J. Mulrooney, J. Clifford, C. Fitzpatrick, P. Chambers, and E. Lewis, A mid-infrared optical fibre sensor for the detection of carbon monoxide exhaust emissions, Sensors and Actuators A: Physical, vol.144, issue.1, 2008.
DOI : 10.1016/j.sna.2007.12.013

G. Korotcenkov, Metal oxides for solid-state gas sensors: What determines our choice?, Materials Science and Engineering: B, vol.139, issue.1, 2007.
DOI : 10.1016/j.mseb.2007.01.044

N. Barsan, D. Koziej, and U. Weimar, Metal oxide-based gas sensor research: How to?, Sensors and Actuators B: Chemical, vol.121, issue.1, 2007.
DOI : 10.1016/j.snb.2006.09.047

«. Air and Q. Sensor, Volkswagen» http://www.volkswagen.co.uk/technology/glossary/air-quality-sensor

T. Tille, Automotive suitability of air quality gas sensors Qualité de l'air dans l'habitacle, Sensors and Actuators B, vol.17021, 2012.

A. Bielanski, J. Deren, and J. Haber, Electric Conductivity and Catalytic Activity of Semiconducting Oxide Catalysts, Nature, vol.12, issue.4561, 1957.
DOI : 10.1038/179668a0

V. Demarne, Réalisation d'un capteur de gaz intégré sur silicium, étude des mécanismes physicochimiques liés au fonctionnement de cas capteurs, 1991.

H. Geistlinger, Electron theory of thin-film gas sensors, Sensors and Actuators B: Chemical, vol.17, issue.1, 1993.
DOI : 10.1016/0925-4005(93)85183-B

N. Yamazoe, Chemical Sensor Technology, Kodansha LTD, vol.28, 1991.

. Halsall, Modelling the response of a tungsten oxide semiconductor as a gas sensor for the measurement of ozone, Measurement Science and Technology, vol.1329, 2002.

P. T. Moseley, J. Norris, and D. E. Williams, Techniques and Mechanisms in Gas Sensing, 1991.

G. Williams and G. S. Coles, A study of tin-dioxide gas-sensors thermo-chemistry under conditions of varying oxygen partial pressure, Sensors and Actuators B, vol.24, p.31, 1995.

V. Golovanov, J. L. Solis, V. Lantto, and S. Leppavuori, Different thick-film methods in printing of oneelectrode semiconductor gas sensors, Sensors and Actuators B, vol.3432, 1996.

G. Korotcenkov, Practical aspects in design of one-electrode semiconductor gas sensors: Status report, Sensors and Actuators B: Chemical, vol.121, issue.2, 2007.
DOI : 10.1016/j.snb.2006.04.092

B. B. Rao, Zinc oxide ceramic semi-conductor gas sensor for ethanol vapour, Materials Chemistry and Physics, vol.64, issue.1, 2000.
DOI : 10.1016/S0254-0584(99)00267-9

G. Yan, Z. Tang, P. C. Chan, J. K. Sin, I. Hsing et al., An experimental study on hightemperature metallization for micro-hotplate-based integrated gas sensors, Sensors and Actuators B, vol.8635, 2002.

S. M. Lee, Y. S. Lee, C. H. Shim, N. J. Choi, B. S. Joo et al., Three electrodes gas sensor based on ITO thin film, Sensors and Actuators B: Chemical, vol.93, issue.1-3, 2003.
DOI : 10.1016/S0925-4005(03)00335-6

D. S. Lee, G. H. Rue, J. S. Huh, S. D. Choi, and D. D. Lee, Sensing characteristics of epitaxially-grown tin oxide gas sensor on sapphire substrate, Sensors and Actuators B: Chemical, vol.77, issue.1-2, 2001.
DOI : 10.1016/S0925-4005(01)00678-5

I. Simon, N. Barsan, M. Bauer, and U. Weimar, Micromachined metal oxide gas sensors: opportunities to improve sensor performance, Sensors and Actuators B: Chemical, vol.73, issue.1, 2001.
DOI : 10.1016/S0925-4005(00)00639-0

V. Aroutiounian, Metal oxide hydrogen, oxygen, and carbon monoxide sensors for hydrogen setups and cells, International Journal of Hydrogen Energy, vol.32, issue.9, 2007.
DOI : 10.1016/j.ijhydene.2007.01.004

