the one constructed by the original Matérn type III model are
identical.

Matérn type III Construction for PPPRCRs

Recall that the extended Matérn type III construction is applicable only when
the conflict graph G associated to the realization of (Φ, C) has the finite history
property. We prove here that the above is true a.s. if the measure Λ and the
function h satisfy

sup
x∈R2

∫

R2

h(x, y) Λ(dy) = H < ∞. (3.1.9)

The main result of this section is

Proposition 3.2 For every PPPRCR (Φ, C) with ground intensity measure Λ
and expected conflict function h satisfying (3.1.9), its corresponding conflict
graph has the finite history property a.s.

Proof. Consider a typical point x in Φ. Recall that A(x) is the set of ancestors
of x in the conflict graph. Let

A(l)(x) ={y ∈ Φ s.t. exists x0, x1, . . . , xl ∈ Φ

s.t. x0 = x, xl = y and (x1, x0), . . . , (xl, xl−1) ∈ E}.

A(x) can be rewritten as

A(x) =

∞
⋃

l=1

A(l)(x).

We now bound E
[

|A(l)(x)|
]

. First, notice that

|A(l)(x)| ≤
∑

x0,...,xl∈Φ,x0=x

(

l
∏

k=1

1(xk,xk−1)∈E

)

=
∑

x0,...,xl∈Φ, x0=x

(

l
∏

k=1

C(xk−1, xk)1t(xk−1)>t(xk)

)

.
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Consider Φ under its Palm distribution given a point at x, we then apply the
multivariate Campbell formula on it,

Ex

[

|A(l)(x)|
]

≤ Ex





∑

x1,...,xl mutually different in Φ, x0=x

l−1
∏

k=0

C(xk, xk+1)1t(xk)>t(xk+1)





=

∫

(R2)l

∫

([0,1])l
1t(x)>t1>t2>···>tl h(x, x1)

l−1
∏

k=1

h(xk, xk+1) dt1 . . . dtl

Λ(dx1) . . . Λ(dxl)

=

∫

(R2)l

t(x)l

l!
h(xi, x1)

l−1
∏

k=1

h(xk, xk+1) Λ(dx1) . . . Λ(dxl).

In the above formula, Ex is the expectation w.r.t. the corresponding Palm
distribution. As h and Λ satisfy (3.1.9), we deduce that

Ex

[

|A(l)(x)|
]

≤

∫

(R2)l

t(x)l

l!
h(x, x1)

l−1
∏

k=1

h(xk, xk+1) Λ(dx1) . . . Λ(dxl)

≤
t(x)l

l!
H

l
,

where H is defined in (3.1.9). So

Ex [|A(x)|] ≤
∞
∑

l=1

Ex

[

|A(l)(x)|
]

≤
∞
∑

l=1

t(x)l

l!
H

l
= exp{t(x)H} < ∞.

This implies that |A(x)| < ∞ a.s. for every x in Φ. Since Φ is at most countably
infinite, it follows directly that the conflict graph has the finite history property
a.s. �

From now on, we assume that Λ and h satisfy (3.1.9), so that the extended
Matérn type III construction is applicable a.s.

3.1.4 Poisson Rain with Random Conflict Relation and

Its Matérn Models

In the next section, we are interested in the dynamic evolution of the Matérn
models when the proposed PPP has more and more points. More concretely,
we want to study the distribution of MII(Φt), MIII(Φt) for different values of t,
where Φt is a PPPRCR of intensity measure tΛ and expected conflict function h.
For this purpose, it is more convenient to consider Φt, t ∈ R

+ as an increasing
family of subsets of a Poisson Rain with Random Conflict Relation (PRRCR).
First we define the notion of Poisson Rain.

Definition 3.1 A Poisson Rain with ground intensity Λ is a PPP {(x, t(x))}
in R

2 × R
+ of intensity measure Λ× L with L the Lebesgue measure.
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Each ’point’ in Φ is a pair (x, t(x)) with x ∈ R
2 and t(x) ∈ R

+. The x component
is understood as the position of a point and t(x) is understood as the timer of
the point. The name Poisson Rain stems from the interpretation of Φ as a
collection of raindrops falling from the sky, the timer of a point is the time
when it hits the ground and its position is the place where it does so. By abuse
of notation, for each x ∈ R

2, we write x ∈ Φ for “there exists a t such that
(x, t) ∈ Φ”. So, when we refer to a point of Φ as a pair of location-timer, we
use the pair notation (x, t), and when we refer to it as a point in R

2, we use the
single element x notation.

Remark 3.4 The Poisson Rain considered here is a special case of the extended
Marked Point Process introduced in [11, Definition 9.1.VI, p. 7]. Note that the
extended MPP in [11] is used to construct the counting measure of a purely
atomic random measure, where the mark of a point is used to represent the
mass of the random measure at that point. As the mark of a point is used here
to represent its arrival time, we use here the name Poisson Rain instead of
extended marked Poisson Point Process.

The random conflict relation is introduced to the Poisson Rain as follow, where
h is a function satisfying (3.1.9) .

Definition 3.2 A Poisson Rain with Random Conflict Relation (PRRCR) with
ground intensity Λ and expected conflict function h is a pair (Φ, C) where Φ is
a Poisson Rain with ground intensity Λ and C = {C(x, y), x, y ∈ Φ} is a family
of {0, 1} value r.v.s indexed by unordered pairs of locations in Φ satisfying

1 C is non-reflexive and symmetric a.s.;

2 given a realization of Φ, C is a family of independent r.v.s with the excep-
tions given by the condition 1; and

3 P
(

C(x, y) | Φ and x, y ∈ Φ
)

= h(x, y).

For completeness, we provide here a construction of a PRRCR, which is an
extension of the construction in 3.1.1. Let {Ψi, i = 1, 2, . . .} be a family of i.i.d.
MPPPs with i.i.d. marks of ground intensity Λ. Each point x in Ψi is equipped
with a mark u(x) = {τ(x), uj,k(x), j, k = 1, 2, . . .} which is a family of i.i.d. r.v.s
uniformly distributed in [0, 1]. Let

Ψ
′

i :=
{

(

x, τ(x) + i, {uj,k(x)}
)

for all
(

x, τ(x), {uj,k(x)}
)

∈ Ψi

}

.

The Poisson Rain Φ is defined as
⋃∞

i=1 Ψ
′

i. To determine the random conflict
relation, for each x in Φ, we number the points in Ψ′

i in the same way as
in the construction of Subsection 3.1.1 and associate to the jth point in this
numbering the r.v. ui,j(x) in the mark of x. Now, consider any two points
x, y in Φ. Let ui,j(x) be the r.v. corresponding to y in the mark of x and
uk,l(y) be the r.v. corresponding to x in the mark of y, we let C(x, y) = 1 iff

min
(

uk,l(y), uk,l(y)
)

> 1−
√

h(x, y). It is then easily verified that (Φ, C) defined
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in this manner is indeed a PRRCR with ground intensity Λ and expected conflict
function h.

Given a PRRCR Φ, we define the restriction Ts,t to the interval [s, t) as

Ts,t(Φ) = {x ∈ Φ s.t. t(x) ∈ [s, t)}. (3.1.10)

This restricted version of Φ inherits the natural conflict relation from Φ. When
s = 0, the above notation is reduced to Tt(Φ). Then the PPP Φt can be defined
as Tt(Φ). Moreover, we can easily see that the restriction transformation can also
be applied to any PPRCR and that a PRRCR can be seen as a PPPRCR with
timers that do not take value in a bounded interval but ’uniformly distributed’ in
R

+. With this view, we can verify that the Matérn type II model is applicable to
PRRCR and the Matérn type III model is also applicable a.s. given that Λ and
h satisfy (3.1.9). In particular, let the PPs constructed by the Matérn models
inherit the natural conflict relation from their original PPRCR. The following
facts can be easily proved:

• Tt(Mj(Φ)) = Mj(Φt) for j = II, III;

• MII(Φ) = {x s.t. C(x, y) = 0 ∀ y ∈ Φt(x)}; and

• MIII(Φ) = {x s.t. C(x, y) = 0 ∀ y ∈ MIII(Φt(x))}.

In the other words, the first claim asserts that the restriction to [0, t) of the
Matérn models of Φ are the same as the the Matérn models of the restriction
to [0, t) of Φ while the two other claims are just reformulations of the Matérn
models definitions. These three claims are based on the fact that the event
x ∈ Mj(Φ), j = II, III depends only on the realization of the points in Φ whose
timers are smaller than t(x).

We finish with a result that will be used frequently in the next section. It
allows us to approximate the PPs Ts,t

(

MII(Φ)
)

and Ts,t

(

MIII(Φ)
)

by other
PPs which have much simpler structures.

Proposition 3.3 For every realization of the PRRCR (Φ, C) such that its as-
sociated conflict graph has the finite history property and for every 0 < s < t,

∆II,d,s,t ⊆ Ts,t

(

MII(Φ)
)

⊆ ∆II,u,s,t;

∆III,d,s,t ⊆ Ts,t

(

MIII(Φ)
)

⊆ ∆III,u,s,t, (3.1.11)

where

∆II,d,s,t = {x ∈ Ts,t(Φ) s.t. C(x, y) = 0 ∀ y ∈ Φt};

∆II,u,s,t = {x ∈ Ts,t(Φ) s.t. C(x, y) = 0 ∀ y ∈ Φs};

∆III,d,s,t = {x ∈ Ts,t(Φ) s.t. C(x, y) = 0 ∀ y ∈ MIII(Φs) ∪ Ts,t(Φ)};

∆III,u,s,t = {x ∈ Ts,t(Φ) s.t. C(x, y) = 0 ∀ y ∈ MIII(Φs)}. (3.1.12)

Proof. Since MII(Φ) = {x s.t. C(x, y) = 0 ∀ y ∈ Φt(x)} and Φs ⊆ Φt(x) ⊆ Φt

for every x ∈ Ts,t(Φ), the first double inclusion follows directly. The second
one is proved similarly using the third claim above and taking into account that
MIII(Φs) ⊆ MIII(Φt(x)) ⊆ MIII(Φs) ∪ Ts,t(Φ) for every x ∈ Ts,t(Φ). �
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3.2 Principal Results

This section contains the main results of this chapter. In particular, we study
here the p.g.fls of the Matérn type II and type III models and their reduced Palm
versions. We first show that these p.g.fls are the solutions of some systems of
differential equations and some integral equations in Subsections 3.2.1 and 3.2.2.
Then we show that the systems p.g.fls of interest are indeed the only solutions
of these equations.

3.2.1 The Probability Generating Functional

We now study the p.g.fls of MII(Φt) and MIII(Φt) and compute their differen-
tiations w.r.t. t. It turns out that although the Matérn type III model is more
complicated to define, its p.g.fls are easier to study. For this reason, we first
present the result for the Matérn type III model. The method is then extended
to study the p.g.fls of the Matérn type II model.

The Matérn Type III Model

For every t ≥ 0 and and every function v taking value in [0, 1] such that
∫

R2

(

1− v(x)
)

Λ(dx) < ∞, (3.2.1)

we define

fΛ(t, v) := GMIII(Φt)(v) = E







∏

x∈Tt

(

MIII(Φ)
)

v(x)






. (3.2.2)

Remark 3.5 Note that a sufficient condition for fΛ(t, v) to be non-trivial is

that E
[

∑

x∈MIII(Φt)

(

1− v(x)
)

]

< ∞. As

E





∑

x∈MIII(Φt)

(

1− v(x)
)



 ≤ E

[

∑

x∈Φt

(

1− v(x)
)

]

= t

∫

R2

(

1− v(x)
)

Λ(dx),

condition (3.2.1) is a little bit too strong. Nevertheless, we use it here since it
is simpler to work with and all functions that we are interested in satisfy this
condition. In particular, the distribution of MIII(Φt) is uniquely determined by
the values of fΛ(t, v) at functions v such that 1−v have bounded support. Given
that Λ is locally finite, such functions always satisfy (3.2.1).

In order to compute the differentiation w.r.t. t of fΛ, we first need it to be
continuous in t.

Proposition 3.4 For every function v satisfying condition (3.2.1), fΛ(t, v) is
continuous in t.
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Proof. For every t and ǫ positive

fΛ(t+ ǫ, v) = E







∏

x∈Tt+ǫ

(

MIII(Φ)
)

v(x)







= E







∏

x∈Tt

(

MIII(Φ)
)

v(x)
∏

x∈Tt,t+ǫ

(

MIII(Φ)
)

v(x)






.

As Tt,t+ǫ

(

MIII(Φ)
)

⊆ Tt,t+ǫ(Φ) a.s., we deduce that

1 ≥
∏

x∈T[t,t+ǫ)

(

MIII(Φ)
)

v(x) ≥
∏

x∈Tt,t+ǫ(Φ)

v(x) a.s.

