S. No and . F1, Theoretical values are included for comparison, shown in dotted line Narrow conductors, like sample Nos.B1 and A1 show that their propagation delays (v = ?/) are much longer and the characteristic impedances are far more frequency-dependent than those of the wider lines. The high resistance has made the nanowire slower compared to conventional transmission lines. Good agreement can be seen between the model and the actual values, except for sample No.A1 At 90 GHz, its Re(Zc) is 27.8% lower than the simulation while ? and are 13.0% and 12.5% higher, respectively. Im(Zc), on the other hand, matches perfectly with the theoretical value. It is likely that elements like inductance/capacitance associated with quantum transport effect need to be added to physically interpret the additional latency and losses in sample No.A1. However, it is true that they might not be as impressive as in the case of a CNT [27]. An interesting design problem is: can we make use of the appearance of slow wave while avoiding high conduction losses by utilizing a multiple nanowire system? Let us examine the performance of a parallel combination of nanowires and a single wire having the same amount of conductor. Sample No.A2 b and B1 will be a perfect example (Figure 3.117 and Figure 3.118) Sample No.A1 is included for comparison, If comparing sample Nos.A1 and B1, 39.5% increase in can be observed at 90 GHz. Yet, the increase is only 5.6% if two nanowires of the same dimension as sample No.A1 are used instead (sample No.A2 b ). Its attenuation is effectively reduced but still higher than Sample No.B1 by 16%. A reasonable trade-off may be made to achieve desired circuit performance

V. Ermolov, M. Heino, A. Karkkainen, R. Lehtiniemi, N. Nefedov et al., Significance of Nanotechnology for Future Wireless Devices and Communications, 2007 IEEE 18th International Symposium on Personal, Indoor and Mobile Radio Communications, pp.1-5, 2007.
DOI : 10.1109/PIMRC.2007.4394126

R. Hinchet, J. Ferreira, J. Keraudy, G. Ardila, E. Pauliac-vaujour et al., Scaling rules of piezoelectric nanowires in view of sensor and energy harvester integration, 2012 International Electron Devices Meeting, 2012.
DOI : 10.1109/IEDM.2012.6478988

H. Iwai, Roadmap for 22nm and beyond (Invited Paper), Microelectronic Engineering, vol.86, issue.7-9, pp.1520-1528, 2009.
DOI : 10.1016/j.mee.2009.03.129

P. S. Peercy, The drive to miniaturization, Nature, vol.406, issue.6799, pp.1023-1026, 2000.
DOI : 10.1038/35023223

Y. Cui, Z. Zhang, D. Wang, W. U. Wang, and C. M. Lieber, High Performance Silicon Nanowire Field Effect Transistors, Nano Letters, vol.3, issue.2, pp.149-152, 2003.
DOI : 10.1021/nl025875l

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.468.3218

W. Lu, P. Xie, and C. M. Lieber, Nanowire Transistor Performance Limits and Applications, IEEE Transactions on Electron Devices, vol.55, issue.11, pp.2859-2876, 2008.
DOI : 10.1109/TED.2008.2005158

A. Javey, J. Guo, Q. Wang, M. Lundstrom, and H. Dai, Ballistic carbon nanotube fieldeffect transistors, pp.654-657, 1999.
DOI : 10.1038/nature01797

S. Heinze, J. Tersoff, R. Martel, V. Derycke, and J. Appenzeller, Carbon Nanotubes as Schottky Barrier Transistors, Physical Review Letters, vol.89, issue.10, p.106801, 2002.
DOI : 10.1103/PhysRevLett.89.106801

A. D. Franklin, M. Luisier, S. Han, G. Tulevski, C. M. Breslin et al., Sub-10 nm Carbon Nanotube Transistor, Nano Letters, vol.12, issue.2, pp.758-762, 2012.
DOI : 10.1021/nl203701g

J. Guo, S. Hasan, A. Javey, G. Bosman, and M. Lundstrom, Assessment of High-Frequency Performance Potential of Carbon Nanotube Transistors, IEEE Transactions On Nanotechnology, vol.4, issue.6, pp.715-721, 2005.
DOI : 10.1109/TNANO.2005.858601

