A. Chen, V. Zhirnov, and J. Hutchby, Emerging research devices, 2012.

G. E. Moore, Cramming More Components Onto Integrated Circuits, Proceedings of the IEEE, vol.86, issue.1, pp.114-117, 1965.
DOI : 10.1109/JPROC.1998.658762

M. Bohr, The evolution of scaling from the homogeneous era to the heterogeneous era, 2011 International Electron Devices Meeting, 2011.
DOI : 10.1109/IEDM.2011.6131469

N. Stingh, A. Agarwal, L. K. Bera, T. Y. Liow, R. Yang et al., High-performance fully depleted silicon nanowire (diameter /spl les/ 5 nm) gate-all-around CMOS devices, IEEE Electron Device Letters, vol.27, issue.5, p.383, 2006.
DOI : 10.1109/LED.2006.873381

Y. Zhu, F. Xu, Q. Qin, W. Y. Fung, and W. Lu, Mechanical Properties of Vapor???Liquid???Solid Synthesized Silicon Nanowires, Nano Letters, vol.9, issue.11, pp.3934-3939, 2009.
DOI : 10.1021/nl902132w

B. Lee and R. Rudd, First-principles study of the Young???s modulus of Si ???001??? nanowires, Physical Review B, vol.75, issue.4, 2007.
DOI : 10.1103/PhysRevB.75.041305

R. E. Miller and V. B. Shenoy, Size-dependent elastic properties of nanosized structural elements, Nanotechnology, vol.11, issue.3, p.139, 2000.
DOI : 10.1088/0957-4484/11/3/301

R. He and P. Yang, Giant piezoresistance effect in silicon nanowires, Nature Nanotechnology, vol.3, issue.3, 2006.
DOI : 10.1038/nnano.2006.53

X. L. Feng, R. He, P. Yang, and M. L. Roukes, Very High Frequency Silicon Nanowire Electromechanical Resonators, Nano Letters, vol.7, issue.7, pp.1953-1959, 2007.
DOI : 10.1021/nl0706695

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.458.2257

W. Lu and C. M. Lieber, Semiconductor nanowires, Journal of Physics D: Applied Physics, vol.39, issue.21, pp.387-406, 2006.
DOI : 10.1088/0022-3727/39/21/R01

L. Guo, E. Leobandung, and S. Y. Chou, A Silicon Single-Electron Transistor Memory Operating at Room Temperature, Science, vol.275, issue.5300, p.649, 1997.
DOI : 10.1126/science.275.5300.649

K. Peng, J. Jie, W. Zhang, and S. Lee, Silicon nanowires for rechargeable lithium-ion battery anodes, Applied Physics Letters, vol.93, issue.3, pp.33105-33108, 2008.
DOI : 10.1063/1.2929373

Y. Chen, X. Wang, S. Erramilli, P. Mohanty, and A. Kalinowski, Silicon-based nanoelectronic field-effect pH sensor with local gate control, Applied Physics Letters, vol.89, issue.22, pp.223512-223515, 2006.
DOI : 10.1063/1.2392828

F. Patolsky, G. Zheng, O. Hayden, M. Lakadamyali, X. Zhuang et al., Electrical detection of single viruses, Proceedings of the National Academy of Sciences, vol.101, issue.39, pp.14017-14022, 2004.
DOI : 10.1073/pnas.0406159101

H. Yan, Programmable nanowire circuits for nanoprocessors, Nature, vol.16, issue.7333, pp.240-244, 2011.
DOI : 10.1038/nature09749

X. L. Han and G. Larrieu, Vertical nanowire array-based field effect transistors for ultimate scaling, Nanoscale, vol.5, pp.2437-2441, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00797210

S. Gignac, J. S. Mittal, M. Newbury, T. Guillorn, L. Barwicz et al., High performance and highly uniform gate-all-around silicon nanowire mosfets with wire size dependent scaling, 2009.

Y. Cui, Q. Q. Wei, H. Park, and C. M. Lieber, Nanowire Nanosensors for Highly Sensitive and Selective Detection of Biological and Chemical Species, Science, vol.293, issue.5533, pp.2931289-1292, 2001.
DOI : 10.1126/science.1062711

K. I. Chen, B. Li, and Y. Chen, Si nanowire field-effect transistor-based biosensors for biomedical diagnosis and cellular recording investigation, Nature Today, vol.6, pp.131-154, 2011.