S. H. Wang, T. C. Chou, and C. C. Liu, Nano-crystalline tungsten oxide NO2 sensor, Sensors and Actuators B: Chemical, vol.94, issue.3, 2003.
DOI : 10.1016/S0925-4005(03)00383-6

B. Timmer, W. Olthuis, A. Van-den, and . Berg, Ammonia sensors and their applications???a review, Sensors and Actuators B: Chemical, vol.107, issue.2, p.41, 2005.
DOI : 10.1016/j.snb.2004.11.054

F. Parret, Méthode d'analyse sélective et quantitative d'un mélange gazeux à partir d'un microcapteur à oxyde métallique nanoparticulaire, Thèse de l'Institut National Polytechnique de Toulouse, 2006.

J. Wang, P. Zhang, J. Q. Qi, and P. J. Yao, Silicon-based micro-gas sensors for detecting formaldehyde, Sensors and Actuators B: Chemical, vol.136, issue.2, 2009.
DOI : 10.1016/j.snb.2008.12.056

D. Vincenzi, M. A. Butturi, V. Guidi, M. C. Carotta, G. Martinelli et al., Development of a low-power thick-film gas sensor deposited by screen-printing technique onto a micromachined hotplate, Sensors and Actuators B: Chemical, vol.77, issue.1-2, 2001.
DOI : 10.1016/S0925-4005(01)00679-7

A. Tischner, T. Maier, C. Stepper, and A. Köck, Ultrathin SnO 2 gas sensors fabricated by spray pyrolysis for the detection of humidity and carbon monoxide, Sensors and Actuators B, vol.13445, 2008.

D. Barreca, E. Comini, A. Gasparotto, C. Maccato, C. Sada et al., Chemical vapor deposition of copper oxide films and entangled quasi-1D nanoarchitectures as innovative gas sensors, Sensors and Actuators B: Chemical, vol.141, issue.1, 2009.
DOI : 10.1016/j.snb.2009.05.038

T. Lalinsky, GaAs based micromachined thermal converter for gas sensors, Sensors and Actuators A: Physical, vol.142, issue.1, p.47, 2008.
DOI : 10.1016/j.sna.2007.05.014

C. Rossi, P. Temple-boyer, and D. Estève, Realization and performance of thin SiO 2 /SiNx membrane for microheater applications, Sensors and Actuators A, vol.6448, 1998.

C. Dücsö, É. Vázsonyi, M. Ádám, I. Szabó, I. Bársony et al., Porous silicon bulk micromachining for thermally isolated membrane formation Gas sensors, Sensors and Actuators A, vol.6049, issue.2, 1997.

C. Alépée, Technologies for High Temperature Silicon Microreactors, Thèse de l'Ecole Polytechnique Fédérale de Lausanne, 2001.

D. S. Lee, J. W. Lim, S. M. Lee, J. Huh, and D. D. Lee, Fabrication and characterization of micro-gas sensor for nitrogen oxides gas detection, Sensors and Actuators B: Chemical, vol.64, issue.1-3, 2000.
DOI : 10.1016/S0925-4005(99)00479-7

W. H. Tao and C. H. Tsai, H 2 S sensing properties of noble metal doped WO 3 thin film sensor fabrication by micromachining, Sensors and Actuators B, vol.8153, 2002.

F. Parret, P. Menini, A. Martinez, K. Soulantica, A. Maisonnat et al., Improvement of micromachined SnO 2 gas sensors selectivity by optimised dynamic temperature operating mode, Sensors and Actuators B, vol.11854, 2006.

N. Barsan, D. Koziej, and U. Weimar, Metal oxide-based gas sensor research: How to?, Sensors and Actuators B: Chemical, vol.121, issue.1, 2007.
DOI : 10.1016/j.snb.2006.09.047

H. Ni, H. J. Lee, and A. G. Ramirez, A robust two-step etching process for large-scale microfabricated SiO 2 and Si 3 N 4 MEMS membranes, Sensors and Actuators A, vol.11956, 2005.

