

Anatomie comparée des palmiers - Identification assistée par ordinateur, applications en paléobotanique et en archéobotanique

Romain Thomas

► To cite this version:

Romain Thomas. Anatomie comparée des palmiers - Identification assistée par ordinateur, applications en paléobotanique et en archéobotanique. Botanique. Museum national d'histoire naturelle - MNHN PARIS, 2011. Français. NNT: . tel-00951106

HAL Id: tel-00951106 https://theses.hal.science/tel-00951106

Submitted on 26 Feb 2014

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Année 2011

Muséum national d'Histoire naturelle

École doctorale 227 Sciences de la Nature et de l'Homme

N° attribué par la bibliothèque

Thèse pour obtenir le grade de

docteur du Muséum national d'Histoire naturelle Discipline : BOTANIQUE – PALÉOBOTANIQUE

Présentée et soutenue publiquement par Romain THOMAS le 04 octobre 2011

ANATOMIE COMPARÉE DES PALMIERS

IDENTIFICATION-ASSISTÉE PAR ORDINATEUR APPLICATIONS EN PALÉOBOTANIQUE ET EN ARCHÉOBOTANIQUE

Sous la direction de Dario DE FRANCESCHI, maître de conférences MNHN et de Margareta TENGBERG, maître de conférences MNHN

Jury :

Régine VIGNES-LEBBE, professeur, université Pierre et Marie Curie, Paris, France \ldots Président du Jury
Brigitte MEYER-BERTHAUD, directeur de recherche, CNRS, Montpellier, France rapporteur
Fred STAUFFER, conservateur, Conservatoire et Jardin botaniques de Genève, Suisse rapporteur
Jean BROUTIN, professeur, université Pierre et Marie Curie, Paris, France examinateur
Sophie NADOT, professeur, université Paris-Sud 11, France examinateur
Jean-Christophe PINTAUD, chargé de recherche, IRD, Montpellier, France examinateur
Dario DE FRANCESCHI, maître de conférences, MNHN, Paris, France directeur de thèse
Margareta TENGBERG, maître de conférences, MNHN, Paris, France directrice de thèse

RÉSUMÉ. – La plus ancienne tige fossile de palmier (Arecaceae Bercht. & J.Presl) provient des terrains Crétacés de l'Anjou (Turonien). En raison de l'absence de référentiel sur l'anatomie du stipe des palmiers, presque aucune identification n'a été réalisée en dessous du rang familial tant pour le matériel fossile que pour les restes archéologiques. Dans cette étude, à partir de l'analyse de l'anatomie des stipes de palmiers actuels, un système descriptif est mis en place afin de réaliser des identifications plus précises. L'échantillonnage est réalisé de manière à recouvrir toutes les tribus sur l'ensemble des cinq sous-familles (Calamoideae, Nypoideae, Coryphoideae, Ceroxyloideae, Arecoideae). Ainsi, 154 spécimens appartenant à 81 genres sont analysés. La sous-famille des Coryphoideae est particulièrement étudiée (28/46 genres) et chacune de ses tribus est détaillée. Ces descriptions sont intégrées dans une base de connaissance élaborée avec le logiciel Xper² (http://www.infosyslab.fr/Palm-ID/) qui permet de réaliser des identifications interactives au niveau sous-familial, tribal ou générique avec l'aide de 32 descripteurs et de 108 états. Cette étude a mis en évidence que les différentes sous-familles et que la plupart des tribus des Coryphoideae peuvent se différencier sur la base de structures anatomiques (faisceaux fibro-vasculaires, nombre de vaisseaux, organisation du parenchyme, répartition générale des faisceaux fibro-vasculaires dans la coupe transversale). Les différents modes de croissances sont redéfinis à partir de deux mécanismes : la croissance post-primaire du parenchyme fondamental et la différenciation centrifuge de la partie fibreuse des faisceaux fibro-vasculaires. Celle-ci se manifeste par la formation de nouvelles fibres au niveau de la périphérie de cette partie fibreuse et n'est pas observée chez les Coryphoideae (sauf chez les Caryoteae). Les résultats de cette étude ont ensuite été mis à profit pour l'examen de matériel archéologique avec l'identification de charbons de palmiers (Arabie Saoudite, II^e siècle BCE) et d'un filet de pêche en palmier (Pakistan, IV^e millénaire BCE). Un retour sur quelques Palmoxylon non identifiés de deux sites du Sud-Est de la France (vallée d'Apt, Rupélien et Castellane, Tortonien) a permis d'identifier des tiges fossiles appartenant à la tribu des Cryosophileae. Cette tribu est aujourd'hui endémique au continent américain et n'a jusqu'ici jamais été retrouvée à l'état fossile hors de ce continent. L'étude des fossiles pourra par la suite permettre d'améliorer la compréhension de l'évolution de cette famille et ainsi fournir des informations supplémentaires sur la datation des phylogénies.

Mots clefs : Palmier, Arecaceae, anatomie, stipe, Palmoxylon, Identification-assistée par ordinateur

Comparative anatomy of palms – Computer-aided identification, palaeobotanical and archaeobotanical applications

ABSTRACT. – The oldest fossil palm stem (*Arecaceae* Bercht. & J.Presl) were recovered from the Cretaceous of Anjou (Turonien). Because of the absence of referential on stem anatomy, almost no identification has been done below the family level. In this study, from the analysis of the anatomy of palm stems, I present a descriptive system in order to make identifications in paleobotany and archaeobotany. All the five subfamilies were sampled (Calamoideae, Nypoideae, Coryphoideae, Ceroxyloideae, Arecoideae) and 154 specimens belonging to 81 genera are analyzed. Coryphoideae are particularly studied (28/46 genres) with a detailed description of each tribe of this subfamily. These descriptions are implanted in Xper², an expert system (http://www.infosyslab.fr/Palm-ID/) that allows interactive identifications at the sub-familial, tribal or generic level with the help of 32 descriptors and 108 states. The results of this study show that it is possible to identify the five subfamilies and most of the tribes of the Coryphoideae from some specific anatomical structures (fibrovascular bundles, number of vessel elements, ground parenchyma organization, general distribution of the fibrovascular bundles through the transverse section). The different growth patterns are redefined from two mechanisms: the sustained growth of ground parenchyma and the centrifugal differentiation of the fibrous part of vascular bundles. This centrifugal differentiation is the result of the formation of new fibers at the periphery of the fibrous part and is not observed in *Coryphoideae* (except in Caryoteae). The results of this anatomical survey have implication in archaeology and two examples are presented: (i) the identification of charcoal palms (Saudi Arabia, IInd century BCE), (ii) the identification of a fishing net made from palm fibres (Pakistan, IVth millennium BCE). The study of some unidentified Palmoxylon from two sites in South-Eastern France (Vallé d'Apt, Rupelian and Castellane, Tortonian) provides evidences that these fossil stems belong to the Cryosophileae. Today, this tribe is endemic to the American continent and it is the first fossil record of this tribe outside America. As it is possible to identify more precisely the fossil palm stem, it will improve the palm evolutionary history knowledge and provide additional information on dating divergence times in phylogenies.

Keywords: Palms, Arecaceae, anatomy, stem, Palmoxylon, Computer-aided identification

Cette thèse est le résultat de recherches que j'ai commencées en Master 2 au Muséum national d'Histoire naturelle. Pendant ces trois années, de nombreuses personnes m'ont permis de réaliser cette thèse dans les meilleures conditions. Je souhaite les remercier.

Mes premiers remerciements vont à Dario De Franceschi et Margareta Tengberg qui m'ont proposé un sujet de Master 2 qui a ensuite évolué en un sujet de thèse. Je les remercie pour leur soutien, leurs conseils avisés, leur générosité et surtout leur disponibilité. Ils ont su me guider et me faire découvrir les mondes de la paléobotanique et de l'archéologie.

Je tiens à remercier les membres de mon jury de thèse, notamment d'avoir accepté d'en faire partie et de me consacrer un peu de leur temps. Je suis ainsi particulièrement reconnaissant envers les deux rapporteurs Brigitte Meyer-Berthaud et Fred Stauffer. Ce dernier a également pu suivre l'évolution de mon travail lors des différents congrès dans lesquels nous nous sommes rencontrés et a toujours porté une attention particulière à mes résultats. J'adresse également cette reconnaissance à Sophie Nadot et Jean-Christophe Pintaud. Je remercie particulièrement Régine Vignes-Lebbe qui a pris le temps de discuter des aspects informatiques de ma thèse. J'adresse ici toute ma reconnaissance envers Jean Broutin qui m'a fait découvrir, dès la première année de fac, la botanique comme il sait si bien le faire et qui m'a apporté de précieux conseils pendant cette thèse.

Je remercie Sevket Sen, Philippe Janvier et Christian de Muizon de m'avoir accueilli au sein de l'UMR 7207 (Centre de recherche sur la paléobiodiversité et les paléoenvironnements) et du Département histoire de la Terre.

Un immense merci à Michel Lemoine, Vincent Rommeveaux et Lilian Cazes qui ont réalisé les coupes dans le matériel actuel et fossile. Merci pour leur grande patience, leur persévérance et leur ingéniosité face à la complexité de la préparation des lames minces dans un stipe de palmier. Un très grand merci à Vincent qui m'a aidé à me « faire la main » dans la réalisation de ces lames minces et des divers polissages.

Je remercie Florian Causse pour son aide et sa disponibilité lors de la mise en ligne de la base de données Palm-ID.

De très chaleureux remerciements vont à Jack Fisher et Barry Tomlinson qui m'ont accueilli en Floride et m'ont fait découvrir le monde des palmiers et leur extraordinaire anatomie. Je remercie également Carl Lewis directeur du Fairchild Tropical Botanic Garden et Patrick Griffith directeur du Montgomery Botanical Center qui m'ont permis de réaliser de nombreux prélèvements.

Je tiens à remercier Bill Baker, John Dransfield, Peter Gasson et Mark Nesbitt des Royal Botanic Gardens (Kew) qui m'ont toujours chaleureusement accueilli lors de mes différentes visites dans les collections et qui m'ont permis de prélever des échantillons dans les collections. Je remercie également Wim Tavernier et Hans Beeckman du Musée Royal de l'Afrique Centrale (Tervuren). Un très grand merci à l'ensemble du personnel de l'Herbier (xylothèque) du MNHN qui m'a permis un accès aux spécimens de palmiers. Merci à Jean-Noël Labat, Myriam Gaudeul, Odile Poncy, Benoît Hicke ainsi qu'à Hubert pour sa bonne humeur. Je remercie également les jardiniers des serres du Jardin des plantes de m'avoir indiqué lorsqu'un palmier allait être coupé...

Je tiens à remercier ici Marc Jeanson avec qui j'ai partagé cette condition de thésard palmophile.

Je remercie toute l'équipe de paléobotanique et particulièrement Denise Pons et Jean-Claude Koeniger pour leur aide et leurs conseils. Je tiens à remercier Monique Dupéron et Jean Dupéron qui m'ont initié à l'anatomie végétale et qui ont été d'excellents enseignants lors de ma formation universitaire.

À cette équipe il faut rajouter « la palbot » et tous ses habitants (par forcément botanistes). Merci à Frédéric, Jean, Marc, Nathalie, Xavier, Gaesca, Éloïse, Nicole et Jérémy. Un très grand merci à Anaïs pour sa relecture très attentive de cette thèse et ses conseils très avisés tout au long de ces trois années. Merci à Alexandra, Sébastien, Peggy et Anaïs (encore) pour leur agréable et attachante compagnie. Grâce à vous et votre soutien, j'ai passé trois merveilleuses années en palbot.

Je remercie les archéologues Jessica, Guillaume, Julien, Marion et Sabrina de m'avoir intégré dans leur équipe le temps d'une mission au cœur des dattes.

J'adresse un immense merci à Sybille Lesourd pour tous ses conseils et sa relecture.

Un très grand merci à Benjamin, Ludovic et Manu d'avoir été présents au Bibendum à chaque fois que c'était nécessaire, merci pour votre soutien. Je remercie également Alexis, Sandrine, Romain (D.), Jeanne, Élise et Chloé.

Merci à tous les membres du Cyclo Sport de Pantin de m'avoir soutenu et d'avoir accepté mon absence sur les routes ces dernières années.

Je remercie mes parents, Laurence et Dominique, qui m'ont persuadé de continuer mes études, et qui m'ont permis de réaliser celles que je souhaitais; sans vous, cette thèse n'aurait jamais pu voir le jour. Merci à mes soeurs, Camille et Noémie pour leur affectueuse complicité. Merci à ma Grand-mère, Marinette, pour tout ce qu'elle aura pu m'apporter. Merci à Claudie et Patrick pour leur soutien et pour toutes les discussions passionnées que nous pouvons avoir. Merci à toute ma famille que je ne peux citer ici.

C'est à Lucille que je dois apporter ma plus grande reconnaissance. Ces trois années de thèse ne se seraient pas passées dans de si bonnes conditions si elle n'avait pas été présente à mes côtés et à chaque instant. Elle a su faire preuve de délicates contorsions pour me faciliter cette fin de thèse. Je te remercie pour tout ce que tu m'as apporté, ta compréhension et ton soutien.

Document écrit avec LAT_EX

SOMMAIRE

Introduction		1
Ι	Généralités sur les palmiers, phylogénie et anatomie	9
1	Les palmiers: présentation générale et phylogénie	11
2	Anatomie de l'appareil végétatif des palmiers	25
II	Matériel et méthodes	49
3	Matériel	51
4	Méthodes	57
II	I ANATOMIE DU STIPE DES PALMIERS	77
5	Les différents modes d'accroissement diamétral des palmiers	79
6	Formalisation et présentation des descripteurs	111
7	Anatomie du stipe des Coryphoideae	117
8	Anatomie du stipe des <i>Calamoideae</i>	269
9	Anatomie du stipe des Nypoideae	283
10	Anatomie du stipe des Ceroxyloideae	289
11	Anatomie du stipe des Arecoideae	299
12	Discussion sur les descripteurs	325
IV	Applications: Xper, paléobotanique & archéologie	339
13	Identification Assistée par Ordinateur — Xper	341
14	Applications à la paléobotanique	355
15	Applications à l'archéologie	417

Conclusion	433
Bibliographie	438
Annexes	459
A Comparaison des supertrees de Baker et al. 2009	459
B Les Monocotylédones arborescentes	461
C Différentes clefs d'identification / classification	473
D Rappels	485
E Le logiciel Xper	489
Index	499

LISTE DES TABLEAUX

3.1	Échantillonnage des spécimens actuels	54
$5.1 \\ 5.2$	Les variations anatomiques	82 88
13.1	Liste des descripteurs et de leur différents pouvoirs discriminants 3	48
14.1	Liste des Palmoxylon identifiés	64

1	Schémas de coupes transversales et longitudinales de Monocotylédones, d'après Desfontaines (1799)	3
$1.1 \\ 1.2$	Distribution actuelle des palmiers, d'après Dransfield <i>et al.</i> (2008b) Classification phylogénétique des Monocotylédones, d'après The Angio-	12
19	An array reference of the second seco	13
1.3	Aperçu general de la classification, d'après Asmussen-Lange et $al. (2006)$.	10
$1.4 \\ 1.5$	Supermatrix, extrait de Baker et al. (2009)	21 22
1.0	Phylogénie des tribus <i>supermatrir</i> extrait de Baker <i>et al.</i> (2009)	22
1.7 1.8	Relations entre les tribus des <i>Coryphoideae</i> , d'après Baker <i>et al.</i> (2009)	23 23
	<i>et al.</i> (2009)	24
2.1	Schéma de coupe transversale d'une racine de palmier	27
2.2	Schémas de coupes transversales de différentes stèles racinaires	28
2.3	Différentes stèles chez Caryota mitis	28
2.4	Coupes transversales de racine de <i>Chamaerops</i> et <i>Phoenix</i>	29
2.0 2.6	Les différentes phases de développement chez les paimiers	31 20
2.0 2.7	Schéma d'un faisceau fibro-vasculaire et des différentes parties fibreuses dor-	52
	sales potentielles.	33
2.8	Evolution de l'interprétation du système vasculaire	35
2.9	Rhapis excelsa, schema des connexions vasculaires	36
2.10	<i>knapis excetsa</i> , trajet des faisceaux fibro-vasculaires dans le stipe et varia-	20
9 11	Rhanis ercelea, trajet des faisceaux fibro-vasculaires dans le stipe	- 30 - 30
2.12	Trajet des faisceaux fibro-vasculaires pour des palmiers à large diamètre	40
2.13	Trajet des faisceaux fibro-vasculaires en deux dimensions	41
2.14	Différents types de parcours des faisceaux fibro-vasculaires	41
2.15	Coupe transversale d'un pétiole de Nannorrhops	43
2.16	Coupe transversale d'un foliole de <i>Medemia</i>	45
2.17	Vue paradermale d'un limbe d' <i>Hyphaene</i>	45
2.18	Coupe transversale d'un stomate de <i>Nannorrhops</i>	46
2.19	Vues paradermales de stomate de palmier	47
4.1	Exemple d'inclusion dans la résine polyester	63
4.2	Techniques utilisées	64
4.3	Résultats obtenus avec différentes techniques de préparation	67
4.4	Décomposition d'une description taxinomique.	70
4.5	Edition des descripteurs avec Aper	71

$\begin{array}{c} 4.6 \\ 4.7 \end{array}$	Édition des taxons avec Xper	72 73
5.1	Quelques palmiers à croissance post-primaire	80
5.2	Les différentes variations, modifiée d'après Monoyer (1924).	83
5.3	Palmeraie traditionnelle	84
5.4	Coupe longitudinale dans un apex de <i>Phoenix dactylifera</i>	85
5.5	Formation du cylindre central au niveau de l'apex de Phoenix dactylifera	86
5.6	Anatomie de l'apex et de la base du stipe de Phoenix dactylifera	89
5.7	Gaussia des serres du Jardin des plantes	90
5.8	Zone apicale de Gaussia	91
5.9	Évolution du stipe de Gaussia en fonction de sa position longitudinale .	92
5.10	La lignification centrifuge	102
7.1	Quelques Coryphoideae	118
7.2	Polissage transversal d' <i>Hyphaene</i>	171
7.3	Polissage transversal de Borassus flabellifer	177
7.4	Polissage transversal de <i>Lodoicea maldivica</i>	177
7.5	Dimensions des faisceaux fibro-vasculaires chez les Borasseae	180
7.6	Diamètre des vaisseaux chez les <i>Borasseae</i>	181
7.7	Ratio fibro-vasculaire chez les <i>Borasseae</i> – 1	181
7.8	Ratio fibro-vasculaire chez les <i>Borasseae</i> – 2	181
7.9	Polissage transversal d'Arenga	185
7.10	Polissage transversal de Caryota mitis	185
7.11	Polissage transversal de <i>Caryota urens</i>	186
7.12	Polissage transversal de Caryota zebrina	186
7.13	Polissage transversal de Wallichia disticha	186
7.14	Dimensions des faisceaux fibro-vasculaires chez les <i>Caryoteae</i>	188
7.15	Diamètre des vaisseaux chez les <i>Caryoteae</i>	189
7.16	Ratio fibro-vasculaire chez les <i>Caryoteae</i> – 1	189
7.17	Ratio fibro-vasculaire chez les $Caryoteae - 2$	189
7.18	Dimensions des faisceaux fibro-vasculaires chez les <i>Chuniophoeniceae</i>	197
7.19	Diamètre des vaisseaux chez les <i>Chuniophoeniceae</i>	198
7.20	Ratio fibro-vasculaire chez les <i>Chuniophoeniceae</i> – 1	198
7.21	Ratio fibro-vasculaire chez les <i>Chuniophoeniceae</i> – 2	198
7.22	Polissage transversal de <i>Chelyocarpus dianeurus</i>	209
7.23	Polissage transversal de <i>Coccothrinax barbadensis</i>	209
7.24	Polissage transversal de <i>Hemithrinax compacta</i>	209
1.25	Polissage transversal de Inrinax radiata	210
7.20	Dimensions des faisceaux fibro-vasculaires chez les $Cryosophueae$	212
1.21	Diametre des valsseaux chez les <i>Cryosophileae</i>	213
1.28	natio indro-vasculaire chez les $Cryosophileae - 1$	213
7.29	nauo indro-vasculaire chez les $Cryosophileae - 2$	213
1.30	Dimensions des faisceaux noro-vasculaires chez les <i>Phoeniceae</i>	224
1.31	Diametre des valsseaux chez les <i>Phoeniceae</i>	225
1.32	natio noto-vasculare chez les $Phoentceae - 1$	225

7.33	Ratio fibro-vasculaire chez les <i>Phoeniceae</i> – 2	225
7.34	Polissage transversal de Sabal palmetto	231
7.35	Polissage transversal de <i>Sabal rosei</i>	231
7.36	Polissage transversal de Sabal yapa	231
7.37	Diamètre des vaisseaux chez les <i>Sabaleae</i>	232
7.38	Ratio fibro-vasculaire chez les Sabaleae – 1	232
7.39	Ratio fibro-vasculaire chez les Sabaleae – 2	233
7.40	Dimensions des faisceaux fibro-vasculaires chez les Sabaleae	233
7.41	Polissage transversal de <i>Livistona merilii</i>	240
7.42	Polissage transversal de <i>Livistona mariae</i>	240
7.43	Polissage transversal de <i>Livistona chinensis</i>	240
7.44	Polissage transversal de <i>Licuala lauterbachii</i>	241
7.45	Polissage transversal de <i>Licuala grandis</i>	241
7.46	Dimensions des faisceaux fibro-vasculaires chez les <i>Livistoninae</i>	242
7.47	Diamètre des vaisseaux chez les <i>Livistoninae</i>	243
7.48	Ratio fibro-vasculaire chez les <i>Livistoninae</i> – 1	243
7.49	Ratio fibro-vasculaire chez les <i>Livistoninae</i> – 2	243
7.50	Polissage transversal de <i>Rhapis humilis</i>	249
7.51	Polissage transversal de <i>Rhapis humilis</i>	249
7.52	Polissage transversal de Trachycarpus martianus	249
7.53	Polissage transversal de <i>Chamaerops humilis</i>	250
7.54	Dimensions des faisceaux fibro-vasculaires chez les Rhapidinae	251
7.55	Diamètre des vaisseaux chez les <i>Rhapidinae</i>	252
7.56	Ratio fibro-vasculaire chez les <i>Rhapidinae</i> – 1	252
7.57	Ratio fibro-vasculaire chez les <i>Rhapidinae</i> – 2	252
7.58	Polissage transversal de Brahea dulcis	259
7.59	Polissage transversal de <i>Copernicia baileyana</i>	259
7.60	Polissage transversal de <i>Copernicia berteroana</i>	259
7.61	Polissage transversal de <i>Copernicia berteroana</i>	260
7.62	Polissage transversal de <i>Copernicia tectorum</i>	260
7.63	Polissage transversal de <i>Pritchardia minor</i>	261
7.64	Polissage transversal de <i>Pritchardia thurstonii</i>	261
7.65	Polissage transversal de Serenoa repens	262
7.66	Polissage transversal de <i>Washingtonia robusta</i>	262
7.67	Dimensions des faisceaux fibro-vasculaires chez les Trachycarpeae incertae	
	sedis	263
7.68	Diamètre des vaisseaux chez les Trachycarpeae incertae sedis	264
7.69	Ratio fibro-vasculaire chez les Trachycarpeae incertae sedis – 1	264
7.70	Ratio fibro-vasculaire chez les Trachycarpeae incertae sedis -2	264
8.1	Quelques Calamoideae	269
8.2	Coupe transversale de <i>Calamus</i> sp	270
8.3	Coupe transversale d' <i>Oncocalamus</i> sp.	270
8.4	Détail d'un faisceaux fibro-vasculaires de <i>Calamus</i>	271
8.5	Détail d'un faisceaux fibro-vasculaires d' <i>Oncocalamus</i>	271

8.6 8.7 8.8	Polissage transversal de Metroxylon271Polissage transversal de Raphia272Polissages longitudinaux de Pigafetta272
9.1 9.2	Habitat naturel de Nypa 283 Polissage transversal de Nypa 284
$10.1 \\ 10.2 \\ 10.3$	Quelques Ceroxyloideae
$11.1 \\ 11.2 \\ 11.3 \\ 11.4 \\ 11.5 \\ 11.6 \\ 11.7$	Polissage transversal de Wettinia300Polissage transversal de Cocos302Anatomie de Podococcus304Anatomie de Leopoldinia304Anatomie de Geonoma306Polissage transversal de Veitchia307Polissage transversal de Heterospathe308
12.1 12.2 12.3 12.4	Partie fibreuse ventrale d' <i>Elaeis guineensis</i> 327Nombre d'éléments de vaisseau chez les <i>Coryphoideae</i> 333Type de parenchyme fondamental chez les <i>Coryphoideae</i> 333Type de parenchyme fondamental chez les <i>Coryphoideae</i> 334
13.1 13.2 13.3 13.4	Site Internet Palm-ID, accueil350Site Internet Palm-ID, identification351Export html de le clef dichotomique en parallèle de la tribu des Cryosophileae.353Export pdf de la clef des Cryosophileae.354
$15.1 \\ 15.2 \\ 15.3 \\ 15.4 \\ 15.5 \\ 15.6$	Engrais
A.1	Supermatrix et les différents supertrees, d'après Baker <i>et al.</i> (2009) 460

LISTE DES PLANCHES PHOTOGRAPHIQUES

Ι	Les différents types de parenchyme fondamental
II	Différenciation centrifuge de la partie fibreuse dorsale
III	Stipe des Hyphaeninae
IV	Stipe des Lataniinae
V	Stipe des Caryoteae
VI	Stipe des Chuniophoeniceae
VII	Stipe des Corypheae
VIII	Stipe des Cryosophileae – 1
IX	Stipe des Cryosophileae – 2
Х	Stipe des Phoeniceae
XI	Stipe des Sabaleae
XII	Stipe des Livistoninae
XIII	Stipe des Rhapidinae
XIV	Stipe des Trachycarpeae
XV	Stipe des Calamoideae – 1
XVI	Stipe des Calamoideae – 2
XVI	I Stipe de $Nypa$
XVI	II Stipe des Ceroxyloideae
XIX	Stipe des Arecoideae, Iriarteeae, Chamaedoreeae
XX	Stipe des Arecoideae, Roystoneeae, Cocoseae
XXI	Stipe des Arecoideae, Oranieae, Euterpeae, Manicarieae
XXI	I Stipe des Arecoideae, Areceae
XXI	II Stipe des Monocotylédones – 1
XXI	V Stipe des Monocotylédones – 2

INTRODUCTION

Les palmiers sont sûrement les plantes les plus emblématiques des tropiques en raison de leur morphologie générale, leur reconnaissance assez simple et leur importance du point de vue écologique, ethnologique et économique. Ils sont l'objet d'une grande fascination, et de nombreuses études leur ont ainsi été consacrées. En Europe, le palmier dattier est aujourd'hui le plus connu de cette famille inter-tropicale, de par sa symbolique dans plusieurs civilisations méditerranéennes et orientales. Ces plantes ont même fait écrire à Carl von Linné dans son Systema Naturae (1766) : « Habitat intra Tropicos Palmis Lotophaqus. Hospitatur extra Tropicos sub novercante Cerere, carnivorus »¹. Et paradoxalement, aujourd'hui, avec l'aide de l'Homme, le palmier contribue à la destruction de cet habitat en raison d'un fort impact anthropique et à la mise en place de cultures dédiées à l'huile de palme. Ces préoccupations d'ordre écologique n'étaient pas à l'ordre du jour lorsque le premier ouvrage scientifique qui leur a été consacré fut publié par Martius (1823-1850) : Historia Naturalis Palmarum. Une magnifique publication en trois volumes qui traite de leur anatomie, des fossiles, de la mise en place des différents organes, de leur répartition géographique et de leur systématique. Volumes richement illustrés avec des planches couleurs d'une grande précision. Depuis cette publication, de nombreuses autres ont permis d'approfondir la connaissance botanique sur les palmiers. Cette thèse s'inscrit dans cette perspective afin d'améliorer les connaissances dans un domaine encore très mal connu : l'anatomie des stipes de palmiers.

En effet, même si cette connaissance a fait de nombreux progrès dans tous les domaines, l'anatomie des stipes a longtemps été ignorée par les botanistes. Les particularités anatomiques de la tige des palmiers par rapport aux autres plantes ligneuses ont été remarquées dès l'Antiquité par Théophraste dans son travail intitulé *De Historia Plantarum*². Mais ce n'est qu'avec von Mohl (1823-1850) dans le premier volume de l'*Historia Naturalis Palmarum*³ que ces particularités furent clairement établies après une première tentative de description par Desfontaines (1799) (Fig. 1). Bien plus tard, P.B. Tomlinson (Tomlinson 1961) a continué ce travail avec une étude particulièrement importante sur l'anatomie des

^{1. «} L'habitat de l'Homme se situe entre les tropiques de la planète, là où vivent les fruits du palmier. Il subsiste dans d'autres parties du monde, où il doit se nourrir de céréales et de viande », von Linné (1766, p. 29).

^{2.} Il est possible de se référer à la traduction de S. Amigues (Théophraste 1988).

^{3.} Pour la publication de von Mohl, il est possible de se référer à la version anglaise : von Mohl (1849).

feuilles (pétioles et limbes) portant sur environ 250 espèces. Les racines et les tiges n'étant que très peu étudiées dans cet ouvrage. Par la suite, P.B. Tomlinson et M.H. Zimmerman (Zimmermann et Tomlinson 1965, 1972, 1974) ont étudié le système vasculaire et décrit en détail le trajet des faisceaux conducteurs du genre Rhapis L.f. ex Aiton, travaux résumés par Tomlinson (1990). Très récemment, Tomlinson et al. (2011) ont écrit un magnifique livre sur l'anatomie des palmiers. Mais comme bien souvent, même si un effort a été réalisé dans l'étude des stipes, ces derniers n'ont pas été traités comme les autres parties végétatives et aucune étude comparative n'a encore été réalisée. Ceci trouve sûrement son origine dans le fait que les stipes de palmiers sont très rarement collectés, et s'ils le sont, comme ce n'est pas du bois, se retrouvent à la fois dans les xylothèques et les herbiers, ce qui ne facilite pas l'échantillonnage. Il faut rajouter à cela qu'en raison de leur anatomie assez spécifique présentant de fortes variations, leur étude anatomique est difficile. Une autre difficulté intervient lors de la préparation anatomique des spécimens : les techniques de préparation pour la réalisation de lames minces ne sont pas aussi simples que celles utilisées pour l'étude du bois. En effet, leur nature fibreuse a souvent raison des lames de rasoir et leur inclusion dans la résine est alors indispensable pour une observation optimale. Ceci explique que l'anatomie des stipes fossiles a été beaucoup plus étudiée que celle des actuels. Ainsi, nous pouvons trouver aujourd'hui de nombreuses publications présentant plusieurs descriptions de stipes fossiles avec certaines tentatives de classifications. Néanmoins, étant donné l'ignorance relative aux stipes actuels, aucun stipe fossile n'a jamais été identifié à un clade inférieur à celui du niveau familial (sauf de très rares cas). Et les espèces fossiles qui ont pu être décrites sont complètement déconnectées de la systématique actuelle.

L'objectif de cette thèse est donc de réaliser une étude comparée de l'anatomie des stipes des cinq sous-familles de palmiers. Ceci afin d'élaborer une base de connaissance permettant de dégager des descripteurs anatomiques à partir desquels pourront s'établir de nouveaux critères d'identification. Outre le fait d'approfondir la connaissance fondamentale relative aux palmiers, l'utilité d'une telle étude ainsi que l'intérêt des résultats qui en seront dégagés seront démontrés par des applications dans différents domaines : la paléobotanique et l'archéobotanique.

La question posée au début de ce travail de thèse était donc de savoir si les tiges de palmiers présentaient des différences anatomiques utilisables du point de vue de l'identification. Il était presque impossible de se faire une idée de cela avec l'aide de la littérature. En effet, celle-ci ne présente que très peu de références sur l'anatomie comparée des stipes et les deux principales publications (von Mohl 1823-1850, Tomlinson 1961) dans lesquelles sont décrits plusieurs stipes ainsi que certains caractères ne présentent que quelques genres sans qu'il soit possible de faire ressortir une quelconque information. J'ai donc mis en place un échantillonnage permettant de répondre à cette question. En raison du nombre important

FIGURE 1 – Schémas de coupes transversales (CT) et longitudinales (CL) : A, CT de palmier, B : CT du rotang, C : CL du rotang, D : CT de canne à sucre, E : CL de canne à sucre, d'après Desfontaines (1799).

d'espèces (plus de 2 400), l'unité taxinomique qu'il a été décidé d'étudier dans ce manuscrit est le genre (actuellement au nombre de 184). Même au regard de ce nombre, la réalisation d'une étude de l'anatomie des stipes des genres de palmiers n'est pas envisageable dans un travail de thèse et j'ai décidé de me concentrer sur quatre sous-familles : *Calamoideae*, *Nypoideae*, *Coryphoideae* et *Ceroxyloideae*. Celle des *Coryphoideae* a été particulièrement étudiée dans le détail. Cette sous-famille possède les caractéristiques idéales pour une étude sur l'anatomie des stipes, à savoir :

une phylogénie relativement bien connue,

des tribus et des genres bien délimités,

un nombre de tribus (8) et de genres (46) compatible avec un travail de thèse.

La cinquième sous-famille des *Arecoideae* n'a pas fait l'objet d'une étude anatomique détaillée comme les quatre autres, ceci pour une raison évidente de temps limité par rapport à leur extraordinaire diversité (14 tribus, 107 genres, plus de 1 300 espèces). Elle a uniquement été étudiée à titre de comparaison afin de dégager les principaux descripteurs informatifs au sein de la famille et de chaque sous-famille. Un chapitre leur sera néanmoins dédié avec pour objectif de souligner les cas conflictuels, c'est-à-dire les cas où l'anatomie des stipes peut se confondre avec celle des genres des autres sous-familles.

Pour ce faire, il a fallu procéder à un échantillonnage aussi exhaustif que possible au sein des différentes sous-familles. La plus grande partie du matériel provient d'herbiers ou de xylothèques et dans de rares cas, de spécimens vivants qui ont été abattus dans des jardins ou des palmeraies.

Après quelques préparations anatomiques il s'est avéré que des différences existaient entre les genres étudiés. Même si ces différences n'étaient pas évidentes, elles allaient à l'encontre de l'idée générale qui est que tous les palmiers ont le même stipe et qu'il n'est pas possible d'en tirer des informations. Certes, au premier coup d'œil, certains genres sont identiques et une partie d'entre eux le restent même après une étude anatomique détaillée. Mais pour la majorité des cas, il existe des différences anatomiques entre les genres et dans certains cas, il est même possible d'établir des caractères communs aux différents genres qui composent une tribu ou une sous-famille. Il faut souligner que le mode de croissance des palmiers n'est pas encore entièrement compris, ce qui ne facilite pas la compréhension de l'anatomie d'une tige et la distinction des caractères informatifs du point de vue de l'identification de ceux liés à la croissance de la plante. Ce mode de croissance a cependant été étudié dans le détail par P.B. Tomlinson et M.H. Zimmermann pour le genre Rhapis (tige dressée, de quelques centimètres de diamètre). Étant donné la grande variabilité des stipes chez les palmiers, ces études ne peuvent nous donner qu'un aperçu de ce qui peut exister chez les autres types de stipes (de diamètre important, lianescents). C'est pourquoi lors de l'échantillonnage j'ai décidé, lorsque cela a été possible, de réaliser plusieurs prélèvements à différentes hauteurs pour essaver de comprendre les modifications qui pouvaient s'opérer lors de la croissance.

Chaque tribu des *Coryphoideae* a donc fait l'objet d'une étude détaillée. Certains descripteurs ont été repris de la littérature existante, d'autres ont été modifiés et d'autres ont été créés lors de ce travail. Toutes les informations anatomiques ont été compilées à l'aide du logiciel Xper² afin de fournir une interface informatisée disponible en ligne (http://www.infosyslab.fr/Palm-ID/). Ce logiciel permet de réaliser des descriptions taxinomiques et de structurer l'information. Il fournit de nombreux outils d'analyse des descriptions mais a surtout été utilisé dans l'objectif de rendre l'information accessible afin de permettre une identification des palmiers comme ceci existe déjà pour l'identification du bois avec The InsideWood Working Group (2004).

Cette thèse abordera donc principalement l'étude de l'anatomie des stipes de palmiers dans un objectif d'identification de restes fossiles. Ce travail s'articulera de la façon suivante :

- La première partie présente les palmiers et fait le point sur les connaissances actuelles. La phylogénie est présentée et l'anatomie des partie végétatives est décrite.
- La deuxième partie s'articule autour du matériel et des méthodes. Le matériel d'étude actuel est présenté. Les méthodes de préparations anatomiques utilisées sont décrites. La formalisation d'une description taxinomique est détaillée. C'est également dans cette partie que le logiciel Xper² est présenté.
- La troisième partie représente le corps de ce travail. Les caractères sont définis. La description des différentes sous-familles et des différentes tribus est réalisée. Pour chaque groupe, une diagnose est proposée.
- La quatrième partie présente les applications du travail d'anatomie réalisé. C'est dans cette partie que la base Xper² réalisée pendant cette thèse et disponible sur Internet⁴ est présentée. Les travaux (et articles) réalisés en archéobotanique et en paléobotanique seront détaillés. Des identifications seront réalisées et leurs implications analysées.
- Une conclusion générale viendra clore ce travail et présentera les perspectives futures.
- Des Annexes ont été ajoutées et apportent quelques informations supplémentaires mais non nécessaires à la compréhension de l'ensemble. Elles contiennent notamment un aperçu général de l'anatomie des Monocotylédones arborescentes (Annexe B). En effet, il m'a paru important lors de mes recherches de m'intéresser aux autres Monocotylédones afin d'avoir une vue d'ensemble de l'anatomie de ce groupe d'Angiosperme. En raison de l'objectif de cette thèse, aucune étude détaillée n'en a été réalisée et je laisse le soin au lecteur d'analyser les planches légendées et de se reporter à la bibliographie existante pour plus de détails.

L'anatomie des stipes : ses différentes approches. – Il existe deux grandes approches pour qui souhaite aborder l'anatomie des stipes de palmiers et c'est pourquoi je souhaite détailler ici ces deux approches afin de présenter au lecteur le cadre dans lequel cette thèse a été réalisée.

^{4.} http://www.infosyslab.fr/Palm-ID/

La première approche est celle commencée par Zimmermann et Tomlinson (1965, 1972, 1974). Elle consiste en l'étude du développement des palmiers et de la mise en place des différents organes et du système vasculaire (développement, ramifications, continuité...). Celle-ci est remarquablement bien compilée par Tomlinson (1990). Elle est très importante pour quiconque essaie de comprendre comment se structure une tige de palmier et essaie d'interpréter une lame mince réalisée dans un stipe. Avant de se lancer dans la deuxième approche, et de définir des descripteurs et leurs caractères, il est primordial de passer par l'étude de toute la littérature (principalement réalisée par les deux auteurs suscités) afin de ne pas prendre en compte les variations anatomiques parasites inhérentes au développement de la plante et qui n'apportent pas d'information taxinomique. Une pareille étude n'est pas possible à grande échelle et c'est pourquoi ces auteurs se sont focalisés sur un palmier (*Rhapis*) pour définir un modèle de croissance (the *Rhapis* principle) chez les palmiers.

La deuxième approche consiste à mettre en place des descripteurs qui permettront d'identifier les stipes de palmiers à partir de leur anatomie. C'est cette approche qui sera traitée dans cette thèse. Elle nécessite une étude à grande échelle afin d'avoir une vision assez globale de l'anatomie des différents genres et de la variation intra et inter générique.

La première approche sera abordée dans la première partie en donnant un maximum de références mais sans s'y attarder. En effet, l'objectif de cette thèse n'est pas de réaliser une étude du système vasculaire et de son développement mais bien de définir des caractères anatomiques propres à chaque taxon. Il sera fait une synthèse de cette première approche (principalement sous forme de figures reprises dans la littérature) avant d'aborder le corps de ce travail.

Les palmiers exercent une certaine admiration de par leur beauté que ce soit dans un jardin, sous serres ou bien dans la nature. J'espère que cette thèse ira dans ce sens et que le lecteur sera fasciné, comme j'ai pu l'être durant ces trois dernières années, par leur extraordinaire anatomie qui, malgré certaines difficultés pour réaliser les préparations, présente des structures histologiques remarquables.

Première partie

Généralités sur les palmiers, phylogénie et anatomie

Chapitre 1

LES PALMIERS : PRÉSENTATION GÉNÉRALE ET PHYLOGÉNIE

Sommaire

1.1	Présentation générale	
1.2	Nomenclature utilisée	
1.3	Historique des classifications	
1.4	Classification et anatomie 15	
1.5	Classification actuelle de Baker et al. (2009) 16	
	1.5.1 Présentation générale $\dots \dots \dots$	
	1.5.2 Présentation des <i>Coryphoideae</i>	

ANS cette partie, après avoir présenté un historique des différentes classifications depuis celle de Martius (1823-1850), je détaille la plus récente (Baker *et al.* 2009) qui sera utilisée dans le reste de cet ouvrage. Dans une section de ce chapitre, je m'intéresse aux questions nomenclaturales sur les taxons actuels et sur le choix fait dans cette thèse de considérer tel nom plutôt qu'un autre.

1.1 Présentation générale

Les palmiers appartiennent aux Commelinids (The Angiosperm Phylogeny Group 2009, Reveal et Chase 2011) inclus dans le clade des Monocotylédones (59 300 espèces, 22 % des Angiospermes, Fig. 1.2). La synapomorphie principale des Commelinids se situe au niveau d'un composant de la paroi cellulaire : celle-ci est en partie constituée d'une classe d'acide organique spécifique, les acides coumarique, diférulique et férulique, mis en évidence en microscopie par fluorescence UV. La plupart d'entre nous savons reconnaître un palmier, mais aucune synapomorphie morphologique n'a encore clairement été définie. Uhl et Dransfield (1987) ont essayé de formaliser deux caractères dérivés partagés : (i) une tige ligneuse, (ii) des feuilles pliées dans le bourgeon et divisées dans la plupart des groupes. Le mécanisme unique de morphogenèse de la feuille, encore mal compris, pourrait s'ajouter à ces deux caractères. Les palmiers ont une répartition pantropicale avec des extensions subtropicales

FIGURE 1.1 – Distribution actuelle des palmiers, d'après Dransfield et al. (2008b).

(Corner 1966, Dransfield *et al.* 2008b), Fig. 1.1. Les limites extrêmes sont 44° Nord (Europe) et 44° Sud (Nouvelle-Zélande) et sont des reliques d'une distribution plus étendue lors de périodes plus chaudes. La quasi-totalité des genres est restreinte aux trois continents tropicaux (Afrique, Amérique, Asie) : aucun genre, sauf *Cocos* L., n'est pan-tropical; les genres appartiennent soit au « Nouveau Monde » soit à l'« Ancien Monde », sauf les deux genres *Elaeis* Jacq. et *Raphia* P.Beauv.; soit à l'Afrique, soit à l'Asie, sauf les quatre genres *Phoenix* L., *Hyphaene* Gaertn., *Borassus* L. et *Calamus* L.

FIGURE 1.2 – Classification phylogénétique des Monocotylédones, d'après The Angiosperm Phylogeny Group (2009).

1.2 Nomenclature utilisée

Par la suite, conformément aux recommandations du Code international de nomenclature botanique (McNeill *et al.* 2006), tous les noms scientifiques quel que soit leur rang, sont constamment imprimés en italique.

Pour chaque taxon, une vérification de la nomenclature a été réalisée. En fonction du rang taxinomique, différentes sources ont été utilisées.

- Espèce Govaerts et al. (2011),
- Genre Dransfield et al. (2008b) et Govaerts et al. (2011),
- Tribu, Famille, rang supra-familial Dransfield et al. (2008b), Chase et Reveal (2009), The Angiosperm Phylogeny Group (2009), Reveal et Chase (2011) et Missouri Botanical Garden (2011).

1.3 Historique des classifications

Depuis Martius (1823-1850), plusieurs auteurs ont présenté différentes classifications de cette famille. Les premières sont réalisées uniquement à partir de l'étude des caractères morphologiques des parties végétatives et reproductrices.

- Martius (1823-1850) reconnaissait cinq familles de palmiers : les Arecinae, Lepidocaryinae, Borassinae, Coryphinae et Cocoinae, les genres Nypa et Phytelephas sont placés comme genera heteroclita.
- Bentham et Hooker (1883) reconnaissent six tribus de palmiers. Ce sont les mêmes groupes que ceux définis par Martius (1823-1850) (avec une terminaison en eae) avec une division des Coryphinae en Phoeniceae et Corypheae. Les genres Nypa et Phytelephas sont placés comme Dubiae affinitatis.
- Drude (1889) regroupe les Areceae et les Cocoseae de Bentham et Hooker dans la sousfamille Ceroxylinae. Les autres sous-familles qu'il reconnait sont identiques à celles de Martius. Il reconnait une cinquième sous-famille, les Phytelephantinae incluant Nypa et Phytelephas.
- **Burret (1953)** définit sept tribus : Cocoideae, Nypoideae, Borassoideae, Lepidocaryoideae, Coryphoideae, Phoenicoideae et les Arecoideae incluant Phytelephas.
- Beccari et Pichi-Sermolli (1956) reconnaissent les mêmes groupes (en tant que sousfamilles) que Burret avec une sous-famille supplémentaire : les *Phytelephantoideae*. Les principaux groupes de palmiers utilisés actuellement sont reconnus dans cette publication.

- **Potztal (1964)** reconnait pour la première fois la spécificité des *Caryoteae* en les plaçant à part dans une sous-famille (*Caryotoideae*). Les autres sous-familles reconnues sont identiques à celles de Beccari et Pichi-Sermolli.
- Satake (1962) propose une classification qui ne diffère pas tellement de la précédente. Il divise la sous-famille des *Lepidocaryoideae* en *Lepidocaryoideae* et *Calamoideae*.
- Moore Jr. (1973) a réalisé une classification sans donner d'indication sur le rang taxinomique des taxa définis. Il reconnait quinze groupes : Coryphoid palms, Phoenicoid palms, Borassoid palms, Lepidocaryoid palms, Nypoid palms, Caryotoid palms, Pseudophoenicoid palms, Ceroxyloid palms, Chamaedoreoid palms, Iriarteoid palms, Podococcoid palms, Arecoid palms, Cocosoid palms, Geonomoid palms, Phytelephantoid palms.
- Dransfield et Uhl (1986) et Uhl et Dransfield (1987) présentent la dernière classification et délimitation taxinomique sur les palmiers uniquement basée sur des caractères morphologiques, anatomiques, embryologiques, cytologiques, écologiques et fossiles. Ces travaux ont constitué les bases de recherche pour la classification actuelle. Six sous-familles sont reconnues : les *Coryphoideae*, les *Calamoideae*, les *Nypoideae*, les *Ceroxyloideae*, les *Arecoideae* et les *Phytelephantoideae*.

La première publication qui essaie de replacer cette classification dans une perspective évolutive est celle de Moore Jr. et Uhl (1982). Ils dégagent les grandes tendances évolutives aussi bien au niveau des caractères anatomiques que morphologiques au sein de tous les organes. Mais, comme dans les autres publications, aucune phylogénie n'est encore proposée.

1.4 Classification et anatomie

Il faut souligner que Tomlinson (1961) propose une classification selon les caractéristiques anatomiques (principalement basée sur la feuille). Il reconnait douze groupes qui correspondent aux groupes de Moore Jr. (1973) avec quelques genres « anormaux » et quelques genera incertae sedis. Il définit les groupes suivants : Arecoid palms, Iriartoid palms, Chamaedoroid palms, Caryotoid palms, Bactroid palms, Cocoid palms, Lepidocaryoid palms, Borassoid palms, Sabaloid palms, Phoenicoid palms, Nypoid palms et Phytelephantoid palms. Sans parler de classification, Horn et al. (2009) décrivent l'évolution des caractères anatomiques du limbe et définissent quelques synapomorphies en se basant sur la phylogénie de Asmussen-Lange et al. (2006).

Harley et Baker (2001) ont réalisé une classification des types aperturaux du pollen des palmiers sans qu'il soit possible de dégager des informations phylogénétiques fiables.

1.5 Classification actuelle de Baker *et al.* (2009)

1.5.1 Présentation générale

Après Uhl et Dransfield (1987), Baker et al. (2009) proposent une nouvelle classification basée sur un grand nombre de publications sur la phylogénie moléculaire des palmiers : Uhl et al. (1995), Pintaud et Baker (2008), Lewis et al. (2000), Lewis et Doyle (2001), Lewis (2002), Hahn (2002), Dransfield et al. (2005), Baker et al. (1999), Baker et Loo (2004), Baker et al. (2009), Asmussen-Lange et al. (2006), Asmussen (1999), Asmussen et al. (2000), Asmussen et Chase (2001). Cette classification (Baker et al. 2009) présente la même structure au niveau sous-familial et tribal que celle de Dransfield et al. (2005). La publication de Dransfield et al. définit les bases de la classification que nous connaissons actuellement. Cinq sous-familles sont reconnues (Fig. 1.3) au lieu de six : Calamoideae, Nypoideae, Coryphoideae, Ceroxyloideae et Arecoideae. Celle des Phytelephantoideae sensu GP1¹ se retrouve au sein des *Ceroxyloideae*. La circonscription des sous-familles a aussi été modifiée. L'exemple le plus signifiant est le passage des Caryoteae des Arecoideae aux Coryphoideae. De nouvelles tribus (14) et sous-tribus (6) sont définies. Il faut souligner qu'une seule étude fournit une phylogénie complète au niveau du genre, il s'agit de celle de Baker et al. (2009) qui comprend l'étude de 184 genres. Celle d'Asmussen-Lange et al. (2006) présente des résultats proches de la précédente avec 161 genres.

FIGURE 1.3 – Aperçu général de la classification, d'après Asmussen-Lange et al. (2006).

Baker et al. (2009) ont réalisé une étude phylogénétique de grande ampleur. Ils ont utilisé les méthodes de *supertree* et de *supermatrix*. Ils ont assemblé une *supermatrix* constituée

^{1.} Le Genera Palmarum, 1^{re} édition, Uhl et Dransfield (1987)

de 16 partitions comprenant des séquences d'ADN, des données sur le polymorphisme de longueur des fragments de restriction (RFLP) et des données morphologiques pour tous les genres. Cette phylogénie est présentée dans les Figs. 1.4–1.8 en fin de chapitre. Les deux phylogénies sont présentées (super matrix, Fig. 1.4 et *supertree*, Fig. 1.5) puisque les résultats diffèrent légèrement.

Nous pouvons remarquer que toutes les analyses donnent les mêmes relations pour les sous-familles : (*Calamoideae* (*Nypoideae* (*Coryphoideae* (*Ceroxyloideae*, *Arecoideae*)))) et que les tribus définies par Dransfield *et al.* (2005) sont toutes retrouvées ici. Les cinq sous-familles reconnues actuellement sont les suivantes :

Ordre :

Arecales Bromhead in Mag. Nat. Hist., n.s., 4:333 (juill. 1840)

Famille :

Arecaceae Bercht. & J.Presl, Přir. Rostlin : 266 (janv.-avr. 1820), nom. cons. nom. alt.
? Arecaceae Schultz Sch., Nat. Syst. Pflanzenr. 317 (1832), voir discussion ci-dessous.
Palmae Juss., Gen. Pl. : 37 (4 août 1789), nom.alt.

- Calamoideae Beilschm., Flora 16 (1, Beibl. 2): 55, 105 (14 juin 1833) (Calameae).
 ? Calamoideae Griff., Calcutta J. Nat. Hist. 5: 4 (1844), voir discussion ci-dessous.
- 2. Nypoideae Griff., Palms Brit. E. Ind. : 7 (post 3 sept. 1850) (Nipinae).
- 3. Coryphoideae Burnett, Outl. Bot. : 398 (juin 1835) (Coryphidae).
 ? Coryphoideae Grifff., Calcutta J. Nat. Hist. 5 : 311 (1844), (Coryphinae), voir discussion ci-dessous.
- 4. Ceroxyloideae Drude, Bot. Zeitung (Berlin) 35 : 632 (28 sept. 1877) (Ceroxylinae).
- 5. Arecoideae Burnett, Outl. Bot. : 401 (juin 1835) (Arecidae).

Problèmes nomenclaturaux. – Il apparaît que plusieurs auteurs ont publié le nom *Arecaceae* pour nommer la famille des palmiers. The Angiosperm Phylogeny Group (2009) reconnait comme légitime le nom publié par Berchtold et Presl (1820). Cependant, Dransfield *et al.* (2008b) utilisent celui publié par Schultz-Schultzenstein (1832).

Pour les sous-familles des Coryphoideae et des Calamoideae : J. Dransfield m'a indiqué :

I consider that the use by Burnett (or Beilschmied) of a name below the rank of family for the palms that include Corypha to be incidental and not explicit, and thus, in my opinion should not be used as the first publication of an explicit subfamily name. The first use of a name explicitly mentioning subfamily is that of Griffith, where a proper diagnosis is also provided.

Il n'a pas été possible de décider de la légitimité ou de la validité de tel ou tel nom dans ce manuscrit, c'est pourquoi, lorsqu'il y a conflit, les deux noms ont été présentés.

1.5.2 Présentation des Coryphoideae

Une analyse plus en détail des *Coryphoideae* (Figs. 1.7–1.8) est présentée ici en raison de l'étude anatomique approfondie que j'ai réalisée dans la troisième partie. Les *Coryphoideae* sont constitués de 46 genres répartis en huit tribus : *Borasseae* (8 genres), *Caryoteae* (3 genres), *Chuniophoeniceae* (4 genres)², *Corypheae* (1 genre), *Cryosophileae* (10 genres), *Phoeniceae* (1 genre), *Sabaleae* (1 genre) et *Trachycarpeae* (18 genres). Les *Trachycarpeae* représentent la troisième tribu en terme de nombre de genres derrière les *Areceae* et les *Cocoseae*. Les Figs. 1.7(a)–1.7(b) montrent clairement que deux groupes sont bien définis : un groupe A comprenant les *Chuniophoeniceae*, *Corypheae*, *Caryoteae* et *Borasseae*, un groupe B comprenant les *Phoeniceae*, *Sabaleae*, *Cryosophileae* et *Trachycarpeae*. La relation des tribus au sein de cette sous-famille est différente en fonction des méthodes utilisées. C'est pourquoi un consensus strict est présenté en Fig. 1.8. Ce dernier conserve le clade (*Sabaleae*, *Cryosophileae*) qui est retrouvé dans les deux cas.

Ce qui suit présente les différentes tribus des *Coryphoideae* avec les genres qui les composent :

Sabaleae

Sabaleae Mart. ex Dumort., Anal. Fam. Pl. : 55 (1829). Type : Sabal. Sabal Adans., Fam. Pl. 2 : 495 (1763).

Cryosophileae

Cryosophileae J.Dransf., N.W.Uhl, C.Asmussen, W.J.Baker, M.M.Harley & C.Lewis,
Kew Bull. 60 : 561 (2005). Type : Cryosophila.
Schippia Burret, Notizbl. Bot. Gart. Berlin-Dahlem 11 : 867 (1933).
Trithrinax Mart., Hist. Nat. Palm. 2 : 149 (1837).
Zombia L.H.Bailey, Gentes Herb. 4 : 240 (1939).
Coccothrinax Sarg., Bot. Gaz. 27 : 87 (1899).
Hemithrinax Hook.f. in G.Bentham & J.D.Hooker, Gen. Pl. 3 : 930 (1883).
Leucothrinax C.Lewis & Zona, Palms 52 : 87 (2008).
Thrinax L.f. ex Sw., Prodr. 4 : 57 (1788).
Chelyocarpus Dammer, Notizbl. Bot. Gart. Berlin-Dahlem 7 : 395 (1920).
Cryosophila Blume, Rumphia 2 : 53 (1838).
Itaya H.E.Moore, Principes 16 : 85 (1972).

^{2.} La différence avec le nombre de genres observé dans la phylogénie de Baker *et al.* (2009) vient de la découverte d'une nouvelle espèce placée dans un nouveau genre : *Tahina* J.Dransf. & Rakotoarinivo par Dransfield *et al.* (2008a).

Phoeniceae

Phoeniceae J.Presl, Wšobecný Rostl. 2 : 1609 (1846). Type : Phoenix.Phoenix L., Sp. Pl. : 1188 (1753).

Trachy carpeae

Trachycarpeae Satake, Hikobia 3 : 121 (1962). Type : Trachycarpus.

 \equiv Livistoneae J.Dransf., N.W.Uhl, C.Asmussen, W.J.Baker, M.M. Harley & C.Lewis., Kew Bull. 60 : 561 (2005). Type : Livistona (nom. inv.).

Rhapidinae Rhapidinae J.Dransf., N.W.Uhl, C.Asmussen, W.J.Baker, M.M. Harley & C.Lewis., Kew Bull. 60 : 561 (2005). Type : Rhapis. Chamaerops L., Sp. Pl. : 1187 (1753). Guihaia J.Dransf., S.K.Lee & F.N.Wei, Principes 29 : 7 (1985). Trachycarpus H.Wendl., Bull. Soc. Bot. France 8 : 429 (1861). Rhapidophyllum H.Wendl. & Drude, Bot. Zeitung (Berlin) 34 : 803 (1876). Maxburretia Furtado, Gard. Bull. Straits Settlem. 11 : 240 (1941). Rhapis L.f. ex Aiton, Hort. Kew. 3 : 473 (1789).

Livistoninae Livistoninae Saakov, Palms and their culture in USSR 193 (1954). Type : Livistona.

Livistona R.Br., Prodr. : 267 (1810).

Licuala Wurmb, Verh. Batav. Genootsch. Kunsten 2 : 469 (1780). Johannesteijsmannia H.E.Moore, Principes 5 : 116 (1961). Pholidocarpus Blume in J.J.Roemer & J.A.Schultes, Syst. Veg. 7 : 1308 (1830). Pritchardiopsis Becc., Webbia 3 : 131 (1910).

Incertae sedis Accelorrhaphe H.Wendl., Bot. Zeitung (Berlin) 37 : 148 (1879).
Serenca Hook.f. in G.Bentham & J.D.Hooker, Gen. Pl. 3 : 1228(1883).
Brahea Mart. ex Endl., Hist. Nat. Palm. 3 : 243 (1838).
Colpothrinax Griseb. & H.Wendl., Bot. Zeitung (Berlin) 37 : 147 (1879).
Copernicia Mart. ex Endl., Gen. Pl. : 253 (1837).
Pritchardia Seem. & H.Wendl., Bonplandia (Hannover) 10 : 197 (1862), nom. cons.
Washingtonia H.Wendl., Bot. Zeitung (Berlin) 37 : 68 (1879), nom. cons.

Chuniophoeniceae

Chuniophoeniceae J.Dransf., N.W.Uhl, C.Asmussen, W.J.Baker, M.M. Harley & C.Lewis., Kew Bull. 60 : 561 (2005). Type : Chuniophoenix.
Chuniophoenix Burret, Notizbl. Bot. Gart. Berlin-Dahlem 13 : 580 (1937). Kerriodoxa J.Dransf., Principes 27 : 4 (1983). Nannorrhops H.Wendl., Bot. Zeitung (Berlin) 37 : 147 (1879). Tahina J.Dransf. & Rakotoarin., Bot. J. Linn. Soc. 156 : 81 (2008).

Caryoteae

Caryoteae Scheff., Ann. Jard. Bot. Buitenzorg 1 : 142 (1876).³ Caryota L., Sp. Pl. : 1189 (1753). Arenga Labill. ex DC., Bull. Sci. Soc. Philom. Paris 2 : 162 (1800), nom. cons. Wallichia Roxb., Pl. Coromandel 3 : 91 (1820).

Corypheae

Corypheae Martynov, Tekhno-Bot. Slovar : 166 (1820), (Coryphineae).⁴ Corypha L., Sp. Pl. : 1187 (1753).

Borasseae

Borasseae Mart. in Endl., Gen. pl. 250 (1837), (Borassinae). Type : Borassus.

Hyphaeninae Hyphaeninae Becc., Palmae Borasseae 1 (1924), (Hyphaeneae). Type : Hyphaene.

Bismarckia Hildebr. & H.Wendl., Bot. Zeitung (Berlin) 39:93 (1881).

Satranala J.Dransf. & Beentje, Kew Bull. 50 : 87 (1995).

Hyphaene Gaertn., Fruct. Sem. Pl. 2: 13 (1790).

Medemia Württemb. ex H.Wendl., Bot. Zeitung (Berlin) 39: 89 (1881).

Lataniinae Lataniinae Meisner, Plant. vasc. gen. 1 : 357 (1842), (Latanieae). Type : Latania.

Latania Comm. ex Juss., Gen. Pl. : 39 (1789). Lodoicea Comm. ex DC., Bull. Sci. Soc. Philom. Paris 2 : 171 (1800). Borassodendron Becc., Webbia 4 : 359 (1914). Borassus L., Sp. Pl. : 1187 (1753).

^{3.} Il existe également une deuxième publication qui définit ce nom : *Caryoteae* Drude, Bot. Zeit. 35 : 632 (1877). Type : *Caryota*. C'est d'ailleurs celui-ci qui est utilisé par Dransfield *et al.* (2008b). Une discussion avec J. Dransfield n'a cependant pas permis de définir si la première publication est valide ou non.

^{4.} Il existe également une deuxième publication qui définit ce nom : *Corypheae* Martius *in* Endl., Gen. pl. 252 (1837) (*Coryphinae*). Type : *Corypha*. C'est d'ailleurs celui-ci qui est utilisé par Dransfield *et al.* (2008b).

FIGURE 1.4 – supermatrix, extrait de Baker et al. (2009). Consensus strict des 46 080 arbres obtenus par l'analyse de la supermatrix de tous les genres de palmiers (longueur = 15 173, CI = 0,41, RI = 0,62). Valeurs au-dessus des branches : pourcentage de bootstrap (> 50 %). Les astérisques sous les branches indiquent les clades également retrouvés dans les supertrees : 1 astérisque indique que le clade est trouvé dans le supertree le plus congruent (1.5), 2 astérisques indiquent un clade également retrouvé dans tous les supertrees résumés en Annexe A (A.1). Un cercle indique un clade absent du supertree le plus congruent mais compatible avec. Sous-familles et tribus indiquées. L'obèle indique les taxons non monophylétiques.

FIGURE 1.5 – supertree, extrait de Baker et al. (2009). Le supertree le plus congruent. Consensus strict des 5 000 supertrees obtenus d'après une analyse standard MRP (matrix representation with parsimony) (longueur = 11 830.667, CI = 0,80, RI = 0,95). Les nombres au dessus des branches font références aux clades dans la publication. Ceux sous les branches indiquent le nombre d'arbres saisis qui supportent un clade donné. Sous-famille et tribus indiquées. Seul le noeud 67 n'est supporté par aucun arbre d'origine.

FIGURE 1.6 – Phylogénie des tribus, supermatrix, extrait de Baker et al. (2009).

FIGURE 1.7 – Relations entre les tribus des Coryphoideae, d'après Baker et al. (2009).

FIGURE 1.8 – Consensus strict de la phylogénie des tribus des Coryphoideae, d'après Baker et al. (2009).

Chapitre 2

ANATOMIE DE L'APPAREIL VÉGÉTATIF DES PALMIERS

Sommaire

2.1	La ra	acine	26
2.2	Le st	tipe	30
	2.2.1	Les différents ports chez les palmiers	30
	2.2.2	Les différentes phases de développement	30
	2.2.3	Anatomie générale	32
	2.2.4	Le système vasculaire – parcours des faisceaux fibro-vasculaires .	34
2.3 La feuille			
	2.3.1	L'axe foliaire	42
	2.3.2	Le limbe	43

ANATOMIE générale des différentes parties végétatives est présentée dans ce chapitre : la racine, le stipe, les feuilles (pétiole et limbe). Les tiges y tiennent naturellement une place particulière. C'est également ici que je décris le système vasculaire et son développement afin d'avoir une meilleure compréhension de l'anatomie des différentes structures.

