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Pr. Manuel Drees

Professor, Bethe Center for Theoretical Physics, Universität Bonn, Rapporteur

Pr. Joakim Edsjö
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“Le savant n’étudie pas la nature parce que cela est utile; il l’étudie parce qu’il y prend plaisir,

et il y prend plaisir parce qu’elle est belle.”

— Henri Poincaré

“There is a crack in everything

That’s how the light gets in.”

— Leonard Cohen
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A mon fils, Malo,

pour m’avoir rappelé

que tout commence

par l’envie d’apprendre.
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aussi motivées et appliquées dans leur travail, et son efficacité a été plus qu’appréciable. Je
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Introduction

Dark matter is one of the most important mysteries of modern Cosmology. Since the

discovery of ”missing mass” by F. Zwicky in 1933 after measuring the velocities of galaxies in

the Coma cluster, many experimental results have confirmed that about 85% of the Universe

mass was made of an unknown, invisible, stable matter called dark matter, which is now a

major ingredient of the Standard Model of Cosmology. These experimental results also tell us

that dark matter seems to be made of Weakly Interacting Massive Particles (WIMPs). The

WMAP experiment has especially measured the exact quantity of this dark matter in our

Universe, and a more precise measurement was recently performed by the Planck experiment.

This quantity actually corresponds to what remains after the so-called freeze-out mechanism

in the early Universe, and is therefore called ”relic density”. As this mechanism involves not

only the expansion of the Universe but also the annihilation of dark matter, it can be predicted

from theoretical models, as we will see in Chap. 1. Indeed, if one knows the nature of dark

matter and its interactions, the necessary annihilation cross sections can be computed.

On the Particle Physics side, dark matter is also of great importance. It is one of the very

few observations which can not be accounted for by the Standard Model of Particle Physics,

which is described in detail in Chap. 2. Despite the enormous success of the latter, which

thanks to the elegant framework of gauge theories can explain up to a very high precision

almost everything which has been measured in Particle Physics, it is believed that there might

be some New Physics beyond it. In particular none of the Standard Model particles is a good

candidate for dark matter.

The most famous model of Physics beyond the Standard Model is Supersymmetry, presented

in Chap. 3, which introduces a new symmetry relating bosons to fermions and therefore predicts

the existence of several new particles: the supersymmetric partners of the Standard Model

particles. As Supersymmetry is broken it also introduces a large number of free parameters,

and studying the phenomenology of its minimal version (the MSSM) is already a huge task.

One of the numerous advantages of Supersymmetry is that it provides several possible dark

matter candidates, the lightest neutralino being the most studied. Indeed, an additional parity

called R-parity is generally included in the MSSM, which leads to the stability of the Lightest

Supersymmetric Particle (LSP). If this LSP is weakly interacting, then it can be a good dark

matter candidate. This is the case of the neutralino, which is a mixing of bino, neutral wino
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and higgsinos, respectively the supersymmetric partners of the B boson, the neutral W boson

and the neutral Higgs bosons. As the lightest neutralino is usually mostly made of bino, its

annihilation cross section is small and its relic density is in general too large. However, special

mechanisms can enhance its annihilation cross section and thus reduce its relic density. One

of these mechanisms is the coannihilation with another supersymmetric particle, which does

not imply the annihilation of neutralinos, but new processes resulting in the diminution of the

density of neutralinos. Indeed, if a supersymmetric particle has a mass close to the neutralino

mass, it will not decouple before the freeze-out, and its coannihilation with the neutralino will

eventually reduce the relic density.

One of the supersymmetric particles which can coannihilate with the neutralino and therefore

decrease its relic density is the stop, i.e. the supersymmetric partner of the top quark. Because

of its large mass (and Yukawa coupling), the top quark has a special status within the Standard

Model. So does the stop, which like the top quark is strongly related to the Higgs sector

by the loop corrections to its mass. In addition, for several reasons, the stop is usually the

lightest squark and can also be the Next-to-Lightest Supersymmetric Particle (NLSP) and

thus coannihilate with the neutralino in some parts of the MSSM parameter space. As will be

discussed in Chap. 4, because of the difficulty to probe the small neutralino-stop mass splitting

scenario at the LHC, and the corresponding low direct detection cross section, these regions,

called neutralino-stop coannihilation regions, are still compatible with experimental constraints.

For these reasons it is interesting to study the phenomenology of these regions in the MSSM.

The phenomenology of the dark matter relic density in the MSSM is quite well known, in

particular in simple models like the cMSSM, based on strong theoretical assumptions. Since

these models are more and more constrained, the knowledge of more general SUSY models

should be improved. In particular it is necessary to study the phenomenological consequences

of relaxing such assumptions: no or partial unification of soft masses, CP violation, Non

Minimal Flavor Violation (NMFV), etc. In Chap. 5 we study the phenomenology of NMFV

in the squark sector in the context of neutralino relic density. We consider flavor violating

terms in the sectors of right handed third generation up and down squarks and show that

the corresponding off-diagonal elements in the squark mass matrices can have an important

impact on the thermally averaged (co)annihilation cross section of the neutralino, and in

consequence can modify its predicted relic density. More precisely, large flavor mixing allows

for efficient annihilation of neutralinos into final states that are forbidden in the case of MFV.

Flavor violating terms are also important in the case of coannihilation of a neutralino with a

squark, since they reduce the squark mass eigenvalue and therefore the neutralino-squark mass

splitting, on which the importance of coannihilation processes crucially depends. All these

effects lead to the opening of new regions compatible with the relic density measurement, thanks

to contributions which are absent in the cMSSM with MFV (neutralino-sbottom coannihilation

or neutralino annihilation into top and charm quarks for example).
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In Chap. 6, we focus on the issue of the precision with which Supersymmetric parameters

can be extracted from measurements of the relic density, again in the case of neutralino-stop

coannihilation. Indeed, the experimental results are more and more precise, and the relic

density measurement by Planck has reached a 2% accuracy. On the other hand, the theoretical

predictions also need to be more accurate, which requires to compute the (co)annihilation cross

sections at Next-to-Leading Order (NLO). Following earlier work in the calculation of one-loop

SUSY-QCD corrections to the annihilation of neutralinos, which have shown that the impact

of such corrections was larger than the experimental uncertainty, we have calculated similar

corrections for the neutralino-stop coannihilation into electroweak gauge and Higgs bosons.

The calculation is presented in Chap. 6, including the procedure used to cancel the Ultra-Violet

(UV) and Infra-Red (IR) divergences, as well as other technical details. We also give details

about the implementation of the results in a numerical Fortran code which allows us to compute

the relic density in the parameter space of Supersymmetric models using these one-loop cross

section thanks to micrOMEGAs. We also show numerical results for the corresponding NLO cross

sections as well as the impact of these corrections on the relic density in a phenomenological

MSSM model. We observe that this impact is larger than the current experimental uncertainty

on the relic density and therefore need to be taken into account. Finally, we comment on the

ongoing calculation of the one-loop corrections to neutralino-stop coannihilation into a top

quark and a gluon.

The App. A contains details about the structure of our numerical code and the way our

results are implemented. Apps. B and C introduce two different methods used to remove IR

divergences: the dipole subtraction method, which is not used in our calculation but is part of

a future project, and the two cutoff phase space slicing method, used in the case of a gluon in

the final state.

We complete this introduction by noticing how exciting have been the last three years

regarding experimental results in Particle and Astroparticle Physics. The results of the Planck

experiment, recently released, were one of the main motivations to our precision calculation. It

is fortunate that, thanks to the LHC which started running at the end of 2009, the Standard

Model can now be completely described including its last piece: the Higgs boson. However

these experiments also brought new constraints on the models we studied: the Higgs boson

mass has been measured, strong limits on the masses of Supersymmetric particles have been

derived, New Physics contributions to flavor observables have been severely constrained, etc.

It is of course impossible to take into account all the latest constraints in each of the studies

presented here. Nevertheless it is clear that the methods, tools and qualitative observations

presented in this thesis do not depend on the specific supersymmetric scenario and will be very

important for future studies.
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Acronyms used in this thesis

- WIMP: Weakly Interacting Massive Particle

- LHC: Large Hadron Collider

- SM: Standard Model

- EWSB: Electro-Weak Symmetry Breaking

- QCD: Quantum Chromo-Dynamics

- CKM: Cabbibo-Kobayashi-Maskawa

- RGE: Renormalization Group Equations

- SUSY: Supersymmetry

- LSP: Lightest Supersymmetric Particle

- NLSP: Next to Lightest Supersymmetric Particle

- GUT: Grand Unified Theory

- MSSM: Minimal Supersymmetric Standard Model

- cMSSM: constrained Minimal Supersymmetric Standard Model

- pMSSM: phenomenological Minimal Supersymmetric Standard Model

- MFV: Minimal Flavor Violation

- cMFV: constrained Minimal Flavor Violation

- NMFV: Non Minimal Flavor Violation

- NLO: Next-to-Leading Order

- UV: Ultra-Violet

- IR: Infra-Red
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Chapter 1.

Dark matter and its relic density

This chapter is devoted to a short review of WIMP dark matter and its relic density. In Sec. 1.1

we briefly review some experimental evidences for dark matter and discuss the possibility of its

direct or indirect detection. In Sec. 1.2 we focus on its relic density: the freeze-out mechanism

is introduced, and the calculation of the relic density is presented.

1.1. Dark matter evidences and detection

1.1.1. The Standard Model of Cosmology

The Standard Model of Cosmology is based on the Big-Bang Cosmological principle and de-

scribes the evolution of the Universe from its very early state to now. It explains quantita-

tively many observations like the Big-Bang Nucleosynthesis (BBN), the Cosmic Microwave

Background (CMB), the formation of structures, the abundance of elements, etc. Solving the

Einstein equations by assuming isotropy and homogeneity leads to the the Friedmann equation

which describes the expansion of the Universe:

H2 +
k

a2
=

8πGN

3
ρtot (1.1)

where a(t) is the scale factor, k describes the spatial curvature, GN is Newton’s constant, ρtot

is the total average energy density of the universe, and H(t) is the Hubble parameter defined

as

H(t) =
ȧ(t)

a(t)
. (1.2)

Its current value is H0 = 67.3 ± 1.2 km s−1 Mpc−1 [1]. The density of matter, energy or

radiation in the Universe are often expressed in units of ρc, the critical density, which is

1



2 Dark matter and its relic density

defined as the total density when the Universe is flat (k = 0):

ρc ≡
3H2

8πGN
. (1.3)

For a substance i we then have

Ωi ≡
ρi
ρc
. (1.4)

The quantities Ωi evolve with time and their equations of evolution depend on the equation of

state of the substance i.

This model is also denoted as the Λ−CDM model, where Λ represents the cosmological

constant which could explain the so-called dark energy, and CDM stands for ”Cold Dark

Matter”. Dark energy and dark matter are the two most important ingredients of the Standard

Model of Cosmology, but also the two least known. The History of Universe as described by

the Standard Model of Cosmology can be summarized as the following:

- T ∼ 1016 GeV: breaking of a grand unified group into the Standard Model gauge groups.

- T ∼ 102 GeV: electroweak symmetry breaking.

- T ∼ 101 − 103 GeV: freeze-out of WIMP dark matter with GeV-TeV mass.

- T ∼ 0.3 GeV: QCD phase transition (confinement of quarks and gluons into hadrons).

- T ∼ 1 MeV: neutrons freeze-out.

- T ∼ 100 keV: Big Bang Nucleosynthesis (creation of light elements from protons and

neutrons).

- T ∼ 1 eV: beginning of structure formation.

- T ∼ 0.4 eV: Cosmic Microwave Background produced by photon decoupling.

- T = 2.7K ∼ 10−4 eV: today.

Some of these steps are well known and experimentally tested (Big Bang Nucleosynthesis

for instance), others are still speculative (Grand Unification Theories). As can be seen at a

temperature of about a TeV occurs the freeze-out of a hypothetical dark matter particle, this

mechanism being described in Sec. 1.2.

1.1.2. Evidences for dark matter

We will now give some of the major observations supporting the idea of dark matter [2]. The

first hints for dark matter came from an observation of the velocity dispersion of galaxies in

the Coma cluster by F. Zwicky in 1933 [3]. Indeed, the virial mass of the cluster derived from

the velocities of galaxies did not agree with the mass observed from luminous matter. The

expression ”dark matter” then appeared. More recently, more refined measurements have been
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Figure 1.1.: Rotation curve of the spiral galaxy NGC 6503. The dotted, dashed and dash-dotted lines
are the contributions of gas, disk and dark matter, respectively. Figure taken from [5].

done using gravitational lensing and X-ray observations. They all agree on this conclusion and

on the dark matter content of the Coma cluster.

One of the most striking evidences for dark matter comes from the recent observation of the

Bullet cluster, which is in fact made of two interacting clusters. The gravitational potential

is measured from gravitational lensing, while the quantity of baryonic (luminous) matter is

measured from X-rays observations. They do not coincide, which can be explained by the

presence of a large amount of non baryonic collisionless matter [4].

At smaller scales, the measurement of the circular velocity of matter as a function of its

distance from the galactic center is in disagreement with the velocity expected from Newtonian

dynamics. Indeed, the rotation curve is expected to fall as r−1/2 beyond the visible disk, while

the observations show a flat behavior (see Fig. 1.1). This discrepancy can be explained by

assuming the presence of a halo of invisible matter with a mass density ρ(r) ∼ r−2, which is

one of the strongest evidences for dark matter. However the exact shape of this density in the

inner part of the galaxies is still poorly known.

The total amount of dark matter in the Universe can be determined only by observations on

cosmological scales, and in particular from the Cosmic Microwave Background. This radiation,

discovered by A. Penzias and E. Wilson in 1965, comes from the decoupling of photons in the

early Universe. The CMB is described with a very good precision by a black body spectrum

of temperature T = 2.726 K and is almost perfectly isotropic. Its small anisotropies can be

however analyzed and provide crucial information about the matter and energy content of the
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early Universe. In particular, the density of dark matter can be extracted from the analysis of

its spectrum. The WMAP experiment extracts the 7 parameters of the Cosmological Standard

Model from their measurement of the CMB, and after combination with the measurement of

the Hubble constant H0 and Baryon Acoustic Oscillations (BAO) they obtain [6]:

ΩCDMh
2 = 0.1126 ± 0.0036. (1.5)

More recently, the Planck experiment has released more accurate results [1]:

ΩCDMh
2 = 0.1199 ± 0.0027. (1.6)

Again, ”CDM” stands for ”Cold Dark Matter”. Indeed, the observation of large scale structures

are in disagreement with the idea of a hot (i.e. relativistic) dark matter, and it is usually

assumed that dark matter is made of rather heavy particles (even though the possibility of

”warm” dark matter is still under discussion).

1.1.3. Detection of dark matter

As it is obvious that dark matter carries neither a strong charge (otherwise it would interact

with baryonic matter) nor an electromagnetic one (otherwise it would not be dark), it is often

considered that dark matter interacts only through the weak interaction (a strong argument for

this is given in Sec. 1.2.3), in which case it is a Weakly Interacting Massive Particle (WIMP).

The idea of detecting directly WIMPs [7, 8], first mentioned in [9], provides the most

promising way of identifying dark matter. As the Milky Way is expected to be embedded

within a dark matter halo, dark matter particles should travel through the solar system and

even across the earth. The expected galactic velocity of dark matter leads to an energy transfer

to an atomic nucleus of about ∼ 10 keV, which could in principle be detected by experiments.

However, using rough estimations for the local mass density of dark matter, and considering

weakly interacting dark matter, one obtains a typical cross section for a WIMP scattering

on nuclei below about 10−8 pb. These small cross sections imply that detecting directly dark

matter on earth would require heavy target nuclei, large detectors and long measurement times.

The main experimental challenge is to reduce the background from environmental radioac-

tivity and cosmic radiation which is much higher than the expected signal and requires to

run such experiments deep underground. As this background most likely consists in electron

recoil, one can also try to discriminate it from the WIMP induced nuclear recoil. The three

main effects used to detect the scattering of WIMPs with a nucleus are ionization, production

of scintillation light, and production of heat. Many experiments use two of these methods in

order to improve the background rejection. Annual modulation of the signal is also used to

discriminate it from the background.
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These experiments have made enormous progress in the last years and have started to

exclude interesting regions of the parameter space of dark matter models. In particular, the

XENON100 [10] experiment provides the most stringent constraints up to now. However

several experiments have claimed to have observed dark matter. Indeed, DAMA [11], CoGeNT

[12, 13] and CRESST [14] see hints of dark matter with a mass around 10 GeV, which is

however excluded by the limits put by the XENON100, CDMS [15–17] and EDELWEISS [18]

experiments. These three claims are also not compatible between each other and no single

dark matter model is able to explain all of these discrepancies.

Another possibility is to detect indirectly dark matter via its annihilation into detectable

particles like gamma rays, electrons and positrons, protons and antiprotons, or neutrinos. The

stable particles will be directly detected (”primary products”), while the unstable ones will

decay into secondary products which will be detected. All these particles are of course of very

different nature and will therefore imply very different production mechanisms, propagation

models, detection techniques, etc. For a review of indirect detection of WIMPs, see [2] and [8].

1.2. The relic density of dark matter

1.2.1. The freeze-out mechanism

It has been known since almost half a century that a stable particle in thermal equilibrium

in the early Universe can have a significant abundance today, due to the so-called freeze-out

mechanism. The thermal equilibrium is possible when the thermal energy of the primordial

plasma is higher than the mass of the stable (dark matter) particle. The equilibrium is guaran-

teed by annihilation of dark matter into lighter (Standard Model) particles, and the opposite

process: production of dark matter through annihilation of Standard Model particles. The

latter process is possible only since the thermal energy is sufficiently high. As the Universe

expands, its temperature decreases, and when the thermal energy becomes smaller than the

mass of the dark matter particle, its production starts to be thermally suppressed by the Boltz-

mann distribution. Annihilation is however not suppressed and the (comoving) number density

of dark matter particles drops exponentially. As the annihilation rate is proportional to the

number density it also decreases, and when it falls below the expansion rate the annihilation

stops and the dark matter particle decouples from the plasma: this is the freeze-out. The

comoving number density of dark matter particles remains then constant until today, and the

density which is measured today is called relic density (see Fig. 1.2).

Here we have assumed that other non-Standard-Model particles were much heavier so that

they decouple long before the dark matter particle and therefore do not play any role during the

freeze-out mechanism. However if it happens that one of these particles is close in mass to the
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Figure 1.2.: Comoving number density of a WIMP in the early Universe. The dashed curves are the
actual abundance, and the solid curve is the equilibrium abundance. Taken from [19].

dark matter one, it can be thermally accessible at the time of freeze-out, and their interactions

with the dark matter particle will modify the phenomenology of the decoupling. In this case

these so-called coannihilation processes have to be taken into account when computing the

relic density of dark matter, which will be presented in the next section.

1.2.2. Overview of relic density calculation

A approximate calculation of the dark matter relic density has been developed several decades

ago (see [20] for example). It was however shown in [21] and [22] that the approximations

traditionally used were not justified in several cases. In particular, the thermal averaging

of the annihilation cross section was generalized to the relativistic case, which is necessary

for a proper treatment of thresholds and resonances. In [22] was also pointed out that the

whole calculation method had to be generalized in the case of coannihilation, first noticed

in [23]. Coannihilation occurs when another particle is slightly heavier than the dark matter

particle and can interact with it. Indeed, as explained above, if their mass difference is of the

same order of magnitude than the freeze-out temperature, this additional particle is thermally

accessible and will play a role during the freeze-out mechanism. Griest and Seckel generalized

the calculation of relic density to the case when the neutralino can coannihilate with another

supersymmetric particle and applied it to the case of neutralino-squark coannihilation. The

resulting general calculation method has been rewritten in a more convenient way and applied

to neutralino-chargino coannihilation processes in [24].
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An automation of the relic density calculation based on the formalism developed in [21], [24]

in which resonances, thresholds and coannihilation with all possible initial states are included

has been implemented in tools such as micrOMEGAs [25, 26], DarkSUSY [27], IsaRED [28, 29] or

SuperIso Relic [30]. The first version of micrOMEGAs was using the freeze-out approximation

which uses an approximate solution to the evolution equation by estimating the freeze out

temperature. Now both codes solve numerically the full evolution equation. This calculation

procedure is summarized in the following section.

1.2.3. Calculation of the relic density including coannihilation

This procedure consists in several steps: deriving the evolution equation for the number density

of the dark matter particle and reformulating it in terms of entropy density, expressing the

thermally averaged (co)annihilation cross section, and integrating numerically the resulting

equation from early to present times. To take into account potential coannihilation of dark

matter with other supersymmetric particles we first consider a set of N particles χi with masses

mi and internal degrees of freedom gi. These N particles are ordered in mass such that χ1

(the lightest neutralino in our case) is the lightest one and is stable due to R-parity. Standard

Model particles will be denoted as X or Y . The abundances of the χi are determined by the

three following R−parity conserving processes: the annihilation of supersymmetric particles

into Standard Model particles χiχj → XY , the scattering of supersymmetric particles off the

thermal background χiX → χjY , and the decay processes χi → χjX. One can then write an

evolution equation for each of the ni which will depend on the relevant cross section and decay

rates. However, as all the supersymmetric particles decay quite quickly into the LSP χ1, its

final abundance will be expressed as the sum of the densities of all supersymmetric particles:

n =
N∑

i=1

ni. (1.7)

Its evolution equation is then expressed as the sum of all the evolution equations for the ni

and simplifies as:

dn

dt
=

N∑

i=1

dni
dt

= −3Hn−
N∑

i,j=1

〈σijvij〉
(
ninj − neqi n

eq
j

)
. (1.8)

Here the first term on the right-hand side corresponds to the dilution due to the expansion

of the Universe, H being the Hubble parameter. The second term describes χiχj annihilation

with a total annihilation cross section

σij =
∑

X

σ(χiχj → XY ) (1.9)
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which has to be thermally averaged. The scattering and decay processes do not contribute

since we sum over all the ni. vij are the relative velocities and neqi are the number densities

at equilibrium. Since the annihilation rate determines the freeze-out and is much slower than

the other processes, one can assume that the ratio of the ni to the total density n keeps its

equilibrium value before, during and after freeze-out:

ni
n

≃ neqi
neq

. (1.10)

Eq. (1.8) can be then rewritten as

dn

dt
= −3Hn− 〈σeffv〉

(
n2 − n2eq

)
(1.11)

where

〈σeffv〉 =
∑

ij

〈σijvij〉
neqi
neq

neqj
neq

. (1.12)

This equation nicely resembles to the one we would have obtained without taking coannihilation

into account, in which the effective cross section σeff is replaced by the usual annihilation cross

section. Because of entropy conservation it is more convenient to reformulate the equation

Eq. (1.11) in term of the variable Y = n/s where s is the entropy density. We obtain

Ẏ = −s〈σeffv〉
(
Y 2 − Y 2

eq

)
. (1.13)

It is also convenient to use the temperature T instead of the time t as independent variable.

Defining x = m1/T we obtain

dY

dx
= −m1

x2
1

3H

ds

dT
〈σeffv〉

(
Y 2 − Y 2

eq

)
. (1.14)

After expressing the Hubble constant in terms of the pressure, and the pressure and entropy

content in terms of effective degrees of freedom geff(T ) and heff(T ), we arrive to the final

evolution equation:

dY

dx
= −

√
π

45G

g
1/2
∗ m1

x2
〈σeffv〉

(
Y 2 − Y 2

eq

)
(1.15)

where Yeq can be written as

Yeq =
neq
s

=
45x2

4π4heff(T )

∑

i

gi

(
mi

m1

)2

K2

(
x
mi

m1

)
(1.16)
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and g
1/2
∗ as

g
1/2
∗ =

heff√
geff

(
1 +

T

3heff

dheff
dT

)
. (1.17)

The thermal averaged effective cross section appearing in (Eq. 1.15) can be written as

〈σeffv〉 =
∫∞
0 dpeffp

2
effWeffK1

(√
s

T

)

m4
1T
[∑

i
gi
g1

m2

i

m2

1

K2

(
mi

T

)]2 . (1.18)

Here peff ≡ p11 with pij defined as the momentum of χi in the center-of-mass frame of χiχj .

Weff is the effective annihilation rate defined as

Weff =
∑

ij

pij
p11

gigj
g21

Wij (1.19)

where Wij is a normalized annihilation rate related to the cross section through

Wij = 4EiEjσijvij . (1.20)

In Eq. (1.18) one also used K1 and K2 which are respectively the modified Bessel functions of

the second kind of order 1 and 2. One of the advantages of this formulation is that Weff does

not depend on the temperature T : it can therefore be calculated before thermally averaging.

Integrating numerically the Eq. (1.15) from very early times (x = 0) to now (x = m1/T0,

where T0 is the present photon temperature) gives Y0. The relic density, i.e. the present

abundance of dark matter, is then

ΩCDM = m1s0Y0/ρcrit, (1.21)

where ρcrit = 3H2/8πG is the critical density and s0 is the entropy density today. With

T0 = 2.726 K we finally obtain

ΩCDMh
2 = 2.755× 108m1Y0 (1.22)

with m1 given in GeV. It is also possible to make an order-of-magnitude estimation of the relic

density to obtain

ΩCDMh
2 ≈ 3× 10−27cm3s−1

〈σv〉 . (1.23)

The observed relic density corresponds then to a cross section value which is typically obtained

for weak interactions, which is an argument for WIMP dark matter.
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Now we would like to make some comments about the weighting factor entering in the

averaged effective cross section in Eq. (1.12). For simplicity we consider a set of two particles

with masses m1 and m2 (with m1 < m2) and internal degrees of freedom g1 and g2. In a

non-relativistic approximation this factor can be expressed as [22]:

ri rj ≡
neqi
neq

neqj
neq

=

gi gj

(
mi

m1

)3/2(mj

m1

)3/2

e−(mi+mj−2m1)/T

(
∑

k=1,2 gk

(
mk

m1

)3/2

e−(mk−m1)/T

)2 (1.24)

=

gi gj

(
mi

m1

)3/2(mj

m1

)3/2

e−(mi+mj−2m1)/T

(
g1 + g2

(
m2

m1

)3/2

e−(m2−m1)/T

)2 . (1.25)

It is trivial to show that in the case of two degenerate particles (m1 = m2) one has

ri rj =
gi gj

(g1 + g2)2
. (1.26)

On the other hand, when m2 ≫ m1, the ri rj have the following behavior:

r1 r1 ∼ 1, (1.27)

r1 r2 ∼ g2
g1

(
m2

m1

)3/2

e−(m2−m1)/T , (1.28)

r2 r2 ∼
(
g2
g1

)2(m2

m1

)3

e−2(m2−m1)/T . (1.29)

We clearly see that the coannihilation of dark matter with this second particle (associated

with the weighting factor r1 r2 in Eq. (1.28)) is Boltzmann suppressed and will be relevant

only when m2 ≈ m1.

Although this formalism allows for a rigorous and precise calculation of the relic density of

dark matter, via a numerical solving of the Boltzmann Eq. (1.8), this procedure is unfortunately

subject to several uncertainties. The first source of uncertainty lies in the extraction of the

relic density of dark matter from cosmological data. The extraction is based on a simple

cosmological model which uses a minimal set of six parameters to fit the available cosmological

data and bases its conclusions on the Standard Model of cosmology [6]. It has been shown

that changing either the number of free parameters of the model used to fit the cosmological

data [31] or modifying the assumptions contained in the Standard Model of cosmology (e.g.,

altering the expansion rate or the entropy content in the primordial Universe or later, but still

before Big Bang Nucleosynthesis [32, 33]), may change the extracted central value of ΩCDMh
2

along with the confidence levels. Another possibility is that the dark matter abundance is
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enhanced by some non-thermal production mechanism in the early Universe. For instance,

they could be produced by decay of heavier particles (gravitino [34] or axino [35] for example).

Another important source of uncertainty is obviously the precision of the calculation of the

cross section. We will review in detail the different sources of uncertainty in the calculation of

the cross section in the framework of supersymmetric models in Sec. 4.2.1.
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Chapter 2.

The Standard Model of Particle Physics

In this chapter we first recall how gauge theories are used to describe consistently QED (Sec. 2.2)

and QCD (Sec. 2.3), and detail the Glashow-Salam-Weinberg model of the weak interactions

and its associated Brout-Englert-Higgs mechanism (Sec. 2.4 and Sec. 2.5). We then discuss

the fermionic sector of the Standard Model, with an emphasize on the quark mixing (Sec. 2.6).

Lastly, we comment on some theoretical and experimental hints about Beyond the Standard

Model Physics (Sec. 2.7). The main references used in this chapter are [36], [37] and [38].

2.1. Introduction

Allowing for neutrino masses, and discarding inconclusive deviations in precision measure-

ments, the Standard Model explains all experimental results in Particle Physics. It describes

consistently the electromagnetic, weak and strong interactions in the single framework of gauge

theories. By definition the latter are invariant under local transformations of the charged fields,

which leads to the existence of massless vector bosons: the gauge fields. A simple case of gauge

theory is the electromagnetism, which is invariant under U(1), and associated with the photon.

”Quantum Chromo-Dynamics” (QCD) is an example of a non-abelian gauge theory, invariant

under SU(3) and associated with the gluons. The strongly interacting particles (i.e. those

interacting with the gluon) carry a strong charge called ”color”. The case of the weak inter-

action is different since it is a short-range interaction, therefore associated with massive gauge

bosons. The Brout-Englert-Higgs mechanism states that the gauge symmetry is spontaneously

broken, the gauge bosons acquiring a mass. As a consequence, a scalar particle, relic of this

mechanism, exists: the Higgs boson. In this chapter we describe the different components of

the Standard Model Lagrangian, starting by the simplest one: the Lagrangian of Quantum

Electro-Dynamics (or QED).

13
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2.2. Quantum Electro-Dynamics

By requiring the Dirac Lagrangian to be invariant under local U(1) transformations, one is

forced to introduce a new vector field Aµ called ”gauge field”, associated with the photon:

L = ψ̄(iγµDµ −m)ψ (2.1)

where Dµ ≡ ∂µ + ieAµ. Its gauge and Lorentz invariant kinetic term is then 1
4FµνF

µν , with

Fµν = ∂µAν + ∂νAµ, the factor 1/4 being chosen so that the resulting Lagrangian matches

with the relativistic Maxwell’s equations.

Note that Aµ has four components, whereas a physical photon has only two polarization

states (the ones which are transverse). In fact, in a theory with a local symmetry, some

degrees of freedom can be modified by gauge transformations without any consequences: they

are therefore unphysical. This subtlety forbids us to define a propagator for the photon without

fixing the gauge, which is done by the following Lagrangian:

LGF = − 1

2ξ
(∂µAµ)

2. (2.2)

That leads to the following expression for the photon propagator:

−i
p2

×
(
gµν − (1− ξ)

pµpν

p2

)
. (2.3)

This general gauge fixing formulation is known as Rξ-gauge; common choices for the gauge

fixing parameter are ξ = 1 (Feynman gauge) or ξ = 0 (Landau gauge). However, as physical

observables do not depend on the gauge, the ξ parameter can be kept as general. This property

of gauge theories is expressed by the Ward identities, which state that the degrees of freedom

of the photon proportional to its four-momenta (see the second term in the propagator) will

cancel in the amplitude.