Thus,

fΛ(t, v)e
−ǫ

∫

R2

(

1−v(x)
)

Λ(dx) = E







∏

x∈Tt

(

MIII(Φ)
)

v(x)
∏

x∈Tt,t+ǫ(Φ)

v(x)







≤ E







∏

x∈Tt+ǫ

(

MIII(Φ)
)

v(x)







= fΛ(t+ ǫ, v) ≤ fΛ(t, v).

Following the same method, we get

fΛ(t− ǫ, v)e−ǫ
∫

R2
|1−v(x)|Λ(dx) ≤ fΛ(t, v) ≤ fΛ(t− ǫ, v).

Letting ǫ go to 0 completes this proof. �

Let H be the mapping that associates to a function v : R2 → [0, 1] and a
point x ∈ R

2 the function

H(v, x) : y 7−→ v(y)
(

1− h(x, y)
)

(3.2.3)

from R
2 to [0, 1].

Theorem 3.1 For any locally finite measure Λ, the functional fΛ satisfies the
following system of equations,

fΛ(0, v) = 1;

dfΛ(t, v)

dt
= −

∫

R2

fΛ
(

t,H(v, x)
)(

1− v(x)
)

Λ(dx). (3.2.4)
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The main idea behind the proof of this theorem is to divide MIII(Φ) into thin
layers Tt,t+ǫ

(

MIII(Φ)
)

. The points in each layer are so sparse that there is
almost no conflict between them. Then we can consider each layer as a PPP.
In particular, we need to prove that

lim
ǫ→∞

fΛ(t+ ǫ, v)− fΛ(t, v)

ǫ
= −

∫

R2

fΛ
(

t,H(v, x)
)(

1− v(x)
)

Λ(dx); (3.2.5)

lim
ǫ→∞

fΛ(t, v)− fΛ(t− ǫ, v)

ǫ
= −

∫

R2

fΛ
(

t,H(v, x)
)(

1− v(x)
)

Λ(dx). (3.2.6)

We will need the following lemmas

Lemma 3.1 For every PP Ξ and every function v taking value in [0, 1] such
that

E

[

∑

x∈Ξ

(

1− v(x)
)

]

< ∞,

we have

∏

x∈Ξ

v(x) = 1 +

∞
∑

i=1

(−1)i
∑

(x1,··· ,xi)∈Ξ(i!)

i
∏

j=1

(

1− v(xj)
)

a.s., (3.2.7)

where Ξ(i!) is the set of unordered i-tuples of mutually different points in Ξ.

Proof. Since
∑

x∈Ξ log
(

v(x)
)

≤
∑

x∈Ξ |1− v(x)| < ∞ a.s.,

∏

x∈Ξ

v(x) = exp

{

∑

x∈Ξ

log(v(x))

}

is well-defined and is finite a.s.
Now we need to prove that the series in the right hand side of (3.2.7) con-

verges. For this purpose, it is sufficient to show that

1 +

∞
∑

i=1

∑

(x1,··· ,xi)∈Ξi!

i
∏

j=1

(

1− v(xj)
)

< ∞ a.s.

Note that

∑

(x1,··· ,xi)∈Ξi!

i
∏

j=1

(

1− v(xj)
)

=
1

i!

∑

x1,··· ,xi mutually different∈Ξ

i
∏

j=1

(

1− v(xj)
)

≤
1

i!

(

∑

x∈Ξ

(

1− v(x)
)

)i

.
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Hence,

1 +

∞
∑

i=1

∑

(x1,··· ,xi)∈Ξi!

i
∏

j=1

(

1− v(xj)
)

≤ 1 +

∞
∑

i=1

1

i!

(

∑

x∈Ξ

(

1− v(x)
)

)i

= exp

{(

∑

x∈Ξ

(

1− v(x)
)

)}

< ∞.

The equality can now be obtained by writing

∏

x∈Ξ

v(x) =
∏

x∈Ξ

(

1−
(

1− v(x)
)

)

.

�

Lemma 3.2 Let (Φ, C) be a PRRCR with ground intensity Λ and expected
conflict function h. For every t ≥ 0, every ǫ > 0 small enough,

∣

∣

∣

∣

∣

∣

∣

E







∏

x∈Tt,t+ǫ

(

MIII(Φ)
)

v(x)

∣

∣

∣

∣

∣

Φt






− 1 + ǫ

∫

R2

(

1− v(x)
)

ΛIII,t(dx)

∣

∣

∣

∣

∣

∣

∣

≤ ǫ2

(

2

(∫

R2

(

1− v(x)
)

Λ(dx)

)2

+H

∫

R2

(

1− v(x)
)

Λ(dx)

)

a.s. , (3.2.8)

where H is defined in (3.1.9) and ΛIII,t is the random measure in R
2 satisfying

ΛIII,t(dx) =
∏

y∈Tt

(

MIII(Φ)
)

(

1− h(x, y)
)

Λ(dx). (3.2.9)

Proof. Every expectation in this proof should be understood as the conditional
expectation given Φt. By Lemma 3.1,

∏

x∈Tt,t+ǫ

(

MIII(Φ)
)

v(x) = 1 +
∞
∑

i=1

∑

(x1,...,xi)∈
(

Tt,t+ǫ

(

MIII(Φ)
)
)(i!)

(

1− v(x)
)

.

The first step is to show that for ǫ small enough,

∣

∣

∣

∣

∣

∣

∣

∣

E









∞
∑

i=2

∑

(x1,...,xi)∈
(

Tt,t+ǫ

(

MIII(Φ)
)
)(i!)

(

1− v(x)
)









∣

∣

∣

∣

∣

∣

∣

∣

≤ 2ǫ2
(∫

R2

(

1− v(x)
)

Λ(dx)

)2

a.s.
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Since Tt,t+ǫ

(

MIII(Φ)
)

⊆ Tt,t+ǫ(Φ) a.s.,
∣

∣

∣

∣

∣

∣

∣

E







∞
∑

i=2

∑

(x1,...,xi)∈(Tt,t+ǫ

(

MIII(Φ)
)

)(i!)

i
∏

j=1

(

1− v(xj)
)







∣

∣

∣

∣

∣

∣

∣

≤ E





∞
∑

i=2

∑

(x1,...,xi)∈(Tt,t+ǫ(Φ))(i!)

i
∏

j=1

(

1− v(xj)
)





=

∞
∑

i=2

E





∑

(x1,...,xi)∈(Tt,t+ǫ(Φ))(i!)

i
∏

j=1

(

1− v(xj)
)





=

∞
∑

i=2

ǫi
(∫

R2

(

1− v(x)
)

Λ(dx)

)i

a.s.,

where in the last line we apply the multivariate Campbell formula to the PPP

Tt,t+ǫ(Φ) [27, p.112]. Take now any ǫ < 1
2

(∫

R2

(

1− v(x)
)

Λ(dx)
)−1

,

∞
∑

i=2

ǫi
(∫

R2

(

1− v(x)
)

Λ(dx)

)i

= ǫ2
(∫

R2

(

1− v(x)
)

Λ(dx)
)2

1− ǫ
∫

R2

(

1− v(x)
)

Λ(dx)

≤ 2ǫ2
(∫

R2

(

1− v(x)
)

Λ(dx)

)2

.

The next step is to bound E

[

∑

x∈Tt,t+ǫ

(

MIII(Φ)
)

(

1− v(x)
)

]

. Proposition

3.3 gives us

∆III,d,t,t+ǫ ⊆ Tt,t+ǫ

(

MIII(Φ)
)

⊆ ∆III,u,t,t+ǫ a.s.

Then,
∑

x∈∆III,d,t,t+ǫ

(

1− v(x)
)

≤
∑

x∈Tt,t+ǫ

(

MIII(Φ)
)

(

1− v(x)
)

≤
∑

x∈∆III,u,t,t+ǫ

(

1− v(x)
)

a.s.

Given Φt, ∆III,u,t,t+ǫ is a PPP of intensity ǫΛIII,t, so

E





∑

x∈∆III,u,t,t+ǫ

(

1− v(x)
)



 = ǫ

∫

R2

(

1− v(x)
)

ΛIII,t(dx).

Moreover, we can compute the intensity of ∆III,d,t,t+ǫ (conditioned on Φt) as
follow. Take any bounded Borel set A in R

2,

E [|∆III,d,t,t+ǫ ∩A|]

= E







∑

x∈Tt,t+ǫ(Φ)∩A











∏

y∈Tt,t+ǫ(Φ)

1C(x,y)=0











∏

y∈Tt

(

MIII(Φ)
)

1C(x,y)=0


















.
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Let P
!
x be the reduced Palm distribution of Tt,t+ǫ(Φ) given a point at x. By

Slivnyak’s theorem, this reduced Palm distribution is the distribution of a PPP
of intensity measure ǫΛ. Hence, by the refined Campbell formula,

E [|∆III,d,t,t+ǫ ∩A|]

= ǫ

∫

A

E
!
x





∏

y∈Tt,t+ǫ(Φ)

1C(x,y)=0





∏

y∈Tt

(

MIII(Φ)
)

1C(x,y)=0 Λ(dx)

= ǫ

∫

A

E
!
x





∏

y∈Tt,t+ǫ(Φ)

(

1− h(x, y)
)





∏

y∈Tt

(

MIII(Φ)
)

(

1− h(x, y)
)

Λ(dx)

= ǫ

∫

A

exp

{

−ǫ

∫

R2

h(x, y) Λ(dy)

}

ΛIII,t(dx).

Thus, the intensity measure of ∆III,d,t,t+ǫ is

ǫ exp

{

−ǫ

∫

R2

h(x, y) Λ(dy)

}

ΛIII,t(dx).

We now apply Campbell’s formula to ∆III,d,t,t+ǫ,

E





∑

x∈∆III,d,t,t+ǫ

(

1− v(x)
)



=ǫ

∫

R2

(

1− v(x)
)

exp

{

−ǫ

∫

R2

h(x, y) Λ(dy)

}

ΛIII,t(dx).

As

exp

{

−ǫ

∫

R2

h(x, y) Λ(dy)

}

≥ 1− ǫ

∫

R2

h(x, y) Λ(dy) ≥ 1− ǫH,

we get

ǫ

∫

R2

(

1− v(x)
)

ΛIII,t(dx) ≥ E







∑

x∈Tt,t+ǫ

(

MIII(Φ)
)

(

1− v(x)
)







≥ ǫ

∫

R2

(

1− v(x)
)

ΛIII,t(dx)− ǫ2H

∫

R2

(

1− v(x)
)

ΛIII,t(dx)

≥ ǫ

∫

R2

(

1− v(x)
)

ΛIII,t(dx)− ǫ2H

(∫

R2

(

1− v(x)
)

Λ(dx)

)

a.s.

The conclusion then follows directly. �

Note that given Φt, the p.g.fl of ∆III,up,t,t+ǫ, which is a PPP of intensity
measure ǫΛIII,t, is

G∆III,up,t,t+ǫ(v) = exp

{

−ǫ

∫

R2

(

1− v(x)
)

ΛIII,t(dx)

}

.
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Hence,

lim
ǫ→0

G∆III,up,t,t+ǫ(v)− 1

ǫ
= −

∫

R2

(

1− v(x)
)

ΛIII,t(dx)

= lim
ǫ→0

G
Tt,t+ǫ

(

MIII(Φ)
)(v)− 1

ǫ
.

Thus, Lemma 3.2 justifies our intuition that when the time scale is small, the
effect of conflict is negligible, and we can regard the thin layer Tt,t+ǫ

(

MIII(Φ)
)

as a PPP. Such property, which we call the quasi-Poisson property, plays an
important role in the subsequent studies.

Now we can proceed to the proof of Theorem 3.1, where the Λ subscript is
dropped to avoid cumbersome notation. Note that for r > s

f(r, v)− f(s, v) = E







∏

x∈Ts

(

MIII(Φ)
)

v(x)







∏

y∈Ts,r

(

MIII(Φ)
)

v(y)− 1












.

In order to evaluate the last expression, we need the conditional probability

E







∏

y∈Ts,r

(

MIII(Φ)
)

v(y)− 1

∣

∣

∣

∣

∣

∣

∣

Φs






. (3.2.10)

Put s = t and r = t+ ǫ, by Lemma 3.2,

∣

∣

∣

∣

∣

∣

∣






E







∏

y∈Tt,t+ǫ

(

MIII(Φ)
)

v(y)

∣

∣

∣

∣

∣

∣

∣

Φt






− 1






ǫ−1 +

∫

R2

(

1− v(x)
)

ΛIII,t(dx)

∣

∣

∣

∣

∣

∣

∣

≤ ǫ

(

2

(∫

R2

(

1− v(x)
)

Λ(dx)

)2

+H

∫

R2

(

1− v(x)
)

Λ(dx)

)

a.s.