J. Hahm and C. M. Lieber, Direct Ultrasensitive Electrical Detection of DNA and DNA Sequence Variations Using Nanowire Nanosensors, Nano Letters, vol.4, issue.1, pp.51-55, 2004.
DOI : 10.1021/nl034853b

Z. Li, Sequence-Specific Label-Free DNA Sensors Based on Silicon Nanowires, Nano Letters, vol.4, issue.2, pp.245-247, 2004.
DOI : 10.1021/nl034958e

G. Zheng, F. Patolsky, Y. Cui, W. U. Wang, and C. M. Lieber, Multiplexed electrical detection of cancer markers with nanowire sensor arrays, Nature Biotechnology, vol.249, issue.10, pp.1294-1301, 2005.
DOI : 10.1021/ac049479u

E. Stern, J. F. Klemic, D. A. Routenberg, P. N. Wyrembak, D. B. Turner-evans et al., Label-free immunodetection with CMOS-compatible semiconducting nanowires, Nature, vol.28, issue.7127, pp.519-522, 2007.
DOI : 10.1038/nature05498

J. A. Martinez, N. Misra, Y. Wang, P. Stroeve, C. P. Grigoropoulos et al., Highly Efficient Biocompatible Single Silicon Nanowire Electrodes with Functional Biological Pore Channels, Nano Letters, vol.9, issue.3, pp.1121-1126, 2009.
DOI : 10.1021/nl8036504

T. Kudo and A. Nakajima, Biomolecule detection based on Si single-electron transistors for highly sensitive integrated sensors on a single chip, Applied Physics Letters, vol.100, issue.2, p.23704, 2012.
DOI : 10.1063/1.3676664

P. Yang, R. Yan, and M. Fardy, Semiconductor Nanowire: What???s Next?, Nano Letters, vol.10, issue.5, pp.1529-1536, 2010.
DOI : 10.1021/nl100665r

R. Agarwal and C. M. Lieber, Semiconductor nanowires: optics and optoelectronics, Applied Physics A, vol.87, issue.3, pp.209-215, 2006.
DOI : 10.1007/s00339-006-3720-z

X. Duan, Y. Huang, R. Agarwal, and C. M. Lieber, Single-nanowire electrically driven lasers, Nature, vol.421, issue.6920, pp.241-246, 2003.
DOI : 10.1038/nature01353

Y. Huang, X. Duan, and C. M. Lieber, Nanowires for Integrated Multicolor Nanophotonics, Small, vol.405, issue.1, pp.142-147, 2005.
DOI : 10.1002/smll.200400030

W. Lu and C. M. Lieber, Nanoelectronics from the bottom up, Nature Materials, vol.313, issue.11, pp.841-850, 2007.
DOI : 10.1038/nmat2028

N. Misra, J. A. Martinez, S. C. Huang, Y. Wang, P. Stroeve et al., Bioelectronic silicon nanowire devices using functional membrane proteins, Proceedings of the National Academy of Sciences, vol.106, issue.33, pp.13780-13784, 2009.
DOI : 10.1073/pnas.0904850106

F. Patolsky, Detection, Stimulation, and Inhibition of Neuronal Signals with High-Density Nanowire Transistor Arrays, Science, vol.313, issue.5790, pp.1100-1104, 2006.
DOI : 10.1126/science.1128640

Y. Huang, X. F. Duan, Y. Cui, L. J. Lauhon, K. Kim et al., Logic Gates and Computation from Assembled Nanowire Building Blocks, Science, vol.294, issue.5545, pp.1313-1317, 2001.
DOI : 10.1126/science.1066192

P. Fromherz and A. Stett, Silicon-Neuron Junction: Capacitive Stimulation of an Individual Neuron on a Silicon Chip, Physical Review Letters, vol.75, issue.8, p.75
DOI : 10.1103/PhysRevLett.75.1670

M. Jenkner and P. Fromherz, Bistability of Membrane Conductance in Cell Adhesion Observed in a Neuron Transistor, Physical Review Letters, vol.79, issue.23, pp.4705-4708, 1997.
DOI : 10.1103/PhysRevLett.79.4705

W. Kim, J. K. Ng, M. E. Kunitake, B. R. Conklin, and P. Yang, Interfacing Silicon Nanowires with Mammalian Cells, Journal of the American Chemical Society, vol.129, issue.23, pp.7228-7229, 2007.
DOI : 10.1021/ja071456k

Y. Nakayama, P. J. Pauzauskie, A. Radenovic, R. M. Onorato, R. J. Saykally et al., Tunable nanowire nonlinear optical probe, Nature, vol.424, issue.7148, 1908.
DOI : 10.1038/nature05921

URL : http://infoscience.epfl.ch/record/129293

K. Seo, M. Wober, P. Steinvurzel, E. Schonbrun, Y. Dan et al., Multicolored Vertical Silicon Nanowires, Nano Letters, vol.11, issue.4, pp.1851-1856, 2011.
DOI : 10.1021/nl200201b

