3. , .. Abraham, J. Broughton, N. Bernstein, E. E. Kaxiras-]-j et al., Spanning the continuum to quantum length scales in a dynamic simulation of brittle fracture The Generation of elements with singularities [3] D. André. Modélisation par éléments discrets des phases d'ébauchage et de doucissage de la silice Discrete element method to simulate continuous material by using the cohesive beam model Using the discrete element method to simulate brittle fracture in the indentation of a silica glass with a blunt indenter Indentation deformation/fracture of normal and anomalous glasses, Razonerov, and Utkin A. V. Spall Fracture Atluri and T. Zhu. A new meshless local Petrov-Galerkin (MPLG) approach in computational mechanics. Computational Mechanics [9] P. Aubertin, J. Réthoré, and R. De Borst. A coupled molecular dynamics and extended finite element method for dynamic crack propagation. International journal for numerical methods in engineering, pp.783-7871249, 1976.

R. S. Barsoum, Triangular quarter-point elements as elastic and perfectly-plastic crack tip elements, International Journal for Numerical Methods in Engineering, vol.4, issue.1, pp.85-98, 1977.
DOI : 10.1002/nme.1620110109

P. L. Bauman, H. B. Dhia, N. Elkhodja, J. T. Oden, and S. Prudhomme, On the application of the Arlequin method to the coupling of particle and continuum models, Computational Mechanics, vol.193, issue.5-6, pp.511-530, 2008.
DOI : 10.1007/s00466-008-0291-1

URL : https://hal.archives-ouvertes.fr/hal-00294141

P. T. Bauman, J. T. Oden, and S. Prudhomme, Adaptive multiscale modeling of polymeric materials with Arlequin coupling and Goals algorithms, Computer Methods in Applied Mechanics and Engineering, vol.198, issue.5-8, pp.5-8799, 2009.
DOI : 10.1016/j.cma.2008.10.014

S. Beissel and T. Belytschko, Nodal integration of the element-free Galerkin method, Computer Methods in Applied Mechanics and Engineering, vol.139, issue.1-4, pp.49-74, 1996.
DOI : 10.1016/S0045-7825(96)01079-1

V. V. Belikov, V. D. Ivanov, V. K. Kontorovich, S. A. Korytnik, and A. Y. Semenov, The non-Sibsonian interpolation : a new method of interpolation of the values of a function on an arbitrary set of points, Computational Mathematics and Mathematical Physics, vol.37, issue.1, pp.9-15, 1997.

T. Belytschko, Y. Krongauz, D. Organ, M. Fleming, and P. Krysl, Meshless methods: An overview and recent developments, Computer Methods in Applied Mechanics and Engineering, vol.139, issue.1-4, pp.3-47, 1996.
DOI : 10.1016/S0045-7825(96)01078-X

T. Belytschko, Y. Y. Lu, and L. Gu, Element-free Galerkin methods, International Journal for Numerical Methods in Engineering, vol.95, issue.2, pp.229-256, 1994.
DOI : 10.1002/nme.1620370205

T. Belytschko and S. P. Xiao, Coupling Methods for Continuum Model with Molecular Model, International Journal for Multiscale Computational Engineering, vol.1, issue.1, pp.115-126, 2003.
DOI : 10.1615/IntJMultCompEng.v1.i1.100

H. and B. Dhia, Problèmes mécanique multi-échelles: la méthode Arlequin. Comptes rendus de l 'académie des sciences -Analyse numérique, pp.899-904, 1998.

H. and B. Dhia, Further Insights by Theoretical Investigations of the Multiscale Arlequin Method, International Journal for Multiscale Computational Engineering, vol.6, issue.3, pp.215-232, 2008.
DOI : 10.1615/IntJMultCompEng.v6.i3.30

URL : https://hal.archives-ouvertes.fr/hal-00751336

H. , B. Dhia, and G. Rateau, Analyse mathématique de la méthode Arlequin mixte. Comptes rendus de l 'académie des sciences -Mécanique des solides et des stuctures, pp.649-654, 2001.

H. , B. Dhia, and G. Rateau, The Arlequin method as a flexible engineering design tool, International journal for numerical methods in engineering, vol.62, pp.1442-1462, 2005.
URL : https://hal.archives-ouvertes.fr/hal-00018915

D. J. Benson, Computational methods in Lagrangian and Eulerian hydrocodes, Computer Methods in Applied Mechanics and Engineering, vol.99, issue.2-3, pp.235-394, 1992.
DOI : 10.1016/0045-7825(92)90042-I

L. Berthe, M. Arrigoni, M. Boustie, J. P. Cuq-lelandais, C. Broussillou et al., State-of-the-art laser adhesion test (LASAT) Nondestructive Testing and Evaluation, 2011.