Let C = 2
(∫

R2

(

1− v(x)
)

Λ(dx)
)2

+H
∫

R2

(

1− v(x)
)

Λ(dx), we have

∣

∣

∣

∣

∣

∣

∣

f(t+ ǫ, v)− f(t, v)

ǫ
+ E







∏

y∈Tt

(

MIII(Φ)
)

v(y)

(∫

R2

(

1− v(x)
)

ΛIII,t(dx)

)







∣

∣

∣

∣

∣

∣

∣

≤ ǫCE







∏

y∈Tt

(

MIII(Φ)
)

v(y)






= ǫCf(t, v). (3.2.11)
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Moreover,

E







∏

y∈Tt

(

MIII(Φ)
)

v(y)

(∫

R2

(

1− v(x)
)

ΛIII,t(dx)

)







= E







∏

y∈Tt

(

MIII(Φ)
)

v(y)







∫

R2

(

1− v(x)
)







∏

y∈Tt

(

MIII(Φ)
)

(

1− h(x, y)
)






Λ(dx)













= E







∫

R2

(

1− v(x)
)







∏

y∈Tt

(

MIII(Φ)
)

v(y)
(

1− h(x, y)
)






Λ(dx)







= E







∫

R2

(

1− v(x)
)







∏

y∈Tt

(

MIII(Φ)
)

H(v, x)(y)






Λ(dx)






.

As the term inside the integration is a positive r.v., we can change the order
of expectation and integration,

E







∫

R2

(

1− v(x)
)

∏

y∈Tt

(

MIII(Φ)
)

H(v, x)(y) Λ(dx)







=

∫

R2

(

1− v(x)
)

f
(

t,H(v, x)
)

Λ(dx).

Letting ǫ goes to 0 in (3.2.11) gives us (3.2.5). To prove (3.2.6), we put
s = t− ǫ and r = t in (3.2.10). Proceed as above, we obtain
∣

∣

∣

∣

∣

∣

∣

f(t, v)− f(t− ǫ, v)

ǫ
+ E







∏

y∈Tt−ǫ

(

MIII(Φ)
)

v(y)

(∫

R2

(

1− v(x)
)

ΛIII,t−ǫ(dx)

)







∣

∣

∣

∣

∣

∣

∣

≤ ǫCf(t− ǫ, v),

We get (3.2.6) by letting ǫ goes to 0 and use the continuity of f in t (Proposition
3.4). �Another way to present the result just obtained above is

fΛ(t, v) = 1−

∫ t

0

∫

R2

fΛ
(

τ,H(v, x)
)(

1− v(x)
)

Λ(dx)dτ. (3.2.12)

As the functional fΛ(t, v) is decreasing in t and is bounded below by 0, there
must be a limit

0 ≤ lim
t→∞

fΛ(t, v) = 1−

∫ ∞

0

∫

R2

fΛ
(

τ,H(v, x)
)(

1− v(x)
)

Λ(dx)dτ. (3.2.13)
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Hence, we have that limt→∞ fΛ
(

τ,H(v, x)
)

= 0 for all v satisfying (3.2.1). This
is closely related to what is referred to as the saturated regime in the literature
[34, 24]. In this regime, the space is saturated in the sense that every point
must have a conflict with at least one point in the conflict-free PP a.s. So, the
conflict-free PP cannot accept any more point and this is the reason why there
exists the limit limt→∞ fΛ(t, v). Moreover, the probability that a point at x has
no conflict with any point in MIII(Φ) is

E





∏

x∈MIII(Φ)

(

1− h(x, y)
)



 = lim
t→∞

E





∏

x∈Tt(MIII(Φ))

(

1− h(x, y)
)





= lim
t→∞

fΛ
(

t,H(1, x)
)

.

In the saturated regime, we must have that limt→∞ fΛ
(

t,H(1, x)
)

= 0, so

limt→∞ fΛ
(

τ,H(v, x)
)

= 0 for all v satisfying (3.2.1) since fΛ
(

τ,H(v, x)
)

≤

fΛ
(

τ,H(1, x)
)

for all such v.
By the simple observation that the Matérn type III model of Φt is included

in Φt a.s. for every t and using Theorem 3.1, we can obtain an upper bound
and a lower bound of fΛ.

Corollary 3.1 For every t > 0 and every function v satisfying (3.2.1),

exp

{

−t

∫

R2

(

1− v(x)
)

Λ(dx)

}

≤ fΛ(t, v)

≤ 1−

∫ t

0

∫

R2

1− exp
{

−t
∫

R2

(

1− v(y)
(

1− h(x, y)
)

)

Λ(dy)
}

∫

R2

(

1− v(y)
(

1− h(x, y)
)

)

Λ(dy)

(

1− v(x)
)

Λ(dx).

(3.2.14)

Proof. The first inequality comes from the fact that MIII(Φt) ⊆ Φt a.s. and
from Theorem A.1. For the second inequality, we first use Theorem 3.1 to get

fΛ(t, v) = 1−

∫ t

0

∫

R2

fΛ(τ,H(v, x))
(

1− v(x)
)

Λ(dx)dτ.

By the first inequality,

fΛ(τ,H(v, x)) ≥ exp

{

−τ

∫

R2

(1− v(y)
(

1− h(x, y)
)

)Λ(dy)

}

.

Hence,

fΛ(t, v)

≤ 1−

∫ t

0

∫

R2

exp

{

−τ

∫

R2

(1− v(y)
(

1− h(x, y)
)

)Λ(dy)

}

(

1− v(x)
)

Λ(dx)dτ.

We then conclude by using Fubini’s theorem. �
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The Matérn Type II Model

To study the dynamic evolution of Tt

(

MII(Φ)
)

, we have to keep track not only
on the points of itself but also on the other points in Φt. More concretely, we
define for every t ≥ 0 and every functions u, v taking value in [0, 1] satisfying
(3.2.1),

gΛ(t, u, v) = E





∏

x∈Φt

u(x)
∏

x∈Tt(MII(Φ))

v(x)



 . (3.2.15)

As with fΛ, we first show that gΛ is continuous in t.

Proposition 3.5 For every functions u, v satisfying (3.2.1), gΛ(t, u, v) is con-
tinuous in t.

Proof. For every t and ǫ positive

gΛ(t+ ǫ, u, v) = E





∏

x∈Φt+ǫ

u(x)
∏

x∈Tt+ǫ(MII(Φ))

v(x)





= E





∏

x∈Φt

u(x)
∏

x∈Tt(MII(Φt))

v(x)
∏

x∈Tt,t+ǫ(Φ)

u(x)
∏

x∈Tt,t+ǫ(MII(Φ))

v(x)



 .

By the same argument as in Proposition 3.4,

1 ≥
∏

x∈Tt,t+ǫ(Φ)

u(x)
∏

x∈Tt,t+ǫ(MII(Φ))

v(x) ≥
∏

x∈Tt,t+ǫ(Φ)

u(x)v(x) a.s.

Thus,

gΛ(t, v) exp

{

−ǫ

∫

R2

(

1− u(x)v(x)
)

Λ(dx)

}

≤ gΛ(t+ ǫ, u, v) ≤ gΛ(t, u, v).

Doing the same, replacing t by t− ǫ and t+ ǫ by t,

gΛ(t− ǫ, v) exp

{

−ǫ

∫

R2

(

1− u(x)v(x)
)

Λ(dx)

}

≤ gΛ(t, u, v) ≤ gΛ(t− ǫ, u, v).

Letting ǫ go to 0 completes this proof. �

Now we have,

Theorem 3.2 For any locally finite measure Λ, the functional gΛ satisfies the
following system of equations

gΛ(0, u, v) = 1;

dgΛ(t, u, v)

dt
= −

∫

R2

gΛ
(

t,H(u, x), v
)(

u(x)− u(x)v(x)
)

Λ(dx)

−

∫

R2

gΛ(t, u, v)
(

1− u(x)
)

Λ(dx). (3.2.16)
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As with Theorem 3.1, the idea behind this theorem is to divide Φ into thin
layers Tt,t+ǫ(Φ) such that the effect of conflict is negligible within each layer.
Then, there are two possibilities for each point x in Tt,t+ǫ(Φ). The first one
is that it belongs to MII(Φ) and contributes u(x)v(x) to the product inside
the expectation in the definition of gΛ. This corresponds to the first term in
(3.2.16). The second possibility is that x belongs to Φ\MII(Φ) and contributes
u(x) to the product. This corresponds to the second term of (3.2.16). To state
this formally, we first need the quasi-Poisson property.

Lemma 3.3 Let (Φ, C) be a PRRCR with ground intensity Λ and expected
conflict function h. Then for every t ≥ 0 and ǫ > 0 small enough,
∣

∣

∣

∣

∣

∣

E





∏

x∈Tt,t+ǫ(Φ)

u(x)
∏

x∈Tt,t+ǫ(MII(Φ))

v(x)

∣

∣

∣

∣

∣

Φt



− 1 + ǫ

∫

R2

(

1− u(x)
)

Λ(dx)

+ ǫ

∫

R2

(

u(x)− u(x)v(x)
)

ΛII,t(dx)

∣

∣

∣

∣

∣

≤ ǫ2

(

2

(∫

R2

(

1− u(x)v(x)
)

Λ(dx)

)2

+H

∫

R2

(

1− u(x)v(x)
)

Λ(dx)

)

a.s. ,

(3.2.17)

where H is defined in (3.1.9) and ΛII,t is the random measure in R
2 satisfying

ΛII,t(dx) =
∏

y∈Tt

(

MII(Φ)
)

(

1− h(x, y)
)

Λ(dx). (3.2.18)

Proof. As in Lemma 3.2 , all expectations here are conditional expectations
given Φt. By Lemma 3.1,

∏

x∈Tt,t+ǫ(Φ)

u(x)
∏

x∈Tt,t+ǫ(MII(Φ))

v(x)

=
∏

x∈Tt,t+ǫ(Φ)\Tt,t+ǫ(MII(Φ))

u(x)
∏

x∈Tt,t+ǫ(MII(Φ))

u(x)v(x)

= 1−
∑

x∈Tt,t+ǫ(Φ)\Tt,t+ǫ(MII(Φ))

(

1− u(x)
)

−
∑

x∈Tt,t+ǫ(MII(Φ))

(

1− u(x)v(x)
)

+

∞
∑

k=2

(−1)k
∑

(x1,...,xk)∈(Tt,t+ǫ(Φ))(k!)

k
∏

i=1

(

1− ζ(xi)
)

,

where ζ(xi) = u(xi)v(xi) if xi ∈ MII(Φ) and ζ(xi) = u(xi) otherwise. Our first
step is to bound

E





∣

∣

∣

∣

∣

∣

∞
∑

k=2

(−1)k
∑

(x1,...,xk)∈(Tt,t+ǫ(Φ))(k!)

k
∏

i=1

(

1− ζ(xi)
)

∣

∣

∣

∣

∣

∣



 .
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Note that since the value of u and v is not larger than 1, we have that 1 −
u(x)v(x) ≥ 1− ζ(x) ≥ 0 for every x in Φ. Hence,

E





∣

∣

∣

∣

∣

∣

∞
∑

k=2

(−1)k
∑

(x1,...,xk)∈(Tt,t+ǫ(Φ))(k!)

k
∏

i=1

(

1− ζ(xi)
)

∣

∣

∣

∣

∣

∣





≤
∞
∑

k=2

E





∑

(x1,...,xk)∈(Tt,t+ǫ(Φ))(k!)

k
∏

i=1

(

1− u(xi)v(xi)
)





=

∞
∑

k=2

(

ǫ

∫

R2

(

1− u(x)v(x)
)

Λ(dx)

)k

= ǫ2
(∫

R2

(

1− u(x)v(x)
)

Λ(dx)
)2

1− ǫ
∫

R2

(

1− u(x)v(x)
)

Λ(dx)
a.s.,

where we use multivariate Campbell formula in the third line. Taking any

ǫ < 1
2

(∫

R2

(

1− u(x)v(x)
)

Λ(dx)
)−1

gives us,

Et





∣

∣

∣

∣

∣

∣

∞
∑

k=2

(−1)k
∑

(x1,...,xk)∈(Tt,t+ǫ(Φ))(k)!

k
∏

i=1

(

1− ζ(xi)
)

∣

∣

∣

∣

∣

∣





≤ 2ǫ2
(∫

R2

(

1− u(x)v(x)
)

Λ(dx)

)2

.

Next, we bound

Et





∑

x∈Tt,t+ǫ(MII(Φ))

(

1− u(x)v(x)
)

+
∑

x∈Tt,t+ǫ(Φ)\Tt,t+ǫ(MII(Φ))

(

1− u(x)
)





Et





∑

x∈Tt,t+ǫ(MII(Φ))

(

u(x)− u(x)v(x)
)

+
∑

x∈Tt,t+ǫ(Φ)

(

1− u(x)
)



 .

By Campbell’s formula,

Et





∑

x∈Tt,t+ǫ(Φ)

(

1− u(x)
)



 = ǫ

∫

R2

(

1− u(x)
)

Λ(dx).

By the same bounding technique as in Lemma 3.2,

ǫ

∫

R2

(

u(x)− u(x)v(x)
)

ΛII,t(dx) ≥ Et





∑

x∈Tt,t+ǫ(MII(Φ))

(

u(x)− u(x)v(x)
)





≥ ǫ

∫

R2

(

u(x)− u(x)v(x)
)

ΛII,t(dx)−H

∫

R2

(

1− u(x)v(x)
)

Λ(dx).

