S. Bernardini, Modélisation des structures métal-oxyde-semiconducteur (MOS)

G. E. Moore, Cramming More Components Onto Integrated Circuits, Proceedings of the IEEE, pp.82-85, 1998.
DOI : 10.1109/JPROC.1998.658762

V. Transcript, Excerpts from a Conversation with Gordon Moore: Moore's Law, Intel Corporation, 2005.

R. W. Keyes, The Impact of Moore's Law, IEEE Solid-State Circuits Newsletter, vol.20, issue.3, pp.25-27, 2006.
DOI : 10.1109/N-SSC.2006.4785857

N. Myhrvold, Moore's Law Corollary: Pixel Power, 2006.

L. G. Parratt, Surface Studies of Solids by Total Reflection of X-Rays, Physical Review, vol.95, issue.2, p.359, 1954.
DOI : 10.1103/PhysRev.95.359

S. K. Sinha, E. B. Sirota, S. Garoff, and H. B. Stanley, X-ray and neutron scattering from rough surfaces, Physical Review B, vol.38, issue.4, p.2297, 1988.
DOI : 10.1103/PhysRevB.38.2297

L. F. Edge, D. G. Schlom, and S. A. Chambers, Measurement of the band offsets between amorphous LaAlO3 and silicon, Applied Physics Letters, vol.84, issue.5, p.726, 2004.
DOI : 10.1063/1.1644055

L. Becerra, Hétérostructures et Dispositifs Microélectroniques à Base d'Oxydes High-k préparés sur silicium par EJM, 2008.

K. Xiong, J. Robertson, and S. J. Clark, Electronic defects in LaAlO3, Microelectronic Engineering, vol.85, issue.1, pp.65-69, 2008.
DOI : 10.1016/j.mee.2007.01.181

K. Tse, D. Liu, K. Xiong, and J. Robertson, Oxygen vacancies in high-k oxides, Microelectronic engineering, pp.9-10, 2007.
DOI : 10.1016/j.mee.2007.04.020

L. Yeh, I. Y. Chang, C. H. Chen, and J. Y. Lee, Reliability properties of metal-oxide-semiconductor capacitors using LaAlO3 high-k dielectric, Applied Physics Letters, vol.95, issue.16, p.162902, 2009.
DOI : 10.1063/1.3250242

G. Niu, Epitaxy of crystalline oxides for functional materials integration on silicon, 2010.
URL : https://hal.archives-ouvertes.fr/tel-00601689

L. Zhang and Y. Mitani, A New Insight into the Breakdown Mechanism in Ultrathin Gate Oxides by Conductive Atomic Force Microscopy, 2006 IEEE International Reliability Physics Symposium Proceedings, pp.585-589
DOI : 10.1109/RELPHY.2006.251282

W. Polspoel, P. Favia, J. Mody, H. Bender, and W. Vandervorst, Physical degradation of gate dielectrics induced by local electrical stress using conductive atomic force microscopy, Journal of Applied Physics, vol.106, issue.2, p.24101, 2009.
DOI : 10.1063/1.3153965

M. Porti, M. Nafria, M. C. Blüm, X. Aymerich, and S. Sadewasser, Atomic force microscope topographical artifacts after the dielectric breakdown of ultrathin SiO 2 films, Surface science, vol.5324, issue.4, pp.727-731, 2003.

M. Lazzarino, S. Heun, B. Ressel, K. C. Prince, P. Pingue et al., AFM anodization studied by spectromicroscopy, Physics Research Section B: Beam Interactions with Materials and Atoms, pp.46-51, 2003.
DOI : 10.1016/S0168-583X(02)01673-7

W. Frammelsberger, G. Benstetter, R. J. Stamp, J. Stamp, and J. Kiely, Combined AFM methods to improve reliability investigations of thin oxides, IEEE International Integrated Reliability Workshop Final Report, 2002., pp.151-154, 2002.
DOI : 10.1109/IRWS.2002.1194255

W. Hourani, B. Gautier, L. Militaru, D. Albertini, and A. Descamps-mandine, Study of the physical and electrical degradation of thin oxide films by atomic force microscope, Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena, vol.29, issue.1, pp.1-06, 2011.
DOI : 10.1116/1.3521474

W. Polspoel and W. Vandervorst, Evaluation of trap creation and charging in thin SiO

M. Porti, M. Nafrí-a, M. C. Blu?-m, X. Aymerich, and S. Sadewasser, Breakdown-induced negative charge in ultrathin SiO2 films measured by atomic force microscopy, Applied Physics Letters, vol.81, issue.19, p.3615, 2002.
DOI : 10.1063/1.1519357

M. Porti, M. Nafria, M. C. Blüm, X. Aymerich, and S. Sadewasser, Atomic force microscope topographical artifacts after the dielectric breakdown of ultrathin SiO 2 films, Surface science, vol.532, pp.727-731, 2003.