A. Bobet, A. Fakhimi, S. Johnson, K. Morris, F. Tonon et al., Numerical Models in Discontinuous Media: Review of Advances for Rock Mechanics Applications, Journal of Geotechnical and Geoenvironmental Engineering, vol.135, issue.11, pp.1547-1561, 2009.
DOI : 10.1061/(ASCE)GT.1943-5606.0000133

M. Born and K. Huang, Dynamical Theory of Crystal Lattices, American Journal of Physics, vol.23, issue.7, 1954.
DOI : 10.1119/1.1934059

N. Bourne, J. Millett, Z. Rosenberg, and N. Murray, On the shock induced failure of brittle solids, Journal of the Mechanics and Physics of Solids, vol.46, issue.10, p.46, 1998.
DOI : 10.1016/S0022-5096(98)00046-5

M. Boustie and F. Cottet, Experimental and numerical study of laser induced spallation into aluminum and copper targets, Journal of Applied Physics, vol.69, issue.11, p.7533, 1991.
DOI : 10.1063/1.347570

I. Bratberg, F. Radjai, and A. Hansen, Dynamic rearrangements and packing regimes in randomly deposited two-dimensional granular beds, Physical Review E, vol.66, issue.3, p.31303, 2002.
DOI : 10.1103/PhysRevE.66.031303

URL : https://hal.archives-ouvertes.fr/hal-00759657

J. Braun and M. Sambridge, A numerical method for solving partial differential equations on highly irregular evolving grids, Nature, vol.376, issue.6542, pp.655-660, 1995.
DOI : 10.1038/376655a0

S. Brereton, Overview of the National Ignition Facility, Health Physics, vol.104, issue.6, pp.544-556, 2013.
DOI : 10.1097/HP.0b013e31828cf5cd

P. W. Bridgman, Rough compressions of 177 substances To 40, 000 KG/CM2. Proceedings of the American Academy of Arts and Sciences, 1948.

P. W. Bridgman and I. ?imon, Effects of Very High Pressures on Glass, Journal of applied physics, vol.24, issue.405, 1953.

J. Broughton, F. Abraham, N. Bernstein, and E. Kaxiras, Concurrent coupling of length scales: Methodology and application, Physical Review B, vol.60, issue.4, pp.2391-2403, 1999.
DOI : 10.1103/PhysRevB.60.2391

R. Brückner, Properties and structure of vitreous silica. I, Journal of Non-Crystalline Solids, vol.5, issue.2, pp.123-175, 1970.
DOI : 10.1016/0022-3093(70)90190-0

R. Brückner, Properties and structure of vitreous silica. I, Journal of Non-Crystalline Solids, vol.5, issue.2, pp.177-216, 1971.
DOI : 10.1016/0022-3093(70)90190-0

H. A. Carmona, F. K. Wittel, K. Kun, and H. J. Herrmann, Fragmentation processes in impact of spheres, Physical Review E, vol.77, issue.5, 2008.
DOI : 10.1103/PhysRevE.77.051302

Z. Celep and Z. P. Ba?ant, Spurious reflection of elastic waves due to gradually changing finite element size, International Journal for Numerical Methods in Engineering, vol.15, issue.5, pp.631-646, 1983.
DOI : 10.1002/nme.1620190503

L. Chamoin, S. Prudhomme, H. B. Dhia, and J. T. Oden, Ghost forces and spurious effects in atomic-to-continuum coupling methods by the Arlequin approach, International Journal for Numerical Methods in Engineering, vol.70, issue.3, pp.1081-1113, 2010.
DOI : 10.1002/nme.2879

URL : https://hal.archives-ouvertes.fr/hal-00751436

J. S. Chen, C. T. Wu, S. Yoon, and Y. You, A stabilized conforming nodal integration for Galerkin mesh-free methods, International Journal for Numerical Methods in Engineering, vol.53, issue.2, pp.435-466, 2001.
DOI : 10.1002/1097-0207(20010120)50:2<435::AID-NME32>3.0.CO;2-A

F. Chinesta, E. Cueto, S. Cescotto, and P. Lorong, Natural element method for the simulation of structures and processes, ISTE Ltd, 2011.
DOI : 10.1002/9781118616901

URL : https://hal.archives-ouvertes.fr/hal-01002856

E. B. Christiansen, S. S. Kistler, and W. B. Gogarty, Irreversible Compressibility of Silica Glass as a Means of Determining the Distribution of Force in High-pressure Cells, Journal of the American Ceramic Society, vol.84, issue.1, pp.172-177, 1962.
DOI : 10.1063/1.1721294

Y. Chuzel-marmot, R. Ortiz, and A. Combescure, Three dimensional SPH???FEM gluing for simulation of fast impacts on concrete slabs, Computers & Structures, vol.89, issue.23-24, pp.2484-2494, 2011.
DOI : 10.1016/j.compstruc.2011.06.002

URL : https://hal.archives-ouvertes.fr/hal-00938550

H. M. Cohen and R. Roy, Effects of Ultra high Pressures on Glass, Journal of the American Ceramic Society, vol.111, issue.36, pp.523-524, 1961.
DOI : 10.1063/1.1721294

H. M. Cohen and R. Roy, Reply to "Comments on'Effects of Ultrahigh Pressures on Glass'", Journal of the American Ceramic Society, vol.44, issue.10, pp.398-399, 1962.
DOI : 10.1063/1.1722519

J. P. Colombier, P. Combis, I. V. Rosenfeld, E. Hertel, R. Audouard et al., Optimized energy coupling at ultrafast laser-irradiated metal surfaces by tailoring intensity envelopes: Consequences for material removal from Al samples, Physical Review B, vol.74, issue.22, pp.74224106-224121, 2006.
DOI : 10.1103/PhysRevB.74.224106

URL : https://hal.archives-ouvertes.fr/ujm-00122058

F. Cottet and M. Boustie, Spallation studies in aluminum targets using shock waves induced by laser irradiation at various pulse durations, Journal of Applied Physics, vol.66, issue.9, p.4067, 1989.
DOI : 10.1063/1.343991

E. Cueto, M. Doblaré, and L. Gracia, Imposing essential boundary conditions in the natural element method by means of density-scaled?-shapes, International Journal for Numerical Methods in Engineering, vol.17, issue.4, pp.519-546, 2000.
DOI : 10.1002/1097-0207(20001010)49:4<519::AID-NME958>3.0.CO;2-0

E. Cueto, N. Sukumar, B. Calvo, J. Cegoñino, and M. Doblaré, Overview and recent advances in Natural Neighbour Galerkin Methods. Archives of computational methods in engineering, pp.307-384, 2003.