The conclusion follows directly. �
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Proof of Theorem 3.2. Given Lemma 3.3, the proof of Theorem 3.2 is just a
verbatim expansion of the proof of Theorem 3.1 and is hence omitted. �

As with fΛ, an upper and a lower bound on gΛ are derived in the below
corollary. Its proof is similar to the proof of Corollary 3.1 and is hence omitted.

Corollary 3.2 For every t > 0 and every functions u, v satisfying (3.2.1),

exp

{

−t

∫

R2

(

1− u(x)v(x)
)

Λ(dx)

}

≤ gΛ(t, u, v)

≤ 1−

(

1− exp

{

−t

∫

R2

(

1− u(x)v(x)
)

Λ(dx)

})

∫

R2

(

1− u(x)
)

Λ(dx)
∫

R2

(

1− u(x)v(x)
)

Λ(dx)
−

∫

R2

1− exp
{

−t
∫

R2

(

1− u(y)v(y)
(

1− h(x, y)
)

)

Λ(dy)
}

∫

R2

(

1− u(y)v(y)
(

1− h(x, y)
)

)

Λ(dy)

(

1− v(x)
)

u(x)Λ(dx).

(3.2.19)

In particular,

exp

{

−t

∫

R2

(

1− v(x)
)

Λ(dx)

}

≤ GMII(Φt)(v)

≤ 1−

∫ t

0

∫

R2

1− exp
{

−t
∫

R2

(

1− v(y)
(

1− h(x, y)
)

)

Λ(dy)
}

∫

R2

(

1− v(y)
(

1− h(x, y)
)

)

Λ(dy)

(

1− v(x)
)

Λ(dx).

(3.2.20)

3.2.2 The Reduced Palm Versions of The Probability Gen-

erating Functionals

As we have already seen in Section 2.1, in order to carry out the analysis of
CSMA wireless networks, we need to compute not only the p.g.fls of the Matérn
models, but also their reduced Palm versions. Thus, we derive in this subsection
the integral equations that govern the evolution in t of the p.g.fls Mj(Φt), j =
II, III under their reduced Palm distributions. These p.g.fls are defined by

G!
x,MII(Φt)

(v) := E
!
x,MII(Φt)





∏

y∈MII(Φt)

v(y)



= Ex,MII(Φt)





∏

y∈MII(Φt)\{x}

v(y)



;

G!
x,MIII(Φt)

(v) := E
!
x,MIII(Φt)





∏

y∈MIII(Φt)

v(y)



= Ex,MIII(Φt)





∏

y∈MIII(Φt)\{x}

v(y)



.
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The Matérn Type III Model

Let

fx,Λ(t, v) = G!

x,Tt

(

MIII(Φ)
)(v). (3.2.21)

The main result here is,

Proposition 3.6 For Λ-almost every y, for every positive functions v satisfying
(3.2.1) and every t > 0, the functional fy,Λ(t, v) satisfies the system of integral
equations

fy,Λ(0, v) = 1;

fy,Λ(t, v) =

∫ t

0
fΛ
(

τ,H(v, y)
)

dτ

mIII,Λ(t, y)

−

∫ t

0

∫

R2

fy,Λ
(

t,H(v, x)
)(

1− v(x)
)(

1− h(x, y)
)mIII,Λ(τ, y)

mIII,Λ(t, y)
Λ(dx)dτ,

where H is defined in (3.2.3) and

mIII,Λ(t, x) =

∫ t

0

fΛ
(

τ,H(1, x)
)

dτ

is the Radon-Nikodym derivative w.r.t. Λ of the intensity measure of MIII(Φt).

Proof. As there is no ambiguity, we drop the Λ subscript in this proof. The first
step is to compute the intensity measure of MIII(Φt). From Proposition A.5,
for any bounded Borel set B,

d

ds
f(t, e−s1B )

∣

∣

∣

s=0
= −

∫

B

fx(t, 1)mIII(t, x) Λ(dx) = −

∫

B

mIII(t, x) Λ(dx).

Moreover, by Theorem 3.1,

f(t, e−s1B ) = 1−

∫ t

0

∫

R2

f
(

τ,H(e−s1B , x)
)

(

1− e−s1B(x)
)

Λ(dx) dτ.

Hence,

∫

B

mIII(t, x)Λ(dx) =
d

ds

∫ t

0

∫

R2

f
(

τ,H(e−s1B , x)
)

(

1− e−s1B(x)
)

Λ(dx)dτ
∣

∣

∣

s=0
.

Now we want to move the derivative to the inside of the integrations. First, the
conditions for this must be verified. Using Proposition A.5, we have for all s,

∣

∣

∣

∣

d

ds
f
(

τ,H(e−s1B , x)
)

∣

∣

∣

∣

=

∣

∣

∣

∣

∫

B

fy
(

τ,H(e−s1B , x)
)

mIII(τ, y)Λ(dy)

∣

∣

∣

∣

≤ τΛ(B),



100 CHAPTER 3. THE MATÉRN TYPE II AND TYPE III MODELS

since mIII(τ, x) < τ for all x (as the Matérn type III model is a thinning of Φ)
and 0 ≤ H(e−s1B , x)(y) ≤ 1 for every x, y in R

2. Hence,

∣

∣

∣

∣

d

ds

(

f
(

τ,H(e−s1B , x)
)

(

1− e−s1B(x)
))

∣

∣

∣

∣

≤ 1B(x)e
−s1B(x)

∣

∣f
(

τ,H(e−s1B , x)
)∣

∣+
(

1− e−s1B(x)
)

∣

∣

∣

∣

d

ds
f
(

τ,H(e−s1B , x)
)

∣

∣

∣

∣

≤ 1B + s1BτΛ(B) ≤ 1B(x)
(

1 + sτΛ(B)
)

.

In the third line, we use the inequality 1− e−s1B(x) ≤ s1B(x). Since

∫ t

0

∫

B

(

1 + sτΛ(B)
)

Λ(dx) dτ = tΛ(B) + s
t2

2
Λ(B)2 < ∞,

we then have

∫ t

0

∫

R2

∣

∣

∣

∣

d

ds

(

f
(

τ,H(e−s1B , x)
)

(

1− e−s1B(x)
))

∣

∣

∣

∣

Λ(dx) dτ < ∞.

So it is legitimate to change the order of the differentiation and the integrations,

∫

B

m(t, x)Λ(dx) =

∫ t

0

∫

R2

d

ds
f
(

τ,H(e−s1B , x)
)

(

1− e−s1B(x)
)

Λ(dx) dτ
∣

∣

∣

s=0

=

∫ t

0

∫

B

f
(

τ,H(e−s1B , x)
)

e−s1B(x) Λ(dx) dτ
∣

∣

∣

s=0
+

∫ t

0

∫

B

d

ds
f
(

τ,H(e−s1B , x)
)

(

1− e−s1B(x)
)

Λ(dx) dτ
∣

∣

∣

s=0

=

∫ t

0

∫

B

f
(

τ,H(1, x)
)

Λ(dx) dτ.

As this equality holds for all bounded Borel sets B, we must have

mIII(t, x) =

∫ t

0

f
(

τ,H(1, x)
)

dτ

Λ-almost everywhere.
Now we compute fy(t, v). By Proposition A.5,

d

ds
f(t, ve−s1B )

∣

∣

∣

s=0
= −

∫

B

v(y)fy(t, v)mIII(t, y)Λ(dy).

By Theorem 3.1,

f(t, ve−s1B ) = 1−

∫ t

0

∫

R2

f
(

τ,H(ve−s1B , x)
)

(

1− v(x)e−s1B(x)
)

Λ(dx) dτ.
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By the same argument as in the first step,

∫

B

v(y)fy(t, v)mIII(t, y) Λ(dx)

=
d

ds

(∫ t

0

∫

R2

f
(

τ,H(ve−s1B , x)
)

(

1− v(x)e−s1B(x)
)

Λ(dx) dτ

)

∣

∣

∣

∣

∣

s=0

=

∫ t

0

∫

R2

d

ds

(

f
(

τ,H(ve−s1B , x)
)

(

1− v(x)e−s1B(x)
))

∣

∣

∣

∣

∣

s=0

Λ(dx) dτ.

Moreover,

d

ds

(

f
(

τ,H(ve−s1B , x)
)

(

1− v(x)e−s1B(x)
))∣

∣

∣

s=0

=
d

ds
f
(

τ,H(ve−s1B , x)
)

∣

∣

∣

s=0

(

1− v(x)
)

+ 1B(x)v(x)f(τ,H(v, x)).

By Proposition A.5,

d

ds
f
(

τ,H(ve−s1B , x)
)

∣

∣

∣

s=0
=

d

ds
f
(

τ,H(v, x)e−s1B
)

∣

∣

∣

s=0

= −

∫

B

fy
(

τ,H(v, x)
)

v(y)
(

1− h(x, y)
)

mIII(τ, y) Λ(dy)

for every x. Hence,

∫

B

v(y)fy(t, v)mIII(t, y)Λ(dx)

= −

∫ t

0

∫

R2

∫

B

fy
(

τ,H(v, x)
)

v(y)
(

1− h(x, y)
)

mIII(τ, y) Λ(dy) Λ(dx) dτ

+

∫ t

0

∫

B

f
(

τ,H(v, x)
)

v(x) Λ(dx) dτ

= −

∫ t

0

∫

R2

∫

B

fy
(

τ,H(v, x)
)

v(y)
(

1− h(x, y)
)

mIII(τ, y) Λ(dy) Λ(dx) dτ

+

∫ t

0

∫

B

f
(

τ,H(v, y)
)

v(y) Λ(dy) dτ.

As this is true for any bounded Borel set B such that v(x) > 0 for all x in B,
we must have

fy(t, v) =

∫ t

0
f(τ,H(v, y))dτ

mIII(t, y)

−

∫ t

0

∫

R2

fy
(

τ,H(v, x)
)(

1− v(x)
)(

1− h(x, y)
)mIII(τ, y)

mIII(t, y)
Λ(dx)dτ
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for Λ- almost every y such that v(y) > 0. For y such that v(y) = 0, we use
Proposition A.6 to show that for any bounded Borel set B not in the support
of v,

d

ds
f(t, v + s1B)

∣

∣

∣

s=0
=

∫

B

fy(t, v)mIII(t, y)Λ(dy).

Again, by Theorem 3.1,

f(t, ve−s1B )

= 1−

∫ t

0

∫

R2

f
(

τ,H(v + s1B , x)
)(

1− v(x)− s1B(x)
)

Λ(dx) dτ.

By using the same arguments as above and by noting that

d

ds
f
(

τ,H(v + s1B , x)
)

∣

∣

∣

s=0
=

d

ds
f
(

τ,H(v, x) + s1B(1− h(., x))
)

∣

∣

∣

s=0

=

∫

B

fy
(

τ,H(v, x)
)(

1− h(x, y)
)

mIII(τ, y) Λ(dy),

we have

fy(t, v) =

∫ t

0
f
(

τ,H(v, y)
)

dτ

mIII(t, y)

−

∫ t

0

∫

R2

fy
(

τ,H(v, x)
)(

1− v(x)
)(

1− h(x, y)
)mIII(τ, y)

mIII(t, y)
Λ(dx)dτ

for Λ- almost every x such that v(x) = 0. �

Matérn Type II Model

As GMII(Φt) is defined through the functional gΛ, G
!
x,MII(Φt)

should be defined
through the “reduced Palm version” of gΛ, which is defined as follows. First
of all, we can assume w.l.o.g. that u(x) > 0 for any x in R

2 (as GMII(Φt)(v)
is obtained by setting u = 1 in gΛ(t, u, v)). By the same arguments as in
Proposition A.5,

−
d

ds
gΛ(t, u, ve

−s1B )

∣

∣

∣

∣

s=0

= E





∑

x∈MII(Φt)∩B

∏

y∈MII(Φt)

v(y)
∏

y∈Φt

u(y)





≤ E





∑

x∈MII(Φt)∩B

v(x)



 =

∫

B

v(x)mII,Λ(t, x)Λ(dx),

where mII,Λ(t, x) is the Radon-Nikodym derivative of the intensity measure of
MII(Φt) w.r.t. Λ. So, for each u, v, we have that − d

dsgΛ(t, u, ve
−s1.)

∣

∣

s=0
, con-

sidered as a measure in R
2, is absolutely continuous w.r.t. v(x)mII,Λ(t, x)Λ(dx).
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Hence, it admits a Radon-Nikodym derivative w.r.t. the latter, i.e.

−
d

ds
gΛ(t, u, ve

−s1B )

∣

∣

∣

∣

s=0

=

∫

B

gx,Λ(t, u, v)v(x)mII,Λ(t, x)Λ(dx).

Now, by the same arguments as in Proposition A.6 , we can also prove that for
every Borel set B not in the support of v,

d

ds
gΛ(t, u, v + s1B)

∣

∣

∣

∣

s=0

=

∫

B

gx,Λ(t, u, v)mII,Λ(t, x)Λ(dx).