X. L. Han, G. Larrieu, and E. Dubois, Realization of Vertical Silicon Nanowire Networks with an Ultra High Density Using a Top???Down Approach, Journal of Nanoscience and Nanotechnology, vol.10, issue.11, pp.1-5, 2010.
DOI : 10.1166/jnn.2010.2841

URL : https://hal.archives-ouvertes.fr/hal-00549625

J. Goldberger, A. I. Hochbaum, R. Fan, and P. Yang, Silicon Vertically Integrated Nanowire Field Effect Transistors, Nano Letters, vol.6, issue.5, pp.973-977, 2006.
DOI : 10.1021/nl060166j

R. S. Wagner and W. C. Ellis, VAPOR???LIQUID???SOLID MECHANISM OF SINGLE CRYSTAL GROWTH, Applied Physics Letters, vol.4, issue.5, p.89, 1964.
DOI : 10.1063/1.1753975

F. Oehler, Croissance et caractérisation de nanofils de silicium, 2007.

Y. Cui, L. J. Lauhon, M. S. Gudiksen, J. Wang, and C. M. Lieber, Diameter-controlled synthesis of single-crystal silicon nanowires, Applied Physics Letters, vol.78, issue.15, pp.782214-2216, 2001.
DOI : 10.1063/1.1363692

M. T. Björk, O. Hayden, H. Schmid, H. Riel, and W. Riess, Vertical surround-gated silicon nanowire impact ionization field-effect transistors, Applied Physics Letters, vol.90, issue.14, p.142110, 2007.
DOI : 10.1063/1.2720640

I. Allon, R. Hochbaum, and . Fan, Rongrui He, and Peidong Yang. Controlled growth of si nanowire arrays for device integration, Nano Letters, vol.5, issue.3, pp.457-460, 2005.

P. Hong-jin-fan, M. Werner, and . Zacharias, Semiconductor nanowires : From Self- Organization to patterned growth, Small, vol.2, issue.6, pp.700-717, 2006.

A. Kramer, M. Albrecht, T. Boeck, T. Remmele, P. Schramm et al., Self-assembled and ordered growth of silicon and germanium nanowires, Superlattices and Microstructures, vol.46, issue.1-2, pp.277-285
DOI : 10.1016/j.spmi.2008.10.041

T. Bryllert, L. E. Wernersson, T. Löwgren, and L. Samuelson, Vertical wrap-gated nanowire transistors, Nanotechnology, vol.17, issue.11, pp.227-230, 2006.
DOI : 10.1088/0957-4484/17/11/S01

Y. Shan, A. K. Kalkan, C. Y. Peng, and S. J. Fonash, From Si Source Gas Directly to Positioned, Electrically Contacted Si Nanowires:?? The Self-Assembling ???Grow-in-Place??? Approach, Nano Letters, vol.4, issue.11, pp.2085-2089, 2004.
DOI : 10.1021/nl048901j

S. Kodambaka, J. Tersoff, M. C. Reuter, and F. M. Ross, Germanium Nanowire Growth Below the Eutectic Temperature, Science, vol.316, issue.5825, pp.316729-732, 2007.
DOI : 10.1126/science.1139105

J. R. Riley, R. A. Bernal, Q. Li, H. D. Espinosa, G. T. Wang et al., -Axis GaN Nanowires: Analysis of Nonstoichiometric Evaporation Behavior, ACS Nano, vol.6, issue.5
DOI : 10.1021/nn2050517

URL : https://hal.archives-ouvertes.fr/in2p3-00003093

S. Kodambaka, J. B. Hannon, R. M. Tromp, and F. M. Ross, Control of Si Nanowire Growth by Oxygen, Nano Letters, vol.6, issue.6, pp.1292-1296, 2006.
DOI : 10.1021/nl060059p

K. W. Schwarz and J. Tersoff, Elementary Processes in Nanowire Growth, Nano Letters, vol.11, issue.2, pp.316-320, 2011.
DOI : 10.1021/nl1027815

D. Blavette, A. Bostel, J. M. Sarrau, B. Deconihout, and A. Menand, An atom probe for three-dimensional tomography, Nature, vol.363, issue.6428, pp.432-425, 1993.
DOI : 10.1038/363432a0

D. Blavette, A. Bostel, and A. Menand, La sonde atomique tomographique, Images de la Physique CNRS, vol.97, pp.103-110, 2010.
URL : https://hal.archives-ouvertes.fr/jpa-00253687

E. Koren, Y. Rosenwaks, J. E. Allen, E. R. Hemesath, and L. J. Lauhon, Nonuniform doping distribution along silicon nanowires measured by Kelvin probe force microscopy and scanning photocurrent microscopy, Applied Physics Letters, vol.95, issue.9, pp.92105-92108, 2009.
DOI : 10.1063/1.3207887