2.1 La racine

Morphologie générale. – La racine primaire est très petite et est rapidement remplacée par des racines latérales (secondaires ou adventives). Elles prennent leur naissance à la base de la tige (le bulbe) et forment de grosses masses sous le niveau du sol. Néanmoins, il semblerait que les racines puissent se développer sur toute la longueur de la tige ce qui s'observe chez certains palmiers par la présence de racines aériennes qui peuvent être un élément de soutien en jouant le rôle de contreforts latéraux, ou bien encore s'ériger en tant qu'épine sur le stipe. La ramification racinaire atteint une hiérarchie d'ordre quatre au maximum avec un brutal changement de longueur et de diamètre entre chaque ordre (Tomlinson 1990). Les poils absorbants sont absents, l'absorption se fait par les ramifications d'ordre trois et quatre qui atteignent un diamètre inférieur à 0,5 mm. Il n'est pas rare chez les palmiers de retrouver les racines d'ordre deux transformées en pneumatophores de 10 à 15 cm de haut. Les racines se régénèrent après certaines lésions (Tomlinson 1990).

Anatomie générale. – De formation primaire, les racines ne présentent pas de croissance secondaire et ont une organisation similaire à celle des autres Monocotylédones (stèle polyarche). Elles présentent un intérêt particulier en raison de leur grande longévité. L'anatomie des racines de palmiers a été particulièrement bien étudiée par Drabble (1904), Mahabale et Udwadia (1959), Tomlinson (1961), Seubert (1996a, b, 1997, 1998a, b) Fisher et Jayachandran (1999), Yoshida et al. (2002), Hodel et Pittenger (2003). Une comparaison avec d'autres racines de Monocotylédones est possible à partir de la publication de Kauff et al. (2000). Les tissus composant une racine de palmier sont les suivants (Figs. 2.1–2.4) : (i) rhizoderme / velamen, (ii) exoderme, (iii) cortex externe, (iv) cortex interne, (v) endoderme, (vi) cylindre vasculaire ou stèle. Le rhizoderme des racines de premier ordre est formé par de larges cellules à parois subérifiées ou lignifiées. Sous le rhizoderme se trouve un exoderme qui se lignifie chez les vieilles racines assurant un rôle protecteur. La partie interne est divisée en deux : le cortex (interne et externe) et la stèle (ou cylindre vasculaire). La partie médiane du cortex peut être constituée de larges canaux aérifères ainsi que de faisceaux fibreux très variables d'une espèce à l'autre en fonction de leur disposition, de leur taille et de la lumière des cellules.

La stèle présente également une forte diversité en fonction de sa forme et de ses types cellulaires. Au sein d'un même individu, les jeunes racines diffèrent parfois des plus vieilles, mais la structure du cylindre vasculaire garde une certaine homogénéité (Seubert 1997). Ce même auteur a défini quatre types de stèles :

- Fig. 2.2 a, b. Dans les racines les plus jeunes, les vaisseaux sont limités à la partie périphérique du cylindre vasculaire, entourés par un tissu sclérenchymateux, avec, au centre, une cavité médullaire plus ou moins développée. Plus tard, dans le déve-

FIGURE 2.1 – Schéma de coupe transversale d'une racine de palmier, extrait de Seubert (1997). rhizoderme/velamen (r/v), exoderme (e), cortex externe (oc), cortex interne (ic), endoderme (en), cylindre vasculaire (vc).

loppement de la racine, les vaisseaux sont répartis sur toute le surface du cylindre, la partie centrale est composée de cellules de parenchyme à paroi légèrement épaissie;

- Fig. 2.2 c, d. Analogue au premier type avec, dans la cavité médullaire, quelques vaisseaux inclus dans un tissu sclérotique, pouvant être connecté à la partie externe du cylindre. Dans un stade plus avancé, le nombre de vaisseaux médullaires augmente ce qui réduit la cavité à quelques bandes entre les vaisseaux;
- Fig. 2.2 e. Le sclérenchyme est restreint à une zone intermédiaire, entre la cavité médullaire et les vaisseaux périphériques entourés uniquement de parenchyme;
- Fig. 2.2 f. Le cylindre vasculaire peut se diviser (apparition de bandes vasculaires indépendantes) chez certaines vieilles racines (uniquement chez *Licuala* au sein des *Coryphoideae*).

FIGURE 2.2 – Schémas de coupes transversales des différentes stèles rencontrées chez les palmiers, extrait de Seubert (1997). a. Trithrinax acanthocoma Drude, b. Trachycarpus fortunei (Hook.) H.Wendl., c. Rhapidophyllum hystrix (Fraser ex Thouin) H.Wendl. & Drude, d. Copernicia macroglossa H.Wendl. ex Becc., e. Borassodendron machadonis (Ridl.) Becc., f. Licuala grandis H.Wendl.

(a) Racine de premier ordre proche de son insertion (b) Racine de premier ordre éloignée de son dans le stipe avec un vaisseau inclus dans un un insertion dans le stipe, vaisseaux limités à la tissu sclérotique. Échelle : 1 mm.

partie périphérique de la stèle. Échelle : 1 mm.

FIGURE 2.3 – Différentes stèles au sein d'un même spécimen de Caryota mitis, coupes transversales non colorées. ca : canal aérifère, ex : exoderme, ic : cortex interne, oc : cortex externe.

FIGURE 2.4 – Coupes transversales de racine de Chamaerops (a et b), carmin vert d'iode; et de Phoenix (c et d), carmin vert d'iode. ca : canal aérifère, en : endoderme, ex : exoderme, fef : faisceaux exclusivement fibreux. Échelle : a, c, 1 mm; b, d, 200 μ m.

2.2 Le stipe

2.2.1 Les différents ports chez les palmiers

Les stipes des palmiers présentent une grande variabilité en fonction des genres et il est possible de définir plusieurs ports :

- 1. Palmiers à tige solitaire en colonne, de type *Ceroxylon* Bonpl. ex DC. ou *Roystonea* O.F.Cook;
- 2. Palmiers à tige cespiteuse (*clustered*), de type *Phoenix*, *Rhapis* ou *Chamaedo-rea* Willd.;
- Palmiers à tige souterraine comme Sabal etonia Swingle ex Nash, ou comme Sabal minor (Jacq.) Pers.. Il est plus exact d'utiliser le terme de rhizome pour ces palmiers sans tige aérienne;
- 4. Palmiers à tige rampante comme Serenoa repens (W.Bartram) Small;
- 5. Palmiers à tige grimpante (port lianescent), de type Calamus L. et autres rotins.

Il existe donc une grande variabilité au niveau de la tige des palmiers. Celle-ci peut être quasiment inexistante ou très réduite (quelques centimètres de hauteur) comme chez Guihaia J.Dransf., S.K.Lee & F.N.Wei ou atteindre 50–60 mètres chez Ceroxylon quindiuense (H.Karst.) H.Wendl.. Le diamètre peut être de quelques millimètres comme chez Dypsis tenuissima Beentje in J.Dransfield & H.Beentje ou de plus d'un mètre chez Borassus ou chez Jubaea chilensis (Molina) Baill. La tige la plus longue est rencontrée chez les rotins et peut atteindre 200 mètres avec Calamus manan Miq. (Burkill 1966).

2.2.2 Les différentes phases de développement

Comme les autres Monocotylédones, il n'y a pas de cambium chez les palmiers et ces derniers ne se développent donc pas par une croissance secondaire comme les Angiospermes dicotylédones. Tomlinson (1990) a défini plusieurs phases de développement lors de la croissance des palmiers (Fig. 2.5) et notamment la phase d'établissement lors de laquelle se met en place la tige. C'est durant celle-ci que le stipe atteint son diamètre adulte. Pour certains palmiers, ce diamètre continuera de s'accroître pendant la vie adulte. C'est ce que Schoute (1912), Waterhouse et Quinn (1978) ont défini comme :

Palmiers de Type A (Fig. 2.6, Cocos-Type) dont le diamètre n'augmente pas après la phase d'établissement. Le diamètre maximal est atteint au niveau de la base de l'apex, c'est à dire au niveau de la base du cylindre formé par les gaines foliaires plus ou moins tubulaires (crownshaft). En deçà, le diamètre n'évolue que très peu (exemple : Phoenix);

Palmiers de type B (Fig. 2.6, Mauritia-Type) dont le diamètre augmente sous la base de l'apex. Cet accroissement est connu sous le nom d'accroissement post-primaire (Monoyer 1924) ou sustained growth, et est le résultat de modifications anatomiques qui sont décrites dans le Chapitre 5 : la croissance des cellules du parenchyme fondamental et une modification de la partie fibreuse dorsale des faisceaux fibro-vasculaires (exemple : Pseudophoenix H.Wendl. ex Sarg. ou Ravenea H.Wendl. ex C.D.Bouché).

Ces deux modes de croissance sont donc définis par l'anatomie du stipe (Schoute 1912, Waterhouse et Quinn 1978) et plus particulièrement par celle du parenchyme fondamental qui présente parfois un accroissement post-primaire (Monoyer 1924) (cf. Chapitre 5). En revanche, il est, à mon avis, assez superflu de définir ces deux types d'accroissement diamétral des palmiers en fonction des mesures du diamètre d'un stipe, comme a pu le faire Schoute (1912). En effet, comme il est expliqué dans le Chapitre 5, certains palmiers au stipe parfaitement cylindrique et au diamètre maximal atteint dès la base de la gaine des feuilles présentent une très forte croissance post-primaire avec de très larges lacunes dans le parenchyme fondamental (*Gaussia* H.Wendl., *Pseudophoenix* H.Wendl. ex Sarg.) et d'autres présentent un stipe très large dès la base de la gaine des feuilles avec un parenchyme fondamental compact sans aucune lacune (*Phoenix, Hyphaene*).

FIGURE 2.5 – Les différentes phases de développement chez les palmiers, extrait de Tomlinson (1990). Les transitions d'une phase à l'autre sont moins rapides que ne le laisse supposer le schéma. Espèce hapaxanthique : qui ne fleurit qu'une fois contrairement aux espèces pléonanthiques.

2.2.3 Anatomie générale

Une tige de palmier possède toujours la même organisation générale (Fig. 2.6). Un épiderme qui est rapidement dégradé dans la plupart des cas et qui est structurellement insignifiant. Un cortex plus ou moins développé (de quelques cellules à plusieurs centimètres pour les tiges âgées) contenant des faisceaux exclusivement fibreux et faisceaux fibro-vasculaires formant un système vasculaire cortical relativement indépendant de celui du cylindre central (Zimmermann et Tomlinson 1972) (Figs. 2.11–2.12). Il est traversé par les traces foliaires. Le cylindre central est démarqué du cortex par une zone où apparaissent de façon assez dense les faisceaux fibro-vasculaires qui vont constituer le système vasculaire central. Ce cylindre central peut présenter différentes organisations (Fig. 2.6) en fonction du mode de croissance. Ce cylindre central est constitué d'un parenchyme fondamental. Celui-ci a originellement un rôle de stockage des glucides et les cellules contiennent, généralement dans les parties jeunes du stipe, beaucoup d'amidon. Ce parenchyme fondamental peut être compact ou lacuneux avec des cellules sphéroïdes de petite taille ou des cellules géantes ou très allongées. Dans les parties âgées du stipe, ce parenchyme devient plus ou moins sclérifié et jouant ainsi un rôle dans le soutien de la plante. Le parenchyme fondamental sera spécifiquement étudié dans le Chapitre 5.

FIGURE 2.6 – Schéma des deux principales organisations du stipe. A : Cocos-Type avec une organisation homogène du cylindre central. Les faisceaux fibro-vasculaires ont une taille constante dans tout le cylindre central. Une légère diminution de la taille et de la densité peut parfois s'observer au niveau de la zone centrale (CZ) et ceux de la zone subcorticale (SZ) en contact avec le cortex sont de taille plus petite. B : Mauritia-Type avec des faisceaux fibro-vasculaires dont la taille et la densité sont beaucoup plus importantes au niveau de la zone subcorticale qu'au niveau de la zone centrale. La zone où s'effectuent les changements anatomiques s'appelle la zone de transition (TZ). CT : cortex, CZ : zone centrale, TZ : zone de transition, SZ : zone subcorticale, int : abréviation utilisée dans le texte pour les mesures réalisées au niveau de la zone centrale (intérieure), ext : abréviation utilisée dans le texte pour les mesures réalisées au niveau de la zone périphérique (extérieure) du cylindre central.

Les faisceaux fibro-vasculaires (Fig. 2.7) ont à la fois un rôle de soutien (avec leur partie fibreuse) et un rôle de conduction de la sève brute (protoxylème, métaxylème) et élaborée (phloème). Il faut souligner que les cellules de palmier (comme les tubes criblés) peuvent avoir une durée de vie extrêmement longue (Parthasarathy et Klotz 1976) puisqu'elles doivent assurer le transport de la sève (élaborée) alors que les faisceaux fibro-vasculaires ne sont jamais renouvelés (absence de cambium). Par exemple, toujours selon Parthasarathy et Klotz (1976), les tubes criblés au niveau de la partie basale de certains palmiers (*Roystonea* O.F.Cook, *Sabal*) peuvent vivre longtemps et ainsi être âgés de plus de 100 ans! La partie fibreuse dorsale peut être plus ou moins développée mais est généralement plus développée dans la partie périphérique (zone subcorticale) que dans la partie centrale (zone centrale). Le xylème est composé de trachéides et de vaisseaux. La

FIGURE 2.7 – Schéma d'un faisceau fibro-vasculaire et des différentes parties fibreuses dorsales potentielles. a : Sagittata, b : Cordata, c : Complanata, d : Reniforma, e : Lunaria, f : Vaginata, H_{max} : hauteur maximale des faisceaux fibro-vasculaires, H_{vasc} : hauteur maximale de la zone vasculaire, l_{max} : largeur maximale de la partie fibreuse dorsale, l_{vasc} : largeur maximale de la zone vasculaire, dcap : partie fibreuse dorsale, vcap : partie fibreuse ventrale, AL : lobe auriculaire, AS : sinus auriculaire, MS : sinus médian, mx : élément de vaisseau, px : protoxylème, RP : parenchyme rayonnant, TP : parenchyme tabulaire.

proportion de protoxylème et de métaxylème varie longitudinalement en fonction de son parcours au sein du cylindre central. En effet, pour un faisceau fibro-vasculaire du cylindre central, le nombre d'éléments de protoxylème reflète la distance que ce faisceau a à parcourir axialement dans une direction distale avant qu'il ne sorte du cylindre central en tant que trace foliaire (Figs. 2.10–2.9). Peu ou pas de protoxylème indique une longue distance avant cette sortie, beaucoup d'éléments indiquent que le faisceau est proche de la sortie (Tomlinson *et al.* 2011). Ce sont les faisceaux les plus éloignés distalement d'une trace foliaire qui portent une information taxinomique, les autres présentent une anatomie plus générale. Dans un faisceau fibro-vasculaire informatif, le nombre d'éléments de vaisseau peut varier de un à plus de dix en fonction du genre.

2.2.4 Le système vasculaire – parcours des faisceaux fibro-vasculaires

Le parcours des faisceaux fibro-vasculaires au sein du cylindre central est extrêmement complexe et a été étudié par Zimmermann et Tomlinson (1965, 1967, 1974), Tomlinson et Zimmermann (1966a,b, 1968a,b), Zimmermann *et al.* (1982), Zimmermann et Sperry (1983), Tomlinson et Vincent (1984) pour le genre *Rhapis*. Il ne sera pas question d'en faire une analyse détaillée mais d'en fournir les principales variations afin que le lecteur puisse avoir un aperçu de l'état de ces connaissances. Une synthèse a été réalisée par Tomlinson (1990) et un court résumé par Tomlinson *et al.* (2011). De nombreux auteurs se sont essayés à émettre des hypothèses en ce qui concerne le parcours des faisceaux fibro-vasculaires comme le présente la Fig. 2.8 (Tomlinson et Zimmermann 1966c). Mais ce n'est qu'avec l'avènement d'une ingénieuse méthode mise au point par Zimmermann et Tomlinson (1966) (*optical method shuttle*) qu'une compréhension optimale a pu être réalisée (Figs. 2.10–2.14).

Grâce aux nombreux travaux de ces auteurs, la variation du système vasculaire peut être résumée de la manière suivante.

La course des faisceaux fibro-vasculaires Elle n'est pas strictement axiale. En effet, chacun des faisceaux se forme au niveau de la périphérie de la tige dans la région méristématique puis, par un système en *hélice* (Fig. 2.13) mis en évidence par Meneghini (1836), migre dans un plan tangentiel. De plus von Mohl (1823-1850) a décrit un système en *double courbe* : les faisceaux fibro-vasculaires divergent dans une direction radiale vers l'intérieur puis vers l'extérieur (Fig. 2.13). Tomlinson *et al.* (2011) indiquent que la migration progressive vers l'intérieur des faisceaux à partir de leur position proximale d'origine et que la migration distale vers la périphérie pour rejoindre une feuille en tant que trace foliaire expliquent le fait que la densité des faisceaux fibro-vasculaires est plus importante au niveau de la zone subcorticale que de la zone centrale (Figs. 2.9, 2.11–2.12). Comme le montrent ces figures, il existe un important continuum du réseau vasculaire feuille–tige au niveau de la zone périphérique du cylindre central, ce qui renforce le gradient de densité. Mais ceci n'est

FIGURE 2.8 – Évolution de l'interprétation du système vasculaire, d'après Zimmermann et Tomlinson (1965). Figures extraites de Desfontaines (1799), de Mirbel (1844), von Mohl (1823-1850), Falkenberg (1876), de Bary (1877) (X : première suggestion et schématisation d'anastomose des faisceaux fibro-vasculaires), Haberlandt (1884) et Monoyer (1924).

La continuité hydraulique Elle est assurée par un complexe réseau de ponts vasculaires (vascular bridge, Fig. 2.9) qui relient les faisceaux fibro-vasculaires. En effet, si chaque faisceau axial migre vers une feuille (le cas des inflorescences est plus complexe) il est nécessaire de former une sorte de connexion entre un faisceau sortant et un autre qui lui reste dans la tige pour assurer cette continuité tout au long de l'axe. Normalement, chaque trace foliaire sortant de la tige donne naissance à un nouveau faisceau axial (qui reste dans le cylindre central), ce qui assure la continuité vasculaire dans une direction distale. C'est ce principe qui fait que le nombre de faisceaux fibro-vasculaires reste constant quel que soit le niveau de la tige. Au niveau de la zone subcorticale,

lorsqu'un faisceau axial devient une trace foliaire, en plus de sa séparation en un nouveau faisceau axial et en trace foliaire, les ponts vasculaires assurent également la continuité hydraulique entre les différents éléments. Zimmermann et Tomlinson (1972) ont définit une particularité anatomique : la *leaf contact distance* (Fig. 2.11). Elle représente la distance séparant deux points de branchement (séparation d'un faisceau fibro-vasculaire axial en un autre faisceau fibro-vasculaire et une trace foliaire) successifs. Ces auteurs expriment cette distance en nombre d'entre-nœuds. Pour *Rhapis*, la plus grande distance mesurée est de 15 entre-nœuds.

FIGURE 2.9 – *Rhapis excelsa*, schéma des connexions vasculaires entre une trace foliaire principale et ses faisceaux fibro-vasculaires voisins au niveau d'une insertion foliaire. Lignes noires : faisceau fibro-vasculaire à éléments de vaisseau, lignes hachurées : faisceau fibro-vasculaire à protoxylème. Cette figure représente les états 4–7 de la Fig. 2.10, extrait de Zimmermann et Tomlinson (1965). ffv : faisceau fibro-vasculaire.

Variation le long de l'axe Il existe une variation le long de l'axe de la tige d'un palmier qui est le résultat des processus de développement.

- Pendant le phase d'établissement, la tige a une forme conique et le nombre de faisceaux fibro-vasculaires augmente jusqu'à ce que le stipe ait atteint un diamètre à peu près constant. Les structures de cette partie sont très peu lignifiées et ses cellules de petites tailles. Le parenchyme fondamental ne présente pas de lacune.
- Variabilité radiale du cylindre central. Entre la zone subcorticale et la zone centrale, la densité des faisceaux fibro-vasculaires diminue. La partie fibreuse dorsale est plus

développée au niveau de la zone subcorticale. Les cellules cellules du parenchyme peuvent subir une croissance ce qui a pour conséquence la formation des lacunes plus ou moins importantes au niveau de la zone centrale...

Variabilité axiale du cylindre central. Certaines structures anatomiques sont en effet différentes en fonction de leur position axiale. Par exemple, les éléments de vaisseau sont plus courts et plus étroits au niveau de la partie apicale et les fibres sont plus courtes (Swamy et Govindarajalu 1961, Tomlinson 1990). De plus la lignification des fibres augmente avec l'âge de la partie de la tige. Le parenchyme fondamental peut aussi subir quelques modifications comme un allongement (ou élargissement) des cellules, de rares divisions ou un dépôt de lignine sur les parois. Ces modifications sont spécialement traitées dans le Chapitre 5.

Cette variation anatomique est bien connue pour le genre *Rhapis*. L'étude des larges stipes de plusieurs dizaines de mètres de hauteur n'est pas réalisable avec la même précision que pour ces espèces de petites tailles. Cependant, Zimmermann et Tomlinson (1974) ont néanmoins essayé d'étudier d'autres palmiers (Figs. 2.12, 2.14). Leur étude montre que le *Rhapis principle* décrit précédemment est différent et qu'il est extraordinairement plus compliqué. Eux-mêmes ne rentrent pas dans le détail. Ils définissent un système vasculaire « *Phoenix Type* » qui possède une organisation générale qui est très simplifiée dans les Figs. 2.12, 2.14 A. Une conséquence directe de ce type de trajet est que les faisceaux fibro-vasculaires ont une course beaucoup plus parallèle à l'axe de la tige.

FIGURE 2.10 – *Rhapis excelsa*, trajet des faisceaux fibro-vasculaires dans le stipe et variations anatomiques. La figure de droite montre la course de trois types de faisceaux fibro-vasculaires : principal (M), secondaire (I), et mineur (m). Seul le secondaire et le mineur montrent une *leaf contact distance* complète. Les nombres correspondent aux éléments anatomiques illustrés en plan transversal dans la partie de gauche, extrait de Zimmermann et Tomlinson (1965).

FIGURE 2.11 – Le schéma de droite montre ce que Zimmermann et Tomlinson (1972) appellent la *leaf* contact distance : c'est l'intervalle le long d'un faisceau fibro-vasculaire axial entre le départ de deux traces foliaires successives (entre A et B). Il existe des faisceaux fibro-vasculaires principaux, secondaires et corticaux qui se terminent aveuglément dans une direction proximale. La figure de gauche montre une tentative de complexification du schéma de droite sur plusieurs *leaf contact distance* avec l'ajout de ponts vasculaires, extrait de Zimmermann et Tomlinson (1972).

FIGURE 2.12 – Trajet des faisceaux fibro-vasculaires pour des palmiers à large diamètre. Le schéma de gauche montre un faisceau fibro-vasculaire axial (AB) se séparant d'une trace foliaire puis plus haut, s'associant temporairement à plusieurs traces foliaires (B) avant de continuer sa course vers le centre de la tige. Le schéma de droite montre la complexité de la continuité entre les traces foliaires et les faisceaux exclusivement fibreux du cortex (lignes fines) avec les faisceaux fibro-vasculaires du cylindre central. Les faisceaux du cortex entrent distalement dans le cylindre central et deviennent des faisceaux fibro-vasculaires types (faisceau fibro-vasculaire axial avec xylème) en recevant des ponts vasculaires. Une séparation entre une trace foliaire et un faisceau exclusivement fibreux axial peut parfois avoir lieu dans le cortex (C), extrait de Zimmermann et Tomlinson (1974). AB : faisceau fibro-vasculaire axial (principal), Br : pont vasculaire, LT : trace foliaire.

FIGURE 2.13 – Trajet des faisceaux fibro-vasculaires en deux dimensions montrant le parcours en hélice et en double courbe. Partie gauche : parcours des faisceaux fibro-vasculaires le long de l'axe longitudinal, double courbe ; Partie droite : parcours des faisceaux fibro-vasculaires dans un plan transversal (en hélice), les nombres donnent les centimètres sur l'axe longitudinal, extrait de Zimmermann et Tomlinson (1974).

FIGURE 2.14 – Ces schémas montrent les différentes courses que peuvent avoir les faisceaux fibro-vasculaires chez les palmiers en fonction de leur séparation avec une trace foliaire. A : Rhapis-Rhizome-Type trouvé également chez les stipes de grande taille (*Phoenix*), B : Rhapis-Aërial-Stem-Type, C : Geonoma-Type, D : Chamaedorea-Type. Il peut exister des formes de transition au sein d'un même spécimen, extrait de Zimmermann et Tomlinson (1974).

2.3 La feuille

La feuille est composée de plusieurs parties : le limbe et l'axe foliaire. Ce dernier est lui-même divisé en une gaine encerclant la tige, un pétiole et un rachis portant les folioles. Les feuilles sont limitées au niveau de la cime du palmier. Leur insertion se fait suivant une spirale. Il convient de définir quelques termes nécessaires à la description : la partie **abaxiale** correspond à la partie dorsale ou inférieure de la foliole, du côté du phloème; celle **adaxiale** à la partie ventrale ou supérieure de la foliole, du côté du xylème. Un limbe est **isolatéral** lorsque les parties adaxiale et abaxiale sont identiques, **dorsiventral** lorsque les deux faces sont différentes.

Il existe une très forte variabilité foliaire inter spécifique chez les palmiers qui est décrite par Tomlinson (1961), Uhl et Dransfield (1987) et Tomlinson et al. (2011).

2.3.1 L'axe foliaire

Morphologie générale. – Le pétiole est toujours strié sur sa face adaxiale à l'exception de la partie distale de quelques palmiers à feuilles palmées où il devient rhomboédrique. La gaine, au niveau de son insertion, encercle totalement la tige. Elle peut être plus ou moins confluente avec le pétiole ou bien former un véritable fourreau tubulaire nettement distinguable du pétiole.

Anatomie générale. – L'anatomie de l'axe foliaire présente (Fig. 2.15) une forte variabilité lorsqu'on passe de la base à l'apex de la feuille. L'épiderme est fortement cutinisé et peut avoir une paroi externe beaucoup plus épaissie que les anticlinales. Les **stomates** sont fréquents et souvent dans des dépressions, ils peuvent parfois être avortés. Ils conservent leur structure et donc leur valeur diagnostique. L'hypoderme est également présent et repose sur un **chlorenchyme** plus ou moins palissadique à paroi plus fine que le parenchyme fondamental. Les faisceaux exclusivement fibreux sont clairsemés dans la partie périphérique abaxiale du pétiole et sont beaucoup plus denses du côté adaxial. La vascularisation du pétiole consiste en une série de faisceaux parallèles connectés par des commissures transverses (faisceaux libéro ligneux non fibreux). Les larges vaisseaux de métaxylème sont solitaires ou regroupés par deux ou plus. Le phloème peut être divisé en deux bandes par une partition sclérotique. Le support mécanique du pétiole se trouve principalement dans la zone périphérique où les gaines fibreuses sont le plus développées et associées à un sclérenchyme. Les faisceaux de la partie centrale ont une orientation aléatoire. Ceux de la partie périphérique présentent une gaine fibreuse plus développée que ceux de la partie interne et sont normalement orientés au niveau de la partie abaxiale (i.e. phloème à l'extérieur) et aléatoirement orientés au niveau de la partie adaxiale. Le parenchyme fondamental se compose de cellules très uniformes (circulaires en coupe transversale) et présente quelquefois des cellules subissant une extension de leur diamètre suivant un axe passant par le rayon des faisceaux fibro-vasculaires. Celles se situant à proximité de ces faisceaux fibro-vasculaires ont un diamètre plus petit et constituent la gaine externe riche en amidon (Tomlinson 1961). Il n'y a presque jamais de faisceaux exclusivement fibreux sauf à la base de l'axe où ils se retrouvent fréquemment.

FIGURE 2.15 – Coupe transversale d'un pétiole de *Nannorrhops*, vert d'iode. 1 : épiderme, 2 : hypoderme, 3 : chlorenchyme, fef : faisceau exclusivement fibreux, ffv : faisceau fibro-vasculaire. Échelle : 1 mm.

2.3.2 Le limbe

Morphologie générale. – Les limbes sont toujours plissés. C'est une caractéristique morphologique de la feuille de palmier. Ces plis suivent toujours les nervures principales. Les limbes prennent différentes formes en fonction des divisions qu'ils subissent : palmés, costopalmés ou pennés. Ils ne sont entiers que dans de très rares cas ou bien bifides à l'apex (persistance du feuillage juvénile). Les unités résultant de ces divisions sont appelées segments chez les formes palmées et costapalmées, et folioles chez les formes pennées. Le phénomène de division du limbe est un événement indépendant qui fait suite à celui qui est à l'origine des plis.

Deux formes générales de feuilles peuvent être définies en fonction du limbe.

Les « feather-palms » ou palmiers plumeux ou à feuilles pennées. – Ces limbes peuvent se diviser en deux groupes morphologiques. Cette dichotomie est fondée sur la façon dont la division du limbe s'effectue. (i) Limbes pennés à segments indupliqués : la première division se fait le long de la nervure adaxiale (ventrale). Les feuilles sont imparipennées avec une simple foliole terminale. (ii) Limbes pennés à segments à segments redupliqués : la première division se fait le long de la nervure abaxiale (dorsale).

- Les « fan-palms » ou palmiers en éventail (palmés et costapalmés). - Ces limbes sont plissés et présentent une nervure dominante à chaque pli. Le limbe se fend le long des plis adaxiaux (partie supérieure) mais n'atteint que très rarement la base du limbe. De ce fait, la partie centrale est pleine alors que la partie périphérique est découpée suivant les nervures ventrales. Ces segments sont donc indupliqués avec une nervure abaxiale distincte. La jonction entre la partie distale du pétiole et le limbe permet de différencier les palmés des costapalmés. Si la partie distale se termine brusquement sans prolongement et sans pénétrer le limbe, alors les nervures abaxiales ont toutes pour origine l'extrémité du pétiole : le limbe est **palmé**. Si la partie distale se prolonge dans le limbe formant ainsi un axe de symétrie à l'intérieur de ce dernier (une sorte de rachis, côte), alors les nervures principales prennent leur origine sur ce prolongement : le limbe est costapalmé. Le type costapalmé est une transition entre le type palmé et penné. Chez certains genres à feuilles palmées, une sorte de crête apparaît sur la face adaxiale du pétiole au niveau de la jonction avec le limbe (ainsi que sur la face abaxiale mais toujours moins bien développée). Cette partie est appelée hastula.

Anatomie générale. – (Figs. 2.16–2.17) En vue paradermale (Fig. 2.17), un épiderme présente une alternance de **bandes costales** (situées au-dessus des faisceaux fibrovasculaires, correspond aux nervures) dépourvues de stomates et constituées de cellules plus ou moins allongées et de **bandes intercostales** (entre les faisceaux fibro-vasculaires) contenant des files de stomates. Les **poils**, lorsqu'ils sont présents, se situent au niveau des bandes costales des deux faces pour les limbes isolatéraux ou bien uniquement du côté abaxial pour les limbes dorsiventraux.

Le stomate est un élément important de description puisqu'une forte variabilité a été observée. De plus, sa conformation particulière permet d'identifier un épiderme comme étant un épiderme de palmier Dunn *et al.* (1965). Cette structure permet de différencier assez facilement les différents genres. Les stomates de palmiers sont de type tétracytique (Figs. 2.18–2.19) : cellules de gardes entourées par quatre cellules annexes, deux polaires (CAP) et deux latérales (CAL) (Metcalfe 1961). Mais ce terme n'est vrai que dans un sens descriptif, car d'un point vue du développement du stomate, la situation est plus complexe et ne doit pas être confondue avec la simple structure tétracytique rencontrée chez les autres Monocotylédones où les divisions obliques des CAL n'ont pas lieu (Tomlinson 1990). Un tel type de stomate serait un caractère plésiomorphe (Stebbins et Khush 1961).

Le limbe est recouvert d'une **cuticule** plus ou moins épaisse selon les genres qui peut recouvrir entièrement le stomate. Celle-ci repose sur un **épiderme** à cellules généralement à sections carrées ou quelquefois dressées sur le plan transversal. La paroi extérieure de ces

FIGURE 2.16 – Coupe transversale d'un foliole de Medemia, vert d'iode. Échelle : 200 µm.

FIGURE 2.17 – Vue paradermale d'un limbe d'Hyphaene, vert d'iode. Échelle : 200 µm.

 $\label{eq:Figure 2.18} Figure 2.18-Coupe transversale d'un stomate de Nannorrhops, vert d'iode. cal : cellule annexe latérale, cg : cellule de garde, css : chambre sous stomatique, flèche : épaississement cutinisé. Échelle : 20 µm.$

cellules peut être très épaissie. Sous cet épiderme se trouve un **hypoderme** ayant une à quatre assises de cellules. Ces cellules ont un diamètre plus grand que celles de l'épiderme et une paroi généralement moins épaissie. Cette assise est interrompue sous chaque stomate pour former la chambre sous stomatique. L'hypoderme repose sur un **chlorenchyme** (tissu chlorophyllien et d'assimilation). Ce tissu se repère facilement sur du matériel non vidé et non coloré par le fait que les cellules, de forme aléatoire, contiennent des chloroplastes. Le chlorenchyme peut être palissadique ou lacuneux. Lorsque le limbe est isolatéral, le chlorenchyme est palissadique, lorsque le limbe est dorsiventral, il est palissadique du côté adaxial et lacuneux du côté abaxial. Un **mésophylle** (mésenchyme ou parenchyme fondamental) constitue la partie centrale du limbe. Il existe de longs faisceaux fibro-vasculaires qui parcourent le limbe longitudinalement et d'autres plus petits le parcourant transversalement. Ces derniers sont parfois dépourvus de gaine fibreuse. L'allure générale de la vascularisation d'un limbe est composée de faisceaux fibro-vasculaires parallèles.

L'organisation générale d'un faisceau mixte est très similaire à celle décrite plus haut. Le phloème est souvent composé de cellules sclérotiques, et est toujours séparé du xylème par une ou plusieurs couches de cellules de parenchyme sclérotique. La gaine interne (ou fibreuse) peut être continue ou interrompue au niveau du métaxylème par des cellules sclérotiques. La gaine externe, très évidente, est composée de cellules de parenchyme assez allongées anticlinalement.

Au niveau des folioles ou segments foliaires se trouve une nervure centrale bien distincte. Elle est en position abaxiale pour les feuilles indupliquées et adaxiale pour les feuilles redupliquées. La structure est très similaire à celle qui vient d'être décrite. Cependant les faisceaux fibro-vasculaires principaux ne sont jamais associés à des piliers. Un type cellulaire caractéristique s'y trouve au niveau adaxial : les **cellules bulliformes** responsables des mouvements foliaires.

 $\label{eq:Figure 2.19-Vues paradermales de stomate de palmier. cal : cellule annexe latérale; cap : cellule annexe polaire; cg : cellule de garde; ep : épaississement cutinisé de la cellule de garde; x : cellule du complexe stomatique; flèche : division cellulaire oblique.$

Dans cette première partie j'ai essayé de présenter, de façon synthétique, les palmiers, leur phylogénie et leur anatomie. Bien sûr, les descriptions qui ont pu être données ne sont que des exemples ou des généralités et il faut rappeler que les palmiers présentent une extraordinaire diversité qui peut être déclinée en un nombre important de spécificités à partir du modèle anatomique présenté dans cette partie.

Dans la partie suivante je décris le matériel étudié ainsi que les méthodes utilisées pour la réalisation de l'étude anatomique présentée dans la troisième partie.

Deuxième partie

MATÉRIEL ET MÉTHODES

Chapitre 3 MATÉRIEL

Sommaire

- 3.1 Échantillonnage des spécimens 52
- 3.2 Problème de l'identification taxinomique des stipes de palmier 53

L M'A semblé important de consacrer un chapitre sur le matériel actuel échantillonné qui a servi à la réalisation du référentiel sur l'anatomie des stipes. Le lecteur pourra trouver une certaine redondance avec les parties du même nom dans l'article présenté au chapitre 7.1 (Thomas et De Franceschi 2013). Néanmoins, l'approche est ici différente et plus approfondie. Un récapitulatif de l'échantillonnage actuel et fossile est présenté afin d'en avoir une vision globale. L'ensemble des spécimens étudiés est détaillé au niveau de chaque tribu dans les chapitres 7 à 11 afin de permettre au lecteur de connaître avec précision les spécimens qui ont permis la réalisation de l'étude anatomique de chaque tribu.

3.1 Échantillonnage des spécimens

L'échantillonnage de stipes de palmiers est assez délicat en raison des caractéristiques de leur croissance et de leur anatomie. En effet, contrairement à un tronc véritable (avec cambium secondaire), il n'est pas possible de réaliser des prélèvements sur pied comme l'expliquent Boura et De Franceschi (2008), et ceci pour plusieurs raisons exposées cidessous.

- Les palmiers ne possédant pas de cambium secondaire, un prélèvement à la tarière à bois ne permettrait pas à la plante de cicatriser¹ aussi rapidement que les plantes qui en sont pourvues.
- 2. Il existe, comme mentionné précédemment, une grande variabilité de la tige des palmiers, le long de deux axes : (i) l'axe longitudinal ou variation axiale, de la région apicale vers la région basale; (ii) l'axe radial ou variation radiale, de la zone subcorticale vers la zone centrale du cylindre central².

Afin de considérer le polymorphisme sur ces deux axes, il est préférable d'avoir une section transversale englobant au moins un rayon du cylindre central avec le cortex. Si le matériel est disponible, plusieurs sections le long de l'axe du stipe (base, milieu, apex) permettent de mieux comprendre la variation axiale.

Il est facile de comprendre qu'un échantillonnage exhaustif (section transversale *inté-grale* de la base et de l'apex d'un stipe) est impossible à réaliser. En effet, les stipes de palmiers ne sont que rarement prélevés et, lorsqu'ils le sont, seule une petite partie du stipe est échantillonnée. Il existe néanmoins quelques collections au sein de certaines institutions qui m'ont permis d'obtenir un échantillonnage conséquent. Ces institutions sont les suivantes :

- Fairchild Tropical Botanic Garden, FTG (Coral Gables, Floride).
- Montgomery Botanical Center, MBC (Coral Gables, Floride).
- Kew Economic Botany Collection, K, EBC (Kew, Royaume-Uni).
- Musée royal de l'Afrique centrale, MRAC, Tw (Tervuren, Belgique).
- Samuel J. Record Collection (SJRw) de Madison wood collection (MADw) (Madison, Wisconsin).

Les deux jardins botaniques de Floride m'ont permis d'obtenir des sections transversales entières provenant à la fois de la base et de l'apex d'un même stipe sur plusieurs spécimens.

^{1.} J'ai pu observer des stipes de palmiers présentant des cicatrices. En revanche, il n'existe pas d'étude concernant ce mécanisme au sein de cette famille.

^{2.} Sur ces deux variations, se reporter au Chapitre 5.

Enfin, une mission dans le Sultanat d'Oman m'a également permis d'échantillonner dans une palmeraie plusieurs stipes de palmiers dattiers à différentes hauteurs.

3.2 Problème de l'identification taxinomique des stipes de palmier

Une vérification de l'identification taxinomique du stipe a été réalisée en recherchant, lorsqu'elle existait, la part d'herbier correspondante. Lorsque ceci a été possible, plusieurs spécimens de la même espèce et plusieurs espèces au sein du même genre ont été collectés afin d'avoir un aperçu du polymorphisme (Appendix 1 de l'article sur les tiges actuelles au Chapitre 7.1 et Tableau 3.1). Pour plus de clarté, les spécimens étudiés seront cités lors de la description de chaque tribu.

Les échantillons cités dans cette thèse sont uniquement ceux pour lesquels l'identification ne fait aucun doute. En effet, certains spécimens (notamment ceux des xylothèques) ont parfois été mis en collection sous une mauvaise identification. Ainsi, lorsqu'un doute planait sur l'identification d'un spécimen, il n'a pas été retenu pour la réalisation du référentiel sur l'anatomie des palmiers actuels. Comme il n'est pas évident de faire la différence entre tel ou tel échantillon de stipe conservé dans une xylothèque, j'ai décidé de prélever, lorsque c'était possible, plusieurs échantillons du même genre dans différentes institutions. Lorsque le prélèvement a eu lieu sur des parts d'herbier avec échantillon de stipe, ou sur des palmiers après qu'ils ont été coupés (en serres ou palmeraies)³, dans la plupart des cas il n'y avait *aucun* doute sur l'identification. Ainsi, il a été possible de réaliser des vérifications anatomiques pour les stipes dont les identifications me semblaient douteuses. Dans la description anatomique des chapitres 7–11 il est précisé lorsque persiste un doute sur l'identification ou qu'un seul spécimen d'un genre n'a pu être prélevé.

Le Tableau 3.1 indique que toutes les tribus des *Coryphoideae* ont été échantillonnées. Les tribus les moins bien échantillonnées sont les *Cryosophileae* (50 % des genres) et les *Trachycarpeae* (55 % des genres). En ce qui concerne les *Chuniophoeniceae*, deux des quatre genres ont été échantillonnés mais les deux restants ne sont pas évidents à échantillonner. *Kerriodoxa* n'est connu que dans une petite localité de la péninsule thaïlandaise et la seule population de *Tahina* est composée de 91 individus au Nord–Ouest de Madagascar. Toutes les tribus des *Calamoideae* et des *Ceroxyloideae* ont également été échantillonnées ainsi que le genre *Nypa*. La sous-famille des *Arecoideae* est relativement bien représentée même s'il

^{3.} Que le lecteur se rassure, dans cette thèse, aucun palmier n'a été coupé dans le but unique d'en prélever quelques centimètres de section. Les ouragans en Floride m'ont rendu un grand service ainsi que l'éclaircissement nécessaire dans les palmeraies. Pour ce qui est des serres, les palmiers qui on servi à cette étude provenaient de l'entretien de celles-ci.

Groupe taxinomique	Nombre de		
	genres/total	espèces(spécimens)	
Coryphoideae	28/46	48 (65)	
Borasseae	5/8	8 (15)	
Caryoteae	3/3	6(7)	
Chuniophoeniceae	2/4	2(2)	
Corypheae	1/1	1(1)	
Cryosophileae	5/10	6(10)	
Phoeniceae	1/1	3(4)	
Sabaleae	1/1	3(4)	
Trachycarpeae	10/18	19(23)	
Calamoideae	8/22	10 (14)	
Calameae	3/14	3(6)	
Eugeissoneae	1/1	3(3)	
Lepidocaryeae	4/7	4(5)	
Nypoideae	1/1	1(1)	
Ceroxyloideae	4/8	6(8)	
Cyclospatheae	1/1	2(3)	
Ceroxyleae	2/4	4 (4)	
Phytelepheae	1/3	1(1)	
Arecoideae	40/107	49 (66)	
Areceae	14/59	16(24)	
Chamaedoreeae	2/5	2(3)	
Cocoseae	10/18	15(20)	
Euterpeae	3/5	4 (6)	
Geonomateae	2/6	2(2)	
Iriarteae	4/5	4 (4)	
Leopoldinieae	1/1	1(1)	
Manicarieae	1/1	1(1)	
Oranieae	1/1	2(3)	
Pelagodoxeae	0/2	0	
Podococceae	1/1	1(1)	
Reinhardtieae	0/1	0	
Roystoneeae	1/1	1(1)	
Sclerospermeae	0/1	0	
Total	81/184	114 (154)	

Tableau 3.1 – Échantillonnage des spécimens actuels

n'est pas évident d'en obtenir un échantillonnage représentatif. En effet, c'est la sous-famille la plus importante en nombre de tribus (14) de genres (107) et d'espèces (environ 1500). Dans cette sous-famille, trois tribus n'ont pas été échantillonnées (les *Pelagodoxeae*, les *Reinhardtieae* et les *Sclerospermeae*). À part la tribu des *Areceae* qui est composée de 59 genres et où 14 genres ont été échantillonnés (24 %), les autres tribus sont composées d'un nombre de genres beaucoup moins important et sont ainsi mieux représentées.

Je tiens à signaler que les collections de lames du Jodrell Anatomy Laboratory (Kew), et de la xylothèque du Musée Royal de l'Afrique Central (Tervuren) ont également servi à vérifier l'homogénéité des genres étudiés ainsi que la robustesse des descripteurs mis en place dans les chapitres suivants.
Chapitre 4 MÉTHODES

Sommaire

4.1 Prép	aration des spécimens actuels	58		
4.1.1	Niveaux standards d'observation pour les lames de références	58		
4.1.2	Conservation et préparations préliminaires des échantillons	58		
4.1.3	Pour les racines, stipes et pétioles homogènes et non fibreux	59		
4.1.4	Pour les stipes et pétioles hétérogènes, fibreux ou très sclérotiques	61		
4.1.5	Dilacération	63		
4.1.6	Préparation pour l'étude anatomique du limbe	63		
4.1.7	Protocole d'inclusion d'échantillon dans du PEG 1500	65		
4.1.8	Protocole d'extraction des phytolithes	65		
4.2 Prép	aration des spécimens fossiles	66		
4.3 Avantages et désavantages des techniques d'inclusion et de				
polis	sage	67		
4.4 Obse	rvation, mesure et traitements d'image	68		
4.5 Form	alisation de la description taxinomique	69		
4.6 Le lo	giciel Xper	70		
4.6.1	Présentation	70		
4.6.2	Calcul du pouvoir discriminant des descripteurs dans Xper	74		

ES DIFFÉRENTES techniques utilisées lors de la réalisation des lames minces des spécimens actuels et fossiles sont présentées dans ce chapitre. Le détail des méthodes de mesure sera également abordé. Comme pour le chapitre précédent une certaine redondance avec les articles associés à cette thèse peut apparaître. Mais il m'a paru important de fournir plus de détails dans le présent travail afin que les divers protocoles qui ont été élaborés lors de cette thèse soient clairement explicités pour des travaux futurs.

4.1 Préparation des spécimens actuels

Plusieurs manuels m'ont été utiles (Langeron 1949, Geneves 1962, Locquin et Langeron 1978, Ruzin 1999) ainsi que de nombreuses expérimentations ont été nécessaires afin de trouver des techniques de préparation qui puissent donner des résultats optimum pour les différents organes de palmier que j'ai étudiés. Même si aucune technique ne peut être décrite avec précision pour réussir à coup sûr sa préparation, j'en présenterai quelquesunes qui permettent, avec quelques ajustements au cas par cas, d'obtenir une lame mince exploitable. L'ensemble des techniques utilisées en fonction de la nature de l'échantillon, est présenté Fig. 4.2.

4.1.1 Niveaux standards d'observation pour les lames de références

Pour permettre une comparaison entre les organes, il faut si possible effectuer les préparations anatomiques sur les parties suivantes :

- Racine Essayer de réaliser les coupes transversales dans les différentes ramifications racinaires. La racine peut être préparée avec les techniques suivantes : préparation classique (4.1.3), inclusion dans de la résine (4.1.4) ou du PEG 1500 (4.1.7).
- Tige Si le matériel le permet, réaliser des sections à des hauteurs différentes pour étudier la variation des structures en fonction de l'âge de la tige. Pour une étude anatomique détaillée et complète, il est impératif de décrire une section transversale entière : des parties les plus externes au centre du cylindre central. Sinon se procurer la partie disponible. Techniques utilisées : préparation classique (très rarement) (4.1.3), inclusion dans de la résine (4.1.4).
- **Pétiole** La coupe transversale doit être réalisée immédiatement sous l'insertion du limbe. Technique utilisée : préparation classique (4.1.3).
- Limbe Pour les feuilles pennées, faire la coupe transversale dans la partie médiane de la foliole (à mi-chemin entre la base et l'apex), elle-même étant inséré dans la partie médiane du rachis. Pour les feuilles palmées ou costapalmées, effectuer la coupe transversale à mi-chemin entre la base et l'apex d'un segment foliaire. Technique utilisée : inclusion dans du PEG 1 500 (4.1.7).

4.1.2 Conservation et préparations préliminaires des échantillons

Matériel frais. –

Pétioles, limbes, racines. – Conserver ces parties dans une solution (2 :1 :1) éthanol à 95 % : glycérol : eau. Le glycérol sert à ramollir les échantillons. Les échantillons préparés ainsi, sont directement exploitables pour une préparation classique (section 4.1.3) ou une inclusion dans du PEG 1500 (4.1.7).

Stipe. – Si la tige est très spongieuse, utiliser la même technique que précédemment. Si le parenchyme fondamental est très compact ou que le stipe est déjà plus ou moins sec, il est possible de conserver l'échantillon sans précaution spécifique après l'avoir fait sécher dans une étuve à basse température (40 $^{\circ}C - 50 ^{\circ}C$). La méthode de conservation dans la solution (2:1:1) – éthanol à 95 % : glycérol : eau – permet une utilisation directe pour la technique de préparation classique (4.1.3). En revanche, pour une inclusion dans de la résine (araldite ou polyester, 4.1.4), il faut un échantillon totalement sec (sans aucune humidité). Deux méthodes peuvent alors être envisagées. La première consiste à faire sécher à l'étuve l'échantillon, en risquant de modifier sa structure anatomique. Un séchage sous presse est également envisageable. La seconde méthode consiste à supprimer l'eau d'un échantillon de faible épaisseur (1,5 cm au maximum) en le faisant passer dans des bains successifs d'éthanol 95 % puis dans un bain terminal d'éthanol absolu (les temps sont très variables mais il faut compter 2 à 3 jours pour une déshydratation complète après passage dans cinq à six bains). Un nouveau problème apparaît alors : les résines (polyester ou epoxy) sont très solubles dans l'éthanol (et non compatibles avec) et un peu moins dans l'acétone. Il faut donc réaliser un dernier bain dans de l'acétone absolue afin de pouvoir inclure l'échantillon dans la résine. Cette technique a permis d'inclure certains échantillons conservés dans la solution 2 :1 :1, mais est assez délicate à réaliser.

Matériel sec. – Le matériel sec est conservé à température ambiante dans des boites contenant du silicagel afin d'éviter une réhydratation des spécimens.

4.1.3 Pour les racines, stipes et pétioles homogènes et non fibreux

- Préparer des petits cubes de 1 cm de côté environ, orientés selon les plans transversal et longitudinal¹.
- 2. Ramollir le cube en le faisant bouillir dans l'eau jusqu'à ce qu'il coule au fond du récipient. La durée est très variable (de quelques heures à plusieurs jours).

Coupes au microtome (20 à 30 μ m)

- 3. Utiliser un rasoir usagé pour les premières coupes.
- 4. Comme le stipe (et le pétiole) est très siliceux, il est possible de mettre l'échantillon à tremper une à deux semaines dans l'acide fluorhydrique très dilué, ensuite faire

^{1.} Un seul plan longitudinal est réalisé pour l'étude du stipe de palmier dans cette étude : le plan longitudinal radial.

agir de l'acide chlorhydrique dilué et rincer à l'eau distillée. Cette technique est très longue et comme l'observation des phytolithes *in situ* est impossible par la suite, cette étape n'a pas été réalisée.

Coloration : (attention, pour obtenir des lames non vidées, supprimer les étapes 5, 6, 7, 8 et 9)

- 5. Hypochlorite de sodium dilué : pendant 30 min minimum. Surveiller les coupes durant toute la durée du traitement. En effet, le traitement peut dans certains cas être plus rapide. Cette étape permet d'éliminer tous les contenus cellulaires et de décolorer les parois cellulaires.
- 6. Rinçage à l'eau distillée : 5 min.
- 7. Bain dans de l'eau acétique : 10 min. C'est un mordant qui permet au colorant de prendre (ou mordancer, fixation du colorant sur les parois).
- 8. Vert d'iode en solution alcoolique : bain de 15 à 30 min (ou safranine en solution alcoolique : quelques secondes).
- 9. Alcool à 95 °C : bain de 5 min (à faire deux fois). Permet le rinçage et le début de la déshydratation.
- 10. Alcool absolu : bain de 10 min minimum. Poursuite de la déshydratation.
- 11. Toluène : bain de 5 min. Solvant du baume du Canada qui permet d'éviter la formation de bulles d'air. Attention : si un voile blanchâtre se forme, la déshydratation n'est pas suffisante. Il faut remettre les coupes dans l'alcool absolu pendant quelques instants.

Montage entre lame et lamelle

- 12. Placer les trois coupes (une de chaque plan) sur une lame.
- 13. Étaler du baume du Canada.
- 14. Appliquer la lamelle.
- 15. Poser des poids sur les lames 2 jours après le montage pour chasser les bulles d'air.
- 16. Placer la préparation dans une étuve pendant 3 à 5 semaines. Régler entre 50 et 60 °C.

Nettoyage des lames

17. Gratter le surplus de baume du Canada à l'aide d'une lame de rasoir, nettoyer à l'alcool, puis faire les finitions avec du liquide vaisselle dilué.

4.1.4 Pour les stipes et pétioles hétérogènes, fibreux ou très sclérotiques

Il faut ici rappeler que Messieurs Michel Lemoine, Vincent Rommeveaux et Lilian Cazes, experts en litholamellage², ont fait preuve d'une grande ingéniosité pour faire face aux exigences requises pour l'étude des stipes de palmiers. En effet, une préparation classique comme celle présentée ci-dessus, ne permet presque jamais d'obtenir des surfaces assez grandes pour étudier la variabilité anatomique des différentes structures.

Une méthode qui n'a pas été utilisée mais qui mérite d'être citée (puisque parfois utilisée par différents auteurs) est celle qui consiste à assouplir les tissus en les désilicifiant dans de l'acide fluorhydrique (HF) pendant plusieurs semaines. Étant donné les contraintes de temps imposées et la taille importante des sections transversales nécessaires, cette technique n'a pas été utilisée mais mériterait d'être testée. Il faut souligner que l'utilisation d'HF rend impossible l'observation des phytolithes *in situ*.

En fonction des spécimens (homogénéité, dureté...) plusieurs techniques ont été employées.

L'observation directe par polissage

Ceci permet de réaliser une observation d'une tige préalablement polie. Cette technique a donné d'excellents résultats. Elle est rapide à mettre en œuvre et permet un très bon niveau d'observation au microscope épiscopique (résolution de 5 µm environ).

Cette technique peut être appliquée sur des échantillons secs. Elle nécessite l'utilisation un plateau rotatif et de disques de polissage (type papier de verre). Un polissage préliminaire est réalisé à l'aide d'un macrograin grossier de taille 80 (standard international ISO 6344, équivalent à 200 μ m), puis il faut descendre en grain progressivement. Le polissage final est réalisé à l'aide d'un micrograin de taille 2 400 (7 μ m).

Les résines d'inclusion

Plusieurs types de résines peuvent être utilisés en fonction des caractéristiques l'échantillon (au cas par cas). Il est impossible d'associer un type d'échantillon à un type de résine tant les résultats sont aléatoires.

 araldite 2020. Résine époxy, fabricant : Huntsman (Bâle). Résine utilisée à chaud (80 °C), prise en 1 heure avec les proportions données par le fabricant. La réaction est une polymérisation de monomères époxyde avec un agent de réticulation (appelé parfois durcisseur).

^{2.} Au sein de l'UMR 7207 MNHN–UPMC–CNRS

- 2. araldite AY103. Résine époxy, fabricant : Huntsman. Résine utilisée à froid (40 °C), prise en 48 heures avec les proportions données par le fabricant.
- 3. polyester insaturée. Polymérisation obtenue par l'ajout d'un catalyseur et d'un accélérateur (proportion : 100 mL de résine, 20 gouttes de catalyseur, 1 goutte d'accélérateur). Il est possible d'ajouter jusqu'à 12 % de styrène pour augmenter la fluidité de la résine et permettre une meilleure imprégnation de l'échantillon. La polymérisation est complète après une semaine à 40 °C (étuve).

L'inclusion classique

Cette technique, lorsqu'elle réussit sur des stipes séchés, est de loin la meilleure, mais elle est aussi la plus longue. C'est pourquoi je ne l'ai que très peu utilisée. En effet, la stochasticité des résultats (prise de la résine, présence de bulle d'air, pour des raisons pas toujours connues) ne se voit souvent qu'à la fin de la préparation. Les différentes étapes peuvent être visualisées avec la Fig. 4.1.

- L'inclusion est réalisée à partir avec une résine polyester insaturée à l'intérieur d'un moule (cf. ci-dessus). La préparation d'un fond de moule avec la même résine permet de faire reposer l'échantillon sur de la résine et ainsi de l'inclure totalement. Une fois la résine coulée sur l'échantillon, un passage sous vide pendant une à deux minutes permet de supprimer les nombreuses bulles d'air provenant des vaisseaux. Placer ensuite à l'étuve pendant une semaine à 40 °C, c'est à cette étape que la résine durcit.
- Couper dans le plan désiré une section d'environ 2 cm. Aplanir la surface à coller sur la lame à l'aide d'une rectifieuse et travailler cette surface à l'aide de carbure de Silicium sur plateau rotatif (grains dégressifs de 70 µm à 5 µm).
- Coller l'échantillon sur une lame de taille appropriée à l'aide d'une résine époxy (cf. ci-dessus, araldite 2020 ou AY103 en fonction de l'échantillon) avec un passage sous vide pour l'élimination de l'air.
- Couper ensuite au plus proche de la lame.
- À l'aide d'une rectifieuse, diminuer l'épaisseur jusqu'à 50–60 μm.
- Finir par polir sur une plaque de verre avec des passages dégressifs au carbure de Silicium (de 13 à 5 µm) pour obtenir l'épaisseur souhaitée.
- La couverture se fait avec de l'araldite 2020 à 40 °C.

L'inclusion rapide

L'inclusion rapide permet de réaliser des lames minces sans inclure totalement les échantillons dans la résine. En effet, uniquement les premiers millimètres sous la section transversale, préalablement polie grossièrement et aplanie, sont inclus dans la résine (araldite

FIGURE 4.1 – Exemple d'inclusion dans la résine polyester.

2020, mélange standard). Ces échantillons sont placés avec la résine encore liquide sous vide pendant quelques minutes afin d'éliminer les bulles d'air. Puis une lame mince est placée sur la section transversale. Après la prise de la résine, il est ainsi possible d'obtenir, à l'aide d'une scie circulaire (diamantée), une section de quelques millimètres en préservant ainsi l'intégrité du stipe. Cette technique évite l'éclatement ou le déchiquetage des fibres dus à la texture fibreuse du stipe. Par la suite, plusieurs passages au carbure de Silicium (taille des grains dégressive) permet d'obtenir une épaisseur adéquate à l'observation (15 – 30 μ m). La couverture finale (lamelle) est réalisée avec la même résine.

Cette technique donnent de bons résultats mais de manière aléatoire. En effet, il peut rester beaucoup trop de bulles d'air qui rendent l'observation impossible. Malgré l'inclusion dans la résine, il est arrivé que les sections se décollent localement de la lame.

4.1.5 Dilacération

Faire un mélange de 50 % d'eau oxygénée (H_2O_2) de concentration égale à 70–90 %, avec 50 % d'acide acétique. Mettre dans ce mélange des copeaux de stipe coupés au cutter dans le sens longitudinal pour obtenir des éléments de vaisseaux et des fibres dans leur totalité. Placer 48 heures à l'étuve (50 °C), remuer si la masse de bois reste compacte, rincer puis monter entre lame et lamelle.

4.1.6 Préparation pour l'étude anatomique du limbe

Idéalement, l'anatomie de cette structure se fait à partir de segments prélevés à environ 2–3 cm de la base de la partie médiane du limbe.

FIGURE 4.2 – Les techniques utilisées.

Épiderme

- 1. Découper 1 cm^2 du limbe tout en faisant bien attention de conserver son orientation (face adaxiale et abaxiale) tout au long de la manipulation.
- 2. Javel diluée (hypochlorite de sodium) : pendant 30 min minimum. Cette étape permet d'éliminer tous les contenus cellulaires et de décolorer les parois cellulaires. Pour les limbes épais, il est possible de chauffer légèrement pendant quelques dizaines de minutes (au bain marie à 70 °C). À la fin de cette étape, le fragment doit impérativement être entièrement décoloré.
- 3. Rinçage à l'eau distillée : 5 min.
- 4. Décoller l'épiderme (sous loupe binoculaire).
- 5. Récupérer l'épiderme et le passer au bain dans de l'eau acétique : 10 min (mordant).
- 6. Vert d'i
ode en solution alcoolique : 15 à 30 min.
- 7. Rinçage à l'eau pendant 5 min.
- 8. Montage entre lame et lamelle.

Il est plus efficace de décoller les épidermes avant de les colorer. En effet, étant donné l'épaisseur de certains limbes, le colorant peut avoir du mal à mordancer.

Coupe transversale des folioles

- 1. Découper quelques cm^2 du limbe à préparer.
- 2. Inclure les échantillons dans du PEG.
- 3. Coupe au microtome (10 à 20 μ m).
- 4. Coloration : faire les étapes 2, 3, 5–7 de l'épiderme.
- 5. Montage entre lame et lamelle.

4.1.7 Protocole d'inclusion d'échantillon dans du PEG 1500

Certains échantillons (petites tiges ou structures souples comme les racines ou les limbes) ont été inclus dans du polyéthylène glycol 1 500 afin d'obtenir un bloc rigide contenant l'échantillon pour pouvoir réaliser des coupes au microtome.

- 1. Ramollir les échantillons de la façon habituelle (mélange eau chaude, glycérine 10 %, pendant 2 à 3 heures).
- 2. Préparer une solution de PEG à 20 %.
- 3. Mettre les échantillons dans la solution de PEG à 20 %, à l'étuve à \pm 50 °C pendant 24 à 48 heures.
- 4. Mettre les échantillons orientés dans des petits cubes.
- 5. Remplir les cubes d'une solution de PEG à 100 % et laisser à l'étuve, à 40 °C, pendant 24 heures.
- 6. Démouler les cubes.
- 7. Conserver à 4–6 °C.
- 8. Couper au microtome sans eau.
- 9. Monter les échantillons au baume du Canada ou à la gélatine glycérinée.

4.1.8 Protocole d'extraction des phytolithes

- Une portion de la partie à analyser (2 cm² suffisent largement pour le limbe) est découpée puis déposée dans un récipient en porcelaine. Hacher le plus finement possible le contenu.
- 2. Le récipient est ensuite placé au four à moufle pendant 2 à 4 heures (en fonction de la nature du tissu) à une température de plus de 500 °C.
- 3. Après refroidissement, le résidu de cuisson est décarbonaté à l'aide d'une toute petite quantité d'acide chlorhydrique.
- 4. Le culot obtenu est ensuite rincé à l'eau puis centrifugé plusieurs fois consécutives.

- 5. Après la dernière centrifugation, un volume d'éthanol est ajouté au résidu. Si l'oxalate de calcium doit être conservé, ne pas faire les étapes 3 et 4, ajouter seulement de l'éthanol.
- 6. Après évaporation d'un volume d'environ 100 mL de culot sur une lame porte-objet, un montage classique au baume du Canada est utilisé pour réaliser la préparation microscopique.

4.2 Préparation des spécimens fossiles

Lames minces. – Les spécimens fossiles ne présentent pas de difficulté technique particulière et le protocole utilisé pour leur préparation est le suivant.

- 1. Déterminer le plan de coupe.
- 2. Couper sur ce plan de coupe à l'aide d'une scie diamantée (à fil ou circulaire).
- 3. Travailler la surface sur un plateau rotatif à l'aide d'un abrasif à base de carbure de Silicium en passant d'un grain à 70 µm à un grain à 5 µm par plusieurs paliers. Obtenir une surface la plus plane possible.
- 4. Coller l'échantillon sur une lame de taille appropriée à l'aide d'une résine époxy (araldite 2020).
- 5. Couper ensuite l'échantillon au plus près de la lame à l'aide de la scie diamantée.
- Diminuer l'épaisseur à la rectifieuse jusqu'à une épaisseur proche de l'épaisseur finale (50–60 μm).
- Finir le polissage sur une plaque de verre avec du carbure de Silicium (grains de 13 à 5 μm).
- 8. La couverture s'effectue avec une lamelle et la même résine époxy.

Polissages des surfaces. – La technique précédente donne de très bons résultats mais il se peut qu'un polissage s'avère suffisant. Cette technique consiste à polir la surface du fossile pour une observation en épiscopie. Le protocole est le suivant.

- 1. Répéter les étapes précédentes 1 à 3.
- 2. Sur un plateau rotatif, utiliser des draps de polissage (alumine en suspension $\frac{1}{4}$ µm et oxyde de Cérium).