In particular, by taking u = 1, we get:

Proposition 3.7 For every x every function v satisfying (3.2.1),

G!
x,MII(Φt)

(v) = gx,Λ(t,1, v). (3.2.22)

The next step is to derive a system of integral equation that governs the
evolution in t of gx,Λ(t, u, v) in the same spirit as Proposition 3.6

Proposition 3.8 For Λ-almost every y, every functions u > 0, v satisfying
(3.2.1), the functional gy,Λ satisfies the integral equation

gy,Λ(0, u, v) =1;

gy,Λ(t, u, v) =

∫ t

0

gΛ(τ,H(u, y), v)

mII,Λ(t, y)
dτ −

∫ t

0

∫

R2

(

gy,Λ(τ, u, v)
(

1− u(x)
)

+

gy,Λ(τ,H(u, x), v)u(x)
(

1− v(x)
)(

1− h(x, y)
)

)mII,Λ(τ, y)

mII,Λ(t, y)
Λ(dx)dτ,

where H is defined in (3.2.3) and

mII,Λ(t, x) =
1− e−t

∫

R2
h(x,y)Λ(dy)

∫

R2 h(x, y)Λ(dy)

is the Radon-Nikodym derivative w.r.t. Λ of the intensity measure of MII(Φt).

Proof. We present here only a sketch of this proof. To complete this sketch,
it is sufficient to prove the interchanging of derivatives and integrations in the
same way as in the proof of Proposition 3.6. We start with computing mII,Λ.
By Proposition A.5, for every bounded Borel set B,

d

ds
gΛ(t, 1, e

−s1B )

∣

∣

∣

∣

∣

s=0

=
d

ds
GMII(Φt)(e

−s1B )

∣

∣

∣

∣

∣

s=0

= −

∫

B

G!
x,MII(Φt)

(1)mII,Λ(t, x)Λ(dx)

= −

∫

B

mII,Λ(t, x)Λ(dx).
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By Theorem 3.2,

gΛ(t, 1, e
−s1B ) =1−

∫ 1

0

∫

R2

gΛ(τ,H(1, x), e−s1B )(1− e−s1B(x))Λ(dx)dτ.

So,
∫

B

mII,Λ(t, x)Λ(dx)

=
d

ds

∫ 1

0

∫

R2

gΛ
(

τ,H(1, x), e−s1B
)

(

1− e−s1B(x)
)

Λ(dx)dτ

∣

∣

∣

∣

∣

s=0

=

∫ 1

0

∫

R2

d

ds
gΛ
(

τ,H(1, x), e−s1B
)

(

1− e−s1B(x)
)

∣

∣

∣

∣

∣

s=0

Λ(dx)dτ

=

∫ 1

0

∫

R2

d

ds
gΛ
(

τ,H(1, x), e−s1B
)

∣

∣

∣

∣

∣

s=0

(

1− e−s1B(x)
)

∣

∣

∣

∣

∣

s=0

Λ(dx)dτ

+

∫ 1

0

∫

R2

gΛ
(

τ,H(1, x), e−s1B
)

∣

∣

∣

∣

∣

s=0

d

ds

(

1− e−s1B(x)
)

∣

∣

∣

∣

∣

s=0

Λ(dx)dτ.

As
(

1− e−s1B(x)
)

|s=0 = 0, the first term is zero. The second term is

∫ 1

0

∫

R2

gΛ(τ,H(1, x),1)1B(x)Λ(dx)dτ =

∫ 1

0

∫

B

gΛ(τ,H(1, x),1)Λ(dx)dτ.

Hence,

∫

B

mII,Λ(t, x)Λ(dx) =

∫ 1

0

∫

B

gΛ(τ,H(1, x),1)Λ(dx)dτ,

for every bounded Borel B, which implies that

mII,Λ(t, x) =

∫ 1

0

gΛ(τ,H(1, x),1)dτ

for Λ-almost every x. The closed form expression of mII,Λ is obtained by noting
that

gΛ(τ,H(1, x),1) = GΦt(H(1, x)) = exp

{

−t

∫

R2

h(x, y)Λ(dy)

}

.

Now we compute the gy,Λ functionals. By definition, for any bounded Borel B
in the support of v,

d

ds
gΛ(t, u, ve

−s1B )

∣

∣

∣

∣

∣

s=0

= −

∫

B

gx,Λ(t, u, v)u(x)v(x)mII,Λ(t, x)Λ(dx).
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By Theorem 3.2,

gΛ(t, u, ve
−s1B ) =1−

∫ t

0

∫

R2

gΛ
(

τ, u, ve−s1B
) (

1− u(x)
)

Λ(dx)dτ−

∫ t

0

∫

R2

gΛ
(

τ,H(u, x), ve−s1B
)

u(x)
(

1− v(x)e−s1B(x)
)

Λ(dx)dτ.

So,
∫

B

gx,Λ(t, u, v)v(x)mII,Λ(t, x)Λ(dx)

=
d

ds

∫ t

0

∫

R2

gΛ
(

τ, u, ve−s1B
) (

1− u(x)
)

Λ(dx)dτ

∣

∣

∣

∣

∣

s=0

+
d

ds

∫ t

0

∫

R2

gΛ
(

τ,H(u, x), ve−s1B
)

u(x)
(

1− v(x)e−s1B(x)
)

Λ(dx)dτ

∣

∣

∣

∣

∣

s=0

.

The first term is computed as

∫ t

0

∫

R2

d

ds
gΛ
(

τ, u, ve−s1B
)

∣

∣

∣

∣

∣

s=0

(

1− u(x)
)

Λ(dx)dτ

= −

∫ t

0

∫

R2

(∫

B

gy,Λ(τ, u, v)u(y)v(y)mII,Λ(τ, y)Λ(dy)

)

(

1− u(x)
)

Λ(dx)dτ

= −

∫

B

(∫ t

0

∫

R2

gy,Λ(τ, u, v)
(

1− u(x)
)

Λ(dx)dτ

)

u(y)v(y)mII,Λ(τ, y)Λ(dy).

(3.2.23)

For the second term,
∫ t

0

∫

R2

d

ds
gΛ
(

τ,H(u, x), ve−s1B
)

u(x)
(

1− v(x)e−s1B(x)
)

∣

∣

∣

∣

s=0

Λ(dx)dτ

=

∫ t

0

∫

R2

d

ds
gΛ
(

τ,H(u, x), ve−s1B
)

∣

∣

∣

∣

s=0

u(x)
(

1− v(x)e−s1B(x)
)

∣

∣

∣

∣

s=0

Λ(dx)dτ

+

∫ t

0

∫

R2

gΛ
(

τ,H(u, x), ve−s1B
)

∣

∣

∣

∣

s=0

u(x)
d

ds

(

1− v(x)e−s1B(x)
)

∣

∣

∣

∣

s=0

Λ(dx)dτ.

The second term in the above equality is
∫ t

0

∫

R2

gΛ
(

τ,H(u, x), ve−s1B
)

∣

∣

∣

∣

s=0

u(x)
d

ds

(

1− v(x)e−s1B(x)
)

∣

∣

∣

∣

s=0

Λ(dx)dτ

=

∫ t

0

∫

R2

gΛ(τ,H(u, x), v)u(x)v(x)1B(x)Λ(dx)dτ

=

∫

B

∫ t

0

gΛ(τ,H(u, y), v)u(y)v(y)dτΛ(dy), (3.2.24)
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while the first term is

∫ t

0

∫

R2

d

ds
gΛ
(

t,H(u, x), ve−s1B
)

∣

∣

∣

∣

s=0

u(x)
(

1− v(x)e−s1B(x)
)

∣

∣

∣

∣

s=0

Λ(dx)dτ

= −

∫ t

0

∫

R2

∫

B

gy,Λ(τ,H(u, x), v)H(u, x)(y)v(y)mII,Λ(τ, y)Λ(dy)u(x)
(

1− v(x)
)

Λ(dx)dτ

= −

∫ t

0

∫

R2

∫

B

gy,Λ(τ,H(u, x), v)u(y)
(

1− h(x, y)
)

v(y)mII,Λ(τ, y)Λ(dy)u(x)

(

1− v(x)
)

Λ(dx)dτ

= −

∫

B

(∫ t

0

∫

R2

gy,Λ(τ,H(u, x), v)u(x)
(

1− v(x)
)(

1− h(x, y)
)

Λ(dx)dτ

)

u(y)

v(y)mII,Λ(τ, y)Λ(dy). (3.2.25)

Putting together (3.2.23), (3.2.24) and (3.2.25), we get

∫

B

gy,Λ(t, u, v)u(y)v(y)mII,Λ(t, y)Λ(dy) =

∫

B

∫ t

0

gΛ(τ,H(u, y), v)u(y)v(y)dτΛ(dy)

−

∫

B

(∫ t

0

∫

R2

gy,Λ(τ, u, v)
(

1− u(x)
)

Λ(dx)dτ

)

u(y)v(y)mII,Λ(τ, y)Λ(dy)−

∫

B

(∫ t

0
∫

R2

gy,Λ(τ,H(u, x), v)u(x)
(

1− v(x)
)(

1− h(x, y)
)

Λ(dx)dτ

)

u(y)v(y)mII,Λ(τ, y)Λ(dy)

for every bounded Borel B in the support of v, which proves the proposition
for Λ-almost every x such that v(x) > 0. For x such that v(x) = 0, proceed as
above and use the equality

d

ds
gΛ(t, u, v + s1B)

∣

∣

∣

∣

s=0

=

∫

B

gx,Λ(t, u, v)mII,Λ(t, x)Λ(dx).

for every bounded Borel B not in the support of v. �

Remark 3.6 The closed form expression of mII,Λ is not new, see for example
[6, p. 71] and [27, p. 164]. Nevertheless, in previous computations, it is im-
plicitly assumed that the reduced Palm distribution of MII(Φt) is a conditional
probability distribution of the reduced Palm distribution of Φt. An instance of
such computation can be founded, for example, in Subsection 2.1.3. As there is
no known construction of the reduced Palm distributions of MII(Φt) and Φt in
the same probability space in such a way that the former is a conditional proba-
bility of the latter, all the previous computations of mII,Λ are, strictly speaking,
not rigorous. Our derivation of mII,Λ is based on the p.g.fls of MII(Φt) and does
not require the aforementioned assumption. Note that following this direction,
we can also compute other interesting characteristics of MII(Φt) such as the
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second moment measure, the reduced second moment measure, the K measure,
etc. See [27, Section 4.3] for the definitions of these characteristics. We show
below a result of this kind where the intensity measures under the reduced Palm
distributions of MII(Φt) is computed. This result is used in Subsection 2.1.3 to
approximate the process of active terminals in a CSMA wireless network.

Corollary 3.3 The the Radon-Nikodym derivative w.r.t. Λ of the intensity
measure of MII(Φt) under its reduced Palm measure given a point at y is

my,II,Λ(t, x) =

∫ t

0

gx,Λ(τ,H(1, y),1)
(

1− h(x, y)
)mII,Λ(τ, dx)

mII,Λ(t, dy)
dτ

+

∫ t

0

gy,Λ(τ,H(1, x),1)
(

1− h(x, y)
)mII,Λ(τ, dy)

mII,Λ(t, dy)
dτ, (3.2.26)

where

gy,Λ(τ,H(1, x),1) =
e−τ

∫

R2
h(y,z)Λ(dz) − e−τ

∫

R2

(

h(x,z)+h(y,z)−h(x,z)h(y,z)
)

Λ(dz)

mII,Λ(τ)
(∫

R2

(

h(x, z)− h(x, z)h(y, z)
)

Λ(dz)
) .

Proof. We first derive (3.2.26). Consider any y in R
2. By Proposition A.5, for

every bounded Borel B,

d

ds
gy,Λ

(

t,1, e−s1B
)

∣

∣

∣

s=0
=

d

ds
G!

y,MII(Φt)

(

e−s1B
)

∣

∣

∣

s=0
= −

∫

B

my,II,Λ(t, x)Λ(dx).

On the other hand, by Proposition 3.8,

gy,Λ(t,1, e
−s1B ) =

∫ t

0

gΛ
(

τ,H(1, y), e−s1B
)

mII,Λ(t, y)
dτ

−

∫ t

0

∫

R2

gy,Λ

(

τ,H(1, x), e−s1B)
)(

1− e−s1B)
)

(

1− h(x, y)
)mII,Λ(τ, y)

mII,Λ(t, y)
Λ(dx)dτ.