J. E. Allen, D. E. Perea, E. R. Hemesath, and L. J. Lauhon, Nonuniform Nanowire Doping Profiles Revealed by Quantitative Scanning Photocurrent Microscopy, Advanced Materials, vol.17, issue.30, pp.3067-3072, 2009.
DOI : 10.1038/NNANO.2009.51

E. Koren, J. K. Hyun, U. Givan, E. R. Hemesath, L. J. Lauhon et al., Obtaining Uniform Dopant Distributions in VLS-Grown Si Nanowires, Nano Letters, vol.11, issue.1, pp.183-190, 2011.
DOI : 10.1021/nl103363c

F. Oehler, P. Gentile, T. Baron, and P. Ferret, The effects of HCl on silicon nanowire growth: surface chlorination and existence of a ???diffusion-limited minimum diameter???, Nanotechnology, vol.20, issue.47, p.475307, 2009.
DOI : 10.1088/0957-4484/20/47/475307

URL : https://hal.archives-ouvertes.fr/hal-00455409

M. I. Den-hertog, J. L. Rouviere, F. Dhalluin, P. J. Desre, P. Gentile et al., Control of Gold Surface Diffusion on Si Nanowires, Nano Letters, vol.8, issue.5, pp.1544-1550, 2008.
DOI : 10.1021/nl073356i

URL : https://hal.archives-ouvertes.fr/hal-00394786

E. F. Pecora, A. Irrera, and F. Priolo, Influence of O contamination and Au cluster properties on the structural features of Si nanowires, Thin Solid Films, vol.518, issue.9
DOI : 10.1016/j.tsf.2009.08.019

B. S. Kim, T. W. Koo, J. H. Lee, D. S. Kim, Y. C. Jung et al., Catalyst-free Growth of Single-Crystal Silicon and Germanium Nanowires, Nano Letters, vol.9, issue.2
DOI : 10.1021/nl803752w

J. Niu and J. Wang, A study in the growth mechanism of silicon nanowires with or without metal catalyst, Materials Letters, vol.62, issue.4-5, pp.767-771, 2008.
DOI : 10.1016/j.matlet.2007.06.056

O. Hayden, R. Agarwal, and W. Lu, Semiconductor nanowire devices, Nano Today, vol.3, issue.5-6, pp.12-22
DOI : 10.1016/S1748-0132(08)70061-6

L. J. Lauhon, M. S. Gudiksen, D. Wang, and C. M. Lieber, Epitaxial core???shell and core???multishell nanowire heterostructures, Nature, vol.285, issue.6911, pp.57-61, 2002.
DOI : 10.1063/1.102280

. Harmand, Growth and characterization of inp nanowires with inasp insertions, Nano Letters, vol.7, issue.6, pp.1500-1504, 2007.

S. Raychaudhuri and E. T. Yu, Critical dimensions in coherently strained coaxial nanowire heterostructures, Journal of Applied Physics, vol.99, issue.11, p.114308, 2006.
DOI : 10.1063/1.2202697

H. F. Zhang, C. M. Wang, and L. S. Wang, Core???Shell Nanowires, Nano Letters, vol.2, issue.9, pp.941-944, 2002.
DOI : 10.1021/nl025667t

URL : https://hal.archives-ouvertes.fr/hal-01390933

X. Liu, Y. Z. Long, L. Liao, X. Duan, and Z. Fan, Large-Scale Integration of Semiconductor Nanowires for High-Performance Flexible Electronics, ACS Nano, vol.6, issue.3, pp.1888-1900, 2012.
DOI : 10.1021/nn204848r

A. C. Ford, J. C. Ho, Y. L. Chueh, Y. C. Tseng, Z. Y. Fan et al., Diameter-Dependent Electron Mobility of InAs Nanowires, Nano Letters, vol.9, issue.1, pp.360-365, 2009.
DOI : 10.1021/nl803154m

B. Salem, F. Dhalluin, T. Baron, H. Jamgotchian, F. Bedu et al., Chemical-vapour-deposition growth and electrical characterization of intrinsic silicon nanowires, Materials Science and Engineering: B, vol.159, issue.160, pp.159-16083, 2009.
DOI : 10.1016/j.mseb.2008.09.011

URL : https://hal.archives-ouvertes.fr/hal-00453724

B. D. Gates, Self-assembly: Nanowires find their place, Nature Nanotechnology, vol.9, issue.7, pp.484-485, 2010.
DOI : 10.1038/nnano.2010.139

M. C. Wang and B. D. Gates, Directed assembly of nanowires, Materials Today, vol.12, issue.5, pp.34-44, 2009.
DOI : 10.1016/S1369-7021(09)70158-0