4.3 Avantages et désavantages des techniques d'inclusion et de polissage

Les avantages des techniques décrites sont multiples. En effet, elles permettent d'obtenir rapidement des coupes transversales de grandes surfaces, ce qui rend l'observation de la variabilité du plan transversal et la prise de mesure très efficaces. Un autre atout est aussi de pouvoir définir des descripteurs indépendamment de la coloration et qui pourront ainsi être utilisés lors des identifications de stipes fossiles. En effet, certaines différences peuvent apparaître entre une préparation polie ou incluse dans une résine et une préparation classique (coloration puis coupe au microtome). Par exemple, la partie fibreuse ventrale n'est souvent pas visible en préparation classique alors qu'elle est clairement visible en polissage (Fig. 4.3). Dans cette étude anatomique, une attention particulière a été apportée à la distribution des phytolithes. Si la technique de préparation classique (HF, coloration, coupe au microtome) est utilisée, alors l'HF dissout l'ensemble des corps siliceux ce qui rend la coupe plus facile mais enlève une partie de l'information. C'est pour ces raisons que la technique par polissage a été largement utilisée afin de pouvoir comparer certains caractères anatomiques avec les préparations fossiles ou l'étude des charbons qui donnent des résultats beaucoup plus proches de ces préparations que des techniques classiques (par coloration).

FIGURE 4.3 – Différents résultats obtenus avec les deux techniques de préparation (inclusion et polissage). Les deux faisceaux fibro-vasculaires proviennent du même échantillon de *Nannorrhops*. Celui de gauche est obtenu avec une inclusion dans de la résine, celui de droite est obtenu par polissage. La principale différence se trouve au niveau de la partie fibreuse qui, à gauche, est limitée à la zone dorsale (au dessus du phloème) et à droite, engaine complètement la zone vasculaire. Dans ce cas-là, il faut remarquer que la zone fibreuse du côté du xylème (partie fibreuse ventrale) n'est pas à proprement parler constitué de fibres mais plutôt de cellules associées au xylème devenues sclérotiques. Échelle : 250 μm.

Le seul inconvénient de ces techniques sans coloration réside dans le fait que la structure anatomique du parenchyme peut parfois être assez abîmée ou assez peu visible en raison de la présence de bulles d'air lors des inclusions dans les résines. D'une manière générale, une coupe au microtome après désilicification et inclusion (PEG, pour garder la structure très fragile du parenchyme fondamental intègre) donne toujours d'excellents résultats, comme en attestent les figures présentées par Tomlinson *et al.* (2011). Néanmoins, les préparations réalisées grâce à cette technique sont toujours d'une surface assez limitée. La meilleure des solutions consisterait à avoir beaucoup de temps et à réaliser les deux types de préparation pour chaque échantillon.

4.4 Observation, mesure et traitements d'image

Observations. – Elles ont été réalisées à partir de trois types d'optique.

- Microscope optique. Modèle Nikon Eclipse 80i (Nikon, Tokyo) équipé d'un Nikon D300.
- Microscope épiscopique (à lumière réfléchie). Modèle Olympus BXFM (Olympus, Tokyo) équipé d'un capteur photographique CCD³ Olympus DP12.
- Stéréo microscope. Modèle Olympus SZH. Ce type d'optique permet une observation des surfaces polies avec une grande amplitude de grossissement. Équipé d'un capteur CCD Olympus DP12.

Mesures. – Toutes les mesures ont été réalisées à partir de photographies avec le logiciel ImageJ, version Fiji 1.44A, Rasband (1997-2008).

Traitements d'image. – Les photographies ont uniquement subi un ajustement du contraste et des couleurs (niveau) à l'aide de la suite logiciel d'Adobe CS (San Jose, Californie). Seules les zones d'arrière-plan, extérieures à l'objet considéré, ont été éclaircies (transparence) pour améliorer la compréhension de l'image.

L'ensemble des observations ont été incluses dans une base de connaissance à l'aide du logiciel Xper². Le reste de ce chapitre sera consacré à la description de ce logiciel et des concepts qui y sont associés.

^{3.} CCD ou Charge-Coupled Device, ou dispositif à transfert de charge.

4.5 Formalisation de la description taxinomique

En systématique, l'identification nécessite d'être formalisée afin de concevoir les programmes informatiques. Identifier, c'est associer un objet inconnu à un concept préexistant, afin de déterminer sa nature (Lebbe 1998).

Nous savons tous identifier la plupart des objets qui nous entourent et donc mettre un nom dessus. Nous le faisons par une synthèse globale de l'objet et de son environnement sans le décomposer en caractères. C'est une identification par méthode synthétique. Dans la nature, lorsqu'un objet nous est inconnu, il faut le décomposer afin de savoir de quoi il est fait et ainsi, en se référant à une description déjà réalisée, comparer notre description à celle du concept. Le but est de mettre un nom dessus et donc de l'associer à un concept déjà défini. C'est une identification par méthode analytique. Si ce concept n'a jamais été défini, il faut alors le créer : nous avons alors identifié un nouveau concept.

En biologie, c'est cette deuxième méthode qui nous intéresse, bien que l'expert puisse fréquemment, et c'est son rôle, identifier de manière synthétique.

Le terme de classification est parfois relatif à des problèmes d'identification. En effet, le fait d'identifier nécessite d'avoir prédéfini des concepts, ou plutôt des classes, organisées en une structure classificatoire (Lebbe 1998). Le fait d'identifier devient alors clair : c'est l'exploitation d'une méthode qui associe une ou plusieurs classes d'une structure classificatoire à un objet à classer.

Identifier nécessite :

- 1. une classification préalable (structuration des observations, création de classes),
- 2. la construction d'une méthode d'identification (discrimination des différentes classes, création de connaissances sur ces classes),
- 3. l'identification (identifier un spécimen par la méthode de discrimination).

Il est nécessaire d'aborder ici différentes notions : le descripteur et l'état de descripteur. Une description taxinomique se décompose comme ceci (Fig. 4.4) :

Qualité – Ensemble comparable de manière d'être des spécimens.

- **Attribut** Ce qu'un observateur exprime en réponse à la question que permet de formuler un descripteur.
- État Symbole désignant une manière d'être pour un spécimen. L'ensemble des états associés à une qualité est un référentiel.

4.6 Le logiciel $Xper^2$

4.6.1 Présentation

La base de connaissance (Palm-ID) a été éditée avec le logiciel Xper² (Ung *et al.* 2010, Vignes-Lebbe *et al.* 2011). C'est un logiciel libre d'identification-assistée par ordinateur (IAO) développé par le Laboratoire Informatique et Systématique de l'Université Paris 6, disponible sur http://www.infosyslab.fr, site proposant une aide en ligne. Il ne sera pas question de réaliser ici une étude détaillée et complète du logiciel et de son utilisation. Néanmoins, l'Annexe E présente en détail ses capacités et un mode d'emploi du logiciel.

 $Xper^2$ est composé de plusieurs bases de connaissances qui correspondent à trois matrices (taxons, descripteurs, états des descripteurs) éditées à l'aide de ce logiciel. Trois *modules* peuvent être définis :

Édition des descripteurs qui permet de définir les descripteurs et leurs états (Fig. 4.5);

Édition des taxons qui permet de décrire les Items (taxons) avec les descripteurs définis ci-dessus (Fig. 4.6);

Identification qui permet à l'utilisateur de décrire le spécimen qu'il possède en fonction des descripteurs définis dans la base et de le comparer avec les taxons contenus dans celle-ci (Fig. 4.7).

Les deux premiers modules ne sont pas disponibles en ligne, en effet, pour que la base ne puisse pas être modifiée par n'importe qui, les utilisateurs de la base Palm-ID n'ont accès qu'au module *identification*.

L'IAO présente plusieurs avantages par rapport aux clefs papier traditionnelles. Ces clefs offrent une démarche imposée et posent problème si la structure anatomique est inobservable, il est donc difficile de douter, et les réponses floues ou imprécises ne sont pas permises. L'IAO permet de surmonter ces limites. En effet, elle rend possible une approche assez libre : il n'y a pas d'ordre préétabli, ainsi l'utilisateur peut analyser le descripteur qu'il souhaite et commencer par répondre à n'importe quelle question posée. Cette approche

FIGURE 4.4 – Décomposition d'une description taxinomique.

FIGURE 4.5 – Édition des descripteurs avec Xper². La partie gauche présente les différents descripteurs organisés par liste alphabétique, groupe ou relation de dépendance avec leurs définitions et illustrations. La partie de droite présente les états des différents descripteurs ainsi que leur définitions et illustrations associées.

est intéressante lorsque tous les descripteurs ne sont pas disponibles ou sont difficilement observables comme cela peut être le cas pour du matériel fossile ou archéologique. De plus, l'utilisateur peut à tout moment changer l'état d'un descripteur qu'il a précédemment défini sans pour autant devoir recommencer, le doute est donc permis. Xper² permet en plus de définir un seuil d'erreur lors de l'identification. Ainsi il est possible de garder des Items (ou taxons) candidats à l'identification qui peuvent présenter un nombre défini d'erreurs. L'IAO permet de créer des relations de dépendance entre un descripteur père et ses descripteurs fils. Par exemple, si l'utilisateur identifie un cortex sans épiderme, aucune question sur la forme des cellules de l'épiderme ou sur la présence de poils épidermiques ne lui sera posée. Grâce à sa structure informatique, l'IAO facilite l'édition et ainsi permet de modifier les bases en fonction de l'évolution des connaissances (ajout de taxons ou d'éléments de descriptions).

FIGURE 4.6 – Édition des taxons avec $Xper^2$. La partie de gauche présente les différents taxa de la base (définitions et illustrations). La partie centrale présente les descripteurs (définitions et illustrations). La partie de droite présente les états du descripteur de la partie centrale associés au taxon de la partie de gauche (définition, illustrations).

Cette base de connaissance (Thomas 2011) est disponible en ligne (http://www. infosyslab.fr/Palm-ID/) et permet d'identifier les genres – tribus – sous-familles de palmier au niveau du stipe. Les descripteurs sont organisés en groupes de descripteurs permettant à l'utilisateur de sélectionner la structure qu'il souhaite décrire. Des définitions, des illustrations ou des schémas sont disponibles pour chaque descripteur afin d'aider l'utilisateur.

L'utilisateur a donc à répondre à autant de questions que possible. Si au terme des questions posées, aucun taxon n'est identifié, il peut revenir aux pas précédents et changer les réponses. À chaque pas, plusieurs réponses peuvent être cochées en même temps, et entre chaque descripteur, plusieurs liens logiques sont disponibles (or, and, not...). Lors de l'identification, les descripteurs peuvent être regroupés par groupes de descripteurs. Ces descripteurs peuvent être classés par leur pouvoir discriminant (4.6.2). L'utili-

FIGURE 4.7 – Le module *identification* de Xper². Cadre supérieur gauche (rouge) : descripteurs classés selon leur pouvoir discriminant. Cadre inférieur gauche (orange) : états associés au descripteur considéré. Partie centrale (cadre vert) : définitions et illustrations des descripteurs et de leurs états. Partie de droite : taxons éliminés (cadre bleu) par la description ainsi que les taxons en accord avec la description donnée (cadre violet).

sateur se verra alors proposer les descripteurs allant du plus discriminant au moins discriminant en fonction des Items qu'il reste à identifier, ce qui lui évitera de décrire le spécimen qu'il observe avec des descripteurs non informatifs. En ce qui concerne le calcul des différents pouvoirs discriminants, se reporter à la section 4.6.2.

Parfois, lorsque les critères anatomiques ne permettent pas de discriminer deux taxons trop proches anatomiquement, le résultat de l'identification mène à plusieurs taxons : le résultat précis ne peut être donné. À la fin d'une identification réalisée avec ce logiciel, et comme avec tout autre aide à l'identification automatisée, un retour aux descriptions originales des taxons est souhaitable, voire impérative. En effet, même si les bases de connaissances qui structurent les logiciels d'aide à l'identification sont réalisées par des experts, l'IAO ne remplace pas l'oeil du naturaliste.

4.6.2 Calcul du pouvoir discriminant des descripteurs dans Xper

Cette partie reprend un document disponible sur le site internet d'Xper² qui fait le point sur les différents pouvoirs discriminants des descripteurs qu'il est possible de trouver avec $Xper^2$.

Pour trier la liste des descripteurs, Xper² propose trois mesures de leur pouvoir discriminant, c'est-à-dire trois évaluations quantitatives de leur capacité à distinguer les taxons entre eux. Voici les formules et les références correspondant à ces mesures. Les trois pouvoirs discriminants résultent de la somme, pour tous les couples de taxons, d'une mesure de dissimilarité entre taxons pour le descripteur dont on évalue le pouvoir discriminant.

Dans le cas du pouvoir discriminant d'Xper², la dissimilarité entre deux taxons pour un descripteur est soit de 0 soit de 1 selon la présence ou non d'états de descripteur en commun. Dans les cas du pouvoir discriminant basé sur l'indice de dissimilarité Jaccard ou basé sur l'indice de Sokal et Michener, la dissimilarité entre deux taxons pour un descripteur est comprise entre 0 et 1 et dépend du nombre d'états en commun pour ce descripteur.

On notera :

n11 les états de descripteurs présents c'est-à-dire possibles pour les deux taxons,

n10 les états de descripteurs possibles pour seulement le premier taxon,

n01 les états de descripteurs possibles pour seulement le second taxon,

n00 les états de descripteurs impossibles pour les deux taxons.

La dissimilarité selon Xper (Lebbe 1991) est basée sur l'incompatibilité entre descriptions. Deux taxons sont incompatibles (ou dissimilaires ou discriminés) pour un descripteur s'ils n'ont aucun état de descripteur possible en commun c'est-à-dire si n11 = 0.

$$d_{\text{Xper}} = 1 \text{ si } n11 = 0 \text{ sinon } d_{\text{Xper}} = 0$$
 (4.1)

Les coefficients de Jaccard (Jaccard 1901) ne prennent en compte que les états de descripteurs au moins possédés par un des deux taxons comparés.

$$d_{\text{Jaccard}} = \frac{n01 + n10}{n01 + n10 + n11} \tag{4.2}$$

La similarité étant (1-la dissimilarité), deux taxons sont d'autant plus similaires selon Jaccard que le nombre de leurs états de descripteur possibles en commun augmentent.

$$S_{\text{Jaccard}} = \frac{n11}{n01 + n10 + n11} \tag{4.3}$$

Les coefficients de Sokal et Michener (Sokal et Michener 1958) La dissimilarité entre deux taxons pour un descripteur est mesurée en tenant compte de tous les états existants pour le descripteur et non seulement ceux possibles pour au moins un des deux taxons.

$$d_{\rm SM} = \frac{n01 + n10}{n00 + n01 + n10 + n11} \tag{4.4}$$

La similarité étant (1- la dissimilarité), deux taxons sont d'autant plus similaires selon Sokal et Michener qu'ils partagent des états présents et absents.

$$S_{\rm SM} = \frac{n00 + n11}{n00 + n01 + n10 + n11} \tag{4.5}$$

Troisième partie

ANATOMIE DU STIPE DES PALMIERS

Chapitre 5

LES DIFFÉRENTS MODES D'ACCROISSEMENT DIAMÉTRAL DES PALMIERS

Sommaire

5.1	Les	variations du stipe 81			
	5.1.1	La variation axiale			
	5.1.2	La variation radiale			
5.2	Étu	de de deux palmiers à croissance différente 84			
	5.2.1	Phoenix dactylifera			
	5.2.2	<i>Gaussia</i> sp			
5.3	Disc	cussion sur ces deux différents modes de croissance 93			
5.4	La c	proissance des cellules du parenchyme fondamental 94			
5.5 La différenciation de la partie fibreuse dorsale					
	5.5.1	La lignification centrifuge 101			
	5.5.2	La différenciation centrifuge			
5.6	Con	séquence de ces deux caractéristiques anatomiques 109			
	5.6.1	Les différents modes de croissance 109			
	5.6.2	Conséquence sur la prise de mesure			

N rapide aperçu de l'anatomie de quelques palmiers m'a permis de constater que tous les stipes n'ont pas le même mode de croissance. Dans ce chapitre je présente donc certaines hypothèses élaborées lors de cette thèse sur ces différents modes. En effet, des études approfondies sont nécessaires afin de confirmer les différentes hypothèses présentées ci-dessous. Les observations ont mis au jour que deux mécanismes étaient responsables de l'accroissement diamétral. Le premier implique les cellules du parenchyme fondamental et a déjà largement fait l'objet de discussions et de publications depuis le début du XIX^e siècle. Le deuxième implique la partie fibreuse dorsale des faisceaux fibro-vasculaires. En effet, j'ai observé que certains faisceaux fibro-vasculaires présentent une modification spécifique de leur partie fibreuse lorsqu'ils passent de la zone centrale à la zone subcorticale.

Chapitre 5. Les différents modes d'accroissement diamétral des palmiers

Dans ce chapitre, j'essaierai donc de proposer des explications relatives aux différents modes de croissance des palmiers. Comme l'objectif de cette thèse n'est pas d'essayer de résoudre le problème de ces différents modes de croissance mais bien de délimiter certains descripteurs pour l'identification, ce qui suit ne représente que certaines idées, qui ont vu le jour pendant mes observations et qui demanderaient à être étudiées dans le détail. Deux palmiers seront détaillés : *Phoenix dactylifera* et *Gaussia* H.Wendl. afin d'en dégager les principales différences avant de présenter ces deux mécanismes du point de vue anatomique.

FIGURE 5.1 – Quelques palmiers à croissance post-primaire. a. *Gaussia attenuata* (O.F.Cook) Becc. (Photo : John Dransfield, Palmweb). b. *G. maya* O.F.Cook) H.J.Quero & Read (Photo : Carl Lewis, Palmweb). c. d. *Pseudophoenix vinifera* (Mart.) Becc. (Photo : John Dransfield, Palmweb).

5.1 Les variations du stipe

Si deux coupes transversales sont réalisées, l'une au niveau de l'apex et l'autre au niveau de la base d'un stipe, nous pouvons remarquer que l'anatomie de ces deux régions diffère. Il en est de même pour deux coupes réalisées, l'une au niveau de la zone subcorticale et l'autre au niveau de la zone centrale. C'est que ce je vais appeler : (i) variation axiale (de l'apex vers la base) et (ii) variation radiale (de la zone subcorticale vers la zone centrale). Comme je l'ai rappelé dans la première partie (Chapitre 2.2, Fig. 2.6), il existe différents types de palmiers qui ont été définis en fonction du type de croissance du diamètre : ceux avec une croissance post-primaire du parenchyme (Type B, Fig. 5.1) et ceux qui en sont dépourvus (Type A). Ces différences anatomiques sont plus importantes pour les palmiers de Type B que pour les palmiers de Type A et sont résumées ci-dessous.

5.1.1 La variation axiale

Cette variation concerne l'évolution des structures anatomiques le long de l'axe longitudinal de la tige en partant de l'apex vers la base du stipe (Tableau 5.1). Elle est relativement bien connue et a été étudiée par Waterhouse et Quinn (1978) pour Archontophoenix cunninghamiana (H.Wendl.) H.Wendl. & Drude, en partie par Ambwani (1985) pour Trachycarpus et finalement par Rich (1986, 1987a,b) pour Welfia regia H.Wendl. et Iriartea deltoidea Ruiz & Pav. Il est possible de la résumer ainsi pour les différentes structures anatomiques :

- Cellules du parenchyme fondamental : leur taille (diamètre général ou longueur maximale) augmente;
- Lacunes (si présentes) : leur taille (diamètre général ou longueur maximale) augmente;
- Nombre de faisceaux fibro-vasculaires : constant ;
- Taille des fibres de la partie fibreuse dorsale : le diamètre augmente légèrement ;
- Lignification des fibres de la partie fibreuse dorsale : elle augmente, plus les fibres sont proches de la base du stipe, plus elles sont lignifiées et présentent une paroi à plusieurs couches concentriques (parfois cinq et plus).

5.1.2 La variation radiale

Cette variation concerne l'évolution des structures anatomiques dans le plan transversal le long de l'axe radial, de la périphérie vers l'intérieur de la tige (Tableau 5.1). Elle est également relativement bien connue et a été étudiée par les mêmes auteurs précédemment mentionés. Il est possible de la résumer ainsi pour les différentes structures anatomiques : Tableau 5.1 – Les variations anatomiques (axiale et radiale). Ce tableau indique la variabilité des structures anatomiques le long des deux variations : la variation axiale (de la partie apicale vers la partie basale) et la variation radiale (de la zone subcorticale vers la zone centrale) pour les palmiers avec (Type B) ou sans (Type A) croissance post-primaire du parenchyme. \nearrow indique une croissance et \searrow indique une diminution de la variable mesurée associée à la structure anatomique concernée.

Structures anatomiques 2 : mise en évidence de la croissance de la partie fibreu 1 : mise en évidence de la croissance du parenchyme	Variation axiale (de l'apex vers la base)		Variation radiale (de la zone sub- corticale à la zone centrale)		
U . pas de croissance post-pr	mane	Tige de Type A	Tige de Type B	Tige de Type A	Tige de Type B
A (partie fibreuse dorsale) zone subcorticale	2	7	7		
A (partie fibreuse dorsale) zone centrale	0	7	Constant	_	_
A (partie fibreuse dorsale) dans un plan transversal	2			Constant	\searrow
f/v	2	Constant	7	Constant	\searrow
d(ffv) de la zone subcorticale	1	\searrow	\searrow	_	_
$d(\mathrm{ffv})$ de la zone centrale	1	\searrow	\searrow	—	_
d(ffv) dans un plan transversal	1			Faible 📐	\searrow
l_{max} (cellule du parenchyme fondamental)	1	Léger 🗡	7	Constant	7
	1		7		\searrow
Épaississement de la paroi des fibres $^{\rm 1}$	0	Faible 🗡	7	Constant	\searrow
	2	Léger 🗡	Forte 🗡	Constant	\searrow
l(éléments de vaisseau)	0	\nearrow	\nearrow	\nearrow	\nearrow

¹ Les faisceaux fibro-vasculaires de la zone subcorticale sont lignifiés avant ceux de la zone centrale; les fibres adjacentes au phloème sont lignifiées avant les fibres périphériques de la partie fibreuse dorsale.

- Cellules du parenchyme fondamental : leur taille (diamètre général ou longueur maximale) augmente;
- Lacunes (si présentes) : leur taille (diamètre général ou longueur maximale) augmente;
- Nombre de faisceaux fibro-vasculaires : en fonction du type de cylindre central étudié, peut être constant chez les *Cocos-Type* ou bien peut diminuer légèrement pour les *Corypha-Type* ou plus fortement pour les *Mauritia-Type*;

- Taille des fibres de la partie fibreuse dorsale : le diamètre diminue;
- Lignification des fibres de la partie fibreuse dorsale : elle diminue, plus les fibres sont proches de la périphérie du stipe, plus elles sont lignifiées et présentent une paroi à plusieurs couches concentriques (parfois cinq et plus).

Les vaisseaux (longueur et diamètre) peuvent présenter une variation. Cette variation a été étudiée par Tomlinson (1965, 1966, 1969), Tomlinson et Zimmermann (1967), Parthasarathy et Tomlinson (1967) et Parthasarathy (1968) et est résumée dans le Tableau 5.1. La longueur des éléments de vaisseau s'accroît avec l'âge du palmier et augmente légèrement le long de la variation radiale.

Je vais maintenant présenter deux palmiers différents : un de Type A (*Phoenix*) et un de Type B (Gaussia) afin d'en dégager les principales différences.

FIGURE 5.2 – Les différentes variations, modifiée d'après Monoyer (1924).

5.2 Étude de deux palmiers à croissance différente

5.2.1 Phoenix dactylifera

La croissance post-primaire des cellules du parenchyme fondamental permet aux tiges d'accroître leur diamètre. Mais il faut rappeler que certains palmiers aux stipes de diamètre important ont un parenchyme compact, sans lacune et avec de petites cellules de parenchyme n'ayant subi aucune croissance post-primaire (les genres *Phoenix* et *Hyphaene* en sont de bons exemples). Lors d'une mission sur le terrain dans le Sultanat d'Oman, j'ai pu réaliser sur plusieurs palmiers dattiers (*Phoenix dactylifera*, Fig. 5.3), qui avaient été coupés lors de l'entretien d'une palmeraie, une série de coupes transversales entre la base et l'apex de ces palmiers. Je vais présenter ici les mesures prises sur un spécimen.

FIGURE 5.3 – Palmeraie traditionnelle du village d'Adam, Sultanat d'Oman.

Les Figs. 5.4-5.5 présentent les parties apicales de deux palmiers dattiers. La Fig. 5.6 présente les coupes transversales réalisées dans l'apex (à 10 cm du méristème apical, cylindre central de 15 cm de diamètre) et à la base (à un mètre du sol, diamètre du cylindre central ≈ 40 cm) du spécimen de la Fig. 5.4. Pour des compléments sur l'anatomie de ce genre il est possible de se reporter au Chapitre 7.8. Les résultats sont présentés dans le Tableau 5.2. La taille des cellules du parenchyme fondamental entre les parties apicale et basale a été multipliée par un facteur $\alpha = 2, 5$, les moyennes donnent : 37 µm à l'apex et 93 µm à la base. La surface de la partie fibreuse dorsale a été multipliée d'un facteur 10,7 (apex : 0,08 mm², base : 0,75 mm²), le diamètre approximatif de ces parties fibreuses a donc été multiplié par un facteur $\beta = 3, 3$. La densité des faisceaux fibro-vasculaires est passé de $330/\text{cm}^2$ à 40 (50)/cm². Le diamètre du stipe a été multiplié par 2, 7, il est

passé de 15 cm à 40 cm entre les deux parties considérées (la surface est donc passée de 177 cm² à 1257 cm²). Ces valeurs montrent et confirment (Zimmermann et Tomlinson 1972, Tomlinson 1990) que le nombre de faisceaux fibro-vasculaires dans le cylindre central est constant quelle que soit la hauteur du stipe : les valeurs obtenues par approximation donnent pour l'apex 58 410 et pour la base : 50 280 à 62 850 faisceaux fibro-vasculaires. Ces facteurs d'accroissement (α et β) sont assez proches du facteur d'accroissement du diamètre ce qui suggère que ces deux structures sont responsables de l'accroissement du diamètre de la tige.

(a) Vue générale.

(b) Détail de la région méristématique.

Une formule peut être appliquée pour définir le diamètre du cylindre central à partir des cellules du parenchyme fondamental et de la taille de la partie fibreuse dorsale. Cette formule part des conditions suivantes :

- Le diamètre du cylindre central est le résultat de la somme du diamètre des cellules du parenchyme fondamental $(\sum (\emptyset_{cel}))$ additionnée à la somme du diamètre de la partie fibreuse dorsale des faisceaux fibro-vasculaires $(\sum (\emptyset_{ffv}))$.
- La densité des cellules du parenchyme fondamental présentée dans le Tableau 5.2 est considérée comme étant la densité de cellules entre les faisceaux fibro-vasculaires.

Ces deux approximations étant faites, il est possible de définir le diamètre de la partie

(a) Partie supérieure, le cylindre central n'est pas encore visible.

(b) Partie inférieure, le cylindre central a déjà un diamètre de 15 cm.

FIGURE 5.5 – Formation du cylindre central au niveau de l'apex de *Phoenix dactylifera*. Les deux vues proviennent d'une section transversale de 10 cm d'épaisseur. Le cylindre central n'est pas visible au niveau de la partie supérieure alors qu'il est déjà fortement développé 10 cm plus bas. Échelle : 5 cm.

apicale noté \emptyset_f et de la partie basale noté \emptyset_i :

$$\mathscr{A}_f = \sum (\mathscr{A}_{cel_f}) + \sum (\mathscr{A}_{ffv_f})$$
(5.1)

$$\mathscr{Q}_{i} = \sum(\mathscr{Q}_{cel_{i}}) + \sum(\mathscr{Q}_{ffv_{i}})$$
(5.2)

Il est également possible de définir le diamètre des cellules (ou des faisceaux fibrovasculaires) de la partie basale en fonction du diamètre des cellules (ou des faisceaux fibro-vasculaires) de la partie apicale puisque ces derniers subissent un accroissement d'un certain facteur :

$$\begin{split} \mathscr{D}_{cel_i} &= \alpha \mathscr{D}_{cel_f} \\ \sum (\mathscr{D}_{cel_f}) &= \mathscr{D}_{cel_f} \sum (cel_f) \end{split}$$

Et, si on fait l'hypothèse que le nombre de cellules de parenchyme est constant sur toute la longueur du stipe $(\sum (cel_f) = \sum (cel_i))$:

$$\sum(\emptyset_{cel_i}) = \alpha \emptyset_{cel_f} \sum(cel_f)$$
(5.3)

Il en est de même pour la partie fibreuse dorsale des faisceaux fibro-vasculaires :

 $\mathscr{A}_{ffv_i} = \beta \mathscr{A}_{ffv_f}$

$$\sum(\emptyset_{ffv_f}) = \emptyset_{ffv_f} \sum(ffv_f)$$

Et, si on fait l'hypothèse que le nombre de faisceaux fibro-vasculaires est constant sur toute la longueur du stipe la $(\sum (ffv_f) = \sum (ffv_i))$:

$$\sum(\mathscr{A}_{ffv_i}) = \beta \mathscr{A}_{ffv_f} \sum(ffv_f)$$
(5.4)

Le taux d'accroissement du diamètre du stipe entre la partie apicale et la partie basale est donné par le ratio suivant : $\frac{\emptyset_i}{\emptyset_f}$, ce qui revient à (d'après les équations 5.1–5.2) :

$$\frac{\mathscr{D}_i}{\mathscr{D}_f} = \frac{\sum(\mathscr{D}_{cel_i}) + \sum(\mathscr{D}_{ffv_i})}{\sum(\mathscr{D}_{cel_f}) + \sum(\mathscr{D}_{ffv_f})}$$

et est finalement identique à :

$$\frac{\mathscr{B}_i}{\mathscr{B}_f} = \frac{\mathscr{B}_{cel_i} \sum (cel_i) + \mathscr{B}_{ffv_i} \sum (ffv_i)}{\mathscr{B}_{cel_f} \sum (cel_f) + \mathscr{B}_{ffv_f} \sum (ffv_f)}$$
(5.5)

Ou, en remplaçant par les valeurs de l'équation 5.5 par 5.3 et 5.4, on obtient :

$$\frac{\alpha \mathscr{A}_{cel_f} \sum (cel_f) + \beta \mathscr{A}_{ffv_f} \sum (ffv_f)}{\mathscr{A}_{cel_f} \sum (cel_f) + \mathscr{A}_{ffv_f} \sum (ffv_f)}$$
(5.6)

Sachant que nous connaissons la densité et la surface des structures dans la partie apicale le nombre total des cellules du parenchyme fondamental et des faisceaux fibrovasculaires peut être approximativement trouvé.

Ici $\alpha = 2, 5$ et $\beta = 3, 3$ (la surface a été multipliée par 10, 7) et le résultat de l'équation 5.6 (ou 5.5) est de 2, 5. Avec ces approximations il est donc possible d'estimer et d'approcher la valeur calculée à partir du simple diamètre du cylindre central dans les deux parties (apicale et basale) qui est en fait égal à 2, 7. La différence trouvée (7, 5 %) est certes non négligeable mais ceci permet néanmoins de montrer que l'accroissement du diamètre n'est vraisemblablement que le résultat de l'accroissement des structures anatomiques. La simulation précédente part de l'hypothèse que les cellules du parenchyme fondamental ne se divisent pas et que le nombre de faisceaux fibro-vasculaires est constant le long de l'axe du stipe. Puisque le résultat $\left(\frac{\mathscr{D}_i}{\mathscr{D}_f}\right)$ est le même entre l'estimation faite à partir des facteurs d'accroissement et la mesure directement réalisée à partir des diamètres, il est possible de déduire que les cellules du parenchyme fondamental ne subissent pas de division une fois qu'elles sont formées. Des études complémentaires permettraient d'affiner le résultat et ainsi de vérifier si ces approximations peuvent être confirmées.

Tableau 5.2 – Les variations anatomiques chez *Phoenix*. Ce tableau indique la variabilité des structures anatomiques le long des deux variations : la variation axiale (de la partie apicale vers la partie basale) et la variation radiale (de la zone subcorticale vers la zone centrale). \nearrow indique une croissance et \searrow indique une diminution de la variable mesurée associée à la structure anatomique concernée.

Structures anatomiques	Mesure des structures o	lans la	Variation radiale	
	partie apicale	partie basale	Partie apicale	Partie basale
A (partie fibreuse dorsale)	$0,08 \ \mathrm{mm}^2$	$0,75 \ \mathrm{mm^2}$	_	_
A (partie fibreuse dorsale) dans un plan transversal		_	Constant	Constant
f/v	≈ 1	≈ 5	Constant	Constant
d(ffv)	$330/\mathrm{cm}^2$	$40 \ (50)/{ m cm}^2$	_	
d(ffv) dans un plan transversal			Constant	Constant
d(cellule du parenchyme fondamental)	$650/\mathrm{mm^2}$	$90/\mathrm{mm}^2$	Constant	Constant
l_{max} (cellule du parenchyme fondamental) (µm)	max : 50 moy : 40 min : 25	max : 170 moy : 110 min : 65	Constant	Léger ≯
Épaississement de la paroi des fibres	Inexistant	Imporant	Constant	Constant
	max : 20 moy : 14 min : 8	max : 40 moy : 28 min : 18	Constant	Constant
	max : 151 moy : 109 min : 83	max : 248 moy : 186 min : 111	Constant	Constant

Discussion générale sur ce mode de croissance

D'après cette étude, la formation du parenchyme fondamental (divisions cellulaires) a lieu dans la zone située entre le méristème et la zone étudiée ici (à 10 cm du méristème). Dans cette zone, se développe une forte activité méristématique qui permet la mise en place d'un grand nombre de cellules. Le diamètre du stipe peut ainsi augmenter sans que les cellules du parenchyme aient à subir une croissance post-primaire importante. Le stipe de cette espèce présente un diamètre quasiment constant de la base jusqu'au niveau de l'insertion des premières feuilles. Celles-ci, par leurs gaines foliaires, protègent et engainent toute la zone méristématique.

C'est ce mécanisme qui fait que quelques centimètres sous sous la zone méristématique, le diamètre du cylindre central a presque atteint une taille mature (le plateau méristématique).

Bien sûr, cette modélisation n'est valable que pour des cylindres centraux sans différence

FIGURE 5.6 – Anatomie de l'apex (a. b. c., coupes transversales non colorées) et de la base (d. e. polissages transversaux) du stipe de *Phoenix dactylifera*. a. Vue générale du cylindre central de l'apex : les faisceaux fibro-vasculaires sont de petites tailles et de densité importante. b. Détail dun faisceau fibro-vasculaire : la partie vasculaire est bien développée (particulièrement le phloème), les fibres sont à parois minces et d'aspect comprimé (dégonflé), les phytolithes sont présents tout autour. c. Parenchyme fondamental à cellules sphéroïdes, isodiamétriques, parenchyme compact. d. Cylindre central de la base du stipe : la partie fibreuse ventrale est développée et la partie fibreuse dorsale présente des fibres à parois plus épaissies. c. Détail du parenchyme fondamental : cellules sphéroïdes, parenchyme compact et légèrement sclérifié. Échelle : a, d, 2mm; b, c, e, 200 μm.

entre la zone subcorticale et la zone centrale et avec un parenchyme fondamental sans lacune, ce qui n'est pas le cas pour le deuxième exemple étudié (Gaussia).

5.2.2 Gaussia

Un spécimen de *Gaussia* sp. provenant des serres du Jardin des plantes (Fig. 5.7) a pu être étudié sur toute la longueur de son stipe (230 cm entre les premières racines et le méristème apical). Cependant, je n'ai pas pu réaliser le même type de mesures que précédemment mais il est néanmoins possible d'en tirer quelques conclusions. Comme le montrent les Figs. 5.7–5.8, le stipe de ce spécimen paraît assez cylindrique mais un examen rigoureux de celui-ci permet de le décrire comme légèrement conique. En effet, à sa base (à 200 cm de l'apex) il a un diamètre de 15,5 cm (Fig. 5.9(f), diamètre à 176 cm de l'apex), diamètre qui diminue progressivement jusqu'à 25 cm de l'apex où il mesure 8 cm (Fig. 5.9(e)). Ensuite malgré la proximité avec le méristème, cette diminution continue assez lentement : entre 12 cm de l'apex (Fig. 5.9(c)) et 15,5 cm de l'apex (Fig. 5.9(d)) le diamètre reste constant (7 cm). C'est donc surtout dans une zone se situant entre la zone méristématique (Figs. 5.9(a)–5.9(b)) où le diamètre est égal à 2,7 cm, à 2 cm du méristème, et une zone à une quinzaine de centimètres du méristème (Fig. 5.9(c)) qu'a lieu la mise en place du diamètre adulte du stipe. Cette zone peut être repoussée jusqu'à 25 cm là où les

(a) Vue générale.

(b) Détail du houppier.

FIGURE 5.7 – Gaussia des serres du Jardin des plantes. La flèche est un repère et indique le même entrenœud dans les figures suivantes. Échelle : 15 cm.

premières lacunes apparaissent et où l'anatomie définitive est acquise. Ces figures montrent que le plateau méristématique est d'une taille moins importante que pour *Phoenix*.

Des coupes transversales ont été réalisées dans un autre spécimen (Gaussia maya O.F.Cook) H.J.Quero & Read) au niveau de la partie médiane de la tige (Planche II, 1–6). Celles-ci permettent de mettre en évidence une variation radiale très importante qui révèle les deux processus suivants : la croissance post-primaire du parenchyme avec la présence de cellules géantes ainsi qu'un autre processus encore jamais décrit, la différenciation de la partie fibreuse dorsale (ces deux processus sont décrits en 5.4 et 5.5). En effet, il existe une forte différence entre la partie fibreuse dorsale de la zone centrale et celle de la zone subcorticale : le nombre de fibres augmente de façon significative entre le centre et la périphérie. Ceci peut être considéré comme une modification anatomique permettant également un accroissement du diamètre du stipe. En effet, dans la zone subcorticale, il n'y a quasiment pas de parenchyme et ce sont donc les fibres qui assurent, avec une augmentation de leur taille et de leur nombre, la croissance en épaisseur au niveau de cette zone. Comme le montre la Planche I, 11–13, il se peut que dans certains cas, des modifications du parenchyme existent, mais ce n'est pas le cas ici.

(a) Zone apicale avec les gaines foliaires.

(b) Zone apicale sans les gaines foliaires.

FIGURE 5.8 – Zone apicale de *Gaussia*. La flèche indique le même entre-nœud que dans la Fig. 5.7(b). m : zone apicale du méristème. ct : cortex, cc : cylindre central, cz : zone centrale, f : feuille, ls : gaine foliaire, sz : zone subcorticale, tz : zone de transition. La flèche indique le même entre-nœud que dans la Fig. 5.7. Échelle : 10 cm.

Je n'ai pas réalisé de coupe dans la partie apicale de ce spécimen, mais la Fig. 5.9 montre que la partie la plus apicale n'est pas constituée de cellules géantes et qu'elle doit avoir un parenchyme fondamental à cellules de petites tailles sûrement sphéroïdes lors de leur mise en place.

FIGURE 5.9 – Évolution du stipe de *Gaussia* en fonction de sa position longitudinale. a-b: correspond à la zone m de la Fig. 5.8(b), *a* partie supérieure, *b* partie inférieure, c'est dans cette zone que se trouve le bourgeon apical, 2,5 cm séparent *a* et *b*; *c*: coupe transversale à 12 cm de *a*; *d*: coupe transversale à 15,5 cm de *a*; *e*: coupe transversale à 25 cm de *a*, apparition des premières lacunes; *f*: coupe transversale à 176 cm de *a*. Abréviations utilisées – cc: cylindre central, ct: cortex, cz: zone centrale, f: feuille, ls: gaine foliaire, sz: zone subcorticale, tz: zone de transition. Échelle: 2 cm.

5.3 Discussion sur ces deux différents modes de croissance

En comparant les deux genres étudiés il est possible de dégager plusieurs différences :

La région du plateau méristématique. – Entre les deux palmiers décrits il existe une variation concernant la région du plateau méristématique (Fig. 5.4) qui est beaucoup plus large chez *Phoenix*. Ceci peut s'expliquer par une activité mitotique beaucoup plus importante chez ce genre que chez *Gaussia*. Il en résulte que le stipe aura atteint un diamètre adulte (définitif) plus rapidement chez *Phoenix* et que la variation du diamètre en deçà de la zone méristématique sera donc plus importante chez *Gaussia*.

Variation radiale. – En comparant l'anatomie du cylindre central de la région basale du stipe de ces deux spécimens (Fig. 5.6 et Planche X pour *Phoenix* et Planche II, 1–6 pour *Gaussia*) il se dégage nettement deux types de cylindre central. Alors que la variation radiale est inexistante pour *Phoenix* (stipe de Type A), elle est très importante pour *Gaussia* (stipe de Type B) : les faisceaux fibro-vasculaires ont une partie fibreuse dorsale très développée dans la zone subcorticale et une densité très importante alors que dans la zone centrale la partie fibreuse est très peu développée et la densité des faisceaux fibrovasculaires est très faible.

Variation axiale. – Cette variation s'observe chez les deux genres mais a des conséquences différentes. Pour *Phoenix* il s'agit de variations légères liées à la taille des structures et à leur lignification : les cellules de parenchyme ont un diamètre qui a été multiplié par 2,5 et la surface de la partie fibreuse a été multipliée par 10,7 (donc le diamètre par 3,3). En ce qui concerne *Gaussia*, même si l'apex n'a pas été étudié anatomiquement, il est évident qu'entre la partie apicale et la partie basale de la tige, les cellules du parenchyme ont subi une très forte croissance au niveau de la zone centrale. Les faisceaux fibro-vasculaires ont eux gardé leur structure originelle. En revanche, au niveau de la zone subcorticale, les cellules du parenchyme ne se sont pas modifiées alors que la partie fibreuse dorsale des faisceaux fibro-vasculaires a considérablement augmenté.

La différence entre les palmiers à croissance post-primaire (sous-entendu du parenchyme fondamental) et les palmiers qui en sont dépourvus doit se trouver au niveau du méristème. Les palmiers sans cette croissance ont, sans doute, une intense activité mitotique ce qui a la conséquence suivante : le nombre de cellules de parenchyme est important et le diamètre adulte est atteint sans croissance post-primaire du parenchyme fondamental. Ceci est en partie confirmé par les Figs. 5.4–5.5 qui montrent que le stipe de *Phoenix* atteint un diamètre adulte très rapidement. En effet, nous pouvons constater que sur un spécimen (Fig. 5.4, celui sur lequel ont été réalisées les mesures) le cylindre central mesure 10 cm de diamètre à 5 cm du méristème et que sur un autre spécimen son diamètre est de 15 cm à 10 cm du méristème. Il faut rappeler que le diamètre à un mètre du sol était de 40 cm. Le cylindre central continue donc à s'accroitre lentement sous la partie étudiée pour atteindre un diamètre définitif à quelques dizaines de centimètres sous l'apex.

L'apparition d'une croissance post-primaire du parenchyme fondamental pourrait compenser une activité mitotique moins importante qui n'aboutit pas à un nombre de cellules permettant au palmier d'atteindre un diamètre adulte (*Gaussia*). En effet, si les cellules, à partir d'une certaine distance du méristème perdent leur capacité à se diviser, étant donné que le nombre de cellules mises en place par *Gaussia* (*Mauritia-Type*, Type B) est inférieur au nombre de cellules mises en place par *Phoenix* (*Cocos-Type*, type A), le seul moyen d'augmenter le diamètre du stipe (pour permettre une croissance en hauteur) est donc d'augmenter la taille des cellules du parenchyme fondamental.

Cette croissance post-primaire n'a donc rien à voir avec l'importance du diamètre des stipes atteint à la fin de la phase d'établissement et il ne faut pas confondre certains cas spécifiques où le parenchyme met en place des réserves comme pour *Acrocomia crispa* (Kunth) C.F.Baker ex Becc. (Fisher *et al.* 1996). Ce diamètre peut être important pour des palmiers sans croissance post-primaire ou bien peut être de relative petite taille et parfaitement cylindrique pour des palmiers avec croissance post-primaire comme c'est le cas pour *Gaussia* ou *Iriartea* Ruiz & Pav., à la différence de *Pseudophoenix* (Fig. 5.1). Ce qui doit être pris en compte pour cette définition est donc l'aspect des cellules du parenchyme fondamental.

J'ai ici présenté une étude préliminaire sur les deux principaux modes de croissance retrouvés chez les palmiers. La complexité du mécanisme et le nombre important de mesures à réaliser requièrent des analyses supplémentaires afin de pouvoir connaître ces variations dans toute la partie apicale et ainsi connaître la mise en place du stipe chez ces deux types de palmiers. L'étude de ces deux exemples met donc en évidence les différences anatomiques entre ces deux types de palmiers. Deux processus sont à l'origine des modifications observées chez *Gaussia* :

- 1. La croissance des cellules du parenchyme fondamental.
- 2. La différenciation de la partie fibreuse dorsale.

5.4 La croissance des cellules du parenchyme fondamental

Cette croissance des cellules du parenchyme fondamental a été décrite et étudiée pour la première fois par Schoute (1912) puis par Monoyer (1924), Kaul (1960), Waterhouse et Quinn (1978) et Rich (1987a). J.C. Schoute mesura le diamètre de plusieurs palmiers en fonction de leur hauteur (ou plus exactement en fonction de la distance à l'apex) et établit une classification des palmiers en fonction de leur croissance en épaisseur (das Dickenwachstum), cf. Annexe C.2. Il étudia l'anatomie de quelques palmiers et ainsi put discuter des relations entre anatomie et accroissement diamétral du stipe des palmiers. Cet accroissement a été nommé pour la première fois par Monoyer (1924) comme accroissement post-primaire et c'est ce terme qui sera retenu dans le reste du texte. La traduction anglaise a été réalisée par Waterhouse et Quinn (1978) : sustained primary growth. Ces auteurs (Schoute 1912, Waterhouse et Quinn 1978) définissent deux types de stipes en fonction de la croissance :

- les stipes de type A qui cessent leur accroissement diamétral après la phase d'établissement. Ainsi, le diamètre obtenu chez ces palmiers ne varie que très peu pendant la phase adulte (*Phoenix, Cocos*). La variation de ces stipes a été étudiée par Swamy et Govindarajalu (1961) et Ambwani (1985);
- les stipes de type B qui présentent un accroissement post-primaire. Ceci implique que le diamètre des tiges continue de s'accroître après la phase d'établissement, cette variation a été étudiée par Schoute (1912), Monoyer (1924), Tomlinson (1969), Waterhouse et Quinn (1978) et Rich (1987a).

Ces deux types ont été définis d'après la croissance des cellules du parenchyme fondamental qui peuvent, en fonction des genres, présenter une forte modification. Après avoir été formées dans l'apex du stipe, ces cellules, sphéroïdes et isodiamétriques (Planche I, 1–2) au départ subissent une croissance supplémentaire d'où le terme de croissance postprimaire. Cette croissance se définit sur un critère de taille et parfois de forme des cellules. Lorsqu'il n'y a que la taille qui entre en jeu, il n'est pas évident de définir rigoureusement cette croissance puisque c'est une croissance primaire qui prolonge la phase de mise en place des cellules du parenchyme dans l'apex. Dans les deux cas, il est nécessaire de souligner que pratiquement aucune division cellulaire n'a lieu : le nombre de cellules à la base du stipe est quasiment identique au nombre de cellules à l'apex. Lorsque cette croissance postprimaire a lieu, il est possible de définir plusieurs formes de cette croissance post-primaire (Tomlinson *et al.* 2011, Thomas et De Franceschi 2013) :

- Cellules géantes La taille des cellules augmente fortement et atteint des tailles de l'ordre du millimètre (Planche I, 3–4). Le parenchyme fondamental reste le plus souvent compact, c'est à dire sans lacune. Le genre *Pseudophoenix* H.Wendl. ex Sarg. (Chapitre 10) illustre parfaitement ce type de parenchyme. J'ai donc nommé ces cellules, des cellules géantes ou *huge cells* dans l'article Thomas et De Franceschi (2013).
- Cellules lobées / rhomboédriques avec de petites lacunes Les cellules subissent une très légère croissance dans plusieurs directions (< 200 µm, longueur/largeur < 3–4), ce sont des cellules lobées ou rhomboédriques qui forment de petites lacunes

(généralement inférieures à 250 μ m) en réseaux irréguliers entre les lobes de ces cellules. Les genres *Borassus* (Chapitre 7.1) et *Licuala* (7.10) illustrent ce type de parenchyme (Planche I, 5–6).

- **Cellules trabéculaires** Les cellules sont en étoile et forment un réseau très régulier de lacunes sphéroïdes. Ce type de parenchyme est retrouvé chez les *Calamoideae* (Chapitre 8, Planche I, 7–8).
- Cellules en-bâton Les cellules subissent une croissance unidirectionnelle (Planche I, 9). Elles ont été nommées rod-like dans Thomas et De Franceschi (2013) de par leur aspect en-bâton très allongé (> 200 µm, longueur/largeur > (3)–5). Des lacunes assez importantes se forment dans ce type de parenchyme (> 250 µm).
- Parenchyme connectif Il peut également se développer une sorte de parenchyme connectif (ou appendicular parenchyma). Il a été nommé de cette façon de par son aspect. En effet, il relie les parties conductrices des faisceaux fibro-vasculaires en émettant de très longs prolongements entre ces faisceaux fibro-vasculaires (Planche I, 10).
- Cellules à croissance / divisions tangentielles Lorsqu'une croissance postprimaire a lieu, il y a, à la base du stipe, une modification spéciale des cellules du parenchyme fondamental au niveau de la zone subcorticale. Ces cellules présentent une très forte croissance tangentielle (plus d'un millimètre) et peuvent également subir plusieurs divisions anticlines donnant ainsi des files de cinq à quinze cellules (Planche I, 11–13).

Il faut rajouter à cela une tendance générale à tout parenchyme situé dans une zone basale et vieille d'un stipe : il peut se lignifier fortement (Planche I, 14).

Légende de la planche I

Planche photographique des différents types de parenchyme fondamental Coupes (CT) / polissages transversaux

1-2: Cellules sphéroïdes isodiamétriques. Ce type de parenchyme peut devenir légèrement allongé (longueur/largeur < 3-4) au niveau de la base des stipes, [1 (CT lumière polarisée analysée)–2 (CT safranine O fast green FCF) : Hyphaene thebaica. 3–4 : Cellules géantes (huge cells). Ces cellules subissent une très forte croissance post-primaire et leur diamètre est souvent supérieur à 500 µm, [3 : Bactris plumeriana (CT non colorée). 4 : Pseudophoenix sargentii (CT lumière polarisée analysée)]. 5–6 : Cellules lobées / rhomboédriques avec de petites lacunes. Diamètre généralement $< 200 \ \mu m$ et longueur/largeur < 3-4, petites lacunes en réseau irrégulier (généralement inférieures à 250 µm) entre les lobes de ces cellules, [5 : Borassus aethiopum (polissage). 6 : Pritchardia minor (polissage)]. 7–8 : Cellules trabéculaires ou en étoile formant un réseau très régulier de lacunes plus ou moins sphéroïdes, [7 : Représentation schématique. 8 : Mauritia flexuosa (CT non colorée)]. La différence entre 6 et 8 est indiquée par les flèches. 9 : Cellules « en-bâton » ou rod-like de par leur très forte croissance post-primaire unidirectionnelle, longueur généralement > 200 μ m, longueur/largeur > (3)–5. Des lacunes assez importantes se forment dans ce type de parenchyme (> 250 μ m), [Acro*comia crispa* (polissage)]. **10** : Parenchyme connectif (*appendicular parenchyma*). Un réseau de cellules très étirées se forme entre les faisceaux fibro-vasculaires, [Heterospathe elata (polissage)]. 11-13: Parenchyme à croissance / divisions tangentielle(s). Au niveau de la zone subcorticale, chez les *Mauritia-Type*, les cellules du parenchyme fondamental sont responsables de l'accroissement du diamètre du stipe : soit par divisions anticlines (11-12) soit par un allongement important (13). Une combinaison des deux est parfois présente, [11 (polissage)–12 (CT non colorée). Syagrus sancona. 13. *Veitchia arecina* (polissage)]. 14 : Lignification du parenchyme (avec quelques recloisennements) chez les vieilles tiges (partie basale), [Caryota mitis (CT non colorée)].

Échelle — 2 mm : 10–11. 400 μ m : 1–5, 9, 12–14. 200 μ m : 6, 8.

PLANCHE I – Les différents types de parenchyme fondamental

5.5 La différenciation de la partie fibreuse dorsale

Une modification de la partie fibreuse a été notée par Rich (1987a) et n'a jamais été étudiée depuis. J'ai également remarqué cette modification et l'ai étudiée afin d'essayer de mieux la comprendre. Ce qui suit provient de toutes les observations que j'ai réalisées et il serait nécessaire d'entreprendre des analyses complémentaires afin d'interpréter plus dans le détail les faits qui sont détaillés ci-après. Certains palmiers (ceux de Type A, *Cocos-Type*) ne présentent pas de différence de la partie fibreuse dorsale entre la zone subcorticale et la zone centrale. Les fibres sont développées de la même façon dans les deux zones et le nombre de fibres par partie fibreuse dorsale est sensiblement identique. En revanche, il existe des palmiers (Type B, *Mauritia-Type*) dans lesquels s'observe des parties fibreuses fortement différentes en fonction de leurs positions. Une première observation à l'intérieur de ce groupe révèle que certaines tiges présentent une variation de la partie fibreuse entre la zone subcorticale et la zone centrale. Il est possible de distinguer deux types des modifications : la lignification centrifuge et la différenciation centrifuge.

5.5.1 La lignification centrifuge

Ce mécanisme est responsable de la modification des cellules de la partie fibreuse dorsale. Cette modification est définie d'après la lignification des fibres. En plus de cette lignification, un *gonflement* des fibres est observé alors qu'elles n'ont encore qu'une paroi très faiblement lignifiée et sans doute encore non rigide. Cette modification est illustrée avec le genre *Washingtonia*. Dans la zone centrale, les faisceaux fibro-vasculaires ont la même structure que dans la zone subcorticale mais la partie fibreuse dorsale n'est pas encore développée (Fig. 5.10). Les fibres ont un aspect dégonflé par rapport aux fibres classiques (circulaire en coupe transversale). Leur paroi est très mince. La forme de la partie fibreuse dorsale a elle aussi un aspect dégonflé et a donc une surface moins importante que celle des faisceaux fibro-vasculaires de la zone subcorticale alors que le nombre de fibres est sensiblement identique. Plus les faisceaux fibro-vasculaires se rapprochent de la périphérie, plus les fibres se développent (gonflement – lignification) et plus cette partie fibreuse dorsale possède une grande surface. Il faut ajouter à cela que la lignification de la partie fibreuse se fait de manière centrifuge : les fibres proches du phloème (appelées fibres proximales) se lignifient avant celles de la périphérie (fibres distales).

Cette lignification centrifuge se retrouve chez plusieurs genres et il semble, d'après mes observations, qu'elle soit assez répandue dans cette famille.

(a) Faisceau fibro-vasculaire de la zone centrale avec des fibres d'aspect dégonflé.

(b) Faisceau fibro-vasculaire de la zone subcorticale avec une partie fibreuse bien développée et une lignification progressive des fibres de la partie proximale (phloème) vers la partie distale (périphérie).

FIGURE 5.10 – La lignification centrifuge chez Washingtonia robusta H.Wendl. Échelle : 500 µm.

5.5.2 La différenciation centrifuge

Description du processus. – Ce mécanisme intervient uniquement pour les tiges de Type B (*Mauritia-Type*) et est responsable de l'augmentation du nombre de fibres au sein de la partie fibreuse dorsale lorsqu'un faisceau fibro-vasculaire passe de la zone centrale à la zone subcorticale (Chapitre 2.2, Figs. 2.9-2.10). Ce mécanisme a été observé chez plusieurs genres et notamment chez : *Gaussia* (avec *G. maya*), *Iriartella* H.Wendl. (avec *I. setigera* (Mart.) H.Wendl.) et *Veitchia* H.Wendl. in B.Seemann. L'observation peut se résumer de la façon suivante (Planche II) :

- 1. Les faisceaux fibro-vasculaires de la zone centrale présentent une partie fibreuse dorsale très réduite avec un $f/v \approx 1^{1}$. Des phytolithes sont également observés à la périphérie de la partie fibreuse. Les fibres sont bien développées et peuvent présenter un épaississement de leur paroi (Planche II, 3–4, 10).
- 2. Au niveau de la zone de transition, le nombre de fibres de la partie fibreuse dorsale augmente assez rapidement. La partie fibreuse de ces faisceaux possède une structure

^{1.} Le ratio fibro-vasculaire (f/v) est le ratio entre la surface de la partie fibreuse d'un faisceau fibrovasculaire et la surface de la partie vasculaire (phloème, xylème et parenchyme associé) de ce même faisceau. Ce descripteur est défini dans l'article Thomas et De Franceschi (2013).

différente de celle des faisceaux de la zone centrale. En effet, il semble que la partie fibreuse possède une zone proximale (proche du phloème, notée a dans la Planche II) équivalente à celle de la zone centrale (Planche II, 5, 8–14) et une zone distale (en allant vers la périphérie de la partie fibreuse, notée b et c dans la Planche II). Les fibres de cette zone semblent avoir le même comportement que dans la différenciation centrifuge : plus elles s'éloignent de la zone proximale, moins elles sont lignifiées. Il n'est observé aucun phytolithe autour de la partie fibreuse des faisceaux fibrovasculaires des zones de transition et subcorticale.

Comme le montre la Planche II, 8-9, 11-14, la limite entre le parenchyme et la périphérie de la partie fibreuse n'est pas nette et il n'est souvent pas possible de faire la différence entre une cellule de parenchyme et une cellule fibreuse (les cellules de la zone *c* illustrent particulièrement bien ce propos). Ceci donne l'impression que les cellules de parenchyme, à proximité de la partie fibreuse, prennent un aspect de plus en plus lignifié pour finalement ressembler à des fibres au niveau de la zone subcorticale.

3. Au niveau de la zone subcorticale, la partie fibreuse devient de plus en plus importante et de plus en plus lignifiée (Planche II, 7). Les phytolithes se retrouvent au niveau des faisceaux fibro-vasculaires en contact avec le cortex. Les fibres sont toutes lignifiées avec parfois une paroi à plusieurs couches concentriques. Les cellules situées à l'extrémité de cette partie fibreuse sont très allongées dans une direction passant par le centre de cette partie fibreuse et sans paroi à plusieurs couches concentriques.

Tentative d'explication. – Il faut rappeler que ce mécanisme a été étudié a un seul niveau de la tige et que pour en avoir une meilleure description il faudrait réaliser des coupes à différentes hauteurs pour voir la modification des structures décrites ci-dessus. Une évolution de la lignification de cette partie fibreuse le long de la variation longitudinale est probable et des coupes longitudinales devraient être réalisées afin de mieux comprendre ce mécanisme.

La Planche II permet de faire une première tentative d'explication. Si les figures 9 et 10 sont comparées, il semble que le faisceau de la figure 9 (zone de transition) possède la même organisation proximale que celui de la figure 10 (zone centrale). En revanche, il possède une partie distale alors que celui de la figure 10 n'en possède pas. Cette partie distale est bien délimitée au niveau de la partie proximale et présente des cellules dont l'aspect diffère des fibres classiques et fait fortement penser à des cellules de parenchyme allongées. Les figures Planche II ,11–14 permettent d'apporter quelques précisions. Sur ces figures, il est possible de trouver des phytolithes intercalés entre la zone proximale a et la zone b. Habituellement, les phytolithes ne sont jamais visibles à l'intérieur d'un partie fibreuse, ils sont restreints au niveau des stegmata accolés aux fibres en périphérie de la partie fibreuse dorsale. Le fait de trouver des phytolithes au milieu de la partie fibreuse permet de penser qu'à l'origine ceux-ci devaient se trouver en périphérie puis que de nouvelles fibres se sont formées encore plus en périphérie. Peut-on proprement parler de fibres en ce qui concerne les cellules des zones b et c? Pour résoudre ce problème, il faudrait réaliser des coupes longitudinales sur ce type de palmier. Mais il n'est pas évident de suivre un faisceau fibro-vasculaire dans un tel plan en raison de son trajet sinueux.

Je ne suis néanmoins pas capable de dire si ces cellules sont déjà différenciées en fibres, ni même si se sont de véritables fibres ou si ce sont des cellules de parenchyme qui, par un jeu de gradient au sein de la partie fibreuse dorsale, reçoivent un signal pour se lignifier ou devenir des *pseudo-fibres* lors de leur formation dans l'apex au niveau de la zone subcorticale comme le montre la Planche II, 7.

Contrairement au phénomène précédent, celui-ci semble plus caractéristique de certains genres. Par exemple, les *Calamoideae* arborescents ainsi que les *Ceroxyloideae* et la la grande majorité *Arecoideae* possèdent cette caractéristique. Les *Coryphoideae* (excepté les *Caryoteae*) ne développent apparemment jamais ce type de croissance spécifique de la partie fibreuse dorsale.

Légende de la planche II

Planche photographique sur la différenciation centrifuge de la partie fibreuse dorsale Coupes transversales non colorées

1-6: Gaussia maya. 1. Zone subcorticale. 2. Zone de transition. 3. Zone centrale. Les faisceaux fibro-vasculaires de la partie centrale sont nettement différents de ceux de la partie subcorticale : plus espacés et à la partie fibreuse dorsale réduite. 4. Faisceau fibro-vasculaire de la zone centrale. 5. Faisceau fibro-vasculaire de la zone de transition montrant les 3 zones de la partie fibreuse dorsale. a. zone proximale avec fibres développées; b. zone médiane avec un stade cellulaire intermédiaire entre la partie fibreuse et le parenchyme : des cellules commencent une différenciation en fibre. c. zone distale où les cellules de parenchyme sont de même forme qu'en b. mais non lignifiées. 6. Détail de la transition entre ces 3 zones. 7–14 : Iriartella setigera. 7. Faisceau fibro-vasculaire de la zone subcorticale avec les trois régions différenciées (a. fibres, b. cellules intermédiaires, c. cellules de type parenchyme). Les cellules des zones b. et c. sont souvent allongées et alignées dans un plan radial passant par le centre du faisceau fibro-vasculaire. 8. Faisceau fibro-vasculaire de la zone de transition. 9. Faisceau fibro-vasculaire à la limite de la zone de transition et de la zone centrale avec les zones a. et b. bien développées (lumière polarisée analysée). 10. Faisceau fibro-vasculaire de la zone centrale. La partie fibreuse est réduite et possède des phytolithes (flèches) à sa périphérie (lumière polarisée analysée). 11–14 Détail de plusieurs parties fibreuses au niveau de la zone de transition. La transition entre la zone a. et la zone b. est plus ou moins graduelle : au niveau de cette transition il n'est pas possible de faire la différence entre une cellule de type intermédiaire et une cellule fibreuse. Des phytolithes sont intercalés entre ces deux zones (cercles, flèches). Ils se trouvent dans la partie fibreuse dorsale entre les fibres ce qui tend à prouver l'ajout de fibres, par différenciation des cellules de parenchyme, à la partie fibreuse originelle (en zone centrale).

Échelle — 1 mm : 1–3. 200 μ m : 4–9. 100 μ m : 10–14.

 $\label{eq:planche} {\rm Planche}~{\rm II}-{\rm Différenciation}~{\rm centrifuge}~{\rm de}~{\rm la}~{\rm partie}~{\rm fibreuse}~{\rm dorsale}$

5.6 Conséquence de ces deux caractéristiques anatomiques

5.6.1 Les différents modes de croissance

Dans l'article Thomas et De Franceschi (2013) nous avons défini à partir de ces deux mécanismes (croissance post-primaire et différenciation centrifuge de la partie fibreuse) trois modes de croissance :

- 1. Le premier mode est défini lorsque le parenchyme ne présente pas de croissance postprimaire et que la différenciation centrifuge et absente;
- 2. Le deuxième mode est défini sur la présence de la croissance post-primaire du parenchyme fondamental et une différenciation centrifuge absente;
- 3. Le troisième mode de croissance présente à la fois une croissance post-primaire et une différenciation centrifuge de la partie fibreuse.

Cette différenciation centrifuge de la partie fibreuse a d'importantes conséquences sur la répartition et la taille de la partie fibreuse dorsale des faisceaux fibro-vasculaires et donc sur la répartition des structures de soutien. Pour les deux premiers modes, les structures de soutien sont équitablement réparties dans tout le cylindre central alors que pour le troisième mode, ces structures sont restreintes au niveau de la zone subcorticale.