R. Dianoux, Injection et détection de charges dans des nanostructures semiconductrices par Microscopie à Force Atomique, 2004.

S. Lombardo, J. H. Stathis, B. P. Linder, K. L. Pey, F. Palumbo et al., Dielectric breakdown mechanisms in gate oxides, Journal of Applied Physics, vol.98, issue.12, p.121301, 2005.
DOI : 10.1063/1.2147714

Y. L. Wu, S. T. Lin, T. M. Chang, and J. J. Liou, Nanoscale Bias-Annealing Effect in Postirradiated Thin Silicon Dioxide Films Observed by Conductive Atomic Force Microscopy, IEEE Transactions on Device and Materials Reliability, vol.7, issue.2, pp.351-355, 2007.
DOI : 10.1109/TDMR.2007.901069

K. Kyuno, K. Kita, and A. Toriumi, Evolution of leakage paths in HfO2???SiO2 stacked gate dielectrics: A stable direct observation by ultrahigh vacuum conducting atomic force microscopy, Applied Physics Letters, vol.86, issue.6, p.63510, 2005.
DOI : 10.1063/1.1862779

W. Polspoel, W. Vandervorst, L. Aguilera, M. Porti, M. Nafria et al., Nanometer-scale leakage measurements in high vacuum on de-processed high-k capacitors, Microelectronics Reliability, vol.48, issue.8-9, pp.8-9, 2008.
DOI : 10.1016/j.microrel.2008.07.026

A. Olbrich, B. Ebersberger, and C. Boit, Conducting atomic force microscopy for

R. De-levie, The electrolysis of water, Journal of Electroanalytical Chemistry, vol.476, issue.1, pp.92-93, 1999.
DOI : 10.1016/S0022-0728(99)00365-4

J. Tahir-kheli, M. Miyata, W. A. Goddard, and I. , Dielectric breakdown in SiO2 via electric field induced attached hydrogen defects, Microelectronic Engineering, vol.80, pp.174-177, 2005.
DOI : 10.1016/j.mee.2005.04.031

G. Benstetter, W. Frammelsberger, T. Schweinboeck, R. J. Stamp, and J. Kiely, Conducting atomic force microscopy studies for reliability evaluation of ultrathin SiO/sub 2/ films, IEEE International Integrated Reliability Workshop Final Report, 2002.
DOI : 10.1109/IRWS.2002.1194226

R. A. Schlitz, K. Yoon, L. A. Fredin, Y. G. Ha, M. A. Ratner et al., Weibull Analysis of Dielectric Breakdown in a Self-Assembled Nanodielectric for Organic Transistors, The Journal of Physical Chemistry Letters, vol.1, issue.22, pp.3292-3297, 2010.
DOI : 10.1021/jz101325r

Y. Militaru, C. Gonzalez-velo, F. Guasch, and . Saigné, Toward a better understanding of the nanoscale degradation mechanisms of ultra-thin Si0 2 /Si films: Investigation of the best experimental conditions with a conductive-atomic force microscope, Journal of Applied Physics, vol.110, p.14304, 2011.

R. Mandine, Arinero Microelectronics Reliability

. Spécialité, Dispositifs de l'Electronique Intégrée (DEI) RESUME

M. La-miniaturisation-de-la-structure-de-transistor, Ainsi, la dégradation et le claquage sous contrainte électrique est devenu l'un des problèmes de fiabilité les plus importants des couches minces d'oxydes. L'utilisation de techniques de caractérisation permettant de mesurer les courants de fuite avec une résolution spatiale nanométrique a montré que le phénomène de claquage des oxydes est un phénomène très localisé. Le diamètre des «points chauds», des endroits où le courant de fuite est très élevé pour une tension appliquée continue, peut-être de quelques nanomètres uniquement. Ceci illustre pourquoi les méthodes de caractérisation avec une résolution spatiale à l'échelle nanométrique peuvent fournir des informations supplémentaires par rapport à la caractérisation classique macroscopique. Il y a deux instruments, dérivés de la microscopie à force atomique (AFM) qui peuvent être utilisés pour faire ce travail, soit le Tunneling Atomic Force Microscope (TUNA) ou le Conductive Atomic Force Microscope (C-AFM). Le mode TUNA qui est utilisé dans notre travail est capable de mesurer des courants très faibles variant entre 60 fA et 100 pA. Notre travail peut être divisé en deux thèmes principaux

A. Échelle-nanométrique and T. Tuna, couches d'oxydes ultra-minces, SiO 2 , LaAlO 3 , Gd 2 O 3 , courant de fuite, courant tunnel, tunnel direct

G. Directeur-de-thèse:-brice, M. Liviu, and . Président-de-jury, Abdelkader SOUIFI Composition du jury, Jacques COUSTY, Didier GOGUENHEIM