We finally obtain the Lagrangian of QED:

LQED =
1

4
FµνF

µν + ψ̄(i /D −m)ψ − 1

2ξ
(∂µAµ)

2. (2.4)

2.3. Quantum Chromo-Dynamics

QCD is described by a non abelian gauge theory (invariant under local SU(3) transforma-

tions) with massless self-interacting gauge bosons (the gluons) [39–41]. Its starting point is a
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Lagrangian similar to the one of QED:

L = ψ̄(iγµDµ −m)ψ, (2.5)

ψ being in fact here a triplet of fermions (each of them carrying a different SU(3) charge

called ”color”), and D being a 3 × 3 matrix: Dµ ≡ I∂µ + igAµ where Aµ = TaAa
µ. Ta are

the 8 generators of SU(3), associated with the 8 gluons Aa
µ. In analogy to the case of QED,

these vector fields ensure that the Lagrangian given above is invariant under local SU(3)

gauge transformations. The gluons can interact with themselves, as indicated by the non-zero

commutator of two SU(3) generators:

[Ta,Tb] = ifabcTc 6= 0. (2.6)

fabc are the structure constants of SU(3) and, as the generators, obey to special relations.

The kinetic term is

−1

4
F a
µνF

a µν , with F a
µν = ∂µA

a
ν + ∂νA

a
µ − gfabcAb

µA
c
ν . (2.7)

It contains the two terms

gfabc(∂µA
a
ν)A

b
µA

c
ν −

1

4
g2fabcfadeAb

µA
c
νA

d
µA

e
ν , (2.8)

corresponding to three-point and four-point self-interactions. As in QED we need a gauge

fixing Lagrangian:

LGF = − 1

2ξ
(∂µAa

µ)
2 (2.9)

which enters the propagator of Eq. (2.3) for the gluon. However the cancellations required by

the Ward identities in QED are more complex in the case of QCD. A prescription suggested by

Faddeev and Popov [42] to ensure these cancellations imply unphysical particles called Faddeev-

Popov ghosts. These are scalar particles behaving according to the Fermi-Dirac statistics,

appearing only in loops, and can be seen as negative degrees of freedom canceling the unphysical

time-like and longitudinal polarization degrees of freedom of the gluons. Their corresponding

Lagrangian is

Lghost = c̄a(−∂µDac
µ )cc, with Dac

µ = ∂µδ
ac + gfabcAb

µ. (2.10)

We have now obtained the total QCD Lagrangian:

LQCD = ψ̄(iγµDµ −m)ψ − 1

4
F a
µνF

a µν − 1

2ξ
(∂µAa

µ)
2 + c̄a(−∂µDac

µ )cc. (2.11)
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2.4. From the weak interactions to the Higgs boson

As we have seen in the previous sections, gauge symmetries require the existence of a massless

vector field for each generator of the symmetry group. As a consequence gauge theories can

not be used naively to describe weak interactions since the weak bosons are massive (weak

interaction is a very short range interaction). Adding a mass term by hand in the Lagrangian

for these fields would break the gauge symmetry as needed, but it would also lead to non-

renormalizability of the theory. The model of weak interactions introduced by Glashow, Salam

and Weinberg [43–45] makes use of spontaneously breaking of a local symmetry (the so-called

Brout-Englert-Higgs mechanism [46–48]) to create a renormalizable mass term for the weak

bosons. In addition, as we will see, the electromagnetic and weak interactions are unified in a

single larger symmetry group.

Let us start by defining a complex SU(2) doublet of scalar fields φ, with a weak hypercharge

Y = +1, called the Higgs field:

Φ =


 φ+

φ0


 . (2.12)

Its corresponding Lagrangian is:

LΦ = (DµΦ)†(DµΦ)− V (Φ†Φ) with V (Φ†Φ) = λ[Φ†Φ− µ2/(2λ)]2. (2.13)

The covariant derivative is Dµ = ∂µ − i
2g2W

a
µσ

a − i
2g1Bµ where W a

µ and Bµ are the gauge

fields associated with the SU(2) and U(1)Y generators.

When spontaneously breaking a local (gauge) symmetry, the Lagrangian remains invariant

under the gauge transformations, but the lowest energy state (the ”vacuum”), is not a singlet

of the gauge symmetry. There is an infinite number of ground states with the same energy,

and the symmetry breaking chooses one of these states as the ”true” vacuum. In our case,

as can be seen from the potential (2.13), for µ2 > 0 the field Φ develops a non-zero vacuum

expectation value (VEV) which breaks the SU(2)×U(1)Y symmetry. One combination of the

4 generators has to stay unbroken by the vacuum, so that the theory contains one massless

gauge boson (the photon), while the three others gauge bosons will acquire a mass from the

VEV. In order to obtain a massless gauge boson which is uncharged under U(1)em, the VEV

should be developed by the neutral component of Φ:

〈Φ〉 = 1√
2


 0

v


 with v =

(
−µ

2

λ

)1/2

= 246 GeV. (2.14)
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We can expand Φ around its VEV and apply a gauge transformation by using the three

degrees of freedom from SU(2) (the electromagnetic gauge remains to be fixed). We choose a

specific gauge called ”unitary gauge” which will be explained later. We obtain the following

expression:

Φ =
1√
2


 0

v +H(x)


 . (2.15)

If we expand LΦ using this expression for Φ we obtain:

LΦ = −1

2
∂µH∂

µH +
1

4
g22(v +H)2W+

µ W
−
µ +

1

8
(g21 + g22)(v +H)2Z0

µW
0
µ − λv2H2 − λvH3 − λ

4
H4 (2.16)

with

W±
µ =

W 1
µ ∓ iW 2

µ√
2

and Z0
µ =

g2W
3
µ − g1Bµ√
g22 + g21

. (2.17)

The bilinear terms in these fields give us the masses of the vector fields:

mW =
g2v

2
, m2

Z =
1

4
(g21 + g22)v

2. (2.18)

Note that these mass eigenstates are obtained by a rotation of an angle θW called the Weinberg

angle, which is experimentally measured and satisfies the relation cos θW = mW /mZ . There is

a fourth vector boson orthogonal to Z0 without mass term which is identified as the photon:

Aµ =
g2W

3
µ + g1Bµ√
g22 + g21

. (2.19)

The photon is associated with the generator Q = T3 + Y/2, where T3 is the weak isospin third

component and Y is the weak hypercharge, which is precisely the combination which is not

broken by the vacuum.

By acquiring a mass, each of the weak vector bosons increases its number of degrees of

freedom by 1. These 3 degrees of freedom correspond to the ones which are ”lost” during

the symmetry breaking. Indeed, the Goldstone theorem states that for every spontaneously

broken continuous symmetry, the theory contains a number of massless scalar particles (the

”Goldstone bosons”), this number being equal to the number of broken generators (3 in our

case). These non-observed Goldstone bosons are in fact ”eaten” by the gauge bosons to increase

their number of degrees of freedom. As the Higgs field defined in Eq. (2.12) contained 4 degrees

of freedom, one of them should be still present: it is the so-called scalar Higgs boson. In the

Lagrangian (2.16) there is also a bilinear term in H which give rise to a mass for the Higgs
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boson: m2
H = 2λv2 = 2µ2. The remaining terms in LΦ correspond to its trilinear and quartic

self-interactions, and to interactions between Higgs and gauge bosons.

2.5. Unitary gauge and the Goldstone Boson Equivalence

Theorem

We should now comment a bit on the unitary gauge which has been used without giving any

detail. The unitary gauge is a particular choice of the gauge which makes the Goldstone bosons

disappear (they actually become infinitely heavy as we will see later).

We can naively generalize the propagator given in Eq. (2.3) in Rξ−gauge for a massive

vector boson:

−i
p2 −m2

×
(
gµν − (1− ξ)

pµpν

p2

)
. (2.20)

However it is obvious that some ingredients are missing: in the Feynman gauge, the terms

proportional to pµ do not cancel as in the case of massless vector boson, since the massive one

have some longitudinal polarization components. The derivation of a propagator in a theory

with spontaneously broken symmetry is actually more complicated and one needs to apply

the Faddeev-Popov method carefully. The gauge fixing Lagrangian contains then additional

terms, and as in QCD there are ghost particles associated with each vector boson which appear

only in loops. This Lagrangian contains terms of interaction between these particles, but also

mass terms for the Goldstone bosons and the ghosts particles which give m =
√
ξmW,Z for the

Goldstone bosons and ghosts associated with the W and Z bosons. The propagators of the

massive vector bosons, Higgs bosons, Goldstone bosons, and ghosts are then respectively:

−i
p2 −m2

×
(
gµν − (1− ξ)

pµpν

p2 − ξm2

)
with m = mW or mZ , (2.21)

i

p2 −m2
h

, (2.22)

−i
p2 −m2

with m =
√
ξmW or

√
ξmZ , (2.23)

−i
p2 −m2

with m =
√
ξmW or

√
ξmZ . (2.24)

Now we see that in the Feynman gauge (ξ → 1), the propagators of massive vector bosons

reduce to the expression given in Eq. (2.20), but there is also a contribution from a Goldstone

boson with the same mass. When using the appropriate Feynman rules for their interaction,
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their contributions exactly match with the contribution from the missing longitudinal polar-

ization states of the massive vector bosons.

There is however another choice of gauge which has the advantage of absorbing these

contributions within the massive vector boson. Indeed in the unitary gauge (ξ → ∞), the

propagators of the massive vector bosons are

−i
p2 −m2

×
(
gµν −

pµpν

m2

)
(2.25)

which contains in the last term the missing degrees of freedom. On the other hand the Gold-

stone bosons become infinitely heavy since they have m ∼ √
ξ: they do not contribute in that

particular gauge. It is easier now to understand that the Goldstone bosons are ”eaten” by the

vector bosons which become massive.

The Goldstone Boson Equivalence Theorem [49–51] states that for energies much higher

than the vector boson mass, the amplitude for emission or absorption of a longitudinally

polarized massive gauge boson is equal to the same amplitude with the Goldstone boson which

has been eaten by the gauge boson. It is related to the fact that the longitudinal component

of a massive vector boson becomes dominant when the boson is moving relativistically. This

theorem has been proved and is a consequence of the gauge invariance.

2.6. Quarks and leptons

We have seen that the Standard Model, which is made of QCD and electroweak interactions,

is based on the gauge group U(1)Y × SU(2) × SU(3). That means that each fermion of the

Standard Model will lie in a given representation of each of these groups. In the following we

give the weak hypercharge eigenvalue, the SU(2) and the SU(3) representations for each kind

of fermion:

lL ≡


 νL

eL


 = (−1,2,1), eR = (−2,1,1), νR = (0,1,1),

qL ≡


 uL

dL


 = (

1

3
,2,3), dR = (−2

3
,1,3), uR = (

4

3
,1,3).

Note that these quantum numbers are the same for the 3 families of fermions of the same

kind, only their masses being different. Also, a gauge singlet right-handed neutrino has been

introduced only for the sake of neutrinos masses.
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The left-handed fermions are SU(2) doublets whereas the right-handed fermions are singlet

because the weak gauge bosons W 1
µ ,W

2
µ ,W

3
µ couples only to left-handed fermions. Adding a

mass term by hand for the fermions would break gauge invariance since a mass term mixes

left- and right-handed fermions which lie in different representation of SU(2). As for the

vector bosons, we can use the spontaneous breaking of the SU(2) × U(1)Y symmetry via the

Higgs mechanism to give a mass to the fermions. The mass terms are in fact written as an

interaction between the fermions and the Higgs field (”Yukawa interaction”), which give mass

to the fermions when the Higgs gets its VEV. For instance for the up and down quarks we

have:

L = −Ydq̄LΦdR − Yuq̄LΦ̃uR + h.c. (2.26)

where Yu and Yd are the Yukawa couplings of the up and down quarks, Φ is the Higgs scalar

field, and Φ̃ = iσ2Φ
∗. The up and down quarks then acquire a mass given by mu = Yu v/

√
2

and md = Yd v/
√
2 respectively. By generalizing this procedure we can generate masses for all

the fermions of the Standard Model.

There is however a subtlety arising when including additional families of fermions, in par-

ticular when considering charged currents (i.e. transition between up- and down-type quarks).

The reason is that the mass eigenstates do not coincide with the interaction eigenstates. In-

deed, the mass terms generated by the Yukawa couplings of fermions to the Higgs are in general

not diagonal in the generation space. They can be diagonalized by redefining the quarks fields

using unitary matrices:

umL = VuL
uiL, u

m
R = VuR

uiR (2.27)

dmL = VdLd
i
L, d

m
R = VdRd

i
R (2.28)

where qm are the quarks mass eigenstates and qi are their interaction eigenstates. The Yukawa

matrices can then be diagonalized by

VuL
YuV

†
uR

= Y diag
u (2.29)

VdLYdV
†
dR

= Y diag
d . (2.30)

The charged interactions (i.e. the one relating up-type and down-type quarks ui and di),

when expressed in the mass eigenstates basis, implies a unitary 3× 3 matrix VCKM = VuL
VdL

called the Cabbibo-Kobayashi-Maskawa (CKM) matrix [52, 53]. Because the up and down

quarks are not rotated in the same way, this matrix is non-diagonal. As a consequence,

the charged interactions are ”flavour violating”: they are responsible for transitions between

different generations of quarks. The CKM matrix is the unique source of flavor violation in
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the Standard Model. Its standard parametrization is:

VCKM =




c12c13 s12c13 s13e
−iδ

−s12c23 − c12s23s13e
iδ c12c23 − s12s23s13e

iδ s23c13

s12s23 − c12c23s13e
iδ −c12s23 − s12c23s13e

iδ c23c13


 , (2.31)

where cij ≡ cos θij and sij ≡ sin θij . The CKM matrix has 4 parameters: three angles θij and

a CP phase δ. Another parametrization is the Wolfenstein parametrization where the four

mixing parameters are (λ,A, ρ, η) where η represents the CP violating phase. The Wolfenstein

parametrization is an expansion in the small parameter, λ ≈ 0.22. To O(λ3) the parametriza-

tion is given by

VCKM =




1− 1
2λ

2 λ Aλ3(ρ− iη)

−λ 1− 1
2λ

2 Aλ2

Aλ3(1− ρ− iη) −Aλ2 1


 . (2.32)

In analogy to the quark sector, the transitions between different generations in the lepton

sector is described by a unitary matrix called the Pontecorvo-Maki-Nakagawa-Sakata (PMNS)

matrix [54].

2.7. Beyond the Standard Model?

Before trying to motivate the search for Physics beyond the Standard Model, one should

first point out its enormous success as a theory describing the particles we know and their

interactions. It includes the strong and electroweak interactions, generates masses via the

Higgs mechanism, describes precisely the transitions between the different fermions families,

etc. The Standard Model has been experimentally tested with an incredibly high precision and

a huge variety of observables. There are, however, a few hints that there could (”should”?)

be a more general model describing Particle Physics at a higher energy scale. Before detailing

briefly some of these arguments, let us give a non-exhaustive list of fundamental questions

which are not answered by the Standard Model:

- Why is the Standard Model based on the specific group structure U(1)×SU(2)×SU(3),

with three different coupling constants? Can the Standard Model particles be described

by a single representation?

- Why are there three families? Why is there a strong mass hierarchy between them? Why

are the neutrino masses so small?

- Why are these specific mixing patterns in the quark and lepton sectors realized?
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- Why is the Higgs boson so light in comparison to the Planck scale?

- Why does QCD not seem to break CP−symmetry?

- Why is the electric charge quantized?

- How is gravity quantized and how is it unified with the Standard Model?

- What is the nature of dark matter, which can not be explained by the Standard Model?

Dark matter

As we stated in the last chapter, the WIMP paradigm of dark matter requires the existence

of a heavy stable particle, neutral under the electric and color interactions. There is no such

candidate in the Standard Model, the neutrinos being much too light. In addition, we have

seen that observations point out the non-baryonic nature of dark matter. As a consequence,

assuming that dark matter is made of WIMPs requires the introduction of New Physics.

In particular, assuming that dark matter was in thermal equilibrium in the early Universe,

its relic density can be related to its mass and annihilation cross section (see Chap. 1). A

particle with weak interactions and mass ∼ 100 GeV obtained naturally the correct order of

magnitude for the relic density: this is called the WIMP miracle, which is often cited as a

strong argument in favor of new Physics at the electroweak scale.

Hierarchy problem

The Higgs boson being a scalar, the one-loop corrections to its mass give quadratic divergences

with the energy. When regularizing the divergent integrals by a cutoff scale, we obtain a

correction to the Higgs mass proportional to this cutoff scale squared. Assuming the Standard

Model to be valid up to the GUT scale, with New Physics describing the theory at higher scale,

the Higgs mass correction is then extremely large compared to the observed mass (∼ 125 GeV).

This gap between Planck and electroweak scale is the origin of the Hierarchy problem. One

solution would be to require the large divergent terms to cancel very precisely in order to give

the correct mass, which is known as fine-tuning, and lead to the problem of naturalness of the

theory. Another solution, as we will see in Chap. 3, is to introduce new particles contributing

in loops in a way which naturally cancels the divergence.

Unification of gauge couplings

After several centuries spent merging apparently distinct phenomena into more general and

predictive frameworks (Maxwell’s electro-magnetism, Newton’s universal gravitational inter-

action, Einstein space-time, theory of electro-weak interactions, etc.) it seems quite natural

to ask if the strong and the electroweak interactions could be described by a unified theory.
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The Standard Model describes both of them but separately, as their description is based on a

direct product of three gauge groups.

One could therefore expect a Grand Unified Theory (GUT) to describe these interactions

as a single gauge group, with only one coupling constant. The three coupling constants of

the Standard Model should then meet at a common point at high energy. Unfortunately, the

renormalization group equations (RGE) predict that this is not the case.
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Chapter 3.

Supersymmetry and the MSSM

Supersymmetry and the Minimal Supersymmetric Standard Model (MSSM) are introduced in

this chapter. The algebra of Supersymmetry, extension of the Poincaré algebra, is presented in

Sec. 3.2, and the MSSM is discussed in details in Sec. 3.3. In particular, its particle content

and interaction Lagrangian are described. The question of Supersymmetry breaking is addressed

in Sec. 3.4, where examples of different breaking scenarios are given. Finally, the spectrum of

the relevant MSSM sectors are discussed in Sec. 3.5. The main reference used to write this

chapter is [55].

3.1. Introduction

As we have seen in Chap. 2, despite of the obvious experimental success of the Standard

Model, there are hints that there might be some new Physics beyond it. A possible extension

of the Standard Model is obtained by requiring a new symmetry in the Lagrangian, called

Supersymmetry, which is the unique extension of the Poincaré symmetry using graded Lie

algebras. In this chapter we will shortly describe the supersymmetric algebra, and describe

the Lagrangian of the minimal supersymmetric extension of the Standard Model (the MSSM),

and the interactions it implies. The breaking of Supersymmetry and its mediation will be then

discussed. Finally, we will describe the resulting spectrum of the MSSM and its implication

for neutralino dark matter. We will see that in addition to its mathematical motivation,

Supersymmetry provides several attractive features such as the possibility of gauge coupling

unification, the presence of dark matter candidates in the spectrum, a (partial) solving of the

hierarchy problem, an explanation of the origin of electroweak symmetry breaking (which is

introduced by hand in the Standard Model), and the possibility of supergravity.

25
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3.2. The Supersymmetry algebra

Quantum Field Theories are based on the Poincaré group, which includes Lorentz transforma-

tions and translations in space-time, whose generators are respectively Mµν and Pµ. These

objects satisfy specific commutation relations:

[P ρ, P σ] = 0, (3.1)

[P ρ,Mνσ] = i(gρνP σ − gρσP ν), (3.2)

[Mµν ,Mρσ] = −i(gµρMνσ + gνσMµρ − gµσMνρ − gνρMµσ), (3.3)

which tell us that the Lorentz transformations and the translations are linked together. The

Poincaré group is a non-trivial extension of the group made of rotations and space translations,

which is also realized in nature. The symmetry can be extended further, by including the gauge

symmetries (see Chap. 2). In the Standard Model, the extended symmetry group is a direct

product of the Poincaré group with the gauge groups. In other words, the extension is trivial,

and the generators of the gauge groups commute with the generators of the Poincaré group:

[
T a, T b

]
= i fabcT c (3.4)

[T a, P ρ] = 0 (3.5)

[T a,Mρσ] = 0. (3.6)

According to the no-go theorem from Coleman and Mandula, the construction of a non-

trivial extension of the Poincaré group, in which the new generators mix with Mµν and Pµ,

is not possible. However they were assuming that only bosonic generators (i.e. which do not

change the spin of the states on which they act) were involved. If we consider a set of fermionic

generators Qα (which change the spin of a state by 1/2) it becomes possible to extend the

Poincaré algebra in a non-trivial way. In this way we obtain a N = 1 supersymmetric theory.

The N = 1 Supersymmetry algebra (also called super-Poincaré algebra) is a graded Lie algebra

defined by the following commutation relations:

[Qα, P
ρ] = 0 (3.7){

Qα, Q̄β̇

}
= 2(σρ)αβ̇Pρ (3.8)

[Mρσ, Qα] = −i(σρσ) β
α Qβ (3.9)

{Qα, Qβ} =
{
Q̄α̇, Q̄β̇

}
= 0. (3.10)

Here Qα and Q̄β̇ are two Weyl spinor with α, β̇ ∈ {1, 2} which are related by (Qα)
† = Q̄α̇.

Adding a new set of generators require the introduction of a new coordinates, which are de-

scribed by two Grassmann spinors θα and θ̄α̇. The obtained extended space is called superspace,
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and the fields living on that space are called superfields. The irreducible representations of

the Supersymmetry algebra are called supermultiplets. Supermultiplets contain both fermion

and boson states, superpartners of each other. As the operator P 2 commutes with the Qα, all

particles in a same supermultiplet will have the same mass. In addition, all the gauge group

generators commute with the Qα, which means that superpartners will also have the same

quantum numbers, only their spin will differ. It can also be shown that each supermultiplet

must contain an equal number of fermionic and bosonic degrees of freedom (d.o.f ). A possibil-

ity is then to construct a supermultiplet from a Weyl fermion and a complex scalar field (each

having two d.o.f ), which is called a chiral (or matter) supermultiplet. Another possibility is

a supermultiplet containing a massless vector field and a massless Weyl fermion (each having

two d.o.f ), which is called a vector (or gauge) supermultiplet.

A nice feature of Supersymmetry is that it solves the Hierarchy problem described in

Sec. 2.7. Indeed, in addition to the one-loop contributions from Standard Model particles,

the Higgs mass will receive corrections from superpartners of same masses. The different spin

of the superpartners will give a different overall sign to the correction, and the couplings are

related to the Standard Model one in such a way that the corrections cancel each other. If

Supersymmetry is an exact symmetry of nature it protects the Higgs mass from receiving

quadratic divergences and therefore offers a solution to the Hierarchy problem.

3.3. The Minimal Supersymmetric Standard Model

3.3.1. Multiplet content of the MSSM

The Minimal Supersymmetric Standard Model (MSSM) is a minimal supersymmetric N = 1

extension of the Standard Model. In that framework each of the particles from the Standard

Model lies in one chiral or vector supermultiplet, and must therefore have a superpartner with

spin differing by 1/2. The fermions are part of chiral supermultiplets and have scalar partners

called sfermions and denoted f̃ . In particular the left-handed and right-handed fermions are

separate Weyl fermions with different gauge transformation properties, each having their own

complex scalar partner with the same gauge properties. The Higgs boson is also part of a chiral

supermultiplet, and have a fermionic partner called higgsino. In fact, in order to cancel gauge

anomalies, a second Higgs supermultiplet is needed. Another reason is that a second Higgs

doublet is needed in order to give mass to up and down fermions in Supersymmetry. We have

therefore two SU(2)L doublet complex scalar fields with weak hypercharge ±1/2 denoted by

Hu and Hd. They both have a neutral and a charged component, the neutral ones combining

into the Standard Model Higgs boson. The particle content of chiral supermultiplets in the

MSSM is summarized in Tab. 3.1.
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Names spin 0 spin 1/2

squarks, quarks Q (ũL d̃L) (uL dL)

(×3 families) u ũ∗R u†R
d d̃∗R d†R

sleptons, leptons L (ν̃ ẽL) (ν eL)

(×3 families) e ẽ∗R e†R
Higgs, higgsinos Hu (H+

u H0
u) (H̃+

u H̃0
u)

Hd (H0
d H−

d ) (H̃0
d H̃−

d )

Table 3.1.: Chiral supermultiplets in the Minimal Supersymmetric Standard Model.

Names spin 1/2 spin 1

gluino, gluon g̃ g

winos, W bosons W̃± W̃ 0 W± W 0

bino, B boson B̃0 B0

Table 3.2.: Gauge supermultiplets in the Minimal Supersymmetric Standard Model.

The gauge bosons of the Standard Model are part of gauge supermultiplets, and have

fermionic partners called gauginos (see Tab. 3.2). After electroweak symmetry breaking, the

neutral wino W 0 and the bino B0 mix to give the Z0 boson and the photon γ, and their

superpartners the zino Z̃0 and the photino γ̃.

In the MSSM these extra particles will contribute to the RGE evolution of the gauge

couplings constants. It is well known that in the Standard Model the three gauge couplings

constants do not meet at a common point at high scale. One success of the MSSM is to ensure

the unification of the coupling constants at a unification scale MGUT ∼ 2 × 1016 GeV, which

can be taken as a hint for Grand Unification Theories.

3.3.2. Lagrangian and interactions of the MSSM

To construct the Lagrangian of the MSSM we start from the general expression of the La-

grangian density of a renormalizable supersymmetric theory:

L = Lchiral + Lgauge −
√
2g(φ∗T aψ)λa −

√
2gλ†a(ψ†T aφ) + g(φ∗T aφ)Da (3.11)

where each term will be described in the following.
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The first term in Eq. (3.11) is Lchiral which is the Lagrangian involving chiral supermulti-

plets. It is given by

Lchiral = −Dµφ∗iDµφi + iψ†iσµDµψi −
1

2

(
W ijψiψj +W ∗

ijψ
†iψ†j

)
−W iW ∗

i (3.12)

where i, j label the different chiral supermultiplets. φi and ψi are then respectively the scalar

and fermionic degrees of freedom of the multiplet i. The covariant derivatives are defined by

Dµφi = ∂µφi − igAa
µ(T

aφ)i (3.13)

Dµφ
∗i = ∂µφ

∗iigAa
µ(φ

∗T a)i (3.14)

Dµψi = ∂µψi − igAa
µ(T

aψ)i (3.15)

where Aa
µ are the gauge field and T a the generators of the gauge groups. The first two terms

in Eq. (3.12) are given by the Wess-Zumino model for a free chiral supermultiplet and contain

only kinetic terms. The remaining terms are interaction terms which are expressed in function

of W i and W ij , both being related to the superpotential W by

W i =
δW

δφi
, W ij =

δ2

δφiδφj
W. (3.16)

The latter is defined as

W =
1

2
M ijφiφj +

1

6
yijkφiφjφk. (3.17)

The superpotential (which is not a potential) is an holomorphic function containing all inter-

actions, including fermions and bosons masses. Note that the last term in Eq. (3.12) contains

only scalar fields and therefore contribute to the scalar potential V (φ, φ∗). It can be shown

using the equations of motion that the chiral supermultiplet Lagrangian is invariant under

supersymmetric transformation of the fields. However, Supersymmetry has to be a valid sym-

metry at the quantum level, i.e. also off-shell, when these equations are not respected. The

trick is to introduce a new complex scalar auxiliary field F (the ”F -term”), with no propagating

degree of freedom (i.e. unphysical), which allows the Supersymmetry algebra to close off-shell.

Its corresponding Lagrangian is then Lauxiliary = F ∗F , and F follows specific transformation

rules which make the Lagrangian supersymmetric even when off-shell. Using the equation of

motion for the field F one can show that Fi = −W ∗
i and F ∗i = −W i. The field F is therefore

eliminated from the Lagrangian, as can be seen from the Eq. (3.12).

The second term in Eq. (3.11) is the Lagrangian density for a gauge supermultiplet, given

by

Lgauge = −1

4
F a
µνF

µνa + iλ†aσµDµλ
a +

1

2
DaDa (3.18)
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where λa are the fermionic degrees of freedom of the gauge multiplets (Aa
µ being the bosonic

degrees of freedom). The field strength is defined as

F a
µν = ∂µA

a
ν − ∂νA

a
µgf

abcAb
µA

c
ν (3.19)

and the covariant derivative as

Dµλ
a = ∂µλ

a + gfabcAb
µλ

c. (3.20)

In analogy to the F -term in the case of chiral supermultiplets, one needs to introduce here a

real bosonic auxiliary field Da (the ”D-term”) in order for Supersymmetry to be consistent

off-shell. The equation of motion for Da gives then Da = 0, but this relation is modified

when one introduces couplings between gauge chiral supermultiplets, which are contained in

the last three terms of Eq. (3.11). Supersymmetry imposes that the couplings involved in

these interactions are equal to the gauge couplings. The first two terms are couplings between

gauginos and matter fields and can be seen as the supersymmetric equivalent of the Standard

Model gauge interactions. The last term modifies the equation of motion for the field Da and

gives rise to the equality Da = −g(φ∗T aφ). By using this expression for the field Da, one can

eliminate it from the Lagrangian and the last terms of Eqs. (3.18) and (3.11) combine to give

1

2

∑

a

g2a(φ
∗T aφ)2. (3.21)

This term also contributes to the scalar potential which therefore receives contribution from

the F - and D-term:

V (φ, φ∗) = F ∗iFi +
1

2

∑

a

DaDa =W ∗
i W

i +
1

2

∑

a

g2a(φ
∗T aφ)2. (3.22)

As a consequence, the Yukawa interactions, fermion masses and gauge couplings determine the

scalar potential of supersymmetric theories. This is precisely the reason why the Higgs boson

mass can be predicted by Supersymmetry.

The Lagrangian given in Eq. (3.11) implies several kinds of interactions which we summarize

in the following.

- Yukawa (i.e. scalar-fermion-fermion) couplings determined by the dimensionless symmet-

ric parameter yijk.

- A quartic scalar coupling given by yijny∗kln.

- Another contribution to the quartic scalar coupling given by the gauge couplings.

- A cubic scalar coupling given by M∗
iny

jkn.

- A fermion mass term M ij .

- A scalar squared mass term M∗
ikM

kj .
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- Standard Model coupling between gauge bosons and fermions given by the gauge cou-

plings.

- Standard Model non-abelian coupling between gauge bosons given by the gauge couplings.

- A coupling between gaugino and gauge boson, given by the gauge couplings.

- A coupling between a gauge boson and one or two scalars given by the gauge couplings.

- A coupling between a gaugino, a chiral fermion and a complex scalar given by the gauge

couplings.

The Lagrangian Eq. (3.11) is entirely fixed by the superpotential W , which is the following

for the MSSM:

WMSSM = ũ∗R Yu Q̃Hu − d̃∗R Yd Q̃Hd − ẽ∗R Ye L̃Hd + µHuHd. (3.23)

The first three terms in Eq. (3.23) correspond to the second term in Eq. (3.17). They involve

Yu, Yd and Ye which are 3 × 3 matrices in the family space, containing the masses and CKM

mixings of the quarks and leptons. We see that the term W iW ∗
i in Eq. (3.12) gives a quartic

scalar coupling as expected, which couples either four squark together, or two squark with two

Higgs. On the other hand, the terms W ijψiψj are responsible not only for Yukawa couplings

but also for their supersymmetric version: higgsino-sfermion-fermion couplings. The last term,

called ”µ-term”, corresponds to the first term in Eq. (3.17) and provides a squared-mass term

for the Higgs, and a mass term for the higgsinos.