P. A. Cundall and O. D. Strack, A discrete numerical model for granular assemblies, G??otechnique, vol.29, issue.1, pp.47-65, 1979.
DOI : 10.1680/geot.1979.29.1.47

W. A. Curtin and R. E. Miller, Atomistic /continuum coupling in computational materials science. Modeling and simulation in matrerials science and engineering, 2003.

F. Dachille and R. Roy, High-pressure region of the silica isotypes, Zeitschrift f??r Kristallographie, vol.111, issue.1-6, pp.451-461, 1959.
DOI : 10.1524/zkri.1959.111.1-6.451

G. A. D-'addetta, F. Kun, E. Ramm, and H. J. Herrmann, From solids to granulates -Discrete element simulations of fracture and fragmentation processes in geomaterials, Continuous and Discontinuous Modelling of Cohesive-Frictional Materials, pp.231-258, 2001.

T. De-resseguier, Etude expérimentale et numérique du comportement de matériaux de type verre soumis à des ondes de choc, 1992.

B. Delaunay, Sur la sphère vide. A la mémoire de Georges Voronoï Bulletin de l'Académie des Sciences de l'URSS, Classe des sciences mathématiques et na, pp.793-800, 1934.

J. Dolbow and T. Belytschko, Numerical integration of the Galerkin weak form in meshfree methods, Computational Mechanics, vol.23, issue.3, pp.219-230, 1999.
DOI : 10.1007/s004660050403

F. V. Donzé, V. Richefeu, and S. A. Magnier, Advances in Discrete Element Method applied to Soil, Rock and Concrete Mechanics, in: State of the art of geotechnical engineering, Electronic Journal of Geotechnical Engineering, p.44, 2009.

H. Edelsbrunner, Geometry and Topology for Mesh Generation, 2001.

R. Fabbro, P. Peyre, L. Berthe, and X. Scherpereel, Physics and applications of laser-shock processing, Journal of Laser Applications, vol.10, issue.6, pp.265-278, 1998.
DOI : 10.2351/1.521861

H. M. Felici, A coupled Eulerian/Lagrangian method for the solution of threedimensinal vortical flows, 1992.

J. L. Finney, Random packings and the structure of simple liquids. i. the geometry of randomclose packing, Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, pp.319479-493, 1539.

J. Fish, M. A. Nuggehally, M. S. Shephard, C. R. Picu, S. Badia et al., Concurrent AtC coupling based on a blend of the continuum stress and the atomistic force, Computer Methods in Applied Mechanics and Engineering, vol.196, issue.45-48, pp.4548-4560, 2007.
DOI : 10.1016/j.cma.2007.05.020

L. Frommhold, Collision-induced Absorption in Gases, 1993.
DOI : 10.1017/CBO9780511524523

W. H. Gerstle, A. R. Ingraffea, and R. Perucchio, Three-dimensional fatigue crack propagation analysis using the boundary element method, International Journal of Fatigue, vol.10, issue.3, pp.187-192, 1988.
DOI : 10.1016/0142-1123(88)90061-8

W. H. Gerstle, L. Martha, and A. R. Ingraffea, Finite and boundary element modeling of crack propagation in two and three dimensions, Engineering with Computers, vol.72, issue.1?3, pp.167-183, 1987.
DOI : 10.1007/BF01201264

D. González, E. Cueto, M. A. Martínez, and M. Doblaré, Numerical integration in Natural Neighbour Galerkin methods, International Journal for Numerical Methods in Engineering, vol.60, issue.12, pp.2077-2114, 2004.
DOI : 10.1002/nme.1038

K. Gotoh and J. L. Finney, Statistical geometrical approach to random packing density of equal spheres, Nature, vol.40, issue.5480, pp.202-205, 1974.
DOI : 10.1038/252202a0

D. Gouri and T. Gilbert, Une présentation de la méthode des éléments finis, 1981.

A. A. Griffith, The Phenomena of Rupture and Flow in Solids, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.221, issue.582-593, pp.163-198, 1921.
DOI : 10.1098/rsta.1921.0006

D. V. Griffiths and G. G. Mustoe, Modelling of elastic continua using a grillage of structural elements based on discrete element concepts, International Journal for Numerical Methods in Engineering, vol.184, issue.7, pp.1759-1775, 2001.
DOI : 10.1002/nme.99

T. M. Gross, Deformation and cracking behavior of glasses indented with diamond tips of various sharpness, Journal of Non-Crystalline Solids, vol.358, issue.24, pp.3445-3452, 2012.
DOI : 10.1016/j.jnoncrysol.2012.01.052

P. A. Guidault and T. Belytschko, On theL2 and theH1 couplings for an overlapping domain decomposition method using Lagrange multipliers, International Journal for Numerical Methods in Engineering, vol.55, issue.3, pp.322-350, 2007.
DOI : 10.1002/nme.1882