B. D. Gates, Q. Xu, M. Stewart, D. Ryan, C. G. Willson et al., New Approaches to Nanofabrication:?? Molding, Printing, and Other Techniques, Chemical Reviews, vol.105, issue.4, pp.1171-1196, 2005.
DOI : 10.1021/cr030076o

M. Lee, J. Im, B. Y. Lee, S. Myung, J. Kang et al., Linker-free directed assembly of high-performance integrated devices based on nanotubes and nanowires, Nature Nanotechnology, vol.4, issue.1, pp.66-71, 2006.
DOI : 10.1038/nnano.2006.46

J. Lee, A. A. Wang, Y. Rheem, B. Yoo, A. Mulchandani et al., DNA Assisted Assembly of Multisegmented Nanowires, Electroanalysis, vol.40, issue.22, pp.2287-2293, 2007.
DOI : 10.1002/elan.200704000

. Mallouk, Electric-field assisted assembly and alignment of metallic nanowires, Applied Physics Letters, vol.77, issue.9, pp.1399-1401, 2000.

Z. Y. Fan, J. C. Ho, T. Takahashi, R. Yerushalmi, K. Takei et al., Toward the Development of Printable Nanowire Electronics and Sensors, Advanced Materials, vol.6, issue.37, pp.3730-3743, 2009.
DOI : 10.1002/adma.200900860

Y. Z. Long, M. Yu, B. Sun, C. Z. Gu, and Z. Fan, Recent advances in large-scale assembly of semiconducting inorganic nanowires and nanofibers for electronics, sensors and photovoltaics, Chemical Society Reviews, vol.470, issue.7333, pp.4560-4580, 2012.
DOI : 10.1039/c2cs15335a

M. Li, R. B. Bhiladvala, T. J. Morrow, J. A. Sioss, K. K. Lew et al., Bottom-up assembly of large-area nanowire resonator arrays, Nature Nanotechnology, vol.69, issue.2, pp.88-92, 2008.
DOI : 10.1038/nnano.2008.26

Y. Huang, X. F. Duan, Q. Q. Wei, and C. M. Lieber, Directed Assembly of One-Dimensional Nanostructures into Functional Networks, Science, vol.291, issue.5504, pp.630-633, 2001.
DOI : 10.1126/science.291.5504.630

D. Whang, S. Jin, Y. Wu, and C. M. Lieber, Large-Scale Hierarchical Organization of Nanowire Arrays for Integrated Nanosystems, Nano Letters, vol.3, issue.9, pp.1255-1259, 2003.
DOI : 10.1021/nl0345062

S. Evoy, Dielectrophoretic assembly and integration of nanowire devices with functional CMOS operating circuitry, Microelectronic engineering, pp.31-42, 2004.
DOI : 10.1016/j.mee.2003.09.010

R. Agarwal, K. Ladavac, Y. Roichman, G. H. Yu, and C. M. Lieber, Manipulation and assembly of nanowires with holographic optical traps, Optics Express, vol.13, issue.22, p.8906, 2005.
DOI : 10.1364/OPEX.13.008906

P. J. Pauzauskie, A. Radenovic, E. Trepagnier, H. Shroff, P. Yang et al., Optical trapping and integration of semiconductor nanowire assemblies in water, Nature Materials, vol.82, issue.2, pp.97-101, 2006.
DOI : 10.1073/pnas.0408641102

Z. Y. Fan, J. C. Ho, Z. A. Jacobson, R. Yerushalmi, R. L. Alley et al., Wafer-Scale Assembly of Highly Ordered Semiconductor Nanowire Arrays by Contact Printing, Nano Letters, vol.8, issue.1, pp.20-25, 2010.
DOI : 10.1021/nl071626r

G. H. Yu, A. Y. Cao, and C. M. Lieber, Large-area blown bubble films of aligned nanowires and carbon nanotubes, Nature Nanotechnology, vol.303, issue.6, pp.372-377, 2007.
DOI : 10.1038/nnano.2007.150

M. Mcalpine, R. Friedman, S. Jin, K. Lin, W. Wang et al., High-Performance Nanowire Electronics and Photonics on Glass and Plastic Substrates, Nano Letters, vol.3, issue.11, pp.1531-1535, 2003.
DOI : 10.1021/nl0346427

A. Tao, F. Kim, C. Hess, J. Goldberger, R. He et al., Langmuir???Blodgett Silver Nanowire Monolayers for Molecular Sensing Using Surface-Enhanced Raman Spectroscopy, Nano Letters, vol.3, issue.9, pp.1229-1233, 2003.
DOI : 10.1021/nl0344209

E. M. Freer, O. Grachev, X. Duan, S. Martin, and D. P. Stumbo, High-yield self-limiting single-nanowire assembly with dielectrophoresis, Nature Nanotechnology, vol.302, issue.7, pp.525-530, 2010.
DOI : 10.1038/nnano.2010.106