R. Wang, J. Zhuge, R. Huang, Y. Tian, H. Xiao et al., Analog/RF Performance of Si Nanowire MOSFETs and the Impact of Process Variation, IEEE Transactions on Electron Devices, vol.54, issue.6, pp.1288-1294, 2007.
DOI : 10.1109/TED.2007.896598

P. J. Burke, AC performance of nanoelectronics: towards a ballistic THz nanotube transistor, Solid-State Electronics, vol.48, issue.10-11, pp.1981-1986, 2004.
DOI : 10.1016/j.sse.2004.05.044

C. Rutherglen, D. Jain, and P. J. Burke, Nanotube electronics for radiofrequency applications, Nature Nanotechnology, vol.53, issue.12, pp.811-819, 2009.
DOI : 10.1038/nnano.2009.355

S. Cho, K. Kim, B. Park, and I. Kang, Non-Quasi-Static Modeling of Silicon Nanowire Metal???Oxide???Semiconductor Field-Effect Transistor and Its Model Verification up to 1 THz, Japanese Journal of Applied Physics, vol.49, issue.11
DOI : 10.1143/JJAP.49.110206

P. J. Burke, Carbon nanotube devices for GHz to THz applications, Proceedings of International Semiconductor Device Research Symposium, pp.314-315, 2003.

T. Quémerais, L. Moquillon, J. Fournier, and P. Benech, 65-, 45-, and 32-nm Aluminium and Copper Transmission-Line Model at Millimeter-Wave Frequencies, IEEE Transactions on Microwave Theory and Techniques, vol.58, issue.9, pp.2426-2433, 2010.
DOI : 10.1109/TMTT.2010.2058277

C. Durkan and M. E. Welland, Size effects in the electrical resistivity of polycrystalline nanowires, Physical Review B, vol.61, issue.20, pp.14215-14218, 2000.
DOI : 10.1103/PhysRevB.61.14215

C. T. White and T. Todorov, Quantum electronics -nanotubes go ballistic, Nature, vol.411, issue.6838, pp.649-651, 2001.
DOI : 10.1038/35079720

F. Kreupl, A. P. Graham, M. Liebau, G. S. Duesberg, R. Seidel et al., Carbon nanotubes in interconnect applications, Microelectronic Engineering, vol.64, issue.1-4, pp.399-408, 2002.
DOI : 10.1016/S0167-9317(02)00814-6

N. Srivastava and K. Banerjee, Performance analysis of carbon nanotube interconnects for VLSI applications, ICCAD-2005. IEEE/ACM International Conference on Computer-Aided Design, 2005., pp.383-390, 2005.
DOI : 10.1109/ICCAD.2005.1560098

A. Raychowdhury and K. Roy, A circuit model for carbon nanotube interconnects: comparative study with Cu interconnects for scaled technologies, IEEE/ACM International Conference on Computer Aided Design, 2004. ICCAD-2004., pp.237-240, 2004.
DOI : 10.1109/ICCAD.2004.1382578

P. L. Mceuen and J. Park, Electron Transport in Single-Walled Carbon Nanotubes, MRS Bulletin, vol.80, issue.04, pp.272-275, 2004.
DOI : 10.1557/mrs2004.79

A. Nieuwoudt and Y. Massoud, Evaluating the impact of resistance in carbon nanotube bundles for VLSI interconnect using diameter-dependent modeling techniques, IEEE Transactions on Electron Devices, vol.53, issue.10, pp.2460-2466, 2006.
DOI : 10.1109/TED.2006.882035

P. J. Burke, An RF circuit model for carbon nanotubes, Proceedings of the 2002 2nd IEEE Conference on, pp.393-396, 2002.

S. Salahuddin, M. Lundstrom, and S. Datta, Transport Effects on Signal Propagation in Quantum Wires, IEEE Transactions on Electron Devices, vol.52, issue.8, pp.1734-1742, 2005.
DOI : 10.1109/TED.2005.852170