Since

d

ds

∫ t

0

gΛ
(

τ,H(1, y), e−s1B
)

mII,Λ(t, y)
dτ

∣

∣

∣

∣

s=0

=

∫ t

0

d
dsgΛ

(

τ,H(1, y), e−s1B
)

|s=0

mII,Λ(t, y)
dτ

=

∫ t

0

−
∫

B
gx,Λ

(

τ,H(1, y),1
)(

1− h(x, y)
)

mII,Λ(τ, x)Λ(dx)

mII,Λ(t, y)

= −

∫

B

∫ t

0

gx,Λ
(

τ,H(1, y
)

,1)
(

1− h(x, y)
)mII,Λ(τ, x)

mII,Λ(t, y)
Λ(dx),

and

d

ds

∫ t

0

∫

R2

gy,Λ
(

τ,H(1, x), e−s1B
)(

1− e−s1B
)(

1− h(x, y)
)mII,Λ(τ, y)

mII,Λ(t, y)
Λ(dx)dτ

∣

∣

∣

∣

s=0

=

∫ t

0

∫

R2

gy,Λ
(

τ,H(1, x),1
)

1B(x)
(

1− h(x, y)
)mII,Λ(τ, y)

mII,Λ(t, y)
Λ(dx)dτ,
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we get (3.2.26) directly.
To compute gy,Λ

(

t,H(1, x),1
)

, we first use Proposition 3.8,

gy,Λ
(

t,H(1, x),1
)

=

∫ t

0

gΛ
(

τ,H(H(1, x), y),1
)

mII,Λ(t, y)
dτ

−

∫ t

0

∫

R2

gy,Λ
(

t,H(1, x),1
)

h(x, y)
mII,Λ(τ, y)

mII,Λ(t, y)
Λ(dx)dτ.

Putting g(t) = gy,Λ

(

t,H
(

1, x
)

,1
)

mII,Λ(t, y), the above equation is rewritten as

g(t) =

∫ t

0

gΛ

(

τ,H
(

H(1, x), y
)

,1
)

dτ −

∫ t

0

∫

R2

g(τ)h(x, y)Λ(dx)dτ

=

∫ t

0

gΛ

(

τ,H
(

H(1, x), y
)

,1
)

dτ −

∫ t

0

(∫

R2

h(x, y)Λ(dx)

)

g(τ)dτ,

which is equivalent to the differential equation

d

dt
g(t) = gΛgΛ

(

τ,H
(

H(1, x), y
)

,1
)

−

(∫

R2

h(x, y)Λ(dx)

)

g(t).

As the only solution for the equation df(t) = a(t) − bf(t), where a and f are

functions in t and b is a scalar, is f(t) = e−tb
∫ t

0
a(τ)eτb, we get

g(t) = e−t
∫

R2
h(x,y)Λ(dx)

∫ t

0

gΛ(τ,H(H(1, x), y),1)eτ
∫

R2
h(x,y)Λ(dx).

The conclusion follows by noting that

gΛ(t,H(H(1, x), y),1) = GΦt(H(H(1, x), y))

= e−t
∫

R2

(

h(x,z)+h(y,z)−h(x,z)h(y,z)
)

Λ(dz).

�

3.2.3 Solutions of The Differential Equations

We now prove the converses of Theorems 3.1 and 3.2. More concretely, we show
that fΛ(t, v) and gΛ(t, u, v) are the unique solutions of the systems of equations
of the forms (3.2.4) and (3.2.16), respectively.

The Matérn Type III Model

We start with the converse of Theorem 3.1.

Proposition 3.9 There is a unique functional f(t, v) taking value on [0, 1] sat-
isfying system of equations (3.2.4).
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Proof. Consider a functional f taking value in [0, 1] and satisfies (3.2.4). We
first show that f is infinitely differentiable in t and

∣

∣

∣

∣

dn

dnt
f(t, v)

∣

∣

∣

∣

≤
n−1
∏

i=0

(∫

R2

(

1− v(x)
)

Λ(dx) + iH

)

(3.2.27)

for every v satisfying (3.2.1) where H is defined in (3.1.9).
For n = 1, since f satisfies (3.2.4),

d

dt
f(t, v) = −

∫

R2

f
(

t,H(v, x)
)(

1− v(x)
)

Λ(dx).

Hence,
∣

∣

∣

∣

d

dt
f(t, v)

∣

∣

∣

∣

≤

∫

R2

(

1− v(x)
)

Λ(dx).

Now suppose that the claim holds for some n ≥ 1. Consider

dn+1

dn+1t
f(t, v) =

dn

dnt

(

d

dt
f(t, v)

)

= −
dn

dnt

(∫

R2

f
(

t,H(v, x)
)(

1− v(x)
)

Λ(dx)

)

.

By the induction hypothesis, dn

dntf
(

t,H(v, x)
)

exists and

∣

∣

∣

∣

dn

dnt
f
(

t,H(v, x)
)

∣

∣

∣

∣

≤
n−1
∏

i=0

(∫

R2

(

1−H(v, x)(y)
)

Λ(dy) + iH

)

.

Since
∫

R2

(

1−H(v, x)(y)
)

Λ(dy) =

∫

R2

(

1−
(

1− h(x, y)
)

v(y)
)

Λ(dy)

≤

∫

R2

(

(

1− v(y)
)

+ h(x, y)v(y)
)

Λ(dy)

≤

∫

R2

(

1− v(y)
)

Λ(dy) +H,

we have
∫

R2

∣

∣

∣

∣

dn

dnt
f
(

t,H(v, x)
)

∣

∣

∣

∣

(

1− v(x)
)

Λ(dx)

≤

∫

R2

n
∏

i=1

(∫

R2

(

1− v(x)
)

Λ(dy) + iH

)

(

1− v(x)
)

Λ(dx)

=

n
∏

i=0

(∫

R2

|1− v(x)|Λ(dx) + iH

)

< ∞.
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Hence, dn+1

dn+1tf(t, v) exists and satisfies (3.2.27).
Now, let

Tn(τ, t, v) = f(t, v) +

n
∑

i=1

(τ − t)i

i!

di

dit
f(t, v).

By Taylor’s theorem,

fΛ(τ, v) = Tn(τ, t, v) +
dn+1

dn+1tfΛ(t, v)|t=ξ

(n+ 1)!
(τ − t)n+1

for some ξ in [t, τ ]. For every τ ∈ [t, t +
(

H
)−1

), we need to prove that
limn→∞ Tn(τ, t, v) = f(τ, v). For this, it is sufficient to show that for all ξ

in [t, t+
(

H
)−1

),

lim
n→∞

∣

∣

∣

∣

∣

dn+1

dn+1tfΛ(t, v)|t=ξ

(n+ 1)!
(τ − t)n+1

∣

∣

∣

∣

∣

= 0.

By (3.2.27),

∣

∣

∣

∣

∣

dn+1

dn+1tfΛ(t, v)|t=ξ

(n+ 1)!
(τ − t)n+1

∣

∣

∣

∣

∣

≤
n
∏

i=0

(

iH +

∫

R2

|1− v(x)|Λ(dx)

)

(τ − t)n+1

(n+ 1)!
.

Put W =
⌈ ∫

R2
|1−v(x)|Λ(dx)

H

⌉

. As

lim
n→∞

∏n
i=0

(

iH +
∫

R2

(

1− v(x)
)

Λ(dx)
)

H
n+1

(n+ 1)!
≤ (n+W )

W
,

we have

lim
n→∞

∣

∣

∣

∣

∣

dn+1

dn+1tfΛ(t, v)|t=ξ

(n+ 1)!
(τ − t)n+1

∣

∣

∣

∣

∣

≤ lim
n→∞

(n+W )W
(

(τ − t)H
)n+1

= 0,

since (τ − t)H < 1 and W does not depend on n.

Using the above result, we first show that for all t ∈ [0, 1
2

(

H
)−1

], f is

uniquely determine as limn→∞ Tn(0, t, v). Then, for all t ∈ [ 12
(

H
)−1

,
(

H
)−1

],

f is uniquely determined as limn→∞ Tn
(

1
2

(

H
)−1

, t, v
)

, and so on. �

The Matérn Type II Model

The converse of Theorem 3.2 is stated in a similar manner.
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Proposition 3.10 There is a unique functional g(t, u, v) taking value in [0, 1]
satisfying system of equations (3.2.16).

Proof. The argument is similar to that in the proof of Proposition 3.9. We first
show that g is infinitely differentiable and that

∣

∣

∣

∣

dn

dnt
g(t, u, v)

∣

∣

∣

∣

≤
n
∏

i=0

(∫

R2

(

1− u(x)v(x)
)

Λ(dx) + iH

)

,

with H is defined in (3.1.9). Then we show that the series

g(t, u, v) +

∞
∑

i=1

(τ − t)i

i!

dn

dnt
g(t, u, v)

converges to g(τ, u, v) for every t > 0 and every τ in [t, t+
(

H
)−1

). This implies
that g(t, u, v) is uniquely determined for every t > 0. �

3.3 The Stationary Case

In the theory of PPs, the stationary PPs represent an important special case.
Not only that they are simpler to study in many aspects, but also there are
a wide range of applications for this kind of PPs as many phenomenons and
objects in the nature are distributed in an even manner. In particular, in all the
networks consider in Chapters 1 and 2 (except the Cognitive S/A model), the
PPs representing their terminals locations are stationary. This is the reason why
we systematically gather here the stationary versions of the results developed
in the previous sections. We start by giving a sufficient condition for MII(Φ, C)
and MIII(Φ, C) to be stationary.

Proposition 3.11 Let (Φ, C) be a PPPRCR of ground intensity Λ and expected
conflict function h. MII(Φ, C) and MIII(Φ, C) are stationary if (a) Λ = λL for
some positive λ where L is Lebesgue measure and (b) h(x, y) = h(o, y − x) for
all x in R

2 where o is the center of R2.

Proof. Using Lemma, it is sufficient to show that for every function v,
GMII(Φ,C)(v) = GMII(Φ,C)(vx) and GMIII(Φ,C)(v) = GMIII(Φ,C)(vx) for every x
in R

2, where vx is the function defined as vx(.) = v(. + x). By (a), we have
GMII(Φ,C)(v) = gL(λ,1, v) and GMIII(Φ,C)(v) = fL(λ, v). Hence, we need to
prove that gL(λ,1, v) = gL(λ,1, vx) and fL(λ, v) = fL(λ, vx). By Theorems
3.1 and 3.2, the systems of differential equations corresponding to fL(t, v) and
gL(t, u, v) are

fL(0, v) = 1;

d

dt
fL(t, v) = −

∫

R2

fL(t,H(v, y))(1− v(y))dy,
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and

gL(0, u, v) = 1;

d

dt
gL(t, u, v) = −

∫

R2

(

gL(t, u, v)
(

1− u(y)
)

+ gL
(

t,H(u, y), v
)

u(y)
(

1− v(y)
)

)

dy,

respectively. Replacing u, v in the above systems of equations by ux, vx, we
have

fL(0, vx) = 1;

d

dt
fL(t, vx) = −

∫

R2

fL
(

t,H(vx, y)
)(

1− vx(y)
)

dy

= −

∫

R2

fL
(

t,H(vx, y)
)(

1− v(x+ y)
)

dy,

and

gL(0, ux, vx) = 1;

d

dt
gL(t, ux, vx)

= −

∫

R2

(

gL
(

t, ux, vx
)(

1− u(y)
)

+ gL
(

t,H(ux, y), vx
)

ux(y)
(

1− vx(y)
)

)

dy

= −

∫

R2

(

gL
(

t, ux, vx
)(

1− u(x+ y)
)

+ gL
(

t,H(ux, y), vx
)

u(x+ y)
(

1− v(x+ y)
)

)

dy,

respectively. By (b), H(vx, y − x)(z) =
(

1 − h(y − x, z)
)

vx(z) =
(

1 − h(y, z +

x)
)

v(x+ z) = H(v, y)(x+ z). Thus, by changing the variable from y to y − x,
the above systems of equation is rewritten as

fL(0, vx) = 1;

d

dt
fL(t, vx) = −

∫

R2

fL
(

t,H(v, y)x
)(

1− v(y)
)

dy,

and

gL(0, ux, vx) = 1;

d

dt
gL(t, ux, vx)

= −

∫

R2

(

gL(t, ux, vx)
(

1− u(y)
)

+ gL
(

t,H(u, y)x, vx
)

u(y)
(

1− v(y)
)

)

dy.

So fL(t, v) and fL(t, vx) as well as gΛ(t, u, v) and gΛ(t, ux, vx) satisfy the same
systems of equations. Then, by applying Propositions 3.9 and 3.10, we have the
conclusion. �
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Remark 3.7 Note that when (b) holds, H =
∫

R2 h(x, y)dy for every x in R
2.

