G. E. Moore, Cramming More Components Onto Integrated Circuits, Proceedings of the IEEE, vol.86, issue.1, pp.114-117, 1965.
DOI : 10.1109/JPROC.1998.658762

G. W. Burr, M. J. Breitwisch, M. Franceschini, D. Garetto, K. Gopalakrishnan et al., Phase change memory technology, Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena, vol.28, issue.2, p.223, 2010.
DOI : 10.1116/1.3301579

S. Ovshinsky, Reversible Electrical Switching Phenomena in Disordered Structures, Physical Review Letters, vol.21, issue.20, pp.1450-1453, 1968.
DOI : 10.1103/PhysRevLett.21.1450

S. Raoux and M. Wuttig, Phase change materials: science and applications, 2008.

N. Yamada, E. Ohno, N. Akahira, K. Nishiuchi, K. Nagata et al., High Speed Overwritable Phase Change Optical Disk Material, Japanese Journal of Applied Physics, vol.26, issue.S4, pp.26-461, 1987.
DOI : 10.7567/JJAPS.26S4.61

N. Yamada, E. Ohno, K. Nishiuchi, N. Akahira, and M. Takao, Rapidphase transitions of GeTe ? Sb 2 Te 3 pseudobinary amorphous thin films for an optical disk memory, Journal of Applied Physics, issue.5, p.692849, 1991.

M. Wuttig and N. Yamada, Phase-change materials for rewriteable data storage, Nature Materials, vol.6, issue.11, pp.824-832, 2007.
DOI : 10.1038/nmat2009

D. Lencer, M. Salinga, and M. Wuttig, Design Rules for Phase-Change Materials in Data Storage Applications, Advanced Materials, vol.43, issue.18, pp.2030-2058, 2011.
DOI : 10.1002/adma.201004255

G. and B. Beneventi, Characterization and modeling of phase-change memories, 2011.
URL : https://hal.archives-ouvertes.fr/tel-00721956

D. Ielmini and Y. Zhang, Analytical model for subthreshold conduction and threshold switching in chalcogenide-based memory devices, Journal of Applied Physics, vol.102, issue.5, pp.54517-054517, 2007.
DOI : 10.1063/1.2773688

D. Ielmini, Threshold switching mechanism by high-field energy gain in the hopping transport of chalcogenide glasses, Physical Review B, vol.78, issue.3, p.35308, 2008.
DOI : 10.1103/PhysRevB.78.035308

J. A. Kalb, Crystallization kinetics in antimony and tellurium alloys used for phase change recording, 2006.

J. W. Christian, The Theory of Transformations in Metals and Alloys, 1975.

K. F. Kelton, H. Ehrenreich, and D. Turnbull, Crystal Nucleation in Liquids and Glasses, Solid State Physics, pp.75-177
DOI : 10.1016/S0081-1947(08)60144-7

O. Penrose, The Becker-Dring equations for the kinetics of phase transitions, 2001.

D. Turnbull and J. C. Fisher, Rate of Nucleation in Condensed Systems, The Journal of Chemical Physics, vol.17, issue.1, p.71, 1949.
DOI : 10.1063/1.1747055

J. and W. Gibbs, The scientific papers, Il Nuovo Cimento Series 5, vol.15, issue.1, 1961.
DOI : 10.1007/BF02712956

D. T. Wu, Nucleation theory. Solid State Physics -Advances in Research and Applications, pp.37-187, 1997.

H. E. Kissinger, Reaction Kinetics in Differential Thermal Analysis, Analytical Chemistry, vol.29, issue.11, pp.1702-1706, 1957.
DOI : 10.1021/ac60131a045

S. Senkader and D. C. Wright, Models for phase-change of Ge2Sb2Te5 in optical and electrical memory devices, Journal of Applied Physics, vol.95, issue.2, p.504, 2004.
DOI : 10.1063/1.1633984

H. Y. Cheng, T. H. Hsu, S. Raoux, J. Y. Wu, P. Y. Du et al., A high performance phase change memory with fast switching speed and high temperature retention by engineering the Ge x Sb y Te z phase change material, Electron Devices Meeting (IEDM), pp.3-4, 2011.