J. J. Plombon, K. P. O-'brien, F. Gstrein, and V. M. Dubin, High-frequency electrical properties of individual and bundled carbon nanotubes, Applied Physics Letters, vol.90, issue.6, p.63106, 2007.
DOI : 10.1063/1.2437724

P. Russer, N. Fichtner, P. Lugli, W. Porod, J. A. Russer et al., Nanoelectronics-Based Integrate Antennas, IEEE Microwave Magazine, vol.11, issue.7, pp.58-71, 2010.
DOI : 10.1109/MMM.2010.938570

W. Steinhögl, G. Schindler, G. Steinlesberger, and M. Engelhardt, Size-dependent resistivity of metallic wires in the mesoscopic range, Physical Review B, vol.66, issue.7, 2002.
DOI : 10.1103/PhysRevB.66.075414

C. Wang, Y. Hu, C. M. Lieber, and S. Sun, Ultrathin Au Nanowires and Their Transport Properties, Journal of the American Chemical Society, vol.130, issue.28, pp.8902-8903, 2008.
DOI : 10.1021/ja803408f

N. Kharche, S. R. Manjari, Y. Zhou, R. E. Geer, and S. K. Nayak, A comparative study of quantum transport properties of silver and copper nanowires using first principles calculations, Journal of Physics: Condensed Matter, vol.23, issue.8, 2011.
DOI : 10.1088/0953-8984/23/8/085501

G. W. Hanson, A Common Electromagnetic Framework for Carbon Nanotubes and Solid Nanowires???Spatially Dispersive Conductivity, Generalized Ohm's Law, Distributed Impedance, and Transmission Line Model, IEEE Transactions on Microwave Theory and Techniques, vol.59, issue.1, pp.9-20, 2011.
DOI : 10.1109/TMTT.2010.2090693

P. J. Burke, S. Li, and Z. Yu, Quantitative theory of nanowire and nanotube antenna performance, IEEE Transactions On Nanotechnology, vol.5, issue.4, pp.314-334, 2006.
DOI : 10.1109/TNANO.2006.877430

P. Russer and N. Fichtner, Nanoelectronics in Radio-Frequency Technology, IEEE Microwave Magazine, vol.11, issue.3, pp.119-135, 2010.
DOI : 10.1109/MMM.2010.936077

S. Demoustier, E. Minoux, M. L. Baillif, and M. Charles, Review of two microwave applications of carbon nanotubes: nano-antennas and nano-switches, Comptes Rendus Physique, vol.9, issue.1, pp.53-66, 2008.
DOI : 10.1016/j.crhy.2008.01.001

P. Russer, N. Fichtner, P. Lugli, W. Porod, J. A. Russer et al., Monolithic integrated antennas and nanoantennas for wireless sensors and for wireless intrachip and interchip communication, Proceedings of European of Microwave Conference, pp.703-706, 2010.

G. W. Hanson, Fundamental transmitting properties of carbon nanotube antennas, IEEE Transactions on Antennas and Propagation, vol.53, issue.11, pp.3426-3435, 2005.
DOI : 10.1109/TAP.2005.858865

G. W. Hanson, Radiation Efficiency of Nano-Radius Dipole Antennas in the Microwave and Far-infrared Regimes, IEEE Antennas and Propagation Magazine, vol.50, issue.3, pp.66-77, 2008.
DOI : 10.1109/MAP.2008.4563565

P. Guo and H. Chuang, A 60-GHz millimeter-wave CMOS RFIC-on-chip meander-line planar inverted-F antenna for WPAN applications, 2008 IEEE Antennas and Propagation Society International Symposium, pp.2522-2525, 2007.
DOI : 10.1109/APS.2008.4619464

F. Gutierrez, S. Agarwal, K. Parrish, and T. S. Rappaport, On-chip integrated antenna structures in CMOS for 60 GHz WPAN systems, Proceedings of IEEE Global Telecommunications Conference, pp.1-7, 2009.
DOI : 10.1109/JSAC.2009.091007