M. Józwik, C. Gorecki, A. Sabac, P. Delobellec, and M. Kujawi?ska, Evaluation of micromechanical properties of buckled SiOxNy-loaded membranes by combining the Twyman???Green interferometry with nanoindentation and point-wise deflection technique, Optics and Lasers in Engineering, vol.41, issue.5, 2004.
DOI : 10.1016/S0143-8166(03)00027-7

R. Mahamadi, L. Saci, F. Mansour, C. Molliet, P. T. Boyer et al., Physico-chemical properties of SiOxNy thin films, International Journal of Nano and Biomaterials, vol.258, 2009.

G. Yan, Z. Tang, P. C. Chan, J. K. Sin, I. Hsing et al., An experimental study on hightemperature metallization for micro-hotplate-based integrated gas sensors, Sensors and Actuators B, vol.8659, 2002.

Y. Sakurai, H. S. Jung, T. Shimanouchi, T. Inoguchi, S. Morita et al., Novel arraytype gas sensors using conducting polymers, and their performance for gas identification, Sensors and Actuators B, vol.8360, 2002.

Y. S. Shim, H. G. Moon, D. H. Kim, H. W. Jang, C. Y. Kang et al., Transparent conducting oxide electrodes for novel metal oxide gas sensors, Sensors and Actuators B: Chemical, vol.160, issue.1, 2011.
DOI : 10.1016/j.snb.2011.07.061

G. Velmathi, N. Ramshanker, and S. Mohan, 2D Simulations and Electro-Thermal Analysis of Micro- Heater Designs Using COMSOL for Gas Sensor Applications " COMSOL Conference, 2010.

V. Bansal, A. Gurjar, D. Kumar, and B. Prasad, 3-D Design, Electro-Thermal Simulation and Geometrical Optimization of spiral Platinum Micro-heaters for Low Power Gas sensing applications using COMSOL " COMSOL Conference, 2011.

Z. Zhang, C. Yina, C. Tao, B. Zhu, and N. Dong, Design and optimization of planar structure microhotplate, SREE Conference on Engineering Modeling and Simulation, vol.67, 2011.

A. Vergara, E. Llobet, J. Brezmes, P. Ivanov, C. Cane et al., Quantitative gas mixture analysis using temperature-modulated micro-hotplate gas sensors: Selection and validation of the optimal modulating frequencies, Sensors and Actuators B: Chemical, vol.123, issue.2, 2007.
DOI : 10.1016/j.snb.2006.11.010

K. and A. Ngo, Etude d'un système multicapteur pour la détection sélective des gaz, Thèse de l'Université Paul Cézanne Aix-Marseille III, 2006.

S. D. Vito, M. Piga, L. Martinotto, and G. D. Francia, CO, NO 2 and NOx urban pollution monitoring with on-field calibrated electronic nose by automatic bayesian regularization, Sensors and Actuators B, vol.14370, 2009.

A. A. Tomchenko, G. P. Harmer, B. T. Marquis, and J. W. Allen, Semiconducting metal oxide sensor array for the selective detection of combustion gases, Sensors and Actuators B: Chemical, vol.93, issue.1-3, p.71, 2003.
DOI : 10.1016/S0925-4005(03)00240-5

N. V. Hieu, H. V. Vuong, N. V. Duy, and N. D. Hoa, A morphological control of tungsten oxide nanowires by thermal evaporation method for sub-ppm NO 2 gas sensor application, Sensors and Actuators B, vol.17172, 2012.

J. Tamaki, C. Naruo, Y. Yamamoto, and M. Matsuoka, Sensing properties to dilute chlorine gas of indium oxide based thin film sensors prepared by electron beam evaporation, Sensors and Actuators B: Chemical, vol.83, issue.1-3, 2002.
DOI : 10.1016/S0925-4005(01)01039-5

J. L. Solis, S. Saukko, L. L. Kish, C. G. Granqvist, and V. Lantto, Nanocrystalline tungsten oxide thick-films with high sensitivity to H2S at room temperature, Sensors and Actuators B: Chemical, vol.77, issue.1-2, 2001.
DOI : 10.1016/S0925-4005(01)00699-2

C. Zhang, A. Boudiba, M. G. Olivier, R. Snyders, and M. Debliquy, Sensing properties of Pt/Pd activated tungsten oxide films grown by simultaneous radio-frequency sputtering to reducing gases, Sensors and Actuators B: Chemical, vol.175, p.75, 2012.
DOI : 10.1016/j.snb.2011.11.060