3.3.3. R-parity

We could have considered additional terms in the superpotential, but they would violate baryon

and lepton number, which is strongly constrained experimentally, in particular from the non-

observation of proton decay. Therefore the MSSM contains a new symmetry called ”R-parity”

which forbids such terms. R-parity is a discrete Z2 symmetry, associated with a multiplicatively

conserved quantum number defined as

PR = (−1)3(B−L)+2s (3.24)

where B is the baryon number, L is the lepton number, and s is the spin. All Standard

Model particles have PR = +1, while all their supersymmetric partners have PR = −1. If R-

parity is exactly conserved, mixing between particles of different PR is forbidden, and vertices

must contain an even number of particles with PR = −1. This has extremely important

phenomenological consequences:

- As stated above, the problem of proton decay is solved.

- All supersymmetric particles will decay into a final state containing the Lightest Super-

symmetric Particle (LSP)
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- The LSP is stable since it can not decay into Standard Model particles. If massive and

weakly interacting it can provide a good dark matter candidate.

- When colliding Standard Model particles, supersymmetric particles can be produced only

in an even number (in pairs for example).

- As a consequence, if the LSP is weakly interacting, collider signatures of Supersymmetry

with R-parity will often imply missing energy.

It is of course possible that R-parity is violated, which is then strongly constrained by obser-

vations such as proton decay, and leads to different signatures at collider.

3.4. Supersymmetry breaking

3.4.1. Soft Supersymmetry breaking

The Lagrangian that we have described does not provide a realistic theory. Indeed, as all

the supersymmetric particles must have the same mass as their Standard Model partners,

Supersymmetry has been excluded by far by observations: a selectron with mass identical to the

electron mass should have been already discovered. The conclusion is that if Supersymmetry

exist, it has to be spontaneously broken. The last piece we need to derive the MSSM Lagrangian

is therefore a Supersymmetry breaking Lagrangian.

As we have seen before, one of the motivation for Supersymmetry comes from the Hierar-

chy problem, which was solved by introducing new particles differing from the Standard Model

particles only by their spin. In particular, an important condition was that the couplings of

the Standard Model particles and their superpartners must fulfill some special relations. If

Supersymmetry is broken, one can require the breaking terms to maintain these relations, to

avoid introducing new quadratically divergent corrections to the Higgs mass. This is called

soft Supersymmetry breaking, meaning that Lbreaking contains only mass terms and coupling

parameters with positive dimension, and is therefore denoted Lsoft. Another important condi-

tion for Supersymmetry in order to cancel exactly the one-loop corrections to the Higgs mass

and stabilize it was the equality of masses between superpartners. The mass terms in Lsoft will

therefore introduce new divergent terms proportional to m2
soft, where msoft is the largest mass

scale associated with the soft Supersymmetry breaking terms. As a consequence the mass scale

of supersymmetric particles should not be too high, otherwise the Hierarchy problem would

come back again. In other words, the observations tell us that Supersymmetry has to be bro-

ken, which forbids the theory to fix the Hierarchy problem, unless supersymmetric particles are

not too heavy, in which case the naturalness of the theory can be acceptable. This is actually

one argument that convince people that Supersymmetry could be observable at the LHC. One

has however to keep in mind that what is natural or not is a highly subjective notion.
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The breaking of Supersymmetry involves new particles and interactions at some high scale.

As this mechanism is still unknown, it is convenient to parametrize Supersymmetry breaking

by introducing a new effective Lagrangian Lsoft which breaks Supersymmetry explicitly. Its

general form is

Lsoft = −
(
1

2
Ma λ

aλa +
1

6
aijkφiφjφk +

1

2
bijφiφj + tiφi

)
+ c.c.− (m2)ijφ

j∗φi. (3.25)

The most general gauge invariant and R-parity conserving soft Supersymmetry breaking La-

grangian for the MSSM is

LMSSM
soft = (3.26)

− 1

2

(
M3g̃g̃ +M2W̃W̃ +M1B̃B̃ + c.c.

)

−
(
ũ TU Q̃Hu − d̃ TD Q̃Hd − ẽ TE L̃Hd + c.c.

)

− Q̃†M2
Q̃
Q̃− L̃†M2

L̃
L̃− ũM2

Ũ
ũ
† − d̃M2

D̃
d̃
†
− ẽM2

Ẽ
ẽ
†

− m2
Hu
H∗

uHu −m2
Hd
H∗

dHd − (bHuHd + c.c.) . (3.27)

The first line contains M1, M2 and M3 which are respectively the bino, wino and gluino mass

terms. The second line contains cubic scalar couplings TU , TD and TE which are 3×3 complex

matrices in the family space, related to the soft-breaking matrices Au,d and the respective

Yukawa matrices Yu,d through TU,D = Au,d Yu,d. The third line contains mass terms for the

squarks and sleptons: M2
Q̃
, M2

L̃
, M2

Ũ
, M2

D̃
and M2

Ẽ
are 3×3 complex hermitian matrices in the

family space. The last line contains contributions to the Higgs potential.

While Supersymmetry does not introduce new parameters as compared to the Standard

Model, the Supersymmetry breaking Lagrangian implies a very large number (105) of free

parameters (masses, CP phases, mixing angles) in the theory. However many of them are

strongly constrained from experiment and thus can not take arbitrary values. In particular this

is the case for the flavor and CP violating parameters: off diagonal matrix elements and CP

phases must be suppressed by some unknown mechanism. This so-called ”flavour problem” in

Supersymmetry is often solved in an effective way by considering ”Minimal Flavour Violation”

(MFV) scenario in which no additional flavor violating sources are added as compared to the

Standard Model, the number of parameters being then drastically reduced. Some aspects of the

flavor sector of the MSSM and the related issues will be discussed in more details in Chap. 5.

3.4.2. Mediation of Supersymmetry breaking

For phenomenological reasons the spontaneous breaking of Supersymmetry has to happen

in a hidden sector distinct from the MSSM. The breaking has then to be communicated to
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the MSSM (the ”visible” sector). The particles in the hidden sector have very small (or

no) direct couplings to the MSSM particles, and some interaction mediates the breaking of

Supersymmetry to the visible sector. There are three main ways to mediate the breaking

which we will now briefly describe.

Gravity mediated Supersymmetry breaking So far we have been considering Super-

symmetry as a global symmetry. However it can be promoted to a local symmetry, in which

case it includes gravity and is called ”supergravity” (SUGRA). As gravity couples with all the

fields that leads to the most popular model of Supersymmetry breaking mediation in which

the interactions that mediates the breaking of Supersymmetry to the visible sector are gravita-

tional. Assuming msoft ∼ 100 GeV, the scale at which the breaking occurs is then expected to

be roughlyMSSB ∼ 1011 GeV. As gravity is sensitive to flavor, in principle one can expect large

flavor violating terms in the resulting soft breaking terms which are in contradiction with the

observations: this is the ”flavour problem”. It is nevertheless often assumed that soft terms

are flavor diagonal. In the minimal framework called ”constrained MSSM” (cMSSM), the soft

terms also satisfy very strict relations:

M3 =M2 =M1 = m1/2, (3.28)

M2
Q̃
=M2

L̃
=M2

Ũ
=M2

D̃
=M2

Ẽ
= m2

0 1, (3.29)

m2
Hu

= m2
Hd

= m2
0, (3.30)

TU = A0 Yu, TD = A0 Yd, TE = A0 Ye, (3.31)

b = B0 µ. (3.32)

The soft breaking terms are defined at the scale ∼ MPl, and using the Renormalization

Group Equations (RGE) for these terms will predict the MSSM spectrum at the electroweak

scale. However, the RGE are usually used only from the Unification scale MU ∼ 2× 1016 GeV

since they are badly known above this scale. Nicely, non-observed large flavor and CP violating

terms are absent in this model. However these very strong assumptions are theoretically not

very well motivated. In the MSSM the electroweak symmetry breaking condition fixes B0 and

|µ| but let tanβ ≡ vu/vd (which is the ratio of the VEVs of the two Higgs doublets) as a free

parameter. We are therefore left with the following 5 free parameters:

m1/2, m0, A0, tanβ, sign(µ). (3.33)

Note that in supergravity scenario there is a supersymmetric partner for the graviton (the spin

2 particle associated with the gravitational interaction) of spin 3/2 called the gravitino. In

the cMSSM, the gravitino has a mass m3/2 ∼ MSSB ∼ 1011 GeV so that it does not play any

phenomenological role. It is therefore usually not counted in the number of free parameters.
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An even more constrained model is mSUGRA for ”minimal supergravity”, in which the

bilinear and trilinear soft terms are related by B0 = A0 − m0. tanβ is then fixed by the

electroweak symmetry breaking condition. In the mSUGRA model, one also assumes the

equality m3/2 = m0 so that the gravitino is expected to be rather light, even often the LSP.

Gauge mediated Supersymmetry breaking Another possibility is that the Supersym-

metry breaking is mediated to the visible sector by the gauge interactions. In that context one

introduces new chiral multiplets (”messengers”), which couples to the hidden sector and to the

visible one through radiative corrections involving gauge interactions. A nice features of Gauge

Mediated Supersymmetry Breaking (GMSB) models is that due to the flavor blind gauge in-

teractions the flavor problem is avoided. The gauginos soft breaking masses are generated

by one-loop diagrams, while the scalars masses come from two-loop diagrams. The minimal

models of GMSB are defined by six parameters: the SUSY breaking scale in the messenger

sector, the number of messenger pairs, the messenger mass scale, the Universal mass scale of

SUSY particles, tanβ and the sign of µ. Because gauge interactions are much stronger than

gravity, the SUSY breaking scale can be much lower. As a consequence the gravitino can be

very light and is usually the LSP, which has very important phenomenological implications for

cosmology and collider Physics.

Anomaly mediated Supersymmetry breaking In the superconformal Anomaly medi-

ated Supersymmetry breaking (AMSB) there are extra spatial dimensions and the visible and

hidden sectors are living on different branes. It is then possible that supergravity mediate the

Supersymmetry breaking between these different sectors, the resulting soft terms can then be

understood in terms of the anomalous violation of a local superconformal invariance.

The phenomenological MSSM We should say a few words here about the phenomenolog-

ical MSSM (pMSSM) which is not a model of Supersymmetry breaking mediation, but rather

a simplified effective description of the soft breaking terms at low scale. In the pMSSM the soft

breaking parameters are given at low scale, and no assumption is made about the relations they

fulfill at the GUT scale. However, the number of parameters is reduced to a reasonable num-

ber, i.e. compatible with a numerical analysis in the parameter space. The reduction is made

by applying some assumptions derived from experimental constraints (MFV for instance), but

also by selecting only the relevant parameters for the study one wants to perform. Different

versions of the pMSSM can exist, depending on the phenomenological aspects of the model one

is interested in. Some general characteristics of pMSSM models are the assumption of MFV

and CP -conserving MSSM, and degenerate soft masses as well as zero trilinear couplings for

the first two generations of sfermions. In that case one would ends up with a 19 parameters

model, which is still a rather large number of parameters for a numerical study.
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Interaction eigenstates Mass eigenstates

Notation Name Notation Name

q̃L, q̃R left and right handed squarks q̃1, q̃2 squarks 1 et 2

l̃L, l̃R left and right handed sleptons l̃1, l̃2 sleptons 1 et 2

ν̃ sneutrinos ν̃ sneutrinos

g̃ gluino g̃ gluino

W̃± charged winos

H̃−
1 higgsino −





χ̃±
1,2 charginos

H̃+
2 higgsino +

B̃ bino

W̃ 3 neutral wino





χ̃0
1,2,3,4 neutralinos

H̃0
1,2 neutral higgsinos

Table 3.3.: Interaction and mass eigenstates of the superpartners of the Standard Model particles.

3.5. The MSSM mass spectrum

3.5.1. Mass eigenstates of the MSSM

After EWSB, the interactions eigenstates of the MSSM that share common quantum numbers

mixe to give mass eigenstates. The left and right eigenstates of each of the squarks and

sleptons mixe into mass eigenstates denoted by 1 and 2. The neutral higgsinos (H̃0
u and H̃0

d)

and gauginos (B̃0 and W̃ 0) combine into four neutral mass eigenstates called neutralinos (χ̃0
i ).

The charged higgsinos (H̃+
u and H̃−

d ) and winos (W̃+ and W̃−) combine into two charged

mass eigenstates called charginos (χ̃±
i ). The gluino is a unique case within the MSSM in the

sense that it is a color octet fermion, therefore it does not mix and its interaction and mass

eigenstates coincide. The case of the sneutrino is a bit more subtle since it depends if one

includes right-handed neutrinos in the Standard Model or not; we do not focus on these issues

here. The interaction and corresponding mass eigenstates of the MSSM are summarized in

Tab. 3.3.

After detailing the Higgs sector of the MSSM, we will discuss in details the two most

relevant sectors of the MSSM for our study: the neutralino and the squark sectors, with an

emphasize on the case of third generation squarks.
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3.5.2. The Higgs sector

Electroweak symmetry breaking in the MSSM The Higgs part of the MSSM scalar

potential can be expressed in function of the four components of the two Higgs doublets:

V = |µ|2
(
|H0

u|2 + |H+
u |2 + |H0

d |2 + |H−
d |2
)

(3.34)

+
1

8

(
g2 + g′2

)
(|H0

u|2 + |H+
u |2 − |H0

d |2 − |H−
d |2)2 + 1

2
g2
∣∣H+

u H
0∗
d +H0

uH
−∗
d

∣∣2

m2
Hu

(
|H0

u|2 + |H+
u |2
)
+m2

Hd

(
|H0

d |2 + |H−
d |2
)
+
[
b (H+

u H
−
d −H0

uH
0
d) + c.c.

]
.

The first and second lines are respectively the contributions of the F - and D-term (see

Eq. (3.22)), and the third line is the contribution of the soft breaking terms (last line of

Eq. (3.27)). The minimum of V has to break the electroweak symmetry (see Sec. 2.4 for a

description of the Higgs mechanism). We can first require V to be bounded from below, which

leads to the following relation between the potential parameters:

2b < 2|µ|2 +m2
Hu

+m2
Hd
. (3.35)

Electroweak symmetry breaking occurs if there is a combination of H0
u and H0

d with negative

squared mass term, which is expressed by

b2 > (|µ|2 +m2
Hu

)(|µ|2 +m2
Hd

). (3.36)

Note that the b−term helps EWSB to occur. Note also that these constraints can not be

satisfied if m2
Hu

= m2
Hd

. As a consequence it is not possible to have EWSB without breaking

of Supersymmetry (i.e. m2
Hu

= m2
Hd

= 0): Supersymmetry breaking is needed to break gauge

symmetry. Let us also point out that in models like the cMSSM where the soft breaking

Higgs squared masses m2
Hu

and m2
Hd

are equal at high energy, the EWSB is triggered by the

RGE running which brings m2
Hu

to small or negative value. This mechanism, called ”radiative

electroweak symmetry breaking”, is more natural compared to the Standard Model where one

has to impose by hand the condition µ2 < 0.

The field H0
u and H0

d can now acquire non-zero VEVs which are denoted

vu = 〈H0
u〉, vd = 〈H0

d〉 (3.37)

while their ratio is written as tanβ ≡ vu/vd. We can now require that the potential minimum

leads to the correct value for the Z boson mass and derive the two following relations:

m2
Hu

+ |µ|2 − b cotβ − (m2
Z/2) cos(2β) = 0, (3.38)

m2
Hd

+ |µ|2 − b tanβ + (m2
Z/2) cos(2β) = 0. (3.39)
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These relations are compatible with Eqs. (3.35) and (3.36) and allow us to eliminate the two

parameters b and |µ| in favor of tanβ and sign(µ).

Higgs mass eigenstates Out of the eight degrees of freedom of the Higgs fields in the MSSM

(two complex SU(2) doublets), three are absorbed by the gauge bosons during electroweak

symmetry breaking. The remaining five degrees of freedom gives five scalar mass eigenstates:

two CP -even neutral h0 and H0 (where h0 is the lightest), one CP -odd neutral A0, and two

charged H±. The expressions of their tree-level masses can be obtained from the minimization

of the potential (at tree-level):

m2
A0 = 2b/ sin(2β) = 2|µ|2 +m2

Hu
+m2

Hd
(3.40)

m2
h0,H0 =

1

2

(
m2

A0 +m2
Z ∓

√
(m2

A0 −m2
Z)

2 + 4m2
Zm

2
A0 sin

2(2β)
)
, (3.41)

m2
H± = m2

A0 +m2
W . (3.42)

An important feature of m2
h0 is that it is bounded from above:

mh0 < mZ | cos(2β)|, (3.43)

which is excluded by the LEP experiment, and is not compatible with mh0 = 125 GeV, as

suggested by the LHC discovery. Note that the identification of h0 as the observed Higgs

boson is possible since in the MSSM h0 is often behaving like the Standard Model Higgs

boson (same couplings), in particular in the ”decoupling limit” where mA0 >> mZ in which

mh0 = mZ | cos(2β)| at tree-level. What we are still missing here are the radiative corrections

to the Higgs mass. They can be calculated from the quantum correction to the Higgs potential,

which are known at two loops. These corrections can be significantly large and the dominant

contribution, come from the one-loop diagrams with top squarks and quarks. Taking into

account these one-loop corrections, the lightest Higgs mass in the decoupling limit becomes

m2
h0 = m2

Z cos2 2β +
3g2m4

t

8π2m2
W

[
log

M2
SUSY

m2
t

+
X2

t

M2
SUSY

(
1− X2

t

12M2
SUSY

)]
(3.44)

where Xt = At−µ/ tanβ is the stop mixing parameter (see Sec. 3.5.4) andMSUSY =
√
mt̃1

mt̃2

is the average mass of the two top squarks. One possibility to enhance the one-loop contribution

and reach 125 GeV is to have a large MSUSY, i.e. heavy stops. However it is often seen as

theoretically unsatisfactory since it worsens the naturalness of the theory.
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3.5.3. The neutralino sector

As said in the introduction there are 4 neutralinos χ̃0
i , χ̃

0
i , i = 1, 2, 3, 4, ordered by increasing

mass, which are mixture of bino, neutral wino and neutral higgsinos. In the gauge-eigenstate

basis (B̃, W̃ 0, H̃0
d , H̃

0
u), the neutralino mass matrix is

Mχ̃0 =




M1 0 −cβ sW mZ sβ sW mZ

0 M2 cβ cW mZ −sβ cW mZ

−cβ sW mZ cβ cW mZ 0 −µ
sβ sW mZ −sβ cW mZ −µ 0




(3.45)

with sβ = sinβ, cβ = cosβ, sW = sin θW , and cW = cos θW . M1, M2 and µ are respectively

the bino, wino and higgsino soft masses. The remaining terms are Higgs-higgsino-gaugino

couplings which mix higgsinos with bino and wino. The mass matrix Mχ̃0 can be diagonalized

by a unitary matrix U χ̃0

to obtain mass eigenstates:

U∗
χ̃0Mχ̃0U−1

χ̃0 = diag(mχ̃0

1

,mχ̃0

2

,mχ̃0

3

,mχ̃0

4

). (3.46)

In principle µ is complex and its phase is unknown, but strongly constrained by experiment.

We will always consider here that µ is a real parameter. In the limit mZ ≪ |µ±M1|, |µ±M2|,
which happens often in the cMSSM for example, the gauginos mixing is negligible and the four

neutralinos are said to be ”bino-like”, ”wino-like” and ”higgsino-like” with respective mass

M1, M2 and |µ|.

3.5.4. The squark sector

As the squarks of the MSSM share the same quantum numbers, they can mix and the mass

eigenstates are obtained after diagonalization of two 6× 6 mass matrices, for the up and down

type squarks. However we will here assume diagonal soft terms in the family space so that

one only needs to consider 2× 2 matrices, neglecting the mixing between different generations

(the general case of non-diagonal soft terms will be considered later in Chap. 5). The mass

matrices of the up and down type squarks then read

M2
q̃i =


 M2

Q̃i
+ (I3Lq −eq s2W ) cos 2β m 2

Z +m2
qi , mqi

(
Aqi − µ (tanβ)−2I3Lq

)

mqi

(
Aqi − µ (tanβ)−2I3Lq

)
M2

Ũi,D̃i
+ eq s

2
W cos 2β m 2

Z +m2
qi


 ,

(3.47)
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with q = u, d and i = 1, 2, 3 is the generation index. Here eq is the fractional charge of the

squark in units of e, I3Lq is the weak isospin of the squark, MQ̃i
, MŨi

, and MD̃i
are the soft-

breaking mass terms of the squarks, and Aui
, Adi are the soft-breaking trilinear couplings.

In this notation the MQ̃i
, MŨi

, MD̃i
, Aui

and Adi are the ith diagonal elements of the soft

breaking 3 × 3 matrices M2
Q̃
, M2

L̃
, M2

Ũ
, M2

D̃
, M2

Ẽ
, Au and Ad respectively, which are involved

in the soft breaking Lagrangian (3.27).

The soft-breaking mass terms obviously give contributions to the diagonal elements of

the mass matrix. The off-diagonal terms proportional to m2
Z correspond to a mass splitting

between the components of SU(2)L doublets and come from the D-term contribution to the

scalar potential, while the diagonal term proportional tom2
q come from the F -term contribution

(see Eq. (3.22)). The latter also gives a term in mq µ in the diagonal elements after the Higgs

get a VEV (combination of first and last term of Eq. (3.23) for instance). Finally, the soft-

breaking trilinear couplings give a contribution to the off-diagonal elements, after the Higgs

get a VEV.

For each generation this mass matrix can be diagonalized by a unitary matrix U q̃ to give

mass eigenstates (here the generation index has been suppressed for clarity):

U q̃ M2
q̃ (U

q̃)† = diag(m2
q̃1 ,m

2
q̃2), (3.48)

with m2
q̃1
< m2

q̃2
. The interaction and mass eigenstates basis being related by a mixing angle

θq̃:


q̃1
q̃2


 =


cos θq̃ − sin θq̃

sin θq̃ cos θq̃




q̃L
q̃R


 . (3.49)

As the mixing between the left and right squarks is proportional to their Yukawa coupling,

the mass eigenstates will differ from the interaction eigenstates only for the third generation

squarks. The second reason why the case of third generation squarks is peculiar is that their

large Yukawa and trilinear couplings enhance the RGE running of their masses:

16π2
d

dt
m2

Q3
= Xt +Xb −

32

3
g23|M3|2 − 6g22|M2|2 −

2

15
g21|M1|2 +

1

5
g21S, (3.50)

16π2
d

dt
m2

ũ3
= 2Xt −

32

3
g23|M3|2 −

32

15
g21|M1|2 −

4

5
g21S, (3.51)

16π2
d

dt
m2

d̃3
= 2Xb −

32

3
g23|M3|2 −

8

15
g21|M1|2 +

2

5
g21S (3.52)

where M1, M2, M3 are the gaugino masses,

S = m2
Hu

−m2
Hd

+Tr[m2
Q −m2

L − 2m2
u +m2

d
m2

e] (3.53)



Supersymmetry and the MSSM 41

and

Xt = 2|yt|2(m2
Hu

+m2
Q3

+m2
ũ3
) + 2|at|2, (3.54)

Xb = 2|yb|2(m2
Hd

+m2
Q3

+m2
d̃3
) + 2|ab|2. (3.55)

It is clear that as Xt depends on yt and at it will be large for third generation, which will

decrease their masses at low energy. Also note that the right handed stop mass has a factor 2

in front of Xt and does not receive negative contribution from M2, thus it will be lighter than

the left handed one.
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Chapter 4.

Neutralino-stop coannihilation in the

MSSM

This chapter is devoted to the phenomenology of neutralino relic density in the MSSM and

its interplay with other experimental constraints, with an emphasize on the neutralino-stop

coannihilation. In Sec. 4.1 we discuss in detail the constraint from the relic density of neutralino

and its phenomenology in the cMSSM and several other well-studied MSSM models. In Sec. 4.2

we list the existing experimental constraints that can be applied on the parameter space of

MSSM models, including the relic density of dark matter, and focus on the neutralino-stop

coannihilation regions. In Sec. 4.3, we finally perform a numerical analysis of the neutralino-stop

coannihilation regions in the pMSSM.

4.1. Phenomenology of neutralino relic density

4.1.1. cMSSM

In constrained models such as the cMSSM, the unification of gaugino masses at high scale

imposes strong constraints on the lightest neutralino content (see Eq. (3.28)). That often leads

to a neutralino which is mainly a bino, and as the bino does not couple to gauge bosons the

typical annihilation cross section is too low for the relic density to reach the upper limit of

Eq. (1.6) in the parameter space. As a consequence a special mechanism like resonances or

coannihilation 1 is required in order to enhance the cross section, which can then be sufficiently

large in specific parts of the parameter space. In the following we list the possible mechanisms

which can happen in the cMSSM and potentially give the correct relic density.

1Note that in some situations coannihilation can also increase the relic density. See [56] for an example in
Supersymmetry, and [57] for a non supersymmetric model.

43
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- In a large part of the parameter space (historically called the ”Bulk”), light sleptons can

enhance the t-channel annihilation of neutralinos into leptons final states. Such light

sleptons are however excluded by far.

- For lowm1/2 a s-channel resonance with a light CP -even Higgs boson h0 can occurs, which

is however in contradiction with the Higgs boson observation at LHC, and is excluded by

the limits on the squarks and gluino masses (and other constraints).

- For large tanβ the CP -odd Higgs boson A0 is lighter and a s-channel resonance can occurs

(”A-funnel”). In addition, large values of tanβ enhance couplings of A0 to down-type

fermions. As a result neutralino annihilation into b quark pairs or tau lepton pairs can

be significantly enhanced.

- For large m0 the RGEs result in a rather small value of µ (”focus point” [58]) which

increases the higgsino content of the lightest neutralino, enhancing the annihilation into

fermion pairs via Z boson or A0 exchange. Also, the splitting with the lightest chargino is

reduced, enhancing the coannihilation of the lightest neutralino with the lightest chargino

into electroweak gauge bosons final states.

- For low m0 the lightest stau is light (NLSP) and the coannihilation between neutralino

and stau becomes significant [59, 60].

- For large A0 the stop mixing is increased (see Sec. 3.5.4) and the lightest stop becomes

light (NLSP), which enhances the coannihilation between neutralino and stop [56,61,62].

This is illustrated in Fig. 4.1 where are shown in blue the regions of the cMSSM parameter

space favored by the measurement of the dark matter relic density by Planck, for two different

set of parameters. Because of the very narrow experimental 1σ range (see Eq. 1.6), we use here

a 10σ range so that the corresponding region is clearly visible. On the left side of Fig. 4.1,

three of the regions discussed above are visible: the Higgs resonance is seen as vertical lines at

low m1/2, the focus-point is seen at m0 > 3 TeV, and the stau coannihilation region is seen as a

very narrow band along the stau-LSP region (in red), where there is no dark matter candidate.

On the right side, due to the large (negative) value of A0, there is a stop coannihilation region

along the stop-LSP region in red. We also show in green the regions in which the predicted

Higgs mass falls within the range 123 < mh0 < 129 GeV, using a rough approximation of

the experimental and theoretical precision. It is clear that most of the cosmologically favored

regions are excluded or strongly disfavored by the Higgs boson observation.

4.1.2. Non universal models

As the cMSSM is not very well motivated and strongly constrained by experiments it is inter-

esting to consider more general models in which some of the relations between the soft breaking
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Figure 4.1.: Cosmologically favored region in the (m0, m1/2) plane of the cMSSM for µ > 0, tanβ = 10,
A0 = 0 GeV (left) and A0 = −3000 GeV (right).

parameters at the GUT scale are relaxed. One then ends up with a larger number of free pa-

rameters, and more possibilities to enhance the annihilation cross section. For example, stop

coannihilation can be achieved without large A0 either through RGE effects, or by relaxing the

universality of squark masses at the GUT scale. New coannihilation channels can also appear,

like coannihilation with bottom squarks, or with sleptons other than the stau. Also, there is

more freedom to increase the higgsino or wino component of the neutralino (especially if there

is no gaugino mass unification), in which case its annihilation cross section is enhanced. In

the following we describe some features of simple non universal models in which only a few

assumptions from the cMSSM are relaxed.

Non Universal Gaugino Mass models When considering SO(10) GUT the properties

of the SUSY breaking mechanism are related to the breaking of an SU(5) subgroup into the

Standard Model gauge group SU(3)×SU(2)×U(1). The relations between the gaugino masses

Mi (i = 1, 2, 3) at the unification scale are given by the embedding coefficients of the Standard

Model groups in SU(5). In particular, in Non Universal Gaugino Masses (NUGM) models, the

unification constraintMi = m1/2 of the cMSSM can be relaxed without spoiling the unification

of the gauge couplings. Three independent parameters are then needed to fully parameterize

the gaugino sector. Previous studies have shown that NUGM models have an interesting dark

matter phenomenology [63,64].

Choosing M1 > M2 for instance leads to a lightest neutralino with a significant wino

component, which can open new annihilation channels due to the larger coupling of the neu-
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tralino with the electroweak gauge bosons. Coannihilation channels with other neutralinos or

charginos can also be important [65]. Modifying the value of M3 has a strong impact on the

whole SUSY spectrum through RGE effects. For instance, choosing M3 < M2 decreases µ and

leads to a LSP with a large higgsino component, as for the focus point in the cMSSM. The

stop mass is also strongly affected by the value of M3, and can be reduced without the need

for large trilinear couplings as in the cMSSM. Another effect is the decreasing of the mass of

A0, the A-funnel becoming then available even for intermediate values of tanβ. In NUGM it

is also possible to have a gluino NLSP and therefore neutralino-gluino coannihilation which is

a very efficient coannihilation process, as discussed in [66].

Non Universal Higgs Mass models Similarly to the mechanism leading to non-universal

gaugino masses, in SO(10) SUSY GUTs, depending on the exact representation to which the

Higgs doublets belong, their corresponding SUSY breaking masses mHD
and mHU

need not

necessarily be the same. In non-universal Higgs mass models they can therefore be treated as

independent parameters at the high scale [67, 68].

Since the parameters in the Higgs sector are related to the gaugino masses (in particular

M3) via the RGE, many effects seen in NUGMmodels can be reproduced in NUHM by choosing

the correct set of parameters. Indeed, as in the case of NUGM models, new contributions to

the RGE appears, which can considerably modify the spectrum of SUSY particles. These

additional contributions will modify the masses of SUSY particles at the electroweak scale. In

the stop sector for instance, m2
Hu

and m2
Hd

appears in the quantity defined in Eq. (3.53) (which

is equal to zero in the cMSSM, but equal to m2
Hu

−m2
Hd

in NUHM) and in the quantity Xt

defined in Eq. (3.54). By choosing a large negative value for m2
Hu

−m2
Hd

one can reduce the

stop mass through the RGE and enhance the neutralino stop coannihilation by keeping A0 = 0

GeV. These new contributions can also lead to coannihilation processes between neutralino

and first or second generation sleptons or squarks, for instance.

Non Universal Sfermion Mass models It is also possible to relax the assumption that

all squark and slepton soft masses are equal at GUT scale. In [69] a minimal scenario of non

universal sfermion masses (mNUSM) inspired by SU(5) GUT is described. In this model the

sfermions are described by two different representations, which result in a specific pattern for

the sfermion masses at the GUT scale. In particular the masses of the left-handed sleptons and

right-handed down type squarks are not equal to m0, which allows important contributions

from new coannihilating partners like the sbottom, the stau or the tau sneutrino.

Another example of phenomenologically interesting possibility would be to modify the up-

type squark soft masses at GUT scale to end up with a lighter stop at the electroweak scale,

which could then coannihilate with the neutralino even for A0 = 0.
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4.2. Experimental constraints in the MSSM parameter space

In this section we discuss the relevant experimental constraints in the MSSM and their phe-

nomenological implications, in particular for the neutralino-stop coannihilation regions. We

first focus on the constraint coming from the measurement of the dark matter relic density, and

describe the processes relevant for the calculation of the relic density in the neutralino-stop

coannihilation regions. We then discuss the phenomenology of various experimental results

as the one from LHC, the Higgs boson mass and flavor Physics results. Note that a typical

scenario of neutralino-stop coannihilation and the relevant experimental constraints have been

discussed in detail in [70].