T. N. Theis, The future of interconnection technology, IBM Journal of Research and Development, vol.44, issue.3, pp.379-390, 2000.
DOI : 10.1147/rd.443.0379

T. S. Rappaport, F. Gutierrez, and T. , Millimeter-Wave and Terahertz Wireless RFIC and On-Chip Antenna Design: Tools and Layout Techniques, 2009 IEEE Globecom Workshops, pp.1-7, 2009.
DOI : 10.1109/GLOCOMW.2009.5360682

P. Bharadwaj, B. Deutsch, and L. Novotny, Optical Antennas, Advances in Optics and Photonics, pp.438-483, 2009.
DOI : 10.1364/AOP.1.000438

H. Y. Zhou, X. Chen, D. S. Espinoza, and A. Mickelson, Nanoscale Optical Dielectric Rod Antenna for On-Chip Interconnecting Networks, IEEE Transactions on Microwave Theory and Techniques, vol.59, issue.10, pp.2624-2632, 2011.
DOI : 10.1109/TMTT.2011.2156423

L. Gomez-rojas, S. Bhattacharyya, E. Mendoza, D. C. Cox, J. M. Rosolen et al., RF Response of Single-Walled Carbon Nanotubes, Nano Letters, vol.7, issue.9, pp.2672-2675, 2007.
DOI : 10.1021/nl0710598

S. C. Jun, X. M. Huang, S. Moon, H. J. Kim, J. Hone et al., Passive electrical properties of multi-walled carbon nanotubes up to 0.1???THz, New Journal of Physics, vol.9, issue.8, p.265, 2007.
DOI : 10.1088/1367-2630/9/8/265

K. Kim, T. M. Wallis, P. Rice, C. Chiang, A. Imtiaz et al., Modeling and metrology of metallic nanowires with application to microwave interconnects, Proceedings of IEEE International Microwave Symposium Digest (MTT-S), pp.1292-1295, 2010.

T. M. Wallis, K. Kim, D. S. Filipovic, and P. Kabos, Nanofibers for RF and Beyond, IEEE Microwave Magazine, vol.12, issue.7, pp.51-61, 2011.
DOI : 10.1109/MMM.2011.942763

Z. Zou, J. Kai, and C. H. Ahn, Electrical characterization of suspended gold nanowire bridges with functionalized self-assembled monolayers using a top-down fabrication method, Journal of Micromechanics and Microengineering, vol.19, issue.5, p.55002, 2009.
DOI : 10.1088/0960-1317/19/5/055002

J. E. Post, On determing the characteristic impedance of low-loss transmission lines, Microwave and Optical Technology Letters, pp.176-180, 2005.

F. R. Madriz, J. R. Jameson, S. Krishnan, X. Sun, and C. Y. Yang, Circuit Modeling of High-Frequency Electrical Conduction in Carbon Nanofibers, IEEE Transactions on Electron Devices, vol.56, issue.8, pp.1557-1561, 2009.
DOI : 10.1109/TED.2009.2022691

A. M. Mangan, S. P. Voinigescu, M. Yang, and M. Tazlauanu, De-embedding transmission line measurements for accurate modeling of IC designs, IEEE Transactions on Electron Devices, vol.53, issue.2, pp.235-241, 2006.
DOI : 10.1109/TED.2005.861726

Y. Tretiakov, J. Rascoe, K. Vaed, W. Woods, S. Venkatadri et al., A new onwafer de-embedding technique for on-chip RF transmission line interconnect characterization, Proceedings of IEEE Automatic RF Techniques Group (ARFTG) Conference, pp.69-72, 2004.

H. Ito and K. Masu, A simple through-only de-embedding method for on-wafer Sparameter measurements up to 110 GHz, Proceedings of IEEE MTT-S Internation Microwave SYmposium Digest, pp.383-386, 2008.