P. A. Guidault and T. Belytschko, couplings, International Journal for Numerical Methods in Engineering, vol.95, issue.3, pp.1566-1592, 2009.
DOI : 10.1002/nme.2461

H. Haken, Laser theory, 1984.

W. S. Hall, Boundary Element Method, 1994.

I. Han and Y. Li, Interaction Between Pulsed Laser and Materials, Lasers applications in Science and Industry. Dr Krzysztof Jakubczak, 2011.
DOI : 10.5772/25061

R. D. Henshell and K. G. Shaw, Crack tip finite elements are unnecessary, International Journal for Numerical Methods in Engineering, vol.31, issue.3, pp.495-507, 1975.
DOI : 10.1002/nme.1620090302

S. Hentz, F. V. Donzé, and L. Daudeville, Discrete element modelling of concrete submitted to dynamic loading at high strain rates, Computers & Structures, vol.82, issue.29-30, pp.29-302509, 2004.
DOI : 10.1016/j.compstruc.2004.05.016

H. Hiyoshi and K. Sugihara, Improving continuity of Voronoi-based interpolation over??Delaunay spheres, Computational Geometry, vol.22, issue.1-3, pp.167-183, 2002.
DOI : 10.1016/S0925-7721(01)00052-9

A. Hrennikoff, Solution of problems of elasticity by the frame-work method, ASME Journal of Applied Mechanics, issue.8, pp.619-715, 1941.

A. L. Illoul and P. Lorong, On some aspects of the CNEM implementation in 3D in order to simulate high speed machining or shearing, Computers & Structures, vol.89, issue.11-12, pp.940-958, 2011.
DOI : 10.1016/j.compstruc.2011.01.018

URL : https://hal.archives-ouvertes.fr/hal-01188918

I. Iordanoff, A. Battentier, J. Neauport, and J. L. Charles, A discrete element model to investigate sub-surface damage due to surface polishing, Tribology International, vol.41, issue.11, pp.41957-964, 2008.
DOI : 10.1016/j.triboint.2008.02.018

URL : https://hal.archives-ouvertes.fr/hal-01007057

J. A. Issa and R. N. Nelson, NUMERICAL ANALYSIS OF MICROMECHANICAL BEHAVIOUR OF GRANULAR MATERIALS, Engineering Computations, vol.9, issue.2, pp.211-223, 1992.
DOI : 10.1108/eb023860

M. Jean, The non-smooth contact dynamics method, Computer Methods in Applied Mechanics and Engineering, vol.177, issue.3-4, pp.235-257, 1999.
DOI : 10.1016/S0045-7825(98)00383-1

URL : https://hal.archives-ouvertes.fr/hal-01390459

M. Jebahi, D. André, F. Dau, J. L. Charles, and I. Iordanoff, Simulation of Vickers indentation of silica glass, Journal of Non-Crystalline Solids, vol.378, pp.15-24, 2013.
DOI : 10.1016/j.jnoncrysol.2013.06.007

URL : https://hal.archives-ouvertes.fr/hal-00909724

M. Jebahi, J. L. Charles, F. Dau, and L. , 3D coupling approach between discrete and continuum models for dynamic simulations (DEM???CNEM), Computer Methods in Applied Mechanics and Engineering, vol.255, pp.196-209, 2013.
DOI : 10.1016/j.cma.2012.11.021

URL : https://hal.archives-ouvertes.fr/hal-00986035

H. Ji, Mécanique et physique de l'indentation du verre, 2007.

I. Kaljevic and S. Saigal, An improved element free Galerkin formulation, International Journal for Numerical Methods in Engineering, vol.17, issue.16, pp.2953-2974, 1997.
DOI : 10.1002/(SICI)1097-0207(19970830)40:16<2953::AID-NME201>3.0.CO;2-S

V. Keryvin, Contribution à l'étude des mécanismes de déformation et de fissuration des verres, 2008.

S. A. Khan, Wavelength-Dependent Modifications in Helmholtz Optics, International Journal of Theoretical Physics, vol.8, issue.4, pp.95-125, 2005.
DOI : 10.1007/s10773-005-1488-0

K. Kondo, S. Iio, and A. Sawaoka, Nonlinear pressure dependence of the elastic moduli of fused quartz up to 3 GPa, Journal of Applied Physics, vol.52, issue.4, pp.2826-2831, 1981.
DOI : 10.1063/1.329012

A. Kruusing, Underwater and water-assisted laser processing: Part 1???general features, steam cleaning and shock processing, Optics and Lasers in Engineering, vol.41, issue.2, pp.307-327, 2004.
DOI : 10.1016/S0143-8166(02)00142-2

A. Kruusing, Underwater and water-assisted laser processing: Part 2???Etching, cutting and rarely used methods, Optics and Lasers in Engineering, vol.41, issue.2, pp.307-327, 2004.
DOI : 10.1016/S0143-8166(02)00143-4

P. Lalle, Utilisation de l'eau, de la silice fondue et de deux verres de la société Shott comme fenêtre, 1991.

B. Lawn, Fracture of brittle solids, 1993.
DOI : 10.1017/CBO9780511623127

B. R. Lawn, Fracture and deformation in brittle solids: A perspective on the issue of scale, Journal of Materials Research, vol.14, issue.01, pp.22-29, 2003.
DOI : 10.1016/S0040-6090(96)08905-5

V. , L. Houérou, J. C. Sangleboeuf, S. Dériano, T. Rouxel et al., Surface damage of soda-lime-silica glasses: indentation scratch behavior, Journal of Non-Crystalline Solids, vol.316, pp.54-63, 2003.