M. Kormunda, J. Pavlik, A. Mackova, and P. Malinsky, Characterization of off-axis single target RF magnetron co-sputtered iron doped tin oxide films, Surface and Coatings Technology, vol.205, 2010.
DOI : 10.1016/j.surfcoat.2010.06.040

A. J. Niskanen, A. Varpula, M. Utriainen, G. Natarajan, D. C. Cameron et al., Atomic layer deposition of tin dioxide sensing film in microhotplate gas sensors, Sensors and Actuators B: Chemical, vol.148, issue.1, 2010.
DOI : 10.1016/j.snb.2010.05.018

A. Forleo, L. Francioso, S. Capone, F. Casino, P. Siciliano et al., Fabrication at wafer level of miniaturized gas sensors based on SnO 2 nanorods deposited by PECVD and gas sensing characteristics, Sensors and Actuators B, vol.15478, 2011.

J. Zhao, S. Wu, J. Lui, H. Liu, S. Gong et al., Tin oxide thin films prepared by aerosol-assisted chemical vapor deposition and the characteristics on gas detection, Sensors and Actuators B: Chemical, vol.145, issue.2, 2010.
DOI : 10.1016/j.snb.2010.01.039

M. Morozova, P. Kluson, J. Krysa, P. Dzik, M. Vesely et al., Thin TiO 2 films prepared by inkjet printing of the reverse micelles sol?gel composition, Sensors and Actuators B, vol.16080, 2011.

H. Mikkola, K. Jantunen, J. Kordás, T. Hast, A. Hassinen et al., Novel printed nanostructured gas sensors, Procedia Engineering, vol.2581, 2011.

J. Viricelle, B. Riviere, and C. Pijolat, Optimization of SnO 2 screen-printing inks for gas sensor applications, Journal of the European Ceramic Society, vol.1282, 2005.
URL : https://hal.archives-ouvertes.fr/emse-00431860

E. Llobet, P. Ivanov, X. Vilanova, J. Brezmes, J. Hubalek et al., Screen-printed nanoparticle tin oxide films for high-yield sensor microsystems, Sensors and Actuators B: Chemical, vol.96, issue.1-2, 2003.
DOI : 10.1016/S0925-4005(03)00491-X

M. Batzill and U. Diebold, The surface and materials science of tin oxide, Progress in Surface Science, vol.79, issue.2-4, 2005.
DOI : 10.1016/j.progsurf.2005.09.002

M. H. Shahrokh-abadi, M. N. Hamidon, A. H. Shaari, N. Abdullah, R. Wagiran et al., Nanocrystalline SnO 2 -Pt Thick Film Gas Sensor for Air Pollution Applications, Sensors and Transducers, vol.12585, 2011.

M. N. Abbas, G. A. Moustafa, and W. , Multicomponent analysis of some environmentally important gases using semiconductor tin oxide sensors, Analytica Chimica Acta, vol.431, issue.2, 2001.
DOI : 10.1016/S0003-2670(00)01222-8

M. Hübner, C. E. Simion, A. Haensch, N. Barsan, and U. Weimar, CO sensing mechanism with WO 3 based gas sensors, Sensors and Actuators B, vol.151, p.95, 2010.

D. V. Dao, K. Shibuyab, T. T. Buia, and S. Sugiyama, Micromachined NH 3 Gas Sensor with ppb-level Sensitivity Based on WO 3 Nanoparticles Thinfilm, Procedia Engineering, vol.2596, 2011.

R. Ionescu, A. Hoel, C. G. Granqvist, E. Llobet, and P. Heszler, Low-level detection of ethanol and H 2 S with temperature-modulated WO 3 nanoparticle gas sensors, Sensors and Actuators B, vol.10497, 2005.

H. Liu, H. Ma, W. Zhou, W. Liu, Z. Jie et al., Synthesis and gas sensing characteristic based on metal oxide modification multi wall carbon nanotube composites, Applied Surface Science, vol.258, issue.6, p.98, 2012.
DOI : 10.1016/j.apsusc.2011.05.081

S. Basu and P. Bhattacharyya, Recent developments on graphene and graphene oxide based solid state gas sensors, Sensors and Actuators B: Chemical, vol.173, 2012.
DOI : 10.1016/j.snb.2012.07.092

M. K. Verma and V. Gupta, A highly sensitive SnO 2 ?CuO multilayered sensor structure for detection of H 2 S gas, Sensors and Actuators B, vol.100, pp.166-167, 2012.