D. Gu, T. M. Wallis, P. Blanchard, S. Lim, A. Imtiaz et al., De-embedding parasitic elements of GaN nanowire metal semiconductor field effect transistors by use of microwave measurements, Applied Physics Letters, vol.98, issue.22, 2011.
DOI : 10.1063/1.3597408

P. Rice, T. M. Wallis, S. E. Russek, and P. Kabos, Broadband Electrical Characterization of Multiwalled Carbon Nanotubes and Contacts, Nano Letters, vol.7, issue.4, pp.1086-1090, 2007.
DOI : 10.1021/nl062725s

F. R. Madriz, J. R. Jameson, S. Krishnan, X. Sun, and C. Y. Yang, Test Structure to Extract Circuit Models of Nanostructures Operating at High Frequencies, 2009 IEEE International Conference on Microelectronic Test Structures, pp.138-140, 2009.
DOI : 10.1109/ICMTS.2009.4814605

C. Rutherglan, D. Jain, and P. J. Burke, rf resistance and inductance of massively parallel single walled carbon nanotubes: Direct, broadband measurements and near perfect 50?? impedance matching, Applied Physics Letters, vol.93, issue.8, pp.83119-83120, 2008.
DOI : 10.1063/1.2970031

K. Kim, T. M. Wallis, P. Rice, D. Gu, S. H. Lim et al., High-Frequency Characterization of Contact Resistance and Conductivity of Platinum Nanowires, IEEE Transactions on Microwave Theory and Techniques, vol.59, issue.10, pp.2647-2654, 2011.
DOI : 10.1109/TMTT.2011.2163417

F. Schnieder and W. Heinrich, Model of thin-film microstrip line for circuit design, IEEE Transactions on Microwave Theory and Techniques, vol.49, issue.1, pp.104-110, 2001.
DOI : 10.1109/22.899967

S. J. Orfanidis, Electromagnetic Waves and Antennas, 2002.

L. Hayden, An enhanced Line-Reflect-Reflect-Match calibration ARFTG Microwave Measurements Conference, pp.143-149, 2006.

. Anritsu, Application Note: Embedding/De-embedding, 2002.

. Agilent, Application Note 1364-1: De-embedding and Embedding S-Parameter Networks Using a Vector Network Analyzer, 2004.

M. C. Koolen, J. A. Geelen, and M. P. Versleijen, An improved deembedding technique for on-wafer high-frequency characterization, Proceedings of the Bipolar Circuits and Technology Meeting, pp.188-191, 1991.

M. Cho, G. Huang, C. Chiu, K. Chen, A. Peng et al., A Cascade Open-Short-Thru (COST) De-Embedding Method for Microwave On-Wafer Characterization and Automatic Measurement, IEICE Transactions on Electronics, vol.88, issue.5, pp.845-850, 2005.
DOI : 10.1093/ietele/e88-c.5.845

Y. Huang and K. Boyle, Antennas from Theory to Practice, 2008.

M. Upmaka, More Momentum Questions, 2002.

Z. Wang and M. J. Deen, Accurate modeling of thin-film resistor up to 40GHz, Proceeding of 32th European Solid-State Device Research Conference, pp.307-310, 2002.

J. P. Thakur, A. K. Pandey, A. Kedar, K. K. Gupta, and H. P. Vyas, Modelling of GaAs-MMIC microstrip line up to 40 GHz, International Journal of RF and Microwave Computer-Aided Engineering, vol.38, issue.5, pp.475-482, 2004.
DOI : 10.1002/mmce.20035

V. Milanovic, M. Ozgur, D. C. Degroot, J. A. Jargon, M. Gaitan et al., Characterization of broad-band transmission for coplanar waveguides on CMOS silicon substrates, IEEE Transactions on Microwave Theory and Techniques, vol.46, issue.5, p.42109, 2010.
DOI : 10.1109/22.668675

W. Heinrich, Quasi-TEM description of MMIC coplanar lines including conductor-loss effects, IEEE Transactions on Microwave Theory and Techniques, vol.41, issue.1, pp.45-52, 1993.
DOI : 10.1109/22.210228

T. E. Kolding, On-wafer calibration techniques for giga-hertz CMOS measurements, ICMTS 1999. Proceedings of 1999 International Conference on Microelectronic Test Structures (Cat. No.99CH36307), pp.105-110, 1999.
DOI : 10.1109/ICMTS.1999.766225