J. Yao, H. Yan, and C. M. Lieber, A nanoscale combing technique for the large-scale assembly of highly aligned nanowires, Nature Nanotechnology, vol.7, issue.5, p.page online, 2013.
DOI : 10.1038/nnano.2013.55

T. B. Jones, Electromechanics of particles, 1995.
DOI : 10.1017/CBO9780511574498

B. Cetin and D. Q. Li, Dielectrophoresis in microfluidics technology, ELECTROPHORESIS, vol.7, issue.18, pp.2410-2427, 2011.
DOI : 10.1002/elps.201100167

S. Raychaudhuri, D. Dayeh, S. A. Wang, and E. T. Yu, Precise Semiconductor Nanowire Placement Through Dielectrophoresis, Nano Letters, vol.9, issue.6, pp.2260-2266, 2009.
DOI : 10.1021/nl900423g

S. Salomon, Manipulation de microparticules exploitant la force de diélectrophorèse : applications dédiées au tri d'espèces biologiques et l'assemblage de nanoobjets, Thèse, 2011.

D. Wang, R. Zhu, Z. Zhou, and X. Ye, Controlled assembly of zinc oxide nanowires using dielectrophoresis, Applied Physics Letters, vol.90, issue.10, pp.103110-103113, 2007.
DOI : 10.1063/1.2711756

B. E. Deal and A. S. Grove, General Relationship for the Thermal Oxidation of Silicon, Journal of Applied Physics, vol.36, issue.12, pp.3770-3778, 1965.
DOI : 10.1063/1.1713945

L. Malaquin, T. Kraus, H. Schmid, E. Delamarche, and H. Wolf, Controlled Particle Placement through Convective and Capillary Assembly, Langmuir, vol.23, issue.23, pp.11513-11521, 2007.
DOI : 10.1021/la700852c

A. Cerf, C. Thibault, M. Geneviève, and C. Vieu, Ordered arrays of single DNA molecules by a combination of capillary assembly, molecular combing and soft-lithography, Microelectronic Engineering, vol.86, issue.4-6, pp.4-61419, 2009.
DOI : 10.1016/j.mee.2009.01.057

Y. Liu, J. H. Chung, W. K. Liu, and R. S. Ruoff, Dielectrophoretic Assembly of Nanowires, The Journal of Physical Chemistry B, vol.110, issue.29, pp.14098-14106, 2006.
DOI : 10.1021/jp061367e

Y. Cui and C. M. Lieber, Functional Nanoscale Electronic Devices Assembled Using Silicon Nanowire Building Blocks, Science, vol.291, issue.5505, pp.851-853, 2001.
DOI : 10.1126/science.291.5505.851

J. Heath, P. Kuekes, S. Snider, and R. S. Williams, A Defect-Tolerant Computer Architecture: Opportunities for Nanotechnology, Science, vol.280, issue.5370, pp.1716-1721, 1998.
DOI : 10.1126/science.280.5370.1716

W. Lu and C. M. Lieber, Nanowire Transistor Performance Limits and Applications, IEEE Transactions on Electron Devices, vol.55, issue.11, p.9383, 2008.
DOI : 10.1109/TED.2008.2005158

Z. Zhong, D. Wang, Y. Cui, and M. W. Bockrath, Nanowire Crossbar Arrays as Address Decoders for Integrated Nanosystems, Science, vol.302, issue.5649, p.1377, 2003.
DOI : 10.1126/science.1090899

C. Yang, Z. Zhong, and C. M. Lieber, Encoding Electronic Properties by Synthesis of Axial Modulation-Doped Silicon Nanowires, Science, vol.310, issue.5752, p.3101304, 2003.
DOI : 10.1126/science.1118798

F. Seichepine, S. Salomon, M. Collet, S. Guillon, L. Nicu et al., A combination of capillary and dielectrophoresis-driven assembly methods for wafer scale integration of carbon-nanotube-based nanocarpets, Nanotechnology, vol.23, issue.9, p.95303, 2012.
DOI : 10.1088/0957-4484/23/9/095303

URL : https://hal.archives-ouvertes.fr/hal-00832109

F. Seichepine, Réalisation d'interconnexions de faible résistivité à base de nanotubes de carbone biparois pour la microélectronique, Thèse, 2011.