A. Sharma, M. Tomar, and V. Gupta, Low temperature operating SnO 2 thin film sensor loaded with WO 3 micro-discs with enhanced response for NO 2 gas, Sensors and Actuators B, vol.161101, 2012.

Y. Wan, J. Liu, X. Fu, X. Zhang, F. Meng et al., Modification of coral-like SnO 2 nanostructures with dense TiO 2 nanoparticles for a self-cleaning gas sensor, Talanta, vol.95102, 2012.

S. Xu and Y. Shi, Low temperature high sensor response nano gas sensor using ITO nanofibers, Sensors and Actuators B: Chemical, vol.143, issue.1, 2009.
DOI : 10.1016/j.snb.2009.08.057

A. Afzal, N. Cioffi, L. Sabbatini, and L. Torsi, NOx sensors based on semiconducting metal oxide nanostructures: Progress and perspectives, Sensors and Actuators B: Chemical, vol.171, issue.172, pp.171-172, 2012.
DOI : 10.1016/j.snb.2012.05.026

Y. Mo, Y. Okawa, M. Tajima, T. Nakai, N. Yoshiike et al., Micro-machined gas sensor array based on metal film micro-heater, Sensors and Actuators B: Chemical, vol.79, issue.2-3, p.79, 2001.
DOI : 10.1016/S0925-4005(01)00871-1

V. V. Simakov, O. V. Yakusheva, A. I. Grebennikov, and V. V. Kisin, Current???Voltage Characteristics of Thin-Film Gas Sensor Structures Based on Tin Dioxide, Technical Physics Letters, vol.31, issue.4, p.31, 2005.
DOI : 10.1134/1.1920390

K. Frank, H. Kohler, and U. Guth, Influence of the measurement conditions on the sensitivity of SnO 2 gas sensors operated thermo-cyclically, Sensors and Actuators B, vol.143107, 2009.

T. S. Kim, Y. B. Kim, K. S. Yoo, G. S. Sung, and H. J. Jung, Sensing characteristics of dc reactive sputtered WO 3 thin films as an NO x gas sensor, Sensors and Actuators B, vol.62108, 2000.

S. D. Vito, M. Piga, L. Martinotto, and G. D. Francia, CO, NO 2 and NOx urban pollution monitoring with on-field calibrated electronic nose by automatic bayesian regularization, Sensors and Actuators B, vol.143109, 2009.

A. A. Tomchenko, G. P. Harmer, B. T. Marquis, and J. W. Allen, Semiconducting metal oxide sensor array for the selective detection of combustion gases, Sensors and Actuators B: Chemical, vol.93, issue.1-3, 2003.
DOI : 10.1016/S0925-4005(03)00240-5

M. K. Muezzinoglu, A. Vergara, R. Huerta, and M. I. Rabinovich, A sensor conditioning principle for odor identification, Sensors and Actuators B: Chemical, vol.146, issue.2, 2010.
DOI : 10.1016/j.snb.2009.11.036

S. Fuchs, P. Strobel, M. Siadat, and M. Lumbreras, Evaluation of unpleasant odor with a portable electronic nose, Materials Science and Engineering: C, vol.28, issue.5-6, 2008.
DOI : 10.1016/j.msec.2007.10.066

S. M. Hosseini-golgoo and F. Hossein-babaei, Assessing the diagnostic information in the response patterns of a temperature-modulated tin oxide gas sensor, Measurement Science and Technology, vol.22, issue.3, 2011.
DOI : 10.1088/0957-0233/22/3/035201

A. Vergara, E. Llobet, E. Martinelli, C. D. Natale, A. D-'amico et al., Feature extraction of metal oxide gas sensors using dynamic moments, Sensors and Actuators B: Chemical, vol.122, issue.1, 2007.
DOI : 10.1016/j.snb.2006.05.028

F. Hossein-babaei and A. Amini, A breakthrough in gas diagnosis with a temperature-modulated generic metal oxide gas sensor, Sensors and Actuators B: Chemical, vol.166, issue.167, pp.166-167, 2012.
DOI : 10.1016/j.snb.2012.02.082

A. Ponzoni, A. Depari, E. Comini, G. Faglia, A. Flammini et al., Response dynamics of metal oxide gas sensors working with temperature profile protocols, Procedia Engineering, vol.25, 2011.
DOI : 10.1016/j.proeng.2011.12.289