The first constraints that should be applied on the parameter space of SUSY models are

trivial: there must be EWSB2, the high scale parameters must lead to a valid (i.e. non

tachyonic) spectrum at low scale, and there must be a dark matter candidate (the neutralino

in our case). Further constraints can be derived from different experimental measurements,

the most relevant for our study being detailed in the next sections.

4.2.1. Relic density of dark matter

The lightest neutralino χ̃0
1 is often considered as the LSP because it would then provide a

good dark matter candidate. In addition it often naturally emerges as the LSP in many

supersymmetric models like the cMSSM. As explained in the Chap. 1 it is possible to constrain

supersymmetric models by assuming that it provides a viable dark matter candidate, and

comparing the obtained predictions to different experimental results related to dark matter.

In particular, if one assume that this dark matter candidate is the only source of the missing

mass in the Universe, the calculated relic density must be compatible with the numerical value

extracted from the CMB observation. Another possibility, which we shall not consider here, is

to impose only an upper bound on the relic density since in principle dark matter can be made

of several particles of different nature. We recall that, assuming that the Standard Model of

cosmology is valid, the experimentally measured relic density of dark matter is [1]:

ΩCDMh
2 = 0.1199 ± 0.0027. (4.1)

Following the procedure described in Sec. 1.2, one can then predict the relic density of neu-

tralinos in a specific supersymmetric model with some particular choice of parameter values,

and compare it with the given experimental value. In this way constraints on the models can

2The public tool Vevacious, recently released [71], allows to check if the considered potential minimum is a
global one, and if it not the case, it computes the tunneling time. To be valid the lifetime of this minimum
must be longer that the Universe one. We do not consider this constraint here, even though this is particularly
interesting since light stops can be responsible for color breaking minima.
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be derived, and can be used together with other constraints to obtain informations about the

compatibility of the models with observations.

One of the key ingredients needed in the calculation of relic density is the cross section

of the processes involved in the freeze-out mechanism. This cross section, calculated in the

usual perturbation theory, can be then convoluted with the thermal distribution to obtain the

effective thermally averaged cross section involved in the Boltzmann Eq. (1.18). The relic den-

sity calculation tools described in Sec. 1.2 are also able to calculate these cross sections. They

are either hard-coded (DarkSUSY, SuperIso Relic), or automatically calculated by another

program (CalcHEP [72] in the case of micrOMEGAs, CompHEP [73] in the case of IsaRed), so that

efficient scanning of parameter space of supersymmetric models can be performed. Indirectly,

another important ingredient is needed: the calculation of the supersymmetric particles spec-

trum, i.e. their masses and mixings. Indeed, these quantities are required when calculating

the cross sections. Fortunately, such calculation can also be automatically performed by tools

such as SPheno [74,75], Suspect [76], or SoftSUSY [77]. SPheno for instance, solves the renor-

malization group equations (RGE) numerically to two-loop order with boundary conditions

defined by high scale theories. The calculation of the supersymmetric spectrum includes one-

loop correction to all masses, and even two-loop corrections to some parameters in the Higgs

sector. These programs can write the obtained spectrum in a standardized way (SUSY Les

Houches Accord [78] for instance) which can then be passed to a relic density calculator. How-

ever the relic density calculation public tools often have several limitations when computing

the necessary cross sections in Supersymmetry:

- exact R−parity is assumed, i.e. R−parity violating terms are forbidden. If R−parity

violation can seems in contradiction with the requirement of a stable dark matter, it has

been shown that gravitino can be a good dark matter candidate in R−parity violating

models [79].

- the CP conserving limit is taken (CP violating models are implemented in micrOMEGAs.)

- minimal flavor violation is assumed, i.e. the flavor violating terms come from the CKM

matrix (this point will be discussed in Chap. 5).

- only two-body final states are considered. It has been shown in [80] that in some specific

kinematic configurations, annihilation of dark matter into three-body final states can

become dominant. This situation also occurs in the inert doublet model [81, 82] and has

been implemented in the latest version of micrOMEGAs.

- Even if some effective corrections are taken into account, especially in micrOMEGAs, cross

sections are calculated at leading order (this point will be discussed in the Chap. 6).

The latest version of micrOMEGAs also includes the possibility to calculate the relic density of

an asymmetric dark matter, and in the case of semi-annihilation.
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We now focus on the neutralino-stop coannihilations where the relic density is reduced by

annihilation processes involving stops. Let us first describe the processes which are relevant in

these regions (a similar discussion can be found in [62]). When the mass splitting between the

lightest neutralino and the lightest stop is small, processes involving the stop play an important

role in the freeze-out mechanism and have to be taken into account. In this situation, in

addition to the annihilation of two neutralinos (which here proceeds mostly through t-channel

stop exchange producing top pairs), two other kind of scattering processes become relevant:

the coannihilation between a neutralino and a stop, and the annihilation of two stops. As

detailed in Sec. 1.2 these two processes are Boltzmann suppressed by exponential factors (see

Eq. (1.28) and (1.29)):

exp

[
−
mi +mj − 2mχ̃0

1

T

]
(4.2)

wheremi andmj are the masses of the two initial particles, and T is the freeze-out temperature

which can be roughly approximated by T ≈ mχ̃0

1

/20. Defining

∆m ≡
mt̃1

−mχ̃0

1

mχ̃0

1

(4.3)

one can then easily check that the cross section of coannihilation (i.e. with mi = mχ̃0

1

, mj =

mt̃1
) is suppressed by less than a factor 10 when ∆m < 10%. On the other hand, stop

annihilation (mi = mj = mt̃1
) is ”doubly” suppressed and will be suppressed by a factor 100

for the same mass difference. However, because of the different kind of couplings which are

involved, the typical stop annihilation cross section is much larger than the neutralino stop

coannihilation cross section which is much larger than the neutralino annihilation cross section.

Therefore for relatively small ∆m neutralino-stop coannihilation will contribute significantly to

the total cross section, and for even smaller mass differences the stop annihilation will become

dominant. In addition, in this region the neutralino annihilation cross section is usually too low

to reduce sufficiently the relic density by itself, and the stop annihilation cross section is too

large so that the relic density quickly becomes too small. As a result the correct relic density

will be typically achieved when ∆m ≈ 10 − 15% and will involve a mixture of these three

kind of contributions, the neutralino-stop coannihilation being often the dominant one. This is

illustrated in Fig. 4.2 where the contributions of neutralino annihilation (red dot-dashed line),

neutralino-stop coannihilation (blue solid line) and stop annihilation (green dashed line) to the

relic density are shown in function of the neutralino-stop mass splitting. The orange shaded

area correspond to mass splittings for which the relic density is favored at 2σ. It is clear that

neutralino annihilation is insensitive to the mass splitting, excepted for small splitting where

the weighting factor is not equal to one but depends on the internal degrees of freedom (see

Eq. 1.26). The contribution from neutralino-stop coannihilation and stop-stop annihilation

decrease exponentially with the splitting, as explained above. In this example the relic density
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Figure 4.2.: Evolution of different contributions to the relic density of neutralino with the neutralino-
stop mass splitting.

measurement favors a mass splitting of ∆m = 15%, for which the total cross section is indeed

a mixture of these three processes, with the neutralino-stop coannihilation being the dominant

one. To summarize, using relic density as an experimental constraint in the coannihilation

region is equivalent to selecting a specific value for ∆m. It can be interesting then to combine

this constraint with other experimental constraints, as will be seen in the next sections.

We now show the different possible coannihilation channels and final states in Fig. 4.3.

The possible final states always contain a quark and a gauge or Higgs boson. There are four

different Higgs and four different gauge bosons which make eight possible final states, assuming

a diagonal CKM matrix. The associated quark is either a top quark (in the case of a neutral

boson) or a bottom quark (in the case of charged boson). The coannihilation occurs through

s-, t- and u-channels involving respectively an internal top quark, top or bottom squark, and

neutralino or chargino. Because neutralino and chargino do not couple to photon and gluon

the u-channel is absent for such final state.

4.2.2. Direct detection of dark matter

As explained in the previous section, in the neutralino-stop coannihilation region the neutralino

annihilation cross section is rather small and the total effective cross section is driven mostly

by the neutralino-stop coannihilation process. As the neutralino-quark scattering cross section,

which is involved in direct detection, is correlated with the neutralino annihilation cross section,

the detection rate in the neutralino-stop coannihilation region is much lower than in the other
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Figure 4.3.: Leading-order Feynman diagrams for neutralino-stop coannihilation into a quark and a
Higgs boson (φ = h0, H0, A0, H±) or a gauge boson (V = g, γ, Z0,W±). q ≡ t or b if the
outgoing boson is respectively neutral or charged. The u-channel is absent for a photon
or a gluon in the final state.

regions favored by the relic density measurement. As a result the neutralino-stop coannihilation

region is still completely unconstrained by the latest direct detection results [83].

4.2.3. Supersymmetric particle production and decay

Until now there has not been any direct evidence for Supersymmetry at the LHC, and the

ATLAS and CMS experiments are setting limits on the masses of superpartners by looking at

many possible signatures. In the standard searches for Supersymmetry one usually assumes

the production of colored superparticles which then decay into other superparticles (cascade

decays), the decay chain ending in a LSP which is seen as a large missing transverse energy.

Most of the parameter space of the simplest constrained low energy supersymmetric models

are excluded or strongly disfavored by the LHC. In particular, the gluino and squarks of first

and second generations have to be heavier that ∼ 1 TeV [84, 85]. These limits are however

derived assuming degeneracy between different flavors and mass eigenstates, which can not be

applied to the third generation squarks, as seen in Sec. 3.5.4.

At the LHC, stops can be produced by pairs through q q̄ and g g annihilation. If the stop

is light a rather large production cross section is expected [86]. However, if the stop is almost

degenerate with the neutralino LSP, its decay products will be soft and the reconstructed

missing transverse energy will be small. As such signals are hard to trigger and detect, the

LHC constraints on the stop mass are less stringent in the coannihilation region. It might be

then possible that a light stop has been already copiously produced at the LHC but no excess

has been seen so far [87].
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Indeed, if ∆m ∼ 10 GeV, many decay channels of the stop are forbidden: t̃1 → t χ̃0
1 of

course, but also t̃1 → b χ̃0
1 W and t̃1 → νl l̃

∗ b. The decay t̃1 → l νl b χ̃
0
1 is kinematically

accessible but strongly phase space suppressed. The dominant decay final state is then usually

t̃1 → c χ̃0
1 which occurs at one loop, and the resulting signature is two soft jets with missing

transverse energy. In [70] it was however shown that the decays t̃1 → l νl b χ̃
0
1 and t̃1 → q q̄ b χ̃0

1

can compete with t̃1 → c χ̃0
1 and provide a charged lepton improving the identification of the

stop.

Other alternative methods have been developed to constrain light stops. In the first one

gluino pair production is considered, followed by gluino decay into a top quark and a stop,

which lead to same-sign top quarks and same-sign stops. However if the gluino is heavier than

600 GeV its production cross section is too small to apply this search. The other possibility

is to consider stop pair production in association with a hard jet. In [88] this last method is

employed to derive limit on the stop mass in the coannihilation region using monojet searched

from ATLAS with 1 fb−1. Their obtained excluded limit reach 160 GeV. A similar search

is performed in [89] and a limit of 220 GeV is derived at the LHC at 7 TeV with 5 fb−1.

A ”razor” analysis is performed in [70] and a upper limit of 250 GeV on the stop mass is

derived in the cosmologically interesting region. In [90] they consider the production of two

stops in association with two b (anti)quarks. They require the b jets to be tagged in order

to suppress the Standard Model background and study the LHC discovery potential for such

scenario. In [91] they perform a direct stop search using a quantity called dileptonic mT2 which

is optimized for the coannihilation region.

To summarize, there are many different methods to constrain the stop mass in the challeng-

ing neutralino-stop coannihilation region, but the strongest limits are still below 300 GeV. Thus

the neutralino-stop coannihilation still need to be explored at the LHC. Similar conclusions

can be drawn from analyses of the neutralino-sbottom coannihilation region [92–94].

4.2.4. Higgs boson observation

The Higgs boson has been observed recently by the ATLAS [95] and CMS [96] experiments at

the LHC and its mass has been measured to be [97,98]

mh = 125.5± 0.2+0.5
−0.6 GeV (ATLAS), (4.4)

mh = 125.7± 0.3± 0.3 GeV (CMS), (4.5)

which imposes strong constraints on supersymmetric models since, as explained in Sec. 3.3.2,

this quantity is a prediction of the MSSM. In the context of the MSSM, 125 GeV is typi-

cally a rather large mass (for instance minimal models of anomaly and gauge mediation are

strongly disfavored [99]), and large one-loop corrections are needed to reach such high value
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(see Eq. (3.44)). As a result, in addition to the Higgs sector, the stop and sbottom sectors of

the MSSM are also strongly constrained. In particular, either the SUSY breaking scale MS or

the stop mixing parameter Xt has to be large [100]. More precisely, the stop mixing parameter

should satisfy |Xt| ≈ 2MS . This second possibility is favored from naturalness arguments and

is called maximal mixing scenario. Implications of such requirement for GUT models have

been studied in [101]. Note that the Eq. (3.44) holds only for small splitting between the two

stops. For larger splitting the value of |Xt|/MS corresponding to maximal mixing is larger.

In [102], [83] and [103] it was shown that in constrained supersymmetric models such as

cMSSM or NUHM the constraint mh0 ≈ 125 GeV exclude most of the coannihilation regions.

It has been however noticed in [104] that in less constrained models with inverted sfermion

mass hierarchy (i.e. first two generations of squarks and sleptons much heavier than the

third one), neutralino-stop coannihilation was generically present and often corresponds to the

maximal mixing scenario. In general, more general models like pMSSM allows for neutralino-

stop coannihilation regions compatible with experimental constraints and where the Higgs

mass can be pushed up to 125 GeV. Up to now there has been however no dedicated study of

the phenomenology of these regions in the pMSSM.

The measurements of the Higgs boson decay rates can also provide informations about the

validity of supersymmetric models. For instance the presence of a light stop in the spectrum

can modify Higgs production via gluon fusion (see [105]), however we will not consider this

kind of constraints.

4.2.5. Flavor violating observables in B-Physics

Due to very high experimental and theoretical accuracies, flavor violating observables involving

B mesons became a very efficient way to constraint indirectly New Physics models. In particu-

lar, we will describe here two major observables which are the branching ratios BR(B → Xsγ)

and BR(Bs → µ+µ−).

BR(B → Xsγ) involves transition of the kind b→ sγ which occurs only at one loop in the

Standard Model. The current experimental average is [106]

BR(B → Xsγ) = (3.55± 0.24± 0.09) · 10−4. (4.6)

As contributions from the MSSM are also at one loop one can expect significant deviation

from the Standard Model value, especially at large tanβ where the MSSM contributions are

enhanced. In the Standard Model this ”penguin” decay process involve a W boson, while in

the MSSM charged Higgs boson, chargino, neutralino and gluino can contribute.
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BR(Bs → µ+µ−) is a rare decay which has a very small value in the Standard Model

because of helicity suppression [107,108]:

BR(Bs → µ+µ−)SM = (3.53± 0.38) · 10−9. (4.7)

The dominant Standard Model contribution come from a top quark loop with a Z boson.

The MSSM contributions are enhanced by a factor tan6 β and can be more than one order

of magnitude higher. In particular, this observable is very sensitive to the extra Higgs boson

contributions in the MSSM. However the LHCb experiment has recently observed this decay,

and the measured branching ratio is close to the Standard Model prediction, which excludes

large deviation from New Physics contributions [109]3:

BR(Bs → µ+µ−) =
(
3.2+1.4

−1.2(stat)
+0.5
−0.3(syst)

)
× 10−9. (4.8)

Note that a more stringent upper limit of 4.2 × 10−9 has been derived from previous studies

[112].

As the neutralino-stop coannihilation can be important for moderate values of tanβ, it is

compatible with many low energy flavour observables. In addition, even if the stop is rather

light it is mostly right-handed, which is also less constrained by many of these measurements.

Lastly, chargino and Higgses do not need to be light. As a consequence, flavor violating

observables constraint have to be taken into account but they do not represent a major issue.

4.2.6. Anomalous magnetic moment of the muon

The muon anomalous magnetic moment, defined as

aµ =
gµ − 2

2
(4.9)

where gµ is the magnetic moment of the muon, is one of the most precisely measured quantities

in Particle Physics: its average experimental value is [113,114]

aEXP
µ = 11 659 208.9(5.4)(3.3)× 10−10. (4.10)

Computing accurately aµ in the Standard Model is not an easy task and the theoretical pre-

diction suffers from several uncertainties. Up to recently the accepted value was [115]

aSMµ = 11 659 180.2(4.2)(2.6)(0.2)× 10−10 , (4.11)

3More precise results have been published very recently in [110,111].
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where the first error is from the lowest order hadronic contribution, the second from all other

hadronic terms, and the third is due to all non-hadronic terms. The resulting disagreement

between experimental measurement and theoretical prediction is

∆aµ ≡ aEXP
µ − aSMµ = 28.7(8.0)× 10−10 , (4.12)

which corresponds to a 3.6σ discrepancy. It is the only known observable showing an incom-

patibility with the Standard Model prediction of more than 3σ. However, due to the difficulty

of reaching such high theoretical precision, and the lack of recent dedicated experiment, it is

not clear whether this discrepancy should be taken as a hint for Physics beyond the Standard

Model or not. Indeed, for instance, recent study reexamined the calculation of the lowest

order hadronic contribution (which is the main source of theoretical error) in the framework of

operator product expansion [116], and found a smaller discrepancy of ∆aµ = 20.6(8.0)×10−10,

or 2.6σ. It is however tempting to interpret this discrepancy as a new contribution to aµ

from supersymmetric particles. In the MSSM, the one-loop contributions which come from

loops with neutralino-higgsino-smuon or chargino-higgsino-sneutrino can be positive and fill

the gap between aEXP
µ and aSMµ [117]. In addition, it is well known that this requirement favors

M2 × µ > 0, which will always be considered here.

4.3. Neutralino-stop coannihilation in the pMSSM

In order to quantify the relative importance of the processes shown in Fig. 4.3, we have per-

formed a random scan in a phenomenological MSSM which has been introduced in Sec. 3.4.2.

In the following we describe the settings and discuss in detail the results of our scan. According

to the SPA convention [118] we define the soft-breaking parameters at the scale Q = 1 TeV.

We have made a few simplifying assumptions, which bring the number of MSSM parameters

down to eight. In the squark sector, we use a common mass parameter Mq̃1,2 for the squarks

of the first and second generation, leaving the common mass parameter Mq̃3 for the left- and

right-handed squarks of the third generation independent. In contrast, the slepton sector is

characterized by a single mass parameter Mℓ̃ for all three generations. All trilinear couplings

are set to zero except for the At in the stop sector, which enters our calculations through the

relation Tt = YtAt with the top Yukawa coupling Yt. All gaugino masses are defined through

the bino mass parameter M1. The wino and gluino masses are then fixed by the relation

2M1 = M2 = M3/3, which is deduced from gaugino mass unification at the GUT scale. Fi-

nally, the Higgs sector is specified by the pole mass of the pseudoscalar Higgs boson mA, µ as

well as tanβ. In order to explore the parameter space, we have randomly generated about 1.3
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million parameter points within the following ranges for the eight input parameters:

500 GeV ≤Mq̃1,2 ≤ 4000 GeV,

100 GeV ≤Mq̃3 ≤ 2500 GeV,

500 GeV ≤Mℓ̃ ≤ 4000 GeV,

|Tt| ≤ 5000 GeV,

200 GeV ≤M1 ≤ 1000 GeV, (4.13)

100 GeV ≤ mA ≤ 2000 GeV,

|µ| ≤ 3000 GeV,

2 ≤ tanβ ≤ 50.

For each set of parameters, the physical mass spectrum and the related mixing matrices have

been obtained using SPheno (version 3.2.3). The neutralino relic density Ωχh
2 as well as

the contributions from the individual (co)annihilation channels have been computed using

micrOMEGAs (version 2.4.1). For a substantial number of these scenarios, coannihilation of

the lightest neutralino with a stop plays an important role. This can be seen in the upper plot

of Fig. 4.4, where we show the relative contributions of the different final states channels to

the total (co)annihilation cross section as a function on the phenomenologically most relevant

input parameters. Note that these plots are projections on one parameter, which means that

different points correspond to different values of the 8 parameters. The two most important

final states, i.e. the Higgs (in red) and the gluon (in green) follow a similar distribution,

excepted that the former is dominant for high values of the trilinear couplings, while the latter

is dominant for the low values. This is explained by the enhancement of the Higgs final state

t-channel diagram (see Fig. 4.3) by large trilinear coupling which enters into the Higgs-stop-

stop coupling. The dependence on tanβ, on the other hand, is generally less pronounced.

For coannihilation (mostly into top quarks), lower values of tanβ are slightly preferred, since

bb̄ final states become more important for tanβ & 40 [119]. The highest contributions from

a single coannihilation channel are larger than 60%, and they are obtained for rather small

masses, large (negative) trilinear couplings, and moderate tanβ. Due to the low stop mass

and the large mixing which leads to a high value of X2
t /MSUSY, and therefore to a negative

contribution to the Higgs mass (see Eq. (3.44)), these peculiar scenario feature a very light

Higgs mass (less than 80 GeV). As a consequence the Higgs final state contribution is enhanced

and can reach high values. As we will see these scenario are obviously not compatible with the

Higgs mass measurement from LHC. The influence of the remaining input parameters, such

as those related to first and second generation squarks, sbottoms, and sleptons, as well as the

higgsinos, is less important in this context. Therefore the corresponding dependencies are not

shown here.
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Experimentally viable scenarios have to satisfy a number of additional constraints. In order

to see whether coannihilation scenarios can survive these constraints we therefore impose rough

selections on several observables. First, in the middle plot of Fig. 4.4 we require the relic density

to be in agreement with the Planck measurement in Eq. 4.1 within a 5σ confidence interval.

As a consequence, 99% of the original 1.3 million points disappear. In particular the highest

contributions of all channels are excluded and the maximum contribution is now 50%. The

very low masses and trilinear couplings are also partially affected.

In the lower plot of Fig. 4.4 we impose an interval for the Higgs boson mass of 122.5 < mh0 <

128.5 GeV. This very conservative mass range is motivated by the rather large theoretical

uncertainty on the mass calculation which is estimated to be about 3 GeV within SPheno.

With this constraint 68% of the points appearing in the first plot are excluded. Again, the

highest contributions are removed, and the maximum contribution is here 40%. The low

masses, low trilinear couplings and low tanβ regions are severely affected, due to the role of

these parameters in the stop loop contribution to the Higgs mass in Eq. (3.44). The example of

the trilinear coupling parameter is particularly striking, since there is no viable coannihilation

scenario for |Tt| . 1 TeV. One obtains two favored regions with Tt < 0 and Tt > 0. Since

the light Higgs final state is important for the large values of |Tt|, this channel is dominant

in both regions. The region with Tt < 0 also has important contributions from the gluon

and heavy Higgs final states, while the one with Tt > 0 has important contributions from the

heavy Higgs and Z0 final states. It is important to note that the maximal mixing required

by mh0 ∼ 125 GeV favors the light Higgs final state since its t-channel is enhanced by a large

trilinear coupling.

In the upper plot of Fig. 4.5 we impose constraints on two flavor observables. First, we

impose limits on the branching ratio of B → Xsγ corresponding to a 3σ interval around the

observed value given in Eq. 4.6. In addition, we impose an upper limit of 6 × 10−9 on the

branching ratio of Bs → µ+µ−. Since the experimental result given in Eq. 4.8 is compatible

with zero at 3σ we do not impose any lower limit. The upper limit is a 3σ estimation of the

result given in [112]. The effect of these constraints is to remove 33% of the points present

in the original plot. Without any surprise the most affected regions are the low masses and

high tanβ regions. Globally the distribution does not change significantly, and as pointed

out in Sec. 4.2.5 flavor Physics measurements are not in contradiction with neutralino-stop

coannihilation.

Finally, we show in the lower plot of Fig. 4.5 the scenario which passes all the constraints

mentioned above (relic density, light Higgs mass and flavor observables). Only 0.2% of the

original points are now present on this plot. To summarize, the effects of imposing all the

constraints are:
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- Excluding the scenario with the highest contributions, resulting in the absence of contri-

butions higher than ∼ 25%.

- Excluding the low masses regions (M1 . 450 GeV or Mq̃3 . 1 TeV).

- Excluding the regions with |Tt| . 1 TeV, which result in a dominance of the light Higgs

final state.

- Disfavoring the regions with very low or high tanβ.

- Excluding all scenario with significant contributions from charged Higgs final state, mostly

due to the relic density and flavor constraints.

As can be seen, after imposing all constraints, the statistically most important final state is a

top quark together with a light Higgs boson, followed by top quark and a gluon, a heavy Higgs

boson, or a Z-boson. The coannihilation into a bottom quark and a W -boson is somehow

subdominant whereas final states including a charged Higgs boson or a photon are even less

important.
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Figure 4.4.: Relative contributions of the neutralino-stop coannihilation channels for the generated
parameter points as a function of the input parameters M1, Mq̃3 , Tt, and tanβ before
(top) and after applying the relic density (middle) and Higgs mass (bottom) constraints.
Shown are the contributions from th0 (red), tg (green), tZ0 (blue), tH0 and tA0 (yellow),
bW+ (cyan), bH+ (pink), and tγ (gray) final states. The parameters M1, Mq̃3 , and Tt
are given in GeV. The constraints are detailed in the text.
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Figure 4.5.: Relative contributions of the neutralino-stop coannihilation channels for the generated
parameter points as a function of the input parameters M1, Mq̃3 , Tt, and tanβ after
applying the flavor constraints (top), and all the mentioned constraints (bottom). Shown
are the contributions from th0 (red), tg (green), tZ0 (blue), tH0 and tA0 (yellow), bW+

(cyan), bH+ (pink), and tγ (gray) final states. The parameters M1, Mq̃3 , and Tt are given
in GeV. The constraints are detailed in the text.



Chapter 5.

Impact of non minimal flavor violation on

the relic density

5.1. Introduction

In the MSSM with the most general flavor structure, not only the different helicity of the

squarks can mix, but also their different generations, and the full mixing of the up and down

squarks is then parametrized by two 6 × 6 matrices in the generation-helicity space. Within

the minimal flavor violation (MFV) framework [120–122], already mentioned at the end of

Sec. 3.4.1, it is assumed that the mechanisms of flavor violation in the MSSM are the same

as in the Standard Model, i.e. the rotation of the Yukawa couplings from gauge to mass

eigenstates remains the only source of flavor violation, and thus all flavor-violating interactions

are parameterized through the CKM matrix (and the PMNS matrix in the slepton sector).

However the RGE evolution from the high to the weak scale introduces a mismatch of the

quark and squark field rotations since their renormalization group equations are different.

Therefore in MFV there will be off-diagonal elements1 in the squark mixing matrices which

can be deduced from the CKM matrix. In Sec. 3.5.4 we have described the squark sector

of the MSSM in a framework called constrained minimal flavor violation (cMFV). Not only

the soft-breaking mass and trilinear matrices were considered diagonal, but the CKM matrix

effects were also neglected and there were therefore no off-diagonal elements in the full (i.e.

6 × 6) mixing matrices, even at the weak scale. The mixing of the squarks was then fully

expressed by the 2× 2 helicity mixing matrices for each generation of up and down squarks. It

is crucial to keep in mind that the flavor structure of the MSSM is not known and it is possible

to go beyond MFV. In the framework of non-minimal flavor violation (NMFV) new sources

of flavor mixing are allowed, depending on the exact mechanism of Supersymmetry breaking.

In particular these terms car arise when embedding Supersymmetry in GUTs. In NMFV, the

terms originating from the additional sources are not related to the CKM and PMNS matrices,

such that they are considered as additional parameters at the SUSY scale.

1Here off-diagonal is understood in each of the four 3× 3 helicity blocks.

61
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In recent years, supersymmetric scenarios beyond MFV have received considerable atten-

tion in the community, especially in the context of signatures at current or future colliders.

Concerning (s)quark flavor violation, the production and subsequent decays of squarks and

gluino at the LHC have been studied, e.g., in [123–128]. Apart from the production of super-

partners at colliders, the flavor-violating terms also appear in the (co)annihilation cross section

of the neutralino, which is needed in the calculation of its relic density. In this chapter we there-

fore investigate the possible impacts of these terms on the relic density of neutralino. Indeed,

possible flavor-mixing effects in the context of dark matter relic density are generally not con-

sidered in the literature. An exception is the reference [129] where the impact of non-minimal

flavor violation in the sector of sleptons on the coannihilation of a neutralino with a slepton

has been discussed. We study the cases of neutralino pair annihilation and neutralino-squark

coannihilation in the MSSM beyond MFV. We will first introduce in Sec. 5.2 the MSSM with

NMFV in the sector of squarks and discuss its parameterization, as well as the experimental

constraints on the flavor violating terms. The role of generation mixing in the context of neu-

tralino (co)annihilation will be discussed in detail in Sec. 5.3. Sec. 5.4 and 5.5 are then devoted

to numerical examples in the context of neutralino (co)annihilation and its relic density, before

concluding in Sec. 5.6

This chapter is based on results presented in [130]. We warn the reader that these numerical

results have been obtained in supersymmetric scenarios which have been recently excluded

by experimental results. A few numerical results will be nevertheless shown for the sake of

illustration. The qualitative discussion reproduced here is however still valid.

5.2. Non minimal flavor violation in the squark sector of the

MSSM

Taking into account generation mixing, the 2 × 2 squarks helicity mixing matrices given in

Eq. (3.47) can be generalized to 6× 6 mixing matrices:

M2
q̃ =




M2
q̃,LL M2

q̃,LR

M2
q̃,RL M2

q̃,RR


 (5.1)
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for q = u, d. The diagonal and off-diagonal blocks are given by

M2
d̃,RR

= M2
D̃
+m2

d + edm
2
Z sin2 θW cos 2β,

M2
d̃,LL

= M2
Q̃
+m2

d +m2
Z cos 2β(Id − ed sin

2 θW ),

M2
ũ,RR = M2

Ũ
+m2

u + eum
2
Z sin2 θW cos 2β,

M2
ũ,LL = VCKMM

2
Q̃
V †
CKM +m2

u +m2
Z cos 2β(Iu − eu sin

2 θW ),

M2
ũ,RL =

(
M2

ũ,LR

)†
=

vu√
2
TU − µ∗mu cotβ,

M2
d̃,RL

=
(
M2

d̃,LR

)†
=

vd√
2
TD − µ∗md tanβ. (5.2)

HereMQ̃,MŨ , andMD̃ are the 3×3 (non-diagonal) soft-breaking mass matrices of the squarks.

TU , TD are the 3 × 3 (non-diagonal) trilinear matrices related to the soft-breaking matrices

Au,d and the respective Yukawa matrices Yu,d through (TU,D)ij = (Au,d)ij (Yu,d)ij . The 3 × 3

diagonal mass matrices of up- and down-type quarks are denoted mu and md. Due to the

SU(2) symmetry, the left-left entries are related through the CKM-matrix VCKM. The above

expressions also involve several quantities which have already been defined after Eq. (3.47).