From now on we consider (Φ, C) as a PRRCR of ground intensity L and
expected conflict function h. For each λ > 0, (Φλ, C) is the restriction to [0, λ)
of (Φ, C), which is a PPPRCR. As MII(Φλ, C) and MIII(Φλ, C) are station-
ary, their intensity measure equal to the Lebesgue measure multiplied by their
intensities, which are computed as,

Corollary 3.4 The intensity of MII(Φλ, C) and MIII(Φλ, C) are

mII,L(λ) =

∫ λ

0

e−tH =
1e−λH

H
, (3.3.1)

and

mIII,L(λ) =

∫ λ

0

fL(t,H(1, o)). (3.3.2)

The reduced Palm functionals fy,L and gy,L also take simpler forms

Corollary 3.5 For every x in R
2, we have

fy,L(λ, v) = fo,L(λ, vy); gy,L(λ, u, v) = go,L(λ, uy, vy), (3.3.3)

the functional fo,L satisfies the system of integral equations

fo,L(0, v) = 1;

fo,L(λ, v) =

∫ λ

0

fL
(

t,H(v, o)
)

mIII,L(λ)
dt

−

∫ λ

0

∫

R2

fo,L
(

t,H(v, x)
)(

1− v(x)
)(

1− h(x, o)
)mIII,L(t)

mIII,L(λ)
dxdt, (3.3.4)

and the functional gy,L satisfies the system of integral equations

go,L(0, u, v) = 1;

go,L(λ, u, v) =

∫ λ

0

gL
(

t,H(u, o), v
)

mII,L(λ)
dt−

∫ λ

0

∫

R2

(

go,L(t, u, v)
(

1− u(x)
)

+ go,L
(

t,H(u, o), v
)

u(x)
(

1− v(x)
)(

1− h(x, o)
)

)mIII,L(t)

mIII,L(λ)
dxdt. (3.3.5)

Finally, we give closed form expression for the intensity measure ofMII(Φλ, C)
under its reduced Palm distribution. This result is used in Subsection 2.1.3 to
provide an approximation of the PPs representing the active t.t.s in a CSMA
wireless network.



114 CHAPTER 3. THE MATÉRN TYPE II AND TYPE III MODELS

Corollary 3.6 The intensity of MII(Φλ, C) under its reduced Palm distribution
is

my,II,L(λ) =
2

H −H2(x− y)

(

1− e−λH

H
−

1− e−λ(2H−H2(x−y))

2H −H2(x− y)

)

(1− h(x, y))H

1− e−λH
,

(3.3.6)

where

H2(x) =

∫

Rd

h(o, z)h(x, z)dz. (3.3.7)

Bibliographical note

A part of the results in this chapter, in particular Theorem 3.1 appeared at
IEEE INFOCOM 2012 [21].
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Appendix A

Preliminary on Point

Processes

A.1 Basic Notions

A.1.1 Point Process

Let N be the set of all countable subsets n of Rd satisfying

• Simple: every point in R
d appears at most once in n; and

• Non explosive: for every bounded subset B of Rd, n(B) := |B ∩ n| < ∞.

Let N be the smallest σ-algebra that makes measurable the mappings IB : n 7→
n(B) with B bounded Borel subsets of Rd. A point process (PP) in R

d is a
measurable mapping N from a probability space (Ω,F ,P) to (N,N ).

Remark A.1 Although the definitions and the results in this appendix are for
the general case. In the thesis, we only need the special case where d = 2.

By definition of N , the distribution of a PP N is completely determined by
its finite-dimensional (fi-di) distributions, which are the joint distributions of the
k-tuples of r.v.s

(

N(B1), . . . , N(Bk)
)

for every integer k and every k mutually
disjoint bounded Borel subsets B1, . . . , Bk of Rd [11, Proposition 9.2.II].

We can also verify easily that B 7→ mN (B) := E[N(B)] forms a measure in
R

d, which we call the intensity measure of N .
An important class of PPs in this theory is the Poisson PPs (PPPs).

Definition A.1 Let Λ be a locally finite measure in R
d. A PP Φ is a Poisson

PP (PPP) of intensity measure Λ iff

• For every k mutually disjoint bounded Borel subsets B1,. . .,Bk of R
d,

N(B1), . . ., N(Bk) are k independent r.v.s; and

117
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• For every bounded Borel subset B of Rd, N(B) is a Poisson r.v. of pa-
rameter Λ(B).

A special case is when Λ = λL with L be the Lebesgue measure in R
d. In this

case we call Φ a homogeneous PPP of intensity λ.

A.1.2 Probability Generating Functional

For any PP N , we define for each function v taking value in [0, 1]

GN (v) = E

[

∏

x∈N

v(x)

]

. (A.1.1)

This is called the probability generating functional (p.g.fl) of N at v. For the
p.g.fl to be well-defined and non-trivial, we need that

∣

∣

∑

x∈N log
(

v(x)
)∣

∣ < ∞

a.s. As
∣

∣log
(

v(x)
)∣

∣ ≤
(

1− v(x)
)

,this motivates us to consider only p.g.fls of N
at functions v satisfying

∫

Rd

(

1− v(x)
)

mN (dx) < ∞. (A.1.2)

The fundamental role of p.g.fls in the study of PPs stems from the fact that
all information about the distribution of a PP can be systematically extracted
from its p.g.fls in the same way as the distribution of a r.v. can be extracted
from its probability generating functions (p.g.f.s). In particular, the p.g.f.s of
the fi-di distributions of N can be obtained from its p.g.fls by setting v to some
specific functions,

GN(B1),...,N(Bk)(z1, . . . , zk) := E

[

k
∏

i=1

z
N(Bi)
i

]

= GN

(

k
∏

i=1

z
1Bi
i

)

. (A.1.3)

An important special case is the p.g.fls of PPPs, which can be computed in
closed forms.

Theorem A.1 Let Φ be a PPP of intensity measure Λ and v is a function
taking value in [0, 1] such that

∫

Rd

(

1− v(x)
)

Λ(dx) < ∞. Then,

GΦ(v) = exp

{

−

∫

Rd

(

1− v(x)
)

Λ(dx)

}

. (A.1.4)

A.1.3 Shot Noise Process

Let l(·, ·) be some function from
(

R
d
)2

to R
+ which is called the response

function. l(y, x) represents the individual effect of a “shot” from a source at y
to a destination at x. The Shot Noise (SN) process associated with N and the
response function l is defined by

IN,l(x) =
∑

y∈N

l(y, x), (A.1.5)
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for each x in R
d.

In this thesis, we usually consider the realization of this SN process at a
specific location x. In this point of view, IN,l(x) is a r.v. whose distribution is
determined by its p.g.f.s, which can be represented in terms of the p.g.fls of N
as

GIN,l(x)(z) := E

[

zIN,l(x)
]

= GN

(

zl(.,x)
)

. (A.1.6)

In particular, for a PPP of intensity measure Λ,

GIΦ,l(x)(z) = exp

{

−

∫

Rd

(

1− zl(y,x)
)

Λ(dy)

}

. (A.1.7)

A.1.4 Stationary Point Processes

In R
d, we consider the translations,

Tu(A) = {x+ a for all x ∈ A} Tu(x) := Tu({x}) = x+ u. (A.1.8)

An important result in the theory of point processes asserts that the translations
are bijective and continuous in (N,N ) [11, Lemma 12.1.I, p. 178]). So, if N is
a PP, its translated version is another PP. N is stationary iff its distribution is
invariant under translations. In the other words,

Definition A.2 A PP N is stationary iff for every u in R
d and every B ∈ N ,

P(N ∈ B) = P(Tv(N) ∈ B). (A.1.9)

As the distribution of a PP is uniquely determined by its fi-di distributions, we
have the following conditions for a PP to be stationary,

Proposition A.1 A PP N is stationary iff for every u in R
d, one of the fol-

lowing holds,

(i) for every integer k and every k-tuple of mutually disjoint bounded Borel
sets (B1, . . . , Bk) and k-tuple of non-negative integers (n1, . . . , nk),

P
(

N(B1) = n1, . . . , N(Bk) = nk

)

= P

(

N
(

Tu(B1)
)

= n1, . . . , N
(

Tu(Bk)
)

= nk

)

; (A.1.10)

(ii) for every integer k and every k-tuple of bounded Borel sets (B1, . . . , Bk)
and every for every k-tuple of positive real numbers (z1, . . . , zk)

GN

(

k
∏

i=1

z
1Bi

(.)

i

)

= GN

(

k
∏

i=1

z
1Tv(Bi)

(.)

i

)

; (A.1.11)
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(iii) for every function v taking value in [0, 1] satisfying (A.1.2),

GN (v) = GN (vu), (A.1.12)

with vu(x) = v(x+ u).

Proof. Point (i) is a direct corollary of Definition 9.2.II in [11]. Point (ii) comes
from the representation of the p.g.f.s of the fi-di distributions in terms of the
p.g.fls of N . For point (iii), it is sufficient to show that (A.1.11) is equivalent
to (A.1.12). The direction (A.1.12) implies (A.1.11) is easy. For the converse,
we first note that for any two functions v, w taking value in [0, 1] and satisfying
(A.1.2),

|GN (v)−GN (w)| =

∣

∣

∣

∣

∣

E

[

∏

x∈N

v(x)−
∏

x∈N

w(x)

]∣

∣

∣

∣

∣

≤ E

[

∑

x∈N

|v(x)− w(x)|

]

=

∫

Rd

|v(x)− w(x)|mN (dx).

Now, there exists a sequence of function vj , j = 1, 2, . . . such that

• vj(x) =
∏kj

i=1 z
1Bi

(x)

i for some kj positive number z1, . . . , zki
in [0, 1] and

kj Borel sets B1, . . . , Bkj
.

• limj→∞

∫

Rd |v(x)− vj(x)|mN (x) = 0.

Hence, limj→∞ GN (vj) = GN (v). As,

vj,u(x) =

kj
∏

i=1

z
1Tu(Bi)

(x)

i

we have by (A.1.11) that

GN (vj,u) = GN (vj).

Moreover, as Tu is a continuous mapping in N, we have also that

lim
j→∞

∫

Rd

|vj,u(x)− vu(x)|mN (dx) = 0.

This implies that

GN (v) = lim
j→∞

GN (vj) = lim
j→∞

GN (vj,u) = GN (vu).

�
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A.1.5 Marked Point Process

Let (T, T ) be a measurable space , which we refer to as the mark space. Let
Nm be the set of all countable subset nm of Rd × T satisfying

• Simple: every pair (x, t) in R
d × T appears at most once in nm; and

• Non explosive: for any bounded Borel subset B of Rd and every measur-
able subset T of T, nm(B × T ) := |B × T ∩ nm| < ∞.

Let Nm be the smallest σ-algebra that makes measurable the mappings IB,T :
nm 7→ nm(B × T ) for all bounded Borel subsets B of R

d and all measur-
able subset T of T. A marked point process (MPP) is a measurable mapping
Nm from a probability space (Ω,F ,P) to (Nm,Nm). In this case, N := {x ∈
R

d s.t. there exists m ∈ T s.t. (x,m) ∈ Nm} is called the ground PP of Nm

and T is called the mark space of it. In this thesis, we are interested in the
MPPs with i.i.d. marks, whose definition in terms of their fi-di distributions is
as follow,

Definition A.3 A MPP Nm with ground PP N and mark space T is a MPP
with independent marks iff for every integer k, every k-tuple of mutually dis-
joint bounded Borel sets B1, . . . , Bk in R

d and every k-tuple of measurable sets
T1, . . . , Tk in the mark space, Nm(B1 × T1), . . . , Nm(Bk × Tk) are mutually in-
dependent given N(B1), . . . , N(Bk).

Moreover, Nm is a MPP with i.i.d. marks iff it is a MPP with independent
marks and there is a probability distribution d in T such that for every bounded
Borel set B in R

d and every measurable set T in the mark space,

P
(

Nm(B × T ) = nm | N(B) = n
)

=

(

n

nm

)

d(T )nm
(

1− d(T )
)n−nm

.

Intuitively, in a MPP, we associate to each point in the ground PP a mark in the
mark space. In a MPP with i.i.d. marks, the marks at different ground points
are mutually independent and have the same distribution. This distribution is d
in the above definition. This can be seen more clearly by considering the p.g.f.s
of the fi-di distributions of the considered MPP.

Proposition A.2 A MPP Nm with ground PP N and mark space T is a MPP
with i.i.d. marks iff there is a probability distribution d in T such that for every
integer k, every k-tuple of mutually disjoint bounded Borel sets B1, . . . , Bk in
R

d and every k-tuple of measurable sets T1, . . . , Tk in the mark space,

GNm(B1×T1),...Nm(Bk×Tk)(z1, . . . , zk)

= GN(B1),...N(Bk)

(

1− (1− z1)d(T1), . . . , 1− (1− zk)d(Tk)
)

(A.1.13)

Proof. Suppose that Nm is a MPP with i.i.d. marks. We have,

GNm(B1×T1),...Nm(Bk×Tk)(z1, . . . , zk) = E

[

k
∏

i=1

z
Nm(Bi×Ti)
i

]
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Given N(B1), . . . , N(Bk), by the definition of MPPs with independent marks,

E

[

k
∏

i=1

z
Nm(Bi×Ti)
i

∣

∣

∣

∣

∣

N(B1), . . . , N(Bk)

]

=
k
∏

i=1

E

[

z
Nm(Bi×Ti)
i

∣

∣

∣
N(Bi)

]

By the definition of MPPs with i.i.d. marks,

E

[

z
Nm(Bi×Ti)
i

∣

∣

∣N(Bi)
]

=

N(Bi)
∑

j=0

(

N(Bi)

j

)

d(Ti)
j
(

1− d(Ti)
)N(Bi)−j

zji

=

N(Bi)
∑

j=0

(

N(Bi)

j

)

(

d(Ti)zi
)j(

1− d(Ti)
)N(Bi)−j

=
(

d(Ti)zi + 1− d(Ti)
)N(Bi)

=
(

1− d(Ti)(1− zi)
)N(Bi)

.

