Au milieu du gué : entre formation des enseignants et recherche en didactique des mathématiques

Catherine Houdement

To cite this version:

	<tel-00957166>

HAL Id: tel-00957166
https://tel.archives-ouvertes.fr/tel-00957166

Submitted on 10 Mar 2014

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
Catherine Houdement
Maitresse de Conférences
LDAR-Université Paris Diderot-Université de Rouen
ESPE de Rouen

Au milieu du gué : entre formation des enseignants et recherche en didactique des mathématiques.

Note de synthèse, en vue de
l’Habilitation à Diriger des Recherches

Sustenue le 6 décembre 2013, à l’Université Paris Diderot
devant
Lalina Coulange (Rapporteur), Professeure, Université Bordeaux 4, France.
Lucie DeBlois (Rapporteur), Professeure titulaire, Université Laval, Québec.
Magali Hersant, Professeure, Université de Nantes, France.
Alain Kuzniak, Professeur, Université Paris Diderot Paris 7, France.
Marie-Jeanne Perrin-Glorian, Professeure émérite, Université d'Artois, France.
Sommaire

Introduction .. 4

Contextualisation et problématisation de la formation des enseignants ... 6

 I. Situer le contexte français de la formation des maîtres ... 6
 A. Les constantes de 1990 à 2010 .. 6
 B. Les nouveaux enjeux des IUFM en 1990 .. 7
 II. Motivations et conditions de cette recherche ... 9
 A. Une communauté de formateurs ... 9
 B. Des données stabilisées sur la formation mathématique des maîtres du premier degré 10
 III. Quels résultats sur la formation des maîtres ? ... 10
 A. Une modélisation de la structure de formation par un système à deux niveaux 10
 B. Les connaissances pour enseigner les mathématiques en primaire 12
 C. Des stratégies de formation différentes .. 13
 D. Des relations fines entre les stratégies et les domaines mathématiques 15
 IV. Un retour sur ces recherches ... 17
 A. Les recherches qui ont suivi ... 17
 B. Préoccupations organisatrices et question de savoirs ... 17
 C. Question de genre et communauté de pratique ... 21
 V. Perspectives sur la formation des enseignants du premier degré ... 22
 A. L’enrichissement de stratégies de formation dans la poursuite des IUFM 22
 B. L’influence des institutions dans laquelle s’insère la formation .. 23
 C. Perspectives de recherche sur la formation des enseignants .. 24

Géométrie et formation des enseignants ... 28

 I. Quelle motivation pour ces recherches ? ... 28
 II. Deux points de vue emblématiques ... 28
 III. Le problème de la formation des enseignants ... 29
 IV. Les paradigmes géométriques .. 31
 A. La Géométrie 1 ... 31
 B. La Géométrie 2 ... 33
 C. La Géométrie 3 ... 33
 D. En résumé ... 34
 V. La valeur pragmatique des paradigmes ... 34
 A. Modéliser la géométrie élémentaire (modèle épistémologique) .. 34
 B. « Qualifier » des raisonnements d’étudiants ou d’élèves .. 36
 C. Enrichir des stratégies de résolution de problèmes géométriques 36
 D. Mettre en cohérence l’exact et l’approché ... 38
VI. L’enrichissement nécessaire par les ETG ... 40
 A. La définition des ETG .. 41
 B. Les ETG, un outil pour qualifier les raisonnements .. 42
 C. Les ETG institutionnels, outils de comparaison des curricula 42
VII. Former aux paradigmes et aux ETG ... 44
VIII. Perspectives.. 47
 A. Portées et limites du modèle développé ... 47
 B. Enrichir la Géométrie 1 par les situations pour l’école .. 47

Problèmes numériques à l’école primaire : une fenêtre sur des problématiques d’enseignement 50
I. Brève enquête sur les Problèmes et le Problem solving dans les programmes 51
 A. Les problèmes avant le Problem Solving .. 51
 B. Le Problem Solving, une velleité institutionnelle internationale 53
 C. Critiques et développements du Problem solving ... 56
 D. Quel point de vue sur les problèmes dans les programmes de l’école primaire ? 56
II. Vers une écologie des problèmes non routiniers en école primaire 58
 A. Quelles motivations pour les problèmes non routiniers ? 58
 B. D’autres recherches sur les problèmes non routiniers à l’école primaire 61
III. Ma critique de la Méthodologie de Résolution de problèmes 63
IV. Mémoire de problèmes et nouveau regard sur les problèmes basiques 65
 A. Résoudre un problème de mathématiques .. 65
 B. Comment se construit la représentation de problèmes ? 66
 C. Quel lien entre représentation d’un problème et modélisation ? 66
 D. Un changement de regard sur les problèmes ... 68
 E. Des pistes de recherche didactique pour les problèmes arithmétiques verbaux 69
V. Un autre regard sur les problèmes basiques et complexes ... 71
 A. Vers une nouvelle typologie de ces problèmes numériques basiques 71
 B. Que nous apportent des points de vue d’élèves ? .. 72
 C. Un raisonnement souvent efficace : modéliser par une opération 77
VI. Perspectives de recherche .. 78
 A. Sur le plan méthodologique .. 78
 B. Sur les problèmes numériques .. 78
 C. Sur la formation ... 79
 D. En résonance avec d’autres recherches ... 80
 E. Sur le rôle et la place des problèmes en général ... 81

Perspectives .. 82
Références bibliographiques ... 86
Introduction

Un retour sur le travail de recherche d’une décennie et demie n’est pas simple. Les résultats ont été bien enrichis par la suite par d’autres chercheurs, les méthodologies affinées, les domaines inaugurés aujourd’hui très habités (par exemple celui de la formation des maîtres dans lequel ma thèse de doctorat avec quelques autres a été œuvre de pionnier). Ce retour réflexif est cependant l’occasion d’expliciter les caractéristiques et l’originalité de mes travaux de recherche.

Mes recherches portent sur l’enseignement des mathématiques à l’école élémentaire (3 à 11 ans) et la formation des maîtres qui ont à assurer cet enseignement.

Elles sont guidées par le souci de répondre à des questions qui me sont successivement apparues comme des questions particulièrement sensibles (la formation à l’enseignement mathématique d’étudiants plutôt non scientifiques ; la géométrie délaissée à l’école et emblème de la rationalité au collège ; les difficultés des enseignants et des élèves relativement à l’objet problèmes), qui ont émergé de ma pratique de formateur et ont résonné avec des préoccupations d’autres chercheurs avec lesquels j’ai développé des coopérations.

Ces recherches s’appuient sur des descriptions et analyses d’un existant intérieur au système d’enseignement, que ce soit des pratiques de formateurs, des pratiques d’enseignants et des productions d’élèves et d’étudiants sur la géométrie, des pratiques curriculaires et des productions d’élèves sur les problèmes. C’est à partir de ces descriptions qu’ont été construits des éléments d’une théorie, plus exactement d’un cadre organisateur (des pratiques de formation, des pratiques institutionnelles sur la géométrie élémentaire, des problèmes d’école..).

Au-delà d’une fonction descriptive, ces cadres organisateurs ont une fonction instrumentale : proposer aux nouveaux formateurs d’enseignants un ensemble de stratégies possibles de formation mathématique, avec une analyse de leur potentialité, compte-tenu des conditions et contraintes sous lesquelles elles ont fonctionné ; prévoir et comprendre les malentendus entre élèves du secondaire/étudiants et professeur sur des problèmes de géométrie élémentaire ; analyser des curricula de géométrie ; enrichir les types de problèmes numériques en fonction des apprentissages visés...

Il s’est souvent agi d’abord de trouver les mots, les organisations, les cadres pour dire, voire encapsuler la complexité des phénomènes d’enseignement au sens large (apprentissage, enseignement et formation) en valorisant les participations et les productions d’acteurs ordinaires (formateurs, enseignants, élèves) du système d’enseignement.

Le présent document est organisé en trois chapitres

- Contextes et problématiques de formation d’enseignants
- Géométrie et formation des enseignants
- Problèmes numériques à l’école : une fenêtre sur des problématiques d’enseignement

Cette organisation essaie de refléter, au-delà du regroupement d’origine (pratiques de formation, géométrie, problèmes) mes sensibilités de chercheure.
Dans mes recherches, j’ai plutôt adopté une attitude analytique globale voire holistique (Lester F.K. Jr 1985). Je me suis inscrite dans des paradigmes de recherche naturalistes, aussi bien dans mes recherches sur les stratégies de formation des maîtres que sur la géométrie. Lester F.K. Jr (1985 p.52) définit un tel paradigme notamment pour les recherches en éducation par le faible degré de contraintes sur les conditions et les résultats, le recours à des méthodes qualitatives (sans exclure les quantitatives), la priorité de pertinence sur la rigueur, le rôle de connaissances non parfaitement objectivables (tacit knowledge), une position expansionniste (plutôt que réductionniste), une propension à remonter des faits à des théories plutôt qu’appliquer des théories.

L’étude des pratiques de formation s’est plutôt faite sous forme d’enquête, à partir de pratiques effectives, du moins de déclarations sur ces pratiques. Peut on repérer des invariants dans les pratiques de formation ? Cette question nécessite de choisir, de construire des outils de description qui les organisent. L’enquête a enrichi les stratégies de formation (déjà des invariants des pratiques, initialisés par Kuzniak 1994) et montré que certains types de stratégies de formation étaient plutôt associés à certains domaines mathématiques. Quelles raisons pour ces choix ? L’enquête a rebondi et pointé différents déterminants des choix stratégiques et de programmation des formateurs (tacit knowledge).

Le fait que cette enquête ait eu lieu de l’intérieur, puisque j’étais moi-même un formateur, avait les avantages d’un cadre de recherche dit pratique1 selon la terminologie de Lester 20052, mais aussi les inconvénients : un certain enfermement dans l’ici et le maintenant. J’ai essayé, encore plus dans ce document, de contrôler le caractère local des résultats (parmi lesquels les outils de description, notamment les savoirs de formation) en développant les conditions et contraintes de l’environnement de ces recherches et en projetant leur devenir et leurs limites sous d’autres latitudes (spatiales ou temporelles).

L’étude de la géométrie en formation des maîtres relève plus d’un cadre conceptuel de recherche, selon Lester Jr (2005). Pour Lester Jr, un cadre conceptuel s’appuie sur des théories et sur des savoirs de praticiens, il se caractérise par un souci de justification : « justifying why they [educational researchers] are doing what they are doing and why their explanations and interpretations are reasonable » (Lester Jr 2005, p.460a). Basé sur des travaux antérieurs notamment épistémologiques (Gonseth 1945-55), cette étude a permis de construire un cadre organisateur de la géométrie enseignée (paradigmes géométriques), qui permet de comprendre certes, mais aussi de justifier des phénomènes d’enseignement de la géométrie. J’ai essayé de dégager la portée pragmatique de ces outils didactiques.

L’étude sur les problèmes reflète une tension de mes préoccupations de chercheuse, déjà sensibles dans les deux études précédentes : essayer de se placer simultanément à des niveaux différents de détermination (Chevallard 2002). La première partie de cette dernière étude montre et questionne des éléments de fabrication des curricula de mathématiques de primaire sur problèmes ; elle propose des cohérences pour des objets buzz de l’enseignement, les problèmes de recherche. La seconde revisite l’enseignement des problèmes arithmétiques qu’elle étudie sous le feu croisé de cadres (théoriques ou conceptuels, au sens de Lester Jr. 2005) de psychologie cognitive et de didactique, avec une attention particulière à la dimension cognitive des élèves.

1 Un cadre dit pratique utilise une approche inductive à partir de “ the accumulated practise knowledge of practitioners and administrators, the findings of previous research, and often he viewpoints offered by public opinon” Lester 2005 p.459b).

2 Lester (2005) distingue trois types de cadres pour la recherche : théorique, pratique et conceptuel. Un cadre dit théorique est guidé par une théorie dont il épouse les observables et parfois même les interprétations des observables. Le dernier est explicité plus loin.
Contextualisation et problématisation de la formation des enseignants

Je prendrai le temps de préciser, dans le premier paragraphe, les caractéristiques du contexte de formation français, notamment celui sur lequel, dans lequel j’ai effectué ces recherches. Dans le second, je motiverai ces recherches avant d’en présenter les résultats les plus significatifs dans le troisième. Enfin j’ouvrirai des perspectives de recherche.

I. Situer le contexte français de la formation des maîtres

A. Les constantes de 1990 à 2010

Les étudiants

Selon moi, cette polyvalence visée (et rencontrée en formation) a deux conséquences : d’un côté (positif), elle rend les étudiants plus aptes à s’interroger sur l’enseignement d’une discipline dans une perspective non reproductive de la façon dont ils ont été enseignés ; d’un autre (négatif) elle les arme peu en connaissances mathématiques. Cela en fait un public très différent de celui des étudiants se préparant au professorat dans le secondaire.
Avant 2010 les étudiants sont en quelque sorte captifs\(^3\) (Houdement 2012) de l’institution qui les forme à enseigner en primaire (école normale ou IUFM), ce qui permet aux formateurs de travailler avec le groupe complet sur un temps fixé conséquent. La stabilité du groupe, l’engagement des étudiants (au minimum leur présence) dans la formation\(^4\) changeront radicalement lors de la mastérisation de la formation des enseignants après 2010.

Les institutions

Les enjeux de la formation sont portés par des institutions (au sens de Chevallard) « fortement charpentées » (Sensevy & Mercier 2007, p.189), par un cadrage national au moins administratif, un système de supervision\(^5\) et une culture antérieure des institutions, comme ce sera vu plus loin. La formation se déroule dans des Instituts de Formation (Écoles Normales puis IUFM à partir de 1991) régis administrativement nationalement (taille des groupes de formation, rapport quantitatif durée théorie/pratique) ; mais il n’existe pas à strictement parler de programmes de formation à appliquer ou à adapter.\(^6\) Un concours national (avec sujets académiques) régule\(^7\) cependant les évaluations des connaissances mathématiques (en amont de l’entrée en institut jusqu’en 1991 ou en fin de première année ensuite), avec un certain caractère « professionnel » à partir de 1991 (et jusqu’en 2010).

Les formateurs

Les formateurs des Instituts français sont, en grande majorité dans les années 1990, des professeurs de mathématiques et non des anciens professeurs du primaire : cette nouvelle fonction les a amenés à se former à la culture du primaire, aussi bien par des visites de classe (voire des recherches actions dans les classes) que par des lectures d’ouvrages contemporains de leur changement de fonction, qui promouvaient le paradigme constructiviste qu’ils ont souvent « découvert » à cette occasion. Pour beaucoup cette nouvelle fonction de formateur a été l’occasion d’une revisite complète de leurs conceptions sur enseignement et apprentissage. Leur enseignement en formation comprend « naturellement » un certain détachement des pratiques de classe de primaire, puisqu’ils ont rarement enseigné dans le niveau pour lequel ils vont former (ce qui n’est pas le cas des formateurs d’enseignants du secondaire). A partir des années 1990, sont aussi recrutés des enseignants-chercheurs, parmi lesquels peu de didacticiens car la communauté n’est pas nombreuse. Progressivement cette situation évoluera.

B. Les nouveaux enjeux des IUFM en 1990

\(^3\) Ils doivent assister à tous les cours et/ou stages et réussir les évaluations, faute de quoi ils ont des retenues sur salaire.

\(^4\) Aussi dû au fait que certains exercent un travail rémunéré en plus de leur formation.

\(^6\) Constat toujours actuel et international (Zaslavsky 2008).

\(^7\) Peltier (1995) montrera qu’il permet de préciser, après-coup, des savoirs de la formation.

\(^9\) Voir aussi Article 17 de loi d’orientation de 1989.
en institut, aussi bien dans le premier degré que dans le second. Ce rapport est très novateur pour la formation du second degré : rappelons en effet qu’avant les IUFM, la formation des enseignants du second degré était scindée, l’Université (avant le concours) prenant en charge la partie académique et les CPR (Centre Pédagogique Régional) la partie pratique fortement basée sur le compagnonnage, le stagiaire étant tutoré (conseillé, évalué) dans ses différents stages par un collègue en exercice. Il change aussi le statut des enseignants du primaire en élevant leur niveau de recrutement (après la licence), alignant les salaires (vers le haut) sur ceux du seconnaire. La formation est uniformisée dans ses grandes lignes : une année de préparation à un concours spécifique avec des épreuves (académiques pour le premier degré, nationales pour le second degré) comportant un volet plus ou moins didactique disciplinaire et un autre à vocation professionnelle, suivie d’une année de formation proprement dite alternant stages sur le terrain et cours en institut. Le rapport insiste sur la complémentarité des personnels de différents statuts (enseignants-chercheurs, formateurs et praticiens) pour la création d’une culture professionnelle commune (voir aussi Article 17 de loi d’orientation de 1989) et questionne même la possibilité future de certification universitaire de cette nouvelle formation.

La création des IUFM ne s’est pas accompagnée de programme national de formation, ni de programme officiel du concours du premier degré, pourtant usuel dans le second degré. Un programme national avait pourtant été institué en 1984 pour le concours de recrutement en école normale : le programme de l’épreuve de mathématiques était constitué d’une liste de thèmes mathématiques à traiter au niveau lycée. Rien de tel dans les années 1990. A ma connaissance le seul document officiel national pour les professeurs d’école en formation a été publié en 1994 par la Direction des Écoles : le Référentiel des compétences et capacités caractéristiques du professeur d’école stagiaire en fin de formation initiale fournit des indicateurs pour concevoir la formation en IUFM ; on lit par exemple la nécessité pour le sortant d’IUFM de posséder des connaissances disciplinaires et didactiques pour concevoir, mettre en œuvre et analyser les apprentissages des séances, mais sans autre explicitation (mathématique par exemple).

Dans les faits en 1991, les IUFM se sont effectivement construits comme des extensions d’écoles normales : la gouvernance et les formateurs du premier degré ont été conservés et ont étendu leurs missions ; quelques nouveaux formateurs (dont des enseignants chercheurs) ont été recrutés.

Dès les débuts, me semble-t-il, s’est installé un dilemme entre :

- construire une nouvelle entité dont les fondements seraient à questionner à partir de la formation passée des maîtres du premier degré, ses points positifs et négatifs ; l’obstacle vint du fait qu’il n’existait pas stricto sensu de culture d’institution de formation dans le second degré, sauf en mathématiques avec les IREM (ce sont d’ailleurs les animateurs IREM qui ont constitué les premiers formateurs du second degré dans les IUFM) ;
- étendre une organisation curriculaire qui avait fait ses preuves dans le premier degré, mais qui assujettissait les nouveaux arrivants à une culture « d’ordre inférieur ».

Cette tension, entre volonté d’une part de changer, d’autre part de prolonger l’existant a accompagné les débuts des IUFM et, à mon avis, ne s’est jamais résorbée. Des modules transversaux suivis par les stagiaires des premier et second degrés ont été institués, mais cela n’a pas réussi à créer une culture commune.

Si la réalisation pratique n’a pas été, à mon avis, à la hauteur des attentes, par contre cette mutation a permis de re-questionner les pratiques de formation, de rendre visibles certaines hypothèses implicites sur la formation des maîtres. Elle a aussi dopé les recherches en didactique, notamment les travaux sur l’enseignant.

C’est dans ce contexte de transformation institutionnelle des Écoles Normales en Instituts de Formation des Maîtres que nous avons décidé collégialement (Kuzniak, Peltier & Houdement) d’investir un travail de recherche sur la formation en mathématiques des enseignants du premier degré.
II. Motivations et conditions de cette recherche

Dans la partie précédente, j’ai décrit certaines contraintes institutionnelles. Précisons maintenant certaines conditions.

A. Une communauté de formateurs

Il me semble, et je vois cela comme une caractéristique française, qu’elle a constitué, sur les pratiques de formation des maîtres une communauté de pratiques au sens de Wenger (1998) sur un temps long d’équilibre institutionnel12, compte tenu des différents niveaux de participation des acteurs (membre rédacteur de Documents ou Cahiers de la commission, membre présent à toutes ses réunions, ou simple participant à ses colloques), de la réification de certains objets, notamment la rédaction de pratiques emblématiques dans des Documents et des Cahiers, un certain regard sur l’approche constructiviste et le problème13...

Les membres de cette commission, je l’analyse ainsi après coup, avaient intégré pour la formation des maîtres la complexité décrite pour l’enseignement des élèves par Lampert (2001, p.2) : « Our reason teaching is a complex practise is that many of the problems a teacher must address to get students to learn occur simultaneously, not one after another. Because of this simultaneity, several different problems must be addressed by a single action. (...) A teacher also acts in different frames and at different levels of ideas with individual, groups, and the class to make each lesson coherent, to link a lesson to another, and to cover a curriculum over the course of a year. Problems exist across social, temporal, and intellectual domains, and often the actions that need to be taken to solve problems are different in different domains. ».

Il s’agit dans le court temps de la formation en institut, de compléter les connaissances savantes sur les mathématiques des élèves professeurs, donner des éléments de compréhension sur

10 J’en ai été co-responsable de 1996 à 2000.

12 Il n’est pas sûr que cette communauté résiste à la Mastérisation 2010 de la formation qui de facto, selon les règles de l’Université, introduit des hiérarchies (à la place des répartitions) entre formateurs, selon qu’ils sont enseignants chercheurs ou professeurs du secondaire détaillés dans le supérieur.

13 Pour une histoire de la COPIRELEM, voir Briand, Houdement & Peltier (2004) 30 ans de la COPIRELEM. In Actes du 30ème colloque, Avignon 2003 (pp.5-32). IREM de Marseille.
l’apprentissage par les élèves des notions, sur le type de situations propices à un tel apprentissage, sur leurs caractéristiques... non pas en traitant de façon juxtaposée tous ces objectifs, mais en les essayant de les appréhender globalement.

B. Des données stabilisées sur la formation mathématique des maîtres du premier degré

Quelles données analyser qui permettraient d’objectiver cette formation ? Ces questions étaient d’autant plus cruciales qu’il n’existait pas, quand cette recherche a débuté, de cadre de recherche sur la formation des enseignants, ni sur les enseignants. Quelle méthodologie adopter pour traiter ces données ?

Nous avons décidé d’étudier les curricula de formation sous deux aspects, complémentaires : d’une part les pratiques de formation (Kuzniak 1994, Houdement 1995) dans les instituts de formation, d’autre part les formes d’évaluation de la formation initiale en IUFM (Peltier 1995) : écrits mathématiques et didactiques (sujets de concours pour les étudiants de première année, PE1, devoirs pour les PE2) et rapports de visite des étudiants sur le terrain (pour les PE2).

L’accessibilité aux pratiques de formation s’est faite par l’étude des documents édités par la COPIRELEM et par des entretiens avec des formateurs (Kuzniak 1994) ou des questionnaires (Houdement 1995).

III. Quels résultats sur la formation des maîtres ?

Ils concernent

- la structure du système de formation IUFM, partie des conditions de la formation des maîtres,
- la question des connaissances mathématiques pour enseigner en école primaire : savoirs en jeu dans la formation et problèmes méthodologiques de définition de ces savoirs, y compris des savoirs mathématiques
- l’imbrication du mathématique et du didactique, voire du pédagogique
- les rapports entre les stratégies et les domaines.

A. Une modélisation de la structure de formation par un système à deux niveaux

Ce qui donne le schéma suivant pour le système de formation

Le formateur, par ses savoirs professionnels14, doit permettre l’installation de savoirs professionnels du professeur d’école. Mais celui-ci n’est pas encore un collègue, c’est un étudiant dans un groupe classe, il est évalué par le formateur dans le système [FM].

Le savoir professionnel du professeur d’école, quand il est maître d’une classe dans le système [EP], vise l’apprentissage d’un savoir mathématique par les élèves ; mais il ne se limite pas à des mathématiques. Dans les savoirs professionnels utiles du professeur d’école figurent aussi des savoirs sur l’enseignement des mathématiques : quel que soit le mode de transmission choisi de ces savoirs, en supposant qu’ils soient explicitables, ils nécessitent la connaissance, dans sa globalité, du système [EP]

Le système est complexe dans la mesure où tout se joue sur un double niveau.,

14 Dans un premier temps savoirs professionnels sera une expression générique pour tout ce qui serait utile à l’enseignant ou au formateur pour enseigner
De la même façon que E doit acquérir un savoir S grâce à la circulation d’un savoir S' par l’action du maître M dans la Classe, le formateur par son action dans le groupe d’étudiants fait circuler un savoir professionnel Σ' de façon à ce que l’étudiant acquiert un savoir professionnel Σ relié à sa fonction future de maître de la classe.

Cela nécessite de s’appuyer sur une définition, même implicite, des savoirs professionnels à faire acquérir par l’étudiant ou l’élève professeur pour son action dans l’école primaire.

Au niveau supérieur, l’avancée dans la définition des savoirs à faire acquérir aux étudiants ne clôt pas la question de la formation, reste à penser leur transposition en formation d’adultes, licenciés d’université, se destinant à devenir des enseignants polyvalents et souvent avec des connaissances scientifiques incomplètes.

Il y a donc en jeu une double transposition et un double niveau de conceptions, rendus visibles par ce modèle : conception de l’apprentissage de l’élève dans [EP] (avec à l’époque l’opposition faite entre les conceptions behavioriste et constructiviste, et le rejet de la première) ; conception de la formation d’adultes à l’enseignement dans [FM].

Deux questions fondamentales, [mais aussi puits sans fond], sont celle des savoirs nécessaires au futur enseignant dans le système [EP] et le bagage minimum dont il s’agit d’armer le débutant dans le système [FM]. Nos recherches s’inscrivaient dans la seconde [sans la clôre.]. En effet il est clair que la sortie réussie de l’IUFM ne donne qu’un permis d’enseignement, elle ne valide pas une expertise. ; comme enseigner demande des habilités multiples dans divers champs la complexité des savoirs professionnels fait que leur l’acquisition se poursuit bien au-delà de la formation initiale. (Perks & Prestage 2008, p. 266).

B. Les connaissances pour enseigner les mathématiques en primaire

A l’époque il s’agissait d’objectiver ce que renvoie, sur les savoirs qui circulent dans la formation (Σ'), l’étude des pratiques de formateurs, qui nous semblaient a priori relativement stabilisées (ce que confirmeront nos travaux). Pour décrire notre hypothèse, implicite à l’époque, utilisons une métaphore issue de la Théorie des Situations Didactiques : voir les situations de formation mathématique comme des modélisations de savoirs utiles pour enseigner16, à défaut de trouver en amont des définitions de ces savoirs (notamment issues de recherches sur les enseignants).

Nous avons retenu avec Kuzniak (1994) essentiellement trois types de savoirs17 : savoir mathématique, savoir didactique et savoir pédagogique. En voici des définitions que je reprendrai plus loin pour les comparer à d’autres travaux.

Le savoir mathématique correspond aux mathématiques nécessaires à l’enseignant pour préparer, réguler et évaluer sa séance et ses élèves.

Le savoir didactique est, par définition, nourri par les recherches en didactique sur les mathématiques du primaire. A priori ce savoir a vocation à être théorique, mais d’une part tout n’est pas théorisé en didactique (et peu de choses l’était à l’époque de nos recherches), d’autre part une transposition est nécessaire pour rendre accessibles en centre de formation des « savoirs utiles ». Ce savoir didactique est issu d’ouvrages de recherches collaboratives autour des IREM ou de l’INRP (ouvrages ERMEL Apprentissages mathématiques à l’école élémentaire dont l’édition de la première collection complète (CP au CM2) s’étale de 1977 à 1982 ; revues Grand N ; ouvrages de la

15 A priori S et S’ ne sont pas confondus : il faut distinguer l’élève épistémique de l’élève particulier
16 Certes, ce faisant, nous occultons certains phénomènes de transposition.
17 Nous considérons le mot savoir dans son expression générique : savoir des choses pour, par exemple pour enseigner
COPIRELEM) ou de lectures plus théoriques (la revue *Recherches en Didactique des Mathématiques* débute en 1980).