V. , L. Houérou, J. C. Sangleboeuf, and T. , Scratchability of Soda-Lime Silica (SLS) glasses: Dynamic fracture analysis, Key Engineering Materials, vol.290, pp.31-38, 2005.

C. K. Lee and C. E. Zhou, On error estimation and adaptive refinement for element free galerkin method : Part I : stress recovery and a posteriori error estimation, Computer and structures, vol.82, pp.4-54293, 2003.

E. Lescoute, Étude de la fragmentation dynamique de métaux sous choc laser, 2006.

S. Li and W. K. Liu, Meshfree and particle methods and their applications, Applied Mechanics Reviews, vol.55, issue.1, 2002.
DOI : 10.1115/1.1431547

X. Lin and T. T. Ng, A three-dimensional discrete element model using arrays of ellipsoids, G??otechnique, vol.47, issue.2, pp.319-329, 1997.
DOI : 10.1680/geot.1997.47.2.319

J. D. Lindl, P. Amendt, R. L. Berger, S. G. Glendinning, S. H. Glenzer et al., The physics basis for ignition using indirect-drive targets on the National Ignition Facility, Physics of Plasmas, vol.11, issue.2, pp.111-153, 2004.
DOI : 10.1063/1.1578638

T. Liszka and J. Orkisz, The finite difference method at arbitrary irregular grids and its application in applied mechanics, Computers & Structures, vol.11, issue.1-2, pp.83-95, 1980.
DOI : 10.1016/0045-7949(80)90149-2

G. R. Liu and Y. T. Gu, A point interpolation method for two-dimensional solids, International Journal for Numerical Methods in Engineering, vol.131, issue.4, pp.937-951, 2001.
DOI : 10.1002/1097-0207(20010210)50:4<937::AID-NME62>3.0.CO;2-X

G. R. Liu and M. B. Liu, ?Smoothed particle hydrodynamics ? a meshfree method?, Computational Mechanics, vol.33, issue.6, 2003.
DOI : 10.1007/s00466-004-0573-1

M. B. Liu and G. R. Liu, Smoothed Particle Hydrodynamics (SPH): an Overview and??Recent Developments, Archives of Computational Methods in Engineering, vol.43, issue.3, pp.25-76, 2010.
DOI : 10.1007/s11831-010-9040-7

B. D. Lubachevsky and F. H. Stillinger, Geometric properties of random disk packings, Journal of Statistical Physics, vol.58, issue.1, pp.561-583, 1990.
DOI : 10.1007/BF01025983

J. Lubliner, Plasticity Theory, Journal of Applied Mechanics, vol.59, issue.1, 2008.
DOI : 10.1115/1.2899459

L. B. Lucy, A numerical approach to the testing of the fission hypothesis, The Astronomical Journal, vol.82, pp.1013-1024, 1977.
DOI : 10.1086/112164

S. Luding, E. Clément, J. Rajchenbach, and J. Duran, Simulations of pattern formation in vibrated granular media, Europhysics Letters (EPL), vol.36, issue.4, pp.247-252, 1996.
DOI : 10.1209/epl/i1996-00217-9

J. D. Mackenzie, High-Pressure Effects on Oxide Glasses: I, Densification in Rigid State, Journal of the American Ceramic Society, vol.43, issue.3, pp.461-470, 1963.
DOI : 10.1107/S0365110X61003284

S. A. Magnier and F. V. Donzé, Numerical simulations of impacts using a discrete element method. Mechanics of Cohesive-frictional, Materials, vol.3, issue.3, pp.257-276, 1998.

H. U. Mair, Hydrocode methodologies for underwater explosion structure medium/interaction, Shock and Vibration, vol.2, pp.227-248, 1995.

P. H. Maire, J. Breil, and S. Galera, A cell-centred arbitrary Lagrangian? Eulerian (ALE) method. International journal for numerical methods in fluids, pp.1161-1166, 2008.

S. P. Marsh, LASL Shock Hugoniot Data, 1980.

L. F. Martha, P. A. Wawrzynek, and A. R. Ingraffea, Arbitrary crack representation using solid modeling, Engineering with Computers, vol.15, issue.3, pp.63-82, 1993.
DOI : 10.1007/BF01199046

C. L. Martin, D. Bouvard, and S. Shima, Study of particle rearrangement during powder compaction by the Discrete Element Method, Journal of the Mechanics and Physics of Solids, vol.51, issue.4, pp.667-693, 2003.
DOI : 10.1016/S0022-5096(02)00101-1

A. G. Mclellan, Virial Theorem Generalized, American Journal of Physics, vol.42, issue.3, 1974.
DOI : 10.1119/1.1987655

J. M. Melenka and I. Babu?ka, The partition of unity finite element method: Basic theory and applications, Computer Methods in Applied Mechanics and Engineering, vol.139, issue.1-4, pp.1-4289, 1996.
DOI : 10.1016/S0045-7825(96)01087-0

A. Meyer, An efficient implementation of LU decomposition in C Advances in Engineering Software, pp.123-130, 1988.

M. A. Meyers, Dynamic behavior of materials, 1994.
DOI : 10.1002/9780470172278

M. A. Meyers and L. E. Murr, Shock waves and high-strain-rate phenomena in metals : concepts and applications, 1981.

T. A. Michalske and S. W. Freiman, A Molecular Mechanism for Stress Corrosion in Vitreous Silica, Journal of the American Ceramic Society, vol.28, issue.3, pp.284-288, 1983.
DOI : 10.1007/BF00754886

Y. Michel, Phénomène d'impact à haute vitesse sur cibles minces fragiles : application au projet de laser mégajoule et à la problématique des débris spatiaux, 2007.