Hence,

GNm(B1×T1),...Nm(Bk×Tk)(z1, . . . , zk)

= E

[

E

[

k
∏

i=1

ziNm(Bi × Ti)

∣

∣

∣

∣

∣

N(B1), . . . , N(Bk)

]]

= E

[

k
∏

i=1

(

1− d(Ti)(1− zi)
)N(Bi)

]

= GN(B1),...;N(Bk)

(

(

1− d(T1)(1− z1)
)

, . . . ,
(

1− d(Tk)(1− zk)
)

)

.

The converse follows directly from the one–one corresponding between the joint
distribution of r.v.s and their joint p.g.f.s. �

Corollary A.1 If Nm is a MPP with i.i.d. marks of mark distribution d, its
intensity measure can be decomposed as,

mNm(dx, dt) = mN (dx)d(dt), (A.1.14)

where N is its ground PP.

Proof. It is sufficient to note that for every bounded Borel set B and for every
measurable set T ,

mNm
(B × T ) =

d

dz
GNm(B×T )(z)

∣

∣

∣

∣

z=0

,

mN (B × T ) =
d

dz
GN(B)(z)

∣

∣

∣

∣

z=0

,

and to use the above proposition. �

When the ground PP Φ is a PPP, we say that Φm is a Marked Poisson Point
Process (MPPP). Similar definitions apply for MPPPs with independent marks
and MPPPs with i.i.d. marks.
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Probability Generating Functionals

Let v : Rd × T 7−→ [0, 1] be a function satisfying

∫

Rd×T

(

1− v(x, t)
)

mNm
(dx, dt) < ∞. (A.1.15)

Since a MPP can be considered as a PP in R
d × T, we can define the p.g.fl of

Nm at v as

GNm(v) := E





∏

(x,t)∈Nm

v(x, t)



 , (A.1.16)

which is well-defined and non-trivial when (A.1.15) is satisfied. For every dis-
tribution d in T, we define

Ed[v](x) :=

∫

T

v(x, t)d(dt). (A.1.17)

The definition of MPPs with i.i.d. marks can then be reformulated in terms of
their p.g.fls as follows.

Proposition A.3 A MPP Nm is a MPP with i.i.d. marks iff there exists a
probability distribution d in its mark space such that for every function v satis-
fying (A.1.15),

GNm
(v) = GN (Ed[v]). (A.1.18)

Proof. It is sufficient to show that (A.1.18) is equivalent to (A.1.13). The
direction (A.1.18) is implies (A.1.13) is easily verified by putting

v(x) =

k
∏

i=1

z
1Bi×Ti

(x)

i . (A.1.19)

For the other direction, (A.1.13) implies that (A.1.18) holds for every v of the
form (A.1.19). Note that for every v satisfying (A.1.15), there exists a sequence
of functions vj of the form (A.1.19) such that,

∫

Rd×T

|v(x, t)− vj(x, t)|mNm
(dx, dt) = 0.

The conclusion then follows by noting that

|GNm
(v)−GNm

(vj)| ≤

∫

Rd×T

|v(x, t)− vj(x, t)|mNm
(dx, dt).

�

From this, we can deduce the following simple but very useful results.
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Corollary A.2 Φm is a MPPP with i.i.d. marks of intensity measure Λ and
mark distribution d iff for every function v satisfying (A.1.15),

GΦm
(v) = exp

{

−

∫

Rd

(

1− Ed [v] (x)
)

Λ(dx)

}

(A.1.20)

Remark A.2 The above results justify again the intuitive description of MPPs
with i.i.d. marks as PPs with an independent mark attached to each point. The
computation of the p.g.fls of a MPP with i.i.d. marks can be understood as
follows. Given a realization of the ground PP, we first take the expectation over
all the i.i.d. marks. This expectation at x is Ed[v](x). Then, we take the product
of this function over all the points in the ground PP and take the expectation over
all possible realizations of this PP. This intuitive argument, which can be made
rigorous easily by using Proposition A.3 and Corollary A.2, is used extensively
in Chapter 2.

Shot Noise Process

The notion of Shot Noise process associated to a PP can also be extended
to the case of MPP. This extension proves to be very useful in modelling the
aggregated interference signal power in wireless networks with fading, where the
fading values are represented by the i.i.d. marks.

First, we consider a response function l : Rd × T × R
d 7−→ R

+ that takes
into account both the position and the mark of the source. The SN process
associated to the MPP Nm and the response function l is then,

INm,l(x) =
∑

(y,t)∈Nm

l(y, t, x). (A.1.21)

The special case where Nm is a MPP with i.i.d. marks is of particular interest.
In this case, the p.g.f. of the SN process value at x is

GINm,l(x)(z) = GNm

(

zl(·,·,x)
)

= GN

(

Ed

[

zl(·,·,x)
])

,

where d is the mark distribution. Moreover, if Φm is a MPPP with i.i.d. marks
of intensity measure Λ and mark distribution d,

GINm,l(x)(z) = exp

{

−

∫

Rd

(

1− Ed

[

zl(y,·,x)
])

Λ(dy)

}

.

A.2 Palm Distribution

In the study of PPs, it is often necessary to “switch from the absolute frame
of reference outside the process under study to a frame of reference inside the
process” [11]. This is done by considering a typical point in this PP and study
the distribution of the remaining points in it with reference to the typical point.
Such a distribution is called the Palm distribution of the considered PP.
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We first recall the formal definition of Palm distributions based on Radon-
Nikodym’s theorem. Then we study the p.g.fls of a PP under its Palm distribu-
tion and derive relations between these functionals. These results are extensively
used in the developments in Subsection 3.2.2.

A.2.1 Radon-Nikodym Construction

Definition A.4 For any PP N , its reduced Campbell measure is the measure

C!(B,Γ) = E

[

∑

x∈N∩B

1(N\x)∈Γ

]

, (A.2.1)

and its Campbell measure is the measure

C(B,Γ) = E

[

∑

x∈N∩B

1N∈Γ

]

, (A.2.2)

in R
d × N, where Γ is any set in N .

It is clear from the definition that the reduced Campbell measure and the Camp-
bell measure are refinements of the intensity measure of N . In fact, for any
fixed Γ, the measures C!(.,Γ) and C(.,Γ) are absolutely continuous w.r.t mN (.).
Hence, they admit Radon-Nikodym derivatives P!

x,N (Γ) and Px,N (Γ) which sat-
isfy

C!(B,Γ) =

∫

Rd

P
!
x,N (Γ)mN (dx); (A.2.3)

C(B,Γ) =

∫

Rd

Px,N (Γ)mN (dx). (A.2.4)

Moreover, if mN is locally finite, so that mN (B) < ∞ for every bounded Borel
set B, it can be shown that P

!
x,N (.) and Px,N (.) are indeed two probability

distributions, which are called the reduced Palm distribution of N given a point
at x and the Palm distribution of N given a point at x, respectively.

The importance of Palm theory stems from the Campbell formulas

Theorem A.2 For every non-negative measurable function f defined on R
d×N,

E

[

∑

x∈N

f(x,N \ x)

]

=

∫

Rd

E
!
x [f(x,N)]mN (dx); (A.2.5)

E

[

∑

x∈N

f(x,N)

]

=

∫

Rd

Ex [f(x,N)]mN (dx). (A.2.6)

Proof. See [11, Proposition 13.1.IV]. �
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Remark A.3 We refer to (A.2.5) and (A.2.6) as the reduced Campbell formula
and the Campbell formula respectively.

When a PP is a PPP, Slivnyak–Meck’s theorem below gives us its reduced
Palm distributions explicitly.

Theorem A.3 Let Φ be a PPP with a locally finite intensity measure Λ. Then
Φ is a PPP if and only if for Λ-almost every x

P
!
x(.) = P(Φ ∈ .) (A.2.7)

Proof. See the proof of Theorem 1.4.5 [11, Proposition 13.1.7]. �

This gives rise to the following approach for Palm distribution of PPP.

Corollary A.3 For the PPP Φ one can take Φ!
x = Φ and Φx = Φ ∪ x for all

x ∈ Rd.

A.2.2 Probability Generating Functionals under Palm Dis-

tributions

As with the non-Palm version, the reduced Palm and the Palm distributions of a
PP can also be characterized by its p.g.fls under the corresponding distributions.
In particular, we define

Gx,N (v) := Ex,N





∏

y∈N

v(y)



 ; (A.2.8)

G!
x,N (v) := E

!
x,N





∏

y∈N

v(y)



 . (A.2.9)

The relation between the reduced Palm distribution and the Palm distribution
is characterized as follows.

Proposition A.4 For any PP N with intensity measure mN ,we have for mN -
almost every x,

Gx,N (v) = v(x)G!
x,N (v). (A.2.10)

Proof Let f(x,N) =
∏

y∈N v(y) and g(x,N) = v(x)
∏

y∈N v(y). We have for
any x ∈ N ,

f(x,N) = v(x)f(x,N \ x) = g(x,N \ x).
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So,

∫

R2

Ex [f(x,N)]mN (dx) = E

[

∑

x∈N

f(x,N)

]

= E

[

∑

x∈N

g(x,N \ x)

]

=

∫

Rd

E
!
x [g(x,N)]mN (dx)

=

∫

Rd

E
!
x [v(x)f(x,N)]mN (dx)

=

∫

Rd

v(x)E!
x [f(x,N)]mN (dx).

The conclusion then follows directly. �

Hence, we can write

G!
x,N (v) := E

!
x,N





∏

y∈N

v(y)



 = E
!
x,N





∏

y∈N\{x}

v(y)



 . (A.2.11)

And moreover, it is now sufficient to concentrate on the reduced Palm p.g.fls.
The next two results give us the relation between the Palm and non Palm
versions of the p.g.fl of a PP.

Proposition A.5 Let N be a PP with locally finite intensity measure. Then
for any function v and any bounded Borel set B,

d

dt
GN

(

ve−t1B
)

= −

∫

B

Gx,N

(

ve−t1B
)

mN (dx)

= −

∫

B

v(x)e−t1B(x)G!
x,N

(

ve−t1B
)

mN (dx). (A.2.12)

Proof. We have,

d

dt

(

∏

x∈N

v(x)e−t1B(x)

)

=
d

dt

(

∏

x∈N

v(x)

)

e−tN(B)

= −

(

∏

x∈N

v(x)

)

e−tN(B)N(B)

= −

(

∏

x∈N

v(x)e−t1B(x)

)

N(B)

= −
∑

x∈B∩N





∏

y∈N

v(y)e−t1B(y)



 .
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Since the absolute value of the last line is bounded above byN(B) and E[N(B)] =
mN (B) < ∞ by definition, we have by bounded convergence theorem,

d

dt
GN (ve−t1B ) =

d

dt
E

[(

∏

x∈N

v(x)e−t1B(x)

)]

= E

[

d

dt

(

∏

x∈N

v(x)e−t1B(x)

)]

= −E





∑

x∈B∩N





∏

y∈N

v(y)e−t1B(y)







 .

As the last line is equal to −
∫

B
Gx,N (ve−t1B )mN (dx) by the Campbell formula,

the conclusion follows directly. �

However, the previous proposition does not give us the relation between the
p.g.fl and its reduced Palm versions at x such that v(x) = 0. For such x, we
need the following result.

Proposition A.6 Let N be a PP with locally finite intensity measure and t be
positive number smaller than 1. For any function v and any Borel set B not in
the support of v (i.e. v(x) = 0 for every x in B),

d

dt
GN (v + t1B) =

∫

B

G!
x,N (v + t1B)mN (dx). (A.2.13)

Proof. Since B is not in the support of v,

d

dt





∏

y∈N

(

v(y) + 1B(y)
)



 =
d

dt





∏

y∈N\B

v(y)



 tN(B)

=





∏

y∈N\B

v(y)



 tN(B)−1N(B)

=





∏

y∈N\B

v(y)









∑

x∈N∩B

∏

y∈(N∩B)\{x}

t





=
∑

x∈N∩B





∏

y∈N\B

v(y)
∏

y∈N∩B\{x}

t





=
∑

x∈N∩B





∏

y∈N\{x}

(

v(y) + 1B(y)
)



 .
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Again, by bounded convergence theorem,

d

dt
GN (v + t1B) = E





d

dt





∏

y∈N

(

v(y) + 1B

)









= E





∑

x∈N∩B





∏

y∈N\x

(

v(y) + 1B

)







 .

The conclusion follows directly from the fact that the last line equals

∫

B

G!
x,N (v + t1B)mN (dx)

by reduced Campbell formula. �
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