L'étude des stratégies de formation fit émerger un troisième savoir dont les formateurs visaient la transmission : le *savoir pédagogique* ou « savoir d'expérience » (Portugais, 1995). Le « troisième savoir » se caractérise par son oscillation entre deux pôles, l'un théorique mais parfois très éloigné de la pratique future des étudiants (par exemple le fait que les conceptions constructivistes de l'apprentissage prennent le pas sur les conceptions behavioristes), l'autre proche du sens commun et de la pratique (dans notre étude la pratique de classe), mais privé de l'adaptabilité d'un modèle plus théorique. Le corpus de référence est constitué par un ensemble particulièrement hétérogène de traités empruntant à diverses disciplines, de livres du maître et de fichiers d'élèves.

Les instituts auraient pu céder à la tentation de confier la formation à ces trois types de savoirs à des enseignants différents (enseignants de collège ou lycée pour les savoirs mathématiques, chercheur en didactique pour les savoirs didactiques et enseignant d'école pour le « savoir d'expérience ») comme il était d'usage dans d'autres pays\(^\text{18}\) (voire à des instituts différents). Mais cette option ne fut pas celle dominante dans les écoles normales, ni celle du début des IUFM, au moins pour le premier degré : un même formateur prenait souvent en charge les trois savoirs, quitte à demander la collaboration d’un enseignant d’école, qui montrait sa classe ou racontait sa classe.

C. **Des stratégies de formation différentes**

J’ai repris et affiné les grands invariants stratégiques dégagés par Kuzniak (1994) rencontrés dans les institutions étudiées, différentes quant à l’importance donnée à tel savoir, ou à tel type et le type de communication choisi (cours dialogué, confrontation à un problème de mathématique ou professionnelle...) et cherché à comparer leur efficacité potentielle (Houdement 1995, p.128 à132). Ces invariants sont des composantes des stratégies réelles utilisées par les formateurs, celles-ci se caractérisant par la composante stratégique dominante.

Les stratégies culturelles privilégient l’accroissement des connaissances des étudiants dans un domaine précis, sans préjuger de la mise en œuvre opérée dans les classes. Ces connaissances sont usuell emathématiques, mais elles peuvent aussi être didactiques (cours magistraux de didactique) ou relever d’une culture pratique (par exemple gestion de classe racontée...). La communication est plutôt de type cours magistral ou dialogué.

Les stratégies basées sur la monstration privilégient la transmission de pratiques par l'observation de leur mise en œuvre dans les classes primaires. C'est le mode le plus ancien d'initiation aux pratiques professionnelles enseignantes. Il est fondé sur une illusion de la transparence des savoirs didactiques et pédagogiques. Il minimise de facto les analyses mathématiques. Ce mode résiste notamment suite à son faible coût de formation, il reprend le modèle professionnel du compagnonnage ; il présente aussi l’avantage de montrer des compétences pédagogiques à partir de n’importe quelle discipline\(^\text{19}\).

Les stratégies basées sur l’homologie sont aussi fondées sur l’imitation, mais une imitation complexe et transposée pour l’étudiant par le formateur. Les formateurs enseignent conformément à leur conception de ce que doit être l’enseignement à l’école élémentaire (se fondant généralement sur la conception socioconstructiviste de l’apprentissage), ce qui leur permet à priori d’enrichir les connaissances mathématiques des étudiants (en les leur faisant revisiter différemment de pendant leurs études) et leur conception de l’enseignement des mathématiques. Les formateurs mettent en scène leur savoir didactique et pédagogique et institutionnalisent pour l’étudiant un savoir

\(^{18}\) et de nouveau d’actualité en 2013 pour les futures ESPE, via la Mastérisation des parcours de formation d’enseignants.

\(^{19}\) Ce qui n’est pas négligeable pour une formation de professeurs polyvalents.
mathématique ou didactique, tout en montrant (ou croyant montrer... s’il n’est pas explicité) un savoir pédagogique.

Il me semble aujourd’hui que ces trois stratégies sont trois façons d’initier à de « bonnes pratiques », selon la conception du formateur, que ce soit par l’écoute, l’observation de leçons modèles ou l’imitation de routines professionnelles du formateur.

Par contre le type de stratégie suivante vise une dépersonnalisation et une décontextualisation des savoirs (Chevallard 1985).

Les stratégies basées sur la transposition visent la communication explicite de connaissances théoriques sur l’enseignement, de manière homologue aux hypothèses d’enseignement qu’elles supposent. Elles ont bénéficié de l’enrichissement progressif des connaissances théoriques didactiques et pédagogiques sur l’enseignement. De telles stratégies ne peuvent donc se concevoir qu’avec une partie d’homologie ; elles sont suivies d’une phase d’institutionnalisation didactique conséquente. Sont aussi considérées comme telles les séances où les formateurs font rencontrer, par l’action puis l’analyse de l’action, des savoirs didactiques (Houdement 1995, p.52). Le fait que les formateurs cherchent à contrôler la réception de ces connaissances par les étudiants est aussi caractéristique des stratégies de transposition.

Ces quatre types de stratégies se différencient notamment quant à la responsabilité laissée à l’étudiant d’analyser ou de recomposer les savoirs, notamment mathématiques et didactiques. Dans les stratégies culturelles les savoirs mathématiques, didactiques et pédagogiques sont a priori juxtaposés ; la recomposition est à la charge de l’étudiant. Dans les stratégies de monstration, l’étudiant doit prendre conscience des savoirs en jeu dans la pratique de l’enseignant, c’est à sa charge d’analyser mathématiquement, didactiquement et pédagogiquement la situation. Dans les stratégies d’homologie, le formateur donne à voir des savoirs mathématiques et didactiques imbriqués, montre leur recomposition, mais les savoirs didactiques (quelquefois aussi mathématiques) restent contextualisés... à la « classe de formation » du formateur. Les stratégies de transposition cherchent par contre à décontextualiser, autant que faire se peut, tous ces savoirs ; elles encouragent les étudiants dans la transposition des situations vécues en formation en celles qui seraient à proposer à l’école, les comparent à d’autres proposées par des ressources scolaires.

Dans la COPIRELEM, les stratégies d’homologie- transposition sont ressenties comme de meilleures stratégies pour les débuts de la formation initiale, plus exactement elles représentent sans doute un certain confort pour le formateur. Elles placent explicitement l’étudiant successivement dans les deux postures20 (élève du formateur, puis collègue enseignant comme ses pairs et le formateur. Elles donnent à voir des élèves en activité sur du savoir et de bonnes « pratiques » de classe... dont les étudiants sont les élèves. En général dans la première phase d’une stratégie d’homologie (activité), les étudiants sont engagés dans un problème mathématique, qui peut les déroutier (une Provocation Didactique, selon Houdement & Kuzniak 2002), ils sont confrontés à un questionnement non trivial, à l’existence de modes de faire différents, ceux de leurs pairs ; ils voient à l’œuvre un enseignant face à un groupe d’élèves (eus-mêmes) depuis le lancement de la séance jusqu’à sa conclusion en termes de savoirs mathématiques. Dans une seconde phase (analyse didactique de l’activité), le formateur explicite le découpage de sa séance a priori et ses régulations, il met des mots sur des éléments stratégiques de didactique qui ont outillé la préparation et la régulation de la séance : dévolution-institutionnalisation, variable, dialectique outil -objet, etc.

La phase transposition (l’analyse didactique) est souvent accompagnée de la construction de situations de classe homologues (autre relation aux individus, à la chronogenèse, à la mésogenèse, aux représentations sémiotiques) et ce pour éviter autant que faire se peut deux types de dénaturation, observées dans les classes des stagiaires : la première est la tentative de réaliser une

20 Ce nécessaire jeu sur les postures a aussi été pointé par DeBlois (2010)
copie conforme avec des élèves de la séance vécue en formation sans adaptation au contexte (dénaturation-plagiat) ; la seconde est l’adaptation de la situation aux élèves, jugés moins équipés en connaissances de base, en parcellisant les tâches de telle façon que les élèves n’aient plus aucune responsabilité dans l’avancée des savoirs (dénaturation-simplificatrice).

D. Des relations fines entre les stratégies et les domaines mathématiques

La catégorisation des pratiques a fonctionné comme outil pour dresser une carte des pratiques de formation des formateurs (Houdement 1995) des années 1990 : j’ai en effet mis à jour des différences stratégiques, relativement partagées par les formateurs, en fonction des contenus mathématiques de la formation.

Pour l’étude, j’avais organisé les contenus de formation autour des treize domaines21 qui rendent compte des mathématiques à enseigner à l’école.

On aurait pu penser qu’un type de stratégie serait dominant chez un formateur quel que soit le domaine étudié. J’ai au contraire constaté des différences stratégiques, mais aussi des regroupements relativement stables de domaines selon les stratégies utilisées pour le présenter : le nombre entier, l’addition, la soustraction et la multiplication étaient plutôt envisagés avec des stratégies de transposition et monstration ; la mesure, les fonctions numériques, la géométrie, relevaient de stratégies d’homologie (avec plus ou moins d’éléments de transposition,) ; les non entiers étaient traités par des stratégies culturelles, d’homologie et de transposition ; la division était l’occasion de toutes les stratégies. Mais une constante s’est détachée : les domaines les moins connus des étudiants étaient plutôt traités avec une stratégie d’homologie, les domaines les plus connus avec une stratégie de transposition (ou de monstration).

J’ai cherché à comprendre l’origine des choix stratégiques en faisant des hypothèses sur les déterminants des choix des formateurs, toujours dans l’objectif de préciser la description des pratiques de formation, de construire un cadre organisateur.

Les déterminants que j’ai considérés sont d’une part la connaissance du public à former quant à sa culture mathématique (par des évaluations diagnostiques ou par l’expérience cumulée de formation), l’idée du public sur sa propre culture (impression de savoir ou d’ignorer), le désir de se former (par un questionnaire)22, d’autre part la connaissance par le formateur du terrain d’exercice des futurs formés, relativement au domaine : place du domaine dans les mathématiques, traitement du domaine dans les ressources usuelles (existe-il des ressources, guides pédagogiques) et chez les enseignants de l’académie (former dans le courant ou à contre courant).

Prenons le cas de la mesure : les étudiants ont et savent qu’ils ont des connaissances mathématiques faibles ou peu stabilisées, ce thème bénéficie déjà à l’époque de recherches théoriques et transposées23. En formation ce thème est plutôt l’occasion de séances de résolution de problèmes (homologues à des problèmes d’école) à l’issue desquelles le formateur trouve l’occasion à la fois d’institutionnaliser des savoirs mathématiques et de dégager des connaissances didactiques, tout en montrant des routines de classe (passation des consignes, régulation et institutionnalisation, jeu

21 Nombre entier, Addition, Soustraction, Multiplication, Division, Rationnels et décimaux, Opérations sur décimaux, Fonctions numériques, Géométrie plane des figures, Géométrie plane des transformations, Géométrie des solides, Mesure, Mathématiques en maternelle
entre travail individuel, de groupe ou collectif) ; il peut ensuite faire travailler sur des documents pédagogiques. Par exemple, dans ma thèse (Houdement 1995, pp.133-184) je présente une séquence de formation sur les aires, à dominante d’homologie-transposition, analogue en ce qui concerne les objectifs des séances à ce que serait une progression sur la construction de la grandeur physique, aire, et de sa mesure à l’école, et extensible sous certaines conditions aux autres grandeurs physiques à enseigner à l’école.

La division, thème travaillé en didactique, dont l’enseignement conseillé est relativement stabilisé à l’époque, réifié dans le ERMEL, bénéficiait déjà de pratiques de classe « innovantes » chez les maîtres formateurs en lien avec la résolution de problèmes, ce qui permet aux formateurs d’utiliser une stratégie de monstration par le maître formateur.

Les connaissances mathématiques déjà là des étudiants sur les derniers thèmes de la liste (le nombre entier, l’addition, la soustraction et la multiplication), rendaient à l’époque par contre plus complexes les situations d’homologie ; l’abondance de travaux didactiques sur le thème favorisait sans doute la transposition.

Il faut noter le caractère conjoncturel de cette carte des formations liée aux valeurs des déterminants des choix des formateurs : l’accroissement des savoirs didactiques sur un thème peut déclencher des changements stratégiques. Par exemple les recherches de Chambris 2008, Mounier 2010, Tempier (en cours) sur le nombre peuvent aujourd’hui permettre des stratégies d’homologie-transposition dans ce domaine. Elles permettent par exemple de construire des Provocations Didactiques telles que combien de dizaines dans quarante six mille deux cent quatre vingt sept, combien de milliers, combien de vingtaines, combien de centaines, propices à une formation mathématique et didactique sur le nombre.

L’étude de ma thèse a montré par contre qu’il n’existait pas d’ordre consensuel de présentation des domaines (programmation), mais elle a repéré que certains domaines arrivaient en tête : géométrie plane, fonctions numériques, nombre entier au même rang que division, enfin rationnels et décimaux en première année de formation initiale. J’ai cherché à déterminer des explications possibles des ordres de présentation des domaines sous forme d’hypothèses sur les « croyances » (Bourdieu 1984) des formateurs, croyances qui ne seraient pas strictement personnelles, mais résulteraient aussi d’habitudes de formations, transmises de formateurs en formateurs. Ce qui a donné six hypothèses pour les composantes de ces croyances (Houdement et Kuzniak 1996 p 317), dont la combinaison forgerait les croyances du formateur : (1) s’appuyer sur l’ordre chronologique des programmes de mathématiques de l’école ; (2) s’appuyer sur la connaissance, par les étudiants, des thèmes mathématiques ; (3) décider d’une hiérarchie de stratégies et organiser son plan selon cette hiérarchie de stratégies ; (4) s’appuyer sur les outils pédagogiques disponibles ; (5) s’appuyer sur l’appréciation des pratiques du terrain sur le thème ; (6) choisir des connaissances didactiques ou pédagogiques comme objectifs de formation et illustrer ces connaissances à travers l’étude de thèmes mathématiques. Chaque composante peut donner naissance à un ordre ou à l’ordre inverse : par exemple la composante 1 peut amener le formateur à traiter d'abord des notions mathématiques plutôt sous-jacentes aux classes de maternelle et de CP, et à garder pour plus tard celles du cycle 3. Inversement, il peut choisir de traiter d'abord des notions du cycle 3 et de garder les mathématiques liées à la maternelle pour la fin de sa programmation. Les programmations effectives des formateurs peuvent aussi utiliser plusieurs composantes. Ces composantes ne sont sans doute pas indépendantes de la conception du formateur sur la recomposition des trois savoirs mathématiques, didactiques et pédagogiques, mais cela reste une hypothèse.
IV. Un retour sur ces recherches

Quel regard porter sur ces recherches quelques vingt ans plus tard ?

Quelles résonances avec des travaux internationaux contemporains de mes recherches (mais que je ne connaissais pas à l’époque) ou des développements plus récents ? De nombreux travaux ont été publiés depuis que je n’ai pas tous lus, car ma préoccupation de recherche a glissé vers d’autres thèmes.

A. Les recherches qui ont suivi

Mon travail d’élucidation des déterminants de choix stratégiques et de programmation des formateurs s’est appuyé, avec une autre méthodologie et un autre public, sur l’hypothèse développée plus tard par Robert & Rogalski (2002, p.508) : « les pratiques des enseignants sont complexes, stables et cohérentes, elles résultent de recompositions (personnelles) à partir de connaissances, représentations, expériences, et de l’histoire individuelle en fonction de l’appartenance à une profession ».

B. Préoccupations organisatrices et question de savoirs

Nous avons contribué à la mise en place d’un cadre organisateur des pratiques de formation mathématique des enseignants du premier degré, répondant, sans la connaître à l’époque à la plainte de Schulman (1986, p.11) sur les enseignants « The experimental studies of teaching effectiveness have been guilty of presenting lengthy lists of research-based behaviors for teachers to practise, without always providing a rationale or conceptual framework for the set »

Shulman (1986,1987) et d’autres chercheurs (par exemple Ball & Bass 2002) ont cherché, en utilisant notamment aussi une approche inductive des pratiques, mais cette fois-ci directement des enseignants, à catégoriser les connaissances utiles pour enseigner, pour établir « a ‘knowledge base for teaching’ a codified or codifiable aggregation of knowledge, skill, understanding, and technology, or ethics and disposition, of collective responsibility-as well as a means for represeting and communicating it. » (Shulman 1987, p.4), « a conceptual map of the content knowledge for teachers » (Ball & al 2008, p.404) avec l’intention de construire les premiers éléments d’un métier d’enseignant. Les ressemblances avec nos recherches sont frappantes.

Shulman (1987) a ainsi catégorisé différents types de connaissances transversales aux disciplines (de pédagogie générale, des programmes et des outils institutionnels, des élèves, des contextes éducatifs, sociaux et politiques, des finalités de l’éducation). Il a dégagé deux types de connaissances spécifiquement liées à la discipline : CK « content knowledge » et surtout PCK « pedagogical content knowledge » en définissant cette dernière comme « that special amalgam of content and pedagogy that is uniquely the province of teachers, their own special form of professional
understanding » Shulman (1987). Ce sont ces deux catégories qui entrent en résonance avec nos savoirs de formation mathématique.

« Notre » savoir mathématique recouvre et précise le Content Knowledge

A priori le savoir mathématique utile pour enseigner peut sembler bien défini, mais ce n'est pas si simple. Certes ce savoir s'appuie sur des savoirs savants liés aux contenus mathématiques des programmes de l'école, selon les processus de transposition didactique identifiés par Chevallard (1985). Mais il les enrichit et en développe des facettes : nous avions déjà pointé deux types d'enrichissement que j'analyse plus précisément aujourd'hui. Le premier relève de la connaissance des éléments technologico-théoriques des praxéologies locales et leur agrégation en praxéologies régionales (Chevallard 2002). Il a été pointé depuis fort longtemps par des mathématiciens qui se sont intéressés à l'enseignement (par exemple Condorcet 1794 et son étude de la numération), par des didacticiens comme différenciateur de pratiques d'enseignant entre pays (Ma 1999). Le second joue avec la nécessaire tension entre épistémologique et cognitif. La conception de situations d'enseignement, rend nécessaire une compréhension plus fine des nécessaires transpositions didactiques des savoirs mathématiques en relation avec les genèses cognitives possibles chez des élèves de tel âge. Des études didactiques ont ainsi débusqué des savoirs non identifiés dans les mathématiques scolaires classiques : les connaissances spatiales (Berthelot & Salin 1992) l’énumération (Briand 1993).... Nos recherches postérieures sur la géométrie (Houdement & Kuzniak 1999 ; 2000) vont dans le sens d’une prise de recul épistémologique pour comprendre le cognitif.

Je pointais déjà là la spécificité didactique de « notre savoir mathématique », que Ball & al. (2002, 2008) et son équipe ont identifié comme Specialized Content Knowledge SCK, part de mathématiques qui est spécifique à l’enseignement, (et qui rendra nécessaire une formation mathématique spécifique de tout futur enseignant).

Pour ces chercheurs qui ont fait évoluer le modèle de Schulman (cf. Figure suivante), le Content Knowledge se découpe en Specialized Content Knowledge et Commun Content Knowledge. Ce dernier, décliné pour les mathématiques, correspond aux mathématiques « communes », celles qui permettent de savoir si la résolution d’un problème ou d’un calcul, si le raisonnement proposé par tel élève est juste. Je ne reviendrai pas sur la description du Specialized Content Knowledge.

Les autres savoirs (Ball & al. 2008) pour l’enseignement

L’explicitation du Pedagogical Content Knowledge a aussi été approfondie par Ball et al. (2008, p.403) qui ont construit le modèle suivant dans le contexte des mathématiques.
Nous retrouvons dans la partie gauche de la figure ci-dessous CCK *Commun Content Knowledge* et SCK *Specialized Content Knowledge* ; le troisième type de savoir *Horizon Content Knowledge* consiste à connaître l’avenir et le devenir du savoir dans les classes postérieures (une perspective écologique).

Knowledge of content and students (KCS) concerne plutôt les conceptions des élèves sur les mathématiques, leurs erreurs, et celles qu’il importe de traiter dans le collectif de la classe (par exemple ce que Vergnaud (1991) appelle les théorèmes en acte).

Knowledge of content and teaching (KCT) me semble recouvrir la préparation et la gestion des séances de classes : quels situations ou exemples choisir pour commencer, approfondir, évaluer; quelles contributions d’élèves valoriser ou citer…; quel matériel choisir pour illustrer tel thème.

Knowledge of context and curriculum (KCC) reprend explicitement une rubrique citée par Schulman liée à la connaissance des curricula (programmes, ressources institutionnelles, indications et contrepindications d’utilisation) qui distinguait un versant horizontal (lateral curriculum knowledge), concernant la place du contenu dans les autres disciplines du même niveau de classe et un versant vertical (vertical curriculum knowledge) concernant le même contenu dans les autres niveaux. (Shulman 1986, p.10). Il s’agirait d’une perspective écologique (Chevallard 1999).

Le savoir didactique

Ce que nous appelons *savoir didactique* comporte au moins les deux dimensions *Knowledge of content and students* et *Knowledge of content and teaching*. Piloté par le contenu mathématique, il se compose de l’analyse de phénomènes d’enseignement et d’apprentissage et de propositions d’ingénieries. Il est nourri par les articles de didactique (des revues françaises *Recherches en Didactique des Mathématiques*, *Annales de Didactique*, *Éducation et didactique*, des séminaires de recherche ARDM, des actes des Écoles d’Été de Didactique …). La didactique française produit aussi des cadres théoriques modélisant les phénomènes d’enseignement-apprentissage qui se différencient par leur entrée dans ces phénomènes : assujettissement aux institutions (Chevallard 2002), dialectique savoirs -connaissances (qui prend en compte savoirs et apprenants) de la Théorie des Situations Didactiques (Brousseau 1998) ; synergie élèves-enseignant autour des savoirs qu’étudie la théorie de l’Action Didactique Conjointe (Sensevy & Mercier 2007). De tels modèles nécessitent d’être adaptés, apprêts pour la formation (phénomène de transposition), ce que
proposait et proposent encore certains brochures IREM24 ou revues IREM (Grand N, Math-École, Repères-IREM, petit x...). Ces questions d’adaptation à l’ordinaire des modèles didactiques sont actuellement repensées dans la recherche en didactique : c’est l’objet des recherches-développement (Perrin-Glorian 2011).

Le savoir pédagogique

Ce savoir pédagogique est en relation avec ce que Butlen (2004) appellerà plus tard les routines professionnelles, qui en seraient l’expression dans l’action. Un certain nombre de ces routines ont d’ailleurs fait l’objet de recherches postérieures à partir de mathématiques et ont permis de dégager des principes directeurs des pratiques ou des auxiliaires de la pratique : le tableau comme lieu de savoir ou lieu de travail (Vandebrouck 2002), la classe comme lieu d’exposition et d’application du savoir ou lieu de construction du savoir (Roditi 2005) ; en milieux difficiles, une tension entre logique de réussite immédiate versus logique d’apprentissage (Peltier dir. 2004), l’installation de la paix scolaire (Charles-Pézard 2010).

Il semble que ce « troisième » savoir ne fasse pas partie du schéma de Ball & al. (2008), peut-être parce qu’il a vocation à transcender le contenu, qu’il constitue une partie commune à plusieurs entrées disciplinaires. Je ne peux pas le passer sous silence pour les professeurs des écoles, compte tenu de leur obligation d’enseigner plusieurs disciplines, dans le même lieu et aux mêmes élèves.

La sagesse pratique que Schulman (1986, p.11) avait déjà pointée fait partie de ce savoir : « In every field of practice there are ideas that have never been confirmed by research and would, in principle, be difficult to demonstrate. Nevertheless, these maxims represent the accumulated wisdom of practise, and in many cases are important a source of guidance for practice as the theory or empirical principles. ». Il poursuit avec ces deux exemples ‘ne pas sourire avant Noël’, ‘casser la craie pour ne pas qu’elle crisse sur le tableau’......

La typologie de Ball & al. (2008) ne révèle pas de nouveaux contenus par rapport à ceux que j’ai pointés au fil de ma participation à différents travaux, par exemple dans la Commission de Réflexion sur l’Enseignement des Mathématiques (dir. Kahane J.P. 2003), où j’étais rédactrice principale de la partie La formation des maîtres du premier degré en mathématiques (notamment pp.8-11)25, mais elle a le mérite de les organiser et d’insister sur la spécificité des savoirs mathématiques pour enseigner.

Une mise en lien avait déjà été pointée par Ball & al. (2008, p.404) qui souligne par exemple la difficile séparation de Specialized Mathematical Knowledge de Knowledge of content and students. Une forme de recomposition a été étudiée et théorisée sous l’expression « vigilance didactique » par Charles-Pézard (Charles-Pézard 2010, Charles-Pézard & al. 2012).

En conclusion, mon approche des savoirs pour l’enseignement a été confortée et développée dans d’autres recherches. Au-delà de l’intérêt d’une carte conceptuelle des connaissances utiles à l’enseignant pour sa dimension descriptive, mais aussi prédictive et prescriptive (Ball & al. 2008 p 405), la dimension recomposition des savoirs reste dans toutes les recherches étudiées une question cruciale. C’est aussi une recomposition des savoirs, en relation avec les thèmes mathématiques, que j’avais essayé de modéliser par la déclinaison des stratégies de formation.

C. Question de genre et communauté de pratique

Mon analyse des pratiques de formation, l’émergence de régularités relativement aux domaines mathématiques et de variabilités relativement à la programmation me semblent entrer en résonance avec l’approche psychologique du métier de Clot (1999, 2000) : « Il existe des types relativement stables d’activités socialement organisées par un milieu professionnel au travers desquels le monde de l’activité personnelle s’accomplit, se précise, dans des formes sociales qui ne sont pas fortuites, ni d’un seul instant, qui ont une raison d’être et une certaine pérennité » (Clot & Faita 2000, p13).

Ce concept de genre est fécond dans les recherches liées aux enseignants notamment à partir de l’étude de leurs pratiques, par d’autres méthodologies (souvent une immersion participative) : comme l’ont montré Butlen & al. (2002), Ngon (2003), Peltier (dir 2004) dans leur étude d’enseignants exerçant en milieux difficiles.

Ce genre aurait été d’autant plus « absorbant » que, selon mon hypothèse, la COPIRELEM fonctionnerait (du moins aurait fonctionné) comme une communauté de pratiques26 (au sens de Wenger 1998) : elle peut en effet être considérée comme fruit d’une histoire partagée, liée à la production de pratiques locales (de formation mathématique des professeurs des écoles) et permettant la transformation d’une partie de ses membres (notamment en enseignants -chercheurs...). Il se pourrait alors que les situations d’homologie-transposition, identifiées par nos recherches et valorisées par les formateurs, participent au processus de réification.

V. Perspectives sur la formation des enseignants du premier degré

A. L’enrichissement de stratégies de formation dans la poursuite des IUFM

Cette question peut paraître caduque compte tenu de la disparition des IUFM, la possibilité d’un dispositif de formation étant soumise aux conditions et contraintes de l’institution dans laquelle il s’insère ; mais l’analyse de ce qui a existé permet aussi d’outiller le futur, à condition de l’adapter aux nouvelles conditions et contraintes.

Dans les années 2000 ont été intégrés dans les cursus de formation IUFM des séminaires d’analyse de pratique, expression générique qui a donné lieu à divers dispositifs. Je retiendrai deux types d’analyses de pratique parce qu’elles sont fondées théoriquement et que je les ai pratiquées toutes les deux.

La première est une analyse réflexive des pratiques, développée par Nadot (2005) et son équipe, et par exemple théorisée sous l’acronyme GEASE (Groupe d’Entraînement à l’Analyse de Situations Éducatives27). La priorité est donnée à la compréhension de la situation problématique retenue pour l’analyse. Celle-ci est énoncée telle qu’elle a été vécue par le protagoniste et écouter par les autres participants dont le formateur. Puis elle est travaillée : le problème professionnel28 soulevé génère des résonances avec les expériences vécues des participants du séminaire, qui proposent alors des hypothèses de résolution. C’est ainsi que le collectif avance dans le traitement du problème professionnel qui est devenu celui du groupe. Cette analyse de pratiques vise un travail sur le savoir du praticien dans la pratique (Schön 1983 avec les notions de réflexion en cours d’action et sur l’action) : il s’agit de comprendre la situation problématique, ce qui sous-tend les prises de décision, les perceptions, les jugements. Il s’agit d’expliciter les connaissances en acte du praticien sous l’hypothèse d’un savoir caché dans l’agir professionnel, d’un savoir intuitif. Je n’en dirai pas plus sur cette analyse à visée compréhensive, qui prend comme objet d’étude tout problème professionnel et pas uniquement ceux qui relèvent de la transmission des savoirs.