A. Fantini, L. Perniola, M. Armand, J. F. Nodin, V. Sousa et al., Comparative Assessment of GST and GeTe Materials for Application to Embedded Phase-Change Memory Devices, 2009 IEEE International Memory Workshop, 2009.
DOI : 10.1109/IMW.2009.5090585

E. Gourvest, B. Pelissier, C. Valle, A. Roule, S. Lhostis et al., Impact of Oxidation on Ge2Sb2Te5 and GeTe Phase-Change Properties, Journal of The Electrochemical Society, vol.159, issue.4, pp.373-377, 2012.
DOI : 10.1149/2.027204jes

URL : https://hal.archives-ouvertes.fr/hal-00669401

T. Nonaka, G. Ohbayashi, Y. Toriumi, Y. Mori, and H. Hashimoto, Crystal structure of GeTe and Ge2Sb2Te5 meta-stable phase, Crystal structure of GeTe and Ge 2 Sb 2 Te 5 meta-stable phase, pp.258-261, 2000.
DOI : 10.1016/S0040-6090(99)01090-1

N. Yamada and T. Matsunaga, Structure of laser-crystallized Ge2Sb2+xTe5 sputtered thin films for use in optical memory, Journal of Applied Physics, vol.88, issue.12, pp.7020-7028, 2000.
DOI : 10.1063/1.1314323

S. Kohara, K. Kato, S. Kimura, H. Tanaka, T. Usuki et al., Structural basis for the fast phase change of ge[sub 2]Sb, Ring statistics analogy between the crystal and amorphous states. Applied Physics Letters, p.89201910, 2006.

J. Akola and R. Jones, Structural phase transitions on the nanoscale: The crucial pattern in the phase-change materials Ge 2 Sb 2 Te 5 and GeTe, Physical Review B, issue.23, p.76, 2007.

A. V. Kolobov, P. Fons, A. I. Frenkel, A. L. Ankudinov, J. Tominaga et al., Understanding the phase-change mechanism of rewritable optical media, Nature Materials, vol.117, issue.10, pp.703-708, 2004.
DOI : 10.1103/PhysRevB.58.7565

S. Hosokawa, T. Ozaki, K. Hayashi, N. Happo, M. Fujiwara et al., Existence of tetrahedral site symmetry about Ge atoms in a single-crystal film of Ge 2 Sb 2 Te 5 found by x-ray fluorescence holography, Applied Physics Letters, issue.13, p.90131913, 2007.
URL : https://hal.archives-ouvertes.fr/hal-00185143

K. S. Andrikopoulos, S. N. Yannopoulos, G. A. Voyiatzis, A. V. Kolobov, M. Ribes et al., Raman scattering study of the a-GeTe structure and possible mechanism for the amorphous to crystal transition, Journal of Physics: Condensed Matter, vol.18, issue.3, pp.965-979, 2006.
DOI : 10.1088/0953-8984/18/3/014

K. S. Andrikopoulos, S. N. Yannopoulos, A. V. Kolobov, P. Fons, and J. Tominaga, Raman scattering study of GeTe and Ge 2 Sb 2 Te 5 phasechange materials, Journal of Physics and Chemistry of Solids, vol.68, pp.5-61074, 2007.

J. Akola and R. Jones, Binary Alloys of Ge and Te: Order, Voids, and the Eutectic Composition, Physical Review Letters, vol.100, issue.20, 2008.
DOI : 10.1103/PhysRevLett.100.205502

R. Kojima, S. Okabayashi, T. Kashihara, K. Horai, T. Matsunaga et al., Nitrogen Doping Effect on Phase Change Optical Disks, Japanese Journal of Applied Physics, vol.37, issue.Part 1, No. 4B, p.37
DOI : 10.1143/JJAP.37.2098

S. Y. Kim, S. J. Kim, H. Seo, and M. R. Kim, Complex Refractive Indices of GeSbTe-Alloy Thin Films: Effect of Nitrogen Doping and Wavelength Dependence, Japanese Journal of Applied Physics, vol.38, issue.Part 1, No. 3B, pp.1713-1714, 1999.
DOI : 10.1143/JJAP.38.1713

S. Privitera, E. Rimini, and R. Zonca, Amorphous-to-crystal transition of nitrogen-and oxygen-doped Ge 2 Sb 2 Te 5 films studied by in situ resistance measurements, Applied Physics Letters, issue.15, p.853044, 2004.