L. You, X. He, D. Wang, P. Sun, Y. F. Sun et al., Ultrasensitive and low operating temperature NO 2 gas sensor using nanosheets assembled hierarchical WO 3 hollow microspheres, Sensors and Actuators B, vol.173117, 2012.
DOI : 10.1016/j.snb.2012.07.029

A. De-marcellis, G. Ferri, and P. Mantenuto, Analog Wheatstone bridge-based automatic interface for grounded and floating wide-range resistive sensors, Sensors and Actuators B: Chemical, vol.187, 2013.
DOI : 10.1016/j.snb.2012.12.044

R. K. Sharma, P. C. Chan, Z. Tang, G. Yan, I. M. Hsing et al., Investigation of stability and reliability of tin oxide thin-film for integrated micro-machined gas sensor devices, Sensors and Actuators B: Chemical, vol.81, issue.1, 2001.
DOI : 10.1016/S0925-4005(01)00920-0

S. Birlasekaran and Y. Jianhong, Frequency response characteristics of gas sensors, Measurement, vol.26, issue.4, 1999.
DOI : 10.1016/S0263-2241(99)00043-3

N. Barsan and U. Weimar, Conduction Model of Metal Oxide Gas Sensors, Journal of Electroceramics, vol.7121, 2001.

N. Barsan and U. Weimar, Understanding the fundamental principles of metal oxide based gas sensors; the example of CO sensing with SnO2 sensors in the presence of humidity, Journal of Physics: Condensed Matter, vol.15122, 2003.

J. Ding, T. J. Mcavoy, R. E. Cavicchi, and S. Semancik, Surface state trapping models for SnO2-based microhotplate sensors, Sensors and Actuators B: Chemical, vol.77, issue.3, 2001.
DOI : 10.1016/S0925-4005(01)00765-1

V. V. Simakov, O. V. Yakusheva, A. I. Grebennikov, and V. V. Kisin, Current?voltage characteristics of thinfilm gas sensor structures based on tin dioxide, Technical Physics Letters, vol.124, p.31, 2007.

A. Varpula, S. Novikov, J. Sinkkonen, and M. Utriainen, Bias dependent sensitivity in metal-oxide gas sensors, Sensors and Actuators B: Chemical, vol.131, issue.1, 2008.
DOI : 10.1016/j.snb.2007.12.013

S. M. Durrani, M. F. Al-kuhaili, I. A. Bakhtiari, and M. B. Haider, Investigation of the Carbon Monoxide Gas Sensing Characteristics of Tin Oxide Mixed Cerium Oxide Thin Films, Sensors, vol.12, issue.12, 2012.
DOI : 10.3390/s120302598

S. M. Durrani and M. F. , Effect of biasing voltages and electrode metals and materials on the sensitivity of electron beam evaporated HfO2 thin film CO sensor, Materials Chemistry and Physics, vol.109, issue.1, 2008.
DOI : 10.1016/j.matchemphys.2007.10.034

Z. Liu, M. Miyauchi, T. Yamazaki, and Y. Shen, Facile synthesis and NO2 gas sensing of tungsten oxide nanorods assembled microspheres, Sensors and Actuators B: Chemical, vol.140, issue.2, 2009.
DOI : 10.1016/j.snb.2009.04.059

J. Zosel, D. Tuchtenhagen, K. Ahlborn, and U. Guth, Mixed potential gas sensor with short response time, Sensors and Actuators B: Chemical, vol.130, issue.1, 2008.
DOI : 10.1016/j.snb.2007.08.008

J. C. Li, X. B. Han, Y. H. Jiang, and D. C. Ba, Theoretical study of the gas sensitivity and response time of metal oxide thin films, Thin Solid Films, vol.520, issue.2, 2011.
DOI : 10.1016/j.tsf.2011.04.163

A. C. Romain and J. Nicolas, Long term stability of metal oxide-based gas sensors for e-nose environmental applications: An overview, Sensors and Actuators B: Chemical, vol.146, issue.2, 2010.
DOI : 10.1016/j.snb.2009.12.027