La seconde est une analyse didactique des pratiques, appuyée en mathématiques, en ce qui me concerne, sur la Théorie des Situations Didactiques conçue comme cadre d’analyse. Les séminaires d’analyse didactique des pratiques didactiques consistent à travailler collectivement sur une séance de classe filmée, menée par l’un des participants : observer le processus de dévolution, évaluer l’adéquation du projet de l’élève professeur à la régulation menée en cours de séances, à partir de l’observation du travail des élèves ; évaluer l’adéquation du projet de l’élève professeur aux connaissances apparentes visibles des élèves (celles montrées), à la progression suivie ; au

26 A l’instar des agents de réclamation d’une société d’assurance (Wenger (1998/2005 p.53), les membres de la COPIRELEM ont « développé une pratique qui leur permet d’accomplir leur travail en vivant une expérience satisfaisante à l’ouvrage ».

28 Parmi les problèmes évoqués : la difficulté à gérer tel enfant dans la classe ; la relation conflictuelle avec l’enseignant titulaire ; l’agitation des élèves face aux tâches proposées...
programme de la classe ; repérer les formes de l’institutionnalisation ; repérer des routines et leur degré d’efficacité. Bref ces séminaires essaient de revenir sur l’action didactique d’un enseignant : il s’agit de comparer l’activité réalisée et l’activité prévue, d’identifier la tâche, de mesurer l’écart entre l’activité programmée et l’activité effective. C’est aussi l’occasion d’enrichir/expliciter les diverses connaissances qui peuvent outiller l’enseignant qu’elles soient mathématiques, didactiques, et même pédagogiques. Lorsque j’avais développé ce type de séminaire à l’IUFM de Rouen (Houdement & Taveau 2000, 2001), j’avais fonctionné en co-intervention avec un formateur d’une autre discipline qui jouait le rôle du naïf dans l’analyse de la séance qui ne relevait pas de sa discipline. Ses questions permettaient souvent une explicitation plus fine de savoirs mathématiques et didactiques ; il était possible de montrer une transversalité de certains savoirs pédagogiques. C’était, malgré notre spécialité disciplinaire, une façon de traiter aussi de la polyvalence des élèves professeurs, par recherche d’invariants d’enseignement transcendant les disciplines.

Ces stratégies de recherche applicative sont une des composantes de l’étude des pratiques de professeurs des écoles débutants en ZEP (volontaires pour bénéficier de cet accompagnement et être ensuite observés) dans Charles-Pézard & al. (2012). Le dispositif (décrit chapitre 3 de l’ouvrage) est composé de cycles de trois types de situations dites : (1) d’information et questionnement (SIQ), sur une sélection de savoirs professionnels déterminés par les chercheurs (idem pp.53-60 ; (2) de compagnonnage (SC) « qui consiste à observer la classe de l’enseignant accompagné et à répondre individuellement aux questions effectives qu’il se pose » (idem, p.61) ; (3) d’échange et mutualisation des pratiques (SEM). Les différences entre ces types de situations de formation relèvent de la matière à l’étude (résultats de recherches dans SIQ ou pratique effective des étudiants SC et SEM) et des positions différentes qu’y ont enseignants-chercheurs et étudiants. Dans les SIQ se travaillent, par exemple, l’adaptation des programmations et des situations mathématiques aux caractéristiques des classes ZEP (en termes de consistance, découpage, statut du savoir...), mais s’étudient aussi des domaines mathématiques (calcul mental et géométrie) propices à installer un contrat d’instruction et des gestes professionnels en relation avec la gestion de la classe. On retrouve, comme je l’ai constaté dans mes travaux, l’utilisation de thèmes mathématiques fixés (conjuncturellement sensibles ?) pour faire passer des savoirs professionnels.

Il me semble que ce dispositif donne bien à voir la prise en charge par le dispositif de formation de la recomposition des savoirs, par un processus récursif, du temps long et par des aller-retour avec le terrain.

Le critère commun de ces dispositifs est l’engagement des étudiants dans une analyse de l’action enseignante. La matière à l’étude n’est plus un extrait ou une copie de la pratique, c’est une vraie pratique dans toute sa complexité. Les stratégies privilégient la transposition et la réflexion sur l’action. Une contrainte forte est la taille du groupe de formés.

B. L’influence des institutions dans laquelle s’insère la formation

J’avais fait un point lors d’un récent colloque sur la Formation des enseignants (Houdement 2011) sur l’impact de la première année de mastérisation sur la conception de la formation des enseignants. La mastérisation a assujetti la formation professionnelle au moule des maquettes de

29 Mais ces dispositifs coûteux n’ont pas perduré.
master, imposées par chaque université. Cela a profondément changé l’autonomie relative des formateurs sur la programmation des savoirs de formation, leur validation et leur adaptabilité au public effectif des étudiants. La mastérisation a imposé notamment de nouvelles formes de communication des savoirs (notamment les cours magistraux, travaux dirigés et travaux pratiques) ; or les choix stratégiques des formateurs étaient aussi liés au type de communication privilégiée. Comment ces stratégies s’adaptent-elles à ces contraintes ? Ou quelles nouvelles stratégies construire sous ces contraintes ?

La mastérisation actuelle semble avoir transformé une logique de formation à un métier unique (si on occulte la diversité des terrains sur lesquels il s’exerce et qui engage d’autres spécificités : maternelle ou élémentaire, milieux reconnus difficiles...) qui prévalait dans les instituts en une logique de certification[30]. Mais elle a d’autres conséquences.

Le schéma que nous utilisons pour décrire le système de formation est caduque ; il reposait sur une homologie institutionnelle de la classe de formation avec la classe du primaire : élèves et étudiants tenus à l’obligation de suivi des cours (ce qui n’est pas usuel pour les étudiants universitaires) ; taille du groupe classe entre 20 et 30 personnes ; temps longs de formation (remplacés par des cours plutôt denses par « semestre », c’est-à-dire trois quatre mois pour l’université) ; finalités homologues entre école et centre de formation : apprendre des savoirs à l’école, apprendre à enseigner en IUFM, (rompue par l’obligation de trouver plusieurs débouchés aux formations, pas seulement l’enseignement). Cette homologie, naturelle en école normale (les étudiants passaient de l’école à l’école normale, on parlait d’élèves-professeurs), reconstruite en IUFM (les étudiants formaient un groupe classe), ne résiste pas à la mastérisation. Le modèle est à repenser Quelle modélisation de la formation des enseignants qui intègre les nouvelles contraintes ?

Les acteurs de la formation ont changé. Certes les étudiants au professorat des écoles semblent toujours (et ce constat est partagé dans d’autres pays, voir par exemple Marchand 2010, pp.13-17) faire preuve de faiblesses conceptuelles, montrer une certaine anxiété face aux mathématiques et concevoir les mathématiques réduites à un ensemble de règles et de calculs. C’est différent pour les formateurs : les formateurs des années 1990 étaient des « didacticiens d’expérience » (Proulx & Gattuso 2010, p.8) ; actuellement ils sont progressivement remplacés par des « didacticiens certifiés » par l’université pour leurs connaissances en didactique : quel nouvel équilibre entre savoirs mathématiques, didactiques, pédagogiques ? Quelles stratégies de formation ?

Les ressources ensuite : si les savoirs didactiques se sont considérablement enrichis, il serait intéressant d’étudier quels concepts et/ou théories sont retenus pour la formation des enseignants : Bednarz (2010, p.188) déclare que pour la formation des enseignants du secondaire, les choix et les raisons des choix de tel ou tel concept sont rarement explicitées. Je peux faire la même remarque pour la formation en primaire. Il serait intéressant d’étudier de façon plus approfondie l’intégration des savoirs didactiques dans la formation des enseignants : quels savoirs sont jugés prioritaires, sous quelles formes sont-ils enseignés ? Ce qui recoupe la question des stratégies.

C. Perspectives de recherche sur la formation des enseignants

Des perspectives de recherche ont déjà été amorcées dans le paragraphe qui précède. Un programme de recherche est proposé ici : préciser les savoirs utiles pour l’enseignant, étudier les conditions et contraintes de la formation pour la formation à ces savoirs.

La pertinence de trois types de savoirs mathématiques, didactiques et pédagogiques utiles à pour enseigner n’est plus à démontrer, elle fait consensus. Cela ne règle pas la question de leur énumération, du moins à partir du moment où ils sont explicites (ce qui n’est pas le cas d’une

[30] En effet la somme des validations nécessaires pour l'obtention des ects dépasse de beaucoup ce qui s’était stabilisé dans les IUFM. Et il y a toujours un concours.

Quels sont donc tous ces savoirs mathématiques spécifiques thématiques pour enseigner, nécessaires aussi aux enseignants du secondaire, pourtant acculturés aux mathématiques ? Ma (1999) avait déjà relevé la différence entre le « profound understanding of fundamental mathematics (PUFM) » possédé par les enseignants chinois et les connaissances mathématiques mal reliées entre elles des enseignants américains. Cette question des savoirs mathématiques utiles pour la profession, est cruciale dans tous les pays, pour l’enseignement primaire (Askew 2008) ou secondaire (Cirade 2010). L’énumération et la mise en réseau des savoirs spécifiques pour enseigner pourrait passer par l’écriture de traités (Neyret 1995) dont je paraphrase la définition : un traité est un texte de savoir, produit par une institution transpositive (un auteur ou un collectif), appartenant à la sphère de production du savoir ou très proche de celle-ci, à partir duquel on peut générer l’ensemble des connaissances liées à l’enseignement d’un savoir ou domaine de savoir.

Quelle recomposition des deux types de savoirs, mathématique et didactique dans la formation des enseignants ? Cours de mathématiques et de didactique juxtaposés ou cours intégrant ces deux types de savoirs ? Quel impact de ces modes de formation sur les « déficits » des étudiants en mathématiques : faiblesses conceptuelles, anxiété, conception de l’enseignement des mathématiques ?

Beaucoup serait sans doute à apprendre d’une étude plus fine d’institutions de formation dans d’autres pays. Prenons par exemple le Québec, ce pays possède une culture proche de la France sur les plans linguistique et didactique, mais des aperçus sur la formation des enseignants au Québec (Proulx & Gattuso, dir. 2010) montrent des différences avec la formation des enseignants en France.

Sur les savoirs prioritaires : si la formation didactique pour les enseignants fait consensus au Québec (sans que pour autant soient définis ses contenus), ce n’est pas le cas de la formation mathématique, dont il est encore nécessaire de prouver la nécessité. En France ce serait plutôt le contraire ; la nécessité de savoirs mathématiques (et éventuellement didactiques) est déjà très réglée par les contenus d’un concours (qui n’existe pas au Québec). Dans les deux cas est à questionner l’adéquation des contenus de formation (ou du concours) aux connaissances utiles à l’enseignement, déjà sur le plan des connaissances mathématiques.

Sur des possibles et des contraintes, la diversité des composants est bien là : université (stabilisée au Québec, nouvelle en France depuis 2010) ou école professionnelle (IUFM jusqu’en 2010, temps plus ou moins long de formation (au Québec quatre ans, en France durée plus courte), corps des enseignants homogène ou hétérogène, certification imposée ou à construire... Ainsi au Québec, le changement de posture travaillé est celui d’élève à étudiant universitaire (DeBlois 2010), alors que les pratiques françaises héritent d’une longue histoire de formation en institut qui visait le changement de posture d’élève à enseignant. Est il possible de trouver au Québec des pratiques de formation stabilisées, compte tenu de l’autonomie relative des universités, de l’absence d’institutions régulatrices comme un concours ou d’une communautés constituée de formateurs en mathématiques ?

31 Un exemple de traité est celui de Condorcet (1794) sur la numération et le calcul.
Si les savoirs de formation nécessitent d’être explicités, la question de l’enseignement de ces savoirs n’est pas non plus réglée : elle est fortement dépendante des conditions et contraintes qui entourent la formation. Quelles influences potentielles des formes portées par l’institution dans laquelle s’insère la formation ? Peut-on toujours considérer les stratégies de formation comme un état d’équilibre entre les possibilités offertes par les conditions et contraintes des institutions, et les définitions disponibles des savoirs de la profession, mathématiques, didactiques et pédagogiques ?
Géométrie et formation des enseignants

Cette partie a fait l’objet de mes préoccupations de recherches de 1998 à 2004, en étroite collaboration avec A.Kuzniak, qui a déjà produit une synthèse de ces recherches (Kuzniak 2003). Il serait assez complexe d’en produire une autre alors que je n’ai pas poursuivi de travaux en géométrie. Je décrit ici la genèse de notre approche et dégage des apports pour la recherche et/ou la formation que je pense substantiels.

I. Quelle motivation pour ces recherches ?

Nos travaux sur la formation des maîtres (Houdement & Kuzniak 1996) ont fait apparaître des relations entre types de stratégies utilisées en formation et domaines mathématiques traités en formation, selon la disponibilité de résultats de recherches en didactique, les connaissances et conceptions des étudiants et les pratiques sur le terrain.

Dans cet ensemble, un domaine a retenu notre attention, notamment en raison de sa relative pauvreté par rapport aux autres thèmes : il s’agit de la géométrie.

La géométrie concentrait donc a priori plusieurs handicaps : un déficit de connaissances chez les étudiants, peu de travaux en didactique, auxquels s’ajoutait un désamour, non seulement des étudiants, mais aussi des enseignants de l’école primaire que ce domaine n’inspirait guère. Au collège au contraire, nombreux sont les professeurs qui concentrent l’essence des mathématiques dans la géométrie, à l’instar des mathématiciens grecs.

Les stratégies développées pour étudier les thèmes géométriques en formation semblaient plutôt relever de l’homologie (Houdement & Kuzniak 1996), et utilisées pour mettre à jour les connaissances géométriques « communes » (Ball & al. 2008) des étudiants ou stagiaires, avec peu d’éléments de transposition. Il est vrai que le Specialized Mathematical Knowledge (idem) et les travaux didactiques sur ce domaine (ceci expliquant cela) étaient peu développés.

Je me suis en quelque sorte engagée dans une refondation de la géométrie à enseigner.

II. Deux points de vue emblématiques

Mon objectif n’est pas de recenser toutes les études faites sur la géométrie, mais de rappeler celles qui s’engageaient dans une visite globale, propre à une refondation de la géométrie, dans une perspective de formation des maîtres.

Deux séries de textes fondateurs ont marqué les années 1980. Celui de Brousseau (1983) appelle à une vigilance épistémologique pour cette théorie « achevée » du point de vue scientifique qui ne se

32 Ce qui explique les alternances entre le « nous » (travail Houdement- Kuzniak) et le « je » (analyse rétrospective et compléments).
33 En 1992 Berthelot & Salin (p.190) affirmaient : « L’identification de situations fondamentales permettant d’engendrer des situations d’initiation à la géométrie est encore un objet de recherche. ».
34 La grande majorité des maîtres formateurs IMF et PEMF (professeurs des écoles titulaires d’un examen qui reconnaît leur expertise et les déclare aptes à former leurs pairs) déléguait (et déléguait toujours en 2012) la géométrie au maître partenaire qui assurait un tiers (un quart ensuite) de leur service d’enseignement.
35 Au sens connaissances de collège ou de lycée

Nos travaux se revendiquent de cette vigilance épistémologique en amont des ingénieries didactiques.

III. Le problème de la formation des enseignants

Mes préoccupations de formateur m’incitent d’une part à établir des filiations entre les mathématiques des différents niveaux d’enseignement (école, collège, lycée), d’autre part à prendre en compte les connaissances mathématiques initiales des adultes qui viennent en formation pour les enrichir. Cette attention aux connaissances initiales des étudiants me renvoie aussi des informations sur les souvenirs géométriques de leur scolarité antérieure.

Explicitons par un exemple issu de la copie d’Amélie. Amélie est une étudiante licenciée qui prépare le concours pour devenir professeur des écoles. Il s’agit de l’exercice suivant « Tracez à la règle et au compas un triangle T dont les longueurs des côtés mesurent en cm : 3, 5 et 7. Est-ce un triangle rectangle? Justifiez. ».

Amélie ne se contente pas d’une évidence perceptive (pas d’angle droit) ou d’une expérience rapide (grâce à l’équerre, pas d’angle droit), ce qu’elle serait en droit d’attendre de ses futurs élèves de l’école primaire. Elle cherche à prouver la validité de sa réponse par un raisonnement appuyé sur une expérience et des connaissances géométriques non triviales (contraposée d’un théorème). Mais sa preuve ne revêt pas les caractéristiques attendues des démonstrations de collège, dans la mesure où elle s’appuie sur le dessin effectué.

Que nous donne-t-elle à voir ? Sa vision de la géométrie de l’institution concours de professeurs des écoles qui, en l’occurrence, évalue comme en fin de collège les productions des candidats : construction d’une figure à la règle et au compas, production d’un texte appuyé sur un théorème. Je fais l’hypothèse qu’Amélie a conscience de la distance entre l’attendu du primaire et celui du concours, elle nous donne à voir certaines bonnes formes (un texte, un théorème) d’une démonstration, mais ne joue pas « comme il
faudrait », ne se détachant pas suffisamment du dessin. Sa production est-elle pour autant vide de raisonnement géométrique ? Pourtant elle pourrait être rejetée par les correcteurs du concours. Quelles erreurs commet-elle ? Cette étude est cruciale dans une perspective de formation des enseignants, suspendue entre géométrie de l'école et géométrie de collège-lycée.

Nous deux hypothèses fondatrices ont été les suivantes.

- Des paradigmes différents et cohérents sont englobés sous le terme unique de géométrie. L'existence de ces différents paradigmes explique en partie la rupture que l'on rencontre dans l'enseignement, entre école et collège, puis entre collège et lycée.

- Étudiants (des IUFM), enseignants et élèves de l'école primaire se situent implicitement dans des paradigmes différents : cette différence de position épistémologique est source de malentendus pédagogiques.

Nous avons développé un cadre théorique qui a permis de valider les deux hypothèses ci-dessus. Ce cadre est inspiré des trois synthèses dialectiques de Gonseth (1945-1955), il repose sur une vision de la géométrie élémentaire enseignée (géométrie euclidienne de R^3) en trois paradigmes.

Expliquons d'abord la pertinence de « paradigme » pour notre sujet.

Kuhn (1970, p.46) précise que « Les paradigmes gagnent leur rôle privilégié parce qu'ils réussissent mieux que leurs concurrents à résoudre quelques problèmes que le groupe de spécialistes est arrivé à considérer comme aigus ». Toujours selon Kuhn (1970), un paradigme est composé d'une théorie qui guide l'observation, de méthodes et de critères de jugement qui permettent la production de nouvelles connaissances. Un paradigme est ainsi lié à une communauté : cell-ci participe de sa définition et guide le travail du scientifique, le paradigme est « ce que partagent ses membres [un groupe particulier de spécialistes] qui explique la relative plénitude des communications sur le plan professionnel et la relative unanimité des jugements professionnels » (Kuhn 1970, p.248). La notion même de paradigme est pour Kuhn constitutive de la science : « la science doit contenir en elle un moyen de rompre avec un paradigme pour passer à un autre, meilleur que le premier » (Chalmers expliquant Kuhn, p.164), mais simultanément l'abandon d’un paradigme au profit d’un autre ne peut se faire de façon logique : selon Kuhn les paradigmes sont incommensurables.

Dans sa postface de 1969, Kuhn enrichit cette notion de paradigmes en y intégrant l'idée de problèmes (Kuhn 1970, p.255) : la compréhension d’un paradigme et de ses lois par un étudiant se réalise à travers la résolution de problèmes normaux de la communauté, sur lesquels celui-ci, avec l’aide de son instructeur, construira des analogies, acquerra « une manière de voir autorisée par le groupe et éprouvée par le temps » (Kuhn 1970, p.258).

Revenons sur la géométrie élémentaire. Nous l’envisageons composée de trois paradigmes : la Géométrie 1 (Géométrie Naturelle), la Géométrie 2 (Géométrie Axiomatique Naturelle), la Géométrie 3 (Géométrie Axiomatique Formaliste). Cette approche a le mérite d’une part d’organiser l’histoire de la géométrie depuis les Grecs jusqu’à l’apparition des géométries non euclidiennes autour de ruptures, d’autre part d’identifier des micro-ruptures nécessaires à la pensée géométrique d’un expert.

IV. Les paradigmes géométriques

A. La Géométrie 1

Dans les pratiques usuelles, ce sont souvent des objets du micro-espace (Berthelot & Salin 1992) qui sont censés représenter, dans un espace petit et propice à des contrôles, des objets réels plus grands ou plus complexes. Ils sont donc le fruit d’une première modélisation même des plus élémentaires : le trait tracé à la règle refuse les aspérités, le cercle tracé au compas est le produit d’une activité instrumentée représentant le « rond ». Ce sont des productions « commodes » notamment pour la reproduction et la description : le cercle est ainsi plus commode que l’ellipse, pourtant souvent meilleur image du rond ou de formes arrondies.

« Une figure est ce à quoi l’esprit réduit un corps quand il en fait l’étude au point de vue purement géométrique » Charles Méray (1903) cité par Fourrey38 (1907). L’esprit n’est pas absent de cette Géométrie 1, même si les objets sont matériels et proches de la réalité.

Ces objets ne sont déjà plus aussi uniques que leurs référents matériels : ils sont le fruit d’une première classification, par le choix des mots (comme dans tout processus de nominalisation) : quadrilatères, carrés, rectangles…. Ce sont déjà aussi des objets mentaux : un trait droit sur le papier, s’il est nommé droite, doit être pensé comme un trait rectiligne, illimité, infini….. L’expression carré désigne un objet géométrique, ligne brisée fermée polygonales de quatre segments de même longueur et perpendiculaires deux à deux (ou la surface intérieure à cette frontière) et est représentable par un carré graphique quelconque.

Les savoirs géométriques ont leur place ; s’ils sont organisés, c’est plus par proximité sémantique (par exemple par utilité dans différents métiers) ou par visée didactique (tous les savoirs sur le triangle) : par exemple Arnauld (1667, Nouveaux éléments de géométrie) et Clairaut (1741, Éléments de géométrie) présentent la géométrie, en rupture avec la rigueur grecque, comme un ensemble d’idées sensibles et de procédures de bon sens, édifiées par degrés et fondées sur l’évidence. En Géométrie 1, il n’existe pas de programme d’organisation des savoirs géométriques (Arsac 1987) par un critère logique, comme dans les traités grecs avec la règle hypothético-déductive.

Pour les problèmes de cette Géométrie, il est normal (au sens de problèmes « normaux »39 de Kuhn) de s’intéresser à un moment donné à des traces spatio-graphiques ou des maquettes, soit qu’elles sont données comme point de départ, soit que le résolveur est conduit ou prend la décision de les construire. Les techniques (au sens de Chevallard 1999) s’appuient sur l’utilisation des instruments dits usuels de géométrie (règle graduée ou non, équerre, compas, rapporteur), mais aussi sur le pliage, le découpage, le calque…. Les tâches peuvent être précisées par le choix des instruments autorisés : c’est ainsi que le mesurage est une technique lictre et courante en Géométrie 1, mais il existe aussi des problèmes résolubles en Géométrie 1 sans mesurage, comme l’illustreront plus tard Keskessa, Perrin & Delplace (2007). L’expérience usuelle dans ce paradigme est le dessin instrumenté.

Les modes d’accès aux connaissances sont de trois types : l’intuition, comme la reconnaissance perceptive de certains dessins (c’est un carré je le vois), l’expérience, notamment liée à des instruments (c’est un carré, il a 4 angles droits constatés avec l’équerre et 4 côtés de même longueur,

39 Les problèmes « dont on peut supposer qu’ils ont une solution, tant que l’on tient le paradigme pour acquis » (Kuhn 1970, p. 63)
vérifiés avec la règle graduée ou le compas ou ...), mais aussi le raisonnement : notamment dans la faculté de mobiliser des connaissances non convoquées pour en déduire des nouvelles.

En effet il serait faux de croire que cette géométrie est vide de raisonnements. La Géométrie 1 comporte déjà différents niveaux de raisonnement. En voici deux exemples.

A l’école primaire, pour la reproduction du dessin ci-contre, l’élève qui réussit a sans doute testé (et validé) l’hypothèse du centre du cercle comme point de rencontre des diagonales du carré (ou convoqué cette connaissance). En général les élèves de cycle 3, après avoir terminé le tracé du carré, cherchent en tâtant où « poser la pointe » du compas pour que la mine graphite du compas soit le plus proche possible des quatre sommets du carré.

Voici une figure composée d’un carré et d’un cercle.
Vous devez la reproduire, la figure est déjà commencée : deux côtés du carré sont déjà tracés.

Exercice extraits d’Évaluations nationales de 6ème.
Résultats corrects (1997).
Pour le carré : 94,3%
Pour le cercle : 63,6%

Les raisonnements dynamiques, voire mécaniques, sont autorisés en Géométrie 1, telle cette démonstration du Théorème 1 des Éléments de Géométrie d’un Maître de Conférence à l’École Normale Supérieure (Briot⁴⁰ 1863 page 4) « Par un point C pris sur une droite AB, on peut élever une perpendiculaire sur cette droite, et on ne peut en élever qu’une » ci-dessous :

Imaginons que la droite CD, coïncidant d’abord avec CA, tourne dans le plan autour du point C ; l’angle ACD ira en augmentant d’une manière continue, tandis que l’angle DCB ira en diminuant ; mais le premier angle, d’abord plus petit que le second, finit par devenir grand ; donc il y a une position CE de la droite pour laquelle les deux angles adjacents sont égaux, et il n’y en a qu’une. Dans cette position, la droite CE est perpendiculaire à AB. Ainsi, par le point C on peut élever une perpendiculaire CE à la droite AB, et on n’en peut en élever qu’une.

La validation reste empirique, par confrontation à la réalité et par jugement de cette adéquation, notamment la résistance à toute expérience réelle ou mentale.

La Géométrie 1 n’est donc ni naturelle, ni spontanée, ni vide de raisonnement. Elle dépasse le traitement du simple cas particulier et se donne les moyens, par des expériences mentales, de résoudre des problèmes généraux, d’élaborer des propriétés, mais sur un champ restreint d’objets : elle représente donc un premier passage du particulier au général, par une approche inductive. Par exemple la somme des angles d’un triangle est un angle plat est une loi de Géométrie 1 qui peut s’obtenir par des expériences répétées matérielles (découpage et juxtaposition des trois angles d’un

triangle) ou expérience virtuelle calculatoire dans un logiciel de géométrie dynamique. Cette loi n’est pas réfutable, elle décrit donc au mieux la réalité. La Géométrie 1 s’est constituée comme une science physique des objets épurés (Chevallard & Jullien 1991 parlent d’une science de l’espace) sur lesquels elle a établi des lois qui résistent à la validation expérimentale ou à l’expérience mentale.

B. La Géométrie 2

La Géométrie 2 prend pour objects d’étude des objets idéels. Est constitutive de sa définition une organisation des savoirs. Cette organisation des résultats produits sur l’espace n’est pas fondée par exemple sur des analogies de fonction (par exemple lister les « formules » géométriques qui servent à un corps de métier particulier), mais elle s’appuie sur un principe organisateur, au départ externe à ces savoirs, la déduction logique.