L. Nougaret, G. Dambrine, S. Lepilliet, H. Happy, N. Chimot et al., Gigahertz characterization of a single carbon nanotube, Applied Physics Letters, vol.96, issue.4, p.42109, 2010.
DOI : 10.1063/1.3284513

URL : https://hal.archives-ouvertes.fr/hal-00548562

E. Gago-ribas, C. Dehesa-mart, and M. J. Gonzalez-morales, Complex analysis of the lossy-transmission line theory: a generalized smith chart, Turkish Journal of Electrical Engineering & Computer Sciences, vol.14, pp.173-194, 2006.

J. Kim, M. Choi, and S. Lee, A "Thru-Short-Open" De-embedding Method for Accurate On-Wafer RF Measurements of Nano-Scale MOSFETs, JSTS:Journal of Semiconductor Technology and Science, vol.12, issue.1, pp.53-58, 2012.
DOI : 10.5573/JSTS.2012.12.1.53

R. N. Simons, Coplanar Waveguide Circuits, Components, and Systems, 2001.
DOI : 10.1002/0471224758

A. B. Rashid, S. Watanabe, and T. Kikkawa, Characteristics of Integrated Antenna on Si for On-Chip Wireless Interconnect, Japanese Journal of Applied Physics, vol.42, issue.Part 1, No. 4B, pp.2204-2209, 2003.
DOI : 10.1143/JJAP.42.2204

B. A. Floyd, C. Hung, and K. O. , Intra-chip wireless interconnect for clock distribution implemented with integrated antennas, receivers, and transmitters, Journal of solid-state circuits, pp.543-52, 2002.
DOI : 10.1109/4.997846

Y. P. Zhang and Z. M. Chen, Propagation Mechanisms of Radio Waves Over Intra-Chip Channels With Integrated Antennas: Frequency-Domain Measurements and Time-Domain Analysis, Transaction on Antennas and Propagation, pp.2900-2906, 2007.
DOI : 10.1109/TAP.2007.905867

E. Laskin, M. Khanpour, S. T. Nicolson, A. Tomkins, A. Cathelin et al., Nanoscale CMOS transceiver design in the 90-170-GHz range, Transaction on Microwave Theory and Techniques, pp.3477-3490, 2009.

A. B. Rashid, S. Watanabe, and T. Kikkawa, High transmission gain integrated antenna on extremely high resistivity Si for ULSI wireless interconnect, IEEE Electron Device Letters, vol.23, issue.12, pp.731-733, 2002.
DOI : 10.1109/LED.2002.805754

K. T. Chan, A. Chin, Y. B. Chen, Y. Lin, T. S. Duh et al., Integrated antennas on Si, proton-implanted Si and Si-on-quartz, International Electron Devices Meeting. Technical Digest (Cat. No.01CH37224), 2001.
DOI : 10.1109/IEDM.2001.979659

S. Hsu, K. Wei, C. Hsu, and H. Chuang, A 60-GHz millimeter-wave CPWfed Yagi antenna fabricated by using 0.18-µm CMOS technology, Electron Device Letters, vol.28, pp.625-627, 2008.

C. A. Balanis, Antenna Theory: Analysis and Design, 2005.

P. Kuo, S. Hsu, C. Li, C. Hsu, and H. Chuang, A 60-GHz Millimeterwave triangular monopole antenna fabricated using 0.18-?m CMOS technology, International Conference on Innovative Computing Information and Control, p.237, 2008.

D. Titz, F. B. Abdeljelil, S. Jan, F. Ferrero, C. Luxey et al., Design and characterization of CMOS on-chip antennas for 60 GHz communications, Radioengineering, vol.21, p.324, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00763516

Y. P. Zhang, A. M. Chen, and M. Sun, Propagation Mechanisms of Radio Waves Over Intra-Chip Channels With Integrated Antennas: Frequency-Domain Measurements and Time-Domain Analysis, IEEE Transactions on Antennas and Propagation, vol.55, issue.10, pp.2900-2906, 2007.
DOI : 10.1109/TAP.2007.905867

A. Triantafyllou, Etude, réalisation et caractérisation d'interconnexions radiofréquences pour les circuits intégrés silicium des générations à venir, 2006.