C. H. Lee, D. R. Kim, and X. Zheng, Fabricating nanowire devices on diverse substrates by simple transfer-printing methods, Proceedings of the National Academy of Sciences, vol.107, issue.22, pp.9950-9955, 2010.
DOI : 10.1073/pnas.0914031107

F. Balestra, Nanoscale cmos : Innovative materials, modeling and characterization, 2010.
DOI : 10.1002/9781118621523

F. Léonard and A. A. Talin, Electrical contacts to one- and two-dimensional nanomaterials, Nature Nanotechnology, vol.85, issue.12, pp.773-783, 2011.
DOI : 10.1038/nnano.2011.196

Y. Cui, X. Duan, J. Hu, and C. M. Lieber, Doping and Electrical Transport in Silicon Nanowires, The Journal of Physical Chemistry B, vol.104, issue.22, 2000.
DOI : 10.1021/jp0009305

Y. Cui, Z. Zhong, D. Wang, W. U. Wang, and C. M. Liber, High Performance Silicon Nanowire Field Effect Transistors, Nano Letters, vol.3, issue.2, pp.149-152, 2003.
DOI : 10.1021/nl025875l

K. Byon, D. Tham, J. E. Fischer, and A. T. Johnson, Synthesis and postgrowth doping of silicon nanowires, Applied Physics Letters, vol.87, issue.19, p.193104, 2005.
DOI : 10.1063/1.2128070

K. Byon, D. Tham, J. E. Fischer, and A. T. Johnson, Systematic study of contact annealing: Ambipolar silicon nanowire transistor with improved performance, Applied Physics Letters, vol.90, issue.14, p.90143513, 2007.
DOI : 10.1063/1.2720309

. Civrac, Vers la réalisation de composants haute tension, forte puissance sur diamant cvd, Thèse, 2009.

K. J. Kuhn and M. , 22 nm device architecture and performance elements, 2008.

M. Tao, S. Agarwal, D. Udeshi, N. Basit, E. Maldonado et al., Low schottky barriers on n-ype silicon (001) Applied Physics Letters, pp.2593-2595, 2003.

J. Hu, Y. Liu, C. Z. Ning, R. Dutton, and S. M. Kang, Fringing field effects on electrical resistivity of semiconductor nanowire-metal contacts, Applied Physics Letters, vol.92, issue.8, p.92083503, 2008.
DOI : 10.1063/1.2889534

S. Jin, G. Zheng, W. Lu, and C. M. Lieber, Synthesis and fabrication of high-performance n-type silicon nanowire transistors, Advanced Materials, 2004.

G. Larrieu, E. Dubois, X. Wallart, X. Baie, and J. Katcki, Formation of platinum-based silicide contacts: Kinetics, stoichiometry, and current drive capabilities, Journal of Applied Physics, vol.94, issue.12, p.947801, 2003.
DOI : 10.1063/1.1605817

M. Walter, L. Weber, A. P. Geelhaar, E. Graham, G. S. Unger et al., Silicon-Nanowire transistors with intruded Nickel-Silicide contacts, Nano Letters, vol.6, issue.12, pp.2660-2666, 2006.

Y. Chueh, A. Ford, J. C. Ho, Z. A. Jacobson, Z. Fan et al., InAs/InAs Nanowire Heterostructures by Solid Source Reaction, Nano Letters, vol.8, issue.12, pp.4528-4533, 2007.
DOI : 10.1021/nl802681x

Y. Wu, H. Yan, M. Huang, B. Messer, J. H. Song et al., Inorganic Semiconductor Nanowires: Rational Growth, Assembly, and Novel Properties, Chemistry - A European Journal, vol.291, issue.6, pp.1260-1268, 2002.
DOI : 10.1002/1521-3765(20020315)8:6<1260::AID-CHEM1260>3.0.CO;2-Q

A. Pevzner, Knocking Down Highly-Ordered Large-Scale Nanowire Arrays, Nano Letters, vol.10, issue.4, pp.1202-1208, 2010.
DOI : 10.1021/nl903560u

H. Stark, M. Grunleitner, L. Hundhausen, and L. Ley, Deriving the kinetic parameters for Pt-silicide formation from temperature ramped in situ ellipsometric measurements, Thin Solid Films, vol.358, issue.1-2, pp.73-79, 2000.
DOI : 10.1016/S0040-6090(99)00699-9

X. Tang, N. Reckinger, V. Bayot, D. Flandre, E. Dubois et al., An electrical evaluation method for the silicidation of silicon nanowires, Applied Physics Letters, issue.2, p.95023106, 2009.
URL : https://hal.archives-ouvertes.fr/hal-00471971

S. A. Dayeh, D. P. Aplin, X. Zhou, P. K. Yu, E. T. Yu et al., High Electron Mobility InAs Nanowire Field-Effect Transistors, Small, vol.85, issue.2, pp.326-332, 2007.
DOI : 10.1002/smll.200600379

M. Scheffler, S. Nadj-perge, L. P. Kouwenhoven, M. T. Borgström, and E. Bakkers, Diameterdependent conductance of inas nanowires, Applied Physics Letters, vol.106, p.124303, 2009.