All parameters appearing in Eqs. (5.2) are understood to be in the so-called super-CKM

basis [131,132], in which the mass matrices of the quark fields are diagonalized by rotating the

superfields. The quark (but not the squark) fields are then in the mass eigenstate basis. The

off diagonal elements of MQ̃, MŨ , MD̃, TU and TD lead to flavor-changing neutral currents

related to the gaugino-quark-squark and higgsino-quark-squark couplings.

In order to have a scenario-independent and dimensionless parameterization of flavor-

mixing, the off-diagonal entries are usually normalized to the diagonal ones according to

δLLij =
(
M2

Q̃

)
ij
/
√(

M2
Q̃

)
ii

(
M2

Q̃

)
jj
, (5.3)

δu,RR
ij =

(
M2

Ũ

)
ij
/
√(

M2
Ũ

)
ii

(
M2

Ũ

)
jj
, (5.4)

δd,RR
ij =

(
M2

D̃

)
ij
/
√(

M2
D̃

)
ii

(
M2

D̃

)
jj
, (5.5)

δu,RL
ij =

vu√
2

(
TU
)
ij
/
√(

M2
Q̃

)
ii

(
M2

Ũ

)
jj
, (5.6)

δd,RL
ij =

vd√
2

(
TD
)
ij
/
√(

M2
Q̃

)
ii

(
M2

D̃

)
jj
, (5.7)

δu,LRij =
vu√
2

(
T †
U

)
ij
/
√(

M2
Ũ

)
ii

(
M2

Q̃

)
jj
, (5.8)

δd,LRij =
vd√
2

(
T †
D

)
ij
/
√(

M2
D̃

)
ii

(
M2

Q̃

)
jj
. (5.9)

The normalization factor is defined in terms of the corresponding diagonal elements of the soft-

breaking matrices. We emphasize that the following analysis is based on the diagonalization of
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the full 6× 6 mass matrices. This is realized by introducing two rotation matrices, such that

Rq̃M2
q̃R†

q̃ = diag
(
m2

q̃1 , . . . ,m
2
q̃6

)
(5.10)

with the mass order mq̃1 ≤ · · · ≤ mq̃6 for q = u, d, respectively. The rotation matrices appear

in the couplings of squarks with other particles, and, in consequence, the flavor-violating

elements will influence observables like decay widths or production and annihilation cross

sections. Analytical expressions for couplings including squark generation mixing can, e.g., be

found in [123,124,127]. We shall discuss the relevant couplings for our analysis in more detail

in Sec. 5.3.

The flavor-violating elements in the mass matrices are constrained by precision measure-

ments in the sector of D-, B-, and K-mesons. Flavor mixing involving the first generation of

squarks is severely limited [131–133]. Mixing with third generation squarks is however less

constrained, in particular in the up sector [134]. In addition it has been shown in [135] that

a large mixing between right-handed charm and top quarks leads to a reduction of the fine-

tuning, among other advantages. We therefore first focus on flavor mixing between the second

and third generation up squarks where sizable effects can still be present, and then consider

the case of the down squark sector.

5.3. Impact on the relic density

In wide regions of the MSSM parameter space, the pair annihilation of two neutralinos into

Standard Model particles is the dominant process. The diagrams for annihilation into quarks,

i.e. where flavor violation in the (s)quark sector can become relevant, are shown in Fig. 5.1. At

the tree-level, squarks can then appear only in internal propagators in case of annihilation into

quark-antiquark pairs, i.e. χ̃0
1χ̃

0
1 → qq̄ through the exchange of a squark in the t- or u-channel

[136, 137]. Going beyond minimal flavor violation, the mass splitting of the involved squarks

is increased due to the additional off-diagonal elements in the mass matrix. In particular, the

lightest squark mass eigenstate (purely stop-like in the cMSSM with MFV) becomes lighter

with increasing flavor mixing. Its contributions to neutralino pair annihilation through t-

or u-channel exchange are therefore enhanced. Apart from the impact on the squark mass

eigenvalues, the flavor-violating terms discussed in Sec. 5.2 directly affect the neutralino-squark-

quark coupling, which is present in the t- or u-channel diagram. The analytical expressions for
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Figure 5.1.: Feynman diagrams for the annihilation of neutralinos into quark pairs through the exchange
of a neutral Higgs boson H0

i = h0, H0, A0 (left), a Z0-boson (center left), or a squark
(right and center right).

the left- and right-handed parts of this coupling are given by [123]

Lχ̃0

i ũjuk
=

[
(eu − Tu) sin θWNi1 + Tu cos θWNi2

]
Rũ∗

jk +
muk

cos θW
2mW cosβ

Ni4Rũ∗
j(k+3),

Lχ̃0

i d̃jdk
=

[
(ed − Td) sin θWNi1 + Td cos θWNi2

]
Rd̃∗

jk +
mdk cos θW
2mW sinβ

Ni3Rd̃∗
j(k+3),

−R∗
χ̃0

i ũjuk
= eu sin θWNi1Rũ

jk +
muk

cos θW
2mW cosβ

Ni4Rũ
j(k+3),

−R∗
χ̃0

i d̃jdk
= ed sin θWNi1Rd̃

jk +
mdk cos θW
2mW sinβ

Ni3Rd̃
j(k+3). (5.11)

Flavor mixing effects arise through the squark rotation matrices Rq̃ (q = u, d). This can allow

for new annihilation channels, that are closed in the case of minimal flavor violation. Such

channels can, e.g., be χ̃χ̃ → cc̄ through exchange of a squark ũ1 which is now a mixture of c̃

and t̃. In the case of MFV, this final state is only possible through exchange of a heavier c̃

and therefore suppressed. Another example is annihilation into a mixed final state, χ̃χ̃ → ct̄,

which is forbidden in MFV. The discussed enhancements and new channels increase the total

annihilation cross section, which in turn decreases the predicted relic density of the neutralino.

The diagrams with s-channel exchange of a Higgs or gauge boson remain insensitive to squark

flavor mixing.

Let us now turn to the case of neutralino-squark coannihilation. The possible final states

are a quark together with a Higgs or a gauge boson. The relevant Feynman diagrams at the

tree-level were depicted in Fig. 4.3. The main impact from non-minimal flavor violation will

be through the modified squark mass spectrum. As already stated in the previous chapters

(in particular in Sec. 1.2.3 and 4.2.1), the mass difference between neutralino and the lightest

squark enters the calculation of the corresponding thermally averaged coannihilation cross sec-

tion exponentially. When the squark mass approaches the neutralino mass due to increasing

flavor mixing, this can significantly enhance the contribution from the corresponding coanni-
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hilation with respect to the case of minimal flavor violation. Again, also the flavor-violating

couplings can have subdominant effects on the coannihilation processes. Each of the diagrams

depicted in Fig. 4.3 contains the squark-quark-neutralino coupling already discussed above.

Moreover, the couplings of squarks to Higgs- and massive gauge bosons are sensitive to flavor-

violating effects. In the mass eigenstate basis, the couplings of squarks to a Z0-boson are given

by [127]

CZ0q̃j q̃k = −i g2
cos θW

(pj + pk)µ

[
3∑

i=1

IqRq̃∗
ij R

q̃
ik − eq sin

2 θW δjk

]
(5.12)

for q = u, d. Here, pj and pk denote the momentum of q̃j and q̃k, respectively. The interactions

of squarks with a photon or a gluon are flavor-diagonal and are therefore not discussed in detail

here. The couplings of two up-type squarks with the light scalar Higgs boson are given by [127]

Ch0ũj ũk
= − g2

2mW

3∑

i=1

[
m2

W sin(α+ β)
[
(1− 1

3
tan2 θW )Rũ

jiRũ∗
ki +

4

3
tan2 θWRũ

j(i+3)Rũ∗
k(i+3)

]

+2
cosα

sinβ

[
Rũ

ji m
2
ui
Rũ∗

ki +Rũ
j(i+3)m

2
ui
Rũ∗

k(i+3)

]
+

sinα

sinβ

[
µ∗Rũ

j(i+3)mui
Rũ∗

ki + µRũ
jimui

Rũ∗
k(i+3)

]

+
cosα

sinβ

vu√
2

3∑

l=1

[
Rũ

j(i+3) (TU )il Rũ∗
kl +Rũ

ji (T
†
U )il Rũ∗

k(l+3)

]]
. (5.13)

From this expression, the coupling to the heavy scalar Higgs is obtained through the replace-

ments h0 → H0 and α → α + π/2. Moreover, couplings of down-type squarks to the neutral

scalar Higgses are obtained by replacing ũi → d̃i and sinβ → cosβ. Finally, the couplings of

up-type squarks to a pseudoscalar Higgs-boson are given by [127]

CA0ũj ũk
= −i g2

2mW

3∑

i=1

[
µ∗Rũ

j(i+3)mui
Rũ∗

ki + cotβ
vu√
2

3∑

l=1

Rũ
j(i+3)(TU )ilRũ∗

kl + h.c
]
. (5.14)

Again, the expressions for down-type squarks can easily be obtained through ũi → d̃i and

cotβ → tanβ.

The effects of the modified mass eigenvalues and the modified couplings are superimposed.

Since the two effects are linked together through their same origin (see Eq. (5.10)), their sep-

arate impacts on the (co)annihilation cross section (and the neutralino relic density) cannot

be disentangled. However, some general features can be expected. The effect of the modi-

fied squark mass eigenvalues on coannihilation is expected to be stronger than in the case of

neutralino pair annihilation due to the exponential factor already mentioned above. More-

over, the squark is here an external particle, and the impact of its mass on the phase space is

more important than the mass in the t- or u-channel propagator. The impact of the modified

flavor contents of the involved squarks, i.e. the effect of the rotation matrix in the coupling,
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is expected to be smaller than the mass effect. This is again due to the exponential factor

in the thermally averaged cross section. Note also that, the mixing being unitary, the newly

opened channels can be (partially) compensated by the simultaneous diminution of other con-

tributions. The compensating contribution can, however, turn out to be forbidden in specific

kinematic configurations and the impact of the new contributions can be significant. This is

in particular the case when the neutralino is too light to annihilate into top-quark pairs, i.e.

for mχ̃0

1

< mt. The flavor violating elements lead then to a c̃ admixture in the lightest squark,

which then allows for neutralino pair annihilation into top and charm quarks.

Note that there can also be coannihilation of a neutralino with an up-(down-)type squark

into a charged Higgs boson H± or a W-boson together with a down-(up-)type quark. In this

case, the u-channel diagram includes a chargino propagator and in consequence the correspond-

ing chargino-squark-quark coupling, while the s- and t-channel diagrams involve couplings of

up- and down-type squarks to the charged Higgs or W-boson. Analytical expressions for these

couplings can be found in [123,127]. Since they are rather similar (with obvious replacements,

e.g., concerning gaugino mixing) to the interactions given in Eq. (5.11) to (5.13), they are

not displayed in detail here. Note, however, that these couplings explicitly depend on the

CKM-matrix. The general argumentation given above remains unchanged.

5.4. Numerical analysis

The following numerical analyses are based on the constrained MSSM with the five parameters

m0, m1/2, A0, tanβ, and sign(µ) (see Sec.3.4.2 for more details). Starting from the high-

scale parameters, the soft-breaking terms at the scale Q = 1 TeV [118] are obtained through

renormalization group running using SPheno. At the same scale, we introduce the non-diagonal

entries in the squark mass matrices as discussed in Sec.5.2. The physical mass spectrum is

then calculated again using SPheno, which takes into account the general flavor structure. The

same code is also used for the evaluation of constraining observables like BR(B → Xsγ), again

taking into account squark generation mixing. The pole mass of the top-quark is taken to be

mtop = 173.1 GeV according to measurements from D0 and CDF [138]. The CKM-matrix

is taken in the usual Wolfenstein parametrization with the values λ = 0.2253, A = 0.808,

ρ̄ = 0.132, and η̄ = 0.341 [139].

Making use of the SLHA, the mass spectrum and related mixing parameters are transferred

to the public program micrOMEGAs 2.4 in order to evaluate the relic density of the neutralino.

The calculation of the annihilation cross section is done by the program CalcHEP, where we

have implemented the MSSM with squark generation mixing as discussed in Sec. 5.2. The

corresponding model files have been obtained using the package SARAH [140,141].
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Figure 5.2.: Cosmologically favored region and related exclusion limits in the (m0, m1/2) plane of the

cMSSM for δu,RR

23 = 0 (left) and δu,RR

23 = 0.98 (right).

In order to illustrate the numerical influence of flavor violating elements, we analyze the

neutralino relic density within cMSSM, where we allow for flavor violation between the second

and third generation of up-type squarks in the right-right chiral sector. In Fig. 5.2, we show

typical scans of the m0-m1/2 plane for fixed values of A0 = −500 GeV and tanβ = 10 and

for positive values of µ. The cosmologically favored region of parameter space according to

Eq. (1.5) together with some of the relevant constraints discussed in Sec. 4.2 are shown for

the case of MFV (δu,RR
23 = 0) and for the case of NMFV with important off-diagonal elements

(δu,RR
23 = 0.98).

In the case of MFV, the most stringent constraints on this parameter plane are due to

a charged dark matter candidate (low m0), tachyonic solutions of the renormalization group

equations (highm0 and lowm1/2) as well as the constraints from BR(B → Xsγ) and the lightest

Higgs mass (low mass region). Note that the constraint applied on the Higgs boson mass

corresponds to the pre-LHC lower limit, with a 3 GeV theoretical uncertainty. As discussed in

Sec. 4.1.1 the cosmologically favored region of parameter space is divided into several distinct

regions: only the resonance of the light Higgs boson (low m1/2 and moderate m0), and the stau

coannihilation region (close to the exclusion due to a charged dark matter candidate), where

the neutralino mass is close to the stau mass, are visible here.

In the corresponding figure for the NMFV-case, we depict the same constraints together

with the relative contribution from new (co)annihilation channels as discussed in Sec. 5.3. In

this case, this involves neutralino pair annihilation into a mixed charm-top final state and

coannihilation of a neutralino with the lightest squark ũ1. In the latter corresponding region

(m1/2 & 450 GeV), where the relic density constraint is fulfilled, the mass difference between
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Figure 5.3.: Cosmologically favored region and related exclusion limits for δu,RR

23 = 0.98 in the (mχ̃0

1

,

mũ1
−mχ̃0

1

) plane for fixed A0 = −500 GeV and tanβ = 10 (left) and in the (δu,RR

23 , A0)
plane for fixed m0 = 200 GeV and m1/2 = 400 GeV (right).

the lightest squark and the neutralino is about 30 GeV, as can be seen from the left panel of

Fig. 5.3, where we show the cosmologically favored regions of parameter space in the plane

of the physical masses. The dominant annihilation processes are then χ̃0
1ũ1 → gt (30%) and

ũ1ũ1 → gg (25%). Two other important processes are neutralino annihilation into pairs of

top quarks (10%), and χ̃0
1ũ1 → gc (15%). Note that the presence of a charm quark in the

final state is a genuine effect of flavor violation. Indeed, as a consequence of the off-diagonal

elements in squark mass matrices, the lightest up-type squark is here a mixing of t̃R and c̃R

(with a small admixture of t̃L), opening up the (co)annihilation into charm-quarks.

For lower masses (e.g. m0 ∼ 200 GeV and m1/2 ∼ 400 GeV), coannihilation processes such

as χ̃0
1ũ1 → gt/c are still important (20%). However, the squark being much lighter (mũ1

∼ 190

GeV), the squark pair annihilation ũ1ũ1 → gg is now subdominant. Moreover, the neutralino

mass of mχ̃0

1

∼ 160 GeV (see Fig. 5.3 left) forbids annihilation into top quark pairs. As a

consequence, the flavor violating process χ̃0
1χ̃

0
1 → tc̄(ct̄), which is kinematically allowed and

enhanced by the rather light squark in the t-channel propagator, becomes important (40%).

This is represented by the green area in the left part of the plot. Notice the cut at m1/2 ≈ 420

GeV, which corresponds to mχ̃0

1

≈ mt. For mχ̃0

1

> mt, neutralino annihilation into top quark

pairs is kinematically allowed, and the tc̄(ct̄) final state is suppressed. This can also be seen

in relation to the physical neutralino and squark masses in Fig. 5.3 left. For low m1/2 but

large m0, the squark being heavier, coannihilation is not relevant and neutralino annihilation

into tc̄(ct̄) is less important. Therefore, even if the relative contribution of this channel is still

important, its absolute contribution is not large enough to satisfy the relic density constraint.
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In the region excluded by BR(B → Xsγ) most of the deviation from the Standard Model

value comes from large negative chargino contributions due to the smallness of the stop and/or

chargino mass. There is, however, no significant effect coming from the flavor violating param-

eter δu,RR
23 , since BR(B → Xsγ) constrains mainly flavor violation in the left-left sector.

Let us now discuss the interplay of helicity mixing and additional flavor mixing. The former

is induced through the trilinear matrices TU (see Eq. (5.2)) and thus the GUT-scale parameter

A0, while the latter is included at the electroweak scale through the parameter δu,RR
23 . In the

case of MFV, i.e. for δu,RR
23 = 0, a rather large |A0| is needed in order to decrease the stop

mass close to the neutralino mass, and therefore allow for efficient coannihilation. For sizable

additional flavor mixing, the coannihilation is important already for lower values of A0, since

the squark mass splitting is then increased by the off-diagonal elements in the mass matrix.

This is illustrated in the right graph of Fig. 5.3, where the constraints, cosmologically

favored regions, and different contributions to the annihilation cross section are shown in

the (A0,δ
u,RR
23 ) plane. The mass splitting of the squarks depends strongly on both of these

parameters, which therefore have a competitive effect on the light stop mass. As a consequence,

as explained above, one of these parameters has to be large in order to allow for an important

coannihilation contribution. On the other hand, the flavor violating effects are only related to

δu,RR
23 . Therefore the flavor violating neutralino annihilation processes depend mainly on this

parameter. The only possibility to satisfy simultaneously the relic density and BR(B → Xsγ)

constraints is for very large δu,RR
23 and a rather low A0. This is explained by the strong

dependence of BR(B → Xsγ) on the squark mass spectrum, and therefore on A0. Contrary,

and as explained above, BR(B → Xsγ) does not depend on any flavor mixing among right

up-type squarks, and the mass effects become important only for very large values of δu,RR
23 .

Next, we study the possibility that not only the parameter δu,RR
23 is large, i.e. of O(1),

while all others are small, which might not be very natural. We therefore show in Fig. 5.4

the cosmologically favored region and related exclusion limits in the (δu,RR
23 , δu,LR23 ) plane for

fixed m0 = 200 GeV, m1/2 = 400 GeV, and A0 = −500 GeV. We observe that the second

flavor-violating parameter δu,LR23 can reach values up to 0.15 before being constrained by the

lower Higgs mass bound of 111.4 GeV. Similarly, the RL and LL parameters (not shown) are

restricted by the FCNC process b→ sγ to values below 0.15 and 0.1, respectively, as would be

the LR parameter if one applied this limit at the two (not three) sigma level.

In Fig. 5.5 we show for a given parameter point the neutralino relic density and the con-

tributing processes as a function of the flavor-violation parameter δu,RR
23 . While for the case

of MFV, this scenario is cosmologically strongly disfavored with Ωχ̃0

1

h2 & 20, the relic den-

sity decreases with increasing flavor mixing to reach the favored value of Ωχ̃0

1

h2 ≈ 0.11 for

δu,RR
23 ∼ 0.98. For low values of δu,RR

23 , the annihilation is dominated by lepton final states

(about 75%), which do, however, not lead to a sufficiently enhanced annihilation cross section.
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Figure 5.4.: Cosmologically favored region and related exclusion limits in the (δu,RR
23 , δu,LR

23 ) plane for
fixed m0 = 200 GeV, m1/2 = 400 GeV, and A0 = −500 GeV.

The subleading channel is annihilation into top-quark pairs (about 25%). For δu,RR
23 & 0.2,

flavor violation effects start to manifest by opening the channel χ̃0
1χ̃

0
1 → ct̄(tc̄). The relative

contribution of this process amounts to almost 40% at δu,RR
23 ∼ 0.8. For δu,RR

23 > 0.5, the

annihilation into top-quarks is significantly enhanced due to the lighter squark in the t-channel

propagator, so that this channel remains more important than the newly opened annihila-

tion into top- and charm-quarks. All contributions from neutralino pair annihilation drop at

δu,RR
23 ∼ 0.95 when the squark ũ1 becomes light enough for efficient coannihilation. The corre-

sponding total relative contribution amounts to about 60%. When the squark becomes even

lighter, also squark pair annihilation into gluon pairs plays an important role (see Sec. 4.2.1),

leading to relative contributions of about 90% at most.

For this discussed scenario, the favored relic density of the neutralino is achieved through

important coannihilation for rather large values of the flavor mixing parameter δu,RR
23 . Note

that, depending on the exact parameter point under consideration and the corresponding relic

density in the MFV case, this can also happen for lower values of δu,RR
23 . In the same way, the

enhancement of the total cross section through the new contributions from ct̄(tc̄) final states

can be sufficient to achieve Ωχ̃0

1

h2 ∼ 0.11.

For completeness, we show in Fig. 5.6 the masses of the two lightest up-type squarks, the

gluino, and the lightest neutralino as a function of the NMFV-parameter δu,RR
23 as well as the

flavor decomposition for the same scenario as discussed above. The squark mass splitting is

increased due to the additional off-diagonal entries in the mass matrix, so that the mass of

ũ1 decreases. For large flavor mixing, it comes close to the neutralino mass, leading to the
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Figure 5.7.: Cosmologically favored region and related exclusion limits in the (m0, m1/2) plane of the

cMSSM for δu,RR

23 = 0, δd,RR

23 = 0.98 (left) and δu,RR

23 = δd,RR

23 = 0.98 (right).

important coannihilation as seen in Fig. 5.3. The masses of ũ2 (= c̃L), the neutralino and the

gluino remain practically unaffected by the considered generation mixing.

5.5. Flavor violating down-squark and sbottom coannihilation

In this section we consider the possibility of flavor violating terms in the sector of down

squarks. In Fig. 5.7 are shown scans of the m0-m1/2 plane for similar parameters as in the

Fig. 5.2, except that there is now a large mixing between the second and third generation

down squarks, still in the right-right sector (δd,RR
23 = 0.98). On the left panel of Fig. 5.7,

where δu,RR
23 = 0 and δd,RR

23 = 0.98, the relic density reaches the experimental value in two

regions: the stau coannihilation region, and the down squark coannihilation region. In the

latter the neutralino coannihilates with the lightest down squark d̃1, which is here a mixture

of s̃ and b̃. This coannihilation is possible thanks to the high value of δd,RR
23 wich decreases

the lightest down squark mass. Next to the region where d̃1 is the LSP, its mass can be very

close to the neutralino mass, and new processes can contribute to reduce the relic density. The

most important contributions come from down squark annihilation into gluons (70%), and

neutralino coannihilation with down squarks into a gluon and a bottom (10%) or a strange

(10%) quark. The region where coannihilation processes are important (more than 30%) is

shown in light green. This region does not exactly match with the cosmological favored region

because of the strong contribution from squark annihilation into gluon pairs.

It is interesting to note that neutralino-sbottom coannihilation can not occur in the cMSSM

and can be achieved only within non universal models, in particular non universal sfermion
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mass (NUSM) models described in Sec. 4.1.2 [69,142]. Large flavor violating terms are therefore

another way of achieving efficient coannihilation between neutralino and a down squark. From

this aspect, the cMSSM with NMFV is somehow similar to NUSM models: large off-diagonal

elements decrease the mass of some specific squarks and therefore have a non universal effect.

On the right panel of the Fig. 5.7, where δu,RR
23 = δd,RR

23 = 0.98, coannihilation proceeds only

with the up squark, and the relic density constraint is similar as in the right panel of Fig. 5.2.

Indeed, because of the high top quark mass, the splitting between stop mass eigenstates is larger

than for the bottom squarks. As a result, t̃1 is lighter than b̃1. However the constraint from

BR(B → Xsγ) is significantly weaker. Indeed, the main SUSY contributions to BR(B → Xsγ)

come here from up squark-chargino and down squark-gluino loops. The former one is negative,

and its absolute value increases with δu,RR
23 , while the latter one is positive and increases with

δd,RR
23 . The dominant contribution is however the down squark-gluino loop, which means that

the low masses region is excluded here because of a too large BR(B → Xsγ). This is in

contrary to the case of the right panel of Fig. 5.2 where only the up sector was considered:

BR(B → Xsγ) was too low because of a large negative up squark-chargino loop contribution.

In addition, as the Standard Model value for BR(B → Xsγ) lies close to the lower experimental

bound, the constraint is here not significantly stronger than in the case of MFV. This explains

why the constraint for δu,RR
23 = δd,RR

23 = 0.98 (see right panel of Fig. 5.7) is similar as the one

for δu,RR
23 = δd,RR

23 = 0 (see left panel of Fig. 5.2).

5.6. Conclusion

While the MSSM with a most general flavor structure has been extensively studied in the

context of collider signatures, the possibility of squark flavor mixing has not been considered

for observables related to dark matter so far. However, as the LHC is running and more precise

cosmological and astrophysical experiments are taking data or being set up, it becomes more

and more important to take into account such effects when studying the interplay between

collider and astroparticle phenomenology.

In the case of neutralino dark matter in supersymmetric theories, flavor violating couplings

can influence the (co)annihilation cross section, and in consequence the predicted relic density,

in different ways. The strongest effect is due to the modified mass spectrum of squarks,

the lightest squark becoming lighter with increasing flavor non-diagonal terms in the mass

matrices. The exchange of squarks in neutralino pair annihilation as well as the presence of

coannihilation with a squarks become then important. Another effect comes from the fact

that couplings of neutralinos to squarks are not diagonal in flavor space any more. This opens

new (co)annihilation channels, such as χ̃0
1χ̃

0
1 → ct̄ or χ̃0

1ũ1 → ch0(cg, cZ0), which can give
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sizable contributions to the annihilation cross-section already for moderate flavor violation

parameters.

Considering flavor mixing in the sector of right-handed up-type squarks, we have shown that

the modified squark masses and flavor contents have a strong impact on the (co)annihilation

modes. New annihilation channels are opened due to the presence of non-diagonal couplings

in flavor space. These new contributions may become numerically important in particular

regions of the parameter space. As a consequence, new regions that are compatible with the

relic density constraint are opened.

In addition we have studied the impact of flavor mixing in the sector of right-handed down-

type squarks. In analogy to the up-type squark sector, new (co)annihilation channels open and

lead to new favored regions. In particular we observed new contributions from coannihilations

between neutralinos and the lightest down squark d̃1 (in our case a mixture of strange and

bottom squarks), usually not possible in the cMSSM with MFV. We also noticed that the

constraint from BR(B → Xsγ) was weaker when considering flavor mixing in both the up and

down squark sectors at the same time, due to a cancellation between negative and positive

contributions.

Since the annihilation cross section of the neutralino also governs the particle fluxes, flavor

violating couplings would also have an impact on indirect detection of dark matter. In partic-

ular, additional c̃–t̃ mixing, as discussed in this paper, would change the spectrum of photons

originating from dark matter annihilation. The impact of flavor mixing is, however, expected

to be very small compared to the astrophysical uncertainties in this context.

Direct dark matter detection might also be influenced by the discussed flavor mixing. Here,

the scattering of a neutralino off a nucleus can proceed through squark-exchange, such that the

charm-content in the nucleon becomes relevant if the lightest squark is a mixture of stop and

scharm. In the same way, flavor mixing in the sector of down-type squarks would increase the

importance of the strange quark in the nucleus. Detailed studies of direct or indirect detection

of dark matter in the context of flavor violation are, however, beyond the scope of this work.
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Chapter 6.

Impact of next-to-leading order corrections

on the relic density

6.1. The DM@NLO project

6.1.1. NLO cross sections for dark matter relic density

As described in Sec. 4.2.1, one of the main sources of uncertainties in the calculation of the dark

matter relic density is the precision with which the (co)annihilation cross sections entering in

Eq. (1.15) are computed. The cross sections in public dark matter tools such as DarkSUSY [27] or

micrOMEGAs [25,26] are implemented using only an effective tree-level calculation. micrOMEGAs

for example includes important effects from the running strong coupling constant and running

quark masses in the default implementation of the MSSM. It is, however, well known that

higher-order corrections, particularly those involving the strong coupling constant, can have

a sizable impact on such processes 1. The impact of next-to-leading order corrections to

neutralino annihilation and coannihilation on the neutralino relic density has been discussed

in several previous analyses.

We first comment on a class of corrections called ”Sommerfeld corrections” which arise

from long range interactions between the neutralinos before their (co)annihilation, this inter-

action being mediated by the exchange of a light boson. For massless bosons these corrections

diverge in the limit of vanishing relative velocity of neutralinos. When the boson mass is of the

same order as the WIMP mass, it is possible to treat this so-called ”Sommerfeld enhancement”

pertubatively, i.e. at one loop for instance. This has been done for the annihilation and coanni-

hilation of WIMPs in [144] and [145], and applied to the annihilation of the lightest neutralino

and its coannihilation with other neutralino and chargino in the MSSM, with exchange of light

Higgs or Z bosons. On the other hand, if the exchanged boson is much ligher than the WIMP,

these corrections explode and have to be treated in a non-perturbative way. This has been done

1Note that higher-order corrections can also modify the direct detection cross sections [143].
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for example in [146], [147], [148], [149] and applied to the case of (co)annihilation of heavy wino

or higgsino neutralino and chargino exchanging electroweak gauge bosons. In [150] the case

of scalar-fermion coannihilation was discussed together with an application to neutralino-stau

and neutralino-stop coannihilations.

Let us now turn to the class of perturbative next-to-leading order corrections. Electroweak

corrections to many processes of neutralino annihilation and coannihilation have been evalu-

ated in [151–153]. In [153,154] the authors focused on neutralino annihilation and neutralino-

gaugino coannihilation into vector bosons final states, while in [152] they also considered neu-

tralino annihilation into quark and leptons final states, and neutralino stau coannihilation pro-

cesses. Other studies rely on effective coupling approaches in order to capture certain classes

of corrections to neutralino pair annihilation and coannihilation with a tau slepton [154, 155].

The SUSY-QCD corrections to neutralino annihilation into b quark pairs in the A0-funnel has

been studied in [152] and [119]. In [136,137] this latter study was extended to the general case

of neutralino annihilation into massive quarks in the parameter space of minimal and non-

minimal MSSM models. All these analyses show that radiative corrections are not negligible

in the context of relic density calculations, the impact of the corrections being larger than the

experimental uncertainty from WMAP in many regions of parameter space. With the recently

released Planck satellite data providing more precise cosmological measurements, it becomes

even more pressing that theoretical predictions match the experimental precision.

As SUSY-QCD corrections are relevant for colored particles like quarks and squarks, one can

expect significant corrections to the cross section in the case of neutralino-stop coannihilation.

The motivations for this region of the MSSM parameter space and the relevant constraints

have been discussed in the last chapter. In this chapter we present the calculation of the

full one-loop SUSY-QCD corrections to the neutralino-stop coannihilation cross section. This

case has so far only been considered in [156]. This study concerns the very specific cases of

coannihilation of a bino-like neutralino with a right-handed stop into a top quark and a gluon

as well as into a bottom quark and a W -boson. However, depending on the considered region

of parameter space, many other final states, including those with other electroweak gauge and

Higgs bosons, can become dominant. Moreover, in realistic supersymmetric scenarios, helicity

mixing in the stop sector is usually non-negligible, as is the mixing of bino, wino, and higgsino

components in the lightest neutralino, which strongly influences its couplings and preferred

(co)annihilation channels. Therefore, we have extended the analysis of QCD and SUSY-QCD

corrections to coannihilation of a neutralino with a stop by computing the general case of

neutralino-stop co annihilation into a quark and a Higgs or an electroweak vector boson, which

has been presented in [157]. In this chapter, after commenting on some practical aspects of

the calculation, we will review in detail the virtual and real parts of the corrections in Sec. 6.2

and 6.3. We will then show numerical results for the NLO cross sections in Sec. 6.4, and see
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the numerical impact of these corrections on the relic density in Sec. 6.5. Lastly, in Sec. 6.6,

we will discuss the ongoing calculation of the gluon final state, before concluding in Sec. 6.7.