D’où la nécessité de définitions premières, d’axiomes, comme chez Euclide « Le point est ce qui n’a aucune partie. Les extrémités d’une ligne sont des points. ». Les Éléments d’Euclide que Dedron & Itard (1959) cite comme premier législateur de la géométrie, sont un prototype de Géométrie 2. Les axiomes proposés dans la Géométrie euclidienne sont fortement appuyés sur les objets et les lois de la Géométrie 1, conservant ainsi un lien fort avec l’espace sensible, d’où le qualificatif d’Axiomatique Naturelle qu’avait choisi Gonseth (1945-55). Les modes de pensée sont toujours liés à l’intuition (Fischbein 1993), l’expérience et la déduction ; mais le mode de production des connaissances (qui s’appellent dans ce paradigme Théorèmes) est le raisonnement hypothético-déductif, dont la démonstration est emblématique. Arsac (1999) insiste sur le lien profond entre figure (diagramme) et texte dans la démonstration grecque ; le diagramme permet d’atteindre l’objet géométrique dans la science normale que sont les mathématiques grecques, le texte grec ne peut faire l’économie du diagramme. Il s’agit là d’objets conceptuels au sens de Bunge (1983), qui ne sont définis que par la théorie dans laquelle ils s’insèrent. Ce regard sur la figure est complètement différent de celui porté par la Géométrie 1. En Géométrie 1, la figure-schéma n’est qu’une interprétation de la réalité, elle concentre les informations et son étude permet d’en déduire de nouvelles. En Géométrie 2, la figure diagramme est définie par le texte et le texte est complété par la figure (Arsac et Parzysz dès 1989 ; Fischbein 1993) ; mais l’apprenti-géomètre peut inférer du dessin des informations non avérées (Laborde & Capponi 1994) et construire des enchaînements que l’expert contrôlerait par la déduction logique (et que le l’apprenti-géomètre contrôle souvent par la réalité).

Dans ce paradigme, la dialectique figure-texte permet d’avancer, les instruments matériels aident à l’heuristique, mais seul le raisonnement hypothético-déductif permet de construire de nouvelles connaissances à partir de résultats avérés.

C. La Géométrie 3

J’en dirai peu sur ce paradigme car il est culturellement peu convoqué dans les savoirs de l’école obligatoire. Ses objets sont aussi conceptuels, insérés dans une théorie qui leur donne une signification, le raisonnement hypothético-déductif est le moteur et la source des nouvelles connaissances. Mais le lien avec la réalité n’est plus revendiqué comme l’affirme Wittgenstein41 : « Les axiomes de la géométrie peuvent en contenir aucune vérité ». La Géométrie 3 a émergé avec la naissance des géométries non euclidiennes (Géométrie hyperbolique de Lobatchevski 1829, géométrie de Riemann 1854) : le programme de cette géométrie est de minimiser le nombre d’axiomes et d’obtenir une axiomatisation complète, caractéristique d’un changement de géométrie (Freudenthal 1971, p.428-429). C’est le cas des Fondements de la Géométrie de Hilbert (1899) : les axiomes de base ne renvoient à aucune réalité privilégiée, la figure n’est plus constitutive de l’objet géométrique ; Hilbert est le premier mathématicien qui définit la liste complète des axiomes de base (Arsac 1999).

D. En résumé

Cet éclatement de la géométrie élémentaire s’appuie sur les différences de relation au réel, le statut donné aux dessins et le type de preuve constitutive du paradigme.

La géométrie 1 est le fruit d’une mathématisation horizontale (Treffers 1991) en épurant les objets de l’espace local, en les réduisant à des combinaisons d’éléments « simples » que sont les points, les lignes et les plans, parmi lesquels elle identifie certains assemblages qu’elle nomme et dont elle repère les propriétés, notamment pour les reproduire. Le dessin reste un objet d’étude et de validation. Les raisonnements licites sont basés sur l’évidence et la construction.

La géométrie 2 correspond plutôt à plutôt une mathématisation verticale (Treffers 1991) qui rend compte de l’espace local en organisant logiquement ses propriétés : c’est la modélisation reconnue « la plus commode » par notre expérience de l’espace local (Poincaré 1902, p.94). Les raisonnements doivent être conformes à des principes de son organisation logique désormais internalisée. La figure est une aide heuristique puissante, compte tenu du rôle qu’a joué l’expérience dans la construction de cette géométrie.

Le dessin a un double statut : entre schéma de l’espace (qu’il modélise localement) et représentation graphique de l’objet géométrique (qu’il donne à voir) ; il n’est plus objet d’étude, mais support du raisonnement. Le raisonnement est de type hypothético-déductif.

La géométrie 3 est un modèle théorique, qui peut être coupé de la réalité de l’espace local. Ses objets sont définis textuellement. Le dessin est un modèle (au sens de maquette) de l’objet théorique. Le raisonnement est de type hypothético-déductif.

V. La valeur pragmatique des paradigmes

A. Modéliser la géométrie élémentaire (modèle épistémologique)

On peut supposer une lente genèse du domaine géométrique par accumulation de techniques de l’espace (Chevallard 1991) qui répondent à des problèmes spatiaux, mais aussi rituels et mythiques (Keller 2004). Les Sulvasutra, (Goldstein 1989), les Traités du Cordeau indiens (entre VIIIème et IVème siècle av. J.C.) qui relaient par écrit des techniques de construction des autels, relèvent du premier type, le carré d’un espace de base est le résultat d’une manipulation utilisant pieux et tige de bambou ; ces textes indiquent des techniques, avec tige et cordeau, de transformation d’une figure en une autre (par exemple un carré en un cercle), conservant la même aire, imposée par le rite.

Les divers traités dont la vocation première était de recenser ont sans doute conduit les hommes à des idées de généralisation, donc indirectement de preuve : mais on sait que la preuve n’est pas uniquement associable à l’idée de démonstration (Arsac 1987, Balacheff 1987). Goldstein (1989) signale que les Sulvasutra d’Apastamba proposent des programmes de conversion du cercle en carré et du carré en cercle qui ne sont pas réciproques, ni par la procédure, ni par le résultat (compte tenu des autres calculs du texte) : les Sulvasutra ne visent pas la recherche d’une cohérence logique interne au traité, la cohérence est autre.

Une autre ambition habite les Éléments d’Euclide (300 avant J.C.) : un programme de mise en ordre systématique des connaissances partagées sur l’espace qui se traduit par des mots premiers, des axiomes de base, une organisation locale en différents îlots discursifs (Chevallard 1991, p.54) tels le théorème de Pythagore ou celui de Thalès. « Dans le cadre de la théorie platonicienne des idées la

42 Treffers (1991) considère deux formes de mathématisation : la mathématisation horizontale, où des outils mathématiques sont utiles un problème concret, typique d’une approche empiriste la mathématisation verticale, qui consiste en opérations et réorganisations dans le monde mathématique, dominante d’une approche structuraliste.

Au XIXème, la découverte d’une pluralité de théories géométriques (géométrie hyperbolique de Lobatchevski-Bolyai en 1829, géométrie de Riemann 1854) aurait pu re-transformer la géométrie en « authentique chapitre de la physique » (Gonseth 1939, p.15). Une nouvelle rupture, la priorité donnée à la consistance et à la logique interne des théories (géométrie vue comme étude des propriétés invariantes par un groupe de transformations opérant sur un ensemble, programme d’Erlangen de Félix Klein 1872) a donné définitivement un statut à la géométrie euclidienne moyennant une ré-axiomatisation cohérente : les axiomes (des « définitions déguisées » selon Poincaré) ne sont pas vrais, ils ont été choisis pour obtenir une « géométrie commune », accordée à ce que renvoient sur l’espace nos sens (Poincaré 1902, p.76 ; 94).

Cette brève incursion historique conforte ma vision de la genèse historique en trois paradigmes que la Géométrie 1, Géométrie 2 et la Géométrie 3, faisant varier le statut des objets géométriques et le type de preuve. Cette vision en trois paradigmes recouvre une analyse des variations de la démonstration au cours de l’histoire. Arsac (1987, 1999) reprenant plusieurs études met en avant les liens entre l’évolution des procédés de preuve, la complexité des problèmes à résoudre et le niveau d’élaboration des concepts. Ces différences peuvent être liées au but que se fixe l’auteur du traité : but didactique (Barbin 1988) s’il s’agit de « conquérir » ou d’éclairer (ainsi Clairaut 1741) un public nouveau ou but scientifique s’il s’agit de convaincre ses pairs. Certains mathématiciens, tel Hilbert (Arsac 1999, p383) ont visé les deux buts.

Ainsi il y aurait plusieurs mouvements fondamentaux dans la genèse de la géométrie :

1- passer de la réalité de l’espace sensible à des représentations (mots précis du langage et traces graphiques 2D ou maquettes 3D) censées rendre compte de la réalité de façon suffisante compte tenu des questions qu’on se pose, créer les instruments adaptés,
2- considérer ces représentations comme un modèle de l’espace sensible, sous l’hypothèse de similitude ; notion d’épure43 (Chevallard 1991 reprise par Berthelot & Salin 1992) ; étendre cette notion de similitude aux représentations,

ces deux premiers points participant à ce que Gonseth (1939, p.8) nomme « espace représentation » par opposition à « espace physique ».

3- considérer le travail sur les représentations comme un travail en soi : les représentations figurales se constituent en registre sémiotique (Duval 1988, 2005) au même titre que le langage ; notion de schéma44 (Chevallard 1991 reprise par Berthelot & Salin 1992) ; les objets deviennent idéels,
4- passer à des objets conceptuels et projeter un programme d’organisation de connaissances géométriques grâce à un principe extra-géométrique, les règles hypothético- déductives,
5- parfaire le programme logique et l’étendre.

Le cadre des paradigmes ne prend pas en charge la question 1 du passage de l’espace réel, hétérogène, isotrope aux modèles matériels qui sont censés permettre son étude. Par contre les points 2 et 3 sont intégrés dans la Géométrie 1 et le point 4 rend compte de l’évolution vers les Géométries 2 et 3, la Géométrie 3 se retrouvant dans le point 5.

43 Dessins en grandeur réelle ou homothétiques au réel
44 Traces graphiques sur lesquelles peut s’exercer le raisonnement géométrique
B. « Qualifier » des raisonnements d’étudiants ou d’élèves

Pouvoir simultanément revenir sur le travail géométrique des étudiants (par exemple la copie d’Amélie) en lui reconnaissant une légitimité et en pointant ses limites est un enjeu fort de la formation : Amélie travaille sur l’exercice du triangle dans une optique de Géométrie 1, puisqu’elle valide certaines de ses affirmations par le recours à la figure, même si elle fait la preuve de sa connaissance de propriétés géométriques avérées en Géométrie 2. Les paradigmes géométriques permettent déjà de mettre en mots ce décalage entre produit et attendu, décalage qui peut être interprété comme un obstacle didactique (Brousseau 1998) : ils permettent de préciser les lectures licites du texte, du dessin et les raisonnements autorisés.

Ingilis & al. (2007) pointent cette capacité d’élèves, qu’ils appellent qualifier, à décider, dans le contrat usuel de la géométrie à l’école secondaire (Géométrie 2), du statut d’une affirmation produite : plausible ou certain. Les paradigmes géométriques sont des outils d’aide à la qualification du raisonnement : un raisonnement en Géométrie 1 produit au mieux un résultat plausible en Géométrie 2, seul un raisonnement licite en Géométrie 2 donne la certitude.

C. Enrichir des stratégies de résolution de problèmes géométriques

Considérons le problème suivant assez classique pour des élèves entre 11 et 14 ans dans maints pays du monde (Houdement 2007b), qui évoque la détermination d’une distance inaccessible.

Trouver la hauteur h du poteau en vous appuyant sur la schématisation ci-dessous.

![Schéma du problème](image)

Ce problème au départ n’est pas posé dans le paradigme Géométrie 2 dans la mesure où un grand nombre d’informations (dont les angles droits) sont à inférer du dessin et/ou de la réalité qu’il évoque (verticalité des poteaux). Ce n’est pas non plus un problème spatial dans la mesure où tout est déjà schématisé. Plusieurs stratégies de résolution sont possibles.

Ce problème peut être traité (stratégie A) par le tracé d’un dessin (une épure) à l’échelle 1/100, très commode, avec une conservation « approximative » des angles ou du parallélisme données par le dessin, conforté par le point de vue classique sur la verticalité d’une personne debout et de poteaux. Le mesurage de la longueur h sur le dessin et la déduction de la mesure de la hauteur du poteau fournir une réponse pour la hauteur h : entre 10 m et 10,3 m. Les connaissances utiles sont essentiellement la proportionnalité (cadres numérique et géométrique).

Ce problème peut aussi être traité textuellement (stratégie B) : le dessin devient figure moyennant l’intégration d’hypothèses « raisonnables » (deux droites coupées par trois droites parallèles, les « verticales »). Les conditions du théorème de Thalès sont remplies dans un triangle obtenu par
l’ajout d’un tracé auxiliaire. La stratégie choisie relève cette fois de la Géométrie 2 (réponse B). Mais la construction d’une sous-figure correspond à une technique de Géométrie 1, à la recherche d’une figure prototypique de Géométrie 2, les triangles semblables. Cette technique, dans la Géométrie 1 n’est ni évidente, ni spontanée comme l’a précisé notamment Duval (1988, 2005) : il faut penser à déconstruire la figure initiale (un trapèze) en deux sous figures dont un triangle justement parce que ce triangle est la clé d’entrée dans un processus de déduction d’un nouveau résultat à partir des données.

Remarquons que le paradigme de la Géométrie 1 est, dans ce cas, encapsulé dans celui de la Géométrie 2, ce qui fait qu’il reste souvent invisible.

Peut-on parler d’une meilleure stratégie entre A et B ? Non, compte-tenu du manque d’enjeu du problème tel qu’il est posé ici. Oui, si ce problème est inséré dans une institution qui impose le paradigme. Oui, aussi dans la réalité si la réponse demandée est contrainte par une précision fixée, autrement dit s’il y a pression sur la marge d’approximation : en effet la stratégie B permet de contrôler la précision de la réponse, aussi finement que souhaité, en supposant que celle des données réponde aussi à cette précision. A défaut les nombres proposés, dans ce contexte d’évocation de la réalité, peuvent apparaître comme des résultats de mesurage, donc prétexte à une certaine imprécision : un traitement en Géométrie 1 semble alors très efficace.

On peut faire valoir que la résolution en Géométrie 2 présente une économie de tracé, une amélioration de la précision de la réponse et une généralisation plus rapide : c’est vrai (et ce pourrait être un argument pour l’entrée dans la Géométrie 2) mais pour un problème local, les deux démarches offrent globalement le même coût (dessin versus Thalès) et nécessitent des raisonnements non triviaux mettant en jeu de la proportionnalité.

Cet exemple aide à dépasser la vision première des relations entre Géométrie 1 et Géométrie 2 : la Géométrie 2 relève de la technologie, voire théorie (Chevallard 1999) de la Géométrie 1. L’exemple précédent montre encore que ce n’est pas si simple, dans le travail géométrique (par exemple réponse B) s’instaure un jeu entre les deux paradigmes : l’analyse de la figure et la construction d’un tracé auxiliaire demandent un travail dans en Géométrie 1 piloté par la Géométrie 2 qui nécessite que la solution se déduise de résultats avérés (ici le théorème de Thalès).

On pressent à travers cet exemple que la dialectique exact –approché, usuelle pour le numérique, constitutive du rapport au réel et visible ici par la précision des mesures, est aussi présente dans le géométrique et que notre cadre permet de lui donner une place.

45 il existe bien d’autres procédures possibles...
D. Mettre en cohérence l’exact et l’approché

Prenons un exemple (Houdement & Kuzniak 2003, Houdement 2007a), particulièrement révélateur de l’ambiguïté que porte l’institution²⁶ collège tout entière sur la question du rapport à la géométrie, en prônant l’exclusion de certaines techniques géométriques, croyant par là-même maintenir les élèves en Géométrie 2. Ce rapport est souvent explicité dans les pratiques et dans les manuels scolaires par des injonctions aux élèves : dans le manuel *Cinq sur Cinq 5ème* (Hachette 2000), on peut lire page 135 « L’utilisation des instruments permet seulement de se faire une idée, plus ou moins juste, de certaines propriétés de la figure. » ou encore dans *Triangle 4ème* (Hatier 2002, page 94) « Une constatation où des mesures sur un dessin ne suffisent pas pour prouver qu’un énoncé de géométrie est vrai ».

\[\text{Construire un carré } ABCD \text{ de côté } 5 \text{ cm.} \]
\[\text{Calculer } BD. \]
\[\text{Placer le point } I \text{ de } [BD] \text{ tel que } BI=2,8 \text{ cm puis le point } J \text{ de } [BC] \text{ tel que } JC=3 \text{ cm.} \]
\[\text{La droite } (IJ) \text{ est-elle parallèle à la droite } (DC) ? \]

Ce problème comporte une question de construction, il s’agit de produire un dessin à l’échelle : celui-ci montrera alors les positions relatives des droites. La question sur BD engage un calcul : les élèves pourraient obtenir la mesure par un mesurage effectif (en Géométrie 1), mais compte tenu du contrat usuel et classique de la question (mesure de la diagonale d’un carré), un calcul utilisant le théorème de Pythagore est plus vraisemblable. Quel peut être le cheminement attendu pour la question du parallélisme ?

L’utilisation de la contraposée de Thalès amène à comparer \(\frac{BI}{BD} \) et \(\frac{BJ}{BC} \) ; soit \(\frac{2,8}{50} = 0,4 \) (ce qui revient à comparer \(\sqrt{2} \) et 1,4). La conclusion de la comparaison est liée à l’approximation de \(\sqrt{2} \) considérée (1,4 ou plus fine) et/ou à la signification donnée au signe égal. Selon le choix on peut conclure au parallélisme ou au non parallélisme des deux droites.

Notons que la non-décimalité (a fortiori l’irrationnalité) de \(\sqrt{2} \) n’est pas mise en jeu dans l’exercice. Il est possible de répondre en repérant seulement le décalage entre la valeur décimale annoncée et celle susceptible de rendre compte de \(\sqrt{2} \) : il existe d’ailleurs une solution qui occulte complètement toute interrogation sur les racines carrées et utilise la contraposée du théorème de Pythagore : si les droites (IJ) et (CD) sont parallèles, alors le triangle BIJ est isocèle (angle B de 45°) et rectangle en J ; et donc \(BI^2 = 2,8^2 = 2^2 + 2^2 \) ; ce qui est contradictoire. Cette solution privilégie l’interrogation sur l’orthogonalité des droites plutôt que le parallélisme.

Ce problème engage dans une confrontation d’interprétations numérique et géométrique. Le dessin construit fait voir un parallélisme des droites, les mesures calculées ont plusieurs interprétations : exactes ou approchées qui produiront des réponses opposées. Comment associer ces interprétations numérique et géométrique ? A quelle information donner la priorité ?

²⁶ On pourrait dire « portait » compte tenu de la date de l’exercice, mais cet exercice reste prototypique de ce qui se pose au collège.
Une passation en classe de troisième (22 élèves), une semaine après l’introduction de $\sqrt{2}$ comme mesure d’une longueur qu’on ne peut qu’approcher avec des nombres décimaux, valide cette analyse a priori : tous les élèves écrivent d’abord $\sqrt{50}$ comme réponse au calcul, un grand nombre d’entre eux (19) juxtaposent à cette réponse exacte une valeur approchée. Quel statut accordent-ils à ce symbole, quel statut donnent-ils à la valeur décimale fournie pour BD ? Voient-ils le symbole $\sqrt{50}$ comme un calcul inachevé ou ont-ils besoin d’un ordre de grandeur ?

Dans une première vision, on peut émettre l’hypothèse que, pour l’élève, deux cadres de rationalité, au sens de Lerouge (2000), sont présents : rationalité personnelle où l’écriture (approchée, reconnue comme telle par l’utilisation du symbole \approx du nombre) donne à voir immédiatement un ordre de grandeur (7,1 ou 7,07) et rationalité mathématique où l’écriture peut justement cacher cet ordre de grandeur. Mais l’étude qui suit montre que, pour la question géométrique, ces deux cadres se livrent une concurrence sévère : la rationalité personnelle (notamment la lecture du réel dans sa singularité), où l’évidence et l’expérience sont essentielles, se heurte à une rationalité plus mathématique (Géométrie 2) où définitions et production de nouveaux résultats sont conditionnées par le respect des enchaînements hypothético-déductifs appuyés sur des résultats avérés (en l’occurrence ici le théorème de Thalès).

Après trente minutes de résolution individuelle de la question sur le parallélisme, le professeur fait un sondage, il s’avère que la moitié de la classe conclut affirmativement, l’autre négativement. Devant cette divergence, le professeur relance la recherche qui rebondit, la plupart des élèves passant dans un cadre numérique et utilisant le théorème de Thalès. Après ce deuxième temps, seulement douze élèves annoncent le non parallélisme. Ce sont les arguments de certains autres qui donnent à réfléchir, notamment leur recherche de cohérence entre le numérique et le géométrique.

Dany reste dans une Géométrie 1 sans considération pour le cadre numérique « Oui les droites (IJ) et (DC) sont parallèles parce que si on prolongé le segment [IJ] il serait perpendiculaire au segment [AD] et que quand 2 droites sont perpendiculaires à une même troisième alors elles sont parallèles entre elles ».

On peut remarquer le parallèle de son raisonnement avec celui d’Amélie : introduction d’une construction axiale, référence à un théorème.

Cathy règle la contradiction du vu et du calcul (à l’instar du Vu et du Su, Colmez & Parzysz 1993) en décidant de l’approximation de BD : elle a d’abord écrit BD ≈ 7,1 cm et trouvé $\frac{2,8}{7,1} = 0,394$ pour le rapport $\frac{BI}{BD}$; dans le deuxième temps, elle barre 1 du 7,1 et trouve 0,4. Elle conclut au parallélisme. L’approximation numérique choisie semble ici guidée par la vision de la figure.

Elsa reprend le rapport $\frac{2,8}{\sqrt{50}}$ et annonce $\approx 0,39595 \approx 0,4$: elle conclut d’abord à l’égalité des rapports, puis au parallélisme. Dans le deuxième temps, elle barre la valeur 0,4, barre l’égalité des rapports et écrit : « Je ne sais pas si elles sont parallèles car si on arrondie $\frac{BI}{BD}$, c’est égale à $\frac{BJ}{BC}$, mais comme la valeur exacte justifie si deux droites sont parallèles, alors je ne peux pas dire si elles sont parallèles ».

48 l’orthographe est d’origine
49 idem
François calcule $\frac{2.8}{7}$ et annonce $\frac{2.8}{7} = 0.4$ pour le rapport $\frac{BI}{BD}$: il conclut dans le premier temps au parallélisme (comme deux de ses camarades) ; finalement il écrit : « Les droites (IJ) et (DC) sont parallèles si on prend l'arrondit, mais elles ne sont pas // si on prend la valeur exacte ».

Les paradigmes sont une façon de mettre en cohérence les deux domaines numérique et géométrique, sur la question de l'approximation ; plus précisément la place des ensembles dans chaque paradigme : le cadre numérique cohérent avec la Géométrie 2 est celui des réels, celui des rationnels ne suffit pas. Je fais même l'hypothèse qu'une conception du nombre comme réel est constitutive de la Géométrie 2 comme modèle de la géométrie élémentaire. Mais ceci serait un autre débat.

Cette cohérence est à voir à deux niveaux :

- celui des ostensifs

 Presque n’a pas le même statut dans les deux domaines. Dans le numérique il est légitime, il a même son symbole (≈). Il est vrai qu’il rend compte d’une information complémentaire sur la mesure (notamment dans les cas des irrationnels), un ordre de grandeur, souvent donnée par une écriture décimale. L’approximation peut aussi être contrôlée théoriquement, par exemple par la donnée d’un intervalle numérique fixé.

 Quelle place a presque dans le géométrique ? Il est utilisé parfois pour dire le décalage entre l’impression sensible (Géométrie 1) et ce que renvoie la théorie (Géométrie 2),

- celui des paradigmes géométriques sollicités

En Géométrie 2, il n’y a pas de place pour le « presque parallèles », les droites sont ou ne sont pas parallèles. Une conception bivalente de la géométrie (Géométrie 1- Géométrie 2) permet d’accueillir le presque parallèles et d’envisager une continuité entre le « parallèles » et le « non parallèles » qui repose sur une infime différence d’angle (entre les deux droites).

Le dilemme des élèves quant à leurs réponses montre leur sensibilité aux deux paradigmes géométriques : il me semble qu’il ne leur manque que les mots pour dire dans quel paradigme se situe leur réponse ; ils qualifient (Inglis & al. 2007) à leur façon leurs réponses en toute cohérence : valeurs approchées et droites presque parallèles (Géométrie 1), valeurs exactes et droites non parallèles (Géométrie 2).

Les paradigmes géométriques rendent compte dans le géométrique d’une dialectique exact-approché. Guilbaud distingue pour les nombres réels les trois étapes de la pensée approximative : « On donne: 1) une valeur approchée 2) un encadrement 3) une suite indéfinie d’encadrements » (Guilbaud 1985, p.214). Le modèle Géométrie 1 -Géométrie 2 rend au moins compte des étapes 1 et 3 de ce que serait une pensée approximative sur le géométrique, l’exact (l’étape 3) étant conçu comme la possibilité d’obtenir une précision aussi fine que souhaitée. Le modèle Géométrie 1 - Géométrie 2 permettrait peut-être de penser autrement ce que certains nomment la rigueur en géométrie.

VI. L’enrichissement nécessaire par les ETG

Le spécialiste est sans doute conscient de cet aller-retour permanent entre les deux paradigmes lors de la résolution d’un problème géométrique : pour la lecture des hypothèses (notamment des alignements, de la convexité), pour le lancement d’une heuristic, pour la construction des définitions, et ce déjà dans l’histoire.

Par exemple Carrega (1981, page 5) déclare que, chez Euclide « La faiblesse de certaines définitions de base, notamment celle de droite ou d’angle nécessitait au cours de la démonstration le secours d’une figure bien faite ; on peut même dire que la figure faisait partie intégralement de la démonstration qui s’adressait aux yeux autant qu’à la raison »
Cet état de fait se poursuit actuellement dans l’enseignement où aucun glossaire de manuel de collège ne fournit jamais de définition pour droite, ni pour angle, sans en préciser les raisons.

La complémentarité des deux paradigmes et la difficulté à les séparer dans l’activité géométrique nous a conduit à concevoir un nouvel objet, celui d’Espace de Travail Géométrique (Kuzniak 2003, Houdement & Kuzniak 2006).

A. La définition des ETG

La notion d’espace est à prendre assez naïvement au sens espace de pensée : s’y insèrent des objets, des artefacts, et un horizon pour le travail géométrique. L’horizon est défini par le choix du paradigme géométrique qui devient le référentiel théorique.

Le travail consiste en l’établissement d’un rapport entre objets empiriques et théoriques, il ne doit pas nécessairement déboucher sur la production d’objets concrets.

Les objets sont un constituant essentiel de l’espace de travail géométrique et les différents points de vue sur leur nature exacte dépendent du modèle théorique qui les définit. Dans la vision abstraite de la Géométrie 3, l’espace est constitué de points, de droites et de plans dont les relations sont explicitées par le modèle. Dans la Géométrie 2, les définitions des points, droites et plans s’appuient sur notre perception de l’espace environnant et nous permettent d’utiliser notre intuition perceptive pour étudier certaines sous-parties de l’espace, les figures ou les configurations. En Géométrie 1, les objets d’étude sont les dessins ou les maquettes.

En géométrie cohabitent deux sortes d’artefacts : les instruments géométriques usuels (règle graduée ou non, équerre, compas, logiciels dynamiques) ou moins usuels (calque, ficelle, gabarits), mais aussi les règles théoriques qui régissent le fonctionnement du système hypothético-déductif. Les seconds concourent à la preuve en Géométrie 2, ce sont en effet les seuls instruments licites de la validation en Géométrie 2. Les premiers concourent à la preuve en Géométrie 1 (ils aident à clore le problème), nourrissent l’heuristique en Géométrie 2. Ainsi les mêmes artefacts peuvent avoir des fonctions différentes sur les mêmes traces graphiques. L’instrumentalisation des instruments usuels de la géométrie diffère selon le paradigme visé.

L’Espace de Travail Géométrique cherche à modéliser le travail d’un sujet confronté à un problème géométrique. L’Espace de Travail Géométrique est d’abord un espace de recomposition des diverses composantes de la pensée géométrique. L’ETG est plus que la juxtaposition de ses composantes. Le référentiel théorique pilote in fine le type d’utilisation des autres composantes ; chaque composante peut évoluer suivant le référentiel théorique.
B. Les ETG, un outil pour qualifier les raisonnements

Les ETG permettent de mieux décrire les décalages entre un ETG personnel d’élève ou d’étudiant et un ETG attendu par l’enseignant, ou plus exactement, par l’institution dans laquelle exercent élève et enseignant : il s’agit d’ETG institutionnels qui seront désignés par une notation fonctionnelle ETG(institution).