K. Kim, J. Park, J. Chung, S. A. Song, M. Jung et al., Observation of molecular nitrogen in N-doped Ge2Sb2Te5, Applied Physics Letters, vol.89, issue.24, pp.243520-243520, 2006.
DOI : 10.1063/1.2408660

L. W. Fang, Z. Zhang, R. Zhao, J. Pan, M. Li et al., Fermi-level pinning and charge neutrality level in nitrogen-doped Ge2Sb2Te5: Characterization and application in phase change memory devices, Journal of Applied Physics, vol.108, issue.5, pp.53708-053708, 2010.
DOI : 10.1063/1.3475721

H. Horii, J. H. Yi, J. H. Park, Y. H. Ha, I. G. Baek et al., A novel cell technology using N-doped GeSbTe films for phase change RAM, 2003 Symposium on VLSI Technology. Digest of Technical Papers (IEEE Cat. No.03CH37407), 2003.
DOI : 10.1109/VLSIT.2003.1221143

A. Fantini, V. Sousa, L. Perniola, E. Gourvest, J. C. Bastien et al., N-doped GeTe as performance booster for embedded Phase-Change Memories, 2010 International Electron Devices Meeting, pp.29-30, 2010.
DOI : 10.1109/IEDM.2010.5703441

URL : https://hal.archives-ouvertes.fr/hal-00625213

K. Kim, S. Choi, J. Chung, J. Lee, and S. Heo, Changes in Chemical and Structural Properties of Phase-Change Material GeTe with Nitrogen Doping and Annealing, Japanese Journal of Applied Physics, vol.49, issue.6, p.49061801, 2010.
DOI : 10.1143/JJAP.49.061801

C. Peng, L. Wu, F. Rao, Z. Song, X. Zhou et al., Nitrogen incorporated GeTe phase change thin film for high-temperature data retention and low-power application, Scripta Materialia, vol.65, issue.4
DOI : 10.1016/j.scriptamat.2011.04.033

P. Noe, J. Y. Raty, G. E. Ghezzi, F. Hippert, E. Souchier et al., Effect of dopant incorporation in phase change material, 2012.

G. E. Ghezzi, J. Y. Raty, S. Maitrejean, A. Roule, E. Elkaim et al., Effect of carbon doping on the structure of amorphous GeTe phase change material, Applied Physics Letters, vol.99, issue.15, p.99151906, 2011.
DOI : 10.1063/1.3651321

URL : https://hal.archives-ouvertes.fr/hal-01067601

D. A. Keen, A comparison of various commonly used correlation functions for describing total scattering, Journal of Applied Crystallography, vol.34, issue.2, pp.172-177, 2001.
DOI : 10.1107/S0021889800019993

H. E. Fischer, A. C. Barnes, and P. Salmon, Neutron and x-ray diffraction studies of liquids and glasses, Reports on Progress in Physics, vol.69, issue.1, pp.233-299, 2006.
DOI : 10.1088/0034-4885/69/1/R05

T. E. Faber and J. M. Ziman, A theory of the electrical properties of liquid metals, Philosophical Magazine, vol.3, issue.109, pp.153-173, 1965.
DOI : 10.1080/00018736400101011

M. Micoulaut, J. Raty, C. Otjacques, and C. Bichara, Understanding amorphous phase-change materials from the viewpoint of Maxwell rigidity, Physical Review B, vol.81, issue.17, p.81, 2010.
DOI : 10.1103/PhysRevB.81.174206

URL : https://hal.archives-ouvertes.fr/hal-00523855

J. Raty, C. Otjacques, J. Gaspard, and C. Bichara, Amorphous structure and electronic properties of the Ge1Sb2Te4 phase change material, Solid State Sciences, vol.12, issue.2, pp.193-198, 2010.
DOI : 10.1016/j.solidstatesciences.2009.06.018

URL : https://hal.archives-ouvertes.fr/hal-00475838

C. Bichara and J. Raty, Temperature-induced density anomaly in terich liquid germanium tellurides: p versus sp 3 bonding, Physical Review Letters, issue.26, p.95, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00017819

J. Akola, J. Larrucea, and R. Jones, Polymorphism in phase-change materials: melt-quenched and as-deposited amorphous structures in

T. Chattopadhyay, J. X. Boucherle, and H. G. Vonschnering, Neutron diffraction study on the structural phase transition in GeTe, Ge 2 Sb 2 Te 5 from density functional calculations, pp.201431-1440, 1987.
DOI : 10.1088/0022-3719/20/10/012

K. B. Borisenko, Y. Chen, D. J. Cockayne, S. A. Song, and H. S. Jeong, Understanding atomic structures of amorphous c-doped Ge 2 Sb 2 Te 5 phasechange memory materials, Acta Materialia, issue.11, pp.594335-4342, 2011.