6.1.2. Calculation and implementation: practical aspects

The calculation of neutralino annihilation into quarks at NLO in SUSY-QCD used in [119,136,

137] has been implemented in a Fortran code, which was the starting of point of the DM@NLO

(”Dark Matter at Next-to-Leading Order”) project. The generalization of this implementation

to the cases of neutralino-chargino and chargino-chargino coannihilation is under work, and the

calculation of stop annihilation at NLO also started (as described in Sec. 4.2.1 the latter process

is relevant in the neutralino-stop coannihilation region). Our calculation of the neutralino-stop

coannihilation at NLO has been implemented in the same code, the purpose being to be able to

compute automatically all the processes needed for the relic density at NLO in SUSY-QCD in a

single framework. We stress that our calculations and implementations are general so that they

can be used for any neutralino-sfermion coannihilation process, even if we focus in this study on

the case of χ̃0
1t̃1, which is the most relevant process of this kind within the MSSM. In practice,

the code can be used to compute for instance neutralino coannihilation with a bottom squark,

which can appear in non universal supergravity inspired by SU(5) GUT models [69, 142, 158]

or D-brane models [159] (and is of course present in pMSSM-like models [160]).

The one-loop SUSY-QCD virtual and real corrections to the neutralino-squark coannihila-

tion involves a given set of Feynman diagrams that will be shown in the next sections when the

corresponding calculation will be detailed. These one-loop amplitudes have been calculated

analytically and cross-checked using hand calculations but also the publicly available tools

FeynArts [161], FeynCalc [162], and Form [163]. As said above they have been implemented in

a Fortran code similar to the one already used for the neutralino annihilation, which required

some work on the generalization of the code structure and on some specific aspects like the

kinematics, the two initial (and final) particles being not identical in that case. In addition,

one of the final state can either be a vector or a scalar in the coannihilation case. The detailed

structure of the code is shown in App. A, but we will explain briefly how it works in the

following. Our program takes as input the masses and mixings of all particles (we use SPheno

to compute the supersymmetric mass spectrum), the PDG numbers of the external particles

and the center-of-mass momentum involved in the coannihilation process together with several

flags (specifying if the cross section has to be calculated at tree-level or one loop and in which

unit, for instance). It gives as output the corresponding numerical cross section. This code is

used as an extension to the public package micrOMEGAs: it provides the cross section for the

relevant coannihilation processes which then replace the default one calculated by CalcHEP. It

is linked to micrOMEGAs in such a way that all relevant parameters, i.e. the masses and mixings

of all particles, are passed between the two codes in a consistent way.
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As the work has been divided within the collaboration into electroweak gauge boson final

states on one hand, and Higgs boson final states on the other hand, we would like to focus on

the specific features of the vector final states before going into the details of the calculation.

First, the amplitudes with gauge boson final states have to be treated carefully regarding the

gauge dependence. Fortunately the gauge dependence of the computed expressions is rather

trivial in our case since gauge bosons appear only as external particles. The only term to be

treated carefully is therefore the summation over the polarization vectors of the gauge bosons.

We work in unitary gauge (see Sec. 2.5), in which they are defined as the following:

∑

λ

εµλ(p4) ε
∗ν
λ (p4) → −gµν + xv p

µ
4 p

ν
4 (6.1)

where xv is equal to 0 for the massless gauge bosons, 1/m2
W for theW boson and 1/m2

Z for the

Z boson. In this way, our general amplitudes for vector boson final states (see App. A) can be

used for any of the gauge bosons, depending on the value given to xv. Another advantage of

this general formulation is that we could in principle easily switch to Feynman gauge, in which

case xv would be equal to zero for the massive vector bosons. We would then need to add

the amplitudes with the Goldstone boson final states. As the structure of these amplitudes

is similar as the one for the Higgs boson (which is also a scalar), it should be possible to use

them.

In addition, as we will discuss in Sec. 6.3.3, the W boson and photon final states involve

additional sources of IR divergences which have to be removed in a consistent way. We will also

see that the vector bosons are related to Feynman diagrams involving squark-squark-vector-

gluon vertices giving additional contributions to the virtual and real corrections, as compared

to the Higgs boson final states. Also, the photon being massless, one needs dedicated special

cases for some Passarino-Veltman integrals in which the mass of the final boson appears. Lastly,

due to the vector couplings the vertex and box corrections have rather complicated general

structures which are given in App. A.

6.2. Virtual corrections and renormalization

6.2.1. Introduction

The tree-level Feynman diagrams for neutralino-stop coannihilation are shown in Fig. 6.1.

The virtual corrections Feynman diagrams consist in two, three and four-points corrections

respectively called self-energies (or ”bubbles”), vertex (or ”triangles”) and box diagrams. They

are shown in Figs. 6.2, 6.3 and 6.4.
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Figure 6.1.: Leading-order Feynman diagrams for neutralino-squark coannihilation into a quark and
Higgs (φ) or electroweak gauge (V ) bosons. The u-channel is absent for a photon in the
final state.
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Figure 6.2.: Self-energy corrections for the quarks and squarks at one-loop level in QCD contributing
to neutralino-squark coannihilation.
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Figure 6.3.: Vertex corrections at one-loop level contributing to neutralino-squark coannihilation
into quarks and Higgs (φ) or electroweak gauge (V ) bosons. The diagram involving the
V − g − q̃ − q̃ vertex is present only for the case of a gauge boson in the final state.
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into quarks and Higgs (φ) or electroweak gauge (V ) bosons. The last diagram involving
the four-vertex is absent for a scalar in the final state.
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The main difficulty encountered when calculating virtual corrections come from the inte-

gration over the internal particles momenta. As we will see these integrals are not always finite

and the infinities have to be subtracted by a procedure called renormalization. To be able to

apply the renormalization procedure one first needs to extract the divergence analytically from

the integral: this is called regularization. In this section we discuss in detail the procedures

used in our calculation.

6.2.2. Regularization of UV divergences

Dimensional regularization

When calculating NLO amplitudes one has to integrate over the four-momenta of internal

particles, which can lead to divergences when the energy of the particle in the loop goes to

the infinity: these are UV divergences. Whether the integral will diverge or not depends on

the number of four-momenta in the numerator and denominator of the integrand. The general

form of one-loop integral with N propagators andM loop momentum factors in the numerator

is

TN
µ1,...,µM

(p1, . . . , pN−1,m0, . . . ,mN−1) ≡
(2πµ)4−D

iπ2
×

∫
dDq

qµ1
. . . qµM

[q2 −m2
0 + iε][(q + p1)2 −m2

1 + iε] . . . [(q + pN−1)2 −m2
N−1 + iε]

. (6.2)

Here the parameter µ has the dimension of energy which ensures that the integral has the

same dimension even when D 6= 4 and is called ”renormalization scale”. Depending on the

values of N and M this integral can be divergent in the UV, i.e. when q → ∞. A naive

way of regularizing this integral would be to introduce a cutoff Λ on the integration, which

however breaks Lorentz and gauge invariance. More complex regularization procedure are

preferred, in particular dimensional regularization (or reduction). The integral (6.2) diverges

if D +M − 2N ≥ 0. If D +M − 2N = 0 it is a logarithmic divergence, if D +M − 2N > 0

it is a polynomial divergence. One notes that a divergent integral can be made convergent

by lowering the number of dimensions D. This is the basis of dimensional regularization,

in which the calculation of loop integrals is performed in a general number of dimension

D < 4. The limit D → 4 being taken only at the end one can extract the divergence as

a 1/(D − 4) pole. In dimensional regularization the space-time dimension is continued to D

dimension. As a consequence all four-vectors, metric tensors and Dirac matrices are continued

to D dimension, and obey specific relations which can be found in the literature. The case

of the γ5 matrix is peculiar and can lead to some issues. The generalization of vector field

to D dimension is however not compatible with Supersymmetry as it introduces a mismatch

between the fermionic and bosonic degrees of freedom. In Supersymmetry we therefore often
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use dimensional reduction [164] in which the four-momenta are continued to D dimensions,

while the gauge fields and Dirac matrices remain in 4 dimensions.

Passarino-Veltman integrals

We now describe a method to calculate one-loop integrals based on the work of ’t Hooft and

Veltman [165] and Passarino and Veltman [166]. The general integral (6.2) can be classified

into several cases depending on the number of propagators in the denominator(N): A ≡ T 1,

B ≡ T 2, C ≡ T 3, D ≡ T 4. Depending on the number of momenta present in the numerator

these integrals will have a given number of Lorentz indices (Cµν for instance). A particular

case consists in the integrals without any momentum in the numerator, which are called scalar

integrals: A0, B0, C0, D0, only the first two ones being UV divergent. These scalar integrals are

of primary importance since it turns out that every integral of the kind (6.2) can be expressed

in function of them. Then two steps are needed in order to calculate any one-loop integral:

first, find a relation between the needed integral and the scalar integrals. Then, calculate an

analytical expression of these scalar integrals in dimensional reduction. The main difficulty

comes from the large number of possible combinations of arguments, with many special cases

needing a dedicated derivation.

As we said all integrals (6.2) can be expressed in function of the scalar integrals thanks

to a method called Passarino-Veltman tensor reduction. First, due to Lorentz invariance,

it is possible to decompose any tensor integral on the metric tensor and the four-momenta

appearing in its denominator. We have for instance:

Aµν = gµν A2

Aµνρσ = (gµνgρσ + gµρgνσ + gµσgνρ) A4

Bµ = pµ1 B1

Bµν = gµν B00 + pµ1p
ν
1 B11

Cµ = pµ1 C1 + pµ2 C2

Cµν = gµν C00 + pµ1p
ν
1 C11 + (pµ1p

ν
2 + pµ2p

ν
1)C12 + pµ2p

ν
2 C22. (6.3)

This decompositions contain scalar coefficients (e.g. B1, B00, B11, C1, etc.) which can then

be expressed in function of the scalar integrals A0, B0, C0, etc. This is done by contracting

the decomposition shown above with four-momenta or metric tensor. On the left-hand side

the tensor integral are reduced to integrals of lower rank, while the right-hand side lead to a

combination of scalar coefficients. The latter are then expressed by solving the obtained linear
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equation. We obtain for instance:

A2(m
2) =

m2

4
A0(m

2) +
m4

8
, (6.4)

B1(p
2
1,m

2
0,m

2
1) =

1

2p21

[
A0(m

2
0)−A0(m

2
1)− (p21 −m2

1 +m2
0)B0(p

2
1,m

2
0,m

2
1)
]
. (6.5)

Among the scalar integrals only A0 and B0 are UV divergent and their expressions inD = 4−2ε

dimensions exhibit poles for ε→ 0:

A0(m
2) = m2

(
∆− ln

(
m2 − iε

µ2

)
+ 1 +O(ε)

)
(6.6)

B0(p
2
1,m

2
0,m

2
1) = ∆− ln

(
m0m1

µ2

)
+ 2 +

m2
0 −m2

1

p21
ln
m1

m0
×

√
λ(p21,m

2
0,m

2
1) + 4ip21ε

2p21

[
ln
(
1− 1

x1

)
− ln

(
1− 1

x2

)]
(6.7)

with

x1,2 =
1

2 p21

(
p21 −m2

1 +m2
0 ±

√
(p21 −m2

1 −m2
0)

2 − 4m2
0m

2
1 + 4ip21ε

)
(6.8)

and

∆ =
1

ε
− γE + ln 4π. (6.9)

The derivation of these formulas is quite lengthy and will therefore not be detailed here. In

addition, the procedure has to be redone for all needed special kinematic cases (i.e. when some

masses are equal to zero, or when two masses are equal, etc.).

In our calculation all tensor loop integrals are reduced using this Passarino-Veltman reduc-

tion and the resulting scalar integrals are evaluated using the known results in, e.g., [167,168].

We have checked that all needed integrals agree with LoopTools [169]. Note that the con-

ventions used in LoopTools and in the mentioned references are different so that one has to

include an additional factor

1 + π2ε2/6

Γ(1 + ε)(4π)ε
(6.10)

when comparing both. The term in ε2 has no impact excepted when dealing with soft-collinear

divergences, as will be the case when considering the gluon final state in Sec. 6.6. In this case

this term multiplies the double pole 1/ε2 to give an additional finite part to the integral.
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Figure 6.5.: Counterterms diagrams for the quarks and squarks propagators, the χ̃− q̃− q, q− q−V/φ
and q̃− q̃− V/φ vertices contributing to neutralino-squark coannihilation into quarks and
Higgs (φ) or electroweak gauge (V ) bosons. Again, the last diagram is absent in the case
of photon final state.

6.2.3. QCD renormalization of the MSSM

Once the UV divergences have been extracted in an analytical form on has to absorb them

by redefining the parameters (masses, couplings and fields) in the Lagrangian. This procedure

called renormalization can be done by introducing new terms called counterterms, containing

divergences opposite in sign as compared to the one present in the virtual corrections. A theory

is called renormalizable if only a finite number of independent counterterms is needed. In

multiplicative renormalization each parameters is multiplied by a renormalization constant of

the form Z = 1+δZ at the one-loop order. The Lagrangian parameters are therefore expressed

as a sum of a renormalized (finite) parameter and a renormalization constant (counterterm). By

expanding the Lagrangian and keeping only the terms of up to one-loop order, one ends up with

a sum of a renormalized Lagrangian and a counterterm Lagrangian. The latter is associated

with counterterms Feynman diagrams, shown in Fig. 6.5, which cancel the divergences of the

one-loop virtual corrections diagrams. The propagator and vertex counterterms respectively

cancel with the propagator and vertex virtual corrections, while there are no counterterm

corresponding to the boxes diagrams which are UV finite. These counterterms are determined

from a set of conditions called renormalization scheme, and physical quantities predicted from

different renormalization schemes differ only up to higher orders.

When considering the QCD renormalization of the MSSM, a consistent treatment of all

parameters in the quark and squark sectors is essential. In this section we will present different

renormalization schemes (namely the MS, DR and on-shell schemes). We will introduce then

a hybrid on-shell/DR renormalization scheme for the quarks and squarks which is set up in

such a way that it minimizes potential problems connected to sensitive parameters (e.g. the
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bottom trilinear coupling Ab) and is valid in a large region of MSSM parameter space. Similar

renormalization schemes for the quark and squark sectors of the MSSM were already introduced

and studied in [170,171]. Compared to those analyses, our approach differs significantly in the

treatment of the squark mixing angles θb and θt, but shares some important features with the

RS2 scheme introduced in [171].

Renormalization schemes

The ”Minimal Substraction” (MS) prescription is simply to remove (after dimensional regular-

ization) only the 1/ε poles. Thus in that scheme the counterterms have no finite parts and

depend on a renormalization scale µ. As singular terms are often accompanied by (poten-

tially large) finite terms it is convenient to subtract them as well. In the ”modified Minimal

Substraction” (MS) we therefore have:

1

ε
− γE + ln(4π)− ln(m2) → − ln(m2/µ2). (6.11)

As we have seen in Sec. 6.2.2, in Supersymmetry dimensional reduction must be used. The

corresponding modified minimal subtraction scheme is called DR. In this way expressions are

simplified, however measured quantities are not easily expressed in that scheme.

The on-shell renormalization scheme (OS) requires that the renormalized mass parameter

is the physical mass (i.e. the real part of the propagators pole). In addition, it is required that

the renormalized field does not mix with others and that the propagator has a unit residue.

Coupling constants are then unchanged when all interacting particles are on-shell. In that

scheme there is no dependence on the renormalization scale.

Quark sector

The process of neutralino-stop coannihilation considered here involves only quarks and squarks

of the third generation. We will therefore discuss only the case of massive quarks. The param-

eters to be renormalized are the quark fields (wave-functions) and masses. The counterterms

for these parameters are obtained by applying specific renormalization conditions to the renor-

malized two-point Green’s functions of the quarks, and will be therefore expressed in function

of them. These conditions are given by the chosen renormalization schemes which will be

described. We perform the wave-function renormalization by introducing counterterms δZL,R

for each chirality of the third-generation quarks


 qL

qR


→


 1 + 1

2δZL 0

0 1 + 1
2δZR




 qL

qR


 . (6.12)
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The wave-function renormalization constants are fixed by the on-shell scheme conditions, i.e.

by requiring the external quark propagators to have unit residue even at one-loop order. This

leads to the following expression for the massive quarks (q = t, b)

δZL = ℜ
{
−ΠL(m

2
q)−m2

q

[
Π̇L(m

2
q) + Π̇R(m

2
q)
]

+
1

2mq

[
ΠSL(m

2
q)−ΠSR(m

2
q)
]
−mq

[
Π̇SL(m

2
q) + Π̇SR(m

2
q)
]}

, (6.13)

δZR = δZL(L↔ R) , (6.14)

where ΠL,R(k
2) and ΠSL,SR(k

2) stand for the vector and the scalar parts of the two-point

Green’s function as defined in [172] and Π̇(m2) =
[

∂
∂k2

Π(k2)
]
k2=m2

.

After the wave-function renormalization has been performed, we still have to renormalize

the masses of the quarks. Although both the top and bottom quark are heavy, their properties

are very different, and so is our treatment of their masses. On the one hand, the top quark

does not form bound states and its physical mass is directly measurable. Therefore in our

calculation, we use the physical (on-shell) top quark mass mt = 173.1 GeV. This implies using

the on-shell mass counterterm for the top quark defined as

δmt =
1

2
ℜ
{
mt

[
ΠL(m

2
t ) + ΠR(m

2
t )
]
+ΠSL(m

2
t ) + ΠSR(m

2
t )
}
. (6.15)

On the other hand, the bottom quark forms hadrons and its mass cannot be directly

measured. Conventionally a mass parameter mb(mb) is extracted in the MS renormalization

scheme from the Standard Model analysis of Υ sum rules [173–176]. In order to obtain the

appropriate bottom quark mass in the DR renormalization scheme within the MSSM, we first use

the Standard Model next-to-next-to-leading order (NNLO) renormalization group evolution to

obtain the mass of the bottom quark at a scale Q [177]. We then convert the MS massmMS, SM
b (Q)

to a mass in the DR renormalization scheme mDR, SM
b (Q) while still in the Standard Model [177].

Finally we apply the threshold corrections including also contributions from SUSY particles in

the loop (denoted by ∆mb)

mDR, MSSM
b (Q) = mDR, SM

b (Q)−∆mb . (6.16)

The corresponding counterterm contains the pole in ε and can be written as

δmDR
b

mb
= (−2)

αsCF

4π

cε
ε
, (6.17)

where we factored out the constant cε = Γ(1 + ε)(4π)ε. One prominent place where the quark

masses enter the calculation is through the Yukawa couplings of the Higgs bosons to the quarks.

Especially the Yukawa couplings of the bottom quark were extensively studied in the decays
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of Higgs bosons in the Standard Model. Important QCD and top-quark induced corrections

to the coupling of Higgs bosons to bottom quarks were calculated up to O(α4
s) [178–180] and

can be used to define an effective Yukawa coupling which includes these corrections as

[(
hMS,QCD,Φb

)
(Q)
]2

=
[(
hMS,Φb

)
(Q)
]2[

1 + ∆QCD +∆Φ
t

]
, (6.18)

for each Higgs boson Φ = h0, H0, A0. The QCD corrections ∆QCD are explicitly given by

∆QCD =
αs(Q)

π
CF

17

4
+
α2
s(Q)

π2

[
35.94− 1.359nf

]

+
α3
s(Q)

π3

[
164.14− 25.77nf + 0.259n2f

]
(6.19)

+
α4
s(Q)

π4

[
39.34− 220.9nf + 9.685n2f − 0.0205n3f

]
,

and the top-quark induced corrections ∆Φ
t for each Higgs boson Φ read

∆h
t = ch(Q)

[
1.57− 2

3
log

Q2

m2
t

+
1

9
log2

m2
b(Q)

Q2

]
, (6.20)

∆H
t = cH(Q)

[
1.57− 2

3
log

Q2

m2
t

+
1

9
log2

m2
b(Q)

Q2

]
, (6.21)

∆A
t = cA(Q)

[
23

6
− log

Q2

m2
t

+
1

6
log2

m2
b(Q)

Q2

]
, (6.22)

with

{
ch(Q), cH(Q), cA(Q)

}
=
α2
s(Q)

π2

{ 1

tanα tanβ
,
tanα

tanβ
,

1

tan2 β

}
. (6.23)

We take into account these corrections excluding the one-loop part as it is provided consistently

through our own calculation.

In the MSSM, the Yukawa coupling to bottom quarks can receive large corrections for

large tanβ or large Ab, even beyond the next-to-leading order, which can affect our analysis.

Therefore, in addition, we include these corrections that can be resummed to all orders in

perturbation theory [181, 182]. Denoting the resummable part by ∆b we redefine the bottom
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quark Yukawa couplings as

hMSSM,hb (Q) =
hMS,QCD,hb (Q)

1 + ∆b

[
1− ∆b

tanα tanβ

]
, (6.24)

hMSSM,Hb (Q) =
hMS,QCD,Hb (Q)

1 + ∆b

[
1 + ∆b

tanα

tanβ

]
, (6.25)

hMSSM,Ab (Q) =
hMS,QCD,Ab (Q)

1 + ∆b

[
1− ∆b

tan2 β

]
. (6.26)

In the same way as for the QCD corrections, we exclude the one-loop part of these SUSY-

QCD corrections and include only the resummed remainder, since the one-loop part is already

present in our calculation.

Squark sector

As in the above discussion for quarks, we will address here only the squarks of the third

generation, i.e. stops and sbottoms. We work in the mass eigenstate basis and introduce the

wave-function renormalization counterterms δZij through

q̃i →
(
δij +

1

2
δZij

)
q̃j , (6.27)

where in contrast to the case of quarks the δZij include also off-diagonal terms. The wave-

function renormalization counterterms are again fixed by requiring that the squark propagators

have unit residue also at one-loop level. In addition we require that mixing for on-shell squarks

is absent. These conditions lead to the counterterms

δZii = −ℜ
[
Π̇q̃

ii(m
2
q̃i)
]
, (6.28)

δZij =
2ℜ
[
Πq̃

ij(m
2
q̃j
)
]

m2
q̃i
−m2

q̃j

, for i 6= j , (6.29)

where Πq̃
ij(k

2) are again the two-point Green’s functions, this time for squarks.

The renormalization of the squark masses is complicated due to the mixing of squarks of

the third generation. Therefore, it has to be discussed in conjunction with the renormalization

of all other parameters in the squark sector appearing in the mass matrix. At tree-level, the
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masses m2
q̃i

for stops and sbottoms are obtained by diagonalization of the mass matrix

U q̃


 M2

Q̃
+ (I3Lq −eq s2W ) cos 2β m 2

Z +m2
q mq

(
Aq − µ (tanβ)−2I3Lq

)

mq

(
Aq − µ (tanβ)−2I3Lq

)
M2

{Ũ , D̃} + eq s
2
W cos 2β m 2

Z +m2
q


 (U q̃)†

=


 m2

q̃1
0

0 m2
q̃2


 , (6.30)

where eq is the fractional charge of the squark in units of e, sW is the sine of weak mixing

angle, I3Lq is the weak isospin of the squark, and U q̃ are the squark mixing matrices. The

generation indices have been suppressed since only the third generation squarks are considered

here. As it is well known, we have to consider both the stop and the sbottom sector at the

same time, since due to SU(2) symmetry the mass matrices share a common soft breaking

parameter M2
Q̃

connecting the two sectors. In fact, out of the total set of eleven parameters

M2
Q̃
,M2

Ũ
,M2

D̃
, At, Ab, θt̃, θb̃,m

2
t̃1
,m2

t̃2
,m2

b̃1
, and m2

b̃2
, only five are completely independent and

can be considered as input parameters. Their counterterms can then be freely chosen. The

remaining parameters are derived by requiring that Eq. (6.30) is valid even at one-loop order.

Here, we adopt a hybrid on-shell/DR renormalization scheme choosing as input the pa-

rameters At, Ab,m
2
t̃1
,m2

b̃1
, and m2

b̃2
, where the trilinear couplings At, Ab are defined in the DR

renormalization scheme and all input masses are defined on-shell. This choice is motivated

by the fact that we want to obtain a renormalization scheme which is applicable for all an-

nihilation and coannihilation processes, where squarks play an important role. For example,

as the coannihilation processes are extremely sensitive to the mass of the lightest stop and

as this mass also plays an important role in the t-channel exchange of neutralino annihila-

tions [137], we choose to include its mass in the input parameters. It is then crucial to take

its physical/on-shell definition. Moreover, due to the appearance of the trilinear parameters

At, Ab in the important Higgs-squark-squark coupling in the coannihilation processes, it is a

natural choice to include them in our input set as well. Given the possible problems with the

one-loop definition of the Ab parameter widely discussed in the literature [171, 183, 184], we

choose to define both trilinear parameters in the DR scheme. A different approach would be to

define these parameters in the on-shell scheme, e.g. through the decay process of a squark into

a squark and a Higgs boson [170]. This, however, would require a dedicated treatment of the

infrared divergences arising in such a calculation.

Having explained above our choice of renormalization scheme, we must now specify the

counterterms for the input parameters depending on their definition. The counterterms for

the on-shell masses m2
t̃1
,m2

b̃1
, and m2

b̃2
are defined in the usual way as

δm2
q̃i = ℜ

[
Πq̃

ii(m
2
q̃i)
]
. (6.31)
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The DR counterterms of the trilinear parameters contain only the UV poles and can be given

in terms of other DR counterterms as

δADR
q̃ =

1

mq

[
U q̃
11U

q̃
12(δm

2
q̃1)

DR + U q̃
21U

q̃
22(δm

2
q̃2)

DR +
(
U q̃
21U

q̃
12 + U q̃

11U
q̃
22

)(
m2

q̃1 −m2
q̃2

)
δθDRq̃

−
δmDR

q

mq

(
U q̃
11U

q̃
12m

2
q̃1 + U q̃

21U
q̃
22m

2
q̃2

)
]
. (6.32)

The remaining DR counterterms for squark masses and their mixing angle are given as (for

j 6= i; for the quark mass counterterm see Eq. (6.17))

(δm2
q̃i)

DR =
αsCF

4π

cε
ε

[
(
(U q̃

i1)
2 − (U q̃

i2)
2
)2
m2

q̃i −m2
q̃i +

(
U q̃
21U

q̃
11 − U q̃

22U
q̃
12

)2
m2

q̃j

+ 8mqmg̃ U
q̃
i1U

q̃
i2 − 4m2

g̃ − 4m2
q

]
,

δθDRq̃ =
αsCF

4π

cε
ε

1

(m2
q̃1
−m2

q̃2
)

[
(
U q̃
21U

q̃
11 − U q̃

22U
q̃
12

)((
(U q̃

11)
2 − (U q̃

12)
2
)2
m2

q̃1

+
(
(U q̃

21)
2 − (U q̃

22)
2
)2
m2

q̃2

)
+ 4mg̃mq

(
U q̃
11U

q̃
22 + U q̃

12U
q̃
21

)
]
. (6.33)

The values of the dependent parametersM2
Q̃
,M2

Ũ
,M2

D̃
,m2

t̃2
, θt̃, and θb̃ are determined using

Eq. (6.30). For example, by taking a trace and a determinant of both sides of Eq. (6.30) for

stops and sbottoms, we can relate the four parameters M2
Q̃
,M2

Ũ
,M2

D̃
, and m2

t̃2
to the on-shell

sfermion masses and the other parameters of the mass matrix such as µ or tanβ, which do not

receive any QCD corrections and hence do not require renormalization. Having determined all

mass parameters, we diagonalize the stop and sbottom mass matrices leading to the values of

both mixing matrices. The eigenvalues are then the chosen on-shell masses and by construction

the dependent mass m2
t̃2
.

The counterterms of the dependent parameters are derived also from the defining Eq. (6.30).

We do not give counterterms for M2
Q̃
,M2

Ũ
,M2

D̃
as they never appear in any vertex. Unlike in

other analyses where the mixing angles are the input parameters and their counterterms are,

e.g., given as a combination of wave-function renormalization constants [172], here both mixing

angles θt̃ and θb̃ are dependent and have the counterterms

δθq̃ =
1(

U q̃
21U

q̃
12 + U q̃

11U
q̃
22

)(
m2

q̃1
−m2

q̃2

)×
(
δmq

(
Aq − µ (tanβ)−2I3Lq

)
+mq δAq − U q̃

11U
q̃
12

(
δm2

q̃1 − δm2
q̃2

))
.
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In the case of the stop mixing matrix this counterterm includes the last remaining undetermined

counterterm of the mass of the heavy stop quark

δm2
t̃2
=

1

U t̃
21U

t̃
12

[
(
U t̃
21U

t̃
12 + U t̃

11U
t̃
22

)(
(U b̃

11)
2δm2

b̃1
+ (U b̃

21)
2δm2

b̃2
+ 2U b̃

11U
b̃
21

(
m2

b̃1
−m2

b̃2

)
δθb̃

−2mbδmb − (U t̃
11)

2δm2
t̃1
+ 2mtδmt

)
− 2U t̃

11U
t̃
21

(
δmt

(
At − µ/ tanβ

)

+mt δAt − U t̃
11U

t̃
12δm

2
t̃1

)]
. (6.34)

This concludes the discussion of our renormalization scheme. We have discussed in detail

the definition and renormalization of every relevant parameter in the quark and squark sector.

A clever choice of parameters allows to obtain a renormalization scheme which works in large

parts of the relevant parameter space of the MSSM for all annihilation and coannihilation

processes where quarks and squarks play an crucial role.

6.3. Real corrections and infrared treatment

6.3.1. Introduction

Including only the virtual corrections with the renormalization constants does not lead to a

finite result as some diagrams where a gluon is exchanged lead to a different type of divergence

- the infrared (IR) divergence - which appear when the gluon become soft, i.e. when its energy

goes to zero. These divergences appear in some of the involved Passarino-Veltman integrals

and cancel against similar divergences that come from the real radiation corrections. These

real correction Feynman diagrams correspond to diagrams where a real massless particle is

emitted from one of the particles present at tree-level (a gluon in our case). A real gluon can

therefore be emitted by a (internal or external) quark or squark, but also from a four-vertex

involving squarks and a vector boson, as can be seen in Fig. 6.6. The cancellation of these

divergences is not as straightforward as in the case of ultraviolet divergences discussed above.

It is because the IR divergence in the virtual diagrams can be explicitly isolated again by

working in a general dimension D, whereas the divergence in the real corrections comes from

the numerical phase-space integration over the gluon phase-space. In this section we will detail

the procedure used to extract and cancel these kind of divergences, as well as other kind of IR

divergences, appearing when an internal particle become on its mass shell for example.
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Figure 6.6.: Real gluon emission diagrams at one-loop level contributing to neutralino-squark coanni-
hilation into quarks and Higgs (φ) or electroweak gauge (V ) bosons. The last diagram
involving the four-vertex is absent for a scalar in the final state.