Si l’institution est la communauté des mathématiciens, du point de vue épistémologique, on pourrait dire qu’il existe trois modèles d’ETG (dits ETG de référence) selon qu’ils sont pilotés par le paradigme de la Géométrie 1, celui de la Géométrie 2 ou celui de la Géométrie 3. Les Nouveaux éléments de géométrie d’Arnauld (1667) et les Éléments de géométrie de Clairaut (1741) relèvent du premier type. Les Éléments d’Euclide (300 av.J.C.) sont un prototype du deuxième type. La Géométrie hyperbolique de Lobatchevski (1829) ou déjà la Géométrie analytique (1637) de Descartes seraient des exemples du troisième type.

Revenons sur l’exemple du problème de collège de détermination de la hauteur du poteau. La stratégie A s’appuie sur un ETG pilotée par la Géométrie 1, les instruments peuvent être la règle graduée et l’équerre. La production de la réponse passe par un mesurage effectif. La stratégie B est pilotée par la Géométrie 2, mais elle s’appuie sur des techniques heuristiques en Géométrie 1, avec un horizon Géométrie 2 : il s’agit de trouver une sous-figure susceptible de remplir les hypothèses d’un théorème qui donne la réponse. La stratégie A joue le rôle de contrôle de la stratégie B : elle fournit un ordre de grandeur de la réponse. Remarquons que ce contrôle peut d’ailleurs aider à poser l’égalité des « bons rapports » de longueurs. Cela crée une troisième stratégie : la stratégie C composée des deux A et B. Dans un ETG (collège) seules les stratégies B (et C) seraient reconnues. Dans un ETG (école primaire) la stratégie A serait valorisée.

C. Les ETG institutionnels, outils de comparaison des curricula

Les ETG sont des outils possibles pour étudier les programmes d’un pays dans leur cohérence longitudinale (Kuzniak 2009), mais aussi pour comparer des programmes de pays différents. Une
coopération de recherche collégiale menée avec le Chili (Castela & al. 2006, Castela & Houdement 2006, Houdement 2008), appuyée sur des comparaisons de programmes et de manuels a montré qu’au Chili, un temps important est consacrée à la construction des connaissances, à l’introduction des concepts et théorèmes par des situations qui s’appuient, jusqu’à la fin de la scolarité, sur des travaux expérimentaux en Géométrie 1, intégrant la réalisation de mesures. Les élèves sont mis à contribution pour formuler, conjecturer, puis valider (en Géométrie 1 ou en Géométrie 2 en fin de scolarité) les résultats au programme. En France, à partir du collège, l’essentiel du travail introduisant les théorèmes est consacré à leur démonstration par le professeur. L’accent est mis ensuite sur leur utilisation dans des exercices où ils sont outils pour démontrer. L’ETG est clairement piloté par la Géométrie 2.

Un exemple prototypique (Houdement 2008) de cette différence est la résolution proposée dans un manuel de 2nde (grade 10) au Chili et de 3ème en France, un an plus tôt.

Une autre application de la similitude des triangles est celle qui permet de calculer la distance à un point lointain ou inaccessible, par exemple la largeur d’un fleuve, la distance entre un point et un bateau visible en haute mer, etc. Supposons que tu désires calculer la distance entre un point A situé sur la rive d’un fleuve et un arbre situé en un point P de la rive opposée.

Pour calculer cette distance, tu peux procéder de la façon suivante.
1) Situer un point B à une certaine distance de A
2) Par visée, mesurer les angles déterminés ∠PAB et ∠ABP
3) Mesurer AB
4) Construire à l’échelle un triangle auxiliaire A’B’P’ semblable au triangle ABP. (critères angulaires de similitude)
5) Mesurer avec une règle ou un mètre ruban la longueur de A’P’
6) Calculer la longueur de AP, en prenant en compte le rapport de similitude de l’échelle employée \(\frac{d}{d'} \)

\[\frac{x}{A'P'} = \frac{d}{d'} \]

Figure: Extrait de Matemática 2° Medio. Chile: Arrayan Editores (2001)

La méthode de triangulation

A partir de points connus R et S dont on connaît déjà la distance à vol d'oiseau, on vise un point précis T. On mesure alors les angles du triangle RST, ce qui permet de déterminer les distances avec une approximation suffisante, car

\[
RT = RS \frac{\sin \hat{S}}{\sin \hat{T}} \quad \text{et} \quad ST = RS \frac{\sin \hat{R}}{\sin \hat{T}}
\]

Il reste ensuite à tenir compte du relief et de la courbure de la Terre pour de grandes distances.

On remarquera les similitudes : dans les deux cas, le problème évoque un problème spatial (dans le livre français c’est un complément de fin de chapitre), le problème est déjà schématisé ; mais aussi les différences emblématiques sur le rôle des constructions et le référentiel théorique pilote : l’ETG chilien est piloté par la Géométrie 1 et des connaissances sur la proportionnalité, alors que l’ETG français est piloté par la Géométrie 2 et des connaissances trigonométriques ; le lecteur avisé repétera une justification de la Géométrie 2 pour ce problème de distance inaccessible dans la recherche d’une *approximation suffisante*. Mais cet argument qui motive l’utilisation de la Géométrie 2 pour les problèmes géométriques sera rarement plus explicité, au moins dans les programmes français. C’est donc un point crucial de formation des enseignants.

VII. Former aux paradigmes et aux ETG

Ce qui précède tendrait à considérer les paradigmes géométriques et les ETG comme partie du *savoir mathématique spécifique pour enseigner* (Ball & al. 2004). Comment former les enseignants actuels ou futurs (du premier et du second degré) à ces connaissances ? Mes recherches précédentes me font privilégier une stratégie de transposition, initialisée à partir d’un vrai problème géométrique. Que doit viser ce problème ? La confrontation de deux types d’entrée dans la géométrie, Géométrie 1 et Géométrie 2 et leur intégration dans une vision complémentaire. Voici trois exemples complémentaires que j’ai testés en formation des professeurs des écoles : ils me semblent adaptés à une introduction aux paradigmes justement parce qu’ils provoquent une interrogation des étudiants sur leurs pratiques géométriques.

1. Construire un trapèze dont les longueurs des côtés sont : 8 cm, 7 cm, 5 cm et 2 cm. Combien de solutions ?

2. Construire des cercles à partir de trois arcs de cercle donnés : respectivement 280°, 180° et 55°.

3. Étude de la figure convexe formée par les médianes construites sur les deux côtés consécutifs d’un quadrilatère convexe.

L’activité 1 vise à montrer les limites d’un travail de construction en Géométrie 1. Il nécessite une stratégie typique de Géométrie 2, l’analyse-synthèse, inconnue des étudiants en général. Il a la forme d’un problème classique (en formation, au concours, à l’école), la construction d’un polygone à
partir de la longueur de ses côtés. Les longueurs sont choisies de telle façon que la stratégie a priori première des étudiants, concevoir un trapèze prototypique (les plus longs côtés seraient les côtés parallèles) et commencer à construire les côtés parallèles (caractéristique prégnante du trapèze) échoue.

Une analyse mathématique montre qu’il est possible de construire un tel trapèze sous couvert de la condition: \(|a-c| \leq |B-b| \leq a+c \) où \(B \) et \(b \) (avec \(B > b \)) les longueurs des côtés parallèles du trapèze. Il y a trois solutions à une isométrie près correspondant aux trois couples de longueurs \((8,2),(7,2)\) et \((5,2)\) pour les côtés parallèles.

Les étudiants ne sont pas rares à ne réussir aucun trapèze, quels que soient les instruments utilisés. En général ils décident des côtés parallèles, par exemple 8 cm et 7 cm, tracent un segment de 8 cm, des arcs de cercle de respectivement 5 cm et 2 cm centrés aux deux extrémités du segment et cherchent à fermer le trapèze en faisant glisser une règle parallèlement au côté de longueur 8 cm en essayant de produire un côté de 7 cm. Ils peuvent aussi ainsi découvrir un trapèze solution. Le questionnement du formateur fait rebondir sur les raisons de l’existence d’un tel trapèze ou de l’impossibilité d’autres : il faut anticiper sa construction. Le dessin à main levée est introduit, certains étudiants cherchent des sous-figures du trapèze qu’ils sauraient déjà construire : le rectangle ne résiste pas, en effet ses longueurs ne sont pas « théoriquement » déductibles des données ; le triangle de la figure ci-dessus fait l’affaire. Notons qu’il est aussi possible de répondre à la question en envisageant une sur-figure (aussi pensée par certains étudiants), le triangle obtenu en prolongeant les côtés a et c : les longueurs de ses côtés A et C (sauf B) s’obtiennent « théoriquement » grâce au théorème de Thalès : \(A=a+a' \) et \(a'=b \times (a+a')/B \).

Cette situation est pour moi une situation didactique du jeu entre paradigmes dont elle permet l’introduction explicite : le travail en Géométrie 1 utilise des techniques de construction dont certaines sont outillées par la Géométrie 2 ; la Géométrie 2 permet de déduire de nouvelles informations des données sans mesurage sur le dessin ; c’est elle qui assure l’exhaustivité des solutions et la précision des réponses.

L’activité 2 élargit la conception des rapports entre Géométrie 1 et Géométrie 2. La figure de départ du problème 2 est un arc de cercle à compléter. Pour les arcs de 280° et 180°, les étudiants cherchent à trouver le centre du cercle en utilisant des techniques issues de Géométrie 1 (comme inscrire dans l’arc un angle droit fabriqué par pliage d’un papier) qui feront alors l’objet d’une justification en Géométrie 2 ; ou des techniques plutôt issues de Géométrie 2, comme l’intersection de deux perpendiculaires à deux cordes. Souvent l’étudiant plus mathex revendique une hiérarchie de ces techniques en termes de rigueur. Mais la comparaison des cercles obtenus à partir du petit arc (55°) (de rayons très différents) les laisse perplexes. La construction rigoureuse ne porte pas ses fruits. Il est alors possible de revenir sur la hiérarchisation des paradigmes et de montrer leur intérêt complémentaire en fonction des questions posées.

La troisième étude50 vise à différencier un ETG piloté par la Géométrie 1 et un ETG piloté par la Géométrie 2 et à faire comprendre le jeu à jouer dans la Géométrie 2. Chaque étudiant construit un

50 Cette dernière étude, minimale, convient à des cours magistraux (150 à 200 étudiants) par l’abondance des dessins à l’étude.
quadrilatère convexe ABCD et ses médianes et analyse le quadrilatère convexe IJKL. Presque tous déclarent avoir obtenu un parallélogramme, certains un losange, un carré. La question se pose de la validité de ces affirmations. Les premières validations sont expérimentales et instrumentées, elles sont qualifiées en Géométrie 1. La prise en compte de tous les cas traités permet d’obtenir la plausibilité d’un parallélogramme IJKL à minima, quel que soit le quadrilatère convexe de départ (même pour un très grand ?). Que faire des non-parallélogrammes51 ? Comment passer à la certitude d’un parallélogramme ? C’est un travail qualifié en Géométrie 2. Il est contraint par déduction logique de résultats ou données avérées. Une première phase consiste à isoler les données du problème ; une seconde de chercher (en observant la figure) quelles caractéristiques du parallélogramme on pourrait viser et quels théorèmes aideraient à relier données et caractéristiques. C’est un travail complexe pour le néophyte : cela donne l’occasion de pointer d’une part la nécessaire déconstruction figurale du quadrilatère (Duval 1998, 2005) en successivement deux triangles prototypiques (par exemple ABD et BBC) de l’application de la réciproque du théorème de Thalès ; d’autre part la nécessaire disponibilité (en mémoire) d’un stock de théorèmes (dont on fournira une liste à l’étudiant). Enfin la dernière phase est l’écriture individuelle du texte qui conclut à la certitude du parallélogramme des milieux, quel que soit le quadrilatère convexe de départ.

L’ensemble de ces situations est ponctué d’institutionnalisations locales grossièrement résumées par le tableau ci dessous. Les étudiants sont ensuite exercés à reconnaître le positionnement paradigmaticque de certaines productions d’étudiants confrontés à un problème géométrique. Ils sont encouragés dans le cadre de mes enseignements à toujours chercher à produire une réponse à un problème géométrique, en qualifiant l’horizon qu’ils ont choisi : Géométrie 1 ou Géométrie 2.

51 Une bifurcation possible : trouver un quadrilatère ABCD dont le quadrilatère IJKL n’est pas un parallélogramme...
VIII. Perspectives

A. Portées et limites du modèle développé

Les ETG aident à décrire des modes de travail géométrique, essentiellement en repérant les jeux entre paradigmes qui pilotent la pensée. Leur pertinence n’est plus à prouver sur deux niveaux :

- comme outil métacognitif (ETG personnel) qui aide l’élève ou l’enseignant à repérer l’adéquation d’un travail au paradigme attendu et/ou de qualifier la dominante paradigmatique du raisonnement produit ;
- comme outil au niveau macro (ETG institutionnel) : outil de comparaison entre pays différents ; mais aussi outil de description des géométries portées par les programmes (et analyse des cohérences entre différents niveaux), voire des manuels ; outil de réflexion sur des choix géométriques curriculaires.

Par contre son point de vue très global, issu de sa genèse (un point de vue épistémologique) rend difficile, de mon point de vue, une analyse fine du travail géométrique des élèves, notamment sur le plan cognitif, sauf à complexifier le modèle, par l’intégration d’autres cadres théoriques comme les travaux de Van Hiele (1985) qui étafont en niveaux la pensée géométrique des élèves. Complexifier le modèle présente selon moi un risque : rendre difficile sa diffusion et le couper de ses raisons d’être.

B. Enrichir la Géométrie 1 par les situations pour l’école

La vision de la géométrie en plusieurs paradigmes a mis en lumière la nécessité d’un travail conséquent et assumé en Géométrie 1, avant que ne soient abordées des problématiques de Géométrie 2. C’est dans cette direction qu’il me semble intéressant de développer des recherches. Le terrain n’est pas vierge, déjà bien exploré le groupe de recherche de M.J.Perrin-Glorian, M.Godin et R.Duval (Duval, Godin & Perrin-Glorian, 2005 ; Duval & Godin,2006 ; Keskessa, Perrin_Glorian & Delplace, 2007) autour de la restauration de figures et d’un jeu sur les artefacts.

Les recherches citées visent à aiguiser le regard sur les figures en faisant travailler dès l’école primaire les déconstructions figurales et dimensionnelles à partir d’activités de restauration et de reproduction de figures. Mais reste posée la question de l’organisation et du choix des figures (modèle et départ) pour une progression de l’école au collège, en relation avec l’utilisation des

\[\text{Il s’agit d’obtenir une figure semblable à un modèle donné en complétant avec les instruments autorisés une amorce (une partie du modèle).} \]

Cette organisation passe aussi par le repérage des connaissances géométriques qui sont possiblement institutionnalisables à l’issue des telles situations : est-il possible de concevoir des situations de restauration et/ou reproduction comme des situations didactiques de théorèmes (au sens large) de Géométrie 2 ? Quels théorèmes ? Perrin Glorian et son équipe ont produit des restaurations de figures qui permettent d’institutionnaliser que deux points définissent une droite et une seule, sous différentes formes opérationnelles : pour tracer une droite il suffit de deux points, une technique pour vérifier un alignement de 3 points et plus est de tracer la droite qui passe par deux points (ou de prolonger un segment) et de contrôler l’appartenance du 3ème à la droite tracée. À quels autres futurs théorèmes de la Géométrie 2 peut-on ainsi donner du sens, notamment par des situations de restauration ?

55 J’appelle ici théorèmes toute déclaration avérée de Géométrie 2, usuellement nommée axiome, définition, propriété ou théorème dans la géométrie euclidienne élémentaire.
Problèmes numériques à l’école primaire : une fenêtre sur des problématiques d’enseignement

Le thème des problèmes est un thème plus récent de mon histoire de recherche, il est donc plus difficile de prendre du recul pour en faire une synthèse.

Ce chapitre a une double finalité : développer en quoi mes travaux ont fait avancer ou sont susceptibles de faire avancer, par l’utilisation croisée d’approches épistémologiques, psychologiques et didactiques, les questions d’enseignement liées aux problèmes mathématiques numériques, en gardant comme horizon l’intégration dans les pratiques ordinaires des enseignants ordinaires (question aussi sur la formation) ; montrer une partie de la « vie des textes curriculaires » : comment les textes de programmes se modifient par petites touches, aussi pour d’autres raisons que celles scientifiques (travaux didactiques ou liés à l’éducation). Ce chapitre se caractérise par les liens qu’il essaie de tisser entre épistémologie, psychologie cognitive et didactique, en gardant comme horizon l’apprentissage et l’enseignement dans des classes ordinaires, autour d’un thème emblématique et classique de l’école primaire, mais aussi de la relation entre mathématiques et réel... dans le cadre scolaire : en effet les problèmes numériques sont le plus souvent contextualisés par une réalité évoquée. Le chapitre se découpe en quatre parties.

La première partie concerne les curricula et montre comment progressivement dans les textes de programmes français, des petites transformations ont changé la vision de l’école (voire des chercheurs) sur ce qui devait s’enseigner en relation avec les problèmes, en réaction contre des échecs attribués (naïvement) aux conséquences des programmes antérieurs. Le fait que cette dynamique ait aussi traversé les programmes d’autres pays (par exemple États-Unis d’Amérique, EUA) me fait faire le pari qu’elle est internationale. Tout se passe comme si l’institution insufflait des idées, soufflées par un quelconque lobby (société savante, mathématicien renommé...) dans l’école, attendant de voir comment elle les intègre et les transpose. Cependant cette innovation qui transforme les pratiques et rompt certains équilibres, s’accompagne d’une naturalisation, y compris par certains chercheurs, ce qui fait qu’il est très difficile de déconstruire les raisons objectives (à meilleures fins d’enseignement) de certains choix ou présupposés choix pour repartir sur des constructions plus scientifiques.

La deuxième partie s’intéresse plus particulièrement, plutôt sous une perspective épistémologique écologique à un objet d’enseignement, les problèmes de recherche, très controversé dans la communauté didactique. Si la résolution de problèmes ouverts est constitutive des mathématiques et une des tâches du mathématicien, elle n’est pourtant pas la seule : l’entrée dans un paradigme de recherche par la résolution de problèmes ordinaires (Kuhn 1962), la présentation des réponses, la structuration des résultats, l’écriture et le travail sur des textes soumis à la communauté en sont d’autres. Quelle place pour les problèmes de recherche dans l’enseignement primaire ordinaire ?

La troisième partie questionne une des composantes du problem solving français : la méthodologie de la résolution de problèmes qui n’est fondée ni épistémologiquement, ni cognitivement.

56 La corrélation entre contenus de programmes et échecs des élèves n’est pas simple à prouver... Quid des pratiques des enseignants qui interprètent ces programmes ? la formation des enseignants : le chainon manquant
La quatrième partie prend le temps de développer le point de vue cognitif sur les problèmes et s’intéresse aux questions suivantes : comment résout-on un problème numérique ? Quel lien entre résolution de problèmes et apprentissage ? Quelles pistes de recherche didactique en cohérence avec les travaux psychologiques ? Elle conduit à un changement de regard sur la résolution de problèmes par les élèves et montre l’importance de la réussite aux problèmes basiques pour la suite des apprentissages.

Enfin la dernière partie enrichit les perspectives de recherche, déjà pointées à la fin de chaque partie.

I. Brève enquête sur les Problèmes et le Problem solving dans les programmes

Je mène ici une brève enquête sur Problème et Résolution de problèmes, notamment pour montrer des transformations imperceptibles récentes (ou presque) des textes des programmes qui vont radicalement en changer le sens et le promouvoir comme un thème totalement nouveau (voire novateur) : apparition de ce que certains n’hésitent pas à qualifier de « courant » du Problem solving, formes initiales et évolution, comment se sont combinées les influences des recherches théoriques et recherches actions. Je cherche ici à développer un peu plus la distance que m’a permis de prendre, quelques années après ma participation à la rédaction des programmes français, la coécriture d’un état de l’art pour une revue internationale (Artigue & Houdement 2007), puis une conférence lors d’un colloque national (Coppé & Houdement 2010) et comment j’interprète actuellement les transformations des textes de programmes sur problèmes et résolution de problèmes.

A. Les problèmes avant le Problem Solving

Schoenfeld (1992), dans son étude sur le rôle des problèmes en mathématiques, fait référence à un ouvrage des origines de l’enseignement, Milne W.J. (1897, p.7) A Mental Arithmetic, où le calcul est

57 Dans la suite Problem Solving désignera ce courant.
58 Professeur de Mathématiques au collège royal Louis-Le- Grand , ancien élève de l’École Normale, Docteur ès-Sciences
aussi motivé par des problèmes. Il est intéressant d’examiner dans ces deux ouvrages comment les Questions sont traitées, en étudiant deux exemples.

Vernier (1834) comme Milne (1897) ont organisé les problèmes en les associant à UNE technique de résolution, même s’il est signalé, par exemple chez Vernier dans le chapitre Proportions, que certains problèmes du chapitre Règles diverses -en réalité presque tous- relèvent aussi des Proportions. C’est la technique visée qui pilote l’organisation des problèmes, même si cette technique n’est pas la plus adaptée à certains problèmes.

Examinons les deux exemples. Dans l’exercice extrait de Vernier, la technique choisie, le passage par l’unité dans un calcul proportionnel, a une portée générale, indépendante des choix numériques, même si elle semble peu appropriée à l’exemple donné59.

Dans l’exercice de Milne, la technique de calcul multiplicatif pour la série d’exemples donnés est fortement liée à un des nombres en jeu [si \(B = r \times C \), \(r \) fraction simple et \(C \) puissance de 10 alors \(A \times B \) se calcule par \(r \times (C \times A) \)], mais là aussi il existe d’autres techniques.

Le troisième question. Un rentier veut acheter 400 francs de rente pour 4 pour 100, combien doit-il payer ?

Puisque 4 francs de rente coûtent 100 francs, 1 franc de rente coûte le quart de 100 francs ou 25 francs, et 400 francs de rente coûtent 400 fois 25 francs ou 10000 francs.

Extrait de la partie Règles d’intérêt
(Vernier 1834, p.111)

How much will it cost to plow 32 acres of land at $3.75 per acre?

$3.75 is 3/8 of $10. At $10 per acre the plowing would cost $320, but since $3.75 is 3/8 of $10, it will cost 3/8 of $320, which is $120.

Extrait de A Mental Arithmetic. (Milne, W.J.,1897, p.7), cité par Schoenfeld (1992, p.11 et 23)

Les problèmes sont alors des problèmes numériques verbaux60 qui demandent de mettre en œuvre et reproduire des techniques arithmétiques (quatre opérations, règles diverses...) ou de calcul rapide. Hormis dans le dernier chapitre, ils sont regroupés par techniques (uniques), il s’agit donc de praxéologies locales selon la terminologie de Chevallard (1999), mais les techniques restent rigides (pas de flexibilité envisagée sur les techniques, Bosch & Gascón 2005). Ils fonctionnent sous l’hypothèse implicite que les élèves ayant mémorisé les règles apprises sauront les appliquer dans des contextes utiles à la vie sociale ou domestique et planifier leur utilisation. Il n’est pas encore question de Problem solving, mais seulement de Problèmes à une question ou à plusieurs questions.

59 400 francs c’est 100 fois plus que 4 francs, 400 francs de rente coûteront donc 100 fois plus que 100 francs.
60 Un problème verbal est un texte donnant des éléments d’une situation réelle, certains de ces éléments étant quantifiés, l’objet du problème étant d’en quantifier d’autres, en s’appuyant sur le texte du problème (Verschaffel, Greer & De Corte, 2000)
B. Le Problem Solving, une velléité institutionnelle internationale

Les années 1970 à 1990

On peut noter des résonances avec ce qui se passe sur le plan international et la façon dont les transformations de programmes s’appuient aussi sur des travaux didactiques dans cette période. Schoenfeld (1992) rend compte des mouvements de balancier (dramatic pendulum swing p.8) qui

61 Équipe de Recherche sur les Mathématiques de l’École Élémentaire, Paris : INRP

Dans Source book for college mathematics teaching (1990), Schoenfeld propose de mettre les problèmes au cœur des apprentissages et d’étendre la variété des problèmes proposés aux élèves, avec comme finalité d’étendre la variété des stratégies à développer pour les résoudre : « Mathematics instruction should provide students the opportunity to explore a broad range of problems and problem situations, ranging from exercises to open ended problems and exploratory situations.

On comprend que cette place décuplée des problèmes dans les organisations générales des curricula de mathématiques se situe au niveau Discipline (et même Pédagogie, avec l’hypothèse constructiviste) dans l’échelle des niveaux de détermination63 didactique proposée par Chevallard (2002).

Les années 1990-2000

62 Notamment des stratégies heuristiques
63 Société → École → Pédagogie → Discipline → Domaine → Secteur → Thème → Sujet.
64 Cet ouvrage rassemble les textes fondamentaux de Guy Brousseau écrits entre 1970 et 1990.
mathématiques, il ne s'agit plus de faire résoudre des problèmes à l'élève mais de lui apprendre à les résoudre » (Sarrazy 2003, p83). Sont donc apparues dans les programmes, d'abord des règles heuristiques visant des « classes de comportements censés intervenir simultanément dans la résolution d'un problème » (Sarrazy 2003, p.96) telles que :

puis de nouveaux types de tâches tels que :

« Dans des situations variées, l'élève pourra : - reconnaître, trier, organiser et traiter les données utiles à la résolution d'un problème ; - formuler et communiquer sa démarche et ses résultats ; - argumenter à propos de la validité d'une solution ; - élaborer une démarche originale dans un véritable problème de recherche, c'est-à-dire un problème pour lequel on ne dispose d'aucune solution déjà éprouvée ; - élaborer un questionnement à partir d'un ensemble de données. ». (Les cycles à l'école primaire, 1991, CNDP, p. 52)

Ces nouveaux types de tâches sont regroupés dans une rubrique spécifique, Résolution de Problèmes, séparée des autres rubriques thématiques (Connaissance des nombres, Calcul, Géométrie, Mesure). Ce phénomène correspond pour moi à une déclinaison française du Problem Solving. La séparation semble pourtant peu cohérente avec la vision des problèmes comme source de l'apprentissage dans les différents domaines.

Il faut aussi signaler la présence dans les programmes d'une seconde catégorisation des Problèmes, cette fois ci selon leurs fonctions pour les apprentissages : introduire, entraîner ou réinvestir, chercher, même s'il est précisé que cette catégorie n'est pas figée : « Un même problème, suivant le moment où on le propose, suivant les connaissances des élèves à qui on le destine et suivant la gestion qui en est faite, peut relever de l'une ou de l'autre des catégories précédentes. ». Ces deux catégorisations résistent aux allègements de 1995 et jusqu'en 2002.

A partir de 2002

Les textes des programmes 2008, qui s'affirment « recentrés sur les enseignements essentiels » (BO n°3 2008, p.3), sont peu explicites sur les problèmes, comme d'ailleurs sur d'autres thèmes, affirmant la liberté pédagogique des enseignants. On retrouve dans les qualificatifs qui décrivent les problèmes des proximités avec les programmes d'avant 1970 : liés à la vie courante,

65 "s'engager dans une procédure personnelle de résolution, rendre compte de la démarche (...) rédiger une réponse (...)"
concrets, tirés d'autres enseignements. Cela peut être la trace d'influences de courants internationaux comme PISA ou la modélisation. Dans les faits, ces textes courts de programmes peuvent donner lieu à toutes sortes d'interprétations..., qui peuvent laisser les enseignants dans une grande incertitude et générer des enseignements de finalités très différentes.

C. Critiques et développements du Problem solving

Ils ne sont pas toutes de même nature, sans doute parce que sous l'étendard du Problem Solving se regroupent des tendances différentes, ce que montre bien Castela (2011).

Schoenfeld (1992) est critique sur l'introduction du Problem Solving dans les programmes du National Council of Teachers of Mathematics, qu'il qualifie de « one simple measure of the turn-around » (Schoenfeld 1992, p.9) sans doute à cause des diverses interprétations qui en sont été faites. « Problem solving and metacognition, the lead terms in this article's title, are perhaps the two most overworked -- and least understood -- buzz words of the 1980's. » (Schoenfeld 1992 p.9). Schoenfeld pointe même le manque de fondement didactique de ce choix institutionnel pour l'enseignement des mathématiques : « Equally unclear is the role that problem solving, once adequately characterized, should play in the larger context of school mathematics. » (idem p.3).