L. Yan and G. W. Hanson, Wave propagation mechanisms for intra-chip communications, Transactions on Antennas and Propagation, vol.57, issue.9, pp.2715-2724, 2009.

X. He, J. Li, M. Zhang, and S. Qi, Improvement of integrated dipole antenna performance using diamond for intra-chip wireless interconnection, 2010 IEEE International Conference on Integrated Circuit Design and Technology, pp.248-251, 2010.
DOI : 10.1109/ICICDT.2010.5510249

P. Russer, J. A. Russer, F. Mukhtar, P. Luglit, S. Wane et al., Integrated antennas for RF sensing, wireless communications and energy harvesting applications, 2013 International Workshop on Antenna Technology (iWAT), pp.1-4, 2013.
DOI : 10.1109/IWAT.2013.6518285

X. N. Low and Z. N. Chen, A UWB dipole antenna with enhanced impedance and gain performance, Transactions on Antennas and Propagation, vol.57, pp.2959-2966, 2009.

V. Deepu, S. Mridula, R. Sujith, and P. Mohanan, Slot line FED dipole antenna for wide band applications, Microwave and Optical Technology Letters, vol.48, issue.3, pp.826-830, 2009.
DOI : 10.1002/mop.24184

H. Issa, P. Ferrari, E. Hourdakis, and A. G. Nassiopoulou, On-Chip High-Performance Millimeter-Wave Transmission Lines on Locally Grown Porous Silicon Areas, IEEE Transactions on Electron Devices, vol.58, issue.11, pp.3720-3724, 2011.
DOI : 10.1109/TED.2011.2165719

URL : https://hal.archives-ouvertes.fr/hal-00679333

M. H. Barakat, F. Ndagijimana, and C. Delaveaud, On the design of 60 GHz integrated antennas on 0.13 ??m SOI technology, 2007 IEEE International SOI Conference, pp.2526-2529, 2007.
DOI : 10.1109/SOI.2007.4357880

URL : https://hal.archives-ouvertes.fr/hal-00193727

M. Capelle, J. Billoué, P. Poveda, and G. Gautier, RF performances of inductors integrated on localized p+-type porous silicon regions, Nanoscale Research Letters, vol.7, issue.1, p.523, 2012.
DOI : 10.1002/pssa.201000027

H. Chuang, L. Yeh, P. Kuo, K. Tsai, and H. Yue, A 60-GHz Millimeter-Wave CMOS Integrated On-Chip Antenna and Bandpass Filter, IEEE Transactions on Electron Devices, vol.58, issue.7, pp.1837-1845, 2011.
DOI : 10.1109/TED.2011.2138141

K. Kim, B. A. Floyd, J. L. Mehta, Y. Hyun, C. M. Hung et al., On-Chip Antennas in Silicon ICs and Their Application, IEEE Transactions on Electron Devices, vol.52, issue.7, pp.1312-1323, 2005.
DOI : 10.1109/TED.2005.850668

W. L. Stutzmann and G. A. Thiele, Antenna Theory and Design, 1981.

K. B. Ali, C. R. Neve, A. Gharsallah, and J. Raskin, Impact of crosstalk into high resistivity silicon substrate on the RF performance of SOI MOSFET, Journal of Telecommunications & Information Technology, vol.2010, p.93, 2010.

H. S. Gamble, B. M. Armstrong, S. J. Mitchell, Y. Wu, V. F. Fusco et al., Low-loss CPW lines on surface stabilized high-resistivity silicon, IEEE Microwave and Guided Wave Letters, vol.9, issue.10
DOI : 10.1109/75.798027

D. Lederer and J. P. Raskin, New substrate passivation method dedicated to HR SOI wafer fabrication with increased substrate resistivity, IEEE Electron Device Letters, vol.26, issue.11, pp.805-807, 2005.
DOI : 10.1109/LED.2005.857730