6.3.2. Cancellation of soft divergences

Several approaches exist in order to cancel these divergences, most notably the so-called phase-

space slicing method [185–187] or the dipole subtraction method [188] (see App. B). Here we

use the phase-space slicing method which uses a lower cut on the gluon energy ∆E in the

phase-space integration to split the real gluon radiation cross section is split into two parts:

σ2→3(∆E) = σsoft(∆E,D) + σhard(∆E). (6.35)

The cutoff ∆E render the hard gluon radiation finite after numerical integration, while the

missing divergent piece of the phase-space integral can be performed analytically in the limit

of small energy of the gluon - the so-called soft-gluon approximation. In dimensional reduction

the divergences obtained in the soft-gluon approximation appears as 1/(D − 4) poles and

then cancel analytically with those coming from the virtual corrections. In the soft-gluon

approximation the phase-space factorizes with the two final state phase space, and the squared

amplitudes factorizes with the tree-level one, which allows to factorize the cross section with

the tree-level cross section.

First, the three-body phase space element in D dimensions is given by

dΓ3 =
dD−1p3

2p03(2π)
D−1

dD−1p4
2p04(2π)

D−1

dD−1p5
2p05(2π)

D−1
(2π)DδD(p1 + p2 − p3 − p4 − p5) . (6.36)
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Using the soft gluon approximation (i.e. setting p5 = 0 in the delta function, where p5 is the

four-momentum of the gluon), it can be factorized into

dΓsoft
3 = dΓ2

1

(2π)3
dD−1p5
(2π)D−4

1

2E5
(6.37)

where dΓ2 is the two-body phase space element

dΓ2 =
dD−1p3

2p03(2π)
D−1

dD−1p4
2p04(2π)

D−1
(2π)DδD(p1 + p2 − p3 − p4) . (6.38)

Since the soft gluon approximation which has been used is valid only for very small energy

one can use this phase-space factorization only when the energy of the gluon is smaller than a

chosen cutoff: E5 ≤ ∆E. The soft gluon approximation can be also used in the calculation of

the amplitudes to factorize it:

|M soft
3 |2 ≃ −g2s µ4−D

∑

f,f ′=2,3

pf · pf ′

(pf · p5) (pf ′ · p5)
|M tree|2 (6.39)

where |M tree|2 is the squared tree-level amplitude, and µ is here to preserve the dimension of the

strong coupling and is called factorization scale. It can be identified with the renormalization

scale which has been discussed in Sec. 6.2.2, and we set both scales to the center-of-mass energy
√
s. f and f ′ are summed over the two external particles emitting a gluon: the initial squark

(p2) and the final quark (p3). Putting everything together one obtains the differential cross

section which factorizes as the following:

dσsoft = −dσtree αs

(2π)2

∑

f,f ′=2,3

Iff ′ (6.40)

where dσtree is the tree-level differential cross section and Iff ′ are soft integrals defined as

Iff ′ = µ4−D

∫

E5≤∆E

dD−1p5
(2π)D−4

1

E5

pf · pf ′

(pf · p5) (pf ′ · p5)
. (6.41)

These integrals contain the integration over the phase-space of the (soft) gluon and therefore

also the divergence. They are given in [187,189]. In our case we use dimensional regularization

to obtain an explicit form of the divergence:

Iff ′ =
4πα (pf · pf ′)

(αpf )
2 − p2f ′

{
1

2

(
log

(
4∆E2

µ2

)
+∆IR

)
log

(
(αpf )

2

p2f ′

)
+

[
1

4
log2

(
P 0 − |~P |
P 0 + |~P |

)
+ Li2

(
1− P 0 − |~P |

v

)
+ Li2

(
1− P 0 + |~P |

v

)]P=αpf

P=pf ′



 . (6.42)
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Here ∆IR = 1/ε+ log 4π − γE , α is defined by (αpf − pf ′)2 = 0 and v by

v =
(αpf )

2 − p2f ′

2(αp0f − p0f ′)
. (6.43)

The divergences contained in dσsoft then cancel with the one appearing in the virtual and

counterterms cross section. By looking at which particle is emitting the soft gluon it is possible

to identify which real correction diagram is needed to cancel the divergence, and therefore which

integral will be involved:

- The propagator and vertex counterterms diagrams have to be summed because they both

involve quarks and squarks wave function renormalization constants. They then cancel

with the integrals I22 and I33 in the s-, t- and u-channels diagrams.

- The boxes diagrams cancel with the integrals I23 and I32 in the s- and t-channels diagrams.

- The u-channel neutralino-squark-quark vertex correction diagram cancel with the inte-

grals I23 and I32 in the u-channel diagrams.

- All the other virtual corrections diagrams are IR finite. In particular the s- and t-channels

vertex correction diagrams are IR finite since the gluon is exchanged between external

and internal particles. The virtual correction diagrams involving gluinos are also IR finite

due to the non zero mass of the gluino.

As we have seen the phase-space slicing method introduces a cutoff ∆E to separate the

divergent part of the phase-space from the regular one. It appears in the original real correc-

tions as a lower limit on the integration over the energy of the gluon and also explicitly in the

cross section (6.40) calculated in the soft-gluon approximation. In principle the dependence on

this cutoff should completely vanish, but in practice the cancellation is limited by the stability

of numerical integration of the real corrections on one hand, and by the validity of the soft

gluon approximation on the other hand. For practical purposes one has to choose a value

for the cutoff such that it is small enough for the soft-gluon approximation to be valid in the

region of phase-space given by E5 ≤ ∆E, but at the same time large enough for the numerical

integration of the real correction to be still possible. In Fig. 6.7 we show the dependence of a

given real radiation cross section to the value of this cutoff. On the left side of Fig. 6.7 are

shown the soft and hard gluon cross sections, together with their sum, in function of the soft

cutoff. it is clear that when choosing a larger cutoff, the volume of the hard gluon phase space

will be reduced, and the corresponding hard radiation cross section will therefore decrease.

To the contrary, the soft radiation cross section will increase, such that for different values of

the cutoff the total radiation cross section (for soft and hard gluons) should be identical. For

reasons discussed above the cross section will remain stable only in a given cutoff range, while

it will not be the case for more extreme values. On this plot one can see that for cutoff larger
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Figure 6.7.: Soft and hard gluon radiation cross sections and their sum (left plot) in function of the
soft cutoff for the process χ̃0

1 t̃1 → t Z0 with pcm = 100 GeV. On the right plot is shown
only the sum of soft and hard cross sections on a smaller scale. The spectrum corresponds
to the pMSSM scenario II introduced later in Sec. 6.4.1.

than
√
s/10 the total cross section clearly starts increasing with the cutoff. In the right plot

of Fig. 6.7 this cross section is shown for cutoffs between 10−10 and 10−2. It is clear that for

10−6 ≤ ∆E/
√
s ≤ 10−3 the cross section depends only very slightly on the cutoff value. We

have therefore chosen the value ∆E = 10−3√s which allows for a faster numerical integration

and verified that in our calculation all cross sections are insensitive to the choice of this cutoff.

6.3.3. Additional sources of infrared divergences

While including next-to-leading order corrections to the studied neutralino coannihilation pro-

cesses, we have to take care of a few subtleties. Some processes, although well defined and

separate at tree-level, cannot be unambiguously defined and separated when NLO corrections

are considered. One such example is the process χ̃0
1t̃1 → bW . Here, additional gluon radi-

ation can be taken to be a real correction to the Wb process. However, it can equally well

be considered to be neutralino-stop coannihilation with a gluon and a top quark in the final

state where the top decays into a W -boson and a bottom quark. Despite the fact that these

processes cannot be separated at NLO and one should strictly speaking include also their in-

terference, for practical purposes it is desirable to find a way how to separate them. Due to

the above mentioned complication, one has to treat the process χ̃0
1t̃1 → bWg with care as it

contains a top quark propagator which can become on-shell. At tree-level the large masses

of the neutralino and the scalar top quark prevent the internal top quark to be on-shell. In

contrast, when an additional gluon is radiated either from the initial stop or the internal top-
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Figure 6.8.: Real gluon emission diagrams with a Wb final state where an internal top quark can
become on-shell, as indicated by a double line.

quark propagator, the gluon can carry away enough energy for the top propagator to become

on-shell. The relevant diagrams where this can occur are shown in Fig. 6.8.

We regularize the appearing divergence from the on-shell propagator by introducing a width

Γt for the top quark in the problematic propagators, leading to a finite result for the integrated

matrix elements for the real gluon emission. The matrix element when integrated over the whole

phase-space is very large as it includes also the leading order coannihilation process χ̃0
1t̃1 → tg

with the top quark decaying into W+b. This process is, however, already accounted for in the

calculation of the neutralino relic density. To avoid double-counting, we need to separate the

two processes. In order to treat the double-counting in the real correction contribution, we

use a local on-shell subtraction scheme [190–192], in which a locally gauge invariant term is

subtracted from the original cross section that has been regularized as discussed above. The

subtraction term is defined as the squared resonant amplitude with the top quark being on-

shell, except for the propagator denominator, which is kept as a general Breit-Wigner function

∣∣Msub
2→3

∣∣2 = m2
tΓ

2
t

(p2t −m2
t )

2 +m2
tΓ

2
t

|Mres
2→3|2p2t=m2

t
. (6.44)

When the top quark is exactly on-shell, the subtraction term is equal to the full 2 → 3 matrix

element, while it decreases as a Breit-Wigner distribution when the top quark moves away

from its pole. This method has the advantage that the resulting cross section retains the non-

resonant interferences of the two processes. We have checked that the total cross section after

subtraction is independent of the top quark width. Other diagrams with different final states

can also include on-shell propagators but for most of them only in very specific configurations,

e.g., mass degeneracy between t̃1 and t̃2 or between t̃1 and b̃1. Those cases are not relevant for

our study of χ̃0
1t̃1 coannihilation.

Another numerical instability arises from the fact that, in case of coannihilation into quark

and photon, also the external photon of the real emission subprocess χ̃0
nq̃i → qgγ may become

soft in certain regions of phase space, rendering the numerical integration unreliable. This

issue can be addressed by introducing a cut-off on the photon energy and extracting the soft
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M1 Mq̃1,2 Mq̃3 Mℓ̃ Tt mA µ tanβ mχ̃0

1

mt̃1
mh0 mH0

I 306.9 2037.7 709.7 1499.3 1806.5 1495.6 2616.1 9.0 307.1 350.0 124.43 1530.72

II 470.6 1261.2 905.3 1963.2 1514.8 1343.1 725.9 18.3 467.3 509.4 124.06 1342.77

III 314.4 2870.5 763.6 2417.7 1877.5 386.0 2301.5 10.3 316.5 371.9 123.43 367.45

Table 6.1.: Three characteristic scenarios chosen in the pMSSM, which will be considered in this study.
Given are the input parameters as described in the text, the lightest neutralino mass mχ̃0

1

,
the lightest stop mass mt̃1

, and the masses of the light and heavy CP-even Higgs bosons
mh0 and mH0 . All values except for tanβ are given in GeV.

divergence using the soft photon approximation. This divergence would vanish when including

also electroweak corrections, which is, however, beyond the scope of this work. We therefore

cancel by hand the infrared pole, which is equivalent to including only the divergent part of the

electroweak corrections. We have checked that the associated cut-off dependence was negligible

for a cut-off equal to the one chosen for the QCD soft divergences described above. This details

of this procedure are however not very crucial since, as we have seen in section 4.3, the impact

of this process in the pMSSM is negligible.

6.4. Next-to-leading order cross sections: numerical results

6.4.1. pMSSM scenario and tree-level cross sections

For our numerical analysis, we have selected three characteristic scenarios2, which we introduce

and discuss in the following. They are listed in Tab. 6.1 and have been chosen in such a way that

they represent qualitatively different scenarios (note, e.g., the differences in Mq̃1,2 , mA, and µ)

and that they lead to different dominant coannihilation final states. As expected from Sec. 4.3,

all three scenarios feature rather important trilinear coupling parameters Tt ∼ 1500−1800 GeV.

The selected values of tanβ are moderate, so that neutralino pair annihilation into bottom

quarks is not important here, and these scenario are not excluded by flavor observables. First

and second generation squarks and sleptons are heavy compared to the stops in accordance with

current LHC exclusion limits [84, 85]. Moreover, the mass difference of the lightest neutralino

and the scalar top is about 10−15% of the neutralino mass in each scenario and thus sufficiently

small to enhance coannihilation, as explained in Sec. 4.2.1.

In Tab. 6.2 we list the resulting values for the neutralino relic density, together with the

contributions from the neutralino-stop coannihilation modes, as obtained from micrOMEGAs

2Note that these scenario, originally presented in [157], have been obtained using SPheno version 3.2.1. It has
been recently noticed that the lightest Higgs boson mass obtained with this version could be affected by a
bug. Thus the values of mh0 given in Tab. 6.1, in particular for the scenario I and III, might not be correct.
The remaining discussion is however independent of this issue.
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Ωχh
2 χ̃0

1t̃1 → th0 χ̃0
1t̃1 → tH0 χ̃0

1t̃1 → tZ0 χ̃0
1t̃1 → bW+ Sum

I 0.114 38.5% – 3.4% 5.9% 47.8%

II 0.116 24.6% – 10.7% 3.4% 38.7%

III 0.111 14.2% 20.7% 1.2% 2.1% 38.2%

Table 6.2.: Neutralino relic density and relative contributions of neutralino-stop coannihilation into a
quark and a Higgs or electroweak gauge boson for the characteristic scenarios of Tab.6.1.
The last column gives the sum of the listed contributions.

(version 2.4.1). These will be crucial to estimate the impact of our calculations on the final

relic density. Scenario I is characterized by the dominant coannihilation into a top quark and

a light Higgs boson. Final states including a top quark and a Z-boson as well as a bottom

quark and a W -boson contribute as well, but to a lesser extent. In total, neutralino-stop

coannihilation with electroweak gauge and Higgs bosons final states accounts for almost half of

the annihilation cross section at this example point. In order to understand which diagrams of

Fig. 6.1 are most important in this context, we show in Fig. 6.9 the total tree-level cross sections

of neutralino-stop coannihilation into the dominant final states for each characteristic scenario,

together with the individual contributions of the different squared diagrams and interference

terms. For the reasons discussed in Sec. 4.3, the exchange of a scalar top in the t-channel

is the dominant mode at example point I, followed by its interference with the exchange of a

top quark in the s-channel (upper left plot). The squared s-channel is rather small, and all

other channels are even negligible in this parameter configuration, so that they are not shown

in Fig. 6.9.

In comparison to the first parameter point, scenario II has a smaller µ-parameter, but

a larger value of tanβ. Moreover, the gauginos and third-generation squarks are slightly

heavier, and the trilinear coupling is slightly lower than for scenario I. As a consequence,

the relative importance of the coannihilation channels is altered, as can be seen in Tab. 6.2.

In particular, the coannihilation into the lightest Higgs boson contributes less, allowing the

final state containing a Z-boson to become more important. In contrast to the coannihilation

into a Higgs boson, the dominant diagram in this case is the exchange of a top quark in the

s-channel, as can be seen in Fig. 6.9 (lower left plot). For this scenario, we also show the

individual contributions of the three diagrams for coannihilation into a bottom quark and a

W -boson (lower right plot). As in the previous case, the s-channel is the dominant mode. Its

absolute cross section value is even larger than for tZ0 due to the larger phase space. However,

large destructive interferences of this diagram with the sub-leading t- and u-channels decrease

its cross section, so that the total value is almost an order of magnitude smaller than for the

Z-boson.
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Figure 6.9.: Contribution of the different diagrams (s-, t-, and u-channels) depicted in Fig. 4.3. For the
studied scenarios of Tab. 6.1 we show for selected coannihilation channels the tree-level
cross section as well as the contribution of the different squared diagrams (ss, tt, uu) and
the interference terms (st, su, tu).
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Finally, scenario III is quite similar to scenario I with the exception of a very light pseu-

doscalar Higgs boson of mA0 = 386 GeV. This leads to a similarly light heavy CP -even Higgs

boson H0 (see Tab. 6.1). As a consequence, the coannihilation into heavy CP-even Higgs

bosons in association with a top quark is now open and becomes the dominant contribution to

neutralino-stop coannihilation (see Tab. 6.2). The final state containing a light Higgs boson re-

mains important, while coannihilations into Z- and W -bosons are marginal for this parameter

point. As it was the case for the lightest Higgs boson, the coannihilation into tH0 is dominated

by the exchange of a scalar top in the t-channel (upper right plot of Fig. 6.9), which is again

due to the enhanced trilinear coupling. The dominance is even more important here, which

is explained by the modified mixing in the Higgs sector due to the smaller mass difference

between h0 and H0.

6.4.2. Next-to-leading order cross sections

Let us now discuss in detail the numerical impact of the one-loop corrections on the coannihila-

tion cross sections in our three scenarios of Tab. 6.1. We have calculated radiative corrections

to two types of processes, one with a Higgs boson and one with a vector boson in the final state.

We have seen that at tree-level the processes with the Higgs boson final state are dominated

by a t-channel stop exchange, whereas the processes with a gauge vector boson are a mixture

of all possible contributions (see Fig. 6.9). These different compositions of the cross sections

influence also the impact of various types of loop corrections which are displayed in Fig. 6.10.

This figure shows a break down of the total next-to-leading correction to the cross section

σv (without the tree-level contribution) into several UV finite contributions for both types of

processes, χ̃0
1t̃1 → th0 (scenario I) and χ̃0

1t̃1 → tZ0 (scenario II). As seen in Sec. 6.3.2, even

though all contributions are UV finite, the box, vertex and real part of the correction are still

IR divergent. This leads to a certain ambiguity in their exact definition. Each contribution

contains an uncanceled pole along with an uncanceled logarithm of the large factorization scale

(see first line of Eq. (6.42)). These large logarithms cause the box contribution to be artificially

large and drive the real corrections (which in our case is a sum of the soft-gluon part and the

hard radiation) to be negative.

Comparing the different loop contributions for the scalar and vector boson final states, one

notices that the box and propagator corrections in the case of the Higgs boson final states

are enhanced. This can be traced back to the fact that the cross section with a Higgs boson

in the final state is dominated by the t-channel exchange. One of the loop corrections to

the t-channel entails a correction to the stop propagator and a box diagram where a gluon is

exchanged between the final state quark and the initial state squark. The enhanced box and

propagator corrections lead to a large overall NLO correction in the case of the coannihilation

cross section with the Higgs boson.
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Figure 6.10.: Contribution of the different corrections to the total next-to-leading order correction for
the case of coannihilation into th0 for scenario I and into tZ0 for scenario II. The real
contribution σreal is defined as the sum of the hard radiation and the soft gluon part
with a cut on the gluon energy of ∆E = 10−3

√
s. The gray area indicates the thermal

distribution (in arbitrary units).

We show the cross sections of the respectively most relevant channel in each scenario in

Fig. 6.11 and compare our tree-level calculation, the effective tree-level calculation implemented

in micrOMEGAs and our full one-loop calculation. The upper parts show the cross sections σv,

while the lower panels show the ratio between the different cross sections.

For scenario I, where we show the channel χ̃0
1t̃1 → th0, we have numerical agreement

between our tree-level and the micrOMEGAs calculation. The one-loop contributions increase

the cross section by about 30% caused by the large contribution from the box diagrams and

propagator corrections as discussed above. We observe a similar behavior for scenario III,

where the final state with a heavy Higgs boson H0 is dominant. Here, the one-loop cross

section lies about 18 – 20% above the tree-levels, which again agree well among each other.

In case of coannihilation into a quark and an electroweak gauge boson, there is a few

percent difference between our tree-level and the one provided by micrOMEGAs. This difference

stems from the fact that both tree-levels use different parameters. Our tree-level uses input

parameters defined through the renormalization scheme discussed in detail in Sec. 6.2.2. It

differs in several points from the parameters used by micrOMEGAs. More precisely, the shift

between the two tree-levels is largely due to a different definition of the squark mixing angles,

which enter the calculation through the different interactions between squarks and quarks, e.g.,

the neutralino-squark-quark vertex.
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Figure 6.11.: Tree-level (black dashed line), full one-loop (blue solid line) and micrOMEGAs (orange
solid line) cross sections for selected coannihilation channels in the scenarios of Tab. 6.1.
The upper part of each plot shows the absolute value of σv together with the thermal
distribution (in arbitrary units), whereas the lower part shows the corresponding relative
shifts (second item in the legend).
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The different influence of various definitions of the mixing angle on the two classes of pro-

cesses we have calculated can be understood as follows: In the case of the Higgs boson final

state, which is dominated by a squark-exchange in the t-channel, the mixing angle θt̃ enters the

squark-squark-Higgs and the neutralino-squark-quark vertices. The internal propagator has to

be summed over the two possible squark mass eigenstates, t̃1 and t̃2, making the result less

sensitive to the exact value of the mixing angle. For the s-channel dominated coannihilation

into tZ0 or bW+, the situation is quite different. Here, the mixing angle appears in a single

neutralino-squark-quark vertex, where the external squark is “fixed” to be t̃1. The correspond-

ing matrix element is therefore rather sensitive to changes in the mixing angle, which explains

the observed difference between the two tree-level curves.

6.5. Numerical impact on the relic density

In this section we compare the neutralino relic density obtained from the three different cross

section calculations: the one used by default in micrOMEGAs, evaluated by CalcHEP at tree-

level, our cross section at tree-level, and our calculation including the full next-to-leading order

SUSY-QCD corrections. The impact of the corrections compared to the tree-level results is

studied for the three scenarios defined in Tab. 6.1.

First, we focus on scenario I. We study the change of the relic density when a single

input parameter is varied around our scenario I. In Fig. 6.12, we show Ωχh
2 as a function

of the bino mass parameter M1 and the trilinear coupling parameter Tt, calculated on the

basis of the aforementioned three calculations for the neutralino-stop coannihilation. It is

clearly visible that the relic density is very sensitive to variations of the bino mass parameter.

For higher values of M1 the predicted relic density decreases rapidly due to a smaller mass

splitting between the lightest neutralino and the lightest stop, which enhances the neutralino-

stop coannihilation and in addition the stop-stop annihilation. In contrast, slightly lower

values for the bino mass parameter increase the mass difference and suppress the contribution

of coannihilation processes in favor of neutralino-neutralino annihilation. The predicted relic

density is then higher due to the absence of coannihilation. Within the area which is favored

by the measurements of the relic density, where the studied neutralino-stop coannihilation is

dominant, a clear shift of the predicted relic density is visible when going from the default value

calculated by micrOMEGAs to the one calculated using our full next-to-leading order result.

The impact of the presented SUSY-QCD corrections to the given neutralino-stop coannihi-

lation processes is even better visible in the lower part of Fig. 6.12, where we show the relative

correction, i.e. the ratio of the relic density calculated with our full one-loop coannihilation

cross section to the one included by default in micrOMEGAs and our tree-level, respectively.

For scenario I, our calculations result in a relative correction of about 9%. This can be ex-
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Figure 6.12.: The neutralino relic density Ωχh
2 as a function of M1 (left) and Tt (right) in our scenario

I calculated using different coannihilation cross sections: default micrOMEGAs (orange
solid line), tree-level (black dashed line), and full one-loop (blue solid line). The gray
band indicates the favored range according to Eq. (1.6) within 1σ. The lower part
shows the relative impact of the one-loop correction on the relic-density compared to
the tree-level calculation (second item in the legend).

plained by the lightest Higgs final state, which has a contribution of around 38.5% to the total

(co)annihilation cross section with a corresponding correction of around 30% (see Fig. 6.11).

With the current experimental uncertainty of about 2% according to Eq. (1.6), the impact of

the presented corrections is significant and thus important to be taken into account.

The relic density is less sensitive to varying the trilinear coupling parameter Tt around the

value in scenario I (Tt = 1806.5 GeV). This is depicted on the right-hand side of Fig. 6.12.

Here, the difference between the uncorrected and corrected relic density in the cosmologically

favored region corresponds to a difference of 3 GeV in the parameter Tt.

One can infer more about the impact of the full next-to-leading order corrections in sce-

nario I when looking at the first row of Fig. 6.13. On the left, the Planck favored region

is shown as a function of two parameters - the mass parameter of the third generation of

squarks Mq̃3 and the bino mass parameter M1. In the same plot solid black contour lines

denote the relative impact of our correction to the default micrOMEGAs relic density. As the

coannihilation into the lightest Higgs is the dominant contribution to the total (co)annihilation

cross section around the Planck-favored region in this scenario, and as it receives large cor-

rections, a relative correction of up to 9% on the relic density is observed. The correction is

larger than current experimental uncertainties, which results in two separated Planck-favored

1σ-bands corresponding to the default micrOMEGAs calculation (orange) and our full one-loop

SUSY-QCD calculation (blue).
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Figure 6.13.: 1σ Planck-compatible relic density bands from the default micrOMEGAs calculation
(orange) and our one-loop calculation for coannihilation (blue) in the (Mq̃3 ,M1) (left)
and (Tt,M1) (right) planes. In the plots on the left hand side the relative contribution
of coannihilation processes is shown in green contour, and the relative impact of the
one-loop corrections on the relic density in black lines. The plots on the right hand side
show the LSP-NLSP mass difference in green contour.
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The cosmologically allowed band follows a straight line in the M1-Mq̃3 plane corresponding

to a constant mass difference between the lightest neutralino and the lightest stop of about

40 GeV, or 14% of the neutralino mass. Above this band where the neutralino becomes

heavier and the mass difference decreases, the stop-stop annihilation becomes dominant. As

it has typically a significant higher cross section than the coannihilation, it leads to a relic

density which is too small. For large values of M1 (in the gray area in the upper left corner)

the stop becomes the lightest supersymmetric particle, which is disfavored as a suitable dark

matter candidate both for its electric and color charge. In the opposite direction, below the

allowed band, the neutralino-stop and stop-stop (co)annihilation are Boltzmann suppressed

by a larger mass difference and neutralino annihilation becomes dominant. However, it has a

lower cross section, such that the relic density becomes too big.

To conclude our analysis of scenario I, on the right plot in Fig. 6.13 we show Planck

preferred regions in the (Tt,M1) plane. Again, a clear separation of the two bands is visible,

together with the small dependence on the trilinear coupling parameter Tt (as already discussed

for Fig. 6.12). In different green colors, the mass difference between the lightest and next-

to-lightest supersymmetric particle is depicted supporting the claim that the cosmologically

favored region follows a contour of a constant mass difference around 10−15% (see Sec. 4.2.1).

Let us now focus on scenario II, which differs in several crucial features from the previ-

ously analyzed scenario I. One example is that the total coannihilation cross section has two

dominating contributions from coannihilation into the lightest Higgs and into the Z-boson. In

Fig. 6.14 we show separately the effect of SUSY-QCD corrections to each of the two dominant

processes as a function of the parameters Mq̃3 and Tt. One can see distinctly different effects

higher order corrections have on each process. As in scenario I, large corrections to coanni-

hilation into the lightest Higgs bosons lead to a change of up to 6% in the relic density even

though its relative importance in the total cross section dropped to 24% compared to scenario

I. On the other hand corrections to coannihilation into the Z-boson are small (see Fig. 6.11)

and also differ in sign. This leads to a reduction of the impact of SUSY-QCD corrections on

the relic density in scenario II. The consequences can be seen in the second row of Fig. 6.13.

One sees that due to the smaller correction of about 5− 6%, the two bands corresponding to

the original micrOMEGAs relic density (orange) and the one obtained including our SUSY-QCD

corrections (blue) almost overlap.

Scenario II is different from the others also in that the preferred Planck region lies outside

of the area with maximal coannihilation fraction. This is a direct consequence of the impor-

tance of the coannihilation into the Z-boson which has a smaller cross section and so in total

coannihilation is not efficient enough to bring the relic density down to the level measured by

Planck. The allowed region therefore lies where the mass difference is smaller (only 9% in this

scenario), and receives sizable contributions from stop annihilations.
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Figure 6.14.: The neutralino relic density Ωχh
2 as a function ofMq̃3 (left) and Tt (right) in our scenario

II calculated using different coannihilation cross sections: default micrOMEGAs (orange
solid line), one-loop correction only for the th0 final state (blue solid line), and one-loop
correction only for the tZ0 final state (blue dashed line). The gray band indicates the
favored range according to Eq. (1.6). The lower part of the figure shows the relative
impact of the one-loop correction on the relic-density compared to micrOMEGAs (second
item in the legend).

In the third scenario, the light CP-even Higgs boson is the dominant contribution to

neutralino-stop coannihilation and the characteristics of the plots in Fig. 6.13 are similar

to scenario I. As the correction to the top-H0 final states is not as large as for the top-h0

final state in this example point (see Fig. 6.11), the overall impact on the relic density is thus

smaller than for scenario I. A relative correction between 5% to 6% is reached. Nevertheless, a

shift from the Planck favored region calculated by micrOMEGAs to the one calculated with the

one-loop SUSY-QCD corrections is visible. It is interesting to note that even if the preferred

region lies in the band where the mass splitting between the neutralino and stop is around

17% of the neutralino mass, stop annihilation is important here. Indeed, stop annihilation

into heavy Higgs is enhanced by the small mass of H0. As a result, the total contribution of

coannihilation processes is again smaller as compared to the scenario I.

Studying the three different characteristic scenarios, we saw that the impact of the one-loop

corrections on the predicted relic density of dark matter was around 5 to 9%, i.e. more impor-

tant than the current experimental uncertainty of 2% by the Planck observations. Therefore

it is necessary to take them into account for a theoretical prediction of the neutralino relic

density.
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Figure 6.15.: Leading-order Feynman diagrams for neutralino-squark coannihilation into a gluon.

6.6. The gluon final state

Since we are considering QCD corrections, and as the gluon is self-interacting the case of a

gluon in the final state is peculiar. As we will see in this section additional Feynman diagrams

are involved and imply new treatments such as the cancellation of collinear divergences, or the

renormalization of the strong coupling. At the moment the implementation of this calculation

is still being cross-checked and the corresponding numerical results will be subject to a later

publication.

6.6.1. Virtual corrections and renormalization

At tree-level only two Feynman diagrams are involved (see Fig. 6.15). At one-loop however,

in addition to the diagrams already shown in Secs. 6.2 and 6.3 in the case of electroweak gauge

bosons, there will be additional diagrams involving non-abelian interactions, i.e. g − g − g or

g − g̃ − g̃ couplings. More precisely, in addition to the self-energies of the quarks and squarks

shown in Fig. 6.2, we need to compute the derivatives of the gluon self-energies (see Fig. 6.16)

which are involved in the vertex counterterms. Also, in addition to the diagrams shown in

Fig. 6.3, the q − q − g and q̃ − q̃ − g vertices receive additional one-loop corrections shown in

Fig. 6.17. Finally, new boxes diagrams shown in Fig. 6.18 have to be added to the one already

shown in Fig. 6.4.

The counterterms diagrams are similar as the one shown for the electroweak gauge bosons

in Fig. 6.5, excepted for the last diagram which is missing. However, the presence of a gluon at

tree-level implies several complications in the calculation of the vertex counterterms. Indeed,

the strong coupling constant gs is present in the q− q− g and q̃− q̃− g couplings and therefore

need to be renormalized by introducing a corresponding renormalization constant. The strong

coupling renormalization constant can be related to the UV divergent part of the q − q − g

vertex correction, the quark and the gluon wave function renormalization constants. The wave
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Figure 6.16.: Self-energy corrections for the gluon at one-loop level in QCD contributing to neutralino-
squark coannihilation via the counterterms.
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Figure 6.17.: Additional non-abelian vertex corrections at one-loop level contributing to neutralino-
squark coannihilation into quarks and gluon. The lower right diagram does not contribute
because of a zero color factor.
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Figure 6.18.: Additional non-abelian four-point diagrams at one-loop level contributing to neutralino-
squark coannihilation into quarks and gluon.
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Figure 6.19.: Additional non-abelian real gluon emission diagrams contributing to neutralino-squark
coannihilation into quarks gluon.

function renormalization constant of the gluon is given by

δZ = −ℜ
[
Π̇g(m2

g = 0)
]

(6.45)

where Π̇g is the derivative of the two-point Green’s function of the gluon. The strong coupling

renormalization constant is then [193]

δgs =
αs

8π

1

ε
(nf − 3CV ) (6.46)

with nf = 6 and CV = 3.