Sarrazy (2003), comme Schoenfeld à dix ans d'intervalle, prend une position très critique sur l'émergence du « courant » du problem solving à la française, influencé par le traitement de l'information : il parle même de démathématisation.

D. Problèmes et Problem Solving dans les programmes français de l’école primaire

Dans ce qui précède, j’ai montré comment des phénomènes de résonance entre travaux théoriques et expérimentaux de didacticiens, théories scientifiques non didactiques et recherches actions dans les classes avaient produit le courant du problem solving, et sa déclinaison dans les programmes français du primaire, que je limite à la méthodologie de la résolution de problème et

\(^{66}\) Un problème non routinier est un problème qui ne se résout pas par l’application d’un certain algorithme, dont la résolution demande une certaine élaboration de la part de l’étudiant.
aux problèmes non routiniers, à l’instar d’autres chercheurs français (dont Sarrazy 2003, Mercier 2007).

Il me semble que le problem solving français est une création pédagogique à défaut d’autre proposition didactique de second niveau (c’est-à-dire apprêtée pour l’enseignement ordinaire, Perrin-Glorian 2011), aidant les enseignants à supporter/accepter/occuper ? la nouvelle injonction : mettre les problèmes au centre des apprentissages (partout dense dans la chronogénèse) à partir de 1980. Cette injonction n’a pas été et n’est toujours pas accompagnée, dans les textes officiels, d’exemples de problèmes, dont le courant scientifique sait l’importance pour la construction de nouvelles pratiques. En effet, alors qu’au XIXème siècle la rubrique Problèmes pouvait se décliner en listes de textes à questions, à partir des années 1980 et jusqu’en 2008, elle se définit uniquement par des fonctions attribuées aux problèmes relativement aux savoirs : problèmes de recherche, problèmes de réinvestissement plus ou moins complexes ou problèmes de première rencontre. Un rapport de l’Inspection Générale67(2006) a montré la «vue brouillée» des problèmes qu’avaient les enseignants, vision à laquelle peut contribuer ce type de rédaction. Ce sont les manuels qui se chargent des interprétations du travail relatif aux problèmes : ceci donne des interprétations très diverses, mais qui se situent dans une certaine continuité avec les propositions éditoriales antérieures, lesquelles relèvent souvent d’une autre vision des problèmes (les problèmes en fin d’apprentissage) ?

Cette étude des programmes a permis de rencontrer des types de descriptions liées aux problèmes : des types de tâches associées aux problèmes (avant 2002), des fonctions pour les problèmes (avant 2002 et 2002), des contextes pour les problèmes en 2008 (vie courante, autres disciplines).

Les programmes antérieurs à 2002 déclinent en effet des listes de tâches associées aux problèmes : rechercher, trier et organiser les informations utiles à la résolution, formuler une démarche, élaborer un questionnement. La fonction implicite du travail sur ces tâches est d’aider les élèves à résoudre des problèmes. Ils créent une entrée institutionnelle spécifique, la méthodologie de résolution de problèmes.

Les programmes 2002 proposent une variété des fonctions des problèmes relativement aux apprentissages (Les problèmes pour chercher68 p.7).

« Quatre types de problèmes sont évoqués et peuvent être associés à des objectifs d’apprentissage différents :

- problèmes dont la résolution vise la construction d’une nouvelle connaissance.
- problèmes destinés à permettre le réinvestissement de connaissances déjà travaillées, à les exercer.
- problèmes plus complexes que les précédents dont la résolution nécessite la mobilisation de plusieurs catégories de connaissances.
- problèmes centrés sur le développement des capacités à chercher : en général, pour résoudre ces problèmes, les élèves ne connaissent pas encore de solution experte.

Dans ce dernier cas, nous parlerons de « problèmes pour chercher » alors que dans les précédents nous pourrions parler de « problèmes pour apprendre », en soulignant l’aspect réducteur de ces dénominations, puisque, dans tous les cas, l’élève mobilise des connaissances et se trouve placé en situation de recherche.

Dans ce qui suit, je centrerai mon étude sur deux dimensions du Problem Solving dans les mathématiques du primaire : la méthodologie de résolution de problème et la résolution de problèmes non routiniers (les problèmes de recherche).

II. Vers une écologie des problèmes non routiniers à l’école primaire

Le courant international du Problem Solving, sans doute pour les raisons de sa genèse, lutter contre le manque d’initiative des étudiants face aux tâches problématiques, semble prioritairement associé en didactique des mathématiques69 aux problèmes non routiniers (Castela 2011), id est ceux qui ne se résolvent pas par l’application d’un certain algorithme, dont la résolution demande une certaine élaboration de la part de l’étudiant, tout en mettant en jeu des savoirs mathématiques déjà rencontrés et travaillés par l’étudiant.

Dans ce paragraphe je me centre sur les problèmes non routiniers (open ended problems and exploratory situations selon l’expression de Schoenfeld 1990, problèmes ouverts, problèmes pour chercher). Je ne m’intéresse pas dans ce texte aux problèmes de première rencontre (par exemple les problèmes d’une situation didactique de la TSD).

J’ai choisi d’étudier (Houdement 2009) les problèmes non routiniers des manuels et ressources pédagogiques quant à leur potentialité d’apprentissage. Quelle méthodologie ai-je employée pour nourrir ma réflexion ? Je me suis appuyée sur des propositions effectives de tels problèmes dans les ouvrages pédagogiques de cycle 3 (fin de l’école primaire, élèves de 8 à 11 ans), que je désigne par problèmes atypiques, pour lesquels j’ai cherché à construire des critères d’organisation.. Ce sont ces problèmes (et la conduite des séances qui les utilisent, que je n’ai pas étudiées) que certains didacticiens ont sévèrement critiqués, leur reprochant un isolement peu propice aux apprentissages (Bosch & Gascón 2005) ou un manque d’avenir du côté des savoirs : ainsi selon Mercier (2007, p.107) dans certains ‘problèmes ouverts’ ou ‘problèmes pour chercher’ « il n’y a, en le cherchant, rien à trouver que le système d’enseignement ait identifié ». Il ajoute : « Pire, il semble bien que ce soit, pour beaucoup, le critère du fait que l’on tient là un véritable problème pour chercher ». On pourrait étonnamment ranger parmi ces derniers Glaeser (1976) qui, dans son ouvrage à destination des enseignants Une pédagogie de l’exercice et du problème en sept catégories, prônait la fréquentation, pour lutter contre la passivité des élèves, de la catégorie Problèmes ou Exercices de recherche (Glaeser 1976, p.20) sous couvert d’« activité libre, à laquelle on se livre par goût de façon désintéressée », d’« activité gratuite » pour l’enseignant (Glaeser précise même que les avancées des élèves ne sont pas évaluables par l’inspecteur). Les travaux de l’IREM de Lyon (Arsac & al. 1988, 2007) sur le problème ouvert vont aussi dans ce sens.

Ces deux points de vue sont-ils si contradictoires ? Est il possible de motiver les problèmes relativement aux apprentissages ?

A. Quelles motivations pour les problèmes non routiniers ?

69 Ce n’est pas le cas dans d’autres champs scientifiques comme la psychologie cognitive (Nesher & al. 2003)

Mais quelles motivations internes aux mathématiques peut-on repérer ? Ces problèmes permettent lors de la résolution de mettre en jeu des connaissances d’un domaine mathématique déterminé comme l’arithmétique ou l’algèbre (les réinvestir, les faire fonctionner...), ils participent donc aux apprentissages : cela correspond à leur intégration au niveau local de détermination didactique (Bosch & Gascón 2005, p.109). Leur place n’est donc pas à questionner en soi, mais en termes d’écologie didactique : quels apports cognitifs nouveaux et transversaux sont possibles sur le temps qui leur est consacré ? Que permettent-ils d’attraper de l’ordre du mathématique qui ne le serait pas autrement ?

Quelle organisation de ces problèmes mettre en place pour éviter une certaine « atomisation scolaire » (Bosch & Gascón 2005, p113) peu encline selon les hypothèses de la Théorie Anthropologique du Didactique à une installation propice des connaissances ? J’ai étudié les possibilités d’articuler ces problèmes entre eux : il serait question de repérer « des savoirs du système d’enseignement » (selon l’expression de Mercier 2007) non thématiques, mais communs à plusieurs domaines des mathématiques.

J’ai identifié à titre d’hypothèses pour des recherches futures, quatre types de connaissances, parmi celles constitutives d’une pensée mathématique sur le monde, qui sont susceptibles de structurer les problèmes étudiés : les types de raisonnements, les types de contrôles, la construction d’une démarche modélisante, les inférences plus ou moins nécessaires de connaissances pragmatiques (je nommerai ainsi les connaissances sur le monde nécessaires à la résolution réussie de la plupart des problèmes évoquant -ou décrivant- la réalité). Les deux premières connaissances pourraient correspondre en partie à ce que Castella (Castela 2001) nomme des savoirs sur le fonctionnement des mathématiques, mais le fait que les problèmes numériques de l’école soient souvent contextualisés dans une réalité évoquée change un peu la donne.

Dans les problèmes étudiés, on peut trouver des déductions plus ou moins complexes : inférer une seule déduction70 ; connecter des informations aboutissant à des déductions licites, que j’avais déjà

70 Pour un malabar et un croissant Fatma a payé 1 € 5 c. Pour deux croissants, Lucas a payé 1 € 60 c. Trouve combien coûte un malabar. Le prix du croissant est simplement calculable. Celui du malabar s’en déduit.
pointé pour les problèmes complexes. Un problème nécessitant de combiner plusieurs déductions comme Une sucette et deux petites brioches coûtent 2 €. Cinq sucettes et deux petites brioches coûtent 4 €. Quel est le prix d’une sucette ? Quel est le prix d’une petite brioche ? me semble relever du type problèmes non routiniers, comme tout problème qui, compte tenu du niveau des élèves auxquels il est posé, n’est a priori résoluble que par une méthode expérimentale (Perrin 2007).

La résolution de tels problèmes est l’occasion d’engager les élèves dans un rapport à la vérité. Peut-on, à l’occasion de telles activités, institutionnaliser des modes de validation de façon à conduire l’élève à prendre en charge lui-même la validation de sa réponse, ou du moins à en contrôler certains éléments ? Existe-il des problèmes qui sont plus que d’autres prétextes à une discussion lors de la validation, par exemple des problèmes à plusieurs solutions, sans aucune solution ?

Ce questionnement m’a amenée à pointer des types de validation, de l’ordre des mathématiques, efficaces et enseignables sur le processus d’obtention du résultat ou sur le résultat. Les problèmes qui relèvent d’équations ou de systèmes de deux équations à deux inconnues sont particulièrement intéressants : le nombre de solutions est une variable didactique réglable ; le contrôle peut se dissocier de la stratégie mise en œuvre. Le contrôle d’une recherche exhaustive repose sur la vérification que la méthode utilisée a parcouru l’ensemble des cas possibles. La réponse de certains problèmes relevant de raisonnements déductifs (comme Une sucette et deux petites brioches coûtent 2 €. Cinq sucettes et deux petites brioches coûtent 4 €. Quel est le prix d’une sucette ? Quel est le prix d’une petite brioche ?) ou de démarche expérimentale (comme Combien y a-t-il de poules et de lapins dans la ferme d’Yvan ? Lorsqu’Yvan rassemble toutes les poules et les lapins de sa ferme, il y a en tout 25 têtes et 64 pattes) peut faire l’objet d’un contrôle par calcul et par soumission aux différentes contraintes de l’énoncé, ce à quoi le professeur peut habiter les élèves. Certains problèmes peuvent être prétextes à la construction de preuves : modestement, comme celui de la recherche de trois nombres consécutifs dont la somme est donnée qui conduit à la construction d’une preuve de l’impossibilité (ERMEL 1999, Douaire 2000, 2006, Hersant 2005, 2006), avec plus d’ambition (mais souvent une gestion de l’avancée dans la recherche plus lourde à assumer pour l’enseignant) comme les problèmes discrets (SiRc Grenier & Payan 2003, Hersant 2006, 2010).

L’intégration d’une démarche modélisante est aussi un objectif potentiel de la résolution de problèmes non routiniers. Je prends la notion de modèle au sens où la définit Fischbein « Given two systems, A and B, B may be considered a model of A, if, on the basis of a certain isomorphism between A and B, a description or a solution produced in terms of A may be reflected, consistently, in terms of B and vice versa. » (Fischbein 1990, p.23). Cette définition est très large et regroupe modèles mentaux et matériels. Je m’intéresse ici pour leur fonction heuristique aux modèles mentaux explicites, qu’ils soient primitifs (par exemple des dessins) ou plus élaborés comme des écritures arithmétiques, ostensifs de modèles additif, linéaire, affine, exponentiel ... mais aussi des dessins et schémas à condition qu’ils possèdent un caractère génératif. Un problème presque classique d’un travail sur cette démarche modélisante est le type de problème d’Yvan, cité plus haut.

La question du modèle ne peut s’envisager sans son domaine de validité. Or, l’étude du domaine de validité d’un modèle est peu envisagée dans les curricula de l’enseignement obligatoire, sans doute parce que ceux-ci considèrent comme transparentes les connaissances pragmatiques nécessaires à la résolution d’un problème de réalité évoquée. Par exemple dans le problème d’Yvan une connaissance pragmatique est le nombre de pattes d’une poule et d’un lapin.

71 En effet ces problèmes rompent avec le contrat implicite scolaire qui sous-entend qu’un problème n’a qu’une seule solution et souvent qu’il n’existe qu’une seule stratégie pour y parvenir.

72 Le problème retourné (Bloch 2009) qui consiste à chercher les nombres décomposables en 3 entiers consécutifs n’admet pas de validation arithmétique et en ce sens permet d’introduire la preuve algébrique (encore un effet de la puissance des écritures mathématiques ici algébriques).
Il me paraît donc nécessaire de s’intéresser aux *inférences de connaissances pragmatiques nécessaires* pour la résolution de problèmes. Par exemple toutes les recherches de quatrième proportionnelle intégrées dans un problème de réalité évoquée nécessitent la connaissance pragmatique de la proportionnalité des deux grandeurs en présence (6 cm³ de minerai pèsent 25 grammes. Combien pèsent 15 cm³ de ce même minerai ? ’ nécessite pour être calculable que le minerai soit homogène). Les travaux de Verschaffel (par exemple Verschaffel 2000) montrent l’ampleur du travail nécessaire pour familiariser au contrôle pragmatique du modèle (intuitif ou construit) et augmenter les réussites aux *Problematic items Pi* (la validation pragmatique invalide le modèle intuitif), *Paul a acheté 4 planches de 2,5 m de long. Combien peut-il faire de planches de 1 m?*, relativement aux *Standard items Si* tels que : *Paul a acheté 5 planches de 2 m de long chacune. Combien peut-il faire de planches de 1 m?* (*Si*) ;

Je conclus donc par l’intérêt a priori de la fréquentation par les élèves de trois grands types de problèmes numériques atypiques : ceux qui nécessitent d’enchaîner plusieurs déductions ; ceux qui relèvent d’un modèle mathématique non enseigné dans la classe (par exemple à l’école primaire un modèle exponentiel, un modèle d’équation du premier degré à plus d’une inconnue, un modèle de double proportionnalité, ou aucun modèle simplement explicitable), mais peuvent être résolus, au moins par approximations successives, par un composé de connaissances (modèles) mathématiques a priori connues des élèves ; et enfin des *Problematic items* au sens de Verschaffel (2000). Ces derniers problèmes sont a priori susceptibles de promouvoir la confrontation de savoirs mathématiques à des contextes de réalité et de développer d’autres formes de validation.

Cette catégorisation de problèmes non routiniers issus de ressources familières aux enseignants (les problèmes atypiques) montre une certaine potentialité de ces problèmes pour des apprentissages mathématiques. Ils me semblent être de bons candidats73 pour constituer, dans la classe avec un enseignant ordinaire, un *arte povera* de l’activité mathématique, relativement à d’autres dispositifs, par exemple les SiRC, étudiés dans le paragraphe suivant.

B. D’autres recherches sur les problèmes non routiniers à l’école primaire

Des recherches plus récentes ou non prises en compte lors de ce travail (Hersant 2010) se centrent sur la transposition de la recherche/résolution de problème en mathématiques et travaillent spécifiquement des types de validation, mais me semble-t-il, plutôt de façon isolée.

Hersant (2010) a identifié dans les travaux de recherche sur la résolution de tels problèmes des fonctions différentes (des dominantes), notamment en regardant les institutionnalisations faites ou conseillées, donc *in fine* les savoirs déclarés visés par ce type d’activité. Deux grandes fonctions se dégagent : démarches heuristiques, plutôt de type expérimental et apprentissage des preuves dont elle cite des exemples. Ainsi Douaire (2006) vise à terme une institutionnalisation des moyens de prouver une conjecture, tout en pointant la difficulté à le faire, alors que Grenier & Payan (2003) décrivent la richesse (en circulation de connaissances mathématiques) d’une mise en scène d’une recherche de classe pilotée par un chercheur. Dans ses propres recherches, Hersant (2010) développe aussi la possibilité d’enseigner des savoirs sur la preuve, explicables, en jouant sur le passage d’arguments empiriques (importance accordée à la dialectique essais-conjecture) aux arguments de nécessité (valider-prouver) pour des problèmes bien choisis. Dans tous les cas est aussi visé un changement de rapport des élèves (et des enseignants) aux mathématiques (ce que j’ai qualifié de motivation externe), sans garantie que ce changement atteigne aussi les mathématiques scolaires, celles que l’enseignant fait usuellement fréquenter aux élèves.

73 Moyennant un travail de formation et/ou de diffusion de ressources

Or selon Georget (2009, p.283) cette maîtrise des « savoirs transversaux » à la résolution de problèmes semble assez rare chez les enseignants de primaire. Ce qui rend le dispositif SiRC peu adapté aux pratiques ordinaires, dans la mesure où il reste personnalisé, attaché au chercheur qui en contrôle les questions et l’avancée. Cette question de la prise en compte des enseignants dans les objets ou dispositifs d’enseignement qu’on leur conseille ou leur impose me semble cruciale. Elle reste encore peu explorée (sauf Douaire 2006, Georget 2009) par les travaux de recherche concernant les problèmes non routiniers. Georget constate que les enseignants, devant ces activités nouvelles, doivent faire face à de nombreuses incertitudes quant à la gestion de classe et en même temps pour les RPP maintenir une gestion assez ouverte pour que le processus de recherche fonctionne, incertitude qu’il a cherché à réduire en créant une ressource spécifique et en essayant d’installer des pratiques communautaires autour de cette ressource. Ses conclusions montrent la complexité d’un partage entre enseignants, donc d’une intégration apaisée de telles pratiques, compte tenu de l’hétérogénéité des connaissances des enseignants, qu’elles soient mathématiques (gestion de l’avancée du problème) ou didactiques (gestion de l’avancée des phases de la séance). Les problèmes à l’étude faisaient pourtant partie d’un corpus de problèmes visibles dans l’institution, grâce aux ouvrages ERMEL ou à certains manuels scolaires.

Sans entrer plus avant dans d’autres exemples, les séances centrées sur des problèmes non routiniers semblent développer chez les élèves des compétences spécifiques liées aux expériences de résolution. Mais plusieurs questions restent posées : celle du rapport des pratiques décrites ci-dessus avec les pratiques que l’on pourrait qualifier de quotidiennes, tout comme celle de l’organisation des
pratiques dans la durée (même si elles ont un caractère épisodique), et celle de la capitalisation des expériences vécues. Les enseignants sont insuffisamment pris en compte comme acteurs (agissant) des enseignements des problèmes non routiniers, y compris pour les problèmes que nous avons qualifiés d’atypiques. Autant d’ouvertures pour des recherches futures.

III. Ma critique de la Méthodologie de Résolution de problèmes

Mes premiers travaux (Houdement 1999, 2001, 2003) sur la résolution de problèmes interrogent les choix d’enseignement que font les manuels de consacrer une partie non négligeable de leurs leçons à une rubrique spécifique, détachée des domaines mathématiques du programme, nommée Méthodologie de la résolution de problèmes, qui consiste à apprendre aux élèves à résoudre des problèmes. Le paradoxe décelé dans ces méthodes est le suivant : pour apprendre à résoudre, les élèves sont souvent empêchés de cheminer jusqu’au bout de la résolution, il leur est demandé de chercher des informations utiles, de barrer des informations inutiles avant de résoudre, on leur impose de choisir un schéma qui devrait les aider, on leur fait croire qu’une résolution peut se ramener à un algorithme qu’il suffirait de respecter pour réussir... Pólya (1957) qui utilisait déjà l’expression « méthodologie de la résolution de problèmes » (Pólya 1962 cité par Bosch & Gascon 2005, p.108) n’aurait jamais imaginé que certains « hints » qu’il avait formulés pourraient donner naissance à des activités sans résolution effective, dont l’intention mathématique aurait disparu ! Finalement ces options font croire non seulement qu’il existerait une compétence général de résolution de problèmes, indépendante des connaissances en jeu dans le problème (hypothèse implicite déjà chez Pólya), mais en plus qu’elle pourrait s’acquérir sans chercher les solutions des problèmes.

La diffusion de mon premier article (Houdement 1999) dans une revue d’interface entre recherche et terrain a suscité de nombreuses réactions d’irritation, notamment pour "atteinte" à des dynamiques d’enseignement qui étaient partagées par la communauté des formateurs et des auteurs de manuels, une sorte d’allant de soi, qui ne pouvait plus être interroge, et qu’on pourrait interpréter comme l’effet de réification d’une communauté de pratiques (Wenger, 2005), soutenu par les programmes jusqu’en 2002. Finalement ce domaine nous donne à voir un phénomène de lente transformation des textes de programmes en hypothèses de travail pour l’enseignement, voire pour des recherches. Ce phénomène n’est pas isolé : Lester & Kehle (2003, p.510) signalent que les chercheurs prennent souvent comme références scientifiques pour le problem solving les Standards du National Council of Teachers of Mathematics (NCTM) en lieu et place des travaux de recherche. Des ouvrages réputés pour la qualité scientifique de leurs équipes de rédaction n’ont pas échappé à cet englouement dans des enseignements méthodologiques. Par exemple, certaines propositions des ERMEL, bible de la vulgarisation des travaux didactiques, ont entraîné certains enseignants (et ce dès le CP) à un travail sur les problèmes sans intention, ni de les résoudre, ni de les rattacher à des connaissances. Coppé & Houdement (2000, page 211) ont étudié le cas d’un enseignant observé en classe qui a pu, sans contradiction aucune avec ce qui était préconisé dans le ERMEL, amener des élèves de CP (ERMEL CP 1991, pages 83 à 87) à inventer des questions sur une image (montrant des enfants jouant au parc avec des bateaux), puis à les trier en questions mathématiques et questions non mathématiques et devant leur propulsion à compter les quantités visibles sur l’image, leur rappeler en permanence qu’ils étaient là pour poser des questions et non pas pour y répondre.

Mon travail visant à renouer avec une vigilance épistémologique s’est situé dans la même période (1990-2002) que ceux d’autres chercheurs, eux aussi critiques sur les propositions qui transposent des modèles de traitement de l’information dans le champ didactique en règles pédagogiques ou qui

transforment des analyses après coup de l’activité mathématique en règles d’entrée dans la résolution de problèmes.

Sarrazy (1997) a développé le caractère vain de l’enseignement de stratégies de résolution arithmétiques pour des élèves de primaire, tels les algorithmes de résolution de problèmes (par exemple Sarrazy 1997, p.143), cet enseignement traduisant une confusion entre heuristique et texte de présentation de la réponse (voire démonstration) et sans doute plus globalement entre apprentissage et enseignement. Par son opposition théorique, épistémologique et philosophique, il a aussi critiqué toute forme d’enseignement métacognitif, rangeant sous cette étiquette des enseignements qui consistent à revenir après coup avec les élèves, dans un domaine de connaissances particulier, sur ce qui a fait réussir la résolution.

La Théorie des Situations Didactiques (Brousseau 1998) fait une autre hypothèse (théorique) pour remédier aux difficultés de la résolution de problèmes, « pathologie » qu’elle n’envisage pas telle quelle dans sa théorie : il s’agirait de diffuser un autre enseignement des savoirs mathématiques, fortement corrélé aux situations didactiques qui modélisent ces savoirs ; mais il est vrai qu’elle n’étudie pas spécifiquement les conditions de réussite aux problèmes de réinvestissement des savoirs ainsi enseignés.

Le caractère vain des activités dites de méthodologie n’a pas encore diffusé suffisamment dans la noosphère, sans doute parce qu’elles étaient trop ancrées dans les pratiques et non remplacées par des activités à mêmes finalités : aider à résoudre un problème. Les programmes 2002 n’ont certes pas intégré de méthodologie de résolution de problèmes dans leurs textes, mais les propositions pédagogiques les confortant (manuels, ressources sur la Toile\(^\text{75}\)) n’ont pas disparu pour autant et se sont même parfois enrichies. La transformation des objectifs affichés pour les problèmes dans les programmes et la non reprise de la rubrique « apprendre à résoudre des problèmes » ont sans doute déboussolé les enseignants : je pointe ici un autre phénomène lié aux programmes, il se peut que l’institutionnalisation dans les programmes de 1980 à 2002 (et implicitement de retour en 2008) de l’expression « méthodologie de la résolution de problèmes », accompagnée par la proposition d’activités étiquetées ainsi dans presque toutes les ressources, ait créé pour longtemps ex nihilo un besoin des enseignants d’activités spécifiquement dévolues à ce but, de la même façon que la publicité peut créer des désirs dans la société.

Il est important de prendre de considérer que les enseignants ont besoin d’un accompagnement sur la résolution de problèmes dont la recherche devrait s’émanciper. Mais que sait-on précisément de ce qui fait la réussite à la résolution d’un problème ?

\(^{75}\text{Par exemple Résolution de problèmes cycle 3 Magnard 2002 ; les activités proposées sur la toile dans http://matoumatheux.ac-rennes.fr/num/probleme/CM1/accueilP1.htm ou encore http://pedagogite.free.fr/probleme_2/donnees_utiles_inutiles.pdf ; etc.}\)
IV. Mémoire de problèmes et nouveau regard sur les problèmes basiques

A. Résoudre un problème de mathématiques

La grande majorité des travaux sur l’apprentissage et l’enseignement des mathématiques repose sur le postulat suivant : « c’est dans l’activité de résolution de problèmes que se trouve la source de la connaissance. (...), source étant entendue comme condition nécessaire mais non suffisante de l’appropriation des connaissances » (Julo 2001, p.9). Il s’agirait donc d’aménager de « véritables occasions de résoudre des problèmes » (…) « dans le cadre d’une authentique activité d’élaboration de procédure » (idem, p.10). Dans ce paragraphe, je m’appuierai sur les recherches d’un psychologue cognitiviste Jean Julo, qui a travaillé dans les IREM et dont les travaux sur les problèmes présentent l’avantage d’avoir tenté une synthèse entre mathématiques scolaires, didactique et psychologie cognitive (Maury 2005).

Ce point de vue n’a pas existé de tout temps chez les psychologues. La résolution de problèmes, a d’abord été conçue dans les théories behavioristes comme un apprentissage de liens entre stimulation et réponses adaptées, puis été progressivement envisagée comme une activité mentale complexe finalisée (Richard 1994, Clément 2009). Les gestaltistes ont montré le rôle des habitudes et des connaissances antérieures dans la découverte de la solution, notamment l’insight (restructuration soudaine qui fait avancer vers la solution). Les travaux liés au traitement de l’information ont aussi marqué ces recherches, transposant des modèles informatiques sur la question de la planification (décomposer le but global en sous buts, déterminer dans quel ordre ces sous buts doivent être atteints, identifier les conditions à remplir pour l’atteinte de chaque sous-but (Laurière 1986, p.38). Une approche classique de psychologie cognitive conçoit la résolution de problèmes comme une activité mobilisant des connaissances procédurales acquises en situation : elle infère des comportements d’une personne face à un problème les actions mentales qu’il conduit ; c’est le versant action de la résolution de problèmes. Mais cette approche peine à étudier les effets de contexte, une modification même minime du problème qui influence la réussite. Des approches plus récentes s’appuient sur la notion de représentation du problème. C’est cette approche moderne que je privilégie.