E. Cho, Y. Youn, and S. Han, investigation, Applied Physics Letters, vol.99, issue.18, pp.183501-183501, 2011.
DOI : 10.1063/1.3657139

URL : https://hal.archives-ouvertes.fr/hal-01044427

Y. M. Lee, H. J. Shin, S. J. Choi, J. H. Oh, H. S. Jeong et al., Nitrogen contribution to N-doped GeTe (N: 8.4??at.%) in the structural phase transition, Current Applied Physics, vol.11, issue.3, pp.710-713, 2011.
DOI : 10.1016/j.cap.2010.11.036

J. Raty, P. Noe, G. E. Ghezzi, S. Maitrejean, C. Bichara et al., Vibrational properties and stabilization mechanism of the doped gete phase change material amorphous phase, Phys. Rev. Lett

X. Zhou, L. Wu, Z. Song, F. Rao, M. Zhu et al., phase change material: A candidate for high-density phase change memory application, Applied Physics Letters, vol.101, issue.14, pp.142104-142104, 2012.
DOI : 10.1063/1.4757137

B. Liu, Z. Song, T. Zhang, J. Xia, S. Feng et al., Effect of nimplantation on the structural and electrical characteristics of Ge 2 Sb 2 Te 5 phase change film, Thin Solid Films, issue.12, pp.47849-55, 2005.

G. E. Ghezzi, R. Morel, A. Brenac, N. Boudet, M. Audier et al., nanometric phase change material clusters made by gas-phase condensation, Applied Physics Letters, vol.101, issue.23, pp.233113-233113, 2012.
DOI : 10.1063/1.4769435

URL : https://hal.archives-ouvertes.fr/hal-00989954

N. Ohshima, Crystallization of germanium???antimony???tellurium amorphous thin film sandwiched between various dielectric protective films, Journal of Applied Physics, vol.79, issue.11, p.8357, 1996.
DOI : 10.1063/1.362548

X. Wei, S. Luping, Z. Chong, C. T. Rong, and L. H. Koon, Thickness dependent nano-crystallization in Ge 2 Sb 2 Te 5 films and its effect on devices, Japanese Journal of Applied Physics, issue.4B, pp.462211-2214, 2007.

S. Privitera, S. Lombardo, C. Bongiorno, E. Rimini, and A. Pirovano, Phase change mechanisms in Ge2Sb2Te5, Journal of Applied Physics, vol.102, issue.1, p.13516, 2007.
DOI : 10.1063/1.2752111

J. Kalb, F. Spaepen, and M. Wuttig, Calorimetric measurements of phase transformations in thin films of amorphous Te alloys used for optical data storage, Journal of Applied Physics, vol.93, issue.5, p.2389, 2003.
DOI : 10.1063/1.1540227

S. Raoux, J. L. , and A. J. Kellock, Crystallization properties of ultrathin phase change films, Journal of Applied Physics, vol.103, issue.11, pp.114310-628391, 2000.
DOI : 10.1063/1.2938076

R. E. Simpson, M. Krbal, P. Fons, A. V. Kolobov, J. Tominaga et al., Toward the ultimate limit of phase change in Ge 2 Sb 2 Te 5, Nano letters, vol.10, issue.2, p.414419, 2009.

W. D. Nix, Mechanical properties of thin films, Metallurgical Transactions A, vol.130, issue.11, pp.2217-2245, 1989.
DOI : 10.1007/BF02666659

H. Cheng, S. Raoux, C. Cheng, J. L. Jordan, and . Sweet, The crystallization behavior of stressed Ge 2 Sb 2 Te 5 phase-change material, MRS Spring, 2012.