G. Korotcenkov and B. K. Cho, The role of grain size on the thermal instability of nanostructured metal oxides used in gas sensor applications and approaches for grain-size stabilization, Progress in Crystal Growth and Characterization of Materials, vol.58, issue.4, 2012.
DOI : 10.1016/j.pcrysgrow.2012.07.001

A. Varpula, S. Novikov, A. Haarahiltunen, and P. Kuivalainen, Transient characterization techniques for resistive metal-oxide gas sensors, Sensors and Actuators B: Chemical, vol.159, issue.1, 2011.
DOI : 10.1016/j.snb.2011.05.059

T. Stoycheva, S. Vallejos, C. Blackman, S. J. Moniz, J. Calderer et al., Important considerations for effective gas sensors based on metal oxide nanoneedles films, Sensors and Actuators B: Chemical, vol.161, issue.1, 2012.
DOI : 10.1016/j.snb.2011.10.052

M. Siadat, H. Sambemana, and M. Lumbreras, New Transient Feature for Metal Oxide Gas Sensor Response Processing, Procedia Engineering, vol.47, 2012.
DOI : 10.1016/j.proeng.2012.09.082

URL : https://hal.archives-ouvertes.fr/hal-01345356

G. Kiriakidis, K. Moschovis, I. Kortidis, and V. Binas, Ultra-low gas sensing utilizing metal oxide thin films, Vacuum, vol.86, issue.5, 2012.
DOI : 10.1016/j.vacuum.2011.10.013

C. Tropis, Analyse et Optimisation des performances d'un capteur de gaz à base de SnO2, 2010.
URL : https://hal.archives-ouvertes.fr/tel-00459852

X. J. Huang, Y. K. Choi, K. S. Yun, and E. Yoon, Oscillating behaviour of hazardous gas on tin oxide gas sensor: Fourier and wavelet transform analysis, Sensors and Actuators B: Chemical, vol.115, issue.1, 2006.
DOI : 10.1016/j.snb.2005.09.022

L. Zhang, F. Tian, X. Peng, L. Dang, G. Li et al., Standardization of metal oxide sensor array using artificial neural networks through experimental design, Sensors and Actuators B: Chemical, vol.177, 2013.
DOI : 10.1016/j.snb.2012.11.113

D. S. Vlachos, D. K. Fragoulis, and J. N. Avaritsiotis, An adaptive neural network topology for degradation compensation of thin film tin oxide gas sensors, Sensors and Actuators B: Chemical, vol.45, issue.3, p.45, 1997.
DOI : 10.1016/S0925-4005(97)00309-2

C. Casenave, Time-local formulation and identification of implicit Volterra models by use of diffusive representation, Automatica, vol.47, issue.10, 2011.
DOI : 10.1016/j.automatica.2011.08.007

J. W. Gardner and P. N. Barlett, Electronic Noses: Principles and Applications, 1999.

M. Penza, G. Cassano, and F. Tortorella, Gas recognition by activated WO 3 thin-film sensors array, Sensors and Actuators B, vol.81144, 2001.

O. Helli, M. Siadat, and M. Lumbreras, Qualitative and quantitative identification of H2S/NO2 gaseous components in different reference atmospheres using a metal oxide sensor array, Sensors and Actuators B: Chemical, vol.103, issue.1-2, 2004.
DOI : 10.1016/j.snb.2004.04.069

S. Zhang, C. Xie, M. Hu, H. Li, Z. Bai et al., An entire feature extraction method of metal oxide gas sensors, Sensors and Actuators B: Chemical, vol.132, issue.1, 2008.
DOI : 10.1016/j.snb.2008.01.015

T. Nowotny, A. Z. Berna, R. Binions, and S. , Optimal feature selection for classifying a large set of chemicals using metal oxide sensors, Sensors and Actuators B: Chemical, vol.187, 2013.
DOI : 10.1016/j.snb.2013.01.088

H. Sundgren, F. Winquist, I. Lukkari, and I. Lundstrom, Artificial neural networks and gas sensor arrays: quantification of individual components in a gas mixture, Measurement Science and Technology, vol.2, issue.5, 1991.
DOI : 10.1088/0957-0233/2/5/008

M. Pardo, G. Faglia, G. Sberveglieri, M. Corte, F. Masulli et al., A time delay neural network for estimation of gas concentrations in a mixture, Sensors and Actuators B: Chemical, vol.65, issue.1-3, 2000.
DOI : 10.1016/S0925-4005(99)00336-6

S. T. Kim, M. S. Park, and H. M. Kim, Systematic approach for the evaluation of the optimal fabrication conditions of a H 2 S gas sensor with Taguchi method Quelle qualité de l'air en voiture pendant les trajets quotidiens domicile-travail ?, Sensors and Actuators B Enquête AIRPARIF ? AFSSET, vol.10215010151, issue.29, 2004.