Une croissance en hauteur n'est possible que si le diamètre est suffisamment large. J'ai démontré dans ce chapitre que cette croissance du diamètre résulte de deux stratégies : une avec croissance post-primaire des cellules du parenchyme fondamental et une sans. De plus, la tige doit présenter une rigidité minimum pour permettre cette croissance en hauteur. Deux stratégies, sûrement liées à la précédente, permettent cette rigidité : une rigidité équitablement répartie ou une rigidité localisée à la périphérie du cylindre central (différenciation centrifuge).

J'ai présenté ci-dessus une étude préliminaire sur ces différents modes mais, à ce stade, je ne suis pas en mesure d'approfondir l'interprétation de ces résultats. En effet, des études approfondies sont nécessaires afin de décrire et d'interpréter ces différents modèles.

5.6.2 Conséquence sur la prise de mesure

Cette partie détaille la variabilité des structures anatomiques des stipes de palmiers et ces résultats me permettent d'affirmer que la prise de mesures quantitatives des structures anatomiques (densité, taille, degré de lignification) est inutile d'un point de vue d'identification. En revanche, ces indications quantitatives peuvent fournir d'importants renseignements pour la détermination du degré de maturation approximative du stipe lorsqu'aucune autre information qu'une coupe transversale n'est disponible. Par degré de maturation j'entends la possibilité de déterminer la position axiale approximative d'une coupe transversale (Tableau 5.1) :

- Partie apicale : la densité des faisceaux fibro-vasculaires est importante (c'est-à-dire qu'ils sont congestionnés), les fibres sont à parois très minces...
- Partie médiane : les faisceaux fibro-vasculaires sont espacés (du moins dans le cylindre central), les fibres sont à parois épaissies,
- Partie basale : les cellules du parenchyme fondamental ont une structure très lignifiée et sclérifiée, le densité des faisceaux fibro-vasculaires est relativement faible.

Dans ce chapitre, je me suis intéressé aux différentes modifications que peut subir une tige de palmier lors de sa croissance. Il m'a semblé important de décrire ces mécanismes avant de décrire l'anatomie des différentes sous-familles de palmiers. Cette étude préliminaire demande certes des approfondissements mais elle a été réalisée dans le souci d'identifier les variations anatomiques liées aux modes de croissance et ainsi de pouvoir dégager les descripteurs taxinomiques.

Chapitre 6

FORMALISATION D'UNE DESCRIPTION ANATOMIQUE

Sommaire

) ORGANISATION générale d'une description qui sera utilisée dans les chapitres suivants est présentée ici. Dans cette thèse, la description littéraire des taxons (présentée dans les chapitres suivants) a été couplée à une description informatique. Cette dernière a été réalisée à l'aide du logiciel Xper² (Vignes-Lebbe *et al.* 2011) développé par le Laboratoire d'Informatique et Systématique¹. Afin d'éviter une certaine répétition avec l'article Thomas et De Franceschi (2013), la présentation détaillée des descripteurs est réalisée avec cette publication dans le chapitre suivant. Néanmoins, tous les descripteurs et leurs états sont définis et disponibles en ligne (http://www.infosyslab.fr/Palm-ID/). La base Xper² est traitée dans un chapitre spécifique (Chapitre 13).

L'Annexe C présente les descripteurs utilisés par Stenzel (1904) (C.1) et par Tomlinson (1961) (C.3).

Pour rendre la lecture plus facile lors des descriptions présentées dans les Chapitres 7– 11, j'ai placé en Annexe D un feuillet A3 dépliant qui rappelle les principaux descripteurs anatomiques et la phylogénie des tribus.

^{1.} Université Pierre et Marie Curie, UMR 7207 MNHN - UPMC - CNRS. Programme gratuit non open source soumis à la licence Creative Commons Paternité-Pas d'Utilisation Commerciale-Pas de Modification 2.0 France et disponible sur le site internet : http://www.infosyslab.fr/lis/.

6.1 Organisation générale d'une description

Dans les chapitres suivants (Chapitres 7 à 11), les descriptions des stipes seront formalisées et organisées à la manière exposée ci-dessous. Tous les descripteurs cités ici sont définis dans l'article Thomas et De Franceschi (2013) (7.1).

Aspect général et macroscopique du stipe. – Pour chaque tribu présentée, des vues générales (polissage transversal à faible grossissement) de quelques genres sont proposées. Lorsqu'elle est connue, la position (approximative) des échantillons étudiés est donnée : (i) apicale, représentant une tige juvénile avec une anatomie assez commune et peu informative; (ii) médiane, tige mature avec des structures anatomiques développées; (iii) basale, où les structures anatomiques sont fortement lignifiées.

Le cortex. – Les caractéristiques du cortex sont présentées ici.

• Description du cortex

- Développé ou non (nombre de zones),
- Présence / absence d'un épiderme permanent (forme des cellules)...

Il est à souligner que l'anatomie du cortex est assez particulière. En effet, un système vasculaire plus ou moins indépendant du cylindre central (Zimmermann et Tomlinson 1972) se développe. En raison de son extrême variabilité, une description rapide sera donnée sans qu'il soit possible de dégager tout autre descripteur que celui de son développement présent ou absent.

Le cylindre central. – L'organisation générale du cylindre central est détaillée.

• Organisation générale de la tige	\circ Ratios
(ex classification de von Mohl)	$-\frac{d(FFV)_{ext}}{d(FFV)} \subset [min; max],$
$- \ Calamus$ -Type,	$a(FFV)_{int}$ f/v_{ext}
- Geonoma-Type,	$-rac{df}{f/v_{int}} \subset [min;max],$
- Mauritia-Type,	$-\frac{R_{ext}}{R} \subset [min;max],$
- Cocos-Type,	R_{int} – $f/v \subset [min; max].$
- Corypha-Type.	<i>J</i> / <i>L L L L L L L L L L</i>

 $\frac{d(FFV)_{ext}}{d(FFV)_{int}}$: c'est le ratio entre la densité des faisceaux fibro-vasculaires (ffv) au niveau de la zone subcorticale (ext) et la densité de ceux de la zone centrale (int) (Fig. 2.6).

f/v: c'est le ratio entre la surface de la de la partie fibreuse (Fig. 2.7) et celle de la partie vasculaire (protoxylème, xylème, phloème et parenchyme paravasculaire). $\frac{f/v_{ext}}{f/v_{int}}$ est donc le ratio de ce ratio fibro-vasculaire de la zone subcorticale calculé sur 10–30

faisceaux fibro-vasculaires et du ratio fibro-vasculaire de la zone centrale calculé sur un même nombre de faisceaux fibro-vasculaires.

R est le taux de recouvrement fibreux. Soit a, la surface de l'ensemble des parties fibreuses examinées dans une surface A, $R = \frac{a}{A}$. $\frac{R_{ext}}{R_{int}}$ est donc le ratio entre le R de la zone subcorticale et celui de la zone centrale.

L'ensemble des types de von Mohl se basent sur ces ratios et sont définis dans Thomas et De Franceschi (2013).

Les faisceaux fibro-vasculaires et faisceaux exclusivement fibreux. – Le type de faisceau fibro-vasculaire rencontré est décrit dans cette section. La répartition générale des faisceaux fibro-vasculaires et des faisceaux exclusivement fibreux le long d'une section radiale est détaillée. Les faisceaux fibro-vasculaires décrits dans le reste du document sont ceux qui sont distalement éloignés de la sortie du cylindre central, c'est à dire, comme il a été indiqué dans le Chapitre 2.2, les faisceaux fibro-vasculaires qui n'ont que très peu d'éléments de protoxylème et qui présentent des descripteurs diagnostiques.

\circ Faisceau fibro-vasculaire (ffv)	– Zone vasculaire
– Classification de Stenzel (aspect de la	> Nombre d'éléments de vaisseau,
partie fibreuse dorsale, Fig. 2.7)	> Partie incluse/exclue du sinus
> Reniforma (Cordata, Complanata,	median,
Sagitata),	> Division du phloème.
> Lunaria,	– Ponts vasculaires (bridges),
> Vaginata.	– Parenchyme paravasculaire
Les quatre premiers types sont	> Développé,
regroupés en seul $(Reniforma)$ en	> Bande circumvasculaire.
raison de la variabilité qui peut exister	\circ Parenchyme para- <i>ffv</i>
au sein du même spécimen.	– Tabulaire,
$-$ Répartition dendritique des $f\!\!f v$ dans la	– Rayonnant.
zone subcorticale	\circ Faisceaux exclusivement fibreux
– Partie fibreuse dorsale	dans le cylindre central
>Éti rement radial (zone subcorticale,	– Présence / Absence.
zone de transition),	\circ Phytolithes
> Différenciation centrifuge.	– Sphériques échinulés, en chapeau,
- Partie fibreuse ventrale (P/A)	mixtes.

Descripteurs liés au phloème et au xylème. – En raison de l'existence de plusieurs études concernant ces deux structures, aucune référence ne sera faite aux perforations du xylème ni à certains aspects anatomiques du phloème. Les résultats concernant les perforations sont résumés dans Thomas et De Franceschi (2013) et proviennent de Cheadle (1943a), Tomlinson (1966), Cheadle et Kosakai (1975) et Klotz (1977, 1978a,b). Pour le phloème, le lecteur pourra se reporter à Parthasarathy et Tomlinson (1967), Parthasarathy (1968, 1974a,b,c, 1980). Mais l'étude de ces structures n'est pas évidente (surtout pour le phloème) et quasiment impossible à réaliser pour les spécimens fossiles.

Le parenchyme fondamental. – Une place spéciale sera faite pour le parenchyme fondamental, son allure générale ainsi que les différents aspects qu'il présente à travers la coupe transversale.

- Accroissement post-primaire, Aspect des cellules du parenchyme
- Alignement tangentiel subcortical,
- Description des lacunes.

fondamental.

Statistiques descriptives. – Une section présente une description générale des mesures réalisées au sein du taxon considéré. Ces mesures sont données à titre informatif pour rendre compte de l'évolution des différents paramètres le long de la variation radiale. En effet, aucune analyse statistique se basant sur les mesures des faisceaux fibro-vasculaires ne peut être réalisée puisque la taille des différentes structures (faisceau fibro-vasculaire, parenchyme) peut présenter une forte variation entre deux spécimens de la même espèce. De plus, il peut exister une variation au sein du même spécimen (Fig. 2.6) entre la zone subcorticale et la zone centrale. Il m'a donc semblé plus important d'essayer de montrer cette évolution plutôt que d'essayer de réaliser des études statistiques.

Les dimensions sont les suivantes :

- Mensuration des faisceaux fibro-vasculaires $(H_{max}, l_{max}, H_{vasc}, l_{vasc})$,
- Diamètre des vaisseaux,
- Évolution du f/v.

Diagnose. – Une diagnose du (ou des) taxon(s) est présentée afin de définir les descripteurs permettant de le(s) reconnaître et de le(s) caractériser par rapport aux autres.

Discrimination des genres. – Lorsque les genres d'une tribu (ou sous-tribu) peuvent être discriminés les uns par rapport aux autres, les descripteurs permettant de les identifier sont donnés ici.

Confusion possible. – Les genres ou les tribus avec lesquels une confusion est possible sont présentés ici.

Matériel examiné. – Un retour sur le matériel examiné est réalisé ici afin de d'émettre des hypothèses sur la robustesse des descripteurs diagnostiques.

Compilation bibliographique. – Lorsqu'elle existe, une compilation bibliographique sur le groupe considéré est présentée avec une comparaison des descriptions.

Chapitre 7

ANATOMIE DU STIPE DES Coryphoideae

Sommaire

7.1 Article)
7.2 Les Borasseae—Hyphaeninae	
7.3 Les Borasseae—Lataniinae	•
7.4 Les Caryoteae	1
7.5 Les Chuniophoeniceae	1
7.6 Les Corypheae	
7.7 Les Cryosophileae)
7.8 Les <i>Phoeniceae</i>	
7.9 Les Sabaleae	
7.10 Les Trachycarpeae—Livistoninae $\ldots \ldots \ldots \ldots \ldots 240$)
7.11 Les Trachycarpeae—Rhapidinae)
7.12 Les Trachycarpeae—incertae sedis $\ldots \ldots \ldots \ldots \ldots 259$)

ES Coryphoideae (Fig. 7.1) se répartissent en huit tribus séparées en deux groupes : (Bo *rasseae, Caryoteae, Corypheae, Chuniophoeniceae*) et ((Cryosophileae, Sabaleae), Trachycarpeae, Phoeniceae). J'ai inséré dans la première section de ce chapitre l'étude de Thomas et De Franceschi (2013) sur l'anatomie des Coryphoideae. Cet article fait le point sur l'anatomie des palmiers, présente les descripteurs ainsi que leurs états. Dans ce chapitre, les descripteurs cités font donc référence à Thomas et De Franceschi (2013).

Les descriptions détaillées de chaque tribu sont à considérer comme étant un complément de l'article et non comme une simple traduction française de celui-ci. En effet, dans cette thèse la place allouée à la description (mesures, planches photographiques) n'est pas limitée et une description détaillée peut ainsi être réalisée pour chacune d'elles, ce qui n'est pas possible dans un article.

La base Xper² (Thomas 2011) est disponible en ligne (http://www.infosyslab.fr/ Palm-ID/) et donne toutes les descriptions sous la forme [Descripteur – État] pour chaque taxon considéré. Ce chapitre présente les descriptions sous une forme plus littéraire afin d'en faciliter la lecture et de pouvoir nuancer chaque description ce qui n'est pas possible sous une forme [Descripteur – État].

Il me semble que ce chapitre et les suivants sont d'une approche assez peu évidente pour un lecteur non spécialiste de par la complexité des descripteurs et de la répartition de leurs états, et ceci, même avec une interface informatisée comme le permet Xper². C'est pourquoi, à la fin de cette partie, une discussion synthétique reviendra sur ce qui suit et y apportera une analyse critique.

Toutes les informations données ci-dessous proviennent de descriptions originales, sauf indication contraire.

Je rappelle que se trouve en Annexe D un feuillet A3 dépliant qui présente les principaux descripteurs anatomiques et la phylogénie des tribus.

FIGURE 7.1 – Quelques Coryphoideae. a. Bismarckia nobilis (Montgomery Botanical Center); b. Copernicia baileyana (MBC); c. Sabal palmetto et Serenoa repens (Everglade, Floride); d. Washingtonia filifera (Linden ex André) H.Wendl. ex de Bary (MBC); e. Thrinax sp. (Komarov Botanical Institute).

7.1 Article

Dans cet article (Thomas et De Franceschi 2013) soumis à la revue American Journal of Botany, nous définissons les descripteurs anatomiques et présentons une description des différentes tribus des Coryphoideae. La différenciation centrifuge de la partie fibreuse dorsale est également présentée.

Coryphoideae stem anatomy

PALM STEM ANATOMY AND COMPUTER-AIDED IDENTIFICATION: THE CORYPHOIDEAE (ARECACEAE)¹

Romain Thomas,² Dario De Franceschi

Muséum national d'Histoire naturelle-UMR 7207 MNHN-CNRS-UPMC Centre de recherche sur la

paléobiodiversité et les paléoenvironnements. Département histoire de la Terre; 8, rue Buffon-75005

Paris, France

¹Manuscript received_____; revision accepted_____.

²e-mail: thomas@mnhn.fr

Research was supported by a doctoral grant of the French Ministère de l'Enseignement supérieur et de la Recherche and by the Centre national de la Recherche scientifique (CNRS). The authors thank W.J. Baker, P. Gasson and M. Nesbitt for samples from Kew, H. Beeckman and W. Tavernier for the samples from Tervuren and J.N. Labat for the full access of the palm collection from Paris throughout the course of this study. P. Griffith and C. Lewis generously allowed full access to the collections of the Montgomery Botanical Center and the Fairchild Tropical Botanic Garden. We thank L. Cazes and V. Rommevaux for their patient anatomical slide preparations and J. Anquetin for his careful assistance. We thank J.B Fisher for commenting and revising on this version of the manuscript.

Premise of the study: Comparative anatomy of palm stems has been given little attention in the literature. Thus, identification of a stem from its anatomy has always proved difficult. Because of the lack of a comparative anatomical foundation, most fossil palm stems have been classified under the non-specific morphotaxon *Palmoxylon*. Our work addresses the need of better identification of fossil palm stems by a comparative study of extant palms and provides an interactive Web-based tool.

Methods: Stem samples were taken from wild and botanical garden plants, and from herbarium and xylarium specimens in order to have representatives of each tribe of all five palm subfamilies. 25 descriptors (with 78 states) in 37 taxa were defined and used in Xper², a management tool for taxonomic description that allows editing standardized descriptions. Some descriptors are described for the first time and others are compiled from literature. Although all subfamilies are sampled, the subfamily of fan palms, Coryphoideae, is emphasized. *Key results*: Descriptors are mainly based upon the general organization of the transverse section and the structure of the fibrovascular bundles and ground parenchyma. Coryphoideae have 2 or more metaxylem elements whereas the other subfamilies have 1 or 1 and 2 elements. The centrifugal differentiation of the sheath of phloem fibers is described in other subfamilies but is not found in the Coryphoideae.

Conclusions: Some tribes are easy to identify (Borasseae, Cryosophileae, Phoeniceae, Caryoteae), others are rather heterogeneous and difficult to define (Chuniophoeniceae, Trachycarpeae). Caryoteae presents some states of the Arecoideae.

Key words: Arecaceae; cell differentiation; Computer-aided identification; Coryphoideae; fibrovascular bundle; phytolith; stem anatomy; sustained growth.

The anatomy of the palms (Arecaceae) has been the subject of many studies. However, in contrast to the studies of leaf (Tomlinson, 1961; Horn et al., 2009; Tomlinson et al., 2011) and root (Mahabale and Udwadia, 1959; Seubert, 1996a, 1996b, 1996c, 1998a, 1998b), a thorough comparative study of the stem has never been published. The recent survey of vegetative anatomy of the palm family by Tomlinson et al. (2011) documented the stem anatomy of many palms but leaf anatomy was mainly emphasized. These authors wrote that the "comparative stem structure remains on of the final frontiers in palm biology". The detailed comparative studies of rattan palms, a group of climbing Calamoideae palms, have been useful in helping to identify the stems of these palms (Weiner and Liese, 1990, 1993; Bhat et al., 1993 and Mathew and Bhat, 1997). We expand on these studies of rattan stems by describing the stem anatomy of the diverse subfamily Coryphoideae and, to a more limited extent, the other four subfamilies of palms. In this way, we explore the *final frontier in palm biology*. Since the first scientific description of a petrified fossil palm stem by de La Hire (1692), much progress has been made through the work of various authors such as von Mohl (1823–1850, 1845), Unger (1823–1850) and Stenzel (1904), who made the first classification of palms based on a system of stem anatomical and morphological character classification. This artificial system of classification may or may not be strictly taxonomic and recognizes 5 groups and 11 subgroups defined by the general organization of the stem and elaborated from a relatively small selection of genera from the palm family (18 out of about 184) and are thus not representative of all the subfamilies. Interestingly, Stenzel's (1904) system was used extensively on fossils (Stockmans and Willière, 1943; Sahni, 1964) rather than one based on living taxa.

Herein, the early descriptions of stem anatomy are reconsidered in the light of the current classification of palms (Baker et al., 2009), and new descriptors for stems are defined. This survey presents anatomical descriptors that are included in the Xper² database (Thomas, 2011a) in order to facilitate descriptions of the stem anatomy of living palms (Thomas, 2011b). Although all five subfamilies are sampled, the Coryphoideae is emphasized in this initial study because it is not too large (not as the Arecoideae), its tribes are clearly defined, its phylogeny is well known, and it is relatively easy to obtain samples. Each tribe of Coryphoideae are herein described with 25 descriptors (78 states). Moreover, major tendencies of the other subfamilies are presented as preliminary hypotheses of anatomical trends within the family. This article focuses only on the structure of the palm stems and our objective is not to produce a key of all the genera, which would be far too long here, but to provide the tools that will allow general identification (i.e. at the subfamily or tribe levels) of living and fossils palms from their stems. All the descriptors and their states described herein are implanted in the Computer-aided

identification (CAI) software Xper² (Vignes–Lebbe et al., 2010; Ung et al., 2010), a knowledge base manager that allows interactive identification on the web (http://www.infosyslab.fr/Palm-ID/).

The general anatomy of the stem— As described by Tomlinson (1961, 1964a, 1990) and Zimmerman and Tomlinson (1972), the stem is made of a central cylinder with some concentric outer layers. The outermost layer is a periderm, which is often replaced by other superficial protective tissues more or less suberized in the old stem. Under this specific layer is a cortex, more or less developed (Fig. 1), with fibrous bundles, fibrovascular bundles and few leaf traces scattered in a ground parenchyma. Then, the central cylinder is abruptly demarcated from the cortex by the peripheral sclerotic zone or the *subcortical zone* with many more or less crowded vascular bundles (Waterhouse and Quinn, 1978). Then, the zone of transition shows a change in fibrovascular bundles density and structure toward the *central zone* of the stem where bundles are less densely arranged (Waterhouse and Quinn, 1978). The ground tissue of the central zone consists of compact or lacunose parenchyma. The cells of the ground parenchyma may undergo a sustained growth and in many species becomes thick walled and lignified with age. In the central cylinder, fibrous bundles are found in some genera. Parthasarathy and Klotz (1976a and 1976b) and more recently Tomlinson et al. (2010) presented a detailed summary of the anatomy of the stem. In the present work, we use the model of the vascular development of the stem (establishment of the vascular system, vascular connexions, course and variability of the fibrovascular bundles in the stem) as defined by Zimmerman and Tomlinson (1965, 1967, 1972, 1974), Tomlinson and Zimmermann (1966a), Tomlinson (1970) and summarized in Tomlinson (1990).

The palm fibrovascular bundle (fvb)— Fig. 2 shows the general organization of a single fvb found in Borasseae. French and Tomlinson (1986) produce an identification key for the main families of Monocotyledons based on the vascular bundle. They state: "*The [palm fibrovascular] bundles are always simple and collateral throughout the stem, some temporary juxtaposition of entirely separate vascular bundles without any association visible in transverse section*" (French and Tomlinson, 1986). The fvb are made of a vascular part and a fibrous part. The vascular part contains: (i) protoxylem elements, sometimes well developed in fvb connecting a leaf (the leaf trace); (ii) one to five and more (depending on the species) wide metaxylem elements; (iii) phloem in a recess of the fibrous part (the median sinus). The difference between the number of vessels is evident only in the stem center. The fibrous sheath is always developed external to the phloem and shows some variability (described in following sections), we call this fibrous sheath the fibrous dorsal cap because the use of this term in some previous descriptions (e.g. Sahni, 1964). Sometimes a 'fibrous cap' is developed external to the protoxylem or the xylem elements, the fibrous ventral cap (Sahni, 1964), and in other cases the vascular part is included within the fibrous part.

The different growth patterns and variability of stem anatomy— Before presenting the results, the authors would like to discuss some important points to remind the different growth patterns found in palms and their consequences in the variability of the stem anatomy. Indeed, the stems of palm have unique features of growth that produce confounding variability in anatomy. The general features of the axial or longitudinal variability (from the apical to the basal region) and the radial variability (from the subcortical to the central zone of the central cylinder) of the stem must be appreciated, in order to explain use or absence of some descriptors and specific measurement in this work.

Palm stem variability is closely associated with the *sustained primary growth* (Waterhouse and Quinn, 1978), but originally defined by Monover (1924) as *accroissement postprimaire*. Between the primary thickening (during the *establishment phase*) and the late growth (for the other later phases below the crown), there is no fundamental change: cell expansion sometimes coupled with a few cell divisions (Zodda, 1904) and no change in the mode of growth (unlike the wood formation from dicotyledonous cambium). However, two growth patterns have been defined by Schoute (1912), Monoyer (1924), Kaul (1960) and Waterhouse and Quinn (1978): (i) Type A stems (Fig. 1 A) where some palms stop their growth in girth after the establishment phase (Tomlinson and Zimmerman, 1966b), then the primary stem diameter is the maximal diameter of the palm; (ii) Type B stems (Fig. 1 B) with a sustained primary growth, where the stems continue their girth growth after the establishment phase. The enlargement (and often cell division) of parenchyma cells is responsible of this sustained primary growth (Rich, 1987; Tomlinson et al., 2011). The axial anatomical variation has been well studied for the two different growth patterns (Schoute, 1912; Monover, 1924; Tomlinson, 1969; Waterhouse and Quinn, 1978; Rich, 1987 for Type B; and Swamy and Govindarajalu, 1961; Ambwani, 1985 for Type A). According to Rich (1987) even with small sample sizes, distinct morphological and anatomical changes can be identified that are the result of the growth. The different anatomical structures that are modified during the growth are as follows (based on the literature cited above) presented herein. Type A: (i) the density and the size of the parenchymatous cells of these palms (sometimes with very large stems as Phoenix dactylifera L.) does not undergo major axial or radial change; (ii) the fibrous part of the fvb does not undergo major change. Indeed, the area of the fvb fibrous part as seen in transverse section is constant along the radial variation and undergoes a slight increase but without structural modification along the axial variation (Fig. 1 A, Fig. 3 I-K). There is only an axial variation with fiber wall thickening seen as a multi-layered structure toward the stem base. Type B:

sustained cell expansion occurs in the ground parenchyma of the central cylinder below the apex (Rich, 1987), then the maximal length of the parenchyma cells increases along the axial variation. There are conspicuous differences between the general organization of the subcortical zone and of the central zone (Fig. 1 B). Depending on the taxa, during the growth, ground parenchyma may develop lacunae in the central zone of the central cylinder (because of wall separation and cell growth). The size of these lacunae increases along both the axial and radial variations. This cell enlargement is the predominant mechanism in Type B for stem diameter increase in the central part of the central cylinder (Schoute, 1912; Tomlinson, 1961; Waterhouse and Quinn, 1978). This parenchyma modification induces a diminution of the density of fvb, *d(fvb)*, along axial and radial variations over time (Fig. 3 A-B, E-F: apical regions and C-D, G-H: basal regions). The extreme case of sustained primary growth is found in the ventricose palms (Fisher et al., 1996). Parenchyma cell expansion found in all the Type B stems is here called *ground parenchyma sustained growth*. Furthermore, for some palms of Type B, ground parenchyma tangential divisions and tangential cell elongation ensure the diameter increase at the subcortical zone (see descriptor 7 and Figs. 26–28). In these stems, fvb of the subcortical zone become sclerified before those of the central zone, and fibers nearer the phloem (the initial fibers) become sclerified before the peripheral fiber of the fibrous part (the marginal fibers). Fibers keep depositing secondary walls during most of their lifetime (Rich, 1987). The secondary walls in the old fibers show a characteristic concentric multilayered structure (Figs, 33-34), so that the cell wall thickness and the degree of lignification increase with the tissue age (Monoyer, 1924). Finally, the fibrous part has an implication in the stem diameter increase at the subcortical zone. Indeed Rich (1987) observes, on these subcortical fvb, a fibrous cell enlargement. In addition to this cell enlargement, we observe a specific case of the Type B stems: the *fibrous dorsal cap centrifugal differentiation*. This results in a change in cell differentiation around the cells adjacent to the fibrous dorsal cap and is described in the results section. In these two growth patterns (Type A and Type B), ground parenchyma sclerification occurs in the older parts of the stem.

The results of Tomlinson (1964b, 1965, 1969), Tomlinson and Zimmerman (1967), Parthasarathy and Tomlinson (1967) and Parthasarathy (1968) show that the variation of the quantitative measurements (length, diameter) of metaxylem vessel elements and of metaphloem within a single individual is often more important than the differences of measurements between different taxa. Length of metaxylem elements increases with the age of the palm stem and increases slightly with the depth in the central cylinder and the diameter varies but not constantly. These studies paired with the sustained growth and the enlargement of the fibrous sheath have important consequences for measurement of quantitative traits of various anatomical features. Indeed, absolute

density of fvb, size of anatomical structures or specifications about lignification are useless for the identification of a palm stem.

MATERIAL AND METHODS

Taxa examined—65 stems of Coryphoideae (based on the phylogeny of Baker et al., 2009) from 48 species representing 27 genera were sampled from wild plants, cultivated plants (Fairchild Tropical Botanic Garden, Montgomery Botanical Center), and specimens in herbaria (K, P, MRAC) and xylaria. All Coryphoideae tribes, as defined by Dransfield et al. (2005), were sampled (TABLE 1 and APPENDIX 1). Although identification of stems of the different tribes of the Coryphoideae is the main objective, we also distinguished this subfamily from the other four subfamilies of palms. To do this, seven genera of Calamoideae, one specimen of *Mypa*, four genera of Ceroxyloideae and 40 genera of Arecoideae were sampled in order enlarge the survey of the family and better define the descriptors. Unfortunately, stem material is rarely collected with herbarium specimens of palms. Whenever it was possible, xylarium samples were coupled with herbarium specimens to validate identification. Moreover, two or more specimens of each genus (and if possible of the same species) were collected to cope with possible misidentification and appreciate variation within a species and a genus.

Parts of the stem studied— Because of the within stem variability described above, a single sample is not representative of the whole stem of a palm as it is for a dicotyledonous tree. Sampling along the stem length was done when the sections were available and samples from the inner and the outer part of the central cylinder were used to describe the stem. Actually, as described above, the modification of the anatomical structure during the palm growth is taken into account for the stem description. For ideal sampling, the stem should be sampled after the establishment growth when the palm reaches its maximal diameter and displays "adult" anatomy. Only the fibrovascular bundles of the central cylinder are characterized (Tomlinson et al., 2011); those of the narrow cortex are not described here.

Anatomical preparations – For samples collected from a live stem, in which the ground parenchyma was compact and almost dry, we just air-dried the sample to prevent fungal growth. If the ground parenchyma was modified (i.e. huge cells, lacunae...) or "spongelike", we preserved and softened the material in a solution (2:1:1) 95% ethanol: glycerol: water. Various techniques were used for anatomical preparations. Classical petrographic thin sections were used for the very hard material. First, the specimens were embedded with an unsaturated epoxy resin - araldite 2020 (XW 396/XW 397) standard mixture (Huntsman, Basel, Switzerland). Then, before sectioning and polishing, three embedding methods were followed according to the timing of the preparation: (i) embedding with resin for at least one week at 40°C; (ii) embedding with resin for 1 hour at 80°C; (iii) some samples were not totally embedded with the resin but only the first millimetres below the polished transverse surface and placed under vacuum (Brot Technologies, Argenteuil, France) to eliminate the air bubbles in the base of the sample. Finally, the embedded specimens were stuck with the same resin on a frosted slide and polished to obtain the suitable thickness (about 15 to 30 µm) to allow microscopic observations. The glass covering was mounted using the same araldite resin as for embedding. Complete transverse sections of the stem were prepared for narrow stems; subsections covering the diagnostic parts of the stem (i.e. cortical, subcortical and central part) were prepared for wider stem. For the soft materials, transverse (TS) and longitudinal (LS) were obtained with a sliding microtome (Reichert, Austria) and sometimes stained with iodine-green or safranin/fast green coloration. For some samples, direct observations on surfaces polished with successive increasingly fine abrasives allowed microscopic observations with the use of a reflected light (episcopic) microscope (BXFM Olympus, Tokyo, Japan). Preliminary polishing was done using macrogrit sandpaper 80 (in the international standard ISO 6344, equivalent to 200 µm) and final polishing was done using microgrit 2400 (7 µm). Photography was done using a Nikon D 300 digital camera (Nikon, Tokyo, Japan) or a CCD camera DP12 (Olympus). The image was

adjusted for contrast and colour level in Adobe (San Jose, California, USA) Photoshop. Only background areas outside the object were cleared to improve the clarity of the image. Measurements were made using ImageJ software (version 1,44A) (Rasband, 1997–2008). Graph and measurement of fibrovascular bundles (Figs. 2, 4) are obtained from the mature part (i.e. basal) of a stem. All the descriptors presented here, come from original observations of the specimens listed in Table 1 and APPENDIX 1.

Xper² and the CAI-All the descriptions were compiled in the computer-aided identification (CAI) software Xper² (Vignes-Lebbe et al., 2010; Ung et al., 2010), an interactive identification tool available on Internet (http://www.infosyslab.fr/Palm-ID/). Xper² is a management tool (supporting SDD and NEXUS format standard) for the taxonomic description that allows editing standardized descriptions (the descriptors and their states, logical dependencies between descriptors and groups of descriptors). This software was used as a tool for the compilation of the descriptions to build a knowledge base on palm stem anatomy. This knowledge base can be used by palaebotanists and archaeobotanists as an interactive identification tool available on the Web, as it already exists for the wood with the InsideWood Database (InsideWood, 2004). In the Palm-ID knowledge base (Thomas, 2011a), taxa (subfamily, tribe and genera) of the palm family are described by 32 descriptors in 7 groups (e.g., cortex, central cylinder, fibrovascular bundles...) with a total of 107 states. The Palm-ID knowledge base differs from the present study (25 descriptors) due to the database structure. Indeed, it is possible to select the subfamily or the tribe before the identification process. Moreover, some descriptors are added to structuring the Palm-ID database in order to have hierarchy between parent and child descriptor. In the Palm-ID database, some descriptors are present because of their existence in the literature but are not described herein because we doubt their systematic value. Definitions are coupled with pictures in order to assist the identification process. Xper² deals with the polymorphism by using logical operators during the identification process. Thus, an unobservable descriptor or a doubtful state can be considered by the program and does not affect the identification. A mismatch-threshold indicates the taxa that could be eliminated if an improper observation or an uncertainty about anatomical structure was made. All the descriptions can be analysed in detail: check base function and comparison of the taxa. During the identification, the descriptors are sorted by three possible discriminant powers in order to determine descriptors that best discriminate the different taxa: the dissimilarities of Jaccard (1901), Sokal and Michener (1958) and Xper (Lebbe, 1991). In the case of discriminatory power based on the Jaccard dissimilarity index or based on Sokal and Michener index, the dissimilarity between two taxa for a descriptor is between 0 and 1 and depends on the number of states of the descriptor in common. The dissimilarity according to Xper is based on incompatibility between descriptions. Two taxa are incompatibles (or dissimilar or discriminated) if for one descriptor there is no common states: the dissimilarity between two taxa for a descriptor is either 0 or 1 depending on whether or not there are descriptor states in common. The identification method proposed by Xper² is done step by step. Each step consists of (i) the choice of a descriptor, (ii) the selection of one or several descriptor-states and (iii) the confirmation of the choice by clicking on the « Submit » button. At each step, (i) taxa are sorted out (discarded or retained), and the descriptor-states lists are updated depending on their presence or absence, and (ii) the list of possible descriptors is updated following the choices expressed (display of the child descriptors if an exception state has been chosen). At any time the remaining or discarded taxa may be re-examined by clicking on them.

RESULTS

Before presenting the descriptors (and their states) and the tribes, we describe the fibrous dorsal cap centrifugal differentiation, an anatomical attribute that was neglected and not used in previous comparative studies of palm stems.
The fibrous dorsal cap centrifugal differentiation—This anatomical feature is found in the palms with ground parenchyma sustained growth (Type B): a peculiar modification of the fibrous part above the phloem (defined below as *fibrous dorsal cap*) of the fvb occurs in the zone of transition and in the subcortical zone. We call this modification the *fibrous dorsal cap centrifugal differentiation* (Fig. 1 B, 3 E–H, see descriptor 20 and Figs. 39–41). As the fvb migrate from the central zone to the subcortical zone, new fiber-like cells are formed progressively at the fibrous cap periphery. Therefore, in transverse section, the area of fibrous part strongly decreases along the radial variation. In the subcortical part of the stem, the fibrous part of the fvb becomes larger with more cells, whereas in the central zone, there is no modification of this fibrous part. Sometimes, in the young region of a stem of Type B, fibers and parenchyma cells are flattened (like a deflated balloon) and in mature stems the fibers are turgid (Fig. 38).

In order to explain this fibrous cap modification, we describe three genera that have this modification: Gaussia, Iriartella and Veitchia. In Iriartella setigera (Mart.) H.Wendl., the transitional zone shows that: (i) the few *initial* fibers (the fibers bordering the phloem, those marked with "a" in Figs. 39–41) are fully developed and strongly lignified; and (ii) the marginal cells of the fibrous dorsal cap (those marked with "b" and "c") are clearly differentiated from the initial fibers, without lignification and with a TS appearance similar to parenchyma cells (Figs. 40–41, b and c). In the subcortical zone, most of the cells of the fibrous dorsal cap are lignified and present only a single or a bi-layered wall (Figs. 41, 57, b and c) with a TS appearance similar to *fibers*. However, the marginal cells are always elongate and aligned in a radial plane passing through the fvb center. For Gaussia sp. in successive transverse sections in a mature stem of 220 cm from the ground level (maximal diameter = 15.5 cm) to the meristematic zone, we find that: (i) 5 cm below the meristematic zone (diameter of the central cylinder = 3 cm), the small area of the fibrous part is constant throughout the central cylinder which have a homogeneous organization; (ii) 10 cm below the meristematic zone (diameter of the central cylinder = 7 cm), the fibrous dorsal cap of the subcortical fvb has new *fibers* (as for *lriartella* in Fig. 41). Thus, along the axial variation (from the apical zone toward the stem base) the area of fibers increases in the periphery of the central cylinder whereas the fibrous part of each fvb is not modified in the central zone (Figs. 1, 15, 39); and (iii) 25 cm below the meristematic zone (diameter = 8 cm) the stem has a definitive adult stem anatomy with enlarged parenchyma cells in the central zone (maximal length of the cell > 500 μ m). In Gaussia, this modification of the fibrous part occurs early in the development of the stem. The same modifications are found in Veitchia arecina Becc. (Fig. 3 E-H).

This character is unique to palms and is not easily observed and difficult to interpret. Just below the apex, a change in cell differentiation occurs in the marginal (peripheral) zone of the fibrous part depending on the radial position of the fvb. When fvb are formed in the apex, the cells produced in the marginal zone of the fibrous part are parenchymatous (Fig. 39). Then, in the same tissue but at a later time, at the transitional and subcortical zone, these cells born in this marginal zone (zones b and c in Figs. 40–41, 57) undergo further differentiation: more the fvb are near the cortex, more these marginal cells are lignified. The extreme case of this lignification produces elongated *fiber-like* cells, an intermediate state between sclereids and fibers (zone c in Fig. 41). This explains the *phytoliths distribution* (descriptor 19) found in palms with this anatomical feature: phytoliths are almost exclusively found on the periphery of the fibrous part of the fvb of the subcortical zone in contact with the cortex. As a result in stems with this centrifugal differentiation, at the marginal zone of the fibrous part of fvb, cell differentiation varies along the stem axis depending on its longitudinal and radial position. Therefore, these marginal fiber-like cells are not well developed in the subcortical and transitional zones and stegmata (the cells in which silica bodies are found) are almost always absent and phytoliths are not developed. A confirmation of this formation of new fibers at the periphery of the fibrous part is the presence, in the transitional zone, of phytoliths only between the fibers adjacent to the phloem (i.e. zone *a* near the phloem as in Figs. 39–41) and the sclerenchymatous cells, the future marginal *fiber-like* cells of the same fibrous part (Fig. 40, arrow). For the same reason, no *para-fibrovascular bundle parenchyma* (descriptors 16 and 17) is observed in the Mauritia-Type stems: *fiber-like* cells always replace this parenchyma.

On the different growth patterns—Three growth patterns are found in palm stems (Fig. 3) and are defined by a combination of two mechanisms: *ground parenchyma sustained growth* and *fibrous dorsal cap centrifugal differentiation*. Then, from the first mechanism, two patterns are defined: without (Fig. 3 I–L) and with (Fig. 3 A–H) ground parenchyma sustained growth. From the second mechanism, two sub-specific patterns can be drawn: without (Fig. 3 A–D) and with (Fig. 3 E–H) fibrous dorsal cap centrifugal differentiation. The combination of the absence of sustained growth and the absence of centrifugal differentiation (Fig. 3 I–L) was previously described as palm of Type A. The presence of sustained growth was previously described as palm of Type B. Within the Type B, we find palms with centrifugal differentiation and palms without.

For the stems of Type A, we conclude that as there is a high mitotic activity in the expanding young and very wide apex, the numerous parenchyma cells are responsible of the rapid stem diameter increase in the apical region. Below this apical zone, only a minor increase of the parenchyma cells is involved in the increase in stem diameter that is required for the stem height growth. For the stems with sustained growth (Type B), this mitotic

activity in the apex is less significant. When parenchyma cells lose their mitotic capacity, the stem diameter increase is only possible with increase in cell radial diameter.

The Xper² descriptors—All of the descriptors presented below are included in the CAI software Xper². The presentation follows the structure of the knowledge base: the descriptors are in **bold** and the different states of each descriptor (the descriptors-states) are listed in *{1. Bracket, 2. and italic}*. The definition of the descriptors and their states are based on original observations and sometimes modified and adapted from other authors. Descriptors are aggregated in Figs. 4-47 and tribes in Figs. 48-68 for easier comparisons.

1. General stem pattern (ex Von Mohl's classification): {1. Cocos-Type, 2. Corypha-Type, 3. Mauritia-Type, 4. Calamus-Type, 5. Geonoma-Type]. Refer to Fig. 1, 4–5, TABLE 2. Von Mohl (1823–1850) developed this classification based on morphological (stem diameter) and anatomical descriptions of some species, which explains the use of generic names for the types. These names are conserved because of their use in the fossil literature. For each type, von Mohl indicated the general pattern of the stem on a radial strip from a transverse section but did not clearly explain how one would choose a category. Thus, it is necessary to delimit these types by numerical intervals of ratios based on: (i) the density (d) of fvb (fvb/cm^2) ; (ii) the f/v ratio, here defined as the average ratio (of about 10 to 30 fvb) between the surface area of f, the fibrous part of a vascular bundle as seen in transverse section (fibrous dorsal cap, adjacent to the phloem and fibrous ventral cap, next to the xylem, Fig. 2) and the surface area of V, the vascular part including the paravascular parenchyma (phloem + xylem and paravascular parenchyma, Fig. 2); (iii) the fibrous covering index (R) defined as the ratio between a, the surface area of the fibrous part of all the fvb in an examined TS and A, the whole surface area of the examined TS (R =a/A). In order to define applicable numerical intervals, and because of the high sensitivity of these variables to stem polymorphism, it is necessary to use ratios. These ratios, less sensitive to polymorphism, come from the values of these three variables defined in a radial strip from a transverse section divided in two specific zones of the central cylinder. These zones are the subcortical zone (noted out in subscript) and the central zone (noted in) as shows the Fig. 1, and the ratios are: $d(fvb)_{out}/d(fvb)_{in}$, $\frac{f}{\gamma_{out}}/\frac{f}{\gamma_{in}}$ and R_{out}/R_{in} . Thus, specific patterns of these types can be defined (Fig. 1, 4-5, TABLE 2). 1. Cocos-Type (Figs. 3 I-L, 4 A-A', 5-8): fvb are uniformly distributed throughout the cross section with $d(fvb)_{out}/d(fvb)_{in} \subset [1;4(6)]$. They are similar in size and structure with $\frac{f}{v_{out}}/\frac{f}{v_{in}} \subset [1;3]$. Graphs A and A' on Fig. 4 show f/v ratio with minor modification along the radial axis. Thus the fibrous covering index is also more or less constant ($R_{out}/R_{in} \subset [1,3]$). The cortex is strongly developed (descriptor 3) and the ground parenchyma is compact (descriptor 21); 2. Corypha-Type (Figs. 3 A–D, 4 B–B', 9–

12): the density pattern follows the same as before but outer bundles are more or less contiguous due to a fibrous part more developed than those of inner fvb. Graphs B and B' on Fig. 4 show that f/V ratio of the subcortical zone is higher than f/v of the central zone. Therefore, the fibrous covering index is higher than before $(R_{out}/R_{in} \subset [4;10])$. Ground parenchyma becomes lacunose in old stem because of the ground parenchyma sustained growth; 3. Mauritia-Type (Figs. 3 E-H, 4 C-C', 13-16): the density ratio is not so different from the Corypha-Type. But, in the subcortical zone, fvb are densely crowded with a fibrous dorsal cap strongly developed, whereas the fvb of central zone have a very poor development of fibrous dorsal cap (there is a strong f/v decrease from the subcortical zone to the central zone of the central cylinder, as show the graphs C and C' on Fig. 4). Thus, the fibrous covering index (R) is very high $(R_{out}/R_{in} \subset [15;>100])$. Cortex is often not clearly developed and ground parenchyma undergoes a sustained growth (enlarged and elongated cells with large intercellular spaces, see descriptor 21); 4. Calamus-Type (Figs. 17-18): it is the classical structure of the rattans described by Weiner and Liese (1990, 1993), Bhat and Thulasidas (1993), Mathew and Bhat (1997) and Tomlinson et al. (2011). Rattans have a relatively uniform density of their fvb and have among the widest vessels in palms, sometimes more than 700 µm in diameter (Zaidon et al., 1996). The well-developed fibrous dorsal cap of most palms is not pronounced; 5. *Geonoma-Type* (Figs. 19–21): includes only thin and erect stems with a general pattern of fvb following those of the Corypha-Type. Von Mohl based his definition of this type more on stem size than on anatomy: in his definition, he called this type Cane-like. The difference with the Corypha-Type is a compact ground parenchyma without lacunae. It is possible to establish links between this descriptor and the different growth mode as shows the Fig. 3.

2. Shape of fibrous part in TS: *(1. Sagittata, 2. Cordata, Complanata, Reniforma, 3. Lunaria, 4. Vaginata).* Fig. 2. Stenzel (1904) based this definition upon the shapes of the median sinus, the auricular lobe and the auricular sinus. This descriptor is observed in TS of the fvb of subcortical zone of the central cylinder. As the sinus and the lobes of the fvb in the same TS do not have a constant shape, a continuum may exist from Sagittata to Reniforma in the same specimen. Our state 2 combines three states originally distinguished by Stenzel because we often observed a continuum of these three. States 1 and 2 are generally associated with an excluded vascular part from the auricular lobe whereas the state 3 is associated with an included vascular part within the acute auricular lobes (Fig. 2 and descriptor 11). The boundary between Lunaria and Vaginata is sometimes continuous.

3. Cortex: *{1. Developed, 2. Very thin}.* Fig. 1, 6, 13, 22–23. The cortex is either developed (about 0.5 to 2 cm or more wide) (Figs. 6, 22) or not (less than 500 μm) (Figs. 13, 23). The cortical vascular bundles are always few

and small (Tomlinson, 1961), but in this zone the difference between the vascular bundle and the leaf trace is not obvious and a kind of outer vascular system (vs. the inner vascular system of the central cylinder) (Zimmermann and Tomlinson, 1972) can exist in some Coryphoideae, which have a developed cortex. A wide (developed) cortex is often found in palms with no internode elongation.

4. Superficial protective layer (sub-epidermal zone): *{1. Permanent epidermis, 2. Developed etagen meristem (alignment of more than 10 cells), 3. Suberization and sclerosis of the existing ground parenchyma}*. Figs. 24–25. This is a descriptor of the organisation of the protective layer (sort of bark) of the stem seen in TS. Philipp (1923) described an etagen meristem of the cortical ground parenchyma. He observed a zone of cell divisions without permanent initials (Fig. 25). This state is particularly well-developed in Arecoideae species. Some palms can conserve the initial epidermis (permanent epidermis, Fig. 24) with stomata and in rare cases with epidermal hair. For other palms, the epidermis is no longer present and a zone of more or less suberized parenchyma replaces it (Fig. 6).

5. Multicellular epidermal hairs: *{1. Present, 2. Absent}*. Some stems may develop a hairy epidermis (see Caryoteae, Fig. 54).

6. Epidermal cells: *{1. Erect (radially elongated), 2. Cone shaped, 3. Elongated (tangentially elongated), 4. Spheroid to cubical).* Fig. 24 shows the erect state and Fig. 54 (in Caryoteae) shows the cone shaped. Epidermal cells are observed in TS.

7. Tangential elongation and anticlinal divisions of the subcortical parenchyma cells: {1. Present, 2. Absent]. Figs. 26–28. During the late growth of the stem, i.e. the older region (basal) of one stem, some of palms have an anticlinal divisions of the subcortical ground parenchyma cells to allow the stem diameter increase. Elongation is defined by *tangential length cell / radial width cell > 4* (Fig. 28) and division by a tangential alignment of more than 5 cells (Fig. 26–27). Thus, the consequence of this is that the fvb are arranged in diagonal and / or radial pattern as seen in TS (Fig. 26).

8. Radial elongation of the fibrous dorsal cap (in the subcortical zone): {1. Present (strongly developed), 2. Absent}. Figs. 29, 55. Radial elongation is present if the following ratio is found: $(H_{max} - H_{vasc}) / L_{max} > 3$, see Fig. 2.

9. Fibrous bundles in central cylinder: *{1. Present, 2. Absent}.* Figs. 8, 21, 47, 50, 68. Already mentioned by Tomlinson (1961). Fibrous bundles are circular in TS, their diameter varies from 20–30 μ m (with 5 to 10 cells) to > 200 μ m with more than 250 cells (only in *Phytelephas* Ruiz & Pav.). These fibrous bundles are sometimes more developed in the basal part of the stem than in the apical part.

10. Auricular sinus: *{1. Angular, 2. Rounded, 3. Absent, 4. Absent only in the central part}.* This descriptor is a modification of Stenzel's (1904) and shown in Fig. 2. Auricular sinus is the recess formed between the auricular lobe of the fibrous dorsal cap and the vascular zone. Originally the state 4 was not described by Stenzel (1904), but it appears that auricular sinus is sometimes not observed in central zones, particularly in those of the Corypha-Type and Mauritia-Type (Figs. 57–58). Fig. 30 shows the *angular* state, Fig. 31 shows the *rounded* state and Figs. 32, 61 show fvb without auricular sinus.

11. Vascular zone position: {1. Included in the fibrous dorsal cap, 2. Excluded from the fibrous dorsal cap,

3. Excluded only in the central part]. This feature is modified from Stenzel (1904). Figs. 29, 31, 48, 52, 60, 65, 67 show the *excluded* state and Fig. 32 shows the *included* state (see also Phoeniceae and Cryosophileae, Figs. 61–64): vascular zone is included between the two auricular lobes. The state 3 was not originally described, indeed in the subcortical zone, some fvb present a vascular zone included between the auricular lobes whereas in the central zone, this vascular zone is excluded as observed in some Trachycarpeae.

12. Fibrous ventral cap: *{1. Present, 2. Absent}*. Fig. 2. This anatomical feature is also described by Stenzel (1904) and Tomlinson (1961) and sometimes found only in the central zone of the central cylinder. Fibrous ventral cap may consist of lignified parenchyma cells (mostly in Reniforma fvb, Fig. 67) or fibrous cells (mostly in Vaginata fvb, Figs. 21, 61–64). Figs. 49–50, 58–60 show fvb without ventral cap.

13. Vascular bridges: *{1. Present (well developed), 2. Absent (poorly developed)}.* Vascular bridges
(Zimmermann and Tomlinson, 1965, 1974) connect the fvb together or a fvb to a leaf trace. It was observed that vascular bridges are more developed in some species than in other. *Present* state is illustrated on Fig. 50.
14. Number of wide metaxylem element per fibrovascular bundle: *{1. Mostly 1, 2. Mostly 2 (3-4), 3. Mostly 3-4, 4. More than 4, 5. 1 in the subcortical zone and the zone of transition and 2 in the central zone, 6. Only long angular imperforate scalariform tracheids}.* Described by Tomlinson (1961, 1965). Sometimes, few differences were observed by Tomlinson (1961). This observation can result from the section level: in the upper part of the stem (in the crownshaft) the unspecialized fvb are often made of 2 vessels, while the basal bundles can be formed by only one vessel. Only *Phytelephas* has the state 6. This descriptor should be observed on the fvb of the subcortical and central zones in TS.

15. Number of phloem strands: *{1. One strand, 2. One strand in the subcortical and transitional zones and two in the central zone of the central cylinder, 3. Two strands}*. Descriptor modified from Tomlinson (1961) where only the states 1 and 3 were mentioned. In some stems, the phloem of the subcortical zone is in one area and that

16. Radiating parenchyma of fvb: *{1. Present, 2. Absent}*. From Stenzel (1904) shown in Fig. 2. Radiating parenchyma is only observed around the fvb of the central cylinder (Fig. 67). It may be well developed all around the fvb or present only around the vascular part. This radiating parenchyma is best observed in TS of the central zone. It should not be confused with the appendicular parenchyma connecting the fvb (descriptor 21, Fig. 16).

17. Tabular parenchyma of fvb: *{1. Present, 2. Absent}*. From Stenzel (1904) shown in Fig. 2. Tabular parenchyma may be well developed all around the fvb or present only around the dorsal fibrous part, but is sometimes difficult to observe (Figs. 63–64, 66).

18. Phytoliths: {1. Globular echinate to granulate, 2. Trapeziform to rondel (ex hat shaped), 3. Combined). Figs. 35–37. Nomenclature follows that of Madella et al. (2005). Silica bodies are observed in stegmata exclusively on fibers at the periphery of the fvb or of the fibrous bundles (Tomlinson, 1961 and Prychid et al., 2004). Globular echinate (Fig. 35) are the most frequent phytoliths found in palms, whereas the trapeziform to rondel (Fig. 37) are restricted to few taxonomic groups in Arecoideae. The combined type (Fig. 36) is a new phytolith type with some echinules founded on trapeziform to conical phytoliths only in Caryoteae. More studies on phytoliths are required to determine if the combined is not a derived form of the trapeziform in old stems. 19. Phytoliths distribution in central cylinder: *{1. All around the fibrous dorsal cap throughout the central* cylinder, 2. Largely restricted to the fvb of the subcortical zone in contact with the cortex]. All Coryphoideae, except Caryoteae, and all Cocos-Type and Corypha-Type stems have a lot of phytoliths all around their fvb throughout the central cylinder (Fig. 3 J, 48, 64). Mauritia-Type stems (most of Arecoideae, erect Calamoideae and Ceroxyloideae) have few phytoliths. They are sometimes observed on the fvb of the central zone (Fig. 39) but almost none are observed on the fvb of the zone of transition of the central cylinder (Figs. 40–41). Most of these silica bodies are restricted to the cortex and to the fvb of the subcortical zone in contact with the cortex. 20. Fibrous dorsal cap centrifugal differentiation: {1. Present, 2. Absent]. Fig. 3 E-H, 13-15, 39-41. See the description of this anatomical feature at the beginning of the results section.

21. Ground parenchyma of the central cylinder: {1. Spheroid to slightly elongated (length / width < 3–4) cells (diameter < 150 μ m) and compact [sometimes few and little lacunae in old stems], 2. Cells slightly elongated (length / width < 3–4), lobed with a random (rhombohedral) shape (maximal length < 200 μ m) and irregular network (lacunae < 200 μ m), 3. Rod-like cells (length > 200 μ m; length / width > (3)–5) and more or less

regular and large network (lacunae > 250 μ m), 4. Trabecular (= stellate) with a regular network (spheroid lacunae > 250 μ m), 5. Huge (enlarged) cells (diameter > 150 μ m) [sometimes few and irregular lacunae], 6. Appendicular parenchyma connecting fvb]. Measurements are given for a developed parenchyma in the central zone. Figs. 42, (1); 43, 49, (2); 44–45, 65, (3); 46, (4); 15, 47, (5) and 16 (6). There is a limit on the use of this descriptor: it should be observed in the central zone of the central cylinder in order to have a well-developed parenchyma. It should be noted that: (i) ground parenchyma cells could be elongated (regularly parallelepipedic) in the subcortical zone for all states, (ii) near the stem base, ground parenchyma becomes a sclerenchyma with very thick wall, (iii) young parenchyma just below the apex is always made of spheroid cells. The states 3 and 4 could have the same pattern but the arrows (Figs. 45–46) show the main difference: a single cell makes several branches in state 4 whereas the branches are made of several cells in state 3. In Mauritia-Type stems, a specific ground parenchyma may occur (sate 6). Therefore, a general network of parenchyma appears to connect fvb's of the central zone together (Fig. 16).

22–23. Metaxylem: the two following descriptors refer to the metaxylem and come from Klotz (1977, 1978a and 1978b). For him, the end walls of the wide metaxylem elements range from scalariform configurations, with many closely spaced bars on very oblique end walls (end wall > 5 to \leq 10 times as long as cell width), the more ancestral form according Cheadle (1943), to simple perforation plates on transverse end walls, the more derived form. Klotz (1978a) says: "*Many of the major groups of palms differ among themselves in the form of their perforation plates, but the differences are more often average than absolute because of the variability of this character within the groups*". The characters found in the original description of Klotz (1978a) are reconsidered under the current classification. Some tribes have characteristic values, and these descriptors are observed in LS or from tissue maceration.

22. End wall slope: {1. Extremely oblique (End Wall > 10 times as long as Cell Width [10CW < EW]),
2. Very oblique (5CW < EW ≤ 10CW), 3. Oblique (2CW < EW ≤ 5CW), 4. Slightly oblique (CW < EW ≤ 2CW), 5. Transverse}. Cheadle (1943), Tomlinson (1965) and Klotz (1978a).
23. Specialisation value (Types of perforation plates of the wide metaxylem elements with the value in

[] for the TABLE 3): {1. [0] Tracheids only—definite vessels not observed, 2. [1] Multiple perforation plates with "pith like" perforations (Perfo) that span ≤ 1 vessel–parenchyma pit (V–P pit) on the adjacent lateral wall (Perfo ≤ 1 V–P pit), 3. [2] 1 V–P pit < Perfo "narrow" ≤ 2 V–P pits, 4. [3] 2 V–P pits < Perfo "medium size" ≤ 5 V–P pits, 5. [4] 5 V–P pits < Perfo "wide", or perforation with ≤ 3

bars, 6. [5] Mixture of multiples perforation plates (as in 4) and simple perforation plates, 7. [6] Simple perforation plate only}. Tomlinson (1965), Cheadle and Kosakai (1975) and Klotz (1978a).

24. Metaphloem sieve plate: *{1. Compound, 2. Simple or transitional}.* This is the classification of Parthasarathy and Tomlinson (1967) and Parthasarathy (1968).

25. Paravascular parenchyma: *{1. Developed, 2. Poorly developed or one layer of circumvascular cells}.* Figs.
58, 67 show the *developed* state and Figs. 62–64 shows the state 2. The paravascular parenchyma is the parenchyma surrounding the metaxylem elements seen in TS.

Anatomy of the Coryphoideae- Our observations of the stems of tribes in this subfamily are presented here with a focus on stem discriminating descriptors. They are based mainly on transverse sections. The anatomical study of Thomas (2011a,b) shows complete descriptions of these tribes with detailed studies for all the sampled genera. The following description is applicable to all genera of Coryphoideae unless otherwise stated. A summary of these results (TABLE 3) includes some modifications, but the subfamily has features that differentiate it from the other subfamilies. The general organisation of the stem is Cocos-Type (Hyphaeninae (*Hyphaene*), Chuniophoeniceae, Cryosophileae and Phoeniceae) or Corypha-Type (Hyphaeninae (*Bismarckia*), Lataniinae, Corypheae, Sabaleae and Trachycapreae) except in Caryoteae (Mauritia-Type). For comparison, the erect Calamoideae, the Ceroxyloideae and most of the Arecoideae are Mauritia-Type. Within the latter subfamily, Cocos-Type is found in some of the Cocoseae (*Cocos* L. and *Elaeis* Jacq.) and Geonoma-Type is found in the Podococceae, Manicarieae, Leopoldinieae and the Geonomateae. The shape of the fibrous dorsal cap is Reniforma to Vaginata without elongation of the fibrous dorsal cap. The cortex in mature stems presents a zone of more or less suberized parenchyma, which replaces the permanent epidermis. Comparatived to other subfamilies, the cortex is mostly wide and in mature stems divided in two parts (Fig. 22). The outer one has thick walled suberized cells without specific organization and varying in width and with fibrous bundles; the inner one has an unspecialized ground parenchyma in which fibrous bundles, fvb and leaf traces are scattered. These cells always have very thin walls and thus are often collapsed before or during the preparation and are difficult to observe and describe. The subcortical zone of the central cylinder is abruptly delimited from the cortex by a zone of more or less high-density (but never congested) narrow fvb, which rapidly become wider toward the stem center (Fig. 1 A). There are 1 (Carvoteae, Lataniinae, Corypheae) or 2 (Hyphaeninae, Chuniophoeniceae, Phoeniceae, Sabaleae, Trachycarpeae) to more than 4 (Chamaerops L., Trachycarpus H.Wendl., Coccothrinax Sarg.) wide metaxylem elements per fvb. Ground parenchyma is more or less compact with spheroid cells or made of a network of rhombohedral to lobed cells or of rod-like cells. Wide expansion of the ground

parenchyma and large lacunae are only encountered in Caryoteae and in Trachycarpeae. Fibrous bundles are sometimes scattered in the ground parenchyma and phytoliths are globular echinate to granulate throughout the central cylinder. TABLE 3 and Figs. 48–68 give an overview of the results. The presumed ancestral xylem in palms with scalariform vessels, and many closely spaced bars on very oblique end walls (Cheadle, 1943) is not found in the Coryphoideae. We find only oblique, slightly oblique to transverse vessel end walls in Coryphoideae and Nypoideae whereas we find very oblique to oblique end walls in Arecoideae and Ceroxyloideae (except in Cocoseae and *Pseudophoenix* where the end walls are more slightly oblique). When possible, a general abbreviated diagnosis and the *taxa with close anatomical feature* are given at the end of each tribe description below. The few stem descriptions found in Tomlinson et al. (2011) have been taken into consideration for our descriptions in order to emphasize the stem variability. But as their publication does not concern the identification with anatomical descriptors, the comparison is not always easy.

Borasseae—Figs. 43, 48–53. This tribe contains two subtribes: Hyphaeninae (Figs. 52–53) and Lataniinae (Figs. 48-51). The general organisation of the stem is Cocos-Type for the Hyphaeninae with some tendencies to Corypha-Type for the Lataniinae. The cortex is wide (1 cm and more). The two subtribes are distinct from the following descriptors. Two metaxylem elements are found in the fvb of Hyphaeninae and one in those of Lataniinae. Hyphaeninae have a ground parenchyma made of spheroid and compact cells (sometimes few lacunae in old stems) and Lataniinae have an irregular network of rhombohedral to lobed cells with small lacunae (< 200 μ m) (Figs. 49). Scattered fibrous bundles (< 50/cm²) are sometimes found in the central cylinder of Lataniinae (Fig. 50). Thereby the two subtribes that are recognized by morphological (Uhl and Dransfield, 1987) and molecular data (Baker et al., 2009) are also found with anatomical descriptors. Fibrous dorsal cap is Reniforma in Hyphaeninae (Fig. 52) and could appear Lunaria in Lataniinae (Fig. 51). General abbreviated diagnosis: [Cocos-Type / Corypha-Type, Reniforma / Lunaria, 1–2 xylem elements, ground parenchyma spheroid compact or lobed cell with lacunae]. Taxa with close anatomical feature: Hyphaeninae could be confused with Sabaleae and some Trachycarpeae that have two metaxylem elements per fvb and no fibrous bundles. This confusion is possible only when the ground parenchyma of Sabaleae and Trachycarpeae is not developed (spheroid aspect, compact without sustained growth of parenchyma cells). Lataniinae have a distinctive anatomy from the other palms (possible misidentification between Borassus and Corypha but fibrous bundles are found in *Corypha*).

Caryoteae—Figs. 36, 54–58. This tribe stands out in the subfamily and has a resemblance to Arecoideae. The von Mohl's classification is Mauritia-Type with some tendencies to Corypha-Type. Indeed f/v_{in}

and R_{in} reach the same values than the Mauritia-Type (very low), but the d(fvb), f/v and R decreases are more steady than those of the Mauritia-Type (the zone of transition is more developed). Caryoteae species do not have a developed cortex (Fig. 55) and present characteristic multicellular epidermal hairs (Fig. 54) on a permanent epidermis. Fibrovascular bundles have one metaxylem element per fvb, or one per fvb in the subcortical and transitional zones and two per fvb in the central zone. Ground parenchyma is made of huge cells with few lacunae in the central cylinder. It is the only tribe of the Coryphoideae that possesses a fibrous dorsal cap centrifugal differentiation (Figs. 57), an anatomical character shared with the Arecoideae. Phytoliths of very large size (up to $30 \times 20 \ \mu\text{m}$) are combined to trapeziform (Fig. 36) and not found in the transitional zone and very infrequent in the central zone of the central cylinder. Fibrous bundles are not observed in *Caryota* and present but not well developed (density $< 40 \text{ cm}^2$) in Arenga and in the species that were in the genus Wallichia, now considered by molecular studies as a synonym of Arenga (Jeanson, 2011). Thereby, this anatomical character confirms the molecular phylogenetic study. General abbreviated diagnosis: [Mauritia-Type, Reniforma, 1(2) xylem elements, ground parenchyma elongated to huge cells, thin cortex, multicellular epidermal hair, combined phytoliths]. Taxa with close anatomical feature: this tribe could not be confused with other taxa, indeed, the Arecoideae that have trapeziform phytoliths in their stems, i.e. Bactridinae and Iriarteae (except *Socratea*) are clearly Mauritia-Type and have a lot of small (up to $20 \times 15 \,\mu$ m) trapeziform (Fig. 37) and very few combined phytoliths.