N. Moës, J. Dolbow, and T. Belytschko, A finite element method for crack growth without remeshing, International Journal for Numerical Methods in Engineering, vol.46, issue.1, pp.131-150, 1999.
DOI : 10.1002/(SICI)1097-0207(19990910)46:1<131::AID-NME726>3.3.CO;2-A

J. J. Moreau, Some numerical methods in multibody dynamics: application to granular materials, European Journal of Mechanics A/ Solids, vol.13, issue.4, pp.93-114, 1994.

J. J. Moreau and P. D. Panagiotopoulos, Nonsmooth mechanics and applications, 1988.
DOI : 10.1007/978-3-7091-2624-0

K. Muralidharan, J. H. Simmons, P. A. Deymier, and K. Runge, Molecular dynamics studies of brittle fracture in vitreous silica: Review and recent progress, Journal of Non-Crystalline Solids, vol.351, issue.18, pp.1532-1542, 2005.
DOI : 10.1016/j.jnoncrysol.2005.03.026

E. Oñate and S. Idelsohn, A Mesh-Free Finite Point Method for Advective- Diffusive Transport and Fluid Flow Problems, Computational Mechanics, vol.21, pp.283-292, 1998.

E. Oñate, S. Idelsohn, O. C. Zienkiewicz, R. L. Taylor, and C. Sacco, A stabilized finite point method for analysis of fluid mechanics problems, Computer Methods in Applied Mechanics and Engineering, vol.139, issue.1-4, pp.315-346, 1996.
DOI : 10.1016/S0045-7825(96)01088-2

E. Oñate, C. Sacco, and S. Idelsohn, A finite point method for incompressible flow problems, Computing and Visualization in Science, vol.3, issue.1-2, pp.67-75, 2000.
DOI : 10.1007/s007910050053

E. Orowan, Fracture and strength of solids, Reports on Progress in Physics, vol.12, issue.1, p.185, 1949.
DOI : 10.1088/0034-4885/12/1/309

C. R. Phipps, J. R. Luke, G. G. Mcduff, and T. Lippert, Laser ablation powered mini-thruster. High-power laser ablation IV, pp.833-842, 2002.

A. Polian and M. Grimsditch, to 25 GPa, Physical Review B, vol.47, issue.21, p.13979, 1993.
DOI : 10.1103/PhysRevB.47.13979

D. O. Potyondy and P. A. , A bonded-particle model for rock, International Journal of Rock Mechanics and Mining Sciences, vol.41, issue.8, pp.1329-1364, 2004.
DOI : 10.1016/j.ijrmms.2004.09.011

F. Ragueneau and F. Gatuingt, Inelastic behavior modelling of concrete in low and high strain rate dynamics, Computers & Structures, vol.81, issue.12, pp.1287-1299, 2003.
DOI : 10.1016/S0045-7949(03)00043-9

P. W. Randles and L. D. Libersky, Smoothed Particle Hydrodynamics: Some recent improvements and applications, Computer Methods in Applied Mechanics and Engineering, vol.139, issue.1-4, pp.375-408, 1996.
DOI : 10.1016/S0045-7825(96)01090-0

P. H. Rankine, Sur la propagation du mouvement dans les corps et spécialement dans les gaz parfaits, 1e Partie, Journal de l'École Polytechnique. Paris, vol.57, pp.3-97, 1887.

P. H. Rankine, Sur la propagation du mouvement dans les corps et spécialement dans les gaz parfaits, 2e Partie, Journal de l'École Polytechnique. Paris, vol.58, pp.1-125, 1889.

W. J. Rankine, On the Thermodynamic Theory of Waves of Finite Longitudinal Disturbance, Philosophical Transactions of the Royal Society of London, vol.160, issue.0, pp.277-288, 1870.
DOI : 10.1098/rstl.1870.0015

D. C. Rapaport, The event scheduling problem in molecular dynamic simulation, Journal of Computational Physics, vol.34, issue.2, pp.184-201, 1980.
DOI : 10.1016/0021-9991(80)90104-7

G. Rateau, Méthode Arlequin pour les problèmes mécaniques multi-échelles Applications à des problèmes de jonction et de fissuration de structures élancées, 2003.