J. , M. Benz, and A. , Device for controlling the ventilation of an internal space, particularly in motor vehicles, Brevet US, vol.154, p.5259813, 1993.

. Baruschke, Device and method for controlling air conduction element of a vehicle, Behr GmbH & Co. Brevet US, vol.5934987155, 1999.

. Daimon-&al, Calsonic Corporation & Nissan Motor Co Air conditioning intake door control, Brevet US, vol.156, p.6168515, 2001.

C. Systems and S. A. , Système de commande de la ventilation d'un véhicule, Brevet EP, vol.1190879157, 2002.

Y. Kimoto, NGK Spark Plug Co Gas detection and automatic ventilation system for vehicle, Brevet EP, vol.1398629158, 2004.

K. and N. Co, Gas detecting device for vehicle, Brevet US, vol.5624639160, 1997.

F. Erba, Device to prevent motor vehicles from ambient pollution, Brevet EP, vol.1354738161, 2003.

H. Wieszt and D. Benz, Dispositif et procédé d'aération de l'habitacle d'un véhicule en fonction de la présence de gaz polluant, Brevet FR, vol.162, p.2763289, 1998.

P. Siemens, V. Automotive, and A. , Device for controlling an air conducting element in a motor vehicle, Brevet US, vol.163, p.284559, 2008.

E. Inoue and . Toyota, Method of controlling air intake into air conditioned enclosure, Brevet US, vol.164, p.282483, 2005.

K. D. Frers, Auto Electronics Corporation Vehicle harmful gas detection apparatus, Brevet US, vol.5750880165, 1998.

H. K. Sim, Auto Electronics Corporation Gas detecting sensor and device for controlling system ventilation, Brevet US, vol.168, p.6276192, 2001.

P. Yoboue, Etude technologique pour l'amélioration des performances d'un capteur de gaz à oxyde métallique " Thèse de l, 2010.

G. Korotcenkov, The role of morphology and crystallographic structure of metal oxides in response of conductometric-type gas sensors, Materials Science and Engineering: R: Reports, vol.61, issue.1-6, p.61, 2008.
DOI : 10.1016/j.mser.2008.02.001

G. Korotcenkov and B. K. Cho, Instability of metal oxide-based conductometric gas sensors and approaches to stability improvement (short survey), Sensors and Actuators B: Chemical, vol.156, issue.2, 2011.
DOI : 10.1016/j.snb.2011.02.024

C. Lemire, D. B. Lollman, A. A. Mohammad, E. Gillet, and K. Aguir, Reactive R.F. magnetron sputtering deposition of WO 3 thin films, Sensors and Actuators B, vol.84, 2002.

N. Dufour, C. Wartelle, P. Menini, and ?. , 3D Stationary and Temporal Electro-Thermal Simulations of Metal Oxide Gas Sensor Based on a High Temperature and Low Power Consumption Micro-Heater Structure Using COMSOL, Octobre, 2012.

N. Dufour, Y. Veyrac, K. Aguir, C. Wartelle, P. Menini et al., Increasing the sensitivity and selectivity of Metal Oxide gas sensors by controlling the sensitive layer polarization, 2012 IEEE Sensors, p.31
DOI : 10.1109/ICSENS.2012.6411463

URL : https://hal.archives-ouvertes.fr/hal-00732255

N. Dufour, A. Chapelle, C. Talhi, F. Blanc, B. Franc et al., Tuning the bias sensing layer: A new way to greatly improve Metal-Oxide gas sensors selectivity, 2013 Seventh International Conference on Sensing Technology (ICST), 2013.
DOI : 10.1109/ICSensT.2013.6727608

URL : https://hal.archives-ouvertes.fr/hal-00862798

G. Menini and . Larrieu, Large scale NW-based nanosystems for sensing applications, Proceeding des journées thématiques sur les capteurs à nanofils semiconducteurs à Rennes du 13 au 14, 2012.