F. Oki, Y. Ogawa, and Y. Fujiki, Effect of Deposited Metals on the Crystallization Temperature of Amorphous Germanium Film, Japanese Journal of Applied Physics, vol.8, issue.8, p.1056, 1969.
DOI : 10.1143/JJAP.8.1056

H. Homma, I. K. Schuller, W. Sevenhans, and Y. Bruynseraede, Interfacially initiated crystallization in amorphous germanium films, Applied Physics Letters, vol.50, issue.10, p.50594, 1987.
DOI : 10.1063/1.98091

N. Ohshima, Structural analysis and crystallization studies of germaniumantimony tellurium sputtered films on different underlayers, 1998.

M. H. Jang, S. J. Park, D. H. Lim, M. Cho, Y. K. Kim et al., Structural Stability and Phase-Change Characteristics of Ge[sub 2]Sb[sub 2]Te[sub 5]???SiO[sub 2] Nano-Multilayered Films, Electrochemical and Solid-State Letters, vol.12, issue.4, p.151, 2009.
DOI : 10.1149/1.3079479

S. Meister, H. Peng, K. Mcilwrath, K. Jarausch, X. F. Zhang et al., Synthesis and Characterization of Phase-Change Nanowires, Nano Letters, vol.6, issue.7, p.15141517, 2006.
DOI : 10.1021/nl061102b

D. Yu, J. Wu, Q. Gu, and H. Park, Germanium Telluride Nanowires and Nanohelices with Memory-Switching Behavior, Journal of the American Chemical Society, vol.128, issue.25, pp.8148-8149, 2006.
DOI : 10.1021/ja0625071

S. Lee, Y. Jung, and R. Agarwal, Highly scalable non-volatile and ultra-low-power phase-change nanowire memory, Nature Nanotechnology, vol.40, issue.10, pp.626-630, 2007.
DOI : 10.1002/smll.200500181

S. Lee, Y. Jung, and R. Agarwal, Nanowires, Nano Letters, vol.8, issue.10, pp.3303-3309, 2008.
DOI : 10.1021/nl801698h

URL : https://hal.archives-ouvertes.fr/hal-01020753

S. Raoux, C. T. Rettner, J. L. Jordan-sweet, A. J. Kellock, T. Topuria et al., Direct observation of amorphous to crystalline phase transitions in nanoparticle arrays of phase change materials, Journal of Applied Physics, vol.102, issue.9, p.94305, 2007.
DOI : 10.1063/1.2801000

. Wong, Phase change nanodots patterning using a self-assembled polymer lithography and crystallization analysis, Journal of Applied Physics, vol.104, issue.7, p.74312, 2008.

H. S. Choi, K. S. Seol, K. Takeuchi, J. Fujita, and Y. Ohki, Synthesis of size-and structure-controlled Ge 2 Sb 2 Te 5 nanoparticles, Japanese Journal of Applied Physics, issue.10, p.44, 2005.

H. R. Yoon, W. Jo, E. H. Lee, J. H. Lee, M. Kim et al., Generation of phase-change Ge???Sb???Te nanoparticles by pulsed laser ablation, Journal of Non-Crystalline Solids, vol.351, issue.43-45, pp.3513430-3434, 2005.
DOI : 10.1016/j.jnoncrysol.2005.09.007

Y. Zuo and . Khang, Crystalline and amorphous structures of Ge?Sb?Te nanoparticles, Journal of Applied Physics, vol.102, issue.1, p.13524, 2007.

. Kanatzidis, Amorphous and crystalline GeTe nanocrystals, Advanced Functional Materials, vol.21, issue.14, pp.2737-2743, 2011.

M. A. Caldwell, S. Raoux, R. Y. Wang, H. Wong, and D. J. Milliron, Synthesis and size-dependent crystallization of colloidal germanium telluridenanoparticles, J. Mater. Chem., vol.13, issue.7, p.1285, 2010.
DOI : 10.1039/B917024C

M. J. Polking, H. Zheng, R. Ramesh, and A. P. , Controlled Synthesis and Size-Dependent Polarization Domain Structure of Colloidal Germanium Telluride Nanocrystals, Journal of the American Chemical Society, vol.133, issue.7, 2011.
DOI : 10.1021/ja108309s

R. Morel, A. Brenac, P. Bayle-guillemaud, C. Portemont, and F. L. Rizza, Growth and properties of cobalt clusters made by sputtering gasaggregation, European Physical Journal D, vol.24, pp.1-3287, 2003.