D. Richard, I. Iordanoff, Y. Berthier, M. Renouf, and N. Fillot, Friction Coefficient as a Macroscopic View of Local Dissipation, Journal of Tribology, vol.129, issue.4, pp.829-835, 2007.
DOI : 10.1115/1.2768083

J. S. Rinehart, Scabbing of Metals under Explosive Attack: Multiple Scabbing, Journal of Applied Physics, vol.23, issue.11, pp.1229-1233, 1952.
DOI : 10.1063/1.1702038

F. C. Roesler, Brittle Fractures near Equilibrium, Proceedings of the Physical Society. Section B, vol.69, issue.10, pp.1956-981
DOI : 10.1088/0370-1301/69/10/303

E. Rougier, A. Munjiza, and N. W. John, Numerical comparison of some explicit time integration schemes used in DEM, FEM/DEM and molecular dynamics, International Journal for Numerical Methods in Engineering, vol.61, issue.6, pp.856-879, 2004.
DOI : 10.1002/nme.1092

T. Rouxel, H. Ji, F. Augereau, and B. Rufflé, Indentation deformation mechanism in glass: Densification versus shear flow, Journal of Applied Physics, vol.107, issue.9, 2010.
DOI : 10.1063/1.3407559

URL : https://hal.archives-ouvertes.fr/hal-00497135

T. Rouxel, H. Ji, T. Hammouda, and A. Moréac, Poisson???s Ratio and the Densification of Glass under High Pressure, Physical Review Letters, vol.100, issue.22, 2008.
DOI : 10.1103/PhysRevLett.100.225501

T. Rouxel and J. C. Sangleboeuf, The brittle to ductile transition in a soda-limesilica glass, pp.224-235, 2000.

E. Schlangen and E. J. Garboczi, New method for simulating fracture using an elastically uniform random geometry lattice, International Journal of Engineering Science, vol.34, issue.10, pp.1131-1144, 1996.
DOI : 10.1016/0020-7225(96)00019-5

E. Schlangen and J. G. Van-mier, Experimental and numerical analysis of micromechanisms of fracture of cement-based composites. Cement and Concrete Composites, pp.105-118, 1992.

E. Schlangen and J. G. Van-mier, Simple lattice model for numerical simulation of fracture of concrete materials and structures, Materials and Structures, pp.534-542, 1992.
DOI : 10.1007/BF02472449

J. R. Shewchuck, Tetrahedral mesh generation by Delaunay refinement, Proceedings of the fourteenth annual symposium on Computational geometry , SCG '98, pp.86-95, 1998.
DOI : 10.1145/276884.276894

G. H. Shi, Discontinous deformation Analysis, 1988.

W. Shiu, F. V. Donzé, and L. Daudeville, Discrete element modelling of missile impacts on a reinforced concrete target, International Journal of Computer Applications in Technology, vol.34, issue.1, pp.33-41, 2009.
DOI : 10.1504/IJCAT.2009.022700

R. Sibson, A vector identity for the Dirichlet tessellation, Mathematical Proceedings of the Cambridge Philosophical Society, vol.21, issue.01, pp.151-155, 1980.
DOI : 10.2307/1425985

R. Sibson, A brief description of natural neighbour interpolation Interpreting Multivariate Data, pp.21-36, 1981.

J. A. Smirnova, L. V. Zhigilei, and B. J. Garrison, A combined molecular dynamics and finite element method technique applied to laser induced pressure wave propagation, Computer Physics Communications, vol.118, issue.1, pp.11-16, 1999.
DOI : 10.1016/S0010-4655(98)00175-1

G. D. Smith, Numerical Solution of Partial Differential Equations: Finite Difference Methods, 1985.

H. Sugiura, R. Ikeda, K. Kondo, and T. Yamadaya, Densified silica glass after shock compression, Journal of Applied Physics, vol.81, issue.4, p.81, 1996.
DOI : 10.1063/1.364021

H. Sugiura, K. Kondo, and A. Sawaoka, Dynamic response of fused quartz in the permanent densification region, Journal of Applied Physics, vol.52, issue.5, pp.3375-3382, 1981.
DOI : 10.1063/1.329161

N. Sukumar, B. Moran, and T. Belytschko, The natural element method in solid mechanics, International Journal for Numerical Methods in Engineering, vol.27, issue.5, pp.839-887, 1998.
DOI : 10.1002/(SICI)1097-0207(19981115)43:5<839::AID-NME423>3.0.CO;2-R

N. Sukumar, B. Moranx, A. Y. Semenov, and V. V. Belikovk, Natural neighbour Galerkin methods, International Journal for Numerical Methods in Engineering, vol.139, issue.1, pp.1-27, 2001.
DOI : 10.1002/1097-0207(20010110)50:1<1::AID-NME14>3.0.CO;2-P

E. B. Tadmor, M. Ortiz, and R. Phillips, Quasicontinuum analysis of defects in solids, Philosophical Magazine A, vol.64, issue.6, pp.1529-1563, 1996.
DOI : 10.1088/0953-8984/2/24/004

Y. Tan, D. Yang, and Y. Sheng, Discrete element method (DEM) modelling of fracture and damage in the machining process of polycrystalline sic, Journal of the European Ceramic Society, issue.6, p.29, 2009.

G. Tani, L. Orazi, A. Fortunato, A. Ascari, and G. Campana, Warm Laser Shock Peening: New developments and process optimization, CIRP Annals - Manufacturing Technology, vol.60, issue.1, pp.219-222, 2011.
DOI : 10.1016/j.cirp.2011.03.115

J. M. Ting, M. Khwaja, J. D. Rowell, and J. D. Rowell, An ellipse-based discrete element model for granular materials, International Journal for Numerical and Analytical Methods in Geomechanics, vol.19, issue.9, pp.603-623, 1993.
DOI : 10.1002/nag.1610170902

L. Tollier and R. Fabbro, Study of the laser-driven spallation process by the VISAR interferometry technique. II. Experiment and simulation of the spallation process, Journal of Applied Physics, vol.83, issue.3, p.1231, 1998.
DOI : 10.1063/1.366820

L. Tollier, R. Fabbro, and E. Bartnicki, Study of the laser-driven spallation process by the velocity interferometer system for any reflector interferometry technique. I. Laser-shock characterization, Journal of Applied Physics, vol.83, issue.3, p.1224, 1998.
DOI : 10.1063/1.366819

L. Traversoni, Natural neighbour finite elements, International Conference on Hydraulic Engineering Software Hydrosoft Proceedings, pp.291-297, 1994.