Chuniophoeniceae—Figs. 4 J, 32. Two of the four genera were analyzed. For the two other genera of this tribe, the stem is very difficult to obtain (*Kerriodoxa* because of the very short stem and *Tahina* because of rariry) and could provide important information. Indeed *Nannorrhops* and *Chuniophoenix* are very different and it is why there is no evident homogeneity here. These two taxa are clearly distinguishable. These observed genera possess a low density (< 30 cm²) of fibrous bundles and have two metaxylem elements per fvb. *Nannorrhops* is Cocos-Type (constant $d(fvb)_{out}/d(fvb)_{in} \in [1;2]$, $\frac{f}{v_{out}}/\frac{f}{v_{in}} \in [1;2]$, $R_{out}/R_{in} \in [1;3]$) with Vaginata to Lunaria fibrous dorsal cap. Central cylinder contains congested fvb separated by few spheroid parenchyma cells. This ground parenchyma may become collapsed in the central zone. *Chuniophoenix* has a very small cortex (< 500 µm) and the general organisation of the stem is Geonoma-Type ($d(fvb)_{out}/d(fvb)_{in} \subset [2;4]$, $\frac{f}{v_{out}}/\frac{f}{v_{vout}} \subset [7;12]$, $R_{out}/R_{in} \subset [4;7]$). In the central zone, fibrovascular bundles have a fibrous ventral cap slightly developed and a Reniforma fibrous dorsal cap throughout the central cylinder. Ground parenchyma is compact with few lacunae in the central zone of the central cylinder. *Taxa with close anatomical feature*:

Nannorrhops shares some descriptor-state with Phoeniceae (see below). *Chuniophoenix* is anatomically close to *Rhapis* (Figs. 19–21) but, in the central zone, *Rhapis* has a fibrous ventral cap well developed and a phloem in two strands. Moreover, the cortex of *Rhapis* contains fibrous bundles and fvb whereas that of *Chuniophoenix* contains only fibrous bundles.

Corypheae—Figs. 59–60. The general organisation of the stem is Corypha-Type. Fibrous dorsal cap are Sagittata to Reniforma with an excluded vascular zone (descriptor 11) containing 1 metaxylem element as described by Ambwani and Mehrotra (1985) whereas Tomlinson et al. (2011) describe 2 elements. Ground parenchyma is made of an irregular network of rhombohedral to lobed cells (lacunae < 200 µm) with fibrous bundles. General abbreviated diagnosis: [Corypha-Type, Reniforma / Sagittata, 1 xylem element, parenchyma network of rhombohedral to lobed cells, fibrous bundles]. *Taxa with close anatomical feature*: see Lataniinae.

Phoeniceae—Figs. 42, 61. d(fvb), f/v and R are highly constant (as the Cryosophileae). Fibrovascular bundles are more or less circular in TS with a fibrous dorsal cap Vaginata to Lunaria. There are two metaxylem elements per fvb and the paravascular parenchyma is poorly developed. Tabular parenchyma is present as one or two layers. General abbreviated diagnosis: [Cocos-Type, Lunaria, 2 metaxylem elements, ground parenchyma spheroid to few elongate and compact]. *Taxa with close anatomical feature*: some similarities are encountered between *Phoenix, Nannorrhops* and some Cryosophileae. Fibrous bundles are scattered in Cryosophileae and *Nannorrhops* and never observed in *Phoenix*. In the observed samples, it clearly appears that the size of the fvb of *Phoenix* is wider than those of the two others (75% of the Phoeniceae fvb have a $H_{max} >$ 750 µm and a *f* area > 0,3 mm² whereas 75% to 100% of the others have a $H_{max} <$ 750 µm and a *f* area < 0,25 mm²). The cortex of *Nannorrhops* and Phoeniceae (> 1 cm) is wider than those of Cryosophileae (< 7 mm).

Cryosophileae—Figs. 4 I, 35, 62–64. All the observed specimens showed the same pattern. Cryosophileae have the more constant *d(fvb)*, *f/v* and *R* found among the palms (Cocos-Type). The fibrous dorsal cap of the circular fvb is Vaginata. *Coccothrinax* (Fig. 63) possesses more than four metaxylem elements per fvb and *Chelyocarpus* (Fig. 62) only one, the other genera have two metaxylem elements per fvb (Figs. 4 I, 64). Paravascular parenchyma is poorly developed (only one layer of circumvascular cells, Fig. 62) and tabular parenchyma is well developed (Fig. 64). Ground parenchyma is compact with spheroid to elongated cells (few lacunae in the central zone of basal stems, Fig. 3 I). Vascular bridges are highly developed and fibrous bundles are sometimes present. General abbreviated diagnosis: [Cocos-Type, circular fvb Vaginata, 1 to several xylem elements, ground parenchyma spheroid to few elongate and compact]. *Taxa with close anatomical feature*: when there are 2 metaxylem elements per fvb, confusion is possible with *Nannorrhops* and Phoeniceae (see these sections).

Sabaleae—Fig. 65. This tribe presents the widest cortex found in the palm family (> 3 cm for a developed stem of *Sabal palmetto* (Walter) Lodd. ex Schult. & Schult.f.). General organisation of the stem is Corypha-Type with some tendencies toward Cocos-Type (*Sabal yapa* C.Wright ex Becc.). Fibrovascular bundles have two metaxylem elements per fvb and a Reniforma fibrous dorsal cap. Ground parenchyma is made of a network of rod-like cells (lacunae > 250 µm) in developed stems, otherwise of rhombohedral to lobed cells. In the central zone of the central cylinder, some fvb could have a slightly developed ventral cap and thus appear Lunaria but the fvb are mainly Reniforma (rounded auricular lobes). Tomlinson et al. (2011) describe fibrous bundles in the ground parenchyma. General abbreviated diagnosis: [Corypha-Type, Reniforma, 2 xylem elements, parenchyma network with rod-like cells]. *Taxa with close anatomical feature*: close to Trachycarpeae, but the phloem is not partitioned by sclerotic cells in Sabaleae.

Trachycarpeae-Figs. 4 A-D, 9-12, 19-22, 30, 38, 45, 66-68. This is a diverse tribe and its homogeneity is not obvious. Two subtribes are clearly delimited: Livistoninae and Rhapidinae. Some of genera have no clearly defined relationships (unplaced genera). The general organisation of the stem is Corypha-Type except for Chamaerops (Cocos-Type) and Rhapis (Geonoma-Type, Figs. 19-21). Trachycarpeae have sometimes a fibrous ventral cap in the central zone, one phloem strand in the subcortical zone and a sclerotic partition of the phloem in the central zone (Fig. 67). These two states (ventral cap associated with two phloem strands) are not observed in the other tribes. Auricular sinus is sometimes absent from the fvb of the central zone. Livistoninae have a ground parenchyma made of an irregular network of rhombohedral to lobed cells or of spheroid cells (lacunae $< 200 \,\mu\text{m}$). Sometimes, fibrous bundles are present with a density reaching 50–200/cm² (Fig. 68). Fibrovascular bundles have a well-developed radiating parenchyma (as for Rhapidinae with Trachycarpus H.Wendl., Fig. 67) in the central zone with two metaxylem elements (as for the Trachycarpeae unplaced genera). Stems of Rhapidinae are often very short and some genera are more or less stemless or acaulescent, thus they have very different habits and a general diagnosis is impossible to establish. However, fvb of Rhapidinae observed herein tend to have mostly 2 to 3-4 metaxylem elements and a spheroid and compact ground parenchyma. Chamaerops is highly distinctive (Fig. 66): the circular fvb have Lunaria to Reniforma fibrous dorsal cap, four metaxylem elements and a permanent epidermis with tangentially elongated cells. The other Trachycarpeae are Corypha-Type. The fvb with two metaxylem elements have a Reniforma fibrous dorsal cap. Ground parenchyma is made of rod-like cells with regular network (lacunae > 250μ m) in the central zone

of the central cylinder. We observed that rod-like cells are found in both Trachycarpeae and Arecoideae (Fig. 3 D, H). However, these cells are more developed in Arecoideae than in Trachycarpeae because of greater sustained growth in Arecoideae. General abbreviated diagnosis: [Corypha-Type, Reniforma, 2 to 4 xylem elements, parenchyma network with rod-like cells, fibrous bundles]. *Taxa with close anatomical feature*: see Borasseae and Sabaleae.

DISCUSSION

Anatomy and phylogeny in the palm family—Some of the stem characteristics are of good general systematic value because they define specific genera or groups. We find trends in some states within both the family and subfamilies. Fibrous dorsal cap centrifugal differentiation is only found in Arecoideae, Ceroxyloideae, in erect Calamoideae and exceptionally in one tribe of Coryphoideae (Caryoteae). This pattern of fiber cap development is associated with a specific phytoliths distribution. On this specific pattern, supplementary studies should be undertaken to clarify its phylogenetic value. Ground parenchyma sustained growth (Type B) is found in the taxa cited above and also in Trachycarpeae, Sabaleae, Corypheae and in Lataniinae (Borasseae). Type A is common in Coryphoideae and found in few Arecoideae (e.g. Cocoseae with Cocos and Elaeis, in Podococceae, Manicarieae, Leopoldinieae and Geonomateae). The number of wide metaxylem elements has interesting systematic value if it is determined with care in proper sampling, i.e. if not observed near to the apex. Among palms, only a few taxonomic groups have always two or more vessels per fvb throughout the mature stem. These groups are the following monophyletic groups: (i) (Phoeniceae, Trachycarpeae, Sabaleae, Cryosophileae), (ii) Hyphaeninae (Borasseae) and (iii) Chuniophoeniceae. One vessel per fvb is found in the other groups: Caryoteae, Corypheae, Lataniinae (Borasseae), Calamoideae, Ceroxyloideae and Arecoideae. Sometimes two vessels per fvb are present in some genera of Arecoideae and Ceroxyloideae but only in the central zone of the central cylinder; fvb of the subcortical zone contain only one vessel. This study attests that Caryoteae shares many anatomical descriptor-states in common with Arecoideae. Indeed, fibrous dorsal cap centrifugal differentiation and ground parenchyma with huge cells are found in both clades. Furthermore, all Coryphoideae have globular echinate (to granulate) phytoliths, except Caryoteae which have an intermediate state between spheroid and trapeziform phytoliths found in Arecoideae.

Among the anatomical characters previously described, the number of vessel element is the most interesting and may reflect an evolutionary consequence of climatic adaptation. Indeed, Calamoideae, Ceroxyloideae and Arecoideae subfamilies are roughly exclusively restricted to the tropical rain forest (TRF)

biome (Kahn and de Granville, 1992 and Couvreur et al., 2011). Almost all have only one vessel element (or one in the subcortical zone and two in the central zone) and with a vessel diameter often larger than the fvb of the Coryphoideae (personal observation). Most of the non-TRF palms are restricted to Coryphoideae subfamily (Morley, 2000; Couvreur et al., 2011). Indeed, 40% of the Coryphoideae genera are found in non-TRF and 70 % of the non-TRF palms genera are in this subfamily. Moreover, Couvreur et al. (2011) provide that "ancestral biome and area reconstructions for the whole family strongly support the hypothesis that palms diversified in a tropical rain forest-like environment". Then, more or less arid climatic conditions may have selected fvb with more than one vessel elements (two or more) and with small diameter, while tropical climatic conditions without water deficit would have preserve fvb with one large vessel element as observed for dicots wood (Baas et al., 1983; Lindorf, 1994, Carlquist, 2001 and Wheeler et al., 2007). However, we need statistical studies to support this hypothesis. With this assumption, we propose that the ancestral fvb has one large vessel and fvb with two or more vessels is a synapomorphy of Coryphoideae. There are some exceptions to this with: (i) possible homoplasy in Ceroxyloideae where several metaxylem elements are found in *Phytelephas*, and (ii) ancestral fvb are found in Caryoteae, the only exclusive-tropical tribe of Coryphoideae.

Any correlation between these descriptors should be determined to better understand the value of the descriptors for systematics and phylogeny. Some descriptors seem to be correlated with growth pattern (e.g. ground parenchyma, dorsal cap centrifugal differentiation). Waterhouse and Quinn (1978) documented that the same mean girth and height are attained irrespective of environmental conditions, but we lack complementary studies to determine the robustness of these descriptors and the influence of climate and environmental condition on their distribution. Our newly described centrifugal fibrous cap differentiation should be the field of more anatomical studies in order to improve our understanding of the mechanism of this cell differentiation. Indeed, the formation of the fibrous cap has important implication in palm stem stiffness (Rüggeberg et al., 2008, 2009). Thus, it seems that there are two different strategies that make possible the stem stiffness required for the stem height growth: (i) stem without centrifugal differentiation (Type A and some of Type B) with stiffness throughout the central cylinder; and (ii) stem with centrifugal differentiation with stiffness confined to the subcortical zone. Presently it is impossible to determine which one of the three different growth patterns (Fig. 3) is the most derived pattern and which one is the ancestral pattern. We can just assert that the ground parenchyma sustained growth associated with the fibrous dorsal cap centrifugal differentiation is the most widespread pattern among the erect palms.

Palm stem identification and robustness of the descriptors— The genus level is not yet conceivable due to the anatomical similarity between two genera phylogenetically closely related. The fundamental limitation or constraint for our study lies in the inherent structural variability of the palm stem along the length of its axis. Therefore, we do not emphasize the use of quantitative measurements to identify a stem. Our anatomical study does not allow identification of stems in juvenile phase or in the apical part of stems. Indeed, in both cases, the anatomy includes some non-informative anatomical structures which could be misinterpreted. For example, spheroid ground parenchyma cells are informative only if the stem is fully matured (i.e. the analyzed TS does not come from the apical region). Fibers (or sclerification of ground parenchyma) can give an indication of the stem section analyzed. Indeed, fibers of the young tissues near the apex are very thin-walled and those of the middle and basal part are multi-layered. Moreover, pertinent palm stem identification is almost only possible with a transverse section from the central zone to the cortex. Nevertheless, we have found that there are combinations of anatomical descriptor-states specific to most of the Coryphoideae tribes and of the palm subfamilies (TABLE 3).

Because of the variability of the stem, the descriptors that are most useful and robust are: Von Mohl's classification; Shape of fibrous part in TS; Cortex; Number of wide metaxylem element per fvb; Phytoliths; Phytoliths distribution; Fibrous dorsal cap centrifugal differentiation and Ground parenchyma of the central cylinder. Therefore, they must be used first and have priority over others in case of conflict because of the palm stem polymorphism.

Fossils palm stem—These results have important perspectives in fossil stem identification. Structures in the basal and middle stem regions fossilize well because they are sclerified and highly lignified. Thus, fossil stem bases with attached roots are often found in the fossil record. In contrast, the wet and spongy apex is attacked relatively quickly by rot microorganisms. As it is these basal parts that have the most of informative descriptors, fossils stems are potentially interesting in terms of systematics. Firstly, fossil stems study could provide more information to determine the growth pattern of early or primitive palms. Secondly, many palm stems (more than 150) have been anatomically described by Stenzel (1904), Stockmans and Willière (1943), Kaul (1960), Sahni (1964) and Prakash and Boureau (1968) but the apparent lack of distinctive anatomical variation within the stem has always limited the possibility of inferring affinity to extent taxa below the family level. There are few exceptions to this when attached leaves have good systematic characters as in the fossil species *Uhlia allenbyense* Erwin & Stockey described from the Middle Eocene Princeton Chert and identified as a Coryphoideae (Erwin and Stockey, 1994). In our study of fossil stems (Thomas and De Franceschi, accepted)

based on the previous results, we identify a Cryosophileae species (*Palmoxylon vestitum* (Saporta) Stenzel 1904) in Oligocene of South of France. With this identification, we provide palaeobotanical data for a probable Laurasian origin of this tribe previously suggested by Uhl and Dransfield (1987). Thereby, more precise identifications of palm fossil stems will expand our understanding of palm evolutionary history and provide additional information for dating divergence times in phylogenies (Couvreur et al., 2011).

LITERATURE CITED

AMBWANI, K. 1985. Observations on the anatomy of the stem of *Trachycarpus martiana* H. Wendl. *Geophytology* 15(2): 199–205. AMBWANI, K., AND R. MEHROTRA. 1989. A new fossil palm wood from the Deccan intertrappean beds of Shahpura, Mandla District, Madhya Pradesh. *Geophytology* 19(1): 70–75.

BAAS, P., WERKER, E., AND FAHN, A. 1983. Some ecological trends in vessel characters. *IAWA Bulletin, new serie* 4(2–3): 141–159.
BAKER, W.J., V. SAVOLAINEN, C.B. ASMUSSEN–LANGE, M.W. CHASE, J. DRANSFIELD, F. FOREST, M.M. HARLEY, N. UHL, AND
M. WILKINSON. 2009. Complete generic-level phylogenetic analyses of palms (Arecaceae) with comparisons of supertree and supermatrix approaches. *Systematic Biology* 58(2): 240–256.

BHAT, K.M., K.M. MOHAMMED NASSER, AND P. THULASIDAS. 1993. Anatomy and identification of south Indian rattans (*Calamus* species). *IAWA Journal* 14(1): 63–76.

CARLQUIST, S. 2001. *Comparative wood anatomy, Systematic, Ecological, and Evolutionary Aspects of Dicotyledon Wood*. Springer series in wood science, 2nd edition. Springer, Berlin.

CHEADLE, V. 1943. The origin and certain trends of specialization of the vessel in the Monocotyledoneae. *American Journal of Botany* 30(1): 11–17.

CHEADLE, V. AND H. KOSAKAI. 1975. Vessels in Juncales: II. Centrolepidaceae and Restionaceae. *American Journal of Botany* 62(10): 1017–1026.

COUVREUR, T., F. FOREST AND W. BAKER. 2011. Origin and global diversification patterns of tropical rain forests: inferences from a complete genus-level phylogeny of palms. *BMC Biology* 9(1): 44.

DRANSFIELD, J., N. UHL, C.B. ASMUSSEN, W.J. BAKER, M.M. HARLEY, AND C.E. LEWIS. 2005. A new phylogenetic classification of the palm family, Arecaceae. *Kew Bulletin*, 60(4) : 559–569.

ERWIN, D., AND R.A. STOCKEY. 1994. Permineralized Monocotyledons from the Middle Eocen Princeon chert (Allenby Formation) of British Columbia, Canada: Arecaceae. *Palaeontographica Abteilung B, Paläophytologie* 234 (1-2): 19–40.

FISHER, J.B., J.N. BURCH, AND L.R. NOBLICK. 1996. Stem structure of the Cuban Belly palm (*Gastrococos crispa*). *Principes*, 40(3): 125–128.

FRENCH, J.C., AND P.B. TOMLINSON. 1986. Compound vascular bundles in monocotyledonous stems: construction and significance. *Kew Bulletin* 41(3): 561–574.

LA HIRE, P. DE. 1692. Description d'un tronc de palmier pétrifié, et quelques réflexions sur cette pétrification. *Recueil de l'Académie* 10: 95–98.

JACCARD, P. 1901. Distribution de la flore alpine dans le bassin des dranses et dans quelques régions voisines. Bulletin de la Société vaudoise des sciences naturelles 37: 547-579. JEANSON, M. L. 2011. Systématique de la tribu des Caryoteae (Arecaceae). PhD thesis, Muséum national d'Histoire naturelle, Paris, France. KAHN, F., AND DE GRANVILLE, J.-J. 1992. Palms in forest ecosystems of Amazonia. Springer, Berlin. KAUL, K. 1960. The anatomy of the stem of palms and the problem of the artificial genus Palmoxylon Schenk. Bulletin, National Botanic Gardens, Lucknow 51: 1-52. KLOTZ, L.H. 1977. A systematic survey of the morphology of tracheary elements in palms. PhD thesis, Cornell University, Ithaca, New York, USA. KLOTZ, L.H. 1978a. Form of the perforation plates in the wide vessels of metaxylem in palm. Journal of the Arnold Arboretum 59(2): 105–128. KLOTZ, L.H. 1978b. Observations on diameters of vessels in stems of palms. Principes 22(3): 99-106. LEBBE, J. 1991. Représentation des concepts en biologie et en médecine : introduction à l'analyse des connaissances et à l'identification assistée par ordinateur. Ph.D. thesis, Université Pierre et Marie Curie, Paris. LINDORF, H. 1994. Eco-anatomical wood features of species from a very dry tropical forest. IAWA Journal 15(4): 361-374. MADELLA, M., A. ALEXANDRE, AND T. BALL. 2005. International Code for phytolith nomenclature 1.0. Annals of Botany 96: 253-260. MAHABALE, T. AND N. UDWADIA. 1959. Studies on palms: part IV-Anatomy of palm roots. Proceedings of the National Institute of Sciences of India. Part B, biological sciences 26 (2): 73-104. MATHEW, A. AND K.M. BHAT. 1997. Anatomical diversity of Indian rattan palms (Calamoideae) in relation to biogeography and systematics. Botanical Journal of the Linnean Society 125(1): 71-86. MOHL, H., von. 1823–1850. De Palmarum structura. In K. F. von Martius [ed.], Historia Naturalis Palmarum. Opus tripartitum. Vol. 1. Monachii-impensis auctoris; Lipsiae-apud F. Fleischer, Germany. MOHL, H., von. 1845. Vermischte Schriften botanischen Inhalts. L.F. Fues, Tübingen, Germany. MONOYER, A. 1924. Anatomie du Cocos botryophora. Mémoire de la classe des sciences, Académie Royale de Belgique. Collection in 8vo Sér. 2, 8: 1-44. MORLEY, R. 2000. Origin and Evolution of Tropical Rainforests. Wiley, Chichester.

HOLMGREN, P.K. AND N. HOLMGREN. 1998 onward (continuously updated). Index Herbarorium. New York Botanical Garden.

HORN, J.W., J.B. FISHER, P.B. TOMLINSON, C.E. LEWIS, AND K. LAUBENGAYER. 2009. Evolution of lamina anatomy in the palm

INSIDEWOOD. 2004 [continuously updated]. Published on the Internet. http://insidewood.lib.ncsu.edu/search [july 2011].

Website http://sweetgum.nybg.org/ih/ [accessed 15 September 2011].

family (Arecaceae). American Journal of Botany 96(8): 1462–1486.

PARTHASARATHY, M. 1968. Observations on metaphloem in the vegetative parts of palms. *American Journal of Botany* 55(10): 1140–1168.

PARTHASARATHY, M. AND L.H. KLOTZ. 1976a. Palm "Wood"-I. Anatomical aspects. Wood Science and Technology 10: 215-229.

fibers. Wood Science and Technology 10: 247-271. PARTHASARATHY, M. AND P.B. TOMLINSON. 1967. Anatomical features of metaphloem in stems of Sabal, Cocos and two other palms. American Journal of Botany 54(9): 1143–1151. PHILIPP, M. 1923. Über die verkorkten Abschlußgewebe der Monokotylen. Bibliotheca Botanica 92: 1-27. PRAKASH, U. AND E. BOUREAU. 1968. Bois erial de Palmiers. Mémoires de la section des sciences du Comité des Travaux Historique et Scientifiques 2: 130-146. PRYCHID, C.J., P.J. RUDALL, AND M. GREGORY. 2004. Systematics and biology of silica bodies in Monocotyledons. Botanical *Review* 69(4): 377–440. RASBAND, W. 1997-2008. ImageJ. Technical report, U. S. National Institutes of Health, Bethesda, Maryland, USA. Website: http://rsb.info.nih.gov/ij/ [accessed 15 October 2010]. RICH. P.M. 1987. Developmental anatomy of the stem of Welfia georgii, Iriartea gigantea, and other arborescent palms: implications for mechanical support. American Journal of Botany 74(6): 792-802. RÜGGEBERG, M., T. SPECK, O. PARIS, C. LAPIERRE, B. POLLET, G. KOCH AND I. BURGERT. 2008. Stiffness gradients in vascular bundles of the palm Washingtonia robusta. Proceedings of the Royal Society B: Biological Sciences 275(1648): 2221–2229. RÜGGEBERG, M., T. SPECK AND I. BURGERT. 2009 Structure-function relationships of different vascular bundle types in the stem of the mexican fanpalm (Washingtonia robusta). New Phytologist 182(2): 443-450. SAHNI, S. 1964. Revision of Indian fossil plants: Part III. Monocotyledons. Monographs, Birbal Sahni Institute of Palaeobotany 1: 1-89. SCHOUTE, J.C. 1912. Über das Dickenwachstum der Palmen. Annales du Jardin Botanique de Buitenzorg Sér. 2, 11(26): 1–209. SEUBERT, E. 1996a. Root anatomy of palms I. Coryphoideae. Flora 192: 81-103. SEUBERT, E. 1996b. Root anatomy of palms II. Calamoideae. Feddes Repertorium 107: 43-59. SEUBERT, E. 1996c. Root anatomy of Palms III. Ceroxyloideae, Nypoideae, Phytelephantoideae. Feddes Repertorium 107: 597-619. SEUBERT, E. 1998a. Root anatomy of Palms IV. Arecoideae, Part 1, general remarks and descriptions on the roots. Feddes *Repertorium* 109: 89–127. SEUBERT, E. 1998b. Root anatomy of Palms IV. Arecoideae, Part 2, systematic implications. Feddes Repertorium 109: 231-247. SOKAL, R., AND C. MICHENER. 1958. A statistical method for evaluating systematic relationships. University of Kansas science bulletin 38(22): 1409-1438. STENZEL, K.G. 1904. Fossile Palmenhölzer. Beiträge zur Paläontologie und Geologie Österreich-Ungarns und des Orients 16(3-4): 107-228. STOCKMANS, F. AND Y. WILLIERE. 1943. Palmoxylons paniséliens de la Belgique. Mémoire du Musée Royal d'Histoire Naturelle de *Belgique* 100: 1–76. SWAMY, B. AND E. GOVINDARAJALU. 1961. Studies on the anatomical variability in the stem of *Phoenix sylvestris*. I. Trends in the behaviour of certain cells and tissues. The Journal of the Indian Botanical Society 40: 243–262. THOMAS, R. 2011a [continuously updated]. Published on the Internet. Palm-ID, a database to identify the palm stem anatomy with

PARTHASARATHY, M. AND L.H. KLOTZ. 1976b. Palm "Wood"-II. Ultrastructure aspects of sieve elements, tracheary elements and

an expert system (Xper²). Université Paris 6 – Muséum national d'Histoire naturelle, Paris. URL http://www.infosyslab.fr/Palm-ID/ [July 2011].

THOMAS, R. 2011b. Anatomie comparée des palmiers : Identification-assistée par ordinateur, Applications en paléobotanique et en archéobotanique. PhD thesis, Muséum national d'Histoire naturelle, Paris, France.

TOMLINSON, P.B. 1961. Palmae. *In* C. Metcalfe [ed.], Anatomy of the Monocotyledons, vol. 2. Oxford University Press, Oxford, United Kingdom.

TOMLINSON, P.B. 1964a. Stem structure in arborescent Monocotyledons. *In* M.H. Zimmermann [ed.], Formation of wood in forest tree, 65–86. Academic Press, New York, New York, USA.

TOMLINSON, P.B. 1964b. Stem anatomy in the palm Sabal palmetto. The American Philosophical Society Year Book: 300-301.

TOMLINSON, P.B. 1965. Trends in cell dimensions in palms. The American Philosophical Society Year Book: 354–355.

TOMLINSON, P.B. 1969. The anatomy of the vegetative organs of Juania australis (Palmae). Gentes herbarum 10(4): 412-424.

TOMLINSON, P.B. 1970. Monocotyledons–Towards an understanding of their morphology and anatomy. *Advances in botanical research* 3: 207–292.

TOMLINSON, P.B. 1990. The structural biology of palms. Clarendron Press, Oxford, United Kingdom.

TOMLINSON, P. B., J.W. HORN AND J.B FISHER. 2011. The anatomy of palms. Oxford University Press, Oxford.

TOMLINSON, P.B. AND M. H. ZIMMERMANN. 1966a. Vascular bundles in palm stems—Their bibliographic evolution. *Proceedings* of the American Philosophical Society 110(3): 174–182.

TOMLINSON, P.B. AND M. H. ZIMMERMANN. 1966b. Anatomy of the palm *Rhapis excelsa*, III. Juvenil phase. *Journal of the Arnold Arboretum* 47: 301–312.

TOMLINSON, P.B. AND M. H. ZIMMERMANN. 1967. The "wood" of Monocotyledons. *Bulletin, International Association of Wood Anatomists* 2: 4–24.

UHL, N. AND J. DRANSFIELD. 1987. *Genera Palmarum: a classification of palms based on the work of Harold E. Moore, Jr.* Allen Press, Lawrence, Kansas.

Ung, V., G. Dubus, R. Zaragüeta-Bagils, and R. Vignes-Lebbe. 2010. Xper2: introducing e-taxonomy. *Bioinformatics* 26(5): 703–704.

UNGER, F. 1823–1850. De Palmis fossilibus. *In* K. F. v. Martius [ed.], Historia Naturalis Palmarum. Opus tripartitum. Vol. 1. Monachii–impensis auctoris; Lipsiae–apud F. Fleischer, Germany.

VIGNES-LEBBE, R., J. LEBBE, G. DUBUS, A. CHALUBERT, H. FRADIN, B. PAVIE AND F. CAUSSE. 2010. Xper², version 2.1.

Development and distribution by Laboratoire Informatique et Systematique–Université Paris 6. Website http://www.infosyslab.fr [accessed 01 July 2010].

WATERHOUSE, J. AND C. QUINN. 1978. Growth patterns in the stem of the palm *Archontophoenix cunninghamiana*. *Botanical Journal of the Linnean Society* 77(2): 73–93.

WHEELER, E. A., BAAS, P., AND RODGERS, S. 2007. Variations in dicot wood anatomy: a global analysis based on the insidewood database. *IAWA Journal* 28(3): 229–258.

WEINER, G. AND W. LIESE. 1990. Rattans-Stem anatomy and taxonomic implications. IAWA Bulletin, new series 11(1): 61-70.

WEINER, G. AND W. LIESE. 1993. Generic identification key to rattan palms based on stem anatomical characters. *IAWA Journal* 14(1): 55–61.

ZAIDON, A., A.J. PETTY AND S. MOHD. HAMAMI. 1996. The structure of rattan and its relation to shringkage and dimensional properties. *Malaysian forester* 59(3): 102–122.

ZIMMERMANN, M.H. AND P.B. TOMLINSON. 1965. Anatomy of the palm *Rhapis excelsa*, I. Mature vegetative axis. *Journal of the Arnold Arboretum* 46: 160–178.

ZIMMERMANN, M.H. AND P.B. TOMLINSON. 1967. Anatomy of the palm *Rhapis excelsa*, IV. Vascular development in apex of vegetative erial axis and rhizome. *Journal of the Arnold Arboretum* 48: 122–142.

ZIMMERMANN, M.H. AND P.B. TOMLINSON. 1972. The vascular system of Monocotyledonous stems. *Botanical Gazette* 133(2): 141–155.

ZIMMERMANN, M.H. AND P.B. TOMLINSON. 1974. Vascular patterns in palm stems: variations of the *Rhapis* principle. *Journal of the Arnold Arboretum* 55(3): 402–424.

ZODDA, G. 1904. Sull' ispessimento dello stipite di alcune palme. Malpighia 18: 512-545.

TABLE 1. Summary of the sampling for the present anatomical study.

	Number of	f
Taxonomic group s	genera	species
	/total	(specimens)
Coryphoideae	27/45	48 (65)
Borasseae	5/8	8 (14)
Caryoteae	2/2	6 (7)
Chuniophoeniceae	2/4	2 (2)
Corypheae	1/1	1 (1)
Cryosophileae	5/10	6 (10)
Phoeniceae	1/1	3 (4)
Sabaleae	1/1	3 (4)
Trachycarpeae	10/18	19 (23)
Calamoideae ^a	7/22	9 (12)
Calameae	2/14	2(4)
Eugeissoneae	1/1	3(3)
Lepidocaryeae	4/7	4(5)
Nypoideae	1/1	1 (1)
Ceroxyloideae	4/8	6 (8)
Cyclospatheae	1/1	2 (3)
Ceroxyleae	2/4	4 (4)

Phytelepheae	1/3	1 (1)
Arecoideae*	40/107	49 (66)
Areceae	14/59	16 (24)
Chamaedoreeae	2/5	2 (3)
Cocoseae	10/18	15 (20)
Euterpeae	3/5	4 (6)
Geonomateae	2/6	2 (2)
Iriarteae	4/5	4 (4)
Leopoldinieae	1/1	1(1)
Manicarieae	1/1	1(1)
Oranieae	1/1	2 (3)
Pelagodoxeae	0/2	0
Podococceae	1/1	1 (1)
Reinhardtieae	0/1	0
Roystoneeae	1/1	1 (1)
Sclerospermeae	0/1	0

Note: no detailed study of the subfamily* marked

with * has been done yet. a This study focuses on

the erect Calamoideae.

TABLE 2. Reappraisal of von Mohl's types based on ratios of quantitative values and other descriptors.

			f/	D	Fibrous dorsal cap	Sustained growth of	Phytoliths	
Von Mohl–Type	$\frac{d(fvb)_{out}}{d(fvb)_{in}}$	Range of <i>f/v</i>	$\frac{f}{f}$	$\frac{R_{out}}{R_{in}}$	centrifugal	central cylinder	distribution in	
	(v) m		v in	In	differentiation	ground parenchyma	central cylinder	
Cocos_Type	[1:4(6)]	[1:8(15)]	[1: 8 (15)] [1: 3] [1: 3] Abs		Absent	Absent	Throughout	
cocos Type	[1, + (0)]	[1, 0 (15)]	[1, 5]	[1, 5]	Rosent	[Type A]	central cylinder	
Commba Tuma	$[(1) 2 \cdot 6 (8)]$	[(1) 2: 20]	[2, 20]	[2: 10]	Absont	Present	Throughout	
Corypna-Type	[(1) 2, 0 (8)]	[(1) 2, 50]	[5, 50]	[3, 10]	Absent	[Type B]	central cylinder	
Mouritia Tura	[2: 9 (>10)]	[< 0.5; >40]	[20, 20]	[15. > 100]	Dragant	Present	Restricted to the	
Maurina-Type	[2, 8 (>10)]	[< 0,3, >40]	[20, 80]	[13, 2100]	Present	[Type B]	subcortical zone	
Colomus Trmo	[1, 2]	< 1	[1, 2]	[1, 2]	Abcont	Absent	Throughout	
Calanius-1 ype	[1, 2]	< 1	[1, 2]	[1, 2]	Absent	[Type A]	central cylinder	
C	[2, 4]	[0.5.15]	[10, 20]	[(2) 2. 8]	Abaant	Absent	Throughout	
Geonoma-Type	[2; 4]	[0,3; 15]	[10; 20]	[(2) 3; 8]	Absent	[Type A]	central cylinder	

This table provides additional information regarding the von Mohl's types originally defined only on visual criteria without specified

boundaries. Fvb is used for fibrovascular bundles. $d(ffv)_{out}/d(ffv)_{in}$ is the ratio between the density of the fvb of the subcortical zone and those of the central zone of the central cylinder. F/v is the ratio between the surface area of the fibrous and the vascular part of fvb. $f'_{v out}/f'_{v in}$ follows the same notation as before. The fibrous covering index (*R*) is defined as the ratio between *a*, the area of the fibrous part of all the fvb in an examined transverse section (TS) and *A*, the whole area of the examined TS (R = a/A) and R_{out}/R_{in} follows the same notation as before. Only Mauritia-Type stems have a ground parenchyma sustained growth (in the central zone) and a fibrous dorsal cap centrifugal differentiation (in the subcortical zone), thus, very few phytoliths are found around the fvb of the zone of transition and in the central zone (see Results section for a more detailed description). Note: Type A and B are the types defined by Schoute (1912) and are synonyms of the absence (A) or the presence (B) of ground parenchyma sustained growth.

Thomas and De Franceschi

32

TABLE 3. Principal descriptors for each tribe of Coryphoideae and tendencies in the other subfamilies (part 1).

Taxonomic groups	Von Mohl classification (T = type)	Stenzel classification of dorsal cap of fvb	Vessel elements per fvb	Fibrous bundles in central cylinder	Developed cortex of r the stem	Ground parenchyma of the central cylinder	Stem stegmata phytoliths	Radiating parenchyma (around fvb)
Coryphoideae Borasseae (Hy)	Cocos-T / <i>Corypha-T</i>	Reniforma	2	A	Ρ	Spheroid and compact (sometimes few elongate)	Globular echinate	A
Borasseae (La)	Corypha-T to Cocos-T	Reniforma to Lunaria	1	P ^a	Ρ	Cells lobed (rhombohedral) and irregular network (lacunae < 200 $\mu m)$ to \pm Spheroid and compact	Globular echinate	A
Caryoteae	Mauritia-T	Reniforma to Sagittata	1 to 1 (2) ^b	Р	A	Huge cells, few and irregular lacunae	Combined	A
Chuniophoeniceae ^c	Cocos-T / Geonoma-T	Lunaria to Vaginata Reniforma	2	Ρ	P/A	Spheroid and compact, few small lacunae	Globular echinate	A
Corypheae	Corypha-T	Reniforma to Sagittata	1	Ρ	Р	Cells lobed (rhombohedral) and irregular network (lacunae < 200 µm)	Globular echinate	A
Cryosophileae	Cocos-T	Vaginata	1 to \geq 4	Р	Ρ	Spheroid and compact to elongate, few little lacunae possible	e Globular echinate	A
Phoeniceae	Cocos-T	Vaginata to Lunaria	2	A	Ρ	Spheroid and compact (sometimes few elongate).	Globular echinate	A
Sabaleae	Corypha-T to Cocos-T	Reniforma <i>to Lunaria</i>	2	A	Ρ	Rod-like cells, regular and large network, to lobed cells with little lacunae	Globular echinate	A
un-Trachycarpeae	Corypha-T <i>Cocos-T</i>	Reniforma	2	Р	Р	Rod-like cells, regular and large network (lacunae > 250 $\mu m)$	Globular echinate	Р

Thomas and De Franceschi

Trachycarneae (Li)	Corvoha-T	Beniforma to / unaria	unaria 2 P/A P		р	Cells lobed (rhombohedral) and irregular	Globular	р	
Thenyeurpeae (E)	oorypna i		2	1/11	1	network (lacunae < 200 µm)	echinate		
Tool (DI)	Cocos-T /	Luparia / Papiforma	(2) 4= 2.4	D/A	D/A	Spheroid and compact (sometimes few	Globular		
Trachycarpeae (Kh)	Geonoma-T	Lullalla / Reilijullia	(2) 10 3-4	P/A	P/A	elongate), lacunae	echinate	А	
	Mauritia T	B	1 (0) ^b	D/4		Ctallate vegular lagunas huga salla	Globular	A	
alamoideae (erect) Mauritia-i	waurnia-i	Keniforma	1 (2)	P/A	А	Stenate, regular lacunae, huge cens	echinate		
Charles Colores T	0 I T						Globular	А	
Calamoideae (scandent)	Calamus-I	_	1	A	A	Spheroid and compact	echinate		
	o - T	Deniforme	0	D	D	Spheroid to random and compact, few	Globular	А	
Nypoideae	COCOS-I	Reniforma	2	Р	P	lacunae	echinate		
Ceroxyloideae	Mauritia-T	Reniforma	1 (2) ^b	А	А	Huge cells, few and small lacunae,	Globular	А	
Phytelephas	Cocos-T	Reniforma	tracheids only	Р	Р	Spheroid to random and compact	echinate	А	
	Mauritia-T /					Huge cells rod-like cells large lacunae	Clobular /		
Arecoideae	Cocos-T /	Reniforma / Sagittata	1 (2) ^b	P/A	P/A			А	
	Geonoma-T					spheroid and compact, appendicular	trapeziform		

Where a name is recorded in bold the state is well developed, is the predominant state of the tribe, therefore, is believed to be diagnostic for the tribe; where a name is recorded in ordinary type, the state has been observed but has not been observed for each genera and some ambiguities may persist as regard the systematic value, it is given as for a possible tendency within the tribe; where a name is recorded in *italic*, the state is believed to be of little diagnostic value and more studies are required. Arecoideae A: Cocoseae and large species of Chamaedoreae; Arecoideae B: Other Arecoideae; P: present; A: absent; Hy: Hyphaeninae; La: Lataniinae; Li: Livistoninae; Rh: Rhapidinae; un-Trachycarpeae: unplaced genera of Trachycapreae. %e = % of extremely oblique EM Walls (EW), %v = % of very oblique EW, %o = % of oblique EW, %s = % of slightly oblique EW, %t = % of transverse EW. $d(frb)_{out}/d(frb)_{in}$ is the ratio between the density of the fvb of the subcortical zone and those of the central cylinder. *F/v* is the ratio between the fibrous and the vascular part of the fvb. $\frac{f}{v_{out}}/\frac{f}{v_{v in}}$ follows the same notation as before. Notes: * Only for *Lodoicea*. ^b One in the subcortical and transitional zone and two in the central cylinder. ^c Values and states for Chuniophoeniceae and Trachycarpeae are given, but general organization of the stem has a high variability in these tribes, see Results section. ^d Not 100% in Klotz (1978a).

Thomas and De Franceschi

34

	Xyle	em <i>end</i>	l wall s	lope		Xy	lem <i>sp</i>	eciali	satioi	n valı	10	Radial	Fibrous dorsal	Fibrous	D:			£7	
Taxonomic group	(Klo	otz, 197	78a, m	odified	I)	(KI	otz, 19	978a,	modi	fied)		elongation of	f cap centrifugal	ventral cap	Divided	$\frac{d(fvb)_{out}}{d(fvb)}$	Range of <i>f/v</i>	$\frac{f_{v out}}{f_{f}}$	$\frac{R_{out}}{R}$
	%e	%v	%0	%s	%t	1	2	3	4	5	6	dorsal cap	differentiation	of fvb	pnioem	- / In		"/v in	in a second
Borasseae (Hy)	0	0	0	67	33				×	×	×	A	А	Α	A	[2; 6]	[2; 15]	[1; 4]	[1; 5]
Borasseae (La)	0	0	0	67	33				×	×	×	A	А	А	А	[2; 6]	[1; 15]	[1; 4]	[1; 4]
Caryoteae	0	2	42	54	2			×	×			Р	Р	А	А	[3; 8]	[0,5; 30]	[10; 50]	[10: 50]
Chuniophoeniceaec	0	< 1	14	84	2			×	×			А	A	P/A	А	[1; 4]	[1; 11]	[1; 11]	[1; 7]
Corypheae	0	< 1	14	84	2			×	×			А	A	А	А	[3; 6]	[2; 15]	[4; 15]	[4; 10]
Cryosophileae	0	1	17	79	3			×	×	×	×	A	А	Р	А	[1; 3]	[2; 10]	[1; 5]	[1; 3]
Phoeniceae	0	0	100	0	0				×			A	А	Р	А	[1; 2]	[3; 6]	[1; 3]	[1; 3]
Sabaleae	0	< 1	14	84	2				×			А	А	Р	А	[1; 3]	[3; 15]	[1; 4]	[1; 3]
Trachycarpeae ^c	0	0,5	13	85	1,5			×	×	×	×	A	А	P / A	P / A	[1; 7]	[1; 30]	[2; 30]	[1; 10]
Calamoideae (erect)	< 1	7	34	59	< 1				×	×	×	P / A	Р	A	А	[2; 8]	[0,5; 20]	[20; 80]	[15; 80]
Calamoideae (scanden	t)0	0	0	45	55					×	×	A	А	А	P / A	[1; 2]	< 1	[1; 2]	[1; 2]
Vypoideae			90	10			×	×				A	А	А	А	[1; 2]	[<0,5;2]	[1; 3]	[1; 2]
Ceroxyloideae	4,3	16	47,7	21 ^d	0		×	×	×			Р	Р	А	A	[2; 10]	[<0,5;20]	[20; > 50]	[15; >100
Phytelephas	(—)	(—)	(—)	(—)			(—)	(—)	(—)			А	А	А	А	[1; 3]	[0,5; 2 (3)]	[1; 4]	[2; 5]
Arecoideae A	0	0,5	39	58	2,5			×	×	×	×	}	D (A	DIA		[2 > 10]	[< 0.5 × 40]	[1, 00]	[1.5.100]
Arecoideae B	3	41,2	46	9,8	0	×	×	×				J P/A	P/A	Р/А	A	[2; > 10]	[< 0,5; > 40]	[1; 80]	[1; > 100]

TABLE 3. Principal descriptors for each tribe of Coryphoideae and tendencies in the other subfamilies (part 2).

APPENDIX 1. Taxa used in this study, data references and voucher information. All the Coryphoideae specimens and all the other Arecoideae that have been anatomically studied are listed below. The classification follows Baker et al. (2009). Genera and species within in each tribe are listed alphabetically. Herbarium acronyms follow Holmgren and Holmgren (1998). All the palms from FTG were cultivated at Fairchild Tropical Botanic Garden. EBC: Economic Botany Collection from K, FIP: French Institute of Pondicherry, MRAC: Belgium, Tervuren, Musée Royal de l'Afrique Centrale, Pers.: personal collection. Some of the MRAC specimens come originally from MAD and from the Samuel J. Record Collection of MAD (SJRw).

Taxon; Institution, Herbarium or xylarium number, Voucher specimen.

Borasseae Mart. in Endl.—Hyphaeninae Becc.

Bismarckia nobilis Hildebr. & H.Wendl.; FTG, 58932F, J.B. Fisher. Hyphaene petersiana Klotzsch ex Mart.;
Pers., R. Thomas sn. H. thebaica (L.) Mart.; FTG, 4351, J.B. Fisher. H. thebaica; FTG, 57538A, J.B. Fisher. H. thebaica; P. P00417274. H. thebaica; Pers., R. Thomas sn. Hyphaene sp. Gaertn.; FIP, R. Thomas sn. Borasseae—Lataniinae Meisner

Borassus aethiopium Mart.; MRAC, Tw 21135, *T. Coget 62. B. flabellifer* L.; MRAC (BFH), Tw 44445 (BFHw 6788), *Kersting sn. Borassus* sp. L.; Pers., *R. Thomas sn. Latania loddigesii* Mart.; FTG, 75460, *J.B. Fisher. Latania verschaffeltii* Lem.; K, EBC 26292, *I.B. Balfour sn. Lodoicea maldivica* (J.F.Gmel.) Pers.; P, P00393129. *L. maldivica*; Pers., *R. Thomas sn.*

Caryoteae Drude

Arenga disticha T.Anderson; K, EBC 26359. A. microcarpa Becc.; K, EBC 26220, R.Schodde, L.A. Craven
4475. Caryota mitis Lour.; MRAC, Tw 57757, M. Soler sn. C. mitis, P, P00415737. C. rumphiana Mart.; FTG,
81567B, J.B. Fisher. C. urens L.; MRAC (MAD), Tw43280 (52948 YW), A.F. Wilson sn. C. zebrina Hambali
et al.; K, Heatubun et al. CH273.

Chuniophoeniceae J.Dransf. et al.

Chuniophoenix nana Burret; K, S.F. Li 785. Nannorrhops ritchieana (Griff.) Aitch.; Pers., R. Thomas sn.

Corypheae Martius in Endl.

Corypha umbraculifera L.; MRAC (MAD), Tw43268 (50273 SJRW), C.H. Holmes sn.

Cryosophileae J.Dransf. et al.

Chelyocarpus dianeurus (Burret) H.E.Moore; MRAC (MAD), Tw43237 (43095 SJRW), *J. Cuatrecasas 16702. Coccothrinax barbadensis* (Lodd. ex Mart.) Becc.; FTG, RM1012C, *J.B. Fisher. C. miraguama* subsp. *roseocarpa* (León) Borhidi & O.Muñiz; FTG, 5861, *J.B. Fisher. C. miraguama* subsp. *roseocarpa*; FTG,

60798C, *J.B. Fisher. C. miraguama* (Kunth) Becc.; FTG, 91357E, *J.B. Fisher. Cryosophila nana* (Kunth) Blume; K, EBC 26209. *Hemithrinax compacta* (Griseb. & H.Wendl.) M.Gómez; MRAC (MAD), Tw43225 (39400 SJRW), *Leon (Frère) sn. Thrinax radiata* Lodd. ex Schult. & Schult.f.; FTG; P2312, *J.B. Fisher. T. radiata*; FTG, RM1011, *J.B. Fisher. T. radiata*; P, P00406202.

Phoeniceae J.Presl

Phoenix dactylifera L.; K, EBC 26329. P. dactylifera; Pers., R. Thomas sn. P. reclinata Jacq.; MRAC, Tw
44588, F. Malaisse sn. P. sylvestris (L.) Roxb.; K, EBC 26340.

Sabaleae Mart. Ex Dumort.

Sabal palmetto (Walter) Lodd. ex Schult. & Schult.f.; K, EBC 26349. S. palmetto; Pers., R. Thomas sn. S. rosei (O.F.Cook) Becc.; MRAC, Tw 43984, A. Curtis sn. S. yapa C.Wright ex Becc.; MRAC, Tw 49416, A. Curtis 590.

Trachycarpeae Satake

Brahea dulcis (Kunth) Mart.; MRAC (MAD), Tw29452 (MADw36719), B.F. Hansen & M. Nee 1748.
Copernicia baileyana León; FTG, 76104E, J.B. Fisher. C. berteroana Becc.; FTG, 74179B, J.B. Fisher. C.
gigas Ekman ex Burret; FTG, 3990H, J.B. Fisher. C. tectorum (Kunth) Mart.; MRAC (MAD), Tw43184 (23897
SJRW), A. Dugand G. sn. Pritchardia beccariana Rock; MRAC, Tw 43972, A. Curtis sn. P. thurstonii F.Muell.
& Drude; MRAC (MAD), Tw43199 (28143 SJRW), A.C. Smith sn. P. cf. minor Becc.; K, EBC 26339. Serenoa
repens (W.Bartram) Small; MRAC (MAD), Tw43273 (SJRw 51212), W.J. Stern & G.K. Brizicky sn.
Washingtonia robusta H.Wendl.; FTG, 76297, J.B. Fisher.

Trachycarpeae—Livistoninae Saakov

Licuala grandis H.Wendl.; K, EBC 26306. *L. lauterbachii* Dammer & K.Schum.; K, *Heatubun et al. CH271*. *Livistona chinensis* (Jacq.) R.Br. ex Mart.; FTG; 713M; *J.B. Fisher. L. mariae* F.Muell.; FTG, 57787, *J.B. Fisher. L. merrillii* Becc.; P, Ramos sn.

Trachycarpeae—Rhapidinae J.Dransf. et al.

Chamaerops humilis L.; Pers., *R. Thomas sn. C. humilis*, MRAC, Tw 40121, *R. Dechamps & H. Doutrelepont sn. C. humilis*, P, P00395018. *C. humilis*, P, P00397191 B202. *Rhapis humilis* Blume; K, *Baker 1151. R. humilis*, K, *L. Fitt* 31. *R. subtilis* Becc.; K, *Smith & Sumawong GC110. Trachycarpus martianus* (Wall. ex Mart.) H.Wendl.; K, EBC 26356.

Calamoideae

Calamus deerratus G.Mann & H.Wendl.; P, A. Chevalier 21702 coll^o Fleury. Calamus sp. L.; P, P00406196.
Calamus sp.; P, P00395331, Duchesne de Bellecour 12. Eugeissona minor Becc.; K, K000525923, J.Dransf.
777. E. utilis Becc.; K, K000525938, J.Dransf. 797. E. insignis Becc.; K, K000525862, H.E.Moore 9105.
Metroxylon sagu Rottb.; K, W.J. Baker 881. Oncocalamus mannii (H.Wendl.) H.Wendl.; P, J.L.C.H. van
Valkenburg 2503. Raphia sp. P.Beauv.; K, EBC 26346, P. Tuley sn. Lepidocaryum tenue var. casiquiarense
(Spruce) A.J.Hend.; K, Madison et al. 6642. L. tenue Mart.; K, Balick et al. 931. Mauritia flexuosa L.f.; K,
EBC 26317, R. Spruce sn.

Nypoideae

Nypa fruticans Wurmb; Pers., Thi My Hanh Diep sn.

Ceroxyloideae

Ceroxylon sp. Bonpl. ex DC.; MRAC (MAD), Tw43251 (45348 SJRW), Acosta-Solis, Misael 6734. Phytelephas macrocarpa Ruiz & Pav.; K, EBC 26341. Pseudophoenix vinifera (Mart.) Becc.; FTG, 57577, J.B. Fisher. P. sargentii H.Wendl. ex Sarg.; FTG, 59504, J.B. Fisher. P. sargentii; FTG, 60171B, J.B. Fisher. Ravenea moorei J.Dransf. & N.W.Uhl; FTG, 63334 J.B. Fisher. R. albicans (Jum.) Beentje; P, 7666(7), W.J.Baker 1022. R. julietiae Beentje; P, 7666(7), W.J.Baker 1014.

Arecoideae

Acrocomia crispa (Kunth) C.F.Baker ex Becc.; FTG, 91426A, J.B. Fisher. A. aculeata (Jacq.) Lodd. ex Mart.;
K, EBC 26210. Actinorhytis calapparia (Blume) H.Wendl. & Drude ex Scheff.; FTG, 581168, J.B. Fisher.
Aiphanes minima (Gaertn.) Burret; FTG, 3094, J.B. Fisher. A. minima; FTG, 6256, J.B. Fisher. Areca catechu
L.; K, EBC 26223. A. catechu; P, P00401784. A. catechu; FTG, 60256, J.B. Fisher. A. catechu; FTG, 60256B,
J.B. Fisher. Astrocaryum sp. G.Mey.; K, EBC 26214. Attalea fairchildensis (Glassman) Zona; FTG, RM979A,
J.B. Fisher. Bactris plumeriana Mart. in A.D.d'Orbigny; FTG, 60647, J.B. Fisher. B. gasipaes Kunth in
F.W.H.A.von Humboldt; FTG, 66342, J.B. Fisher. Beccariophoenix madagascariensis Jum. & H.Perrier; P,
P00491927, J.Dransf. JD6433. B. madagascariensis; P, P00491920, Humbert 20572. B. madagascariensis; P,
P00491927, J.Dransf. JD6433. Bentinckia nicobarica (Kurz) Becc.; FTG, 83150H, J.B. Fisher. Calyptrogyne
sp. H.Wendl.; K, EBC 26240, R.M.King 5251. Chambeyronia macrocarpa (Brongn.) Vieill. ex Becc.; FTG,
64190H, J.B. Fisher. C. macrocarpa; FTG, 66600F, J.B. Fisher. Cocos nucifera L.; K, EBC 69867. C.

nucifera; MRAC, Tw 26873, Renard sn. Cyrtostachys loriae Becc.; K, K000521699, Heatubun et al. CH208. Desmoncus sp. Mart.; P. P00417180. Desmoncus sp.; K. EBC 38431. Dictyosperma album (Bory) Scheff.; FTG, 2217, J.B. Fisher. D. album; FTG, RM598, J.B. Fisher. D. album; FTG, RM598A, J.B. Fisher. Dypsis cabadae (H.E.Moore) Beentje & J.Dransf.; FTG, 5761, J.B. Fisher. D. madagascariensis (Becc.) Beentje & J.Dransf.; FTG, 6276, J.B. Fisher. Elaeis guineensis Jacq.; P, P00416187. Euterpe catinga Wallace; K, EBC 26280, Harley et al. 10758. Euterpe sp. Mart.; K, EBC 26282. Gaussia maya (O.F.Cook) H.J.Quero & Read; FTG, RM1723B, J.B. Fisher. Gaussia sp. H.Wendl.; Pers., R. Thomas sn. Geonoma sp. Wild.; K, EBC 26285, Harley et al. 10385. Heterospathe elata var. elata; FTG, 64719, J.B. Fisher. H. elata var. elata; FTG, 64719F, J.B. Fisher. Howea belmoreana (C.Moore & F.Muell.) Becc.; K, EBC 26286 (Smithsonian Inst. 6944). Hyophorbe verschaffeltii H.Wendl.; K, EBC 26288. Hyospathe elegans Mart.; K, Schunke 5615. Iguanura wallichiana (Mart.) Becc.; K, Smith & Sumawong GC600. Iriartea deltoidea Ruiz & Pav.; MRAC (MAD), Tw 43234 (SJRW 43028), J. Cuatrecasas sn. Iriartella setigera (Mart.) H. Wendl.; K, EBC 26296, R. Spruce. Kentiopsis oliviformis (Brongn. & Gris) Brongn.; FTG, 77146, J.B. Fisher. Leopoldinia pulchra Mart.; K, EBC 26298, R.Spruce. Loxococcus rupicola (Thwaites) H.Wendl. & Drude, K, EBC 26313. Manicaria saccifera Gaertn.; K, EBC 26315. Oenocarpus mapora H.Karst.; K, Balick 916. O. minor Mart. K, EBC 35968, R.Spruce 89. Oenocarpus sp. Mart.; K, Balick et al. 953. Orania dafonsoroensis A.P.Keim; K, K000112519, Heatubun et al. CH278. O. dafonsoroensis; K, K000114432, B.Desianto BD12. O. palindan (Blanco) Merr.; K, E.S. Fernando EF696. Podococcus barteri G.Mann & H.Wendl.; P, N. Hallé 2175. Roystonea regia (Kunth) O.F.Cook; K, EBC 26326. Socratea exorrhiza (Mart.) H.Wendl.; K, J.Strudwick et al. 5012. Syagrus camposportoana (Bondar) Glassman; FTG, 91604, J.B. Fisher. S. picrophylla Barb.Rodr.; FTG, 64660, J.B. Fisher. S. sancona (Kunth) H.Karst.; FTG, 72830J, J.B. Fisher. S. schizophylla (Mart.) Glassman; FTG, 4354B, J.B. Fisher. Veitchia arecina Becc.; FTG, 66356D, J.B. Fisher. V. winin H.E.Moore; FTG, 79208, J.B. Fisher. Wettinia quinaria (O.F.Cook & Doyle) Burret; K, King 663. Wodyetia bifurcata A.K.Irvine; FTG, 8234D, J.B. Fisher. W. bifurcata; FTG, 8495C. J.B. Fisher.

Fig. 1. Two main organizations of the erect palm stems in TS. A. Cocos-Type. This organisation (also called Type A in the text and in the Tables) is found in most of Coryphoideae and in few Arecoideae. Organisation and distribution of fibrovascular bundles (fvb) are regular throughout the transverse section. The cortex (CT) is developed and well delimited from the subcortical zone (SZ, noted "out" for the ratios in text and Tables) by a thin layer of little fvb, then the central zone (CZ, noted "in" for the ratios in text and Tables, the inner part of the

central cylinder) with fvb slightly more spaced than in the SZ. B. Mauritia-Type. This organisation (belongs to the Type B) is found in most of Arecoideae, some of erect Calamoideae and Ceroxyloideae. CT is usually not developed. Fibrovascular bundles are densely crowded with a fibrous part highly developed at the SZ and widely spaced with a fibrous part very reduced in the CZ. A zone of transition (TZ) appears between the SZ and the CZ. SZ, TZ and CZ are the 3 zones of the central cylinder (for definitions of these zones refer to the text). Fig. 2. Different characters of the fibrovascular bundle (fvb). A fvb is made of a fibrous part and a vascular part which contains metaphloem and metaxylem elements with paravascular parenchyma. The fvb presented here has a Reniforma fibrous dorsal cap (dcap). But other types of dcap are encountered in palms (detailed descriptions in the Results section): a. Sagittata, b. Cordata, c. Complanata, d. Reniforma, e. Lunaria, f. Vaginata. AL: auricular lobe; AS: auricular sinus; dcap: fibrous dorsal cap; MS: median sinus; mx: metaxylem; px: protoxylem; RP: radiating parenchyma; TP: tabular parenchyma; vcap: fibrous ventral cap; h_{max} : height of fvb; l_{max}: width of fvb; h_{vasc}: height of vascular part; l_{vasc}: width of vascular part. Fig. 3. Different palm growth patterns of the apical and basal regions in TS. The different growth patterns (and the corresponding von Mohl types) are presented depending on the following parameters: the ground parenchyma sustained growth (y-axis) and the fibrous dorsal cap centrifugal differentiation (x-axis). A-D: Copernicia baileyana, TS of the apical region (A: subcortical zone, unstained – B: central zone of the central cylinder, unstained and polarized) and of the basal region (C: subcortical zone – D: central zone, polished surface) of the stem. This type presents a ground parenchyma sustained growth (Type B) without fibrous dorsal cap centrifugal differentiation. E-H: Veitchia arecina, TS of the apical region (E: subcortical zone - F: central zone, unstained) and of the basal region (G: subcortical zone – H: central zone, polished surface) of the stem. This type presents a ground parenchyma sustained growth with a fibrous dorsal cap centrifugal differentiation. I-K: *Phoenix dactylifera*, unstained TS of the apical region (I, J) and polished surface of the basal region (K).

Phytoliths (arrow) are present all around the fibrous part in J. It is an attribute of this growth pattern (phytoliths are not developed in stems with centrifugal differentiation). L: TS of the central zone of *Hemithrinax compacta*, polished surface. This type has neither sustained growth (Type B) nor centrifugal differentiation. No specimens were observed with the association of a centrifugal differentiation without a ground parenchyma sustained growth. Scale bars: I–J, 200 µm; L: 500 µm; A–B, 1mm; C–H, K, 2mm.

Fig. 4. **Quantitative analyses of the von Mohl's stem types**. These graphs are based on measurements of individual fvb in a radial strip of a TS; each point is the average of about 10 fvb. Curves were drawn by eye to give the general pattern of the ratio. They show the relationship between the surface area of fibers (*f*), the

vascular surface area (v), the t/v ratio and the relative depth within the stem. A–A': Cocos-Type. *Cocos nucifera* and *Phoenix dactylifera*; B–B': Corypha-Type. *Licuala grandis* and *Pritchardia minor*; C–C': Mauritia-Type. *Eugeissona utilis* and *Veitchia arecina*. The different zones of the central cylinder are: SZ (subcortical zone), TZ (zone of transition), CZ (central zone). The Cocos-Type curves show a more or less constant t/v throughout the central cylinder; the Corypha-Type curves show a light decrease of the fibrous part surface area and of the t/v ratio; the Mauritia-Type curves show a strong decrease of the fibrous part surface area (in the zone of transition) and thus a t/v decrease to reach a very low value (0,5). For a more detailed description of these graphs see Results section.

Figs. 5-21. Von Mohl's types in TS. 5-8. Cocos-Type, *Cocos nucifera*, polished surface and unstained transverse section (6). This type shows a density of fibrovascular bundles, d(fvb), more or less constant throughout the central cylinder. The anatomy of the fibrovascular bundles (fvb) does not vary from the outer (7) to the inner (8) part of the stem (fvb of *Cocos* can have two vessel elements in the central zone whereas there is only one vessel in the subcortical zone). The ground parenchyma (6) consist of spheroid to elongate compact cells (very few lacunae).— 9-12. Corypha-Type, polished surface; 9-11, Pritchardia minor, 12, Copernicia *baileyana*. This type shows a decrease of d(fvb) and of f/v ratio (see Fig. 4). In the subcortical zone of Fig. 9 fvb have well developed fibrous dorsal caps whereas in the central zone of Fig. 10 they have smaller dorsal caps. 11. General TS of the stem. 12. Fibrovascular bundle of the central zone in ground parenchyma with lacunae.— 13– 16. Mauritia-Type, polished surface; 13-15, Wetinia quinaria; 16, Heterospathe elata. Stem general organization (13) of this type shows a decrease of d(fvb) and a sudden modification of the fvb between the outer (14) and the inner (15) part at the level of the zone of transition (see Fig. 4). The fvb of the central zone (15) have fibrous dorsal cap almost not developed whereas fibrous dorsal cap of the subcortical zone (14) are well developed. 16. Two fvb near the zone of transition with a ground parenchyma sustained growth (large lacunae) and its appendicular parenchyma connecting the two fvb.— 17-18. Calamus-Type, Calamus sp, unstained. General view (17) of the stem TS. The detailed view of the fvb (18) shows a phloem in two strand (arrows).— 19-21. Geonoma-Type, Rhapis humilis, polished surface. General view of the stem TS (19) and detailed views of the subcortical zone (20) and of the central zone (21). The fvb of the central zone show a ventral fibrous cap (arrow). The ground parenchyma is compact with scattered fibrous bundles (fb).— Key to labelling: CC: central cylinder; Ct: cortex; CZ: central zone; fb: fibrous bundle; SZ: subcortical zone; TZ: zone of transition. Scale bars: 6, 18, 20–21, 500 µm; 12, 16, 1 mm; 7–10, 14–15, 2 mm; 17, 19, 5 mm; 5, 11, 13, 1 cm.