H. R. Yoon, W. Jo, E. Cho, S. Yoon, and M. Kim, Microstructure and optical properties of phase-change Ge???Sb???Te nanoparticles grown by pulsed-laser ablation, Journal of Non-Crystalline Solids, vol.352, issue.36-37, pp.3757-3761, 2006.
DOI : 10.1016/j.jnoncrysol.2006.05.038

W. K. Njoroge, H. Woltgens, and M. Wuttig, Density changes upon crystallization of Ge2Sb2.04Te4.74 films, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, vol.20, issue.1, p.230, 2002.
DOI : 10.1116/1.1430249

T. P. Leervad-pedersen, J. Kalb, W. K. Njoroge, D. Wamwangi, M. Wuttig et al., Mechanical stresses upon crystallization in phase change materials, Applied Physics Letters, issue.22, p.793597, 2001.

D. Smilgies, Scherrer grain-size analysis adapted to grazing-incidence scattering with area detectors, Journal of Applied Crystallography, vol.42, issue.6, pp.1030-1034, 2009.
DOI : 10.1107/S0021889809040126

S. Meister, D. T. Schoen, M. A. Topinka, A. M. Minor, and Y. Cui, Void Formation Induced Electrical Switching in Phase-Change Nanowires, Nano Letters, vol.8, issue.12, pp.4562-4567, 2008.
DOI : 10.1021/nl802808f

V. Weidenhof, I. Friedrich, S. Ziegler, and M. Wuttig, Laser induced crystallization of amorphous Ge2Sb2Te5 films, Journal of Applied Physics, vol.89, issue.6, p.3168, 2001.
DOI : 10.1063/1.1351868

L. H. Zhang, E. Johnson, and U. Dahmen, Observations of vacancycontrolled decay of elastic strain caused by phase transformation of small pb inclusions in al, Acta materialia, issue.13, p.5336353642, 2005.

K. J. Choi, S. M. Yoon, N. Y. Lee, S. Y. Lee, Y. S. Park et al., The effect of antimony-doping on Ge 2 Sb 2 Te 5 , a phase change material, Thin Solid Films, issue.23, p.51688108812, 2008.

M. Wuttig, D. Lsebrink, D. Wamwangi, W. Wenic, M. Gillessen et al., The role of vacancies and local distortions in the design of new phase-change materials, Nature Materials, vol.6, issue.2, pp.122-128, 2006.
DOI : 10.1038/nmat1837

J. A. Kalb, M. Wuttig, and F. Spaepen, Calorimetric measurements of structural relaxation and glass transition temperatures in sputtered films of amorphous Te alloys used for phase change recording, Journal of Materials Research, vol.26, issue.4, pp.748-754, 2011.
DOI : 10.1016/0001-6160(83)90134-7

A. Marmier, K. Kohary, and D. C. Wright, Determination of the anisotropic elastic properties of Ge1Sb2Te4, Applied Physics Letters, vol.98, issue.23, p.231911, 2011.
DOI : 10.1063/1.3598934

S. Raoux, B. Munoz, H. Cheng, J. L. Jordan, and . Sweet, Phase transitions in Ge???Te phase change materials studied by time-resolved x-ray diffraction, Applied Physics Letters, vol.95, issue.14, p.95143118, 2009.
DOI : 10.1063/1.3236786

M. Chen, K. A. Rubin, and R. W. Barton, Compound materials for reversible, phase???change optical data storage, Applied Physics Letters, vol.49, issue.9, pp.502-504, 1986.
DOI : 10.1063/1.97617

C. V. Thompson and R. Carel, Stress and grain growth in thin films Journal of the Mechanics and Physics of Solids, p.657673, 1996.

A. P. Hammersley, FIT2D: an introduction and overview, ESRF Internal Report, pp.97-99, 1997.

X. Qiu, J. W. Thompson, and S. J. Billinge, : a GUI-driven program to obtain the pair distribution function from X-ray powder diffraction data, Journal of Applied Crystallography, vol.37, issue.4, pp.678-678, 2004.
DOI : 10.1107/S0021889804011744