H. K. Versteeg and W. Malalasekera, An Introduction to Computational Fluid Dynamics: The Finite Volume Method, 2007.

G. Voronoi, Nouvelles applications des paramètres continus à la théorie des formes quadratiques, Journal für die Reine und Angewandte Mathematik, vol.133, pp.97-178, 1907.

J. Wackerle, Shock???Wave Compression of Quartz, Journal of Applied Physics, vol.33, issue.3, pp.922-937, 1962.
DOI : 10.1063/1.1777192

J. M. Walsh and R. H. Christian, Equation of State of Metals from Shock Wave Measurements, Physical Review, vol.97, issue.6, pp.1544-1556, 1955.
DOI : 10.1103/PhysRev.97.1544

C. E. Weir and S. Spinner, Comments on "Effects of Ultrahigh Pressures on Glass", Journal of the American Ceramic Society, vol.84, issue.11, p.196, 1962.
DOI : 10.1063/1.1722519

S. M. Wiederhorn, Influence of Water Vapor on Crack Propagation in Soda-Lime Glass, Journal of the American Ceramic Society, vol.42, issue.1, pp.407-414, 1967.
DOI : 10.1021/ja01168a005

S. M. Wiederhorn and J. P. Guin, Fracture of silicate glasses: ductile or brittle? Physical Review letters, p.215502, 2004.

J. R. Williams, G. Hocking, and G. G. Mustoe, The Theoretical Basis of the Discrete Element Method, Numerical Methods of Engineering, 1985.

R. M. Wood, Laser-Induced Damage of Optical Materials. Institute of Physics Publishing, 2003.

H. C. Wu, Continuum Mechanics and Plasticity, 2005.
DOI : 10.1201/9780203491997

S. P. Xiao and T. Belytschko, A bridging domain method for coupling continua with molecular dynamics, Computer Methods in Applied Mechanics and Engineering, vol.193, issue.17-20, 2003.
DOI : 10.1016/j.cma.2003.12.053

W. Xie, Z. Liu, and Y. L. Young, Application of a coupled Eulerian??????Lagrangian method to simulate interactions between deformable composite structures and compressible multiphase flow, International Journal for Numerical Methods in Engineering, vol.7, issue.12, pp.1497-1519, 2009.
DOI : 10.1002/nme.2667

S. Yoshida, J. C. Sangleboeuf, and T. , Quantitative evaluation of indentation-induced densification in glass, Journal of Materials Research, vol.5, issue.12, 2005.
DOI : 10.1063/1.117458

J. Yvonnet, Nouvelles approches sans maillage basées sur la méthode des éléments naturels pour la simulation numérique des procédés de mise en forme, 2004.

J. Yvonnet, F. Chinesta, P. Lorong, and D. Ryckelynck, The constrained natural element method (C-NEM) for treating thermal models involving moving interfaces, International Journal of Thermal Sciences, vol.44, issue.6, pp.559-569, 2005.
DOI : 10.1016/j.ijthermalsci.2004.12.007

URL : https://hal.archives-ouvertes.fr/hal-00021103

J. Yvonnet, D. Ryckelynck, P. Lorong, and F. Chinesta, A new extension of the natural element method for non-convex and discontinuous problems: the constrained natural element method(C-NEM), International Journal for Numerical Methods in Engineering, vol.60, issue.8, pp.1451-1474, 2004.
DOI : 10.1002/nme.1016

URL : https://hal.archives-ouvertes.fr/hal-01508695

J. Yvonnet, D. Ryckelynck, P. Lorong, and P. Chinesta, Interpolation naturelle sur les domaines non convexes par l'utilisation du diagramme de Voronoi constraint-Méthode des éléments C-Naturels. Revue Européenne des éléments finis, pp.487-509, 2003.

C. S. Zha, R. J. Hemley, M. H. , T. S. Duffy, and C. Meade, Acoustic velocities and refractive index of SiO2 glass to 57.5 GPa by Brillouin scattering, Physical Review B, issue.18, pp.5013105-13112, 1994.

M. Zhou, A new look at the atomic level virial stress: on continuum-molecular system equivalence, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.459, issue.2037, pp.2347-2392, 2003.
DOI : 10.1098/rspa.2003.1127

T. Zhu and S. N. Altruni, A modified collocation method and a penalty formulation for enforcing the essential boundary conditions in the element free Galerkin method, Computational Mechanics, vol.21, issue.3, pp.211-222, 1998.
DOI : 10.1007/s004660050296

O. C. Zienkiewicz and R. L. Taylor, The Finite Element Method for Solid and Structural Mechanics, 2005.

O. C. Zienkiewicz, R. L. Taylor, and P. Nithiarasu, The Finite Element Method for Fluid Dynamics, 2005.

O. C. Zienkiewicz, R. L. Taylor, and J. Z. Zhu, Finite Element Method: Its Basis & Fundamentals, 2005.