Figs. 22–47. Anatomical descriptors in TS.— 22–23. Different cortex structure. 22. Wide cortex (arrow) of Washingtonia robusta, polished surface. 23. Thin cortex (arrow) of Eugeissona utilis, unstained. 24. Permanent epidermis with erect cells on *Pseudophoenix sargentii*, unstained.— 25. Etagen meristem of the outer cortical ground parenchyma on *Gaussia maya*, unstained.— 26–27. Tangential elongation and division of the subcortical parenchyma cells on Syagrus sancoana showing radial alignment of fvb (26), unstained. 28. Tangential elongation of subcortical parenchyma cells on Veitchia arecina, surface polished.— 29. Radial elongation of the fibrous dorsal cap of Roystonea regia, unstained. 30-32. Details of fvb, polished. 30. Pritchardia minor with angular auricular sinus (AS) and a divided phloem (arrows) in the central part of the central cylinder. 31. Dypsis cabadae with specific rounded AS and rounded median sinus (MS). 32. Vaginata to Lunaria fvb of Nannorrhops ritchieana without AS.— 33–34. Details of fibers in the fvb, unstained. 33. Young stem of *Hyphaene petersiana* with one thin layer of lignin. 34. Very thick wall in old stem part of *Borassus* sp. showing the final state of the lignification of the wall and thus the multi-layered wall in the older cells. 35–37. Phytoliths in palm stems, unstained. 35. Globular echinate to granulate in Thrinax radiata. 36. Combined phytoliths in *Caryota mitis*. 37. Trapeziform on *Bactris gasipaes*.— 38. Fibrovascular bundle of the central zone of a basal stem of *Washingtonia robusta*, polished surface. Well-differentiated fibrous dorsal cap of the fvb. Note the different degrees of the wall lignification: fibers near the phloem are turgid and thick walled whereas the surrounding cells are flattened and less lignified.— 39–41. Fibrous dorsal cap centrifugal differentiation, unstained and polarized TS of Iriartella setigera. These figures present the different zones of the fibrous dorsal cap in the zone of transition; a: the *initial* showing well differentiated fibers; b and c: the marginal showing parenchymatous cells with slight lignification, c is an extension of b with a different degree of cells maturation. These *fiber-like* cells (in *b* and *c*) contribute to the enlargement of the fibrous dorsal cap. 39. Central fvb with only the initial zone and phytoliths in the outer part of the fibers (arrows). 40. One fvb in the zone of transition with the first occurrence of the marginal fibrous zone of the fibrous cap, arrow shows a phytolith between zones a and b. 41. One fvb in the subcortical zone with *fiber-like* cells not fully developed in c. Fiber-like cells are always elongate and radiate around the fvb. 42-47. Ground parenchyma in the central zone of the central cylinder. 42. Spheroid and compact with few lacunae in *Phoenix dactylifera*, unstained. 43. Cells slightly elongated, lobed with a random (rhombohedral) shape and irregular network (lacunae < 200 µm) in Lodoicea maldivica, safranin. 44. Rod-like cells and irregular and large network in Acrocomia crispa, polished surface. 45. Rod-like cells and regular network in *Pritchardia minor*, polished surface. 46. Trabecular with a regular network in *Mauritia flexuosa*, unstained. Arrows in Figs. 45–46 show the difference between rod-like and trabecular: a

single cell makes several branches in Fig. 46 whereas the branches are made of several cells in Fig. 45. 47. Huge cells without air lacunae in *Bactris plumeria*, unstained. Key to labelling: AS: auricular sinus; CC: central cylinder; Ct: cortex; ep: epidermis; fb: fibrous bundle; in: toward the center of the stem; lac: lacunae; MS: median sinus; out: toward the periphery of the stem. Scale bars: 33–37, 25 µm; 24–25, 27–28, 38–41, 45–46, 250 µm; 30–32, 42–44, 47, 500 µm; 23, 29, 1 mm; 26, 2 mm; 22, 5 mm.

Figs. 48-68. Coryphoideae tribes in TS.- 48-53. Borasseae. 48. Borassus sp. with phytoliths all around the fibrous dorsal cap, unstained. 49. Borassus aethiopium, polished surface. Borassus has one metaxylem vessel in each Reniforma fibrovascular bundle (fvb) and a ground parenchyma made of a network of lobed cells with small lacunae (< 200 µm). 50. Lodoicea maldivica, unstained. This genus has one vessel in Reniforma to Lunaria fvb. Fibrous bundles (fb) are scattered in a more or less compact ground parenchyma (a network of rhombohedral to lobed cells is slightly developed). A vascular bridge is visible (br). 51. Latania verschaffeltii, safranin. Latania has the same organization as Lodoicea but without fibrous bundles. 52. Hyphaene thebaica, unstained. Fibrovascular bundles have Reniforma fibrous dorsal cap, two vessels and a spheroid and compact ground parenchyma. 53. The same organization is found in *Bismarckia nobilis*, unstained.— 54–58. Caryoteae. 54. Caryota rumphiana, unstained. Multicellular hair on the permanent cone-shaped epidermis (arrow). 55–56. Arenga microcarpa, polished surface. General organization of subcortical (55) and transitional (56) zones of the central cylinder. A small cortex is visible and congested fvb with one vessel are present in the subcortical zone whereas those of the transitional zone are more separated. 57-58. C. zebrina, polished surface. 57. Angular auricular sinus (arrow) is visible on the fvb of the subcortical zone. Initial (a) and marginal (b) zones of the fvb (see Figs. 39-41) are also present. 58. A fvb of the central zone with a Reniforma fibrous dorsal cap but without auricular sinus.— 59-60. Corypha umbraculifera, polished surface. 59. Subcortical fvb with angular median sinus and one vessel. 60. Central fvb with a Reniforma fibrous dorsal cap and a vascular zone with one vessel, fibrous bundle is also visible (arrow).— 61. *Phoenix sylvestris*, polished surface. Each fvb has two vessels and a Vaginata to Lunaria fibrous dorsal cap. Ground parenchyma is spheroid and compact. — 62–64. Cryosophileae. All the fvb of this tribe are circular with a Vaginata fibrous dorsal cap. 62. Chelyocarpus dianeurus, polished surface. A fibrovascular bundle with only one vessel and a poorly developed paravascular parenchyma. 63. *Coccothrinax miraquana*, unstained and polarized. The fvb shows many vessels (more than five), tabular parenchyma is visible. 64. Thrinax radiata, unstained polarized. The fvb have two vessels. Phytoliths (arrows) and tabular parenchyma are visible all around the fibrous dorsal cap. — 65. Sabal palmetto, polished surface. Reniforma fibrous dorsal cap and two vessels are found in fvb. The ground parenchyma is made of a network of

rod-like cells.— 66–68. Trachycarpeae. 66. *Chamaerops humilis*, unstained. Fibrovascular bundles have a Lunaria fibrous dorsal cap and four vessels. Tabular parenchyma (TP) and phytoliths (arrow) are visible all around the fvb. 67. *Trachycarpus martianus*, polished surface. Fibrovascular bundles have a Reniforma fibrous dorsal cap. Radiating parenchyma (RP) and a divided phloem (arrows) are present in the central zone of the central cylinder. A fibrous ventral cap (vcap) is slightly developed. 68. *Livistona mariae*, polished surface. Fibrous bundles (arrow) are visible. Key to labelling: br: vascular bridge; fb: fibrous bundle; RP: radiating parenchyma; TP: tabular parenchyma; vcap: fibrous ventral cap. Scale bars: 54, 57–58, 62,64, 66, 250 µm; 49– 53, 59–61, 63, 65, 67–68, 500 µm; 48, 55–56, 2mm.

Figure 2 Click here to download Figure: ffv.eps

Absent I Present Fibrous dorsal cap centrifugal differentiation

Relative depth (in %) of the central cylinder from the subcortical zone (5–10 %) to the central zone of the stem (100 %)

Les Borasseae

Les *Borasseae* sont divisés en deux sous-tribus anatomiquement distinctes. En effet, même s'il n'y a que quelques descripteurs qui diffèrent, il est tout à fait possible de faire la différence entre ces deux sous-tribus. Ces deux dernières seront donc décrites séparément mais seront regroupées pour ce qui est de la présentation de leurs statistiques descriptives.

7.2 Les Borasseae—Hyphaeninae

Aspect général et macroscopique du stipe. – Comme le montre la Fig. 7.2, le cortex est développé et le cylindre central présente une structure homogène.

FIGURE 7.2 – Polissage transversal d'Hyphaene. Partie mature de la tige. Échelle : 2cm.

Le cortex. – Il est très large (plusieurs millimètres à quelques centimètres pour les tiges matures, Fig. 7.2). Chez ces dernières il peut être divisé en deux parties nettement distinctes de par la suberification des cellules de parenchyme (Planche III, 1). Une sorte de périderme est parfois présent dans les tiges matures.

Le cylindre central. – Cocos-Type à Corypha-Type (Bismarckia, Planche III, 2–4). Le ratio fibro-vasculaire est constant et ne varie que très peu. $\frac{d(FFV)_{ext}}{d(FFV)_{int}} \subset [2;6], \frac{f/v_{ext}}{f/v_{int}} \subset [1;4], \frac{R_{ext}}{R_{int}} \subset [1;5], f/v \subset [2;15]$. Les faisceaux fibro-vasculaires de la zone subcorticale en contact avec le cortex sont de petites tailles (Fig. 7.2) mais deviennent rapidement de tailles plus importantes.

Les faisceaux fibro-vasculaires et faisceaux exclusivement fibreux. – Les faisceaux fibro-vasculaires sont Reniforma avec une partie vasculaire totalement exclue contenant deux éléments de vaisseau (Planche III, 3, 5, 7–8, 15). L'épaisseur de la paroi des fibres varie au fur et à mesure de la croissance du stipe (plus il est mature, plus elles sont épaisses). Les faisceaux fibro-vasculaires Reniforma peuvent ainsi paraître Reniforma sans sinus auriculaire chez les jeunes *Hyphaene* (Planche III, 12) alors que ce sinus est fortement développé chez les vieilles tiges. Aucune partie fibreuse ventrale, même très réduite, n'a été observée. Le parenchyme paravasculaire est très peu développé (Planche III, 3, 7, 15). Le parenchyme tabulaire est présent et le parenchyme rayonnant absent. Le phloème est en une seule bande (Planche III, 9). Les faisceaux exclusivement fibreux sont absents. Un détail des mesures des faisceaux fibro-vasculaires est présent é dans les Figs. 7.5–7.8. Les phytolithes sont sphéroïdes échinulés, présents dans tout le cylindre central mais assez peu développés en dehors de la zone subcorticale.

Le parenchyme fondamental. – Parenchyme fondamental à cellules isodiamétriques et compactes à légèrement allongées (Planche III, 6–7, 10, 12, 14–15). Ponts vasculaires (*bridges*) faiblement développés. Le parenchyme fondamental de *Bismarckia* présente une légère croissance post-primaire : les cellules sont légèrement allongées à lobées avec de petites lacunes.

Diagnose. – *Cocos-Type* (pour *Hyphaene*) à *Corypha-Type* (pour *Bismarckia*), faisceaux fibro-vasculaires Reniforma à sinus auriculaire développé et à zone vasculaire exclue, 2 éléments de vaisseau, parenchyme paravasculaire réduit, parenchyme fondamental compact à cellules isodiamétriques à légèrement allongées.

Discrimination des genres. – La seule différence observée entre ces deux genres est la spécificité de la zone centrale du cylindre central décrite pour *Bismarckia* : le parenchyme fondamental est lacunaire alors qu'il reste compact chez *Hyphaene* (Planche III, 2, 4).

Confusion possible

- Hyphaene peut être confondu avec les Sabaleae ou les Trachycarpeae lorsque le parenchyme fondamental de ces derniers est compact (croissance post-primaire non encore établie), mais il faut souligner que la majorité des genres de ces tribus présentent une partie fibreuse ventrale parfois développée et un parenchyme fondamental subissant une croissance post-primaire.
- Bismarckia peut être confondu avec les Trachycarpeae en raison de la croissance postprimaire du parenchyme. Mais les Trachycarpeae présentent souvent des faisceaux exclusivement fibreux avec une partie fibreuse ventrale et un phloème pouvant être divisé dans la zone centrale.

Matériel examiné. – Six spécimens d'*Hyphaene* ont été observés. Tous avaient la même anatomie. Un spécimen a montré que dans les jeunes tiges le sinus auriculaire peut ne pas être développé. L'homogénéité de l'anatomie de ce genre ne fait aucun doute. En revanche, un seul échantillon de *Bismarckia* a été analysé. Ce spécimen semble provenir d'une partie de stipe assez jeune (fibres d'aspect comprimé, à parois non épaissies), surtout en ce qui concerne la partie centrale. Les autres descriptions anatomiques de la littérature confirment l'identification et l'anatomie de ce spécimen (cf. infra). Cependant, pour avoir une meilleure vue de l'anatomie de cette sous-tribu, il faudrait pouvoir comparer l'anatomie des autres genres qui la composent.

Bismarckia nobilis Hildebr. & H.Wendl.; FTG, 58932F, J.B. Fisher. Hyphaene petersiana Klotzsch ex Mart.; Pers., R. Thomas sn. H. thebaica (L.) Mart.; FTG, 4351, J.B. Fisher. H. thebaica; FTG, 57538A, J.B. Fisher. H. thebaica; P, P00417274. H. thebaica; Pers., R. Thomas sn. Hyphaene sp. Gaertn.; FIP, R. Thomas sn.

Compilation bibliographique. – Tomlinson (1961) pour la description d'*Hyphaene* sans différence avec les spécimens observés. Tomlinson *et al.* (2011) pour *Hyphaene* et *Bismarckia* sans différence fondamentale. Ces auteurs confirment que *Bismarckia* possède deux éléments de vaisseau dans la partie centrale.

Légende de la planche III

Planche photographique du stipe des Hyphaeninae

1-4: Bismarckia nobilis, coupes transversales non colorées. 1. Vue d'ensemble du cortex montrant la partie la plus périphérique très subérifiée et la partie interne contenant des faisceaux exclusivement fibreux et des traces foliaires avec un parenchyme très peu conservé. 2. Vue générale de la zone de transition du cylindre central. 3. Détail des faisceaux fibro-vasculaires : 2 éléments de vaisseau avec une partie fibreuse dorsale Reniforma. 4. Détail de la zone centrale du cylindre central montrant des faisceaux fibro-vasculaires assez particuliers avec deux massifs de vaisseaux. La partie fibreuse dorsale présente la même surface que celle des faisceaux fibro-vasculaires de la zone subcorticale et si le f/v diminue c'est en raison de la surface de la partie vasculaire qui augmente légèrement dans la zone centrale. Le parenchyme présente une structure lacuneuse. 5–15 : Hyphaene. 5–6 : Hyphaene sp. 5. Faisceau fibro-vasculaire : une partie vasculaire avec 2 éléments de vaisseau, une partie fibreuse dorsale Reniforma et un parenchyme fondamental compact à cellules sphéroïdes, polissage transversal. 6. Polissage longitudinal montrant l'alignement des cellules du parenchyme dans l'axe vertical ainsi qu'un léger allongement de ces cellules dans le plan transversal. 7-11: H. petersiana, coupes transversales (7-9) et longitudinales (10-11) non colorées, lumière polarisée analysée (8–11). 7. Détail d'un faisceau fibro-vasculaire présentant la même structure qu'en 5. 8. Partie centrale du cylindre central montrant un parenchyme fondamental compact à cellules légèrement allongées. 9. Détail du phloème. 10. Coupe longitudinale montrant la limite entre la partie fibreuse dorsale et le parenchyme fondamental. Un alignement de phytolithes s'observe le long des fibres (f). Le parenchyme est compact, sphéroïde avec des parois épaisses. 11. Détail des ponctuations d'un vaisseau. 12-15: *H. thebaica*, coupes transversales (12, 14–15) et longitudinale (13) non colorées, lumière polarisée analysée (13–14) (12–13 : P00417274, 14–15 : FTG 4351). 12. Partie centrale du cylindre central : parenchyme fondamental compact à cellules sphéroïdes, éléments de vaisseau de même structure que précédemment avec un sinus auriculaire non développé (flèche, jeune stipe du fait de la paroi des fibres qui reste très mince). 13. Coupe longitudinale au niveau de la jonction entre deux faisceaux fibrovasculaires (flèche). Le phloème s'observe également (p). 14. Coupe transversale du parenchyme fondamental compact, cellules sphéroïdes. 15. Cortex de deux faisceaux fibro-vasculaires montrant l'organisation caractéristique de ce genre, safranine O fast green FCF.

Échelle — 1 mm : 1–2, 4, 6, 8, 12, 15. 500 μ m : 3, 5, 7. 200 μ m : 13–14. 50 μ m : 9–11.

PLANCHE III – Stipe des Hyphaeninae

7.3 Les Borasseae—Lataniinae

Aspect général et macroscopique du stipe. – Une différence entre la partie interne et la partie périphérique du cylindre central s'observe (Figs. 7.3–7.4) mais la variation est assez progressive (*Corypha-Type*) contrairement aux stipes *Mauritia-Type*. Les spécimens des Figs. 7.3–7.4 proviennent d'une partie assez mature d'un stipe et présentent donc des caractéristiques anatomiques bien développés (fibres très épaissies à parois multiples, parenchyme sclérifié). Le cortex est nettement divisé en deux zones.

FIGURE 7.3 – Polissage transversal de Borassus flabellifer. Partie médiane de la tige. Échelle : 1cm.

FIGURE 7.4 – Polissage transversal de Lodoicea maldivica. Partie médiane de la tige. Échelle : 1cm.

Le cortex Il est très large (plusieurs millimètres à quelques centimètres pour une tige mature, Fig. 7.3). Au niveau des zones matures des tiges, il peut être divisé en deux parties nettement distinctes de par la subérification des cellules de parenchyme (Figs. 7.3–7.4, Planche IV, 5, 12–13). Aucun alignement de cellules n'a été observé dans les parties les plus externes du cortex.

Le cylindre central Corypha-Type (quelques tendances au Cocos-Type). Le ratio fibrovasculaire diminue légèrement entre la zone subcorticale et la zone centrale. $\frac{d(FFV)_{ext}}{d(FFV)_{int}} \subset [2;6], \frac{f/v_{ext}}{f/v_{int}} \subset [1;4], \frac{R_{ext}}{R_{int}} \subset [1;4], f/v \subset [1;15]$. Les faisceaux fibro-vasculaires de la zone subcorticale en contact avec le cortex sont d'une taille plus petite que les faisceaux fibrovasculaires se situant plus vers le centre (comme pour *Hyphaene*). Cette taille augmente assez rapidement vers l'intérieur de la zone subcorticale.

Les faisceaux fibro-vasculaires et faisceaux exclusivement fibreux. – Les faisceaux fibro-vasculaires sont Reniforma à Lunaria (Planche IV, 3, 10–11, 15–16) avec une partie vasculaire pouvant être incluse entre les deux lobes auriculaires et ne contenant qu'un seul élément de vaisseau. Comme le montre la Fig. 7.3 et la Planche IV, 6, la partie fibreuse dorsale des faisceaux fibro-vasculaires de la zone subcorticale peut être allongée radialement. Il a cependant été observé un spécimen de *Latania loddigesii* avec deux éléments de vaisseau, ce qui tendrait à rapprocher ce genre des *Hyphaeninae*. Le phloème n'est jamais partitionné. Les faisceaux exclusivement fibreux n'ont été observés que chez *Lodoicea* (Planche IV, 15) mais en très faible concentration ($< 23/cm^2$, diamètre (min, m, max) = 58 µm, 94 µm, 120 µm). Le parenchyme paravasculaire est généralement très développé (Planche IV, 11, 15) tandis que le parenchyme tabulaire l'est moins. Les phytolithes sont très abondants (sphéroïdes échinulés) dans tout le cylindre central.

Le parenchyme fondamental. – Il est assez homogène sans être compact et est constitué de cellules légèrement allongées formant un réseau irrégulier de petites lacunes (Planche IV, 4–5).

Diagnose. – *Corypha-Type*, faisceaux fibro-vasculaires Reniforma à Lunaria à zone vasculaire légèrement incluse, 1 élément de vaisseau, parenchyme fondamental à cellules légèrement allongées et lobées formant un réseau irrégulier de petites lacunes.

Discrimination des genres. – Cette tribu présente une certaine homogénéité et il n'est pas possible d'élaborer rigoureusement une combinaison d'états de descripteurs permettant de les discriminer. Il faut à la rigueur souligner que *Lodoicea* est le seul genre à posséder des faisceaux exclusivement fibreux.

Confusion possible. – En l'état actuelle des connaissances, seul *Corypha* semble pouvoir être confondu avec cette sous-tribu.

Matériel examiné. – Les trois *Borassus* présentent la même anatomie. En revanche, sur les deux *Latania* observés, il y en a un (FTG 75460) qui présente deux éléments de vaisseau alors que l'autre n'en présente qu'un seul. Les lames observées à la xylothèque de Tervuren ne montrent qu'un seul élément de vaisseau. Il faudrait donc réaliser d'autres prélèvements afin d'apporter des précisions sur le nombre de ces éléments de vaisseau.

Borassus aethiopum Mart.; MRAC, Tw 21135, T. Coget 62. B. flabellifer L.; MRAC (BFH), Tw 44445 (BFHw 6788), Kersting sn. Borassus sp. L.; Pers., R. Thomas sn. Latania loddigesii Mart.; FTG, 75460, J.B. Fisher. L. verschaffeltii Lem.; K, EBC 26292, I.B. Balfour sn. Lodoicea maldivica (J.F.Gmel.) Pers.; P, P00393129. L. maldivica; P, P00396782. L. maldivica; Pers., R. Thomas sn.

Compilation bibliographique. – Tomlinson (1961) pour *Borassus* et *Lodoicea*. La principale différence réside dans le fait qu'il observe deux éléments de vaisseau pour *Lodoicea*. Cette différence est parfois observée. En effet, Tomlinson (1961), sans le spécifier, semble décrire des parties apicales proche de l'apex puisque l'épiderme est souvent décrit alors que, la plupart du temps chez les *Coryphoideae*, il est remplacé par une épaisse couche de cellules à parois subérifiées. Tomlinson *et al.* (2011) pour *Lodoicea* et *Borassus*, sans différence.

Statistiques descriptives (ensemble des Borasseae). – Les graphiques des Figs. 7.5–7.8 présentent des mesures réalisées chez les spécimens échantillonnés. Comme il a été expliqué dans la section 5.6 relative aux mesures, aucune information taxinomique ne peut en être tirée. Pour s'en convaincre, il suffit de se reporter à la Fig. 7.7 et de comparer les différents spécimens d'*Hyphaene thebaica* (A et B) qui possèdent des valeurs très différentes pour le ratio fibro-vasculaire. *Lodoicea* possède des faisceaux fibro-vasculaires qui présentent un grande homogénéité dans tout le cylindre central.

FIGURE 7.5 – Dimensions des faisceaux fibro-vasculaires. H. thebaica A : FTG 4351, B : P 00417274. L. maldivica A : P00393129, B : P00396782.

FIGURE 7.6 – Diamètre des vaisseaux, *H. thebaica* A : FTG 4351, B : P 00417274. *L. maldivica* A : P00393129, B : P00396782.

FIGURE 7.7 – Ratio fibro-vasculaire, H. thebaica A : FTG 4351, B : P 00417274. L. maldivica A : P00393129, B : P00396782.

FIGURE 7.8 – Ratio fibro-vasculaire, H. thebaica A : FTG 4351 (croix), H. petersiana (triangle), Latania loddigesi, Lodoicea maldivica P00393129 (croix), Lodoicea maldivica P 00396782 (cercle).

Légende de la planche IV

Planche photographique du stipe des Lataniinae

1-8: Borassus. 1-2: Borassus sp., coupes transversales non colorées. 1. Zone subcorticale. 2. Zone centrale. Il est à remarquer que dans ces deux zones, l'organisation est similaire : un élément de vaisseau, partie fibreuse dorsale Reniforma et parenchyme à lacunes de petites tailles. La taille de la partie fibreuse dorsale est plus importante en zone subcorticale. Une fine bande de parenchyme tabulaire peut s'observer. Le parenchyme paravasculaire est légèrement plus développé que chez les Hyphaeninae. 3-4: B. aethiopum, polissages transversaux. 3. Détail d'un faisceau fibro-vasculaire ayant la même structure que précédemment. 4. Détail du parenchyme fondamental montrant nettement la structure lacunaire. Les cellules ainsi que les lacunes restent de petites tailles (< 200 μ m). **5–8** : *B. flabellifer*, polissages transversaux (5–7) et longitudinal (8). 5. Détail du cortex montrant nettement deux zones : la plus externe étant subérifiée et sans élément conducteur, la plus interne, au parenchyme non subérifié et contenant des traces foliaires. Le passage du cortex au cylindre central se fait instantanément. 6. Zone subcorticale. Uniquement la partie la plus externe est composée de faisceaux fibro-vasculaires de petites tailles, les autres ayant une taille beaucoup plus grande (5 à 10 fois supérieure). 7. Détail de la zone centrale (même structure que 2 et 3). 8. Polissage longitudinal montrant l'allongement transversal des cellules ainsi que les lacunes. 9–11 : Latania verschaffeltii. 9. Polissage transversal de la zone subcorticale du cylindre central. 10. Détail d'un faisceau fibro-vasculaire : Reniforma à Lunaria à zone vasculaire légèrement incluse entre les deux lobes auriculaires. Un seul (parfois deux) élément(s) de vaisseau par faisceau fibro-vasculaire. Le parenchyme présente quelques lacunes, polissage transversal. 11. Un autre spécimen de la même espèce présente la même anatomie que dans le cas précédent, coupe transversale safranine O. 12–16 : Lodoicea maldivica, coupes transversales non colorées sauf 16, Safranine O (12–15 : P 00393129, 16 : Pers., R. Thomas sn). 12. Cortex divisé en deux parties (cf. 5). 13. Détail du cortex au niveau de la limite de la zone subérifiée à cellules à parois très épaissies contenant des faisceaux exclusivement fibreux et de la zone à cellules à parois minces contenant à la fois des traces foliaires et des faisceaux exclusivement fibreux. 14. Cylindre central. 15. Détail d'un faisceau fibro-vasculaire, d'un faisceau exclusivement fibreux (fef) et d'un pont vasculaire (br). La partie vasculaire est totalement exclue de la partie fibreuse et ne contient qu'un seul élément de vaisseau avec un parenchyme paravasculaire très développé. 16. Un autre spécimen de la même espèce présente les mêmes caractéristiques anatomiques.

Abréviations utilisées — br : pont vasculaire (bridge), cc : cylindre central, ct : cortex, ext : vers l'extérieur.

Échelle — 2 mm : 1–2, 5–7, 9, 12, 14. 500 μ m : 3, 10–11, 15–16. 200 μ m : 4, 8, 13.

PLANCHE IV – Stipe des Lataniinae

7.4 Les Caryoteae

Aspect général et macroscopique du stipe. – Figs. 7.9–7.13. Tous les stipes présentent la même organisation générale, à savoir, un cortex très mince, une zone subcorticale avec des faisceaux fibro-vasculaires dont la partie fibreuse dorsale présente une surface très importante, une zone de transition assez étroite où la surface de la partie fibreuse dorsale diminue et une zone centrale où les faisceaux fibro-vasculaires sont très espacés avec un parenchyme lacunaire à forte croissance post-primaire.

FIGURE 7.9 – Polissage transversal d'Arenga microcarpa. La partie centrale n'est pas conservée. Partie médiane de la tige (fibres toutes fortement lignifiées). Échelle : 5 mm.

FIGURE 7.10 - Polissage transversal de Caryota mitis. La partie centrale n'est pas conservée. Partie basale de la tige sans cortex, au niveau de l'insertion des racines. Échelle : 5 cm.

Le cortex. – Il est très mince (Planche V, 1, 8, 11, 15) et est composé de gros faisceaux exclusivement fibreux et de petits faisceaux fibro-vasculaires. L'épiderme est souvent

FIGURE 7.11 – Polissage transversal de Caryota urens. Zone de transition. Partie médiane. Échelle : 1 cm.

FIGURE 7.12 – Polissage transversal de *Caryota zebrina*. Partie médiane. Échelle : 5 mm.

FIGURE 7.13 – Polissage transversal de *Wallichia disticha*. Partie médiane–apicale. Échelle : 5 mm.

conservé et les cellules sont de forme conique (dans le plan transversal). Poils multicellulaires présents (Planche V, 14).

Le cylindre central. – L'organisation générale est Mauritia-Type (Planche V, 1–2, 9– 10, 11–13, 18–19) avec une certaine tendance Corypha-Type. $\frac{d(FFV)_{ext}}{d(FFV)_{int}} \subset [3;8], \frac{f/v_{ext}}{f/v_{int}} \subset [10;50], \frac{R_{ext}}{R_{int}} \subset [10;50], f/v \subset [0,5;30].$

Les faisceaux fibro-vasculaires et faisceaux exclusivement fibreux. – Les faisceaux fibro-vasculaires sont Reniforma (Planche V, 3–6, 10, 15–19), tendance à Sagittata lorsque la partie fibreuse dorsale est allongée au niveau de la zone subcorticale. Les faisceaux fibro-vasculaires possèdent une partie vasculaire contenant 1(2) élément(s) de vaisseau. Deux éléments de vaisseau sont souvent observés au niveau de la zone centrale (Planche V, 13, 19) alors qu'il n'y en a qu'un seul au niveau des zones plus externes. Phloème non partitionné. Les faisceaux exclusivement fibreux sont présents (observés chez Arenga et Wallichia, Planche V, 17) avec une densité assez faible ($< 40 \text{ cm}^2$). C'est la seule tribu des Coryphoideae à posséder des phytolithes trapéziformes (ex-en chapeau) d'assez grande taille (jusqu'à 30 × 20 µm) avec échinules (de type intermédiaire). Ces derniers sont majoritairement présents sur les faisceaux fibro-vasculaires de la zone subcorticale, quasiment absent de la zone de transition et très peu développés dans la zone centrale (parfois quasiment absents). Le parenchyme para fibro-vasculaire est absent (pas de parenchyme tabulaire ni de parenchyme rayonnant). Un parenchyme appendiculaire est observé (Planche V, 4).

Le parenchyme fondamental. – Il est constitué de cellules à très forte croissance post-primaire pour *Caryota* (Planche V, 7, 19) avec des lacunes dans la partie centrale. Les cellules situées au niveau de la zone subcorticale (Planche V, 8) peuvent présenter une très forte croissance tangentielle. Les deux autres genres semblent présenter une croissance post-primaire moins soutenue.

Statistiques descriptives. – Les graphiques des Figs. 7.14–7.17 présentent des mesures réalisées chez les spécimens échantillonnés. Ces données montrent clairement que la diminution du ratio fibro-vasculaire est plus lente que pour les stipes *Mauritia-Type* mais présente les mêmes valeurs extrêmes. Les diamètres des vaisseaux sont parmi les plus importants des *Coryphoideae*.

Diagnose. – *Mauritia-Type*, partie fibreuse dorsale Reniforma, zone vasculaire incluse (au niveau de la zone subcorticale) à exclue (au niveau de la zone centrale) à 1(2) élément(s) de vaisseau, parenchyme fondamental à cellules allongées / cellules à forte croissance, cortex très étroit à épiderme à cellules coniques, poils épidermiques multicellulaires, phytolithes trapéziformes (ex-en chapeau) avec échinules.

Discrimination des genres. – À part la présence de faisceaux exclusivement fibreux observés uniquement chez *Arenga* et *Wallichia*, il n'est pas possible de réaliser une discrimination au sein de la tribu.

Confusion possible. – Cette tribu ne peut pas être confondue avec une autre. En effet, même si des phytolithes de même type peuvent se retrouver chez les *Arecoideae* (*Bactridinae* et *Iriarteeae*, sauf *Socratea* H.Karst.), ces tribus sont clairement *Mauritia-Type*, possèdent des phytolithes trapéziformes de petites tailles (jusqu'à $20 \times 15 \mu$ m) et n'ont quasiment pas de phytolithes de type intermédiaires.

FIGURE 7.14 – Dimensions des faisceaux fibro-vasculaires. C. mitis : P00415737.

FIGURE 7.15 – Diamètre des vaisseaux. C. mitis : P00415737.

FIGURE 7.16 – Ratio fibro-vasculaire. C. mitis : P00415737.

FIGURE 7.17 - Ratio fibro-vasculaire. C. rumphiana (carré), C. zebrina (triangle).

Matériel examiné. – Cette tribu présente une grande homogénéité et les trois genres étudiés ont la même anatomie.

Arenga microcarpa Becc.; K, EBC 26220, R. Schodde, L.A. Craven 4475. Caryota mitis Lour.; MRAC, Tw 57757, M. Soler sn. C. mitis; P, P00415737. C. rumphiana Mart.; FTG, 81567B, J.B. Fisher. C. urens L.; MRAC (MAD), Tw43280 (52948 YW), A.F. Wilson sn. C. zebrina Hambali et al.; K, Heatubun et al. CH273. Wallichia disticha T.Anderson; K, EBC 26359.

Compilation bibliographique. – Tomlinson (1961) pour les trois genres. Il n'y a pas de différence fondamentale avec ces descriptions. P.B. Tomlinson ne mentionne pas que les faisceaux fibro-vasculaires n'ont qu'un seul élément de vaisseau au niveau de la zone subcorticale. Tomlinson *et al.* (2011) pour les trois genres. Une différence réside dans le fait qu'il indique que *Caryota* ne possède qu'un seul élément de vaisseau.

Légende de la planche V Planche photographique du stipe des *Caryoteae*

1-3: Arenga microcarpa, polissages transversaux. 1. Détail du cortex et de la zone subcorticale. Le cortex est très étroit ($< 500 \ \mu m$), la transition cortex-cylindre central est instantanée. La partie fibreuse dorsale des faisceaux fibro-vasculaires du cylindre central est très allongée radialement et les ffv apparaissent comme étant disposés en quinconce. Le f/v est très élevé (> 20). 2. Détail de la zone de transition vers la zone centrale. Le ratio fibro-vasculaire est beaucoup plus faible que précédemment (< 3), la partie fibreuse dorsale est Reniforma, la partie vasculaire ne contient qu'un élément de vaisseau. Vers la partie centrale de la tige, le parenchyme fondamental présente quelques allongements. 3. Un faisceau fibro-vasculaire de même structure que précédemment avec une zone vasculaire plus ou moins incluse entre les lobes auriculaires. Ici le parenchyme est compact. 4-14 : Caryota. 4 : C. urens. Détail de la zone de transition : la partie fibreuse dorsale des faisceaux fibrovasculaires est Reniforma et présente nettement une différenciation centrifuge des fibres, un parenchyme appendiculaire est visible et relie les différentes zones vasculaires, polissage transversal. 5–7: C. mitis, coupes transversales non colorées. 5. Faisceaux fibro-vasculaires de la zone subcorticale, les faisceaux fibro-vasculaires sont très rapprochés et le parenchyme fondamental ne présente pas de modification majeure, quelques cloisonnements (divisions cellulaires) tardifs sont cependant visibles (flèche). 6. Détail d'un faisceau fibro-vasculaire de la zone subcorticale du cylindre central. La partie fibreuse dorsale est Reniforma, la partie vasculaire est incluse entre les deux lobes auriculaires, ces derniers ainsi que les sinus auriculaires sont très développés. Faisceau fibro-vasculaire présentant les caractéristiques d'une croissance centrifuge de la partie fibreuse dorsale. Les fibres du centre (a) ont une coupe transversale circulaire présentant une structure avec des parois multiples tandis que les fibres de la périphérie (b) sont très allongées en direction du centre de la partie fibreuse dorsale avec une ou deux parois. Les cellules du parenchyme fondamental sont à parois épaissies et un cloisonnement de ces cellules à proximité de la partie fibreuse dorsale est observé (flèche). 7. Détail du parenchyme fondamental au niveau de la zone de transition présentant un fort allongement. 8–10 : C. zebrina, polissages transversaux. 8. Détail du cortex et de la zone subcorticale. Organisation similaire à 1. Les cellules du parenchyme fondamental présentent un fort allongement tangentiel. 9. Détail d'un faisceau fibro-vasculaire de la zone subcorticale présentant les caractéristiques d'une croissance centrifuge de la partie fibreuse dorsale (cf. 6). 10. Détail d'un faisceau fibro-vasculaire de la zone centrale. 11–14 : C. rumphiana, coupes transversales non colorées. 11. Détail du cortex et de la zone subcorticale. 12. Détail de la zone de transition. 13. Détail de la zone centrale. 14. Poil multicellulaire et cellules épidermique en cône (flèche). 15–19 : Wallichia disticha, polissages transversaux. 15. Détail du cortex et de la zone subcorticale. 16. Faisceaux fibro-vasculaires de la zone de transition. 17. Faisceau fibro-vasculaire de la zone centrale et faisceau exclusivement fibreux. 18. Détail du cortex et de la zone subcorticale. 19. Détail de la zone centrale.

Abréviations utilisées — cc : cylindre central, ct : cortex, ext : vers l'extérieur, fef : faisceaux exclusivement fibreux, int : vers l'intérieur, la : lobe auriculaire, sa : sinus auriculaire. Échelle — 2 mm : 1–2, 4, 8, 11–13, 18–19. 1 mm : 3, 5–7. 500 µm : 9–10, 15–17. 100 µm : 14.

Planche V – Stipe des Caryoteae

7.5 Les Chuniophoeniceae

Il sera impossible, pour cette tribu, de réaliser une diagnose commune aux genres examinés tant ils sont différents. En effet, seulement deux des quatre genres ont été analysés (*Chuniophoenix* et *Nannorrhops*) et il ne partagent aucun état de descripteur.

Aspect général et macroscopique du stipe. – Les deux stipes sont très différents : celui de *Chuniophoenix* (Planche VI, 1, 7) fait quelques millimètres de diamètre alors que celui de *Nannorrhops* peut atteindre 15 cm de diamètre et plus.

Le cortex

Chuniophoenix Le cortex est très étroit ($< 300 \ \mu m$) et ne contient que des faisceaux exclusivement fibreux (Planche VI, 2–3).

Nannorrhops Le cortex est très large (> 5 mm) et possède une sorte d'écorce subérifiée (Planche VI, 6–7) avec localement quelques divisions cellulaires qui font apparaître un alignement de 4–6 cellules.

Le cylindre central

Chuniophoenix Geonoma-Type : $\frac{d(FFV)_{ext}}{d(FFV)_{int}} \subset [2;4], \frac{f/v_{ext}}{f/v_{int}} \subset [7;12], \frac{R_{ext}}{R_{int}} \subset [4;7], f/v \subset [1;10]$ (Planche VI, 1–2).

Nannorrhops Cocos-Type : $\frac{d(FFV)_{ext}}{d(FFV)_{int}} \subset [1;2], \ \frac{f/v_{ext}}{f/v_{int}} \subset [1;2], \ \frac{R_{ext}}{R_{int}} \subset [1;3], \ f/v \subset [1,5;3]$ (Planche VI, 7).

Les faisceaux fibro-vasculaires et faisceaux exclusivement fibreux. – Les faisceaux exclusivement fibreux sont présents avec une densité assez faible (< 30/cm) (Planche VI, 12). Les faisceaux fibro-vasculaires possèdent majoritairement deux éléments de vaisseau (Planche VI, 10–11). Le phloème n'est pas partitionné.

Chuniophoenix Les faisceaux fibro-vasculaires ont une partie fibreuse dorsale Reniforma et ont une partie fibreuse ventrale légèrement développée dans la zone centrale (Planche VI, 5). **Nannorrhops** Partie fibreuse dorsale Lunaria à Reniforma (Planche VI, 10, 12) (rares cas Vaginata, Planche VI, 11). C'est un cas typique où le polissage (qui donne un résultat proche de celui des préparations fossiles par polissage ou de l'analyse des charbons) et les lames minces donnent des résultats différents. La partie fibreuse ventrale est visible pour le polissage alors qu'elle est absente ou très peu prononcée lors de l'observation de lames minces. Les phytolithes sont sphériques échinulés et sont fortement développés dans tout le cylindre central chez Nannorrhops.

Le parenchyme fondamental

Chuniophoenix Il est compact (petites cellules isodiamétriques) avec des lacunes apparaissant au niveau de la zone centrale du cylindre central (Planche VI, 5). Ces lacunes peuvent être dues au déchirement du parenchyme fondamental suite à son dessèchement.

Nannorrhops Les cellules de parenchyme peuvent présenter un léger étirement rayonnant autour des faisceaux fibro-vasculaires mais sont généralement sphéroïdes (Planche VI, 8). Au niveau de la zone centrale les cellules peuvent collapser suite au dessèchement ce qui ne rend pas facile leur observation (Planche VI, 12).

Statistiques descriptives. – Les graphiques des Figs. 7.18–7.21 présentent des mesures réalisées chez les spécimens échantillonnés. Les deux genres ne présentent pas la même organisation. En effet, la Fig. 7.21 montre clairement que *Nannorrhops* a un ratio fibro-vasculaire constant alors que *Chuniophoenix* présente une forte diminution de ce ratio dès la périphérie du cylindre central. Le diamètre des vaisseaux (particulièrement ceux de *Chuniophoenix*) est parmi les plus faibles chez les *Coryphoideae*.

Diagnose. – En raison de l'hétérogénéité des deux genres étudiés, aucune diagnose commune ne sera proposée.

Chuniophoenix Cortex étroit ne contenant que des faisceaux exclusivement fibreux, *Geonoma-Type*, partie fibreuse Reniforma, 2 éléments de vaisseau, partie fibreuse ventrale, parenchyme fondamental compact à cellules isodiamétriques, quelques lacunes au niveau de la zone centrale, faisceaux exclusivement fibreux.

Nannorrhops Cortex large, *Cocos-Type*, partie fibreuse Lunaria à Reniforma, 2 éléments de vaisseau, partie fibreuse ventrale parfois présente, faisceaux exclusivement fibreux.

Discrimination des genres. – Cf. descriptions précédentes.

FIGURE 7.18 – Dimensions des faisceaux fibro-vasculaires.

Confusion possible

Chuniophoenix Ce genre est anatomiquement proche de *Rhapis* (cf. 7.11, p. 249). La différence réside au niveau du cylindre central qui, chez *Rhapis*, a une partie fibreuse ventrale très développée et un phloème divisé en deux parties. Le cortex de *Rhapis* possède à la fois des faisceaux exclusivement fibreux, des faisceaux fibro-vasculaires alors que celui de *Chuniophoenix* ne possède que des faisceaux exclusivement fibreux.

Nannorrhops Ce genre partage des états de certains descripteurs en commun avec *Phoenix*. Se reporter à la description des *Phoeniceae* (7.8, p. 223).

Matériel examiné. – Chuniophoenix nana Burret; K, S.F. Li 785. Nannorrhops ritchieana (Griff.) Aitch.; Pers., R. Thomas sn.

Il est à souligner que seul un spécimen par genre a été étudié. Il faudrait se procurer d'autres échantillons (notamment pour la description du parenchyme fondamental de *Nan*-

FIGURE 7.19 – Diamètre des vaisseaux.

FIGURE 7.20 – Ratio fibro-vasculaire.

FIGURE 7.21 – Ratio fibro-vasculaire chez les Chuniophoeniceae.

norrhops), mais des spécimens de ces genres sont assez difficiles à obtenir. En effet, l'aire de répartition de *Nannorrhops* est restreinte et d'accès délicat (Iran, Afghanistan, Pakistan, péninsule arabique). Les deux autres genres de la tribu pourraient fournir d'intéressantes informations sur les caractéristiques anatomiques de la tribu. Mais *Kerriodoxa* n'est connu que dans une petite localité de la péninsule thaïlandaise et la seule population de *Tahina* est composée de 91 individus au Nord–Ouest de Madagascar.

Compilation bibliographique. – Tomlinson *et al.* (2011) pour *Nannorrhops*. L'anatomie décrite diffère légèrement : selon les auteurs, il n'y a pas de faisceaux exclusivement fibreux et le parenchyme fondamental aurait une croissance post-primaire marquée avec des cellules nettement allongées autour de chaque faisceau fibro-vasculaire.
Légende de la planche VI

Planche photographique du stipe des Chuniophoeniceae

1-5 : Chuniophoenix nana, polissages transversaux. 1. Coupe transversale du stipe. 2. Détail de la section transversale. Le cortex est très étroit et ne contient que des faisceaux exclusivement fibreux. La transition vers le cylindre central est instantanée. Les faisceaux fibro-vasculaires de la zone subcorticale sont congestionnés sur une faible longueur (1 mm) puis la transition (tz) vers la zone centrale (cz) est très rapide. 3. Détail du cortex et de la zone subcorticale, la partie la plus périphérique est constituée de trace foliaires (ls). Les faisceaux fibro-vasculaires ont une partie fibreuse ventrale légèrement développée. 4. Détail de la zone de transition montrant le passage d'une zone où les faisceaux fibro-vasculaires ont une partie fibreuse dorsale Reniforma à surface importante à une zone où les faisceaux fibro-vasculaires ont une partie fibreuse dorsale Reniforma à surface très réduite. 5. Zone centrale. Faisceaux fibro-vasculaires avec une partie fibreuse ventrale développée. 6-13 : Nannorrhops ritchieana, coupes transversales non colorées (6-10, 12) et polissages transversaux (11, 13). 6. Détail du cortex. La zone la plus externe est constituée d'une couche de cellules subérifiées. Un cloisonnement péricline des cellules peut s'observer (par groupe de 4–5). 7. Vue général de la partie périphérique de la tige : le cortex et la zone subcorticale du cylindre central. 8. Détail de la zone subcorticale. 9. Détail de la zone centrale. La répartition des faisceaux fibro-vasculaires reste assez homogène le long d'une section radiale du plan transversal. 10. Détail d'un faisceau fibro-vasculaire : Reniforma à 2 éléments de vaisseau et au parenchyme paravasculaire très développé. 11. Un faisceau fibro-vasculaire Lunaria à 2 éléments de vaisseau et à la partie fibreuse ventrale légèrement développée. 12. Faisceaux fibro-vasculaires de la zone centrale : les cellules de parenchyme sont collapsées et forment de longs filaments entre les faisceaux fibro-vasculaires. 13. Détail d'un faisceau fibro-vasculaire et d'un faisceau exclusivement fibreux.

Abréviations utilisées — ct : cortex, cz : zone centrale, ls : trace foliaire, sz : zone subcorticale, tz : zone de transition.

Échelle — 2 mm : 1–2, 7–9. 500 μ m : 3–6, 12. 200 μ m : 10–11, 13.

 $\label{eq:Planche VI-Stipe des Chuniophoeniceae} Planche VI-Stipe des Chuniophoeniceae$

7.6 Les Corypheae

Les Corypheae ne contiennent qu'un seul genre (Corypha).

Aspect général et macroscopique du stipe. – Seule une partie du cylindre central a pu être échantillonnée. La partie concerne la zone de transition (Planche VII, 1) d'une partie de tige mature (fibres fortement sclérifiées).

Le cortex. – Selon Tomlinson *et al.* (2011), il est assez étroit et inclut de nombreux faisceaux exclusivement fibreux et faisceaux fibro-vasculaires.

Le cylindre central. – Corypha-Type : $\frac{d(FFV)_{ext}}{d(FFV)_{int}} \subset [3;6], \frac{f/v_{ext}}{f/v_{int}} \subset [4;15], \frac{R_{ext}}{R_{int}} \subset [4;10], f/v \subset [1,5;3]$. Planche VII, 1–3. Les faisceaux fibro-vasculaires ont une partie fibreuse dorsale radialement allongée au niveau des zones les plus périphériques (zone subcorticale et zone de transition).

Les faisceaux fibro-vasculaires et faisceaux exclusivement fibreux. – Les faisceaux fibro-vasculaires ont une partie fibreuse dorsale Reniforma à Sagittata (Planche VII, 4–6) avec une zone vasculaire nettement exclue des lobes auriculaires ne contenant qu'un élément de vaisseau. Le phloème n'est pas partitionné. Les faisceaux exclusivement fibreux sont présents en faible densité ($< 50/\text{cm}^2$). Les phytolithes sont sphéroïdes échinulés.

Le parenchyme fondamental. – Il est constitué d'un réseau irrégulier de cellules lobées, rhomboédriques à légèrement allongées formant des petites lacunes ($< 200 \ \mu m$).

H_{max}	l_{max}	H_{vasc}	l_{vasc}	f/v	vaisseaux
Min. : 1058	Min. : 768.4	Min. : 255.6	Min. : 261.1	Min. : 4.781	Min. : 158.1
1st Qu. : 1383	1st Qu. : 1095.1	1st Qu. : 362.1	1st Qu. : 368.4	1st Qu. : 8.357	1st Qu. : 216.3
Median : 1582	Median : 1333.2	Median : 409.2	Median : 434.2	Median : 9.527	Median : 251.5
Mean : 1618	Mean : 1367.3	Mean : 420.1	Mean : 466.2	Mean : 11.278	Mean : 267.6
3rd Qu. : 1835	3rd Qu. : 1636.5	3rd Qu. : 486.1	3rd Qu. : 586.2	3rd Qu. : 13.576	3rd Qu. : 320.9
Max. : 2205	Max. : 1933.5	Max. : 618.1	Max. : 661.1	Max. : 28.130	Max. : 470.1

Statistiques descriptives

Diagnose. – *Corypha-Type*, partie fibreuse dorsale Reniforma / Sagittata, 1 élément de vaisseau, parenchyme fondamental à cellules légèrement allongées et lobées formant un réseau irrégulier de petites lacunes, faisceaux exclusivement fibreux.

Confusion possible. – Voir les Lataniinae (7.3).

Matériel examiné. – *Corypha umbraculifera* L.; MRAC (MAD), Tw43268 (50273 SJRW), C.H. Holmes sn. D'autres échantillons ont également été observés notamment à Kew et confirment l'anatomie décrite ci-dessus.

Compilation bibliographique. – Très partiellement décrit dans Ambwani et Mehrotra (1989), ne permet pas la comparaison. Tomlinson *et al.* (2011) abordent également rapidement ce genre et ceci permet de compléter la description de l'unique spécimen présenté ici. Notamment en ce qui concerne le cortex qui n'était pas conservé dans cette étude. En revanche, ces auteurs mentionnent la présence de deux éléments de vaisseau alors que les échantillons observés dans les diverses collections de lames ainsi que l'article de Ambwani et Mehrotra (1989) confirment le fait que les faisceaux fibro-vasculaires ont un seul élément de vaisseau. Des études complémentaires sont nécessaires.

Légende de la planche VII

Planche photographique du stipe des Corypheae

1-6: Corypha umbraculifera, polissages transversaux. 1. Passage de la zone subcorticale (sz) à la zone centrale (cz) : la partie fibreuse dorsale des faisceaux fibro-vasculaires dans la zone subcorticale présente une surface nettement plus importante que celle des faisceaux fibro-vasculaires de la zone centrale. 2. Détail de la zone subcorticale. 3. Détail du passage de la zone subcorticale à la zone centrale. Les faisceaux fibro-vasculaires sont Reniforma. 4–5. Détail de faisceaux fibro-vasculaires de la zone subcorticale : la partie fibreuse dorsale est étirée (4) tangentiellement, zone vasculaire exclue à 1 élément de vaisseau. 6. Détail de faisceaux fibro-vasculaires de la zone centrale : Reniforma à 1 élément de vaisseau. Le parenchyme est assez dégradé, mais laisse entrevoir une structure lacuneuse. La flèche indique un faisceau exclusivement fibreux.

Abréviations utilisées — cz : zone centrale, sz : zone subdermale. Échelle — 5 mm : 1. 2 mm : 2-3. 500 µm : 4-6.

PLANCHE VII – Stipe des Corypheae

7.7 Les Cryosophileae

Aspect général et macroscopique du stipe. – Le cylindre central est un des plus homogène des palmiers 7.22–7.25. Il n'y a quasiment aucune différence de densité entre la zone subcorticale et la zone centrale.

FIGURE 7.22 – Polissage transversal de Chelyocarpus dianeurus. Échelle : 1 cm.

FIGURE 7.23 – Polissage transversal de Coccothrinax barbadensis. Échelle : 1 cm.

FIGURE 7.24 – Polissage transversal de Hemithrinax compacta. Échelle : 1 cm.

Le cortex. – Il est large (> 1 mm) : Planche VIII, 1, 5, 12, Planche IX, 1, 10, 13. Il est de taille généralement inférieure au cortex des *Borasseae*, des *Trachycarpeae*, des *Sabaleae* et des *Phoeniceae*. La zone la plus externe peut parfois être légèrement subérifiée mais sur une épaisseur beaucoup moins importante que les *Borasseae*. Tomlinson *et al.* (2011) citent la présence possible de trichomes à base multisériée.

FIGURE 7.25 – Polissage transversal de *Thrinax radiata*. Flèche chemin laissé par une trace foliaire visible plus à gauche (trois sont nettement visibles). Échelle : 1 cm.

Le cylindre central. – Cocos-Type très prononcé (cylindre central très homogène) : $\frac{d(FFV)_{ext}}{d(FFV)_{int}} \subset [1;3], \frac{f/v_{ext}}{f/v_{int}} \subset [1;5], \frac{R_{ext}}{R_{int}} \subset [1;3], f/v \subset [2;15]$. Planche VIII, 2–3, 6–7, 14–15, Planche IX, 1–2, 5–6, 11–12.

Les faisceaux fibro-vasculaires et faisceaux exclusivement fibreux. – La partie fibreuse dorsale est Vaginata (Planche VIII, 4, 8, Planche IX, 3, 7–9). Lorsque les spécimens sont jeunes, cette partie fibreuse dorsale peut apparaître Lunaria à Reniforma (Planche IX, 16–17). En effet, les fibres (ou les cellules) adjacentes au xylème ne sont pas encore développées (ou sclérifiées). Le nombre d'éléments de vaisseau est variable. Les faisceaux fibro-vasculaires ont une forme quasi circulaire (sans sinus auriculaire). Un élément de vaisseau est observé chez Chelyocarpus (Planche VIII, 4), plus de quatre éléments de vaisseau (généralement entre sept et dix) pour Coccothrinax (Planche VIII, 6–8, 13–15) et deux pour les autres genres observés (Planche IX, 3-4, 7-9). Il est à noter que Thrinax peut présenter des faisceaux fibro-vasculaires avec plus de deux éléments de vaisseau (jusqu'à quatre, Planche IX, 15–17). Le parenchyme paravasculaire est réduit à une bande de parenchyme circumvasculaire (Planche VIII, 4, 8, Planche IX, 8–9). Le phloème est assez réduit et non partitionné. Les ponts vasculaires sont présents (Planche VIII, 9–11) et les faisceaux exclusivement fibreux présents chez Coccothrinax (Planche VIII, 8). Le parenchyme tabulaire est présent (Planche VIII, 8, 14, Planche VIII, 9). La structure vasculaire figurée Planche VIII, 11 n'a pas été observée chez les autres tribus : un type de division des faisceaux fibro-vasculaires donnant naissance à des ponts vasculaires. Ces divisions et ces structures sont bien connues (Tomlinson 1990) mais cette organisation est spécifique aux Cryosophileae. Les phytolithes sphéroïdes échinulés sont développés dans tout le cylindre central.

Le parenchyme fondamental. – Il est compact et est composé de cellules isodiamétriques (Planche VIII, 4, 8, Planche IX, 7–9) à légèrement allongées pour les tiges d'âge avancé (Planche VIII, 13–15, Planche IX, 14–15). De petites lacunes peuvent alors se retrouver dans la zone centrale au niveau de la base des stipes.

Statistiques descriptives. – Les graphiques des Figs. 7.26–7.29 présentent des mesures réalisées chez les spécimens échantillonnés. Le diamètre des vaisseaux est parmi le plus faible des *Coryphoideae*. La Fig. 7.29 montre la grande homogénéité du ratio fibrovasculaire au sein d'un sépcimen.

Diagnose. – *Cocos-Type*, faisceaux fibro-vasculaires Vaginata circulaires, 1 ou 2 ou plus de 4 éléments de vaisseau, parenchyme fondamental compact à cellules isodiamétriques à légèrement allongées.

Discrimination des genres. – Il est possible de discriminer certains genres à l'intérieur de cette tribu. Le descripteur principal qui permet cette discrimination est le nombre d'éléments de vaisseau.

- -1 élément de vaisseau \rightarrow Chelyocarpus,
- 2 éléments de vaisseau→Cryosophila, Thrinax, Hemithrinax,
- > 4 éléments de vaisseau $\rightarrow Coccothrinax$.

Confusion possible. – Cette tribu est assez distincte des autres. Mais lorsque deux éléments de vaisseau sont présents, alors le genre peut être confondu avec *Nannorrhops* et *Phoenix* (cf. 7.5 et 7.8).

Matériel examiné. – Un nombre assez important de spécimens a été étudié ce qui permet d'avoir une assez bonne certitude en ce qui concerne la description et la diagnose.

Chelyocarpus dianeurus (Burret) H.E.Moore; MRAC (MAD), Tw43237 (43095 SJRW), J. Cuatrecasas 16702. Coccothrinax barbadensis (Lodd. ex Mart.) Becc.; FTG, RM1012C, J.B. Fisher. C. miraguama subsp. roseocarpa (León) Borhidi & O.Muñiz; FTG, 5861, J.B. Fisher. C. miraguama subsp. roseocarpa; FTG, 60798C, J.B. Fisher. C. miraguama (Kunth) Becc.; FTG, 91357E, J.B. Fisher. Cryosophila nana (Kunth) Blume; K, EBC 26209. Hemithrinax compacta (Griseb. & H.Wendl.) M.Gómez; MRAC (MAD), Tw43225 (39400 SJRW), Leon (Frère) sn. Thrinax radiata Lodd. ex Schult. & Schult.f.; FTG; P2312, J.B. Fisher. T. radiata; FTG, RM1011, J.B. Fisher. T. radiata; P, P00406202.

FIGURE 7.26 – Dimensions des faisceaux fibro-vasculaires. C. miraguama A : FTG 60798C, C. miraguama B : FTG 91357E. T. radiata : FTG, RM1011.

FIGURE 7.27 – Diamètre des vaisseaux. *C. miraguama* A : FTG 60798C, *C. miraguama* B : FTG 91357E.

FIGURE 7.28 – Ratio fibro-vasculaire. C. miraguama A : FTG 60798C, C. miraguama B : FTG 91357E.

FIGURE 7.29 – Ratio fibro-vasculaire chez les Cryosophileae. C. miraguama A : FTG 60798C (croix), C. miraguama B : FTG 91357E (triangle). T. radiata : FTG, RM1011.

Compilation bibliographique. – Tomlinson *et al.* (2011) pour *Zombia* même si les autres genres sont mentionnés sans qu'il n'y ait aucune description ou illustration. Il n'y a pas de différence avec les descriptions réalisées ici. *Zombia* possède une anatomie proche de celle de *Coccothrinax* mais sans faisceau exclusivement fibreux.

Légende de la planche VIII

Planche photographique du stipe des Cryosophileae – 1

1-4 : Chelyocarpus dianeurus, polissages transversaux. 1. Partie périphérique de la tige : cortex et zone subcorticale du cylindre central. Le cylindre central a une organisation très homogène (Cocos-Type). 2. Zone subcorticale, 3. Zone centrale. 4. Détail d'un faisceau fibro-vasculaire (Vaginata, 1 élément de vaisseau) et du parenchyme fondamental compact à cellules isodiamétriques. 5–13 : Coccothrinax miraquama (5– 11 : FTG 91357E, 12–13 : FTG 60798C), coupes transversales (sauf 9–10, longitudinales) non colorées. 5. Cortex avec une zone externe légèrement suberifiée sans élément conducteur et une zone interne contenant quelques faisceaux fibro-vasculaires et traces foliaires. 6. Zone subcorticale : les faisceaux fibro-vasculaires sont légèrement étirés radialement sans sinus auriculaire. La partie la plus périphérique présente une zone avec des faisceaux fibro-vasculaires de taille nettement inférieure mais dont le diamètre s'agrandit rapidement. 7. Zone centrale : les faisceaux fibro-vasculaires sont circulaires avec plusieurs éléments de vaisseau. Des ponts vasculaires sont visibles (cercle) ainsi que des faisceaux exclusivement fibreux. 8. Détail d'un faisceau fibro-vasculaire, le parenchyme tabulaire (une couche de cellules tout autour du faisceau) est visible, la flèche pointe un faisceau exclusivement fibreux, le parenchyme fondamental est compact à cellules isodiamétriques. 9–10. Vue générale (9) et détail (10) de la séparation (flèche) entre un faisceau fibro-vasculaire (ffv) au parcours oblique se dirigeant vers le cortex (future trace foliaire) et un pont vasculaire (br) au parcours vertical (axial) allant se connecter à un autre faisceau fibro-vasculaire axial pour assurer une continuité de la conduction de la sève. 11. Détail d'un faisceau fibro-vasculaire se séparant en deux et donnant naissance à un pont vasculaire (flèche), le cercle indique un autre pont vasculaire détaché d'un faisceau fibro-vasculaire à un niveau plus basal. 12. Cortex. 13. Zone centrale présentant un parenchyme fondamental avec des cellules légèrement allongées. 14–15 : Coccothrinax barbadensis. 14. Zone subcorticale. 15. Zone centrale.

Abréviations utilisées — B : vers la base, cc : cylindre central, ct : cortex, ext : vers l'extérieur, ffv : faisceau fibro-vasculaire, H : vers l'apex, int : vers l'intérieur. Échelle — 2 mm : 1–3, 5–7, 9, 12–13. 1 mm : 11, 14–15. 200 µm : 4, 8, 10.

PLANCHE VIII – Stipe des Cryosophileae – 1

Légende de la planche IX

Planche photographique du stipe des Cryosophileae - 2

1-4: Cryosophila nana, polissages transversaux. 1. Partie périphérique de la tige (cortex et zone subcorticale). Les faisceaux fibro-vasculaires ont une partie fibreuse dorsale bien développée, sans sinus auriculaire avec une partie fibreuse ventrale présente. 2. Zone centrale du cylindre central. La partie fibreuse dorsale est moins développée que dans les parties périphériques. 3. Détail d'un faisceau fibro-vasculaire de la zone subcorticale. Deux éléments de vaisseau sont visibles de forme plus ou moins circulaire (sans sinus auriculaire), avec une partie fibreuse ventrale assez fine. 4. Détail de la zone centrale. Les faisceaux fibro-vasculaires ont une taille inférieure à ceux de la périphérie en raison d'un faible développement des cellules de la partie fibreuse dorsale (apparaissant comme dégonflées, aplaties). 5–8 : Hemithrinax compacta, polissages transversaux. 5. Zone subcorticale. 6. Zone centrale. Ces deux zones ont une structure assez semblable : Cocos-Type. 7. Deux faisceaux fibro-vasculaires et un pont vasculaire. 8. Détail d'un faisceau fibro-vasculaire : Vaginata, 2 éléments de vaisseau, parenchyme paravasculaire en une seule bande circumvasculaire, phytolithes visibles tout autour de la partie fibreuse dorsale. 9–17 : Thrinax radiata (8–12 : FTG RM1011, 13–15 : P00406202, 16–17 : FTG P2312), coupes transversales non colorées. 9. Ce faisceau fibro-vasculaire (lumière polarisée analysée) présente une structure identique à l'espèce précédente sans qu'il ne soit possible de les différencier (la flèche indique le parenchyme tabulaire). 10. Ce cortex a une structure comparable à ceux présentés en Planche VIII, 1, 5, 12. 11. Zone subcorticale. 12. Zone centrale avec ponts vasculaires (cercles). Ces deux zones sont de même structure et reflètent l'appartenance au Cocos-Type. 13. Cortex avec une partie externe toujours plus subérifiée. 14. Zone centrale. 15. Détail de la zone centrale. Le faisceau fibro-vasculaire, Vaginata, comporte 3 éléments de vaisseau et une partie fibreuse ventrale assez réduite. Les cellules du parenchyme sont assez mal conservées mais laissent entrevoir qu'elle peuvent subir une assez forte croissance. 16. Faisceau fibro-vasculaire de la zone subcorticale. 17. Faisceau fibro-vasculaire de la zone centrale.