La représentation du problème ne se réduit pas à la compréhension de son énoncé. La nature d’un problème engage un autre type de représentation. « Ce sont les relations complexes entre un but donné et les conditions de réalisation de ce but (les contraintes et les aides qu’introduit l’auteur de l’énoncé) qui caractérisent ce qu’est un problème par rapport à d’autres situations de compréhension de texte. » (Julo 1995, p.16). L’enjeu de la résolution de problèmes est aussi spécifique : « C’est bien le fait de découvrir par soi-même une solution que l’on n’entrevoit pas dans un premier temps qui est l’enjeu de cette activité particulière » (Julo 1995, p.25
Cette spécificité de l’objet problème lui vaut de la part de Julo un traitement spécifique, encore peu exploité par les didacticiens des mathématiques. Pour Julo (1995), la construction d’une représentation du problème est le fruit d’une activité mentale qu’il analyse par trois processus simultanés qui interagissent :

- **interpreter et selectionner** : pour avoir accès aux informations, il ne suffit pas de voir, il faut interpréter un contexte sémantique, sélectionner et organiser des informations ; ce sont nos connaissances, à un moment donné, qui guident notre interprétation ;
- **structurer** ces interprétations en un tout, cohérent et relativement stable, cette stabilité pouvant être un obstacle au changement de point de vue ;
- **opérationnaliser**, passer à l’action effective (calculs, tracés...) ou mentale (déductions...).

Ce passage à l’action résulte de la mise en œuvre de connaissances opératoires, issues de nos expériences passées. C’est le côté visible de la résolution.

B. Comment se construit la représentation de problèmes ?

Quelles hypothèses sur la formation des schémas de problèmes ?

Julo (1995, p.102) a inféré trois types de schémas de problèmes :

- des schémas de type abstrait basés sur des analogies du point de vue de la structure (par exemple les catégories de problèmes additifs ou multiplicatifs de Vergnaud 1990), des outils introduits par l’enseignement (par exemple le tableau de proportionnalité), des procédures de résolution (par exemple la règle de trois), etc.

mais il pourrait exister d’autres schémas qui ne se réduisent à une structure, par exemple :

76 Cette étude ne s’intéresse pas aux influences sur la résolution des formes des textes qui posent le problème (énoncé et question)
• des schémas de type cas, qui seraient des problèmes particuliers laissant chez l’individu une trace sémantique élaborée cognitivement ; la didactique des mathématiques essaierait de construire de tels prototypes sur la durée (Julo prend l’exemple des situations didactiques de Brousseau) ;
• des schémas de type regroupements : des agrégations personnelles selon des traits de surface, des critères de nature pragmatique. Cette vision me semble entrer en résonance avec le rôle de la structure induite (effet de contenu, Sanders 2008) d’un problème.

Les recherches sur les effets de contenu mériterait une lecture plus fine et d’autres développements : par exemple (cité par Sanders 2008, pp.98-99), confrontés à de deux problèmes qualifiés d’isomorphes (problèmes additifs de comparaison avec question sur le tout77), l’un portant sur des âges (variable ordinaire), l’autre sur les prix (variable cardinale), la majorité des élèves de primaire utilisent la procédure la plus courte (une opération) pour le problème des âges, alors que presqu’aucun n’utilise cette procédure pour l’autre problème, choisissant de faire trois opérations. De plus il n’y a pratiquement pas d’évolution comportementale (en fonction de l’âge) relativement aux stratégies mises en œuvre. Le contenu d’un problème serait donc partie prenante de la construction de la représentation. En ce qui concerne précisément ces deux problèmes, je vois d’autres différences qui peuvent influer sur la stratégie, comme le nombre et l’ordre de présentation des informations du second problème.

C. Quel lien entre représentation d’un problème et modélisation ?

Julo considère la modélisation comme une forme du processus d’opérationnalisation de la représentation (Julo 1995, p.64). Il considère l’ensemble des savoirs comme des outils de modélisation potentiels des situations. Mais il affirme aussi : « Un outil, aussi puissant soit-il, ne donne pas accès en lui-même, à l’objet du problème et ne rend pas sa structure plus transparente comme on le croit souvent. » (idem, p.70). Il prend l’exemple de la modélisation de problèmes élémentaires par des équations et montre qu’en réalité la pensée de cet outil de modélisation (les équations) ne dispense pas le sujet de construire une représentation adaptée du problème, en particulier de passer par des processus d’interprétation et de structuration. Mais la réussite d’un problème par mise en œuvre, en autonomie, d’un outil de modélisation fait croire (en particulier aux enseignants) que c’est cet outil qui nous a permis de comprendre et résoudre le problème (ibidem, p.86).

Brousseau est en résonance avec cette dialectique entre connaissances (Brousseau 1998, p.59) et représentations à travers le lien fort qu’il affirme entre connaissances et situation : « chaque connaissance peut se caractériser par une (ou des) situation didactique qui en préserve le sens et que nous appellerons situation fondamentale. ». « La connaissance est ce qui s’exprime par les règles de la situation didactique et ses stratégies. ». Son point de vue déclaré est certes épistémologique. C’est pourquoi, dans le schéma théorique de la situation fondamentale (suite de situations visant un savoir), l’enseignant cherche à ce que l’élève fasse abstraction de l’environnement du problème (circonstances, institution, désir du professeur) « l’enseignant doit sans cesse aider l’élève à dépouiller, dès que possible, la situation de tous ces artifices didactiques pour lui laisser la connaissance personnelle et objective » (TSD p60). Mais par la situation didactique, Brousseau engage les élèves dans la résolution d’une suite de problèmes à la portée de l’élève et visant une connaissance fixée ; il s’appuie sur leurs représentations particularisées (des modèles implicites d’action) ; il fait l’hypothèse, à l’instar des cognitivistes cités, que sous certaines conditions

77 Antoine a suivi les cours de peinture pendant 8 ans et s’est arrêté à 17 ans. Jean a commencé au même âge qu’Antoine et a suivi les cours deux ans de moins ; A quel âge Jean s’est-il arrêté ? (procédure minimale 17-2=15) // Laurent achète au marché un classeur qui coûte 8 euros et des ciseaux. Il paie 14 €. Un feutre coûte 3€ de moins qu’un classeur. Auguste achète des ciseaux et un feutre. Combien doit-il payer ? (procédure minimale 14-3=11)
didactiques (situations de phases de formulation, de validation, processus d’institutionnalisation), pour un élève, l’ensemble des représentations particularisées sur ces problèmes se transformerá en connaissance, c’est-à-dire en représentation stable en mémoire à long terme.

Concernant la dialectique entre connaissances mathématiques et situation issue de la réalité (vécue ou évoquée), deux mouvements sont distingués : (1) la réalité est un milieu pour la construction de connaissances (cas de la Théorie des Situations Didactiques de Brousseau) ; je parlerai, à l’instar de Freudenthal (1971), de mathématisation ; (2) les mathématiques outillent le traitement de problèmes liés à des situations de la réalité, il s’agit de modélisation (de la réalité par des mathématiques, entre autres).

Brousseau, à ma connaissance, n’a pas étudié « théoriquement » l’influence du contexte d’un problème (à la façon de Sanders 2008) sur la mathématisation, même s’il a scrupuleusement fixé certains contextes pour ses situations. L’outil théorique qu’est la variable didactique prend rarement ses valeurs dans un ensemble assumé de contextes différents. Dans la TSD, pour chaque problème, le rôle du contexte intervient dans le processus de dévolution, dans sa propension à déclencher une action de l’élève susceptible d’être convertie (ultérieurement) en la connaissance visée (à déclencher une représentation adaptée, dirait Julo). Mais d’autres chercheurs (par exemple Perrin-Glorian 1993) ont noté la nécessité, pour une décontextualisation réussie, de contextualisations différentes de la même situation et d’explicitation des liens (mathématiques) entre différentes contextualisations (en particulier pour les élèves faibles).

D. Un changement de regard sur les problèmes

Julo (1995, 2002) enrichit notre compréhension de la résolution de problèmes en parlant de mémoire des problèmes et en s’intéressant au fonctionnement des représentations particularisées (idem, p.203 ; 206). Pour un élève confronté à un problème, il y a deux possibilités : soit il active dès la lecture un schéma adéquat et l’adapte aux données de l’énoncé, soit en l’absence d’un tel schéma (ce qu’on pourrait qualifier de manque d’expertise sur ce type de problèmes), l’élève doit construire une représentation ad hoc du problème. Dans le premier cas, Barrouillet & Camos (2002, p.81) parlent de traitement top-down (plutôt dirigé par le concept en réalité le schéma dans le second de traitement bottom-up (plutôt dirigé par les données). Ce traitement bottom-up peut passer par le fait d’imaginer la situation décrite pour comprendre l’énoncé, mais engage aussi des connaissances déjà là, des filiations avec d’autres questions ressemblantes (du point de vue du sujet).

Ce modèle, relativement stabilisé en psychologie cognitive, change selon moi radicalement le rapport aux problèmes pour l’apprentissage et l’enseignement. L’urgence est d’enrichir la mémoire des problèmes de chaque élève (notamment basiques78) : en effet, l’élève disposerait ainsi de plus de schémas et face à un nouveau problème, serait plus à même de pointer des analogies avec quelque chose de déjà rencontré, au moins en partie. Cet enrichissement passe nécessairement par la rencontre des élèves avec des problèmes qu’ils mènent à terme. Or l’enseignement, même quand il affirme que l’élève doit être au centre, ne pose pas ce regard sur les problèmes : certes des problèmes sont proposés aux élèves, mais justement ceux qui ont des difficultés peuvent rarement les mener à terme ; l’enseignant suppose souvent qu’assister à la correction (qu’elle soit magistrale ou proposée par l’entremise de bref exposés d’élèves sur leurs productions) produira des effets positifs sur la prochaine résolution. Le temps d’étude de problèmes routiniers menés à terme me semble devoir être profondément développé. Se pose alors, en recherche, la question des aides possibles pour ce type de problèmes, en prenant comme horizon la construction de représentations particularisées.

78 Par exemple, dans le champ numérique, les one step problems, ceux qui relèvent d’une seule opération et d’un énoncé court.
Julo, suppose que la source des difficultés persistantes des élèves en mathématiques serait « une carence en matière de véritable occasion de résoudre des problèmes » (Julo 2001, p.10). Il est urgent d’étudier en recherche des dispositifs qui centrent l’enseignement des mathématiques sur la confrontation systématique des élèves à des problèmes routiniers (pour contrôler l’activation des schémas) et moins routiniers, voire nouveaux (pour déclencher la construction de nouveaux schémas).

E. Des pistes de recherche didactique pour les problèmes arithmétiques verbaux

L’enrichissement de la mémoire des problèmes d’un sujet ne résout cependant pas la question de son organisation, notamment pour une récupération rapide, lorsqu’il est confronté à un nouveau problème. Novotná (2003, pp.31-35) a montré, lors de répétition des rencontres avec des problèmes (non basiques car de partages inégaux), comment les expériences passées (de réussite) sur un problème de même structure profitaient de façon différenciée aux élèves. On peut cependant noter que certaines recherches prennent en compte, pour le travail systématique sur les problèmes arithmétiques « basiques », un certain type de ressemblances structurelles. Par exemple des chercheurs comme Vergnaud préconisent, pour l’apprentissage des champs conceptuels additifs et multiplicatifs, un enseignement par listes de problèmes proches au niveau des raisonnements en jeu (ce que Vergnaud appelle le calcul relationnel, qui ne se confond pas avec le calcul arithmétique, l’opération en jeu, Vergnaud dir 1997), mais cela reste très mal compris (du moins par les enseignants) et relativement peu étudié au niveau de la recherche, du moins en France.

J’ai encadré une thèse (Nguala 2009) qui étudie, entre autres, l’efficacité, pour la réussite à des problèmes multiplicatifs en cycle 3, de la présentation simultanée de plusieurs problèmes ressemblants. Ce dispositif issu d’un travail de Julo sur l’aide à la construction de la représentation, consiste à proposer à l’élève non pas un seul problème, mais trois problèmes relevant tous trois du même calcul relationnel, avec les mêmes valeurs numériques, mais dans des contextes différents. Par exemple : un élève doit résoudre, dans l’ordre qu’il souhaite, les trois problèmes suivants :

1) Léa empile des briques identiques d’un jeu de construction. Avec une brique, on obtient une hauteur de 13 cm. Léa empile 52 briques. Quelle hauteur obtient-elle ?

3) Un jardinier a planté des rangées de salades dans son champ. Chaque rangée compte 13 salades. Ce jardinier a planté 52 rangées de salades. Combien a-t-il planté de salades ?

Le travail de Nguala (2009) confirme pour le primaire l’impact positif local de ce dispositif que Julo avait déjà mesuré au collège pour des problèmes de proportionnalité (Julo 1996). Restons précis : le dispositif de multiprésentation améliore la réussite à chaque problème79, mais Nguala n’a pas pu montrer que, tel qu’il était conçu dans sa thèse, il pouvait constituer une ingénierie d’enseignement de la multiplication et de la division, notamment pour les élèves faibles, du fait notamment d’effets de contrat implicite80.

Les « problèmes à variations », pratiques courantes et stabilisées en école primaire en Chine (« an “indigenous” Chinese practice », Sun 2011) repérés et expérimentés par Bartolini-Bussi & al. (2011) relèvent des mêmes dispositifs : laisser les élèves résoudre non pas un, mais une série de problèmes ressemblants (même contexte, mêmes valeurs numériques mais calculs relationnels

79 Pour chaque problème, la réussite est plus forte avec la modalité de multi-présentation que si le problème est donné seul à résoudre.

80 Après une certaine fréquentation de ce dispositif, les élèves face à une tâche de résolution simultanée de trois problèmes faisaient l’hypothèse qu’ils relevaient de la même opération.
différents combinaisons, changement, comparaison\(^{81}\) accompagnés de schémas (graphiques) de résolution, puis inciter les élèves, après résolution, à formuler des ressemblances et des différences entre ces problèmes. Cette résonance entre supposés théoriques de psychologie cognitive et traditions séculaires chinoises associées à des compétences fortes des élèves chinois sur la résolution de problèmes (et une potentialité déjà un peu éprouvée par Bartolini-Bussi & al. en Italie (2011) est stimulante pour le développement de recherches futures.

Priolet (2008) propose un dispositif d’aide (R\(^2\)C\(^2\)) à des problèmes arithmétiques verbaux assez original, déclaré intégrable à toute pratique ordinaire : l’enseignant, par un discours maientique avec les élèves, pointe et structure après coup les ressemblances entre les problèmes résolus qu’il a l’habitude de donner. Ce dispositif repose sur quatre principes pensés conjointement pour les enseignants et pour les élèves : laisser effectivement chercher le problème aux élèves (Chercher), solliciter des conversions de Représentations sémiotiques, faire des liens avec des expériences passées (mettre en Réseau), Catégoriser les problèmes. Ces quatre principes sont opérationnalisés par des artefacts : la fiche problème, qui comporte le texte du problème et quatre cases pour des représentations sémiotiques « opération, dessin schéma, texte... » ; la boîte-référente, qui agrège les fiches problèmes en fonction de leurs ressemblances repérées par un ou plusieurs schémas référents et enfin le dictionnaire-référent, composé d’expressions verbales explicitées et/ou schématisées.

Comment enrichir le dispositif, notamment en articulant les assortiments didactiques de Genestoux, les problèmes à variations et la multiprésentation de Julo et Nguala, les artefacts de Priolet ? Comment étudier la potentialité de ces dispositifs : en Chine, ce sont des dispositifs qui font partie de la pratique des enseignants, mais qui commencent seulement (Cai & Nie 2007, p.464) à être étudiés théoriquement (Sun 2011). Dans quelle mesure et comment implanter ce type de dispositif dans les curricula français ? Voilà de quoi nourrir une recherche développement sur une écologie cognitive des problèmes arithmétiques verbaux.

Comment repérer les connaissances dont ces dispositifs seraient producteurs ? Il me semble que c’est une façon de penser des cycles de contextualisation, décontextualisation (Perrin-Glorian 1993) des opérations arithmétiques : contextualisation dans la réalité évoquée ou imaginaire, décontextualisation par les équations associées.

Quel enrichissement peut apporter cette remarque à la question plus générale de la dialectique entre contextualisation et décontextualisation ? Est-ce une nouvelle façon (intégrée) de penser le processus d’institutionnalisation ? Quels artefacts construire pour que les enseignants prennent réellement en charge cette institutionnalisation ?

Voilà bien des questions ouvertes pour des recherches développements (Perrin Glorian 2011).

\(^{82}\) Le type de ressemblance entre les problèmes d’une même série et les ostensifs choisis pour la pointer sont sans doute une variable essentielle.
V. Un autre regard sur les problèmes basiques et complexes

A. Vers une nouvelle typologie de ces problèmes numériques basiques

Mon étude débouche naturellement sur une distinction a priori entre différents types de problèmes numériques, susceptible de nourrir les curricula : des problèmes basiques (ceux pour lesquels est visée une certaine automatité, un traitement *top-down* et qui seraient constitutifs de l’apprentissage et indicateurs de l’acquisition d’un concept, d’une technique), des problèmes complexes (ceux dans lesquels les informations sont assez dispersées dans un texte, ceux dont la résolution nécessite la planification de sous-problèmes basiques...) et des problèmes atypiques (ceux qui nécessitent la construction d’un nouveau modèle mental). Le lecteur notera l’enrichissement de la typologie dyadique routiniers / non routiniers en une triade basiques, complexes (de basiques) et atypiques83.

Comment expliciter ce qui relève de la catégorie problèmes basiques ? Ce serait les problèmes à deux données numériques dont il s’agit de déduire un troisième nombre (par exemple par l’inférence d’une de quatre opérations arithmétiques) et ceux relevant du modèle proportionnel (trois données ou plus, en déduire d’autres nombres) avec des énonces relativement sobres, sans surcharge d’informations. De tout temps, ces problèmes ont fait partie des curricula de mathématiques, parfois sous le libellé Problèmes à une opération (*one-step problems*). Rappelons que les synthèses de Vergnaud (1997) permettent d’étaillonner a priori ces problèmes selon les types de raisonnements en jeu (calcul relationnel), qui n’est pas du tout réductible aux quatre opérations (calcul arithmétique).

Bien sûr la réussite à ces problèmes est aussi liée à d’autres connaissances84 sur les nombres (entiers, décimaux, grandeurs physiques...).

Voici quelques exemples de problèmes basiques en fin de cycle 3 (grades 4 et 5)85

1. Avec 2 356 € combien de billets de 100 € peut on avoir ? Et avec 12 356 € ?
2. Alice a 26 timbres dans sa collection, c’est deux fois plus que Leïla. Combien de timbres Leïla a-t-elle dans sa collection ?
3. Grégoire charge dans sa camionnette 75 sacs de 20 kg de pommes. Combien pèse son chargement ?
4. Sonia doit répartir équitablement 250 caramels dans 12 sachets. Elle pourra manger les caramels qui restent. Combien de caramels Sonia pourra-t-elle manger ?
5. Pendant la récréation, Paul a joué aux billes et en a perdu 48. Il lui en reste 127. Combien de billes avait-il avant la récréation ?
6. L’aubergiste répartit équitablement un tonneau de cervoise de 26 litres dans 8 amphores. Quelle quantité de cervoise verse-t-il dans chacune ?

Comment définir les problèmes complexes : la réussite à ces problèmes repose sur une bonne appropriation de problèmes basiques qui les composent. Mais les problèmes complexes ne sont pas de simples juxtapositions de problèmes basiques, la construction et la planification des sous-problèmes restent à la charge de l’élève. La construction de sous-problèmes basiques sollicite fortement la mémoire des problèmes du résolveur, celui-ci sera plus efficace s’il construit des sous-problèmes qu’il sait résoudre.

Un problème complexe peut être un problème ternaire (deux données trouver la troisième) mais le grand nombre d’informations fournies en rend l’interprétation et la structuration (au sens de Julo)

83 C’est en gros cette typologie triadique qu’on retenu les programmes 2002 de primaire de mathématiques
84 D’autres facteurs (forme de l’énoncé, contenus sémantiques) affectent aussi la réussite (voir partie 4)

Prenons un exemple extrait de ERMEL

Au cinéma Royal Ciné un adulte paye 6 € par séance et un enfant paye 4 € par séance. A la séance de l’après-midi, il y avait 50 adultes et des enfants. A la séance du soir, il y avait 15 adultes et 20 enfants. La recette de la journée est de 542 €. Combien y avait-il d’enfants à la séance de l’après-midi ?

Certains problèmes complexes peuvent même s’appuyer sur des sources d’informations différentes, énoncé d’un côté, document pratique de l’autre (par exemple questions sur la comparaison de durées de trajets en train à partir d’un horaire de train), ce qui complexifie encore la « connexion » d’informations.

Les problèmes atypiques ont été définis et étudiés dans une partie antérieure. Ils présentent l’avantage a priori de permettre à l’élève de rencontrer des situations totalement qu’il leur est possible de résoudre avec leurs connaissances déjà là.

Les travaux de Julo (entre autres) ont mis en lumière la non-transparence des informations utiles à la résolution en amont de sa réalisation ; l’intégration nécessaire de connaissances du sujet dans les processus de sélection et d’opérationnalisation, etc. Elles m’ont engagée plus avant dans un approfondissement didactique de l’étude de la résolution de problèmes du point de vue du sujet : quelles connaissances sont en jeu quand un élève résout un problème ? Peut-on débusquer des connaissances, suffisamment générales pour qu’elles traversent plusieurs problèmes, suffisamment partagées pour qu’elles puissent être enseignées ? Ce sera l’objet de la cinquième partie.

B. Que nous apportent des points de vue d’élèves ?

Dans cette partie, je reviens sur les problèmes arithmétiques ordinaires de l’école primaire et du début de collège, ceux qui sont familiers aux enseignants qui les donnent à leurs élèves pour tester leur connaissance des savoirs sous-jacents, savoirs déjà travaillés dans la classe : en bref, il s’agit de ce que la noosphère nomme problèmes arithmétiques de réinvestissement. Je me limite à cette forme particulière de problèmes numériques, très courants à l’école, notamment primaire, donnés sous forme d’énoncés écrits, notamment les word problems. Rappelons qu’un problème verbal est un texte donnant des éléments d’une situation réelle, certains de ces éléments étant quantifiés, l’objet du problème étant d’en quantifier d’autres, en s’appuyant sur le texte du problème (Verschaffel, Greer & De Corte, 2000)

Les problèmes arithmétiques verbaux et leur enseignement ont été très travaillés dans les recherches internationales (par exemple Kilpatrick,1985 ; Lesh 1985 ; Lester 1985 ; Lester & al 2003 ; Verschaffel, Greer & De Corte, 2000, 2007), surtout en relation avec les typologies de problèmes additifs et multiplicatifs (Vergnaud 1991, 1997), l’influence d’aides externes (schémas ou dessins,

droite numérique Elia 2011) ; la motivation des élèves semble aussi agir sur la réussite. Mais ces influences n'ont pas pu être converties en aides métacognitives efficaces (Verschaffel & al. 2006).

D’autres recherches mentionnent l’impact de la présentation au sens large des problèmes.

Il ne s’agit pas ici de développer les recherches cognitives sur les problèmes basiques, mais seulement de montrer leur existence et leur faible intégration dans les travaux didactiques. Notons par exemple une conséquence marquante pour les enseignants de mathématiques : indépendamment de la formulation de l’énoncé, la contextualisation d’un type de tâches, pour faire travailler une technique ou la tester, par un contexte de réalité évoquée, si courant dans les mathématiques scolaires pour les problèmes arithmétiques, n’est pas transparent (Julo 2002, Sarrazry 2002, Gamo & al. 2011). Ce qui pourrait déboucher sur l’intérêt de la présentation simultanée de différentes contextualisations d’un type de tâches en problèmes pour, dans un premier temps, laisser l’élève choisir le problème qu’il « préfère », dans un temps second, structurer et écrire les ressemblances entre ces problèmes, mais cela reste encore une question de recherche sur laquelle nous reviendrons un peu plus loin.

87 Par exemple dans le problème Paul achète un stylo à 1,50 € et des enveloppes. Paul paie 5€, la quantité enveloppes n’est pas quantifiée, il faut inférer que les enveloppes ont un prix.
Utiliser des problèmes88 (contextual problems) est proposé comme outil d’enseignement du sens des opérations (Van der Walle 2007, p.146 et p.154) comme pour apprendre tout autre thème mathématique. Mais l’ouvrage propose peu de développement sur les problèmes arithmétiques de réinvestissement (Van der Walle 2007, pp.158-160), à part quelques incitations d’ordre métacognitif comme Think over the Answer before Solving the Problem ou Work a Simpler Problem ou encore Avoid the Key Word Strategy. La 7ème édition, posthume, présente même comme nouveauté quatre étapes pour résoudre un problème inspirées de Pólya : « 1. Understanding the problem. 2. Devising a plan. 3. Carrying out the plan. 4. Looking back. » (Four-Step Problem-Solving Process, Van de Walle 2010, p.42) dont les effets limités sont connus (Maury 2005, p.336).

L’enseignement lié aux problèmes arithmétiques verbaux reste donc en friche et les enseignants se désespèrent souvent que les élèves ne réussissent pas ces problèmes aussi bien qu’ils le souhaiteraient.

Mes derniers travaux se sont justement centrés sur ce thème, plus exactement sur les problèmes numériques verbaux de réinvestissement. C’est souvent sur ces problèmes, très fréquents, que les enseignants sont décus des réponses de leurs élèves, alors qu’ils attendent que ceux-ci utilisent à bon escient les opérations arithmétiques89. Je n’entre pas dans une analyse de difficultés a priori de tels ou tels problèmes inspirés de travaux cognitifs et/ou didactiques, mais porte mon regard sur les stratégies développées par les élèves confrontés à ces problèmes. J’ai fait l’hypothèse qu’il existait des connaissances en jeu dans la résolution de problèmes arithmétiques de réinvestissement, connaissances à caractère générique, dont la possession outillerait l’élève alors que l’absence le bloquerait dans sa résolution. A priori ces connaissances seraient ignorées des institutions (école, didactique) : elles seraient nécessaires pour réussir, mais non repérées par les institutions d’enseignement, voire même ignorées de la didactique, dans une problématique d’enjeux cachés d’apprentissage (Castela 90).

Les données ont été issues d’entretiens semi-directifs à visée d’explicitation90 (Vermersch 1994) avec des élèves de cycle 3 (grades 3 à 5, 8 à 11 ans) après qu’ils aient résolu individuellement des problèmes ordinaires de réinvestissement. A priori il était difficile de savoir si le grain assez fin de cette étude allait produire des résultats palpables, retrouvant par là un questionnement de Balacheff & Gaudin (2002). Des fils ont cependant été tirés en repérant des invariants entre élèves ou dans les façons de faire d’un élève. Je reprends ici les plus significatifs en approfondissant leur résonance avec d’autres travaux (Houdemont 2011). Ils sont particulièrement intéressants pour les problèmes arithmétiques complexes.

\textbf{Inférences et contrôles (choisir et tester)}

Certains élèves infèrent automatiquement la bonne opération, d’autres le bon champ conceptuel (additif ou multiplicatif) : il ne leur reste qu’à choisir entre deux opérations. Ils testent la pertinence, souvent après calcul avec ce modèle, par différents types de contrôle. L’inférence et le contrôle sémantiques (à partir du contexte) outillent le choix de l’opération par le type de tâches inféré du contexte : ‘partager c’est une division’, ‘fois c’est multiplicier’, ‘multiplier va donner plus’. Le contrôle pragmatique (connaissance du contexte, du domaine d’expérience) examine la relation entre le nombre calculé et sa pertinence relativement au contexte du problème (question d’ordre de

88 Van de Walle (2007, p.37) retient cette définition du problème « A problem is defined as any task or activity for which the students have no prescribed or memorized rules or methods, nor is there a perception by students that there is a specific ‘correct’ method. »

89 Il s’agit d’aider les élèves à utiliser les idées qu’ils ont, non pas à mieux fonctionner dans des situations où ils n’ont pas d’idée a priori (Lesh 1985 p.319).