6.6.2. Real corrections and collinear divergences

Since a real gluon can be emitted not only by squarks and quarks but also from the outgoing

gluon there are additional real corrections diagrams contributing in the case of gluon final state

(see Fig. 6.19). Because the gluon is massless the situation when both gluons are collinear

to each other lead to a divergence. These new divergences will cancel with similar divergences

present in the virtual corrections mentioned above. As it was done in the Sec. 6.3.2 in the case

of soft divergences one has to extract the collinear divergences in an analytical form in order

to perform the cancellation. To this end we use a more involved phase space slicing method

called two cutoff method which is described in detail in App. C. This method makes use of the

factorization of phase space and amplitudes to separate the soft, hard collinear and hard non

collinear parts of the cross section. The soft part is treated in a similar manner as described

in Sec. 6.3.2, with additional complications due to the possibility of double soft-collinear di-

vergences, involving analytic angular integrals. The hard collinear part of the cross section

is factorized using the collinear gluon approximation, leading to splitting functions which are

analytically integrable, exhibiting single collinear poles. Lastly, the hard non collinear cross

section is numerically integrated over the three-body phase space. These three parts are as-

sociated with regions of the phase space which are bounded by a soft and a collinear cutoff.
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They therefore depend on the value of these cutoff, and the independence of the total cross

section need again to be checked.

The first diagram of Fig. 6.19 is finite, whereas the two others lead to collinear divergences.

For reasons discussed in App. C, when these diagrams are squared they give the only contribu-

tion to the hard-collinear gluon cross section (i.e. containing a single collinear pole), and they

do not contribute to the soft gluon cross section. On the other hand, the interferences of these

diagrams with soft diagrams, as the ones shown in Fig. 6.6, lead to soft-collinear double poles.

Similarly to the discussion of Sec. 6.3.2 in the case of electroweak gauge and Higgs bosons, we

now detail the cancellation of these additional collinear diagrams in the gluon case:

- The propagator and vertex counterterm diagrams now contain the gluon wave function

renormalization constant, which has a hard-collinear single pole. The latter cancels with

the hard-collinear integral discussed in App. C.2.

- The second box diagram of Fig. 6.18 has a soft-collinear double pole. When squared with

the s-channel, it cancels with the soft-collinear integrals I24 times the squared s-channel

and I34 times the s- and t-channels interference. When squared with the t-channel, it

cancels with the soft-collinear integrals I34 times the squared t-channel and I24 times the

s- and t-channels interference. The soft-collinear integrals are discussed in App. C.1.

- The second vertex correction diagram of Fig. 6.17 also has a soft-collinear double pole.

When squared with the s-channel, it cancels with the soft-collinear integral I34 times the

squared s-channel. When squared with the t-channel, it cancels with the soft-collinear

integrals I24 times the squared s-channel and I34 times the s- and t-channels interference.

- Again, the fourth vertex correction diagram of Fig. 6.17 has a soft-collinear double pole.

When squared with the s-channel, it cancels with the soft-collinear integrals I34 times the

squared t-channel and I24 times the s- and t-channels interference. When squared with

the t-channel, it cancels with the soft-collinear integral I24 times the squared t-channel.

- There is another real radiation diagram, not shown here, where the gluon split into a

pair of massless quarks. When squared this diagram leads to a hard-collinear pole which

cancels with the massless quark contribution to the gluon self-energy, involved in its wave

function renormalization constant.

- All the other virtual correction diagrams are either IR finite, or obey the same cancellation

rule as in the abelian case.
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6.7. Conclusion

In order to keep up with the current and future experimental accuracies, a reduction of the

theoretical uncertainty in the calculation of the dark matter relic density is necessary. The

main source of uncertainty on the particle physics side comes from the calculation of the

(co)annihilation cross section, which governs the Boltzmann equation and thus the prediction of

the dark matter relic density. To this end, we have calculated the coannihilation of a neutralino

with a stop into final states containing electroweak gauge or Higgs bosons at one-loop order in

SUSY-QCD. In particular, we have defined a renormalization scheme, which can consistently

be applied to all neutralino annihilation and coannihilation processes. Infrared singularities

are handled using the phase-space slicing method. The present work is complementary to

previous publications on radiative corrections to neutralino pair-annihilation [119,136,137] or

coannihilation with a stop into a top quark and a gluon or a bottom quark and aW -boson [156].

We have seen that the one-loop corrections were significant and could reach 30% depending

on the final states. We have also observed that the impact of the one-loop corrections on

the predicted relic density of dark matter is more important than the current experimental

uncertainty by the Planck observations. The presented corrections are therefore essential in

predicting the neutralino relic density for a given parameter point or when extracting SUSY

parameters from cosmological measurements. In order to obtain a consistent implementation

of all coannihilation processes, including the missing case of a gluon final state is necessary. We

have seen that additional treatment of the UV and IR divergences were necessary in this case.

In particular we have described in details the two cutoff phase space slicing method used to

cancel the soft and collinear divergences. Numerical results for this process will be presented

in a later publication.



114



Appendix A.

The DM@NLO code

A.1. Structure of the code

NLO calculations involve several pieces which have to be combined together in order to obtain a

consistent final numerical result: kinematic objects, relevant couplings and masses, expressions

of one-loop and counterterm amplitudes, renormalization scheme, Passarino-Veltman integrals,

soft and collinear integrals, etc. For clarity and convenience it is therefore mandatory to

separate the computing code into several parts, each being dedicated to a specific aspect of

the calculation. These different parts need of course to be linked to each other. The somewhat

complicated structure of the code is shown in figure A.1. The core of the code, called ”Main

Code”, is an interface between micrOMEGAs and all the needed files.

The file ”main.c” is the micrOMEGAs file in which the different micrOMEGAs commands

are called, like the calculation of the relic density for instance. In this file we use the built-

in function ”ImproveCrossSection” which allows us to give our own cross section instead of

using the default one, calculated by CalcHEP. We first call a home-made subroutine called

”SelectProcess” which checks if the processes needed in the calculation of the relic density is a

neutralino-stop coannihilation process. In this case we call our interface function in the ”Main

Code”, giving as inputs the PDG numbers of external particles, the center-of-mass momentum,

the value of the phase space slicing cutoff, and other various settings. This function then calls

several subroutines which perform important initializations and actions:

- DMNLO ModelPara and DMNLO ModelIni read MSSM parameters from micrOMEGAs.

- Init RenScheme applies the renormalization scheme described in Sec. 6.2.3, i.e. com-

putes the runing of αs, self-energies of gluon, quarks and squarks, and their derivatives;

computes the bottom and top quark masses in the relevant scheme; defines all needed

renormalization constants.

- NeuQ2qx SetKinematics identifies each external particle with a set of characteristic num-

bers (type, generation, mass eigenstate, etc.) and assigns the corresponding mass.
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Main Code
(call needed functions)

MicrOmegas program
(calculate relic density)

Amplitudes

Give cross-section through
«ImproveCrossSection» function

General amplitudes
Coefficients

Masses
Couplings
Kinematics

Renormalization scheme
Loop integrals
Counter-terms

Soft and collinear integrals

Ask for a process for a given pcm, cutoff, flags
Send parameters

CalcHEP

Ask for amplitudes
Integrate them numerically

(Give cross-section)

Figure A.1.: Simplified structure of the DM@NLO code. More details are given in the text.

- NeuQ2qx SetCouplings defines all needed couplings as functions of the characteristic

numbers of the involved particles.

- NeuQ2qx SetCounterterms defines all propagator and coupling counterterms as a function

of the renormalization constants.

- NeuQ2qx TreeCS uses a Patterson integration subroutine to integrate the result obtained

by calling NeuQ2qx DiffCS. The latter returns as output the sum of several contributions

to the differential cross section: tree-level, propagator corrections, propagator counter-

terms, vertex corrections, vertex counterterms, box corrections, soft gluon, soft photon in

case of photon final state, hard collinear gluon in case of gluon final state.

- NeuQ2qx Bremsstrahlung uses a Vegas Monte-Carlo integration (from the Cuba library

[194]) to integrate the result obtained by calling NeuQ2qx Integrand. The latter defines

all needed kinematic variables (including scalar products) and integration boundaries,

and returns as output the contribution from real gluon radiation.
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- in addition, DMNLO LoopFunctions contains the definition of all needed Passarino-Veltman

scalar integrals as well as the reduction of tensor integrals.

These functions have either a prefix DMNLO which means that this is a global function used

for other processes in DM@NLO, or NeuQ2qx which means that this is a specific function for

Neutralino-stop coannihilation. The interface function returns as output the sum of all NLO

cross sections, but also independent contributions in order to make debugging easier.

A.2. General amplitudes

In our general approach, at tree-level already, there is a high number of possible neutralino-

squark coannihilation diagrams: 4 different neutralinos, 12 different squarks, 8 different gauge

or Higgs bosons, s-, t- and u-channels. When considering all possible NLO correction dia-

grams (see Figs. 6.2, 6.3, 6.4, 6.5 and 6.6), it becomes mandatory to use a certain degree of

generalization and automation so that implementing every single amplitude is not necessary.

In this way not only the implementation and debugging are simplified, but also the compiling

and execution of the code are made faster. The price to pay is a more complicated calculation

and a non-trivial code structure. To this end we use what is called here ”general amplitudes”,

which are valid for a certain class of processes and therefore usable several times for different

contributions, just by assigning different values to the masses and couplings. First, all our

amplitudes are separated into three categories: electroweak gauge bosons final states, Higgs

bosons final states, and gluon final states. The main difference between the first and the sec-

ond categories is of course the spin of one of the outgoing particle, while the last one contains

additional non-abelian contributions. Then, for each of these categories and for each of the

possible s-, t- and u-channel interferences, we define general amplitudes which can handle any

possible structure of the propagator and vertex corrections.

For example, the general structure of the quark propagator is

Pp ≡ i
1

p2 −m2

(
PvLPL /p+ PvRPR /p+ PsLPL + PsRPR

)
(A.1)

where p is the momentum of the internal quark. In order to recover the tree-level propagator

one needs to set PsL = PsR = m, PvL = PvR = 1, while the one-loop propagator correction

will be obtained by expressing these coefficients in function of the left and right scalar and

vector parts of the quark self-energy. There is no need for a general structure for the squark

propagator correction since it is just a scalar number.
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As we said the vertices also need to be generalized in order to take into account the one-loop

corrections. The quark-quark-electroweak gauge boson coupling has the following structure:

Bµ
p1p2 ≡ i

(
γµ(BsgLPL +BsgRPR) + (p1 + p2)

µ(Bsm1LPL +Bsm1RPR) (A.2)

+(p1 − p2)
µ(Bsm2LPL +Bsm2RPR) + γµ(BvgLPL +BvgRPR)(/p1 −m1)

+(p1 + p2)
µ(Bvm1LPL +Bvm1RPR)(/p1 −m1) + (p1 − p2)

µ(Bvm2LPL +Bvm2RPR)(/p1 −m1)
)
.

where p1, m1 are the momentum and mass of the incoming (off-shell) quark, p2 is the momen-

tum of the outgoing (on-shell) quark, and µ is the Lorentz index of the outgoing (on-shell)

vector boson. Setting BsgL and BsgR to the tree-level left and right couplings, and all the other

coefficients to zero, will return the tree-level vertex. On the other hand, NLO corrections or

counterterms for this vertex will be obtained by setting these coefficients to the appropriate

expressions. The general structure of the squark-squark-electroweak gauge boson coupling is:

Cµ
p1p2 ≡ i

(
C+(p1 + p2)

µ + C−(p1 − p2)
µ
)

(A.3)

where p1 is the momentum of the incoming (on-shell) squark, while p2 is the momentum of

the outgoing (off-shell) squark, and µ is the Lorentz index of the outgoing (on-shell) vector

boson. Again, the tree-level coupling is obtained by setting C+ = Ctree, C− = 0, and virtual

corrections will be associated to more complicated expressions of these coefficients.

We then have general amplitudes for the boxes diagrams which can handle any possible

structure of such correction. Again, as an example, the general box amplitude for a vector

boson final state is the following:

Mµ ≡ 1

(4π)2
ǫ∗µ(p4) ū(p3)

(
Bv1L p

µ
1 /p2 PL +Bv1R p

µ
1 /p2 PR +Bs1L p

µ
1 PL +Bs1R p

µ
1 PR (A.4)

+ Bv2L p
µ
2 /p2 PL +Bv2R p

µ
2 /p2 PR +Bs2L p

µ
2 PL +Bs2R p

µ
2 PR

+ Bv3L p
µ
3 /p2 PL +Bv3R p

µ
3 /p2 PR +Bs3L p

µ
3 PL +Bs3R p

µ
3 PR

+ Bv0L γ
µ /p2 PL +Bv0R γ

µ /p2 PR +Bs0L γ
µ PL +Bs0R γ

µ PR

)
u(p1)

where p1, p2, p3 and p4 are respectively the momenta of the incoming neutralino, incoming

squark, outgoing quark, outgoing vector boson, all being on-shell, and µ is the Lorentz index

of vector boson.
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Dipole subtraction method

The dipole subtraction formalism was developed in [188] and its general idea is the following.

A total NLO cross section receive contributions from virtual and real corrections cross sections

which are integrated over a two and a three final states phase space, respectively:

σNLO =

∫
dσNLO =

∫

2
dσVirtual +

∫

3
dσReal. (B.1)

In the dipole formalism one introduce an auxiliary cross section dσAux. which has a similar

singular behavior as the virtual and real corrections cross sections. The total cross section is

then expressed as

σNLO =

∫

2
dσVirtual +

∫

3
dσAux. +

∫

3

(
dσReal − dσAux.

)
. (B.2)

On one hand the singularity present in dσReal is canceled by the one coming from dσAux. and

the numerical integration over the three final states phase space can be performed. On the

other hand, integrating dσAux. analytically (in dimensional reduction) over the one-particle

subspace of the gluon gives explicit IR poles which cancel similar (but opposite) poles in the

virtual part. This term can be then integrated numerically over the two final state phase space,

and the two parts of the cross section (real and virtual) become separately convergent:

σNLO =

∫

2

(
dσVirtual +

∫

1
dσAux.

)
+

∫

3

(
dσReal − dσAux.

)
. (B.3)

The auxiliary cross section must fulfill several conditions:

- It might be universal, i.e. does not depend on a specific process.

- It must have an identical IR behavior as the real emission cross section.

- It must be analytically integrable over the one-particle phase space.

The dipole subtraction method is a recipe to construct a cross section with the required prop-

erties. The corresponding factorization formula involve, in addition to the tree-level cross
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section, universal factors called dipoles. In [188] such dipoles are derived for massive or mass-

less quarks, but also squarks and gluino. The case of initial-massive-scalar state radiation is

however not covered since it is not needed for collider calculations, where squarks can only

appear as final states. Nevertheless, this case is needed in our computation since the initial

stop can emit a soft gluon. The implementation of a dedicated dipole subtraction method is

work in progress and subject to a later publication.
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The two cutoff phase space slicing method

In this appendix we describe the two cutoff phase space slicing method, needed when collinear

divergences appear, i.e. when the gluon is emitted by another gluon. This discussion is taken

from [185]. In order to treat consistently the soft and collinear divergences, similarly as what

has been done in Sec. 6.3.2 for the soft divergence, we split the cross section into different parts

which will be treated differently:

σ2→3(∆E,∆θ) = σsoft(∆E,D) + σhard coll.(∆E,∆θ,D) + σhard non coll.(∆E,∆θ). (C.1)

C.1. Soft part

The soft part is similar as what has been explained in Sec. 6.3.2, excepted from the fact that the

angular part of the integration will be non trivial and eventually lead to collinear divergences.

These additional divergences will appear only when the emitter is massless, which the case we

consider here.

The three body phase space element factorization in dimensional regularization has been

expressed in Eq. 6.37. Using

dD−1p5 = dE5E
D−2
5 sinD−3θ1 dθ1 sin

D−4θ2 dθ2ΩD−4 (C.2)

we can make explicit the angular part of the integration:

dΓsoft
3 = dΓ2

1

(2π)3
dE5

(2π)D−4

ED−3
5

2
sinD−3θ1 dθ1 sin

D−4θ2 dθ2ΩD−4, (C.3)

again valid for E5 ≤ ∆E. Although the gluon can be soft and collinear at the same time, for

the moment no additional cutoff ∆θ is needed to separate the collinear from the non-collinear

part of the phase space, in opposite to the hard-collinear case which will be described in the

next section. Indeed, the soft gluon approximation is sufficient to simplify the amplitude (and
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the phase space) and obtain integral which are analytically calculable. We therefore have only

one cutoff ∆E.

As discussed in Sec. 6.3.2 using the soft gluon approximation lead to integrals which are

expressed in Eq. 6.41. Denoting the momenta of the initial squark, final quark and final gluon

respectively by p2, p3 and p4, the only new integrals in comparison to Sec. 6.3.2 (i.e. the terms

which give double soft-collinear divergences) are I24 and I34, I44 being proportional to p24 = 0.

These two integrals are expressed as

I24 = µ4−D

∫

E5≤∆E

dE5E
D−3
5 sinD−3θ1 dθ1 sin

D−4θ2 dθ2ΩD−4

(2π)D−4

p2 · p4
(p2 · p5) (p4 · p5)

, (C.4)

I34 = µ4−D

∫

E5≤∆E

dE5E
D−3
5 sinD−3θ1 dθ1 sin

D−4θ2 dθ2ΩD−4

(2π)D−4

p3 · p4
(p3 · p5) (p4 · p5)

. (C.5)

After expressing the scalar products in function of
√
s, E5, the involved masses and angles one

obtains two terms: an integration over the energy, and another over the angles. The former

one leads to

(
4

s

)−ε ∫ δs
√
s/2

0
dE5E

1−2ε
5

1

sE2
5

=
1

s

(
− 1

2ε

)
δ−2ε
s (C.6)

where we have defined δs ≡ 2∆E/
√
s. Note that this energy integral depends on the soft

cutoff, and contains a single IR pole in ε−1. The term

δ−2ε
s = 1− 2ε ln δs + 2ε2 ln2 δs +O(ε3) (C.7)

gives additional finite contributions proportional to ln δs. The integration over the angles still

remains to be done. The angular integrals will lead to integrals of the following form:

I(k,l)n =

∫ π

0
dθ1 sin

n−3 θ1

∫ π

0
dθ2 sin

n−4 θ2
(a+ b cos θ1)

−k

(A+B cos θ1 + C sin θ1 cos θ2)l
. (C.8)

Some results for these angular integrals can be found for example in [185, App. B], [195,

Sec. 5.3], [196, App. C], [197, App. B], [198, App. B], or [199, App. A]. The ones we need

here are given in [197, Eq. (B.10)] and [195, Eq. (5.52)]. The latter one is given only to O(1),

it was therefore needed to re-derive it to O(ε) since these terms combine with the soft pole

in Eq. (C.6) to give a finite contribution. In the massless case the relation A2 = B2 + C2 is

valid; that leads to a special case of the integrals which contain a ε−1 pole. After combining

it with the energy integral the final expression has a single soft pole together with a double

soft-collinear pole. To the contrary, in the massive case this relation does not hold, so that

the integral corresponds to a different case which has no ε−1 pole, the only pole comes then

from the energy integration. In other words the mass of the emitter protect the process from

the collinear divergence, but the soft divergence is still here. We recall that as the collinear
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approximation has not been applied here yet these results are valid in all the soft part of the

phase space (collinear or not) and there is no need to introduce a collinear cutoff, which is

needed only in the hard part described below.

C.2. Hard collinear part

As explained in [200, App. B], using a light-cone gauge it is possible to show that the only

contribution in the hard-collinear limit come from the squared amplitude where the gluon is

emitted by the other gluon, and that all interference terms do not contribute. Therefore here

we only have to consider the splitting of a gluon into two gluons.

We first introduce the notation p45 and E45 for the momentum and energy of the parent

gluon 45, i.e. the one which splits into two final gluons. The 3−particles phase space element

can be written as

dΓ3 = dΓ2
dD−1p5

2E5(2π)D−1

E45

E4
. (C.9)

where dΓ2 is the two-body phase space element of the particles 3 and 45. We then introduce

two variables: z, which corresponds to the fraction of energy of the parent gluon taken by the

gluon 4, and s45 ≡ 2p4 · p5. The collinear condition is then p5 ≈ (1 − z)p4. This condition

remove one degree of freedom and the integration over p5 can be replaced by integrations over

z and s45. The collinear gluon approximation allows us to factorize the 3−particles phase space

element into

dΓhard coll
3 = dΓ2

cε
16π2

dz ds45

[s45z(1− z)]2−D/2
, (C.10)

with cε = Γ(1+ ε)(4π)ε. In the collinear limit s45 → 0, and terms with s−1
45 will be responsible

for collinear divergences. The hard collinear part is therefore separated from the hard non

collinear part by the boundary condition s45 < δc s, where δc is the collinear cutoff, which also

specifies when the collinear approximation is valid.

In this approximation one can also simplify the squared amplitudes which factorizes into

the leading order and so-called splitting functions [201]:

|M3(1 + 2 → 3 + 4 + 5)|2 ≃ |M2(1 + 2 → 3 + 45)|2Pgg(z,D) g2s µ
4−D 2

s45
. (C.11)
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Here Pgg(z,D) is the splitting function for a gluon splitting into a pair of gluons, calculated in

D dimensions:

Pgg(z,D) = 2N

[
z

1− z
+

1− z

z
+ z(1− z)

]
. (C.12)

The cross section then factorizes as:

dσ1+2→3+4+5
hard coll. = dσ1+2→3+45

tree

[
αs

2π
cε

(
µ√
s

)4−D
]

(C.13)

×
∫ δcs

0

ds45
s45

( √
s√
s45

)4−D ∫
dz[z(1− z)]D/2−2Pgg(z,D). (C.14)

The integrations over s45 and z are independent. As explained above, the integration over s45

is done between two boundaries which are given by the collinear condition, and leads to the

term

∫ δcs

0

ds45
s45

( √
s√
s45

)4−D

= −1

ε
δ−ε
c . (C.15)

The integration limits of z are defined in such a way that both gluons are hard:

δs
1−m2

3/s
≤ z ≤ 1− δs

1−m2
3/s

. (C.16)

The splitting functions can be integrated over z and the final result is:

dσ1+2→3+4+5
hard coll. = dσ1+2→3+45

tree

[
αs

2π
cε

(
µ√
s

)4−D
]

(C.17)

×
[
N (11/6 + 2 ln δ′s)

2−D/2
+N

[
57/182− π2/3− ln2 δ′s − ln δc

(
11/6 + 2 ln δ′s

)]]

= dσ1+2→3+45
tree

(αs

2π
cε

) [
N
(
11/6 + 2 ln δ′s

)(1
ε
+ 2 ln(µr/

√
s)
)

(C.18)

+ N
(
57/182− π2/3− ln2 δ′s − ln δc

(
11/6 + 2 ln δ′s

)) ]

where δ′s ≡ δs/(1−m2
3/s). The 1/ε pole corresponds to the collinear divergence and will cancel

with a similar pole in the virtual corrections.

C.3. Hard non collinear part

This part of the cross section is regular and can be numerically integrated over the relevant

part of the three body phase space. This phase space region is defined by boundary conditions
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which keep the integration far from the soft and collinear regions. In our case these conditions

are applied on the energies of the final state particles and depends on two cutoff δs and δc:

- the usual soft cutoff is applied on the energy of the emitted gluon: E5 > δs
√
s/2,

- there is an additional soft cutoff applied on the energy of the tree-level gluon: E4 >

δs
√
s/2,

- a cutoff is applied on the energy of the final quark, expressing the condition that the two

gluons must not be collinear: E3 <
√
s/2 +m2

3/(2
√
s)−√

s δc/2.





Conclusion and outlook

In this thesis we have studied the neutralino-stop coannihilation and shown that the cor-

responding regions in various MSSM models have a rich phenomenology and are not fully

excluded yet by experimental constraints. In particular the requirement of a small neutralino-

stop mass splitting, which enhances the coannihilation and therefore reduces the relic density,

pushes up the limits on the stop mass from the LHC. Also, it is compatible with a large stop

mixing which is not in contradiction with the rather heavy mass of the Higgs boson, recently

measured at the LHC. In addition it is well known that coannihilation regions lead to very

small dark matter direct detection rates. We then tackled two different issues, both going

beyond the usual framework of relic density in the MSSM.

We first studied the effect of Non Minimal Flavor Violation in the squark sector of the

MSSM on the annihilation and coannihilation cross section of neutralino, and the related im-

pact on the relic density of dark matter. Indeed, in the literature the framework of Minimal

Flavor Violation (MFV) is generally assumed when computing the relic density in the MSSM.

We have considered large flavor violating terms in the sectors of right handed third generation

up and down squarks, and discussed the different effects that could affect the thermally av-

eraged (co)annihilation cross section of the neutralino, and in consequence its predicted relic

density. We have identified two kind of effects: the first one is the modification of the flavor

content of the lightest squark, which opens new annihilation and coannihilation channels. This

effect was particularly important when the corresponding flavor conserving channel was kine-

matically forbidden, as in the case of neutralino annihilation into top pairs for example. The

second one is the modification of the mass eigenvalue of the squark, which enters the annihila-

tion and coannihilation cross sections, but also the Boltzmann suppression factor in the case of

coannihilation. The latter is the most important effect since the contribution of coannihilation

strongly depends on the mass of the coannihilating NLSP. Performing a numerical analysis

within the cMSSM, we have observed that these effects resulted in the reduction of the relic

density in some part of the parameter space, leading to new favored regions absent in the case

of MFV. In particular we have seen that a large mixing in the sector of down squark allow for

coannihilation with the lightest down squark which is not possible in the usual cMSSM with

MFV.

We then presented the calculation of the one-loop SUSY-QCD corrections to neutralino-

stop coannihilation. Computing annihilation and coannihilation cross section at the Next-to-

127
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leading Order becomes now necessary in order for the theoretical prediction to be as precise

as the experimental measurement of the relic density. Our calculation has been presented in

details, together with the corresponding implementation in a numerical code. We have seen

that such calculation and implementation are non-trivial for several reasons. First, because of

the large number of involved external states and of corresponding Feynman diagrams. Then,

due to the difficulty of defining a consistent renormalization scheme in the MSSM, in particular

in the sfermion sector, and the necessity to cancel Infra-Red divergences arising from different

origins by using involved methods (in particular for the gluon final state). We have then

shown numerical results for the electroweak gauge and Higgs boson final states and the one-

loop corrections turned out to be significant, in particular in the case of the lightest Higgs boson

final state, for which they reached 30% of the tree-level cross section. Our code was used to

perform scans over the parameter space of a pMSSM model and we have seen that the impact

of these corrections on the relic density was around 5 to 9% in the three considered scenarios,

which is larger than the current experimental uncertainty from Planck (2%). These corrections

need therefore to be taken into account when extracting parameters of supersymmetric models

from the measurement of relic density.

Several deeper studies still need however to be performed. The calculation and implemen-

tation of the gluon final state will be finished soon, and significant corrections are expected.

It could be then interesting to study the dependence of the results on the renormalization

scale/scheme, and all relevant uncertainties. As was mentioned it is planned to implement

a dipole subtraction method which would be numerically more stable and reliable than the

phase space slicing method which is used. Again, it could be interesting to realize numerical

comparisons between these two methods. We have also mentioned that this study is part of

the DM@NLO project which includes the calculation of one-loop corrections to other processes

like the annihilation of neutralino into heavy quarks. It is planned to perform a global analysis

of the impact of such corrections in pMSSM scenario involving neutralino-stop coanihilation

and neutralino annihilation into pair of top quarks, for example. However a renormalization

scheme common to both processes still need to be defined. Members of the collaboration are

involved in several projects, like the generalization of the correction in the case of neutralino

annihilation process to the case of coannihilation of two different neutralino and chargino. Also,

it is planned to adapt this calculation to the case of indirect detection. Lastly, the calculation

of such corrections for the stop-stop annihilation processes, which contribute significantly in

the neutralino-stop coannihilation region, is ongoing.
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Abstract

The Minimal Supersymmetric Standard Model (MSSM), the most studied model of Physics
beyond the Standard Model, provides a candidate for dark matter: the neutralino. It however
has often a too large predicted relic density, which can be reduced to the experimental range
of WMAP and Planck thanks to several known mechanisms, like the coannihilation between
the neutralino and the stop. In this thesis, we first make short reviews of WIMP dark
matter and the Standard Model of particle Physics, introduce the MSSM and discuss the
phenomenology of the neutralino relic density. We then focus on two different aspects related
to the prediction of the relic density in the neutralino-stop coannihilation region and the
calculation of the corresponding annihilation and coannihilation cross sections. First, we study
the phenomenology of non minimal flavor violation in the squark sector in the context of the
neutralino relic density. We consider flavor violating terms in the sectors of right-handed third
generation up and down squarks and show that they can have an important impact on the
thermally averaged (co)annihilation cross section of the neutralino, and therefore on its relic
density. Then, following earlier studies which have shown that the impact of radiative corrections
to the annihilation of neutralinos was larger than the experimental uncertainty, we calculate
one-loop SUSY-QCD corrections for the neutralino-stop coannihilation into electroweak gauge
and Higgs bosons. We study the phenomenological impact of these corrections on the relic
density, which turns out to be larger than the current experimental uncertainty from the Planck
experiment.

Résumé

Le Modèle Standard Supersymétrique Minimal (MSSM), le plus étudié des modèles de
Nouvelle Physique, contient un candidat à la matière noire : le neutralino. Sa densité relique
prédite est cependant habituellement trop élevée, mais peut être réduite jusqu’à l’intervalle
expérimental de WMAP et de Planck grâce à certains mécanismes connus, comme la coannihi-
lation entre le neutralino et le stop. Dans cette thèse nous présentons tout d’abord la matière
noire en tant que WIMP ainsi que le Modèle Standard de la Physique des Particules, puis
nous abordons le MSSM ainsi que la phénoménologie de la densité relique de neutralino. Nous
étudions ensuite deux aspects différents liés à la prédiction de la densité relique dans la région
de coannihilation neutralino-stop, ainsi qu’au calcul des sections efficaces d’annihilation et de
coannihilation correspondantes. Nous étudions tout d’abord la phénoménologie de la violation
de saveur non minimale dans le secteur des squarks dans le contexte de la densité relique de
neutralino. Nous considérons des termes violant la saveur dans le secteur des squarks up et
down de chiralité droite et de troisième génération et montrons qu’ils peuvent avoir un impact
important sur les sections efficaces d’annihilation et de coannihilation du neutralino, et en
conséquence sur la densité relique. En se basant ensuite sur des travaux antérieurs qui ont
montré que l’impact des corrections radiatives pour l’annihilation de neutralino était supérieur
à l’incertitude expérimentale, nous calculons les corrections SUSY-QCD à une boucle pour
la coannihilation neutralino-stop en bosons de jauge électrofaibles et bosons de Higgs. Nous
étudions l’impact phénoménologique de ces corrections sur la densité relique, qui s’avère être
supérieur à l’incertitude expérimentale donnée par l’expérience Planck.
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