H. Schmid, M. T. Björk, J. Knoch, S. Karg, H. Riel et al., situ Doped Silicon Nanowires Using Phosphine, Nano Letters, vol.9, issue.1, pp.173-177, 2009.
DOI : 10.1021/nl802739v

M. Diarra, Y. Niquet, C. Delerue, and G. Allan, Ionization energy of donor and acceptor impurities in semiconductor nanowires, Physical Review B, vol.75, issue.4, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00283119

J. W. Peng, S. J. Lee, G. C. Albert-liang, N. Singh, S. Y. Zhu et al., Improved carrier injection in gate-all-around Schottky barrier silicon nanowire field-effect transistors, Applied Physics Letters, vol.93, issue.7
DOI : 10.1063/1.2973211

]. G. Larrieu, Élaboration et caractérisation de transistors mos schottky en régime nanométrique, Thèse, 2004.

J. Tang, C. Y. Wang, F. Xiu, M. Lang, L. W. Chu et al., Oxide-Confined Formation of Germanium Nanowire Heterostructures for High-Performance Transistors, ACS Nano, vol.5, issue.7, pp.6008-6015, 2011.
DOI : 10.1021/nn2017777

Y. C. Lin, K. C. Lu, W. W. Wu, J. Bai, and Y. Huang, Single Crystalline PtSi Nanowires, PtSi/Si/PtSi Nanowire Heterostructures, and Nanodevices, Nano Letters, vol.8, issue.3, pp.913-918, 2008.
DOI : 10.1021/nl073279r

A. C. Ford, J. C. Ho, Z. Y. Fan, O. Ergen, V. Altoe et al., Synthesis, contact printing, and device characterization of Ni-catalyzed, crystalline InAs nanowires, Nano Research, vol.83, issue.1, pp.32-39, 2008.
DOI : 10.1007/s12274-008-8009-4

J. W. Lee, Caractérisation électrique et modélisation des transistors à effet de champ de faible dimensionnalité, Thèse, 2011.

B. E. Deal, Standardized terminology for oxide charges associated with thermally oxidized silicon, IEEE Trans. Electron Device, p.27606, 1980.

Z. Fahem, G. Csaba, C. M. Erlen, L. Geelhaar, and H. Riechert, Analysis of the hysteretic behavior of silicon nanowire transistors, physica status solidi (c), vol.6, issue.1, pp.27-30, 2008.
DOI : 10.1002/pssc.200776578

S. Zhang, E. R. Hemesath, D. E. Perea, E. Wijaya, J. L. Lensch-falk et al., Relative Influence of Surface States and Bulk Impurities on the Electrical Properties of Ge Nanowires, Nano Letters, vol.9, issue.9, pp.3268-3274, 2009.
DOI : 10.1021/nl901548u

H. Engermann, W. Henrion, A. Röseler, and M. Rebien, Wet-chemical passivation of Si(111)- and Si(100)-substrates, Materials Science and Engineering: B, vol.73, issue.1-3, p.178, 2000.
DOI : 10.1016/S0921-5107(99)00457-2

M. T. Björk, H. Schmid, J. Knoch, H. Riel, and W. Riess, Donor deactivation in silicon nanostructures, Nature Nanotechnology, vol.41, issue.2, pp.372-377, 2009.
DOI : 10.1038/nnano.2008.400

X. Jiang, Q. Xiong, S. Nam, F. Qian, Y. Li et al., InAs/InP Radial Nanowire Heterostructures as High Electron Mobility Devices, Nano Letters, vol.7, issue.10, pp.3214-3218, 2007.
DOI : 10.1021/nl072024a

V. Passi, E. Dubois, C. Celle, C. S. , J. P. Simonato et al., Functionalization of Silicon Nanowires for Specific Sensing, ECS Transactions, vol.35, pp.313-318, 2011.
DOI : 10.1149/1.3570811

URL : https://hal.archives-ouvertes.fr/hal-00591351

J. Du, D. Liang, H. Tang, and P. A. Gao, InAs Nanowire Transistors as Gas Sensor and the Response Mechanism, Nano Letters, vol.9, issue.12, pp.4348-4351, 2009.
DOI : 10.1021/nl902611f

P. Offermans, M. Crego-calama, and H. Brongersma, Gas Detection with Vertical InAs Nanowire Arrays, Nano Letters, vol.10, issue.7, 2010.
DOI : 10.1021/nl1005405

H. Kind, H. Yan, B. Messer, M. Law, and P. Yang, Nanowire Ultraviolet Photodetectors and Optical Switches, Advanced Materials, vol.29, issue.2, 2002.
DOI : 10.1002/1521-4095(20020116)14:2<158::AID-ADMA158>3.0.CO;2-W

P. Ménini, Du capteur de gaz à oxydes métalliques vers les nez electroniques sans fil, 2012.