90 Selon Faingold, collaboratrice de Vermersch, l’entretien d’explicitation est une technique de questionnement qui permet de mettre à jour des connaissances implicites mobilisées dans l’action, par un guidage très précis des verbalisations (Faingold, N., Accéder aux savoirs implicites de l’acte pédagogique : l’entretien d’explicitation avec les enseignants experts. Actes du premier congrès AREF, mars 1993).

Dialectique nombres – grandeurs – grandeurs contextualisées

Préciser la nature des inférences et des contrôles représente un essai de prise en compte des deux plans d’étude liés à un problème verbal arithmétique : plan de la réalité et plan des mathématiques. Comment penser l’articulation ? Elle est d’abord liée à une sorte de syntaxe sur les grandeurs (que les physiciens nomment les équations aux dimensions), dont la version minimale est nombre suivi d’une unité (50 adultes, 4 euros), autrement dit d’écrire la grandeur mesurée : cela sera nommé *qualification faible*. Plus généralement *qualifier* revient à décrire (et savoir se dire) la description de la grandeur, sa contextualisation relativement au problème, que ce nombre soit donné par l’énoncé ou issu d’un calcul. Pour le problème ci-dessous, l’élève qui déclare que le 542, c’est 542€, qualifie faiblement ; celui qui déclare que 542€ ‘est la recette de la journée sait qualifier (complètement). La *qualification faible* sera distinguée de la *qualification* (complète).

Considérons le problème suivant résolu par Nicolas (CE2)

Dans un premier temps, Nicolas, après une suite de calculs justes posés en colonne sur son brouillon, recopiés sur la feuille réponse, a proposé un résultat erroné 72 [qui correspond à la mesure du prix payé par les enfants de l’après-midi]. L’entretien est l’occasion de revenir sur cette résolution.

Questionné sur le 90, il est incapable d’indiquer ce à quoi il correspond. Il fournit difficilement une qualification faible pour 80, résiste à la qualification complète.

C.H. : Et ce calcul là, est-ce que tu vois à quoi il correspond ?

Nicolas : A 4 fois 20

C.H. : Mais qu’est ce que tu as calculé par rapport au problème ?

Nicolas : Bah 4 € et 20 enfants.

C.H. : Et finalement quand tu fais 4 € et 20 enfants qu’est- ce que tu obtiens à la fin ?

Nicolas : 80 €.

Au contraire Corentin assume l’importance pour lui de la qualification dans la résolution de problèmes, qu’il semble avoir apprise de façon autonome. Il mentionne le souvenir vivace d’un jour où il « s’était embrouillé » car il « avait mélangé le nombre de T-shirts et les euros ». Cette connaissance, qualifier, est aussi explicite et visible (sur son brouillon) : elle se traduit en particulier par une légende sur les nombres de l’énoncé spécifiant leur qualification dont voici un extrait relativement au problème : « Le libraire dit : « avec mes 2 255 €, si j’achète 36 livres d’art à 62 €, il me restera 13 €. A-t-il raison ? ». Il réussit ce problème.
Entretien ligne 18

Corentin : En fait dans ma tête quand je lis : là il y a 2 255 € ça c'est clair. Y a 36 livres, ça coûte 62 €. Après je calcule ces deux là, après ça fait le nombre d'euros que je dois payer, et après je compare les deux que j'ai : le nombre d'euros et ce que j'ai trouvé.

Sur son brouillon

2 255 € : euros
36 : livre-darts
62 : prix des livre-darts

Il me semble que la qualification constitue le versant symétrique de la quantification, soulignant ainsi dans la résolution de problèmes la dialectique nécessaire à la réussite entre nombres, grandeurs et grandeurs contextualisées par la réalité du problème. Cette dialectique entre nombres et grandeurs, qualification et quantification traverse les word problèmes : comment la faire travailler par les élèves ? Comment la communiquer en formation sans rigidifier son usage ?

Questions sémiotiques

L’étude a décelé des déficits dans le jeu avec les ostensifs susceptibles de freiner l’avancée vers la résolution : certains élèves étaient capables à l’oral de nommer la tâche ‘63 pour aller en 500’, mais incapables de s’engager dans son traitement. Citons un exemple prototypique de ce « blocage sémiotique »: face au problème, ‘Un fabricant de jouets mets 6 voitures par carton. Il veut expédier 1830 voitures. Combien lui faudra-t-il de cartons ?’, Sébastien dit « J’ai essayé de réfléchir et j’ai pas trouvé. J’ai essayé de faire 6 fois quelque chose mais j’ai pas trouvé. » et plus loin « Je sais / Une idée bête / Je sais qu’il fallait trouver 1 830 / Mais j’essaie quand même fois 2 fois / même si c’était plus grand ». Sébastien a surinvesti la multiplication (il a fait 2x1830) en sachant que c’était erroné (par contrôle sémantique ou pragmatique). Peut-être que la conversion écrite de son idée orale (6 x ?=…1830) l’aurait aidé à chercher le nombre de cartons au moins par une procédure arithmétique (approximations successives). La disponibilité de la transformation de cette écriture en 1830 :6= ? lui aurait donné un programme de calcul. L’utilisation de lettre pour qualifier l’inconnue serait aussi une possibilité en primaire.
C. Un raisonnement souvent efficace : modéliser par une opération

Cette étude m’a fait pointer et expliciter le mode de raisonnement suivant, partagé par les élèves y compris les « forts » et producteur de réussite chez les élèves étudiés : les élèves cherchaient à construire des problèmes calculables en une étape (qui correspondent en fait aux problèmes basiques), puis en l’absence de traitement automatique disponible (par inférence mémoriel de un problème ressemblant déjà résolu), testaient un modèle (en l’occurrence une opération arithmétique) par des contrôles de type sémantique, syntaxique et pragmatique. Les élèves ont ainsi fait preuve d’une véritable démarche expérimentale lors de ces résolutions (Houdement 2012a).

Ce modèle de raisonnement permettrait aussi de comprendre les échecs classiques qui consistent à appliquer une opération « au hasard » sur les nombres de l’énoncé : les élèves utilisent certes un modèle, mais pour de mauvaises raisons (l’opération qu’ils maîtrisent le mieux, ou celle de la leçon du jour) démunis face à la nécessité des contrôles sur le choix du modèle (et possédant sans doute une mémoire des problèmes basiques trop pauvre), « mettant entre parenthèses le sens » des problèmes (Verschaffel & al 2008).

Certaines des conclusions sur les problèmes arithmétiques de réinvestissement entrent en résonance avec celles de chercheurs travaillant sur les problèmes de modélisation (et promouvant ceux-ci dans l’enseignement), comme Lester & Kehle (2003, p.512-513) qui remettent en cause la perspective « naïve » de la résolution de problèmes (1er tableau)

Ils renouvellent (2nd tableau) le modèle classique du passage unique du monde réel vers le monde mathématique sans retour avant le contrôle final de la solution ; optant pour une circulation entre les connaissances sur le monde réel (celui qui offre le contexte du problème) et celles du monde mathématique permanente et à double sens, en bref par une multiplicité des contrôles.

Ce constat est tout à fait crucial : il aide à percevoir les débuts d’une écologie des problèmes numériques verbaux. En effet il me semble légitimer le travail sur les problèmes atypiques susceptibles de développer une démarche expérimentale et de pointer le rôle des contrôles de la démarche et de la réponse (tout cela devant être explicité par l’enseignant). Mais cette hypothèse serait à confirmer.

VI. Perspectives de recherche

A. Sur le plan méthodologique

Le dernier pan de recherche, sur les problèmes ordinaires, valorise une méthodologie par entretien auprès d’élèves semi-directif mais à visée d’explicitation : il permet d’accéder à la singularité de la pensée d’un élève, avec une perturbation a minima pendant la tâche, puisqu’il n’intervient qu’après ; mais aussi à certains invariants, même ignorés des institutions (école, didactique des mathématiques). Certes ce n’est pas une méthodologie originale (Penloup 2007, Castela 2008), mais elle est aussi productive pour de jeunes élèves, pour accéder autant que faire se peut à leurs modes de pensée, sous réserve qu’ils aient les mots pour le dire. Compte tenu des incertitudes concernant les modes de pensée des élèves résolvant individuellement des problèmes, quel que soit leur âge, cette méthodologie semble avoir un avenir dans la didactique, notamment pour permettre aux didacticiens d’attraper, dans les conditions qu’ils ont décidées, quelque chose de l’ordre du cognitif.

Nos études montrent l’intérêt de ne pas se contenter d’un sujet épistémique, mais de connaître le fonctionnement cognitif de vrais sujets élèves en situation, y compris pour débusquer des connaissances. Comment intégrer un double regard, de psychologie cognitive et de didactique des mathématiques sur ces phénomènes d’apprentissage et d’enseignement ?

B. Sur les problèmes numériques

En un peu plus d’un siècle, les points de vue sur les problèmes arithmétiques verbaux ont complètement changé : de problèmes enseignés à partir d’une technique unique qu’ils illistraient ou entraînaient, dont la formulation et surtout le contexte étaient jugés transparents, on est passé aux problèmes assumés comme relevant de plusieurs techniques, constitutifs du sens des modèles mathématiques, arithmétiques ou pré-algébriques (qu’il s’agit de construire en aménageant aux élèves l’occasion de repérer des invariants entre problèmes), dont on connaît l’influence potentielle de la formulation et du contexte sur la réussite, sans doute résolus par un jeu d’inférences et de contrôles.

Mes études ont pointé le potentiel d’un éclairage sur le triptyque de problèmes auquel pourraient être confrontés les élèves, de moins dans le domaine numérique : problèmes basiques organisés selon les hiérarchies actuellement avérées (Vergnaud 1991, 1997) avec des attentions spécifiques aux contextes facilitateurs de réussite individuelle de façon à enrichir la mémoire des problèmes (et in fine ce qui se cache sous le sens des opérations) ; problèmes complexes (composés de problèmes basiques connus a priori) ; problèmes atypiques pour composer des raisonnements basiques, développer des démarches et raisonnements « autres » que le calcul, entrer dans des pratiques de modélisation (domaine de validité d’un modèle) et développer des compétences de contrôle (Saboya 2010).
Serait bienvenue la poursuite de recherches didactiques sur les problèmes, en résonance avec des résultats de psychologie cognitive, qui revisite le regard scolaire ancien (voir début de chapitre), en considérant toujours les problèmes comme des occasions d'apprendre des mathématiques.

D’abord, pour augmenter la mémoire des problèmes basiques et l’automatisation de traitement de ces problèmes, dans le sens suggéré par Thévenot & al. (2010, p.163) : « Cet ensemble de résultats suggère qu’il est préférable de faire travailler les enfants sur une grande variété de problèmes de structures différentes en insistant sur l’analyse et l’interprétation des situations-problèmes plutôt que de leur faire apprendre des procédures liées à des types de problèmes particuliers ».

Ensuite, pour lutter contre le phénomène de suspension of sense-making92 (Verschaffel & al. 2000) pour les word problems, qu’on trouve chez les élèves de nombreux pays en relation avec une conception très scolaire des mathématiques, auto-suffisantes (ce qu’on apprend à l’école suffit pour résoudre les problèmes) et indépendantes des connaissances du monde réel. Verschaffel & al. (2008) propose même une reconceptualisation explicite des problèmes verbaux en exercices de modélisation mathématique93 : confronter les élèves à de nouveaux problèmes, réalistes, authentiques (les Problematic items -voir plus haut- en sont des exemples), de façon à rendre explicite aussi le recours aux connaissances du monde réel, l’intérêt d’autoriser la plausibilité d’une réponse à défaut de sa certitude, la conscience de choisir un modèle..., bref des connaissances qui peuvent être déjà opérationnelles pour certains élèves pour des problèmes ordinaires. J’arrive là à la croisée de deux types de recherche : celles sur les problèmes verbaux et celles sur la modélisation et enrichis ainsi la rubrique des problèmes atypiques dans un perspective écologique.

Comment opérationnaliser cet enrichissement pour l’enseignement en classes ordinaires ? Voilà de nouveau un vrai défi pour les recherches.

C. Sur la formation

Comment former à la complexité des problèmes ?

L’enseignement des ressemblances structurelles (calcul relationnel de Vergnaud 1997) entre problèmes arithmétiques à une opération est devenu consensus dans la formation des enseignants, mais cela ne réussit pas toujours à changer la conception erronée suivante : la difficulté d’un problème est liée à l’opération qui donne la réponse, par exemple un problème qui relève de la division est plus difficile qu’un autre qui relève de la soustraction. Mon expérience me fait dire que les structures additives et multiplicatives sont souvent présentées comme un listing des différents sens des opérations, sans engager les enseignants à les rendre fonctionnelles ni pour le choix et la construction de leurs progressions, ni pour l’adéquation des évaluations aux enseignements faits.

92 Les élèves « mettant entre parenthèses le sens » pour les problèmes numériques cherchent à « appliquer » une opération arithmétique sans prendre du tout ou suffisamment en compte les informations du problème : par exemple ils font comme s’il était toujours calculable.
93 Ces nouveaux problèmes ne font pas bien sûr disparaître les problèmes basiques

Les textes des programmes peuvent-ils jouer un rôle ? On sait que les enseignants sont d’autant plus réceptifs aux indications des programmes qu’ils sont déjà familiers avec ce type de démarche ou cette entrée dans les apprentissages (Senk & Thompson 2003, p.13), qu’ils sont plutôt plus sensibles aux démarches nouvelles (idem) qu’aux contenus nouveaux ou aux entrées différentes dans des contenus connus sans doute par manque de culture mathématique et didactique. En collaboration avec l’équipe de rédaction des programmes 2002 de mathématique du primaire, j’ai tenté d’intégrer (Houdement 2005) une vulgarisation des résultats de Vergnaud : les enseignants et les formateurs connaissant l’approche l’ont reconnue, pour les autres c’est resté incompris, voire invisible. Les textes de programmes ne peuvent souvent que renforcer des conceptions déjà là, au mieux outiller les formateurs et les auteurs de manuels (Houdement 2005).

D. En résonance avec d’autres recherches

Mon étude clinique et exploratoire sur les problèmes ordinaires a débusqué des connaissances ignorées ou insuffisamment travaillées, plus exactement elle a sensibilisé à des phénomènes constitutifs de la résolution de problèmes relativement transversaux.

Mais il me semble maintenant qu’elle relève d’une problématique plus large : la conception des problèmes arithmétiques, selon le sens que donnent à conception Balacheff & Margolinas (2003) dans le modèle cKC.

Sans rentrer dans tous les raffinements de cette théorie cKC, évoquons quelques éléments. La conception est un état d’équilibre entre un système sujet-milieu, caractérisé par un quadruplet : un ensemble de problèmes, un ensemble d’opérateurs, un système de représentation et une structure de contrôle. Les problèmes sont les perturbations du système. Les opérateurs (visibles par productions et comportements) permettent les transformations des problèmes. Les représentations sont langagières et non langagières, relèvent de différents registres sémiotiques au sens de Duval (1995). Les contrôles outillent les décisions en amont et en aval de leur application, ils sont souvent implicites : « the control structure Σ is constituted by all the means needed in order to make choices, to take decisions, as well as to express judgment». (Balacheff & Gaudin 2002, p.7)

Dans mon étude, il est clair que les problèmes sont les problèmes arithmétiques verbaux. Les jeux d’inférences et contrôles de mes travaux correspondent à la dialectique entre opérateurs et contrôles pointée par Balacheff & Margolinas (2003, p.84), la méthodologie employée (entretien après résolution) permettant d’expliciter des contrôles et de repérer un jeu entre contrôle par le modèle mathématique (contrôle sémantique et syntaxique) et contrôle par la réalité (contrôle pragmatique). L’impact des compétences en représentations sémiotiques sur la réussite, comme traiter dans un registre ou convertir entre registres différents (Duval 2005, 2006) est pointé. Le fait de qualifyer et le fait de quantifier pourraient apparaitre comme des opérateurs du système de contrôles de Balacheff & Margolinas95.

95 Y compris si le savoir qualifyer est étendu à : savoir mesurer la valeur épistémique (Duval 1991) des affirmations faites, par exemple dans la production d’une démonstration, apodicticité ou non (Inglis & al 2007).
Mais plus généralement la dialectique quantification / qualification s’insère dans la relation entre nombres et grandeurs dont Chambris (2008) a montré les évolutions au cours des traités et des programmes.

Les insertions dans des recherches autres et les apports réciproques qu’elles peuvent se fournir demandent à être creusées.

E. Sur le rôle et la place des problèmes en général

Ce chapitre traite des problèmes, avec une certaine restriction au domaine numérique, comme objets d’enseignement pour renforcer, évaluer et réinvestir des connaissances thématiques mathématiques qui devraient être acquises, mais aussi pour développer des tours de main (heuristique, modélisation, contrôle, validation). Il n’étudie pas les problèmes utilisés pour introduire, construire des connaissances du premier ordre, préconisés à partir des années 1980 dans beaucoup de pays, par des effets de résonance entre pays, entre éducation et recherche, entre politique et éducation.

Cependant cette forte hypothèse de construction des connaissances grâce aux problèmes ne semble pas plus validée théoriquement en 2013 qu’elle ne l’était dans les années 1992 (Schoenfeld 1992). Julio disait en 2000 : « Ce ne serait pas directement les activités ou les situations problèmes qui seraient en cause mais plutôt la ‘suite’, c’est-à-dire le processus par lequel on permet à des connaissances de se mettre en place à partir d’une activité de résolution de problèmes ; (...) aucune théorie n’est en mesure d’expliquer comment de la compréhension et des connaissances peuvent émerger de l’activité de résolution de problèmes ».

« Faire des mathématiques, c’est utiliser des outils pour résoudre des problèmes et donc aussi, construire des outils permettant de résoudre des problèmes ou encore, étudier des outils et les problèmes qu’ils permettraient de résoudre » (Mercier 2007, pp.100-102). Dans quelle mesure rendre cette affirmation plus opérationnelle ?
Perspectives

La recherche en didactique passe par la problématisation de questions d’apprentissage et d’enseignement. Accueillir la diversité des questions est aussi une condition pour produire de nouveaux résultats. Sélectionner a priori les questions susceptibles d’un avenir, les problématiser, pressentir les cadres théoriques a priori pertinents pour l’étude, construire des coopérations avec d’autres chercheurs sont aussi des composantes du travail de direction de recherche.

C’est pourquoi la présentation ne peut pas rendre totalement compte de mes perspectives d’encadrement.

Les trois premières parties élargissent le questionnement des travaux que j’ai résumés antérieurement. La dernière partie relève de mes recherches récentes (non publiées) : elle donne à voir un mode de fabrication de questions de recherche en didactique.

Sur la formation initiale des enseignants

La réforme de la formation des enseignants en France (la mastérisation) a transformé le régime des conditions et contraintes de cette formation. Quelles stratégies de formation possibles sous ces contraintes ? L’étude et l’analyse de choix institutionnels et de pratiques de formation des enseignants dans d’autres pays permettrait d’ouvrir le champ des les possibles. Quelle place aux trois types de savoirs, mathématique et didactique dans la formation des enseignants ? Formation juxtaposée ou essai de recomposition de ces savoirs ? Dans quelles temporalités ? Pour quel impact ? Quelles stratégies intégrant l’alternance entre cours en institut et immersion dans les écoles ?

Un programme de recherche se dégage : enrichir l’énumération des savoirs de formation et proposer un cadre qui explicite conditions et contraintes de cette formation.

Dans ce programme, une comparaison avec d’autres systèmes de formation pourrait élargir le cadre des possibles (théoriquement) pour la formation, à adapter aux contraintes. Prenons le Québec et la France. Bien que les deux pays aient des proximités linguistiques et culturelles, on peut noter des différences. Le Québec offre aux étudiants- enseignants une formation universitaire mastérisée depuis plus de 10 ans, un temps long de formation (4 ans) et s’appuie sur une didactique multiréférentielle (Proulx & Gattuso 201096). En comparaison, le système français hérite d’une longue histoire de formation en institut sans mastérisation (jusqu’en 2010), le temps de formation y est plutôt court (maximum 2 ans, voire 1 an), la formation se doit de préparer aussi à un concours, la didactique française est héritière de cadres théoriques plutôt juxtaposés. Ces différences se retrouvent-elles au niveau des stratégies de formation des enseignants ?

Sur la géométrie

La vision de la géométrie élémentaire en trois paradigmes, dont deux plus particulièrement sollicités dans l’enseignement obligatoire, Géométrie 1 et Géométrie 2, fait partie des connaissances à enseigner en formation. Quelles situations de transposition de ces nouveaux savoirs pour former les enseignants débutants? Quels dispositifs de formation pour faire reconnaître (et accepter) par les enseignants des stratégies différentes d’élèves (ETG piloté par Géométrie 1 ou Géométrie 2) pour la résolution d’un problème géométrique ?

La construction de programmes de formation géométrique des enseignants, notamment au jeu dialectique entre Géométrie 1 et Géométrie 2, et la création de ressources pour outiller leur réflexion, est un programme de recherche. La création de ressources sur la géométrie est d’ailleurs une des problématiques de mon groupe de recherche dans le laboratoire.

L’étude institutionnelle de la géométrie enseignée a mis en avant la nécessité d’un travail conséquent en Géométrie 1, pour des raisons cognitives (son accessibilité à des élèves de primaire) et épistémologiques (son encapsulation dans la Géométrie 2). La construction de situations relevant de cette géométrie, apprenant à « travailler » les figures, et la question de l’institutionnalisation des connaissances que ces situations font circuler sont des questions cruciales, propices à installer une véritable culture géométrique d’école et de début de collège.

En France où la Géométrie 2 est imposé dès la 6\ème-5\ème, comment rendre conscients les élèves de collège de ce changement de paradigme ? Cette prise de conscience est-elle efficace pour la réussite géométrique ?

Quelles pistes pour refonder les curricula de géométrie dans les différentes institutions, compte tenu de l’introduction des logiciels d’aide au design géométrique ? Un élargissement de l’étude des curricula aux institutions de formation professionnelle (Quels Espaces de Travail Géométriques) qui travaillent la géométrie (CAP, BEP, métiers du bâtiment...) permettrait d’avancer sur cette question.

Sur les problèmes

Devant la multiplicité des recherches, notamment de psychologie cognitive, et celle des croyances accumulées dans le monde enseignant, il est urgent de faire un point, notamment sur les problèmes arithmétiques. Cela passe par une explicitation de différents types de problèmes (repérés par des prototypes ou des listes) et de leur fonction relativement aux apprentissages.

Se pose aussi la question de l’élargissement de ces questions à d’autres thèmes mathématiques et aux problèmes dont ils relèvent. Savoir choisir/adapter un problème en fonction de l’objectif qu’on lui assigne, reconnaître les connaissances mathématiques (mais aussi pragmatiques et linguistiques) nécessaires pour le résoudre sont des compétences indispensables à

\(^97\) Le type de ressemblance entre les problèmes d’une même série et les ostensifs choisis pour la pointer sont sans doute une variable essentielle.
l’enseignant. Cette question fait partie de la problématique plus large du lien entre connaissances et problèmes qui reste encore largement inexploré aussi bien que le plan didactique que sur le plan psychologique.

Sur la formation continue des enseignants de primaire

Les recherches que je développe depuis un an représentent une sorte de synthèse entre les trois niveaux : formation des enseignants, pratiques d’enseignement, apprentissages des élèves, autour d’un thème sur lequel les recherches se sont développées dans mon laboratoire (Chambris 2008, Mounier 201098, Tempier, en cours)99 : l’enseignement de la numération décimale de position. Plus précisément elles me permettent de concilier deux dimensions emblématiques de mon identité d’enseignant-chercheur : recherche et intervention. Elle montre la dimension prospective du travail du didacticien.

Sollicitée par tous les enseignants d’une école sur ce thème de la numération décimale (après une conférence pédagogique), j’ai débuté une collaboration avec cette école. Une des questions de recherche est celle de la possibilité et des conditions d’une formation intégrée à l’école, sous forme de cycles apports d’informations, observation de séances préparées par l’enseignant seul et débriefing individuel, retour en grand groupe sur observations, les premier et dernier aspects étant réalisés en séminaire collectif. La finalité de la recherche est la suivante : quelles ressources construire (fond et forme), quels savoirs didactiques professionnels installer et comment, comment acculer aux savoirs mathématiques d’enseignement… en collant au quotidien bien rempli de professeurs reconnus institutionnellement enseigner en zone difficile. Cette grande question est riche en potentialités de recherche pour de jeunes chercheurs. La problématique de l’élaboration des ressources pour l’enseignement ordinaire est aussi celle de mon groupe de travail au sein de mon laboratoire (LDAR).

Les hypothèses de ma recherche sont les suivantes : l’enseignant prend connaissance de nouveaux savoirs mathématiques (éventuellement didactiques) lors de séances de formation continue (massées ou ponctuelles) ; ce sont les réactions de ses élèves sur les mises en jeu de ces savoirs qui lui permettront d’intégrer une partie de ces savoirs ou de les rejeter. Le chercheur aide l’enseignant à interpréter les rétroactions du milieu constitué par l’ensemble des élèves répondant à ses consignes et régulations, à la lumière de savoirs mathématiques et didactiques, dont le chercheur peut à nouveau mesurer l’intégration dans les pratiques.

Cette première année de recherche a confirmé cette hypothèse : les enseignants de l’école avaient tous assisté à une conférence, sur la numération, développant ses spécificités, notamment les différences entre numération orale usuelle (les nombres tels qu’ils sont dits) et la numération écrite (les nombres écrits en chiffres), avec un regard particulier sur l’aspect décimal de la numération écrite comme volet technologico-théorique de la compréhension des techniques de calcul, un grand « classique » de la formation, mais dont l’intégration dans les pratiques résiste. Lors du bilan (sous forme déclarative individuelle) de fin d’année, ces enseignants expérimentés, ont spontanément mentionné avoir le plus appris de notre collaboration sur ces aspects-là, en ce sens qu’ils ont mieux compris et savent mieux anticiper ce que peuvent dire et faire les élèves. Sur le plan didactique, ils

99 La thèse de F.Tempier que je codirige sera soutenue fin 2013 : La numération décimale de position à l’école primaire. Une ingénierie didactique pour le développement d’une ressource.
ont relevé la pertinence de la notion de variable, dans sa potentialité à jouer sur les connaissances en jeu dans les problèmes et à hiérarchiser les exercices.

Ce qui les a fait solliciter ma collaboration, c’est la proposition d’un matériel (dans cette même conférence) choisi comme milieu pour des situations de dénombrement (un matériel très élémentaire, des buchettes qu’on peut grouper par paquets de dix par un élastique, par paquets de cent, etc.). Ils sont apparus rassurés par la présence d’un artefact (phénomène aussi pointé par Tempier, voir note supra) qui leur permet (effectivement) d’introduire, selon eux, des micro-changements dans leurs pratiques (laisser chercher les élèves..., faire valider à cause du matériel). Or ces variantes se révèlent être de véritables ouvertures pour les apprentissage des élèves, ce qu’ils perçoivent.

Ce qui m’amène à une autre hypothèse de recherche, le rôle d’une médiation sémiotique dans la transformation des pratiques : les enseignants seraient plus enclins à envisager des modifications de leurs enseignements s’il existait un artefact, a priori matériel pour les enseignants de primaire, « porteur » de cette nouveauté. Deux types d’artefacts ont nourri la formation intégrée : artefacts matériels, buchettes et doigts de main (en particulier en cycle 2, grades 1 et 2), artefacts symboliques, les unités de numération à fonctions instrumentales beaucoup plus développées.

101 Idem

Références bibliographiques

Arsac, G. (1997). Les limites d’un enseignement déductif de la géométrie. *petit x*, 47.5-31

Penloup, M-C., 2007 (dir). Les connaissances ignorées. Réflexion interdisciplinaire sur ce que savent les élèves. Lyon : INRP

Tempier, F. (thèse en cours) *La numération décimale de position à l’école primaire. Une ingénierie didactique sur le développement d’une ressource*. Université Paris Diderot, Laboratoire de didactique André Revuz

Wedge, T. (1999). To know or not to know mathematics, that is a question of context. *Educational Studies in Mathematics, 39*, 205-337