Échelle — 2 mm : 1–2, 5–6, 10–14. 500 µm : 3–4, 7–8, 15–17. 200 µm : 9.

Planche IX – Stipe des Cryosophileae – 2

7.8 Les Phoeniceae

Aspect général et macroscopique du stipe. – Planche X, 1, 12. L'organisation générale est très homogène, il n'y a quasiment aucune différence entre la zone subcorticale et la zone centrale.

Le cortex. – Il est très large (Planche X, 1, 12) et ne développe pas de zone subérifiée même si les cellules les plus périphériques peuvent avoir des parois nettement épaissies.

Le cylindre central. – Il peut avoir quelques ressemblances avec les Cryosophileae : Cocos-Type très prononcé (cylindre central très homogène) : $\frac{d(FFV)_{ext}}{d(FFV)_{int}} \subset [1;2], \frac{f/v_{ext}}{f/v_{int}} \subset [1;3], \frac{R_{ext}}{R_{int}} \subset [1;3], f/v \subset [3;6]$. Comme le montre la Planche X, 1, 12, les faisceaux fibro-vasculaires de la zone subcorticale en contact avec le cortex sont d'une taille plus petite que les faisceaux fibro-vasculaires se situant plus vers le centre (comme pour Hyphaene). Cette taille augmente assez rapidement pour rester constante jusqu'au centre de la tige (Fig. 7.33).

Les faisceaux fibro-vasculaires et faisceaux exclusivement fibreux. – La partie fibreuse dorsale est Lunaria à Vaginata en fonction du degré de développement des fibres adjacentes au xylème (Planche X, 4, 9). Les faisceaux fibro-vasculaires ont une forme quasi circulaire. La partie vasculaire incluse comporte deux éléments de vaisseau (Planche X, 2–3, 9–11, 14). Le parenchyme tabulaire est présent (une à deux couches cellulaires, Planche X, 3, 9). La parenchyme paravasculaire est peu développé. Le phloème n'est jamais partitionné. Le parenchyme tabulaire est toujours présent. Les phytolithes sont sphéroïdes échinulés et fortement développés dans tout le cylindre central.

Le parenchyme fondamental. – Le parenchyme fondamental est compact, à cellules isodiamétriques et quelques fois allongées. De petites lacunes peuvent cependant apparaître mais le parenchyme fondamental reste de nature compact (Planche X, 11).

Statistiques descriptives. – Les graphiques des Figs. 7.30–7.33 présentent des mesures réalisées chez les spécimens échantillonnés. Ces graphiques montrent l'homogénéité des faisceaux fibro-vasculaires et du ratio fibro-vasculaire.

Diagnose. – *Cocos-Type*, Lunaria, 2 éléments de vaisseau, parenchyme fondamental compact, à cellules isodiamétriques à légèrement allongées.

FIGURE 7.30 – Dimensions des faisceaux fibro-vasculaires. P. dactylifera A : EBC 26329, P. dactylifera B : Pers., R. Thomas sn.

FIGURE 7.31 – Diamètre des vaisseaux. *P. dacty-lifera* A : EBC 26329, *P. dactylifera* B : Pers., R. Thomas sn.

FIGURE 7.32 – Ratio fibro-vasculaire. P. dactylifera A : EBC 26329, P. dactylifera B : Pers., R. Thomas sn.

FIGURE 7.33 – Ratio fibro-vasculaire chez les *Phoeniceae*. *P. dactylifera* A : EBC 26329, *P. dactylifera* B : Pers., R. Thomas sn.

Confusion possible. – *Nannorrhops* et certains *Cryosophileae* à deux éléments de vaisseau peuvent avoir une anatomie proche de celle de *Phoenix*. Cependant il est assez facile de les discriminer.

- Des faisceaux exclusivement fibreux sont présents chez Nannorrhops et jamais observés chez Phoenix.
- Les ponts vasculaires sont présents chez les Cryosophileae alors qu'ils sont généralement absents chez les deux autres genres.
- Le cortex des Cryosophileae est plus réduit (généralement inférieur au centimètre) que celui de Nannorrhops ou de Phoenix qui dépasse le centimètre.
- Chez les spécimens observés, il a été remarqué que la taille des faisceaux fibrovasculaires de *Phoenix* est plus importante que celle des deux autres taxons : 75 % des faisceaux fibro-vasculaires des *Phoeniceae* ont une $H_{max} > 750$ µm et une surface fibreuse > 0,3 mm² alors que 75 % à 100 % des faisceaux fibro-vasculaires des deux autres taxa ont une $H_{max} < 750$ µm et une surface fibreuse < 0,25 mm². 100 % du ratio fibro-vasculaire de *Nannorrhops* est inférieur à 3 alors que 75 % de celui des *Phoeniceae* est supérieur à 3 (voir 100 % pour certaines espèces).
- Il a également été observé que 80 % des vaisseaux ont un diamètre inférieur à 100 μm pour le genre *Thrinax* alors que pour les *Phoeniceae* les diamètres sont supérieurs à 100 μm. 75 % des vaisseaux de *Nannorrhops* ont un diamètre inférieur à 120 μm alors que 75 % de ceux des *Phoeniceae* ont un diamètre supérieur à 100 μm.

Matériel examiné. – Phoenix dactylifera L.; K, EBC 26329. P. dactylifera; Pers., R.
Thomas sn. P. dactylifera; Pers., M. Tengberg sn. P. reclinata Jacq.; MRAC, Tw 44588,
F. Malaisse sn. P. sylvestris (L.) Roxb.; K, EBC 26340.

Compilation bibliographique. -

- Tomlinson (1961) décrit partiellement ce genre, aucune différence n'est observée avec sa description,
- Swamy et Govindarajalu (1961) pour l'étude la variabilité anatomique dans un stipe de *Phoenix sylvestris*,
- Tomlinson et al. (2011) sans différence.

Légende de la planche X

Planche photographique du stipe des Phoeniceae

1-5: Phoenix dactylifera, R. Thomas sn, polissages transversaux (sauf 5, longitudinal). 1. Allure général du stipe en section transversale, structure très homogène et large cortex. 2. Détail du cylindre central. 3. Détail d'un faisceau fibro-vasculaire : Vaginata, 2 éléments de vaisseau, parenchyme tabulaire présent. Le parenchyme fondamental est compact et composé de cellules isodiamétriques 4. Détail de la partie fibreuse ventrale. 5. Polissage longitudinal qui indique que les faisceaux fibro-vasculaires ne suivent pas un trajet parallèle à l'axe su stipe. 6-7 : P. dactylifera, EBC 26329, polissages transversaux. Détail du cylindre central, même structure que 2. 7. Détail d'un faisceau fibro-vasculaire, même structure que 3. avec des cellules de parenchyme légèrement allongées mais sans lacune. 8–9: P. dactylifera, M. Tengberg sn. 8. Élément de vaisseau obtenu après dilacération (coloration à la fuchsine basique) : perforations simple (supérieure) et simplement scalariforme (inférieure, 1 barreau). 9. Détail d'un faisceau fibro-vasculaire Lunaria, sans sinus auriculaire, sans partie fibreuse ventrale. Ceci reflète la différence de résultat en fonction de la méthode de préparation choisie : partie fibreuse ventrale absente (coupe transversale) / présente (polissage). Les phytolithes sont visibles tout autour de la partie fibreuse dorsale, le parenchyme fondamental est compact. 10–11 : P. reclinata, Tw 44588. L'anatomie de type Phoenix est conservée. 12–14 : P. sylvestris, EBC 26340. Même structure que les spécimens précédents.

Abréviations utilisées — ct : cortex. Échelle — 1 cm : 1, 12. 2 mm : 2, 5–6, 10, 13. 500 µm : 3, 7, 9, 11, 14. 200 µm : 4, 8.

 $\label{eq:planche} {\sf Planche} X - {\sf Stipe} \ {\sf des} \ {\it Phoeniceae}$

7.9 Les Sabaleae

Aspect général et macroscopique du stipe. – Sabal palmetto et S. rosei ont une structure assez comparable et légèrement différente à celle de S. yapa (Figs. 7.34–7.36). Le cortex de ce dernier n'était pas présent sur l'échantillon.

FIGURE 7.34 – Polissage transversal de Sabal palmetto. Échelle : 1 cm.

FIGURE 7.35 – Polissage transversal de Sabal rosei. Échelle : 1 cm.

FIGURE 7.36 – Polissage transversal de Sabal yapa. Échelle : 1 cm.

Le cortex. – Le cortex de *S. palmetto* est un des cortex le plus large observé chez les palmiers (5 cm, Fig. 7.34, Planche XI, 1).

Le cylindre central. – Corypha-Type à Cocos-Type : $\frac{d(FFV)_{ext}}{d(FFV)_{int}} \subset [1;3], \frac{f/v_{ext}}{f/v_{int}} \subset [1;4], \frac{R_{ext}}{R_{int}} \subset [1;3], f/v \subset [2;15].$ Planche XI, 2–4, 10–11.

Les faisceaux fibro-vasculaires et faisceaux exclusivement fibreux. – Les faisceaux fibro-vasculaires sont Reniforma (Planche XI, 5–9, 12–13), la partie vasculaire est exclue et comporte deux éléments de vaisseau. Le parenchyme tabulaire est parfois observé. Les faisceaux exclusivement fibreux sont absents. Les phytolithes sont sphéroïdes échinulés et développés dans tout le cylindre central. Il est à noter que les faisceaux fibro-vasculaires de *S. yapa* ont une certaine tendance à être Lunaria avec une partie fibreuse ventrale présente.

Le parenchyme fondamental. – Il est soit constitué de cellules allongées et lobées formant un réseau régulier de lacunes (Planche XI, 4, 6, 9, 12–13) soit assez homogène avec des cellules sphéroïdes (Planche XI, 12–13).

Statistiques descriptives. – Figs. 7.37–7.40. Ces graphiques montrent que, même si l'anatomie (de *S. yapa*) peut se rapprocher du genre *Phoenix*, la variation des faisceaux fibro-vasculaires et des valeurs associées est plus importante chez *Sabal*.

Diagnose. – *Corypha-Type*, Reniforma, 2 éléments de vaisseau, parenchyme fondamental à cellules allongées et lobées formant un réseau régulier de lacunes (lacunes > 250 µm pour les zones matures de la tige). Dans les parties plus jeunes, le parenchyme est compact et constitué de cellules sphéroïdes plus ou moins lobées (Planche XI, 12–13).

FIGURE 7.39 – Ratio fibro-vasculaire chez les Sabaleae.

 $\ensuremath{\mathsf{Figure}}$ 7.40 – Dimensions des faisceaux fibro-vasculaires.

Confusion possible. – Souvent impossible à distinguer (en fonction du spécimen) des *Trachycarpeae (incertae sedis*, 7.12). En effet, l'organisation du parenchyme fondamental est similaire dans les deux tribus et la structure des faisceaux fibro-vasculaires est elle aussi assez semblable. Cependant, le phloème des *Sabaleae* n'a jamais été observé comme étant divisé par une bande de cellules sclérotiques comme il est parfois observé chez les *Trachycarpeae*. Une confusion avec le genre *Phoenix* reste possible lorsque les faisceaux fibro-vasculaires ont une partie fibreuse ventrale légèrement développée (Planche XI, 12– 13) et que la partie fibreuse dorsale est légèrement Lunaria (sans sinus auriculaire), mais cette partie fibreuse dorsale conserve une certaine structure Reniforma (avec des sinus auriculaires légèrement visibles).

Matériel examiné. – Sabal palmetto (Walter) Lodd. ex Schult. & Schult.f.; K, EBC 26349. S. palmetto; Pers., R. Thomas sn. S. rosei (O.F.Cook) Becc.; MRAC, Tw 43984, A. Curtis sn. S. yapa C.Wright ex Becc.; MRAC, Tw 49416, A. Curtis 590.

En raison de l'anatomie légèrement différente de *S. yapa* il serait intéressant d'étudier l'anatomie d'autres espèces de ce genre qui semble assez polymorphe.

Compilation bibliographique. – Tomlinson *et al.* (2011) signalent la présence de faisceaux exclusivement fibreux, mais la description est assez succincte.
Légende de la planche XI

Planche photographique du stipe des Sabaleae

1-6: Sabal palmetto, EBC 26349, polissages transversaux. 1. Détail du cortex : des faisceaux exclusivement fibreux, traces foliaires et départ d'inflorescence (flèche) sont visibles. 2. Limite nette entre le cortex et le cylindre central. 3. Zone subcorticale : les faisceaux fibro-vasculaires sont assez denses avec une partie fibreuse dorsale Reniforma légèrement allongée et une zone vasculaire exclue contenant 2 éléments de vaisseau. 4. Zone centrale : les faisceaux fibro-vasculaires sont de même structure que précédemment mais avec une partie fibreuse dorsale non étirée et une densité plus faible. Le parenchyme fondamental laisse apercevoir sa structure lacuneuse. 5. Faisceau fibro-vasculaire de la zone subcorticale, une bande assez réduite de parenchyme tabulaire est visible. 6. Un faisceau fibro-vasculaire de la zone centrale avec le parenchyme fondamental à cellules nettement lobées et allongées formant de petites lacunes. 7 : S. palmetto, R. Thomas sn, coupe transversale. Ce faisceau fibro-vasculaire présente la même structure que précédemment, les phytolithes sont visibles tout autour de la partie fibreuse dorsale. 8–9 : S. rosei, polissages transversaux. 8. Deux faisceaux fibro-vasculaires de la zone subcorticale avec une partie fibreuse dorsale légèrement étirée, une partie fibreuse ventrale est visible. 9. Faisceau fibro-vasculaire de même structure avec un partie fibreuse dorsale non étirée. Les cellules de parenchyme présentent une légère modification (allongement et lacunes, flèche). 10–13 : S. yapa, polissages transversaux. 10. Zone subcorticale : les faisceaux fibro-vasculaires sont Reniforma avec une partie fibreuse ventrale nettement développée. 11. Zone centrale : les faisceaux fibro-vasculaires ont tendance à paraître Lunaria à Vaginata (partie fibreuse ventrale présente) mais ont une partie fibreuse dorsale clairement Reniforma. 12–13. Un faisceau fibro-vasculaire Reniforma et parenchyme fondamental montrant l'aspect compact.

Abréviations utilisées — la : lacune aérifère. Échelle — 2 mm : 1–4, 10–11. 500 μ m : 5–9, 12–13.

Planche XI – Stipe des Sabaleae

Les Trachycarpeae

C'est une tribu très vaste (18 genres) et son homogénéité n'est pas évidente. C'est pour cette raison que, lors de l'identification assistée avec le logiciel Xper², elle peut souvent se retrouver en dernier choix, en parallèle avec une autre tribu qui peut partager avec elle certains états de descripteurs.

Le cortex des Trachycarpeae est généralement très large (sauf pour Rhapis). Organisation générale : Corypha-Type (Cocos-Type pour Chamaerops, Geonoma-Type pour Rhapis). Les faisceaux exclusivement fibreux sont parfois présents (Livistona, Chamaerops, Rhapis, Copernicia, Washingtonia et Trachycarpus). La partie fibreuse ventrale est parfois présente, le plus souvent au niveau de la zone centrale (Licuala, Trachycarpus, Rhapis, Washingtonia). Les faisceaux fibro-vasculaires sont Reniforma à partie vasculaire exclue. La partie fibreuse dorsale peut présenter une lignification centrifuge des fibres surtout chez les Livistoninae et les genres incertae sedis (Planche XIV, 17-18). Le nombre d'éléments de vaisseau est variable : de deux à quatre pour les Rhapidinae (et parfois plus pour Trachy*carpus*) et uniquement deux pour tous les autres genres. Dans la zone centrale, le phloème est souvent partitionné (divisé en deux parties séparées par quelques cellules sclérifiées secondairement) alors que dans les zones plus périphériques, il reste en une seule partie. Ces deux états de descripteur (partie fibreuse ventrale et phloème partitionné) ne sont pas observés dans les autres tribus. Le parenchyme rayonnant est présent chez certains genres. Les genres dont la phylogénie n'est pas connue (cf. incertae sedis, 7.12) ont généralement un parenchyme fondamental assez développé (cellules de type trabéculaires à forte croissance pouvant former de grandes lacunes). Le sinus auriculaire est parfois absent de la zone centrale.

Confusion possible. – Voir Borasseae (7.1) et Sabaleae (7.9).

7.10 Les Trachycarpeae—Livistoninae

Aspect général et macroscopique du stipe. – Figs. 7.41–7.45. Dans l'ensemble, le cortex est développé et le cylindre central présente une zone périphérique où les faisceaux fibro-vasculaires ont une densité et un ratio fibro-vasculaire plus importants que dans la zone centrale.

FIGURE 7.41 – Polissage transversal de Livistona merilii. Échelle : 5 mm.

FIGURE 7.42 – Polissage transversal de *Livistona mariae*. Échelle : 1 cm.

FIGURE 7.43 – Polissage transversal de Livistona chinensis. Échelle : 1 cm.

Le cortex. – Il est large, homogène et parfois en deux zones, la plus externe étant subérifiée (Figs. 7.41–7.45, Planche XII, 1). Aucun alignement de cellules n'a été observé.

Le cylindre central. – Corypha-Type : $\frac{d(FFV)_{ext}}{d(FFV)_{int}} \subset [2;7], \frac{f/v_{ext}}{f/v_{int}} \subset [2;10], \frac{R_{ext}}{R_{int}} \subset [4;10], f/v \subset [1;10].$ Planche XII, 2–3, 7–8, 11–12.

Les faisceaux fibro-vasculaires et faisceaux exclusivement fibreux. – Les faisceaux fibro-vasculaires ont une partie fibreuse dorsale Reniforma avec deux éléments de vaisseau. Le parenchyme rayonnant est présent et particulièrement développé au niveau de la zone centrale (Planche XII, 6, 10). Des faisceaux exclusivement fibreux sont parfois observés (densité : 50–200 / cm², Planche XII, 12–16). La partie fibreuse ventrale est parfois présente (Planche XII, 5). Les phytolithes sont sphéroïdes échinulés et sont fortement développés chez *Licuala* et plus limités aux faisceaux exclusivement fibreux et aux faisceaux fibro-vasculaires de la zone subcorticale chez *Livistona*.

FIGURE 7.44 – Polissage transversal de Licuala lauterbachii. Échelle : 5 mm.

FIGURE 7.45 – Polissage transversal de Licuala grandis. Échelle : 5 mm.

Le parenchyme fondamental. – Il est constitué de cellules allongées et lobées (parfois sphéroïdes) formant un réseau plus ou moins régulier de lacunes (< 200 µm) (Planche XII,4, 16). Les cellules du parenchyme fondamental de la zone subcorticale peuvent présenter un allongement tangentiel.

Statistiques descriptives. – Figs. 7.46–7.49. Les deux genres observés présentent une évolution du ratio fibro-vasculaire assez semblable même si *Livistona* possède généralement des faisceaux fibro-vasculaires de taille plus importante.

Diagnose. – *Corypha-Type*, Reniforma, 2 éléments de vaisseau, parenchyme fondamental lacunaire formé par des cellules lobées (trabéculaires) à croissance plus ou moins forte, faisceaux exclusivement fibreux possibles, partie fibreuse ventrale possible, phloème partitionné dans la zone centrale, parenchyme rayonnant.

Discrimination des genres. – Les deux genres sont anatomiquement assez semblables. La seule différence réside dans le fait que *Livistona* possède des faisceaux exclusivement fibreux alors qu'il n'ont pas été observés chez *Licuala*.

Confusion possible. – Ces deux genres peuvent ressembler à beaucoup d'autres *Tra-chycarpeae* (cf. 7.12). Cette confusion peut être nuancée par le parenchyme fondamental. En effet, les cellules des *Livistoninae* présentent une croissance moins importante que celles des autres *Trachycarpeae incertae sedis*.

FIGURE 7.46 – Dimensions des faisceaux fibro-vasculaires.

Matériel examiné. – Il est à signaler que *Licuala* est composé de 134 espèces et que l'échantillonnage n'en propose que deux.

Licuala grandis H.Wendl.; K, EBC 26306. L. lauterbachii Dammer & K.Schum.; K, Heatubun et al. CH271. Livistona chinensis (Jacq.) R.Br. ex Mart.; FTG; 713M; J.B. Fisher. L. mariae F.Muell.; FTG, 57787, J.B. Fisher. L. merrillii Becc.; P, Ramos sn.

Les autres genres de cette sous-tribu pourraient fournir plus d'informations en ce qui concerne les descriptions établies ici.

Compilation bibliographique

 Tomlinson (1961) pour les genres suivants : *Licuala*, il indique que ce genre ne possède qu'un seul éléments de vaisseau ; *Livistona*, (pas de différence observée).

- Tomlinson et al. (2011) pour : Licuala (sans différence), Livistona (sans différence).

J'indique qu'il n'y a pas de différence avec Tomlinson et al. (2011), cependant, j'ai pu

FIGURE 7.47 – Diamètre des vaisseaux.

FIGURE 7.48 – Ratio fibro-vasculaire.

FIGURE 7.49 – Ratio fibro-vasculaire chez les *Livistoninae*. *Livistona chinensis* (triangle), *L. mariae* (croix), *Licuala grandis* (losange), *L. lauterbachii* (carré).

y relever quelques aberrations comme le fait que le texte indique que *Licuala* ne possède qu'un seul élément de vaisseau alors que les figures présentées en montrent clairement deux.

Légende de la planche XII

Planche photographique du stipe des Livistoninae

1-6: Licuala grandis polissages (1-3, 5) et coupes transversales non colorées (4, 6). 1. Cortex. 2. Zone subcorticale : les faisceaux fibro-vasculaires les plus externes (ext) sont de plus petites tailles que les autres. 3. Vue de la zone centrale avec des faisceaux fibro-vasculaires plus espacés, à partie fibreuse dorsale Reniforma. 4. Détail du parenchyme fondamental avec des cellules lobées formant un réseau de lacunes irrégulières. 5. Détail d'un faisceau fibro-vasculaire central : partie fibreuse ventrale présente (flèche noire) et phloème en deux parties (flèche blanche), partie fibreuse dorsale Reniforma et 2 éléments de vaisseau. 6. Détail d'un faisceau fibro-vasculaire central : le parenchyme rayonnant est visible tout autour du faisceau fibro-vasculaire. 7–9 : L. lauterbachii, polissages transversaux. 7. Détail de la zone subcorticale : faisceaux fibro-vasculaires Reniforma à 2 éléments de vaisseau. 8. Détail de la zone centrale : faisceaux fibrovasculaires à partie fibreuse dorsale plus réduite et paraissant légèrement Lunaria. 9. Détail d'un faisceau fibro-vasculaire central : légère division du phloème. 10–12 : Livistona chinensis, coupes transversales non colorées. 10. Faisceau fibro-vasculaire de la zone centrale : structure proche de celle de *Licuala* mais sans division du phloème. le parenchyme rayonnant est légèrement développé du côté vasculaire. 11. Zone subcorticale avec des faisceaux fibro-vasculaires à partie fibreuse dorsale développée. 12. Zone centrale avec des faisceaux fibro-vasculaires à partie fibreuse dorsale plus réduite. 13–14 : L. mariae, polissages transversaux. 13. Zone subcorticale : même structure que précédemment avec des faisceaux exclusivement fibreux nettement visibles dans le parenchyme fondamental. 14. Détail d'un faisceau fibro-vasculaire de la zone centrale : thyllose et faisceaux exclusivement fibreux, une légère échancrure du phloème est visible, le parenchyme fondamental n'est pas conservé. 15–16 : L. merrillii, polissages transversaux. Zone subcorticale et détail d'un faisceau fibro-vasculaire. L'aspect lacunaire du parenchyme fondamental est visible ainsi que les faisceaux exclusivement fibreux (flèche). La partie fibreuse dorsale présente une lignification des fibres nettement centrifuge : celles proche de la partie conductrice (a) ont des parois épaissies avant les fibres périphériques (b).

Abréviations utilisées — ext : vers l'extérieur la : lacune aérifère. Échelle — 2 mm : 1–3, 11–13, 15. 500 μ m : 5–10, 14, 16. 200 μ m : 4.

Planche XII – Stipe des Livistoninae

7.11 Les Trachycarpeae—Rhapidinae

Aspect général et macroscopique du stipe. – Figs. 7.50–7.52. Les trois genres présentent une structure nettement différente.

FIGURE 7.50 – Polissage transversal de Rhapis humilis (échantillon Fitt 31). Échelle : 5 mm.

FIGURE 7.51 – Polissage transversal de Rhapis humilis (échantillon Baker 1151). Échelle : 1 cm.

FIGURE 7.52 – Polissage transversal de *Trachycarpus martianus*. Échelle : 5 mm.

Le cortex. – Le cortex est généralement assez large sauf pour la tige de *Rhapis* et en une seule zone différenciée. La zone la plus périphérique peut se subérifier légèrement sans qu'aucun alignement ne soit visible. Le passage entre les deux zones se fait alors graduellement (Planche XIII, 1, 16), à l'inverse des *Borasseae* (7.1). Le cortex présente un épiderme conservé dont les cellules sont allongées tangentiellement (Planche XIII, 4).

Le cylindre central. – Geonoma-Type ou Cocos-Type : $\frac{d(FFV)_{ext}}{d(FFV)_{int}} \subset [1;5], \frac{f/v_{ext}}{f/v_{int}} \subset [1;20], \frac{R_{ext}}{R_{int}} \subset [1;7], f/v \subset [0,5;15].$ Figs. 7.50–7.53.

FIGURE 7.53 – Polissage transversal de Chamaerops humilis (échantillon Tw 40121). Échelle : 1 cm.

Les faisceaux fibro-vasculaires et faisceaux exclusivement fibreux. – Les faisceaux fibro-vasculaires sont Lunaria (Planche XIII, 3, 8) ou Reniforma (Planche XIII, 6, 10, 17–18). La partie fibreuse ventrale est présente chez certains genres (*Rhapis* et *Trachycarpus*) (Planche XIII, 11, 17). La partie vasculaire est totalement exclue et comporte généralement deux éléments de vaisseau (parfois un) pour *Rhapis* (Planche XIII, 9–13), trois à quatre éléments de vaisseau pour *Chamaerops* (Planche XIII, 3, 6, 8) et plus de trois éléments de vaisseau pour *Trachycarpus* (Planche XIII, 17–18). Le phloème peut être partitionné en deux zones (Planche XIII, 11, 17–18). Le parenchyme rayonnant est parfois présent (Planche XIII, 11, 17–18). Les faisceaux exclusivement fibreux sont présents mais pas toujours très développés (densité plus faible que pour les *Livistoninae*, Planche XIII, 6, 11). Les phytolithes sont sphéroïdes échinulés et fortement développés chez *Chamaerops* et *Trachycarpus*.

Le parenchyme fondamental. – Il est constitué de cellules compactes, généralement isodiamétriques à légèrement allongées (Planche XIII, 5, 10–11, 15, 17–18). Hormis le fait que le très rare parenchyme observable de *Chamaerops* et *Rhapis* présente de grands déchirements (sûrement dus au fait que les cellules collapsent, Planche XIII, 2, 13), des petites lacunes irrégulières ont été observées chez *Rhapis*.

Statistiques descriptives. – Figs. 7.54–7.57. Il ressort clairement que *Trachycarpus* possède les plus grands faisceaux fibro-vasculaires. *Chamaerops* présente une structure assez homogène en ce qui concerne l'évolution du ratio fibro-vasculaire et ses vaisseaux ont le plus petit diamètre trouvé chez les *Coryphoideae*.

FIGURE 7.54 – Dimensions des faisceaux fibro-vasculaires. C. humilis P00397191, R. humilis A : Baker 1151, R. humilis B : Fitt 31.

Diagnose. – Les genres de cette sous-tribu présentent des stipes très différents : certains ont des stipes très petits (*Rhapis*), un genre en est quasiment dépourvu (*Rhapidophyllum*) et il n'est pas possible d'établir une diagnose commune.

Chamaerops Cortex de plusieurs millimètres, *Cocos-Type*, faisceaux fibrovasculaires Lunaria à Reniforma, 3–4 éléments de vaisseau, parenchyme fondamental assez peu développé (faisceaux fibro-vasculaires très denses), faisceaux exclusivement fibreux présents.

FIGURE 7.55 – Diamètre des vaisseaux. *C. humilis* P00397191, *R. humilis* A : Baker 1151, *R. humilis* B : Fitt 31.

FIGURE 7.56 – Ratio fibro-vasculaire. C. humilis P00397191, R. humilis A : Baker 1151, R. humilis B : Fitt 31.

FIGURE 7.57 – Ratio fibro-vasculaire chez les *Rhapidinae*. *C. humilis* P00397191, *R. humilis* A : Baker 1151 (carré), *R. humilis* B : Fitt 31 (triangle), *R. subtilis* (croix).

Rhapis Cortex très réduit, *Geonoma-Type*, faisceaux fibro-vasculaires Reniforma, 1 à 2 éléments de vaisseau, partie fibreuse ventrale présente, parenchyme fondamental compact à cellules sphéroïdes à légèrement étirées, faisceaux exclusivement fibreux présents.

Trachycarpus Cortex développé, *Cocos-Type*, faisceaux fibro-vasculaires Reniforma, $2 \ge 4$ éléments de vaisseau, partie fibreuse ventrale présente, parenchyme fondamental compact à cellules sphéroïdes à légèrement étirées, phloème présentant parfois une partition.

Discrimination des genres. – Cf. descriptions précédentes.

Confusion possible

- Chamaerops et Trachycarpus ont une anatomie particulière et il n'est, à mon avis, pas possible de les confondre avec un autre genre,
- *Rhapis* peut être confondu avec *Chuniophoenix* (cf. 7.5).

Matériel examiné. – Chamaerops humilis L.; Pers., R. Thomas sn. C. humilis; MRAC,
Tw 40121, R. Dechamps & H. Doutrelepont sn. C. humilis; MRAC, Tw 44387 (lames).
C. humilis; P, P00395018. C. humilis; P, P00397191 B202. Rhapis humilis Blume; K,
Baker 1151. R. humilis; K, L. Fitt 31. R. subtilis Becc.; K, Smith & Sumawong GC110.
Trachycarpus martianus (Wall. ex Mart.) H.Wendl.; K, EBC 26356.

Il serait intéressant d'obtenir le stipe de plusieurs autres *Trachycarpus* et de *Maxburretia*, le seul autre *Rhapidinae* possédant une tige développée.

Compilation bibliographique

Tomlinson (1961) pour les genres suivants :

- Chamaerops (pas de différence observée),
- *Rhapidophyllum*, genre non étudié dans cette thèse et description trop succincte par P.B. Tomlinson pour pouvoir être comparée ici,
- *Rhapis*, P.B. Tomlinson mentionne que les faisceaux fibro-vasculaires possèdent un seul élément de vaisseau. Mais dans la série de publications sur le système vasculaire de *Rhapis* (Zimmermann et Tomlinson 1965, 1967, Tomlinson et Zimmermann 1966a,b, 1968a,b, Zimmermann et al. 1982, Zimmermann et Sperry 1983, Tomlinson et Vincent 1984) les auteurs en mentionnent deux ou plus.
- Trachycarpus (pas de différence observée).
- **Ambwani (1985)** pour *Trachycarpus martianus* (Wall. ex Mart.) H.Wendl., sans différence.

Tomlinson *et al.* (2011) avec une description très succincte pour les trois genres décrits ici et uniquement illustrée pour *Rhapis*. La même différence est observée pour *Rhapis* : *Chamaerops* est indiqué comme ayant 2 éléments de vaisseau alors que la publication de Tomlinson (1961) en cite également 4. Le parenchyme de ce genre pourrait également subir une croissance post-primaire autour des faisceaux fibro-vasculaires.

Légende de la planche XIII

Planche photographique du stipe des Rhapidinae

1-4: Chamaerops humilis, P00397191, coupes transversales non colorées. 1. Vue générale de la coupe transversale : le cortex est large, le cylindre central a une organisation très homogène (de petits faisceaux fibro-vasculaires sont uniquement observés à la limite du cortex et de la zone subcorticale). 2. Détail de la zone centrale. 3. Détail d'un faisceau fibro-vasculaire : Reniforma à Lunaria avec 4 éléments de vaisseau, sans sinus auriculaire. Le parenchyme fondamental est légèrement visible : les cellules sont plutôt sphéroïdes et compactes. 4. Épiderme : cellules allongées tangentiellement. 5-6 : C. humilis, Tw44387. 5. Coupe longitudinale non colorée montrant que le parenchyme est compact. 6. Détail de la zone centrale : faisceaux fibro-vasculaires de même structure que précédemment mais à partie fibreuse dorsale légèrement Reniforma; parenchyme fondamental non conservé (cellules collapsées) et faisceaux exclusivement fibreux, coupe transversale non colorée. 7-8 : C. humilis, P00395018, coupes transversales non colorées. Vue générale (7) et détail (8) des faisceaux fibro-vasculaires corroborant la structure anatomique des précédents échantillons. 9-11 : Rhapis humilis, Baker 1151, polissages transversaux. 9. Vue de la zone périphérique de la tige : le cortex (assez réduit) se délimite rapidement du cylindre central. Les faisceaux fibrovasculaires de la zone subcorticale sont congestionnés et sont disposés en quinconce avec une partie fibreuse dorsale très développée et un seul élément de vaisseau. 10. Détail d'un faisceau fibro-vasculaire de la zone de transition. La partie fibreuse ventrale est présente. 11. Détail des faisceaux fibro-vasculaires de la zone centrale : la partie fibreuse dorsale est beaucoup plus réduite alors que la partie fibreuse ventrale est nettement développée. Le phloème est divisé en deux parties et 2 éléments de vaisseau sont visibles. Le parenchyme fondamental est compact avec des faisceaux exclusivement fibreux. Le parenchyme rayonnant ainsi que le parenchyme tabulaire sont également légèrement visibles autour des faisceaux fibro-vasculaires. **12–13** : *R. subtilis*, polissages transversaux. 12. Vue de la zone périphérique de la tige (même description que 9). Les fibres de la partie fibreuse dorsale présentent ici un degré de lignification différent en fonction de leur position (plus elles sont éloignées du phloème, moins elles sont lignifiées). 13. Zone centrale : le parenchyme est fortement déchiré (comme pour 6) et les faisceaux fibro-vasculaires ont la même structure que 11. 14–18 : Trachycarpus martianus, polissages transversaux. 14. Zone subcorticale. 15. Zone centrale. Les faisceaux fibro-vasculaires de la zone subcorticale ont une partie fibreuse dorsale de surface plus importante que les centraux, en revanche, la structure est similaire (le nombre d'éléments de vaisseau reste plus élevé en zone centrale). 16. Cortex développé. 17. Faisceau fibro-vasculaire : Reniforma, partie fibreuse ventrale présente, 3 éléments de vaisseau et parenchyme rayonnant présent. 18. Faisceau fibro-vasculaire se divisant en deux (même structure que 17).

Abréviations utilisées — cc : cylindre central, ct : cortex, ls : trace foliaire. Échelle — 2 mm : 1, 14–16. 1mm : 2, 5–7. 500 μ m : 3, 8–13, 17–18. 100 μ m : 4.

 $\label{eq:planche} {\tt Planche XIII-Stipe \ des \ Rhapidinae}$

7.12 Les Trachycarpeae—incertae sedis

Aspect général et macroscopique du stipe. – Figs. 7.58–7.66. L'aspect général d'une coupe transversale peut se rapprocher de celui des *Livistoninae*.

FIGURE 7.58 – Polissage transversal de Brahea dulcis. Échelle : 1 cm.

FIGURE 7.59 – Polissage transversal de Copernicia baileyana. Échelle : 1 cm.

FIGURE 7.60 – Polissage transversal de Copernicia berteroana. Échelle : 1 cm.

Le cortex. – Il est toujours très large et une zone subérifiée peut se former (sans alignement de cellules).

Le cylindre central. – Corypha-Type : $\frac{d(FFV)_{ext}}{d(FFV)_{int}} \subset [1;4], \frac{f/v_{ext}}{f/v_{int}} \subset [2;12], \frac{R_{ext}}{R_{int}} \subset [2;6], f/v \subset [1;25]$ (Figs. 7.59–7.66).

FIGURE 7.61 – Polissage transversal de *Copernicia berteroana*. Le même spécimen que la Fig. 7.60, mais section transversale provenant de l'apex. Échelle : 1 cm.

FIGURE 7.62 – Polissage transversal de Copernicia tectorum. Échelle : 1 cm.

Les faisceaux fibro-vasculaires et faisceaux exclusivement fibreux. – La partie fibreuse dorsale est Reniforma avec une zone vasculaire exclue comportant deux éléments de vaisseau (Planche XIV, 3, 6, 8, 11, 14, 17). Les faisceaux exclusivement fibreux sont parfois présents (*Acoelorrhaphe, Brahea, Copernicia* et *Washingtonia*, Planche XIV, 1, 7–8, 14, 18). Une partie fibreuse ventrale (Planche XIV, 8, 10, 17) ainsi qu'une partition du phloème (Planche XIV, 10–11, 18) peut se développer dans la zone centrale. La partie fibreuse dorsale présente parfois une forte différence entre la zone subcorticale et la zone centrale (Planche XIV, 9–10, 15–18). Il a été observé que les fibres se lignifient de manière centrifuge (Planche XIV, 17–18) : celles étant proches du phloème se lignifiant avant celles de la périphérie de la partie fibreuse dorsale, et dans un même plan transversal, les fibres de la zone subcorticale sont bien développées comme si une pression de turgescence avait eu lieu entre les deux stades (cf. Chapitre 5). Les phytolithes sont sphéroïdes échinulés généralement bien développés dans les parties périphériques de la tige.

FIGURE 7.63 – Polissage transversal de Pritchardia minor. Échelle : 1 cm.

FIGURE 7.64 – Polissage transversal de Pritchardia thurstonii. Échelle : 1 cm.

Le parenchyme fondamental. – Il est constitué de cellules fortement allongées et lobées (parfois sphéroïdes) formant un réseau plus ou moins régulier de lacunes (> 250 μ m) au niveau de la zone centrale (Planche XIV, 2, 4–5, 12, 15–18). Au niveau de la zone subcorticale, les cellules peuvent subir une croissance tangentielle assez importante (Planche XIV, 1, 3). Les espaces entre les cellules qui se sont allongées peuvent être comblés par d'autres cellules.

Statistiques descriptives. – Figs. 7.67–7.70. Une grande hétérogénéité est observée pour la taille des faisceaux fibro-vasculaires (Fig. 7.67). Les diamètres des vaisseaux sont parmi les plus importants chez les *Coryphoideae*. Seul un spécimen possède un f/v avec une grande amplitude (*Pritchardia minor*, Figs. 7.63, 7.69–7.70).

Diagnose. – *Corypha-Type*, Reniforma, 2 éléments de vaisseau (quelques faisceaux fibrovasculaires avec 3–4 éléments de vaisseau ont été observés chez *Brahea* au niveau de la zone centrale), parenchyme fondamental lacunaire formé par des cellules trabéculaires à croissance plus ou moins forte et à lacunes développées pour les zones matures de la tige (> 250 µm), faisceaux exclusivement fibreux souvent présents, partie fibreuse ventrale possible, phloème en deux parties dans la zone centrale possible.

Discrimination des genres. – Il n'est rigoureusement pas possible d'établir avec certitude des différences entre ces genres. Cependant, il est possible de dégager deux groupes :

FIGURE 7.65 – Polissage transversal de Serenoa repens. Échelle : 1 cm.

FIGURE 7.66 – Coupe transversale de Washingtonia robusta. Échelle : 1 cm.

- Brahea, Serenoa qui possèdent un cylindre central très homogène avec les cellules du parenchyme fondamental présentant une faible croissance formant de petites lacunes.
- Acoelorrhaphe, Copernicia, Pritchardia, Washingtonia qui ont une zone subcorticale et une zone centrale assez différente avec, chez les tiges matures, les cellules du parenchyme fondamental présentant une forte croissance formant de larges lacunes.

Confusion possible. – Ces genres peuvent être confondus avec les *Livistoninae* (particulièrement *Livistona*) et les *Sabaleae* (lorsque les *Trachycarpeae* n'ont pas de faisceau exclusivement fibreux). De plus, lorsque le parenchyme fondamental n'est pas développé, c'est à dire que les cellules ne présentent pas de croissance post-primaire marquée (jeune stipe ou partie apicale), il est possible de les confondre avec certains *Borasseae* à deux éléments de vaisseau (comme *Hyphaene*). À l'inverse, lorsque le parenchyme fondamental est très développé, ils peuvent être confondus avec certains *Arecoideae* ou *Calamoideae*. Mais ces derniers ont une structure nettement *Mauritia-Type*.

Matériel examiné. – Brahea dulcis (Kunth) Mart.; MRAC (MAD), Tw29452 (MADw36719), B.F. Hansen & M. Nee 1748. Copernicia alba Morong; MRAC, Tw44504 (collection de lames minces). C. baileyana León; FTG, 76104E, J.B. Fisher. C. berte-roana Becc.; FTG, 74179B, J.B. Fisher. C. gigas Ekman ex Burret; FTG, 3990H, J.B.

FIGURE 7.67 – Dimensions des faisceaux fibro-vasculaires. * : partie basale du spécimen prélevé.

Fisher. C. tectorum (Kunth) Mart.; MRAC (MAD), Tw43184 (23897 SJRW), A. Dugand
G. sn. Pritchardia beccariana Rock; MRAC, Tw 43972, A. Curtis sn. P. thurstonii F.Muell.
& Drude; MRAC (MAD), Tw43199 (28143 SJRW), A.C. Smith sn. P. minor Becc.; K,
EBC 26339. Serenoa repens (W.Bartram) Small; MRAC (MAD), Tw43273 (SJRw 51212),
W.J. Stern & G.K. Brizicky sn. Washingtonia robusta H.Wendl.; FTG, 76297, J.B. Fisher.

Compilation bibliographique

Tomlinson (1961) pour les genres suivants :

- Brahea (pas de différence observée),
- Serenoa (pas de différence observée).

FIGURE 7.68 – Diamètre des vaisseaux. * : partie basale du spécimen prélevé.

FIGURE 7.69 – Ratio fibro-vasculaire. * : partie basale du spécimen prélevé.

FIGURE 7.70 – Ratio fibro-vasculaire chez les Trachycarpeae incertae sedis. C. baileyana (losange), C. berteroana partie basale (carré), C. tectorum (triangle), P. thurstonii.

Tomlinson et al. (2011) décrivent très succinctement Acoelorrhaphe wirghtii (Griseb. & H.Wendl.) H.Wendl. ex Becc. dont l'anatomie se rapprocherait de celle de Prit-

chardia minor avec des faisceaux exclusivement fibreux. Quelques descriptions de la publication précédente sont reprises mais sans précision supplémentaire.

Légende de la planche XIV

Planche photographique du stipe des Trachycarpeae

1-5: Copernicia baileyana, polissages transversaux sauf 3, coupe transversale non colorée. 1-2. Zone subcorticale (1) et zone centrale (2). Les faisceaux fibro-vasculaires ont une partie fibreuse dorsale Reniforma dont la surface est légèrement plus importante dans la zone subcorticale mais de densité plus ou moins constante. La partie vasculaire est exclue avec 2 éléments de vaisseau. Les faisceaux exclusivement fibreux sont présents (flèche). 3. Détail d'un faisceau fibro-vasculaire de la zone subcorticale. Le parenchyme tabulaire est présent. Des phytolithes sont visibles autour de la partie fibreuse dorsale. Parenchyme compact à cellules étirées à parois épaissies. 4–5. Détails d'un faisceau fibro-vasculaire et du parenchyme fondamental de la zone de transition (4) et de la zone centrale (5). La structure est similaire à 3 avec une partie fibreuse dorsale plus réduite. Le parenchyme fondamental est lacunaire (larges lacunes $> 250 \ \mu m$), les cellules présentent une forte croissance (rodlike). 6 : C. alba, coupe transversale non colorée. Détail d'un faisceau fibro-vasculaire de la zone subcorticale, la structure est similaire à 6 : Reniforma avec 2 éléments de vaisseau, le parenchyme est compact avec une forme légèrement différente (moins étiré). 7-8: C. tectorum, polissages transversaux. 7. Zone centrale. Ce spécimen présente une grande homogénéité (très peu de différence entre la zone subcorticale et la zone centrale). Les faisceaux fibro-vasculaires ont la même structure que les précédents spécimens et des faisceaux exclusivement fibreux sont présents. 8. Détail des faisceaux fibro-vasculaires et faisceaux exclusivement fibreux (flèche). Une différence avec C. baileyana est observée : le parenchyme fondamental est beaucoup plus compact et composé de cellules à faible croissance (quelques lacunes sont cependant observées). 9–12 : Pritchardia minor, polissages transversaux. 9. Détail de la zone subcorticale : les faisceaux fibro-vasculaires sont assez rapprochés et la partie fibreuse dorsale Reniforma est étirée, 2 éléments de vaisseau. 10. Détail de la zone centrale : les faisceaux fibro-vasculaires ont une partie fibreuse dorsale assez réduite. 11. Détail d'un faisceau fibro-vasculaire. 12. Détail du parenchyme fondamental : cellules lobées et légèrement étirées formant de petites lacunes irrégulières ($< 250 \ \mu m$). 13–14 : Serenoa repens, polissages transversaux. Zone centrale (13) et détail d'un faisceau fibro-vasculaire (14). La partie fibreuse dorsale est Reniforma à zone vasculaire exclue présentant 2 éléments de vaisseau, le parenchyme paravasculaire est très fortement développé (zone blanche sur 13). Le parenchyme fondamental présente une légère croissance formant ainsi de petites lacunes irrégulières. 15–18 : Washingtonia robusta, polissages transversaux. 15–16. Zone subcorticale et zone centrale. La structure diffère par la partie fibreuse dorsale, parenchyme fondamental lacunaire (larges lacunes $> 250 \ \mu m$), cellules à forte croissance. 17. Détail d'un faisceau fibro-vasculaire de la zone subcorticale (Reniforma ou Complanata à 2 éléments de vaisseau). Les fibres présentent une lignification centrifuge : celles proche du phloème se lignifient avant celles de la périphérie. Partie fibreuse ventrale légèrement développée. 18. Détail d'un faisceau fibro-vasculaire de la zone centrale. Ici, les fibres périphériques ne sont pas encore matures : elles sont présentent mais apparaissent comme dégonflées (flèche : faisceau exclusivement fibreux).

Abréviations utilisées — la : lacune aérifère. Échelle — 2 mm : 1–2, 7, 9–10, 13, 15–16. 500 µm : 3–5, 8, 11, 14, 17–18. 200 µm : 6, 12.

PLANCHE XIV – Stipe des Trachycarpeae

Chapitre 8

ANATOMIE DU STIPE DES Calamoideae

Sommaire

8.1	Les Calamoideae lianescents	70
8.2	Les Calamoideae arborescents	71

ES Calamoideae (Fig. 8.1) ont été étudiés par Weiner et Liese (1990, 1993) et Bhat et al. (1993) pour l'identification des rattans et par Tomlinson et Fisher (2000), Tomlinson et al. (2001) et Fisher et al. (2002) en ce qui concerne leur système vasculaire. Dans ce chapitre je présente l'anatomie des Calamoideae arborescents avec un rapide rappel de la structure anatomique des rattans. Il y a 22 genres au sein de cette sous-famille, sept ont été échantillonnés. Parmi les sept genres arborescents (Eugeissona, Lepidocaryum, Mauritia, Mauritiella, Metroxylon, Pigafetta, Raphia), six ont été échantillonnés (seul Mauritiella ne l'a pas été).

FIGURE 8.1 – Quelques Calamoideae. a. Calamus ovoideus Thwaites ex Trimen (photographie J. Dransfield, PalmWeb); b. Mauritia flexuosa (photographie F. Borchsenius, PalmWeb); c. Raphia farinifera (Gaertn.) Hyl. (photographie J. Dransfield, PalmWeb).

8.1 Les Calamoideae lianescents

En raison de la grande variabilité et des études déjà existantes, les structures présentées sont celles de *Calamus* et de *Oncocalamus*. Les descriptions détaillées sont réalisées par Weiner et Liese (1990, 1993), Bhat *et al.* (1993) et Tomlinson *et al.* (2011).

L'épiderme est toujours présent et consiste en une couche de cellules silicifées (*Calamus*) ou complètement cutinisé avec la paroi externe épaissie (*Oncocalamus*) (Tomlinson *et al.* 2011). Le **cortex** est très mince (< 250 µm). Le **cylindre central** (Figs. 8.2), 8.3 définit le *Calamus-Type* est très caractéristique : les faisceaux fibro-vasculaires sont uniformément répartis. Quelques mesures (ratios) ont été réalisée : $\frac{d(FFV)_{ext}}{d(FFV)_{int}} \subset [1;2], \frac{f/v_{ext}}{f/v_{int}} \subset [1;2], \frac{f/v_{ext}}{f/v_{int}} \subset [1;2], f/v < 1$. Les **faisceaux fibro-vasculaires** (Figs. 8.4, 8.5) sont très larges et possèdent un seul (*Calamus*) ou deux éléments de vaisseau (*Oncocalamus*). Ce dernier est le plus large trouvé chez les palmiers (pouvant atteindre 1 mm et plus). Le **phloème** peut soit être en une seule partie (*Oncocalamus*) soit être en deux parties bien distinctes comme chez *Calamus* (c'est la seule sous-famille où cet état du phloème est présent). L'aspect du **parenchyme fondamental** est assez varié et peut être compact ou lacuneux à cellules à paroi généralement épaissie. Les **phytolithes** sont sphéroïdes échinulés. Les **faisceaux exclusivement fibreux** sont absents (*Calamus*) ou présents (*Oncocalamus*). Des fibres sub-hypodermiques sont présentes chez *Oncocalamus* et associées à de petits phytolithes (Tomlinson *et al.* 2011).

FIGURE 8.2 – Coupe transversale de Calamus sp. Échelle : 2 mm.

FIGURE 8.3 – Coupe transversale d'Oncocalamus sp. Échelle : 2 mm.

FIGURE 8.4 – Détail d'un faisceau fibro-vasculaire de Calamus. Échelle : 200 $\mu m.$

FIGURE 8.5 – Détail d'un faisceau fibro-vasculaire d'Oncocalamus.Échelle : 200 $\mu m.$

8.2 Les *Calamoideae* arborescents

Le port arborescent se retrouve dans plusieurs tribus et le clade (*Raphiinae*, *Mauritii-nae*) n'est composé que de genres arborescents.

- Eugeissoneae W.J.Baker & J.Dransf. Eugeissona
- Lepidocaryeae Mart. ex Dumort. Raphiinae H.Wendl. Raphia
- Lepidocaryeae Mauritiinae Meisn. Lepidocaryum, Mauritia, Mauritiella
- Calameae Kunth ex Lecoq. & Juillet Metroxylinae Blume Metroxylon
- Calameae Pigafettinae J.Dransf. & N.W.Uhl Pigafetta

Aspect général et macroscopique du stipe. – Figs. 8.6–8.8. Les *Calamoideae* arborescents ont un cortex moyennement développé et nettement délimité du cylindre central par des faisceaux fibro-vasculaires congestionnés à la partie fibreuse dorsale très importante (f/v élevé) alors que ceux de la zone centrale sont très espacés, à la partie fibreuse dorsale réduite $(f/v \approx 1)$ dans un parenchyme lacunaire.

FIGURE 8.6 – Polissage transversal de Metroxylon sagu. Échelle : 1 cm.

Le cortex. – Planche XV, 1–2, 11, 13, Planche XVI, 1, 5–6, 9, 11. Il est assez réduit (souvent inférieur à 500 µm mais pouvant atteindre 1 mm). J'ai observé que les cortex de

FIGURE 8.7 – Polissage transversal de Raphia. Échelle : 5 mm.

(a) Spécimen K, J.P. Mogea & Ismail 5353.

(b) Spécimen Dransfield et al. JD7610.

FIGURE 8.8 – Polissages longitudinaux de Pigafetta filaris. Échelle : 5 mm.

Raphia, de Metroxylon (Planche XVI, 11) et d'Eugeissona (Planche XVI, 1, 5–6) présentent deux zones nettement différenciées dont la plus externe est fortement subérifiée et présente un alignement (étagement) de plusieurs cellules (phellogène périphérique). Ces cellules peuvent présenter un étirement tangentiel. L'épiderme peut être conservé (Eugeissona, cellules carrés en coupe transversale, Planche XVI, 5–6).

Le cylindre central. – Mauritia-Type. $\frac{d(FFV)_{ext}}{d(FFV)_{int}} \subset [2;8], \frac{f/v_{ext}}{f/v_{int}} \subset [20;80], \frac{R_{ext}}{R_{int}} \subset [15;80], f/v \subset [0,5;20].$ Planche XV, 1–6, 8–9, 11–12, Planche XVI, 1–3, 6–8, 9–10, 11–16.

Les faisceaux fibro-vasculaires et faisceaux exclusivement fibreux. – Les faisceaux fibro-vasculaires ont une partie fibreuse dorsale Reniforma et ont soit un élément de vaisseau dans tout le cylindre central (*Lepidocaryum*, Planche XV, 1–6) ou un élément de vaisseau au niveau de la zone subcorticale et de la zone de transition et deux éléments de vaisseau au niveau de la zone centrale, noté 1 (2) (Planche XV, 8–9, Planche XVI, 1–3). La partie fibreuse dorsale peut être fortement étirée radialement (($H_{max} - H_{vasc} / L_{max} > 3$, Planche XV, Planche XV, 9, Planche XVI, 11, 14). Les faisceaux exclusivement fibreux sont présents chez *Eugeissona* (de très petite taille, < 50 µm, Planche XVI, 3–4). La différenciation centrifuge de la partie fibreuse dorsale est présente (Planche XV, 6–8, 14–16, Planche XVI, 14–16). Le phloème est en une seule bande et la partie fibreuse ventrale n'a pas été observée. Certains genres possèdent une *yellow cap* : c'est une zone entre le cortex et la partie fibreuse dorsale des faisceaux fibro-vasculaires congestionnés de la zone subcorticale où les cellules du parenchyme se sclérifient très fortement formant ainsi une bande périphérique. Ces cellules sont fortement ponctuées (Tomlinson *et al.* 2011), et présentes chez *Mauritia* (Planche XV, 9), *Mauritiella* et *Korthalsia*. Les **phytolithes** sont sphéroïdes échinulés et limités aux stegmata de la partie fibreuse dorsale des faisceaux fibro-vasculaires en contact avec le cortex (zone subcorticale), ils sont absents dans les parties plus internes et très rares au niveau de la zone centrale (Planche XVI, 14–16).

Le parenchyme fondamental. – Il peut prendre plusieurs formes en fonction du genre et la croissance post-primaire est généralement présente. Certains genres (*Lepidocaryum*, Planche XV, 5–6) ont un parenchyme fondamental compact constitué de cellules sphéroïdes à rhomboédriques légèrement lobées pouvant former un réseau de irrégulier de petites lacunes ($< 250 \mu m$), d'autres (*Mauritia, Mauritiella, Metroxylon, Pigafetta, Raphia*) présentent une forte croissance cellulaire formant ainsi un parenchyme trabéculaire (en étoile) avec de larges lacunes très spécifiques ($> 250 \mu m$) (Planche XV, 7–8, 10, Planche XV, Planche XVI, 13–16). Enfin, le parenchyme d'*Eugeissona* présente également une forte croissance mais reste compact et ne forme pas de grandes lacunes (Planche XVI, 3).

Diagnose. – Une diagnose générale n'est pas possible. Cependant plusieurs groupes se distinguent :

- **Eugeissona** Mauritia-Type, partie fibreuse dorsale Reniforma avec différenciation centrifuge, 1 (2) éléments de vaisseau, cortex fortement subérifié et présentant un alignement (étagement) de plusieurs cellules (phellogène périphérique), faisceaux exclusivement fibreux, parenchyme fondamental à croissance post-primaire soutenue mais sans lacune régulière.
- Raphia, Mauritia, Mauritiella Mauritia-Type, partie fibreuse dorsale Reniforma avec différenciation centrifuge, 1 (2) éléments de vaisseau, cortex fortement subérifiée et présentant un alignement (étagement) de plusieurs cellules (phellogène périphérique), parenchyme fondamental trabéculaire (en étoile).
- Lepidocaryum Mauritia-Type, partie fibreuse dorsale Reniforma avec différenciation cen-

trifuge, 1 élément de vaisseau, parenchyme fondamental compact constitué de cellules sphéroïdes à rhomboédriques légèrement lobées.

Metroxylon, Pigafetta Mauritia-Type, partie fibreuse dorsale Reniforma avec différenciation centrifuge, 1 élément de vaisseau, la partie fibreuse dorsale peut présenter un fort étirement radial, cortex fortement subérifié et présentant un alignement (étagement) de plusieurs cellules (phellogène périphérique), parenchyme fondamental trabéculaire (en étoile).

Confusion possible. – En ce qui concerne les groupes (*Raphia*, *Mauritia*, *Mauritiella*, *Metroxylon*, *Pigafetta*) et (*Eugeissona*) la structure du parenchyme fondamental et l'organisation générale permettent de les discriminer assez nettement. Pour *Lepidocaryum*, il est possible de le confondre avec certains stipes d'*Arecoideae* de faible diamètre.

Matériel examiné. – Calamus deerratus G.Mann & H.Wendl.; P, A. Chevalier 21702 coll^o Fleury. Calamus sp. L.; P, P00406196. Calamus sp.; P, P00395331, Duchesne de Bellecour 12. Eugeissona minor Becc.; K, K000525923, J.Dransf. 777. E. utilis Becc.; K, K000525938, J.Dransf. 797. E. insignis Becc.; K, K000525862, H.E.Moore 9105. Lepidocaryum tenue var. casiquiarense (Spruce) A.J.Hend.; K, Madison et al. 6642. L. tenue Mart.; K, Balick et al. 931. Mauritia flexuosa L.f.; K, EBC 26317, R. Spruce sn. Metroxylon sagu Rottb.; K, W.J. Baker 881. Oncocalamus mannii (H.Wendl.) H.Wendl.; P, J.L.C.H. van Valkenburg 2503. Pigafetta filaris (Giseke) Becc.; K, J.P. Mogea & Ismail 5353. P. filaris; K, Dransfield et al. JD7610. Raphia sp. P.Beauv.; K, EBC 26346, P. Tuley sn.

Compilation bibliographique. –

- Weiner et Liese (1990, 1993) et Bhat et al. (1993) en ce qui concerne les rattans.
- Pour les Calamoideae arborescents : Tomlinson (1961) mais uniquement pour Metroxylon et Raphia et sans différence dans la description.
- Tomlinson et al. (2011) pour :
 - Eugeissona, sans différence (description très succincte),
 - Raphia, sans différence,
 - Lepidocaryum,
 - Mauritia, sans différence,
 - Mauritiella, avec une anatomie très proche de Mauritia,
 - Metroxylon, sans différence,
 - Pigafetta, sans différence (description très succincte).

Légende de la planche XV

Planche photographique du stipe des Calamoideae - 1

1-6 : Lepidocaryum, coupes transversales non colorées. 1. Aspect général du stipe (L. tenue), Mauritia-Type avec les trois zones caractéristiques (zone subcorticale, zone de transition, zone centrale). 2. Détail du cortex (couche permanente de cellules sclérifiées au niveau de la partie la plus externe) et de la zone subcorticale. Les faisceaux fibro-vasculaires ont une partie fibreuse dorsale très développée, 1 élément de vaisseau (L. tenue var. casiquiarense). 3. Détail du cylindre central. Les faisceaux fibrovasculaires ont une partie fibreuse dorsale très réduite, 1 élément de vaisseau (L. tenue var. casiquiarense). 4. Détail de faisceaux fibro-vasculaires de la zone subcorticale (L. tenue var. casiquiarense). 5. Détail de faisceaux fibro-vasculaires de la zone centrale (L. tenue). 6. Coupe transversale en lumière polarisée analysée : parenchyme fondamental dense à cellules sphéroïdes et faisceau fibro-vasculaire avec une différenciation centrifuge de la partie fibreuse dorsale (L. tenue var. casiquiarense). 7-10 : Mauritia flexuosa, coupes transversales non colorées. 7. Détail de la zone centrale : parenchyme trabéculaire (en étoile, les cellules émettent plusieurs lobes nettement développés) et lacunes régulières et sphéroïdes. 8. Détail d'un faisceau fibro-vasculaire de la zone centrale : Reniforma à 2 éléments de vaisseau. 9. Zone subcorticale : la partie fibreuse dorsale est fortement développée et étirée radialement (de type Reniforma) avec 1 élément de vaisseau uniquement pour les quelques faisceaux fibro-vasculaires en contact avec le cortex, sinon, 2 éléments de vaisseau. La flèche indique la yellow cap définie par Tomlinson et al. (2011) (cf. texte). 10. Détail du parenchyme fondamental trabéculaire à lacunes sphéroïdes. 11–16 : Raphia, polissages transversaux. 11. Cortex et zone subcorticale. Les faisceaux fibro-vasculaires ont une partie fibreuse dorsale à surface importante et étirée radialement avec 1 élément de vaisseau. 12. Zone centrale. La partie fibreuse dorsale possède moins de fibres et n'est pas encore pleinement développée, 2 éléments de vaisseau. 13. Détail du cortex. 14. Faisceaux fibro-vasculaires de la zone subcorticale. 15. Faisceau fibro-vasculaire de la zone de transition : les fibres sont matures mais ne ne sont pas encore totalement lignifiées comme en 14. 16. Faisceau fibro-vasculaire de la zone centrale. Le f/v est moins important que dans les parties périphériques, fibres d'aspect dégonflées, 2 éléments de vaisseau.

Abréviations utilisées — cz : zone centrale, la : lacune aérifère, sz : zone subcorticale, tz : zone de transition.

Échelle — 2mm : 9, 11–12. 1 mm : 1–3. 500 µm : 7–8, 13–16. 200 µm : 4–6, 10.

Planche XV – Stipe des Calamoideae – 1

8.2. Les Calamoideae arborescents

Légende de la planche XVI

Planche photographique du stipe des Calamoideae – 2

1-8: Eugeissona utilis (J. Dransf. 797), coupes transversales non colorées. 1. Cortex et zone subcorticale. Le cortex est nettement en deux parties dont la plus externe est subérifiée. Les faisceaux fibro-vasculaires ont une partie fibreuse dorsale fortement développée avec 1 élément de vaisseau. 2. Zone de transition. Les faisceaux fibro-vasculaires sont Reniforma avec une zone vasculaire exclue et un seul élément de vaisseau. 3. Zone centrale. Les faisceaux fibro-vasculaires ont une partie fibreuse dorsale très réduite et 2 éléments de vaisseau. 4. Détail d'un faisceau exclusivement fibreux. 5. Épiderme (flèche) et cortex : étagement et cellules étirées radialement. 6. Zone périphérique de la tige montrant les deux zones du cortex et l'étagement des cellules. 7. Faisceau fibro-vasculaire de la zone de transition montrant la différenciation centrifuge de la partie fibreuse dorsale : a. cellules en cours de différenciation en fibre. b. cellules différenciées en fibres. 8. Détail d'un faisceau fibro-vasculaire de la zone centrale. 9–14 : Piqafetta filaris, polissages transversaux. 9. Cortex et zone subcorticale. Les faisceaux fibro-vasculaires présentent une lignification centrifuge, une partie fibreuse dorsale fortement étirée et 1 élément de vaisseau. 10. Zone de transition, le nombre d'éléments de vaisseau augmente (2-3). **11-16** : Metroxylon saqu, polissages transversaux. 11. Cortex et zone subcorticale. Les faisceaux fibro-vasculaires ont une partie fibreuse dorsale fortement étirée radialement, 1 élément de vaisseau. 12. Zone de transition. Les faisceaux fibro-vasculaires ont une partie fibreuse réduite, les fibres sont moins développées (paroi mince), 1 élément de vaisseau. 13. Zone centrale. Les faisceaux fibro-vasculaires ont une partie fibreuse dorsale réduite. Le parenchyme fondamental est lacunaire. 14. Détail de la limite cortex-cylindre central, des phytolithes sont visibles autour de la partie fibreuse dorsale très étirée. 15. Détail de la zone de transition mettant en évidence le développement centrifuge de la partie fibreuse dorsale. 16. Détail de la zone centrale, de très nombreux grains d'amidons sont visibles dans le parenchyme.

Echelle — $2 \text{ mm} : 9-13.1 \text{ mm} : 1-3.500 \text{ }\mu\text{m} : 14-16.200 \text{ }\mu\text{m} : 6-8.50 \text{ }\mu\text{m} : 4-5.$

Planche XVI – Stipe des Calamoideae – 2

Chapitre 9

ANATOMIE DU STIPE DES Nypoideae

Sommaire

Y) EST une famille monospécifique représentée par le palmier emblématique des mangroves (Fig. 9.1) : Nypa fruticans. Son stipe, qui est en fait un rhizome, est souterrain et peut se trouver à plus d'un mètre sous le niveau du sol. Il possède une anatomie très particulière qui sera décrite ci-après. Aucun palmier n'a une anatomie qui peut s'en rapprocher. Un seul spécimen a été échantillonné.

FIGURE 9.1 – Habitat naturel de Nypa dans le delta du Mekong à Ca mau. Photo : Thi My Hanh Diep.

$9.1 \quad Nypa$

Aspect général et macroscopique du stipe. – Le stipe de ce genre présente une organisation très homogène dans tout le cylindre central (Fig. 9.2).

FIGURE 9.2 – Polissage transversal d'Nypa. Échelle : 1 cm.

Le cortex. – Il est très irrégulier et fortement développé avec peu de faisceaux fibrovasculaires et beaucoup de faisceaux exclusivement fibreux (Planche XVII, 1). Il est composé dans sa partie la plus externe d'une large zone présentant un étagement important de cellules subérifiées.

Le cylindre central. – Cocos-Type dans le sens où les mesures s'en rapprochent, mais très différent des autres Cocos-Type. $\frac{d(FFV)_{ext}}{d(FFV)_{int}} \subset [1;2], \frac{f/v_{ext}}{f/v_{int}} \subset [1;3], \frac{R_{ext}}{R_{int}} \subset [1;2], f/v \subset [0,5;2].$

Les faisceaux fibro-vasculaires et faisceaux exclusivement fibreux. – Les faisceaux fibro-vasculaires sont très diffus, de densité constante (densité très faible, de l'ordre de 70/cm²) et de petite taille ($H_{max} = 348 \ \mu m$, $l_{max} = 264 \ \mu m$, $H_{vasc} = 217 \ \mu m$, $l_{vasc} = 232 \ \mu m$). Ils sont Reniforma (Planche XVII, 2–4) avec une partie fibreuse ventrale totalement exclue, sans sinus auriculaire et deux éléments de vaisseau de très petite taille ($\emptyset = 70 \ \mu m$). Le phloème n'est pas partitionné. Les faisceaux exclusivement fibreux sont présents ($\emptyset_{min} = 45 \ \mu m$, $\emptyset_{moy} = 107 \ \mu m$, $\emptyset_{max} = 145 \ \mu m$, densité moyenne = $151/cm^2$). Ces deux structures sont très aléatoirement orientées et sont souvent dans un plan qui ne permet pas une observation optimale, ils ont un parcours très sinueux (Planche XVII, 2, 5). Phytolithes trapéziformes (ex-en chapeau) (Tomlinson *et al.* 2011).

Le parenchyme fondamental. – Il est lacunaire et composé de petites cellules de formes aléatoires. Les lacunes sont de petite taille ($< 200 \mu m$). Par endroit, il semble compact, mais ce parenchyme n'est pas évident à observer et d'autres observations sont nécessaires.

Diagnose. – Cocos-Type, faisceaux fibro-vasculaires Reniforma, sans sinus auriculaire et très espacés, f/v très faible et constant (< 2) (partie fibreuse dorsale réduite, $f/v \approx 1$),

faisceaux exclusivement fibreux, parcours des faisceaux très sinueux, 2 éléments de vaisseau, cortex avec phellogène.

Confusion possible. – Ce genre a une anatomie si particulière qu'il ne peut pas être confondu avec d'autres genres.

Matériel examiné. – Nypa fruticans Wurmb; Pers., Thi My Hanh Diep sn.

Compilation bibliographique. – Tomlinson et al. (2011), sans différence.

Légende de la planche XVII

Planche photographique du stipe de Nypa

1-5 : Nypa fruticans, polissages transversaux. 1 : Cortex développé (ct). La zone la plus externe (à gauche) présente un alignement de plusieurs cellules (phellogène). La transition avec le cylindre central est rapide. 2. Détail du cylindre central. Le parcours des faisceaux est très sinueux. 3. Faisceaux fibro-vasculaires et faisceaux exclusivement fibreux. 4. Détail d'un faisceau fibro-vasculaire : Reniforma, 2 éléments de vaisseau. 5. Un faisceau fibro-vasculaire coupé longitudinalement dans le plan transversal.

Abréviation utilisée — ct : cortex. Échelle — 2 mm : 1–2. 500 μ m : 3, 5. 200 μ m : 4.

Planche XVII – Stipe de Nypa

Chapitre 10

ANATOMIE DU STIPE DES Ceroxyloideae

Sommaire	
10.1	Les Cyclospatheae
10.2	Les <i>Ceroxyleae</i>
10.3	Les Phytelepheae

FIGURE 10.1 – Quelques Ceroxyloideae. a. Aphandra natalia (Balslev & A.J.Hend.) Barfod (photographie W.J. Baker, PalmWeb). b. Ceroxylon quindiuense (H.Karst.) H.Wendl. (Photographie F. Castano, PalmWeb). c. Ravenea xerophila Jum. (Photographie H. Beentje, PalmWeb).

10.1 Les Cyclospatheae

Aspect général et macroscopique du stipe. – Fig. 10.2. Le stipe présente une forte croissance post-primaire comme en atteste la morphologie de ce palmier (Fig. 5.1) ainsi qu'une nette différence entre la zone périphérique et la zone interne de la tige.

FIGURE 10.2 – Polissage transversal de Pseudophoenix sargentii. Échelle : 1 cm.

Le cortex. – L'épiderme peut être conservé et possède des cellules caractéristiques en forme de cône fortement allongé (Planche XVIII, 5). Le cortex est assez peu développé (< 1 mm, Planche XVIII, 6) et présente deux zones nettement différenciées dont la plus externe est constituée d'un étagement de plusieurs cellules fortement subérifiées (phellogène périphérique). Cette zone ne contient que des faisceaux exclusivement fibreux. La zone la plus interne possède à la fois des faisceaux exclusivement fibreux et des faisceaux fibrovasculaires (avec une partie vasculaire quasiment inexistante).

Le cylindre central. – Mauritia-Type. $\frac{d(FFV)_{ext}}{d(FFV)_{int}} \subset [3;6], \frac{f/v_{ext}}{f/v_{int}} \subset [20;40], \frac{R_{ext}}{R_{int}} \subset [12;20], f/v \subset [<0,5;20].$

Les faisceaux fibro-vasculaires et faisceaux exclusivement fibreux. – Les faisceaux fibro-vasculaires possèdent une partie fibreuse dorsale Reniforma et deux éléments de vaisseau dans tout le cylindre central, la partie fibreuse ventrale n'est pas observée, Planche XVIII, 6–7. La partie fibreuse dorsale est fortement étirée radialement ($(H_{max} - H_{vasc})$ / $L_{max} > 3$). La différenciation centrifuge de la partie fibreuse dorsale est présente. Le phloème n'est pas partitionné. Les faisceaux exclusivement fibreux sont absents. Les phytolithes sont sphéroïdes échinulés et très développés au niveau de la partie fibreuse dorsale des faisceaux fibro-vasculaires en contact avec le cortex, ils sont absents dans les parties plus internes et très rares au niveau de la zone centrale. Le parenchyme tabulaire est présent (Planche XVIII, 7).

Le parenchyme fondamental. – Au niveau de la zone subcorticale, le parenchyme fondamental est dense et à croissance unidirectionnelle dans le plan tangentiel (Planche

XVIII, 6). La croissance post-primaire est très marquée et prend nettement deux formes dans la zone centrale : parenchyme connectif (ou appendiculaire) de taille importante (500 µm * 80 µm) faisant une sorte de réseau entre les faisceaux fibro-vasculaires (Planche XVIII, 7) et un parenchyme à cellules géantes (Planche XVIII, 8). Les lacunes n'ont pas été remarquées mais peuvent sûrement se développer dans un tel type de parenchyme.

Diagnose. – *Mauritia-Type*, partie fibreuse dorsale Reniforma, 2 éléments de vaisseau, parenchyme fondamental à cellules géantes et appendiculaires, cortex à phellogène (étagement) et à épiderme souvent conservé à cellules coniques.

Confusion possible. – Ce genre possède une anatomie assez particulière en raison de son parenchyme et de son cortex et il n'est pas possible de le confondre avec un autre.

10.2 Les Ceroxyleae

Du fait de l'observation de deux genres uniquement – (*Ravenea* H.Wendl. ex C.D.Bouché et *Ceroxylon* Bonpl. ex DC. – Planche XVIII, 9–17, cette tribu sera décrite avec, en complément, la description de Tomlinson *et al.* (2011) pour *Juania* Drude. Il n'y a pas de différence entre les descriptions de ces auteurs et la mienne pour *Ceroxylon* et *Ravenea*.

Aspect général et macroscopique du stipe. – Comme pour *Pseudophoenix*, ces genres présentent une forte croissance post-primaire et une nette différence entre la zone subcorticale et la zone centrale (caractéristique des palmiers *Mauritia-Type*, Fig. 10.3).

Le cortex. – Le cortex de *Ravenea* possède la même structure que *Pseudophoenix* (Planche XVIII, 14). L'épiderme peut être conservé et possède des cellules caractéristiques en forme de cône. Le cortex est développé (environ 1,5 mm) et présente deux zones nettement différenciées dont la plus externe est fortement subérifiée et présente un étagement de plusieurs cellules (phellogène périphérique). Ces cellules peuvent être assez fortement allongées tangentiellement. La zone la plus externe ne contient que des faisceaux exclusivement fibreux (Planche XVIII, 9, 14).

Tomlinson *et al.* (2011) indiquent une structure similaire pour *Juania* avec la présence de nombreux stomates non fonctionnels.

Le cylindre central. – Mauritia-Type. Mesures réalisées pour Ravenea $\frac{d(FFV)_{ext}}{d(FFV)_{int}}$ \subset [6;10], $\frac{f/v_{ext}}{f/v_{int}}$ \subset [20;> 50], $f/v \subset$ [0,5;25]. Ceroxylon possède une structure assez

FIGURE 10.3 – Polissage transversal de Ceroxylon. Échelle : 5 mm.

similaire. Tomlinson *et al.* (2011) décrivent un cylindre central assez similaire pour *Juania* et *Ceroxylon*.

Les faisceaux fibro-vasculaires et faisceaux exclusivement fibreux. – Ravenea (Planche XVIII, 14–17) : les faisceaux fibro-vasculaires sont Reniforma et ont un ou deux éléments de vaisseau au niveau de la zone subcorticale et de la zone de transition, et souvent plus de 4 éléments de vaisseau au niveau de la zone centrale. La partie fibreuse ventrale n'est pas observée. La partie fibreuse dorsale peut être fortement étirée radialement ($(H_{max} - H_{vasc} / L_{max} > 3)$). La différenciation centrifuge de la partie fibreuse dorsale est présente. Le phloème n'est pas partitionné. Les phytolithes sont sphéroïdes échinulés et très développés au niveau de la partie fibreuse dorsale des faisceaux fibro-vasculaires en contact avec le cortex, absents dans les parties plus internes et très rares au niveau de la zone centrale. Le parenchyme rayonnant est présent.

Ceroxylon possède des faisceaux fibro-vasculaires similaires mais avec des éléments de vaisseau plus nombreux, de deux à plus de quatre. Les faisceaux exclusivement fibreux sont présents (Planche XVIII, 9–13).

Tomlinson *et al.* (2011) : *Juania* possède 4–7 éléments de vaisseau (il semble n'y en avoir que 2–3 au niveau de la zone subcorticale).

Le parenchyme fondamental. – *Ravenea* : cellules géantes. Quasiment aucune lacune observée (Planche XVIII, 17).

Ceroxylon : parenchyme lacuneux, similaire à *Pseudophoenix* (parenchyme connectif). Tomlinson *et al.* (2011) décrivent le parenchyme de *Juania* comme étant lacuneux. Les lacunes (< 250 μ m) sont formées par des cellules de petites tailles légèrement lobées à rhomboédriques.

Diagnose (tentative). – *Mauritia-Type*, partie fibreuse dorsale Reniforma, 2 - > 4 éléments de vaisseau, parenchyme fondamental à cellules géantes et appendiculaires ou à cellules lobées formant de petites lacunes, cortex à phellogène (étagement) et à épiderme souvent conservé à cellules coniques.

Confusion possible. – En raison du nombre élevé d'éléments de vaisseau et de l'organisation du cortex, ces genres ne semblent pas pouvoir être confondus avec d'autres genres lorsque ces structures anatomiques sont développées.

10.3 Les Phytelepheae

Du fait de l'observation d'un seul genre (*Phytelephas*), cette tribu sera décrite avec, en complément, la description de Tomlinson *et al.* (2011) pour *Ammandra* O.F.Cook.

Le cortex. – Il est très large pour *Phytelephas* (Planche XVIII, 1) et bien délimité du cylindre central (sauf pour *Ammandra*). Il est composé de faisceaux exclusivement fibreux très nombreux et de tailles variables.

Le cylindre central. – Phytelephas : Cocos-Type. $\frac{d(FFV)_{ext}}{d(FFV)_{int}} \subset [1;3], \frac{f/v_{ext}}{f/v_{int}} \subset [1;4], \frac{R_{ext}}{R_{int}} \subset [2;5], f/v \subset [0,5;2(3)].$

Les faisceaux fibro-vasculaires et faisceaux exclusivement fibreux. – Phytelephas : les faisceaux fibro-vasculaires ont une partie fibreuse Reniforma et possèdent plusieurs éléments de vaisseau (toujours > 4) et ce quelque soit la position des faisceaux fibro-vasculaires dans le cylindre central. De longues trachéides forment une transition entre le métaxylème et le protoxylème (Planche XVIII, 2–4). La différenciation centrifuge de la partie fibreuse dorsale est absente. La partie fibreuse ventrale n'est pas observée. Le phloème n'est pas partitionné. Les faisceaux exclusivement fibreux sont les plus larges observés chez les palmiers : $\emptyset_{min} = 116 \ \mu m, \ \emptyset_{moy} = 222 \ \mu m, \ \emptyset_{max} = 340 \ \mu m$, densité comprise entre 150/cm² et 200/cm². Les phytolithes sont sphéroïdes échinulés et très abondants dans tout le cylindre central sur les faisceaux exclusivement fibreux et les faisceaux fibro-vasculaires. Parmi tous les phytolithes observés chez les palmiers, ceux de *Phytelephas* présentent le plus grand diamètre (généralement > 20 µm, Planche XVIII, 4). Comme chez *Nypa*, le parcours de ces faisceaux est très sinueux (inter-nœuds très courts?) et il n'est pas rare d'en trouver certains coupés longitudinalement dans une coupe transversale.

Ammandra possède des faisceaux fibro-vasculaires différents. Un seul élément de vaisseau est observé avec de nombreuses trachéides. Le phloème est en une seule et large partie.

Le parenchyme fondamental. – Il n'est pas évident d'observer le parenchyme de *Phy*telephas mais il semble être compact et composé de petites cellules sphéroïdes. Cependant comme l'indiquent Tomlinson *et al.* (2011) il se développe de larges lacunes provoquées par le fait que les cellules peuvent collapser.

Diagnose (uniquement *Phytelephas*). – *Cocos-Type*, partie fibreuse dorsale Reniforma, > 4 éléments de vaisseau (souvent plus de 10), faisceaux exclusivement fibreux de grand diamètre (certains aussi grand que les faisceaux fibro-vasculaires), phytolithes de grand diamètre (20 µm), parcours des faisceaux sinueux.

Confusion possible. – En ce qui concerne *Phytelephas*, il n'est pas possible de confondre ce genre qui possède une anatomie très spécifique

Matériel examiné. – Ceroxylon sp. Bonpl. ex DC.; MRAC (MAD), Tw43251 (45348
SJRW), Acosta-Solis, Misael 6734. Phytelephas macrocarpa Ruiz & Pav.; K, EBC 26341.
Pseudophoenix vinifera (Mart.) Becc.; FTG, 57577, J.B. Fisher. P. sargentii H.Wendl. ex
Sarg.; FTG, 59504, J.B. Fisher. P. sargentii; FTG, 60171C, J.B. Fisher. Ravenea moorei J.Dransf. & N.W.Uhl; FTG, 63334 J.B. Fisher. R. albicans (Jum.) Beentje; P, 7666(7),
W.J.Baker 1022. R. julietiae Beentje; P, 7666(7), W.J.Baker 1014.

Compilation bibliographique. -

- Tomlinson (1961) uniquement pour Phytelephas Ruiz & Pav..
- Tomlinson et al. (2011) pour :
 - Pseudophoenix, sans différence (il faudrait en savoir un peu plus sur le terme cells producing a somewhat lacunose appearance),
 - Ravenea, description très succincte mais sans différence,
 - Juania,
 - Ceroxylon,
 - Phytelephas, sans différence,
 - Ammandra,

Légende de la planche XVIII

Planche photographique du stipe des Ceroxyloideae

1-4: Phytelephas macrocarpa, coupes transversales non colorées. 1. Cortex très large, irrégulier et avec faisceaux exclusivement fibreux. 2. Zone subcorticale. 3. Zone centrale. Il n'y aucune différence entre ces deux zones (Cocos-Type), le parenchyme fondamental est fortement dégradé (les cellules collapsent). 4. Détail d'un faisceau fibro-vasculaire et de deux faisceaux exclusivement fibreux. Partie fibreuse dorsale Reniforma, nombreux éléments de vaisseau et faisceaux exclusivement fibreux de très grande taille. Les phytolithes sont visibles à la périphérie des faisceaux exclusivement fibreux et de la partie fibreuse dorsale. 5–8 : Pseudophoenix sargentii, coupes transversales non colorées. 5. Détail de l'épiderme à cellules coniques à parois externes épaissies. Le cortex présente un étagement des cellules de la zone périphérique, phellogène (FTG 60171C). 6. Cortex et zone subcorticale. Les faisceaux fibro-vasculaires ont une partie fibreuse dorsale Reniforma étirée radialement. Les cellules du parenchyme fondamental sont étirées tangentiellement (FTG 60171C). 7. Zone centrale. Faisceaux fibro-vasculaires à partie fibreuse dorsale plus réduite, 2 éléments de vaisseau, parenchyme fondamental appendiculaire (connectif) à cellules géantes (FTG 59504). 8. Détail des cellules géantes (FTG 59504). 9–13 : Ceroxylon sp., polissages transversaux. 9. Cortex très étroit ; zone subcorticale à faisceaux fibro-vasculaires congestionnés (f/v)élevé) et phytolithes tout autour des parties fibreuses en contact avec le cortex. 10. Zone de transition : les fibres de la partie fibreuse dorsale sont formées mais non encore développées (dégonflées), Reniforma, 3 ou plus éléments de vaisseau. 11. Faisceau fibro-vasculaire de la zone subcorticale avec une partie fibreuse dorsale présentant une lignification centrifuge (gradient de lignification représenté par les flèches). 12. Faisceau fibro-vasculaire de la zone subcorticale mais à une position plus interne que le précédent. Les faisceaux exclusivement fibreux sont présents (flèche noire). 13. Faisceau fibro-vasculaire de la zone de transition avec des fibres non développées mais formées en partie distale (b) alors qu'elles sont plus fortement lignifiées en partie proximale (a). 14–17: Ravenea, coupes transversales non colorées. 14–15. R. julietiae. 14. Cortex avec étagement des cellules de la zone périphérique (phellogène) et nombreux faisceaux exclusivement fibreux dans la partie interne du cortex. Zone subcorticale : les faisceaux fibro-vasculaires ont une partie fibreuse dorsale Reniforma étirée radialement (f/v élevé) à 1 ou plusieurs éléments de vaisseau. 15. Zone centrale : partie fibreuse dorsale réduite et souvent plus de 4 éléments de vaisseau. 16-17. R. moorei. 16. Zone subcorticale, faisceaux fibro-vasculaires congestionnés en quinconce. 17. Zone centrale, parenchyme fondamental à cellules géantes et faisceaux fibro-vasculaires à parenchyme rayonnant.

Échelle — 2 mm : 9–10, 1 mm : 1–3, 6–8, 11–17. 200 μ m : 4–5.

 $\label{eq:planche} {\tt Planche XVIII-Stipe \ des \ Ceroxyloideae}$

Chapitre 11

ANATOMIE DU STIPE DES Arecoideae

Sommaire

11.1 Les Iriarteeae
11.2 Les Chamaedoreeae
11.3 Les Roystoneeae
11.4 Les <i>Cocoseae</i>
11.5 Les <i>Podococceae</i>
11.6 Les Oranieae
11.7 Les <i>Euterpeae</i>
11.8 Les Manicarieae
11.9 Les Leopoldinieae
11.10 Les Geonomateae
11.11 Les Areceae

A SOUS-FAMILLE des Arecoideae est de loin la plus importante en nombre de genres et \checkmark d'espèces et il ne sera malheureusement pas possible de réaliser une étude approfondie de cette sous famille dans le cadre de cette thèse. En effet, outre le fait qu'elle soit composée de 14 tribus, 107 genres et 1 300 espèces, c'est la sous-famille la plus diversifiée en ce qui concerne la morphologie des stipes. C'est par exemple dans cette sous-famille que nous trouvons le stipe le plus large des palmiers (*Jubea* Kunth in Humb., Bonpl. & Kunth) et d'autres très petits comme *Geonoma* Wild. et même lianescents comme *Desmoncus* Mart.

Ce chapitre ne sera donc pas traité de la même façon que les quatre précédents. La raison principale en est le nombre important de genres et le temps limité pour la réalisation d'une thèse. La seconde raison est que, si mon étude anatomique des quatre autres sous-familles apporte des informations nouvelles par rapport aux informations déjà existantes Tomlinson (1961), Tomlinson *et al.* (2011), celles que je pourrais fournir au moment de la rédaction de cette thèse n'apporteraient pas plus d'informations que celles se trouvant dans Tomlinson *et al.* (2011). Cependant, dans un soucis d'exhaustivité et afin de permettre au lecteur d'avoir une vision générale de l'anatomie du stipe des palmiers, je présente ici certains genres dont l'anatomie a été étudiée dans le cadre de ce travail.

11.1 Les Iriarteeae

FIGURE 11.1 – Polissage transversal de Wettinia quinaria. Échelle : 5 mm.

L'anatomie de cette tribu est présentée Planche XIX 1–10. Les trois genres présentés ici (*Wettinia* Fig. 11.1, Planche XIX 1–4, *Iriartella* Planche XIX 5–7, Planche II 7–14, *Socratea* Planche XIX 8–10) présentent une grande homogénéité de leur anatomie. Le **cortex** est moyennement développé (entre 500 µm et 1 mm) avec une forte croissance tangentielle des cellules du parenchyme (Planche XIX 1, 8, 10). Le **cylindre central** est *Mauritia-Type* avec une zone subcorticale où les faisceaux fibro-vasculaires ont une partie fibreuse dorsale très développée, plutôt Reniforma avec un élément de vaisseau (Planche XIX 2, 5–6, 8–9). La différenciation centrifuge de la partie fibreuse est présente (Planche XIX 3, 6, Planche II 7–14). Les faisceaux fibro-vasculaires de la zone centrale sont largement espacés et leur partie fibreuse dorsale extrêmement réduite avec un seul élément de vaisseau (Planche XIX 4, 7). Le **parenchyme fondamental** présente une très forte croissance post-primaire avec des cellules géantes où les lacunes sont très réduites (Planche XIX 4, 5).

Matériel examiné. – Iriartea deltoidea Ruiz & Pav.; MRAC (MAD), Tw 43234 (SJRW 43028), J.Cuatrecasas sn. Iriartella setigera (Mart.) H.Wendl.; K, EBC 26296, R.Spruce. Socratea exorrhiza (Mart.) H.Wendl.; K, J.Strudwick et al. 5012. Wettinia quinaria (O.F.Cook & Doyle) Burret; K, King 663.

11.2 Les Chamaedoreeae

L'anatomie de cette tribu est présentée Planche XIX 11–19. Trois genres sur cinq ont été étudiés (dont *Chamaedorea* étudié sur une lame du Jodrell Anatomy Laboratory, Kew). L'anatomie de cette tribu est dans l'ensemble semblable à la précédente. *Gaussia* (Planche XIX 11–13, Planche II 1–6) possède une anatomie voisine de celle de *Iriartella* avec pour seule différence la présence de deux éléments de vaisseau au niveau de la zone centrale. *Hyophorbe* possède un **cortex** développé nettement délimité du cylindre central. L'organisation générale du **cylindre central** est *Mauritia-Type*. Les faisceaux fibro-vasculaires présentent une différenciation centrifuge de la partie fibreuse dorsale qui est réduite au niveau de la zone centrale. Un seul élément de vaisseau a été observé dans tout le cylindre central pour *Hyophorbe*.

Matériel examiné. – Chamaedorea tepejilote Liebm. in C.F.P. von Martius, lame mince, Jodrell Anatomy Laboratory, Kew. Gaussia maya (O.F.Cook) H.J.Quero & Read; FTG, RM1723B, J.B. Fisher. Gaussia sp. H.Wendl.; Pers., R. Thomas sn. Hyophorbe verschaffeltii H.Wendl.; K, EBC 26288.

Les deux tribus suivantes (*Roystoneeae* et *Cocoseae*) forment un groupe monophylétique avec celle des *Reinhardtieae* qui n'est pas étudiée ici.

11.3 Les Roystoneeae

L'anatomie de cette tribu monogénérique est présentée Planche XX 1–3. Le **cortex** est divisé en deux zones. La plus externe présente un alignement de cellules subérifiées (phellogène). **cylindre central** : *Mauritia-Type* (Planche XX 1, 2). Les faisceaux fibro-vasculaires présentent un allongement de la partie fibreuse dorsale au niveau de la zone subcorticale. Cette partie fibreuse est très développée. Au niveau de la zone centrale, la partie fibreuse est réduite. Les faisceaux fibro-vasculaires ne possèdent qu'un seul élément de vaisseau dans tout le cylindre central. Le **parenchyme fondamental** présente des cellules à fort allongement tangentiel au niveau de la zone subcorticale puis au niveau de la zone centrale une forte croissance post-primaire : cellules en-bâton avec de larges lacunes (Planche XX 3). La différenciation centrifuge de la partie fibreuse dorsale est présente.

Matériel examiné. – Roystonea regia (Kunth) O.F.Cook; K, EBC 26326.

11.4 Les Cocoseae

FIGURE 11.2 – Polissage transversal de Cocos nucifera. Échelle : 1cm.

L'anatomie de cette tribu est présentée Planche XX 4–22. cortex. Dix genres sur les 18 qui composent cette tribu ont été étudiés, cinq sont présentés ici. Il n'est pas facile de résumer l'anatomie de la deuxième tribu des palmiers en terme de nombre de genres. Cependant deux types de stipes peuvent être observés et ce, indépendamment de la phylogénie. Cette tribu peut être divisée en deux groupes ((Elaeidinae, Bactridinae) et Attaleinae, Fig. 1.4) et les genres Cocos et Elaeis partagent la même anatomie. Celle-ci ne semble pas être retrouvée ailleurs dans cette sous-famille et se rapproche en certains points de celle des Coryphoideae (Phoeniceae). Le cylindre central est Cocos-Type, la différenciation centrifuge de la partie fibreuse dorsale est absente (Planche XX 4–7). Les faisceaux fibro-vasculaires sont Reniforma (sans sinus auriculaire) à Vaginata à partie fibreuse ventrale fortement développée (Fig. 12.1), avec un à deux éléments de vaisseau (Planche XX 5-6). C'est ce descripteur (nombre d'éléments de vaisseau) qui permet de différencier ce groupe des Coryphoideae : chez les Coryphoideae l'ensemble des faisceaux fibro-vasculaires du cylindre central possède 2 éléments de vaisseau (cf. Phoeniceae, 7.8) alors qu'ici leur nombre varie entre 1 et 2. Le parenchyme fondamental est compact à cellules sphéroïdes isodiamétriques devenant légèrement allongées dans les parties âgées du stipe. Il est à signaler que de nombreux raphides ont été observés (autre caractéristique anatomique qui permet de les différencier des Coryphoideae). Des faisceaux exclusivement fibreux sont observés chez Cocos.

Le deuxième type de stipe est semblable à l'anatomie des autres tribus des Arecoideae (Planche XX 8–22). Syagrus (Planche XX 8–13) présente un **cortex** large divisé en deux zones. La plus externe est constituée d'un alignement de cellules (phellogène) (Planche XX 8, 11). La zone la plus interne présente également un alignement radial de cellules. Il semble que cet alignement soit du à un cloisonnement cellulaire faisant suite à une croissance post-primaire radiale des cellules de cette zone (Planche XX 8). Le **cylindre central** est *Mauritia-Type*. Le **parenchyme fondamental** de la zone subcorticale est constitué de cellules allongées et alignées tangentiellement (Planche XX 9–10) donnant ainsi une répartition des faisceaux fibro-vasculaires en flamme. Les faisceaux fibro-vasculaires ne possèdent qu'un seul élément de vaisseau au niveau de la zone subcorticale, et deux éléments de vais-

seau au niveau de la zone centrale (Planche XX 12–13). Desmoncus (Planche XX 14–15) présente une anatomie proche de celle des Calamus. Les différences principales sont les suivantes (Tomlinson et Zimmermann 2003) : la partie fibreuse des faisceaux fibro-vasculaires de la zone subcorticale est très développée (Planche XX 14), les faisceaux fibro-vasculaires de la zone centrale sont plus espacés chez Desmoncus et possèdent un phloème non partitionné. Bactris (Planche XX 16–22) présente une anatomie très proche de celles d'Iriartella ou de Gaussia. Le cortex est divisé en deux zones (Planche XX 16) et présente un épiderme permanent avec des cellules coniques et des stomates non fonctionnels. Les phytolithes sont trapéziformes (Planche XX 17). cylindre central : Mauritia-Type (Planche XX 18–19). Un élément de vaisseau au niveau de la zone subcorticale et deux au niveau de la zone centrale (Planche XX 21). La différenciation centrifuge de la partie fibreuse dorsale est présente (Planche XX 20). Le parenchyme fondamental est constitué de cellules géantes sans lacune (Planche XX 21–22), les faisceaux exclusivement fibreux sont présents.

Matériel examiné. – Acrocomia crispa (Kunth) C.F.Baker ex Becc.; FTG, 91426A,
J.B. Fisher. A. aculeata (Jacq.) Lodd. ex Mart.; K, EBC 26210. Aiphanes minima (Gaertn.) Burret; FTG, 3094, J.B. Fisher. A. minima; FTG, 6256, J.B. Fisher. Astrocaryum sp. G.Mey.; K, EBC 26214. Attalea fairchildensis (Glassman) Zona; FTG,
RM979A, J.B. Fisher. Bactris plumeriana Mart. in A.D.d'Orbigny; FTG, 60647, J.B.
Fisher. B. gasipaes Kunth in F.W.H.A.von Humboldt; FTG, 66342, J.B. Fisher. Beccariophoenix madagascariensis Jum. & H.Perrier; P, P00491927, J.Dransf. JD6433. B. madagascariensis; P, P00491920, Humbert 20572. B. madagascariensis; P, P00491927, J.Dransf. JD6433. Cocos nucifera L.; K, EBC 69867. C. nucifera; MRAC, Tw 26873, Renard sn.
Desmoncus sp. Mart.; P, P00417180. Desmoncus sp.; K, EBC 38431. Elaeis guineensis Jacq.; P, P00416187. Syagrus campos-portoana (Bondar) Glassman; FTG, 91604, J.B.
Fisher. S. picrophylla Barb.Rodr.; FTG, 64660, J.B. Fisher. S. sancona (Kunth) H.Karst.;
FTG, 72830J, J.B. Fisher. S. schizophylla (Mart.) Glassman; FTG, 4354B, J.B. Fisher.

11.5 Les Podococceae

L'anatomie de cette tribu monogénérique est présentée Fig. 11.3. Le **cortex** est assez étroit avec la présence de nombreux faisceaux exclusivement fibreux (Fig. 11.3 a). Organisation générale du **cylindre central** : *Geonoma-Type* (Fig. 11.3 a, b). Les **faisceaux fibro-vasculaires** ont un seul élément de vaisseau, un phloème non partitionné et une partie fibreuse dorsale Reniforma (Fig. 11.3 c, d). Le **parenchyme fondamental** ne présente pas de croissance post-primaire et est composé de cellules sphéroïdes avec quelques lacunes et contenant parfois des raphides (Fig. 11.3 e).

FIGURE 11.3 – Anatomie de *Podococcus barteri*, coupes transversales non colorées. a. Cortex et zone subcorticale, faisceaux fibro-vasculaires congestionnés, 1 élément de vaisseau. b. Zone centrale, 1 élément de vaisseau. c. Détail d'un faisceau fibro-vasculaire de la zone centrale (lumière polarisée analysée). d. Détail d'un faisceau fibro-vasculaire de la zone subcorticale (lumière polarisée analysée). e. Détail du parenchyme fondamental de la zone centrale : compact à cellules sphéroïdes, raphide au centre (lumière polarisée analysée).

Échelle : 2 mm : a, b. 250 μm : c, d, e.

Matériel examiné. – Podococcus barteri G.Mann & H.Wendl.; P, N.Hallé 2175.

11.6 Les Oranieae

L'anatomie de cette tribu monogénérique est présentée Planche XXI 1–4. Le **cortex** est nettement divisé en deux zones, la plus externe est composée de cellules subérifiées alignées radialement (phellogène) et est nettement délimitée de la zone interne composée de cellules parenchymateuse à paroi non épaissie et sans organisation particulière. Organisation générale du **cylindre central** : *Mauritia-Type* (Planche XXI 1). Les **faisceaux fibro-vasculaires** ont une partie fibreuse très développée au niveau de la zone subcortical et présentent un étirement radial prononcé avec un seul élément de vaisseau. Ceux de la zone centrale ont une partie fibreuse dorsale très réduite avec un élément de vaisseau (Planche XXI 3). Le **parenchyme fondamental** présente un alignement / étirement tangentiel subcortical (Planche XXI 2). Il est lacunaire (croissance post-primaire) à cellules lobées, légèrement allongées (Planche XXI 4).

Matériel examiné. – Orania dafonsoroensis A.P.Keim; K, K000112519, Heatubun et al. CH278. O. dafonsoroensis; K, K000114432, B.Desianto BD12. O. palindan (Blanco) Merr.; K, E.S.Fernando EF696.

11.7 Les Euterpeae

L'anatomie de cette tribu est présentée Planche XXI 5–13. Trois genres sur les cinq qui composent cette tribu ont été étudiés et présentent une relative homogénéité. Le **cortex** est constitué d'une zone externe où s'observe un alignement radial de cellules subérifiées. Cette zone est nettement délimitée de la zone interne qui présente un étirement tangentiel des cellules de parenchyme (Planche XXI 5, 9, 11). Un épiderme a été observé (Planche XXI 9). Organisation générale du **cylindre central** : *Mauritia-Type*. Les **faisceaux fibro-vasculaires** de la zone subcorticale ont une partie fibreuse dorsale fortement développée (Planche XXI 6, 10, 12) avec un seul élément de vaisseau tandis que la partie fibreuse est très réduite au niveau de la zone centrale (Planche XXI 8, 10, 13). La différenciation centrifuge de la partie fibreuse est présente (Planche XXI 7). Le **parenchyme fondamental** présente une croissance post-primaire mais sa structure était fortement dégradée et n'a pas pu être observée correctement.

Matériel examiné. – Euterpe catinga Wallace; K, EBC 26280, Harley et al. 10758. Euterpe sp. Mart.; K, EBC 26282. Hyospathe elegans Mart.; K, Schunke 5615. Oenocarpus mapora H.Karst.; K, Balick 916. O. minor Mart. K, EBC 35968, R.Spruce 89. Oenocarpus sp. Mart.; K, Balick et al. 953.

11.8 Les Manicarieae

L'anatomie de cette tribu monogénérique est présentée Planche XXI 14–17. Le **cortex** est constitué d'un alignement radial de cellules et l'épiderme est conservé (Planche XXI 14). Organisation générale du **cylindre central** : *Geonoma-Type* (Planche XXI 15–16). Les **faisceaux fibro-vasculaires** n'ont qu'un seul élément de vaisseau avec un parenchyme paravasculaire développé (Planche XXI 17). Le **parenchyme fondamental** ne présente pas de croissance post-primaire (cellules sphéroïdes, très peu de lacunes).

Matériel examiné. – Manicaria saccifera Gaertn.; K, EBC 26315.

FIGURE 11.4 – Anatomie de *Leopoldinia pulchra*, coupes transversales non colorées. a. Cortex et zone subcorticale. b. Zone centrale. c. Détail d'un faisceau fibro-vasculaire de la zone subcorticale. d. Détail d'un faisceau fibro-vasculaire de la zone centrale, parenchyme fondamental compact à cellules sphéroïdes. Échelle : 2 mm : a. 500 μm : b. 200 μm : c, d.

11.9 Les Leopoldinieae

L'anatomie de cette tribu monogénérique est présentée Fig. 11.4. Le **cortex** est réduit ($< 500 \text{ }\mu\text{m}$) et ne présente pas d'organisation particulière. Organisation générale du **cy-lindre central** : *Geonoma-Type* (Fig. 11.4 a, b). Les **faisceaux fibro-vasculaires** sont Reniforma (sans sinus auriculaire) à Lunaria avec un élément de vaisseau au niveau de la zone subcorticale et deux éléments de vaisseau au niveau de la zone centrale, le parenchyme paravasculaire est très peu développé (Fig. 11.4 c, d). Le **parenchyme fondamental** est composé de cellules sphéroïdes isodiamétriques, sans croissance post-primaire (Fig. 11.4 d).

Matériel examiné. – Leopoldinia pulchra Mart.; K, EBC 26298, R.Spruce.

11.10 Les Geonomateae

L'anatomie de cette tribu est présentée Fig. 11.5. Un tiers des six genres de la tribu a été analysé, un seul est présenté. En effet *Calyptrogyne* possède une anatomie très proche de celle de *Geonoma* et ces deux genres son indiscernables au niveau anatomique. Le **cortex** est développé mais ne présente pas de structure particulière (Fig. 11.5 a). Organisation générale du **cylindre central** : *Geonoma-Type* (Fig. 11.5 a, b). Les **faisceaux fibro-vasculaires** possèdent un élément de vaisseau dans tout le cylindre central et ont une partie fibreuse nettement plus développée au niveau de la zone subcorticale. La densité

FIGURE 11.5 – Anatomie de *Geonoma*, coupes transversales non colorées. a. Cortex et zone subcorticale. b. Zone centrale. c. Détail de la zone centrale, parenchyme fondamental compact à cellules sphéroïdes. Échelle : 2 mm : a, b. 500 µm : c.

diminue vers la zone centrale sans pour autant que la différence entre les deux zones ne devienne aussi importante que pour les stipes *Mauritia-Type* (Fig. 11.5 c). La partie fibreuse dorsale est Reniforma. Le **parenchyme fondamental** ne subit pas de croissance post-primaire et est composée de cellules sphéroïdes isodiamétriques.

Matériel examiné. – Geonoma sp. Wild.; K, EBC 26285, Harley et al. 10385. Calyptrogyne sp. H.Wendl.; K, EBC 26240, R.M.King 5251.

11.11 Les Areceae

FIGURE 11.6 – Polissage transversal de Veitchia arecina. Échelle : 1cm.

L'anatomie de cette tribu est présentée Planche XXII 1–19 même s'il est très difficile d'en réaliser une étude synthétique. Le **cortex** présente généralement, dans sa partie la plus externe, un alignement radial de cellules subérifiées. Cette zone est nettement délimitée de la zone interne (Planche XXII 1, 17). Le parenchyme de cette zone interne présente souvent une modification avec un allongement des cellules que ce soit dans une direction radiale (Planche XXII 1) ou tangentielle. L'épiderme peut être conservé (Planche XXII 5). Organisation générale du **cylindre central** : *Mauritia-Type* (Figs. 11.6–11.7). Les **faisceaux fibro-vasculaires** présentent une différenciation centrifuge de leur partie fibreuse dorsale (Planche XXII 4, 9, 12) et ont généralement un seul élément de vaisseau à travers tout le cylindre central. La partie fibreuse est très réduite au niveau de la zone centrale (Planche

FIGURE 11.7 – Polissage transversal de Heterospathe elata. Échelle : 1cm.

XXII 3, 7, 13, 15, 19). Le phloème n'est pas partitionné. Le **parenchyme fondamental** subit une forte croissance post-primaire avec (Planche XXII 10) ou sans lacune (Planche XXII 8), les cellules de la zone subcorticale sont étirées tangentiellement (Planche XXII 10).

Les genres Actinorhytis H.Wendl. & Drude et Wodyetia A.K.Irvine présentent une particularité anatomique au niveau de l'organisation du cylindre central. La zone subcorticale s'interrompt brusquement pour laisser place à une zone sans faisceau fibro-vasculaire (Planche XXII 16, 18). Au niveau de la limite avec la zone subcorticale, les faisceaux fibrovasculaires peuvent perdre leur partie vasculaire pour donner de très gros faisceaux exclusivement fibreux, l'orientation des faisceaux fibro-vasculaires est souvent inversée (xylème vers l'extérieur de la tige). Plus intérieurement à cette zone sans faisceau, la zone centrale fait son apparition avec une organisation traditionnelle (Planche XXII 19). À ce stade de l'observation il n'est absolument pas possible d'émettre une hypothèse sur cette singularité anatomique.

Matériel examiné. – Actinorhytis calapparia (Blume) H.Wendl. & Drude ex Scheff.;
FTG, 581168, J.B. Fisher. Areca catechu L.; K, EBC 26223. A. catechu; P, P00401784.
A. catechu; FTG, 60256, J.B. Fisher. A. catechu; FTG, 60256B, J.B. Fisher. Bentinckia nicobarica (Kurz) Becc.; FTG, 83150H, J.B. Fisher. Chambeyronia macrocarpa (Brongn.)
Vieill. ex Becc.; FTG, 64190H, J.B. Fisher. C. macrocarpa; FTG, 66600F, J.B. Fisher. Cyrtostachys loriae Becc.; K, K000521699, Heatubun et al. CH208. Dictyosperma album (Bory) Scheff.; FTG, 2217, J.B. Fisher. D. album; FTG, RM598, J.B. Fisher. D. album; FTG, RM598A, J.B. Fisher. Dypsis cabadae (H.E.Moore) Beentje & J.Dransf.; FTG, 5761, J.B. Fisher. D. madagascariensis (Becc.) Beentje & J.Dransf.; FTG, 6276, J.B. Fisher. Heterospathe elata var. elata; FTG, 64719, J.B. Fisher. H. elata var. elata; FTG, 64719F, J.B. Fisher. Howea belmoreana (C.Moore & F.Muell.) Becc.; K, EBC 26286 (Smithsonian Inst. 6944). Iguanura wallichiana (Mart.) Becc.; K, Smith & Sumawong GC600. Kentiopsis oliviformis (Brongn. & Gris) Brongn.; FTG, 77146, J.B. Fisher. Loxococcus rupicola (Thwaites) H.Wendl. & Drude, K, EBC 26313. Veitchia arecina Becc.; FTG, 66356D, J.B. Fisher. V. winin H.E.Moore; FTG, 79208, J.B. Fisher. Wodyetia bifurcata A.K.Irvine; FTG, 8234D, J.B. Fisher. W. bifurcata; FTG, 8495C, J.B. Fisher.

Légende de la planche XIX

Planche photographique du stipe des Arecoideae – 1 Iriarteeae, Chamaedoreeae

1-4 : Wettinia quinaria, polissages transversaux. 1. Cortex, les cellules du parenchyme sont fortement étirées tangentiellement. 2. Zone subcorticale, les faisceaux fibro-vasculaires sont congestionnées, avec 1 élément de vaisseau et un ratio fibrovasculaire très élevé. 3. Zone de transition, la partie fibreuse dorsale a une surface moins importante. 4. Zone centrale, les faisceaux fibro-vasculaires sont espacés, avec une partie fibreuse dorsale extrêmement réduite, le parenchyme fondamental présente des cellules fortement étirées et le parenchyme reste compact. 5-7 : Iriartella setigera, coupes transversales non colorées. 5. Coupe transversale montrant la différence entre la zone subcorticale et la zone centrale (Mauritia-Type). 6. Faisceau fibro-vasculaire de la zone subcorticale : partie fibreuse dorsale très développée, différenciation centrifuge de la partie fibreuse dorsale (différence entre les fibres proximales et les fibres distales). 7. Faisceau fibro-vasculaire de la zone centrale, partie fibreuse dorsale réduite (lumière polarisée analysée). 8–10 : Socratea exorrhiza, coupes transversales non colorées. 8. Cortex et zone subcorticale comparable à Wettinia. 9. Zone subcorticale avec des faisceaux fibro-vasculaires congestionnés à partie fibreuse dorsale très fortement développée. Les cellules de parenchyme sont comprimées et allongées entre les faisceaux. 10. Détail de du cortex : allongement tangentiel des cellules. 11-13 : Gaussia maya, coupes transversales non colorées. 11. Zone subcorticale. 12. Zone de transition. 13. Zone centrale, les cellules du parenchyme fondamental sont fortement déformées mais ont une taille supérieure au millimètre. 14–15 : Chamaedorea tepe*jilote*, coupes transversales, rouge ruthénium. 14. Détail de la zone de transition. 15. Détail d'un faisceau fibro-vasculaire et du parenchyme fondamental compact. 16–19: Hyophorbe verschaffeltii, coupes transversalesnon colorées. 16. Cortex. 17. Zone subcorticale à faisceaux fibro-vasculaires congestionnés à un élément de vaisseau et partie fibreuse dorsale importante. 18. Zone centrale, la partie fibreuse dorsale est réduite, c'est une section apicale de la tige ce qui fait que les faisceaux fibro-vasculaires ne sont pas encore espacés par la croissance des cellules du parenchyme fondamental. 19. Faisceau fibro-vasculaire de la zone de transition.

Échelle — 2 mm : 1–5, 8–9, 11–13, 16–17. 1 mm : 10, 14, 18. 250 µm : 6–7, 15, 19.

PLANCHE XIX – Stipe des Arecoideae

Légende de la planche XX

Planche photographique du stipe des Arecoideae - 2Roystoneeae, Cocoseae

1-3: Roystonea regia, coupes transversales non colorées. 1. Détail du cortex et de la zone subcorticale. 2. Zone de transition. 3. Détail du parenchyme fondamental : cellules fortement allongées et lacunes présentes. 4 : Elaeis quineensis, coupe transversale non colorée. détail d'un faisceau fibro-vasculaire avec un élément de vaisseau et une partie fibreuse Lunaria à Vaginata (partie fibreuse ventrale présente). 5-7: Cocos nucifera, polissages transversaux (5–6) et coupe transversale non colorée (7). 5. Détail de la zone subcorticale. 6. Détail de la zone centrale, les faisceaux exclusivement fibreux sont visibles. 7. Détail d'un faisceau fibro-vasculaire, structure proche d'*Elaeis*, parenchyme fondamental compact. 8–13: Syagrus sancona, coupes transversales non colorées (8–11) et polissages transversaux (12–13). Détail du cortex où plusieurs types d'alignements de cellules sont visibles : un alignement radial (a., cf. photo 11) de cellules au niveau de la zone la plus périphérique en (phellogène, divisions successives), un alignement radial (b. zone centrale de la photo) de cellules qui correspondrait plutôt à un cloisonnement cellulaire, et un alignement tangentiel suite à un cloisonnement (c.) qui se retrouve dans les photos 9 et 10. 9. Détail de la zone subcorticale : alignement tangentiel de cellules (cloisonnement) ce qui provoque une répartition des faisceaux fibro-vasculaires en *flamme*. 10. Détail de l'alignement tangentiel subcortical. 11. Détail de l'alignement cortical (étagement, phellogène) de plusieurs cellules. 12. Détail d'un faisceau fibro-vasculaire de la zone de transition. 13. Faisceau fibrovasculaire de la zone centrale. 14–15 : *Desmoncus*, coupes transversales non colorées. 14. Détail du cortex et de la zone subcorticale. Les faisceaux fibro-vasculaires ont leur partie fibreuse formant une sorte de bande fibreuse périphérique, avec, sur les fibres les plus périphériques, de gros phytolithes visibles. 15. Détail de la zone centrale (lumière polarisée analysée). 16–22 : Bactris. 16–21 : B. plumeriana, 22 : B. gasipaes, coupes transversales non colorées. 16. Détail de la zone sclérifiée du cortex : épiderme persistant à cellules plus ou moins coniques, stomate non fonctionnel. 17. Phytolithes trapéziformes avec échinules. 18. Zone subcorticale et zone de transition. 18. Zone centrale. 20. Faisceau fibro-vasculaire de la zone de transition montrant la différenciation centrifuge de la partie fibreuse dorsale (lumière polarisée analysée). 21. Détail du parenchyme fondamental (cellules géantes et faisceaux exclusivement fibreux). 22. Détail des faisceaux fibro-vasculaires de la zone centrale.

Échelle — 2 mm : 1–2, 5–6, 18–19. 1 mm : 8–9. 500 μ m : 3–4, 7, 12–15, 20–22. 250 μ m : 10–11. 100 μ m : 16. 20 μ m : 17.

Planche XX – Stipe des Arecoideae

Légende de la planche XXI

Planche photographique du stipe des Arecoideae – 3 Oranieae, Euterpeae, Manicarieae

1-4 : Orania dafonsoroensis, coupes transversales non colorées. 1. Vue générale de l'ensemble du cylindre central (Mauritia-Type). 2. Détail des cellules du parenchyme fondamental de la zone subcorticale (allongement tangentiel). 3. Détail d'un faisceau fibro-vasculaire de la zone centrale au parenchyme paravasculaire développé et à la partie fibreuse dorsale très réduite. 4. Détail du parenchyme fondamental lacunaire de la zone centrale : cellules légèrement allongées, lobées. 5-8 : Euterpe. 5, 8 : E. catinga, 6–7 : Euterpe sp. 5. Détail du cortex : alignement de cellules (phellogène). 6. Zone subcorticale avec des faisceaux fibro-vasculaires à partie fibreuse dorsale fortement développée. 7. Faisceau fibro-vasculaire de la zone de transition : la structure de la partie fibreuse dorsale est typique d'une différenciation centrifuge de la partie fibreuse dorsale. 8. Faisceau fibro-vasculaire de la zone centrale à partie fibreuse dorsale quasiment inexistante. 9-10 : Hyospathe elegans. 9. Détail du cortex : épiderme permanent, alignement de cellules. 10. Vue générale de la coupe transversale du stipe (Mauritia-Type). 11–13: Oenocarpus sp. 11. Cortex et zone subcorticale : alignement radial des cellules de la zone subérifiée, étirement tangentiel des cellules du parenchyme fondamental. 12. Zone subcorticale. 13. Zone centrale. 14–17 : Manicaria saccifera. 14. Détail du cortex (similaire à 9). 15. Zone subcorticale. 16. Zone de transition. 17. Détail d'un faisceau fibro-vasculaire au parenchyme paravasculaire développé.

Échelle — 2 mm : 1, 6, 10, 12–13, 15–16. 1 mm : 11. 200 µm : 2–5, 7–9, 14, 17.

Planche XXI – Stipe des Arecoideae

Légende de la planche XXII

Planche photographique du stipe des Arecoideae – 4 Areceae

1-4 : Areca catechu, coupes transversales non colorées (1-3), safranine O fast green FCF (4). 1. Détail du cortex divisé en deux zones : la zone la plus superficielle est fortement subérifiée avec un alignement radial de cellule (phellogène) nettement délimitée de la zone interne où les cellules sont étirées radialement. 2. Zone subcorticale. 3. Zone centrale. 4. Détail d'un faisceau fibro-vasculaire avec une partie fibreuse dorsale développée présentant une différence du degré de lignification entre les fibres de la partie proximale (rouge) fortement lignifiées et celles de la partie distale (verte). 5–7 : Cyrtostachys loriae, coupes transversales non colorées. 5. Détail du cortex, épiderme permanent à cellules allongées radialement. 6. Zone subcorticale, faisceaux fibro-vasculaires à partie fibreuse dorsale fortement développée. 7. Zone centrale. 8 : Dypsis cabadae, polissage transversal. Faisceau fibro-vasculaire de la zone de transition, le parenchyme fondamental présente des cellules à forte croissance post-primaire. **9–10** : *Heterospathe elata*, polissages transversaux. 9. Faisceau fibro-vasculaire de la zone de transition présentant une différenciation centrifuge de la partie fibreuse dorsale. 10. Détail du parenchyme fondamental : appendiculaire à grandes lacunes. 11–13 : Veitchia winin, polissages transversaux. 11. Zone subcorticale. 12. Faisceau fibro-vasculaire de la zone de transition, différenciation centrifuge de la partie fibreuse dorsale. 13. Zone centrale : faisceaux fibro-vasculaires largement espacés et parenchyme à forte croissance post-primaire et à grandes lacunes (> 250 μ m). 14–16 : Wodyetia bifurcata, coupes transversales non colorées. 14. Cortex : répartition des faisceaux fibro-vasculaires en flamme en raison de la forte croissance tangentielle des cellules de parenchyme. 15. Zone centrale. 16. Zone spécifique au niveau de la zone de transition. 17–19 : Actinorhytis calapparia, coupes transversales non colorées. 17. Cortex (alignement de cellules) et zone subcorticale. 18. Zone spécifique de la zone de transition sans faisceau fibro-vasculaire. Les faisceaux fibro-vasculaires de la zone subcorticale limitrophes à cette zone sont inversés (xylème vers la périphérie). Certains sont dépourvus de zone vasculaire formant ainsi de gros faisceaux exclusivement fibreux. 19. Zone centrale.

Échelle — 2 mm : 6–7, 11, 13–16. 500 µm : 2–4, 8–10, 17–19. 200 µm : 1, 5, 12.

PLANCHE XXII – Stipe des Arecoideae

DISCUSSION SUR LES DESCRIPTEURS

Sommaire

12.1 Discussion sur les descripteurs
12.2 Anatomie et phylogénie
12.2.1 Le groupe Chuniophoeniceae, Corypheae, Caryoteae, Borasseae . 331
12.2.2 Le groupe Phoeniceae, Sabaleae, Cryosophileae, Trachycarpeae . 332
12.2.3 Calamoideae
12.2.4 Ceroxyloideae
12.2.5 Arecoideae
12.3 Anatomie, environnement et climat

ANS ce chapitre, j'effectue un retour sur les descriptions réalisées précédemment. J'essaie d'apporter un regard critique sur certains descripteurs assez délicats à utiliser. Il est question de leur répartition ainsi que de leur utilisation dans un objectif d'identification. Une discussion sur les tribus des *Coryphoideae* permet de faire un point critique et synthétique qui pourra permettre, dans des études futures, d'utiliser certains descripteurs d'un point de vue phylogénétique.

12.1 Discussion sur les descripteurs

Sur l'organisation générale de la tige (classification de von Mohl)

Cette classification (*Cocos-Type*, *Corypha-Type*, *Mauritia-Type*, *Geonoma-Type* et *Calamus-Type*) a été définie par von Mohl (1823-1850), reprise et modifiée par Stenzel (1904), Sahni (1964) et Thomas et De Franceschi (2013) où une définition précise des différents types est donnée. Il est évident que cette classification est assez artificielle et reflète surtout un mode de croissance. Elle est donc assez utile du point de vue de l'identification mais très peu du point de vue phylogénétique. En ce qui concerne les trois principaux types ou états de descripteur (*Cocos-Type*, *Corypha-Type* et *Mauritia-Type*) la répartition est la suivante :

Cocos- $Type$:		
Cry os ophile a e	Phytelephas	Sabaleae
Phoeniceae	Rhap idine	Are coide a e
Ny poide a e	Hyphaeninae (Hyphaene)	
Corypha-Type :		
Lataniinae	Trachy carpeae incertae	Corypheae
Livistoninae	sed is	Sabaleae
	Hyphaeninae (Bismarckia)	
Mauritia-Type :		
Ceroxyloideae	Calamoideae	Are coide a e
Caryoteae	(arborescents)	

Sur la partie fibreuse ventrale

J'ai indiqué dans le chapitre Méthodes (4) que la partie fibreuse ventrale peut ne pas apparaître lorsque le spécimen est préparé de manière classique (désilicification, coupe au microtome, coloration) alors qu'elle peut être révélée par polissage. Ceci indique que cette partie fibreuse ventrale n'est sûrement pas composée de fibres lignifiées et que ce ne sont que des cellules de parenchyme sclérifiées. Mais comme le montrent les Planches VIII, 4, IX, 8 et la Fig. 12.1, il est possible que dans certains cas des fibres se développent.

Ce descripteur est donc à utiliser avec précaution lors de l'identification réalisée avec une préparation classique. Cependant, certaines tribus ne possèdent aucune ambiguité en ce qui concerne cette absence de partie fibreuse ventrale : les *Borasseae*, *Caryoteae* et *Corypheae* n'ont absolument aucune sclérification de cette zone. En revanche, les *Cryosophileae*, *Phoeniceae*, *Trachycarpeae* et *Chuniophoeniceae* peuvent parfois présenter une sclérification ou une lignification de cette zone. La Fig. 12.4 montre la répartition de ce descripteur au sein des *Coryphoideae*.

FIGURE 12.1 – Partie fibreuse ventrale de *Elaeis guineensis*. La figure de droite est un détail de la partie fibreuse ventrale. Les cellules de cette partie *fibreuse* présentent un aspect fibreux avec une paroi à plusieurs couches concentriques. Échelle : 100 μ m.

Sur la partie fibreuse dorsale

Cette partie fibreuse peut présenter un fort polymorphisme au sein d'un spécimen, c'est pourquoi, pour les stipes d'organisation générale *Mauritia-Type*, il convient de se concentrer sur les faisceaux fibro-vasculaires de la zone centrale. Même si dans le Chapitre 2.2 plusieurs types de partie fibreuse dorsale ont été décrits (d'après la littérature) je recommande de n'en garder que trois : Reniforma, avec toutes ses formes dérivées (Complanata, Cordata, Sagittata qui sont en fait des Reniforma modifiés), Lunaria et Vaginata.

La différenciation centrifuge. – Dans un chapitre de cette thèse (5), je me suis intéressé à la structure et à la formation de cette partie fibreuse. J'y ai décrit un mécanisme de mise en place des fibres encore jamais décrit dans le monde végétal. Des études supplémentaires sont néanmoins impératives afin de mieux comprendre et d'expliquer dans le détail ce phénomène complexe.

Chez les *Coryphoideae*, cette différenciation centrifuge n'a été observée que dans la tribu des *Caryoteae*, tribu qui ne présente aucune caractéristique anatomique commune avec la sous-famille dans laquelle elle est placée et qui est semblable aux *Arecoideae* sur un grand nombre de descripteurs. Ce type de partie fibreuse dorsale se rencontre aussi chez les *Calamoideae* et les *Ceroxyloideae*. L'information phylogénétique de ce descripteur n'est pas évident et il se peut que ce mécanisme soit fortement lié au mode de croissance du palmier.

Sur la partition du phloème

Seule la sous-famille des *Calamoideae* possède deux zones de phloème (uniquement certains rotins). Néanmoins, une partition sclérotique peut apparaître chez certains spé-

cimens. Une absence de cette partition ne peut pas totalement exclure les genres décrits avec la présence de cette partition. En effet, elle n'est visible que dans la partie centrale des stipes. Une tribu possède nettement cet état partitionné du phloème (*Trachycarpeae*), en revanche, les autres tribus (mise à part celle des *Sabaleae*) n'ont jamais été observées avec cet état.

Sur le nombre d'éléments de vaisseau

Le nombre de ces éléments est informatif à condition que le faisceau fibro-vasculaire considéré soit éloigné de la trace foliaire qu'il va donner dans une zone plus distale avant de sortir de la tige. En effet, plus les faisceaux fibro-vasculaires se rapprochent distalement de la sortie du cylindre central, plus leur nombre d'éléments de protoxylème augmente et leur structure se modifie nettement (Chapitre 2.2). La Fig. 12.2 synthétise le nombre d'éléments de vaisseau trouvés chez les *Coryphoideae*.

Cette étude montre clairement que les Arecoideae sont définis comme étant la seule sousfamille à ne posséder qu'un seul élément de vaisseau pour quasiment l'ensemble des genres étudiés, les Calamoideae en ont un seul ou alors un au niveau de la zone subcorticale et deux au niveau de la zone centrale, les *Coryphoideae* en ont toujours deux ou plus (sauf les Caryoteae) et les Ceroxyloideae en ont également plusieurs. L'étude de l'évolution de ce descripteur est intéressante et ce nombre pourrait être une adaptation physiologique de la plante à l'environnement. En effet, les Arecoideae sont presque uniquement restreints aux zones tropicales humides et n'ont qu'un seul élément de vaisseau dont le diamètre est souvent de plus grande taille que ceux trouvés chez les Coryphoideae. Ces derniers ont une écologie plus diversifiée et c'est dans cette sous-famille que se retrouvent les palmiers les plus résistants à la sécheresse (Medemia ou Nannorrhops). Des conditions climatiques plus ou moins arides pourraient avoir favorisé les faisceaux fibro-vasculaires avec plus d'un élément de vaisseau (deux ou plus) de *faible* diamètre alors que les conditions climatiques où le déficit hydrique est quasiment inexistant auraient favorisé des faisceaux fibro-vasculaires avec un élément de vaisseau de gros diamètre comme cela peut être observé dans le bois (Baas et al. 1983, Lindorf 1994, Carlquist 2001, Wheeler et al. 2007). Cependant, des études statistiques seraient nécessaires afin d'appuyer cette hypothèse.

Sur le parenchyme associé au faisceau fibro-vasculaire

Ce parenchyme peut prendre la forme d'un parenchyme tabulaire ou d'un parenchyme rayonnant. Le parenchyme tabulaire a été décrit par d'autres auteurs (Sahni 1964) mais semble assez délicat d'utilisation pour une identification. En revanche, la présence du parenchyme rayonnant peut fournir une information intéressante. En effet, il n'a été observé que chez les *Trachycarpeae*.

Sur les faisceaux exclusivement fibreux

Une absence ne peut pas totalement exclure les genres décrits avec la présence de faisceaux exclusivement fibreux. Néanmoins, la présence de ces derniers n'a jamais été décrite chez certains genres (les *Hyphaeninae*, *Phoeniceae*, *Borassus*...) et ce même dans les parties basales où les faisceaux fibreux semblent être le plus développés lorsqu'ils sont observés.

Il serait nécessaire d'avoir à chaque fois une partie basale, médiane et apicale pour connaître la valeur taxinomique d'un tel descripteur.

Sur le parenchyme fondamental

Je rappelle qu'une section du Chapitre 5 a été dédiée au parenchyme fondamental. Il est intéressant de remarquer que ce descripteur fournit d'importantes informations du point de vue de l'identification mais que du point de vue phylogénétique, il est beaucoup plus difficile (et même quasiment impossible) d'en tirer une quelconque information (Fig. 12.3). Il faut remarquer qu'au sein des *Coryphoideae*, seuls les *Caryoteae* possèdent un parenchyme fondamental avec une structure cellulaire proche de celle des *Arecoideae* (à forte croissance post-primaire).

Il semble cependant que les cellules trabéculaires ne se retrouvent que chez les *Ceroxy-loideae* et qu'une forte croissance post-primaire (cellules en-bâton, géantes, parenchyme fondamental connectif) ne se retrouve jamais chez les *Coryphoideae* hormis dans la tribu très particulière des *Caryoteae*. Comme pour le mécanisme spécifique de la formation des fibres (différenciation centrifuge), la croissance post-primaire des cellules de parenchyme semble aussi corrélée au mode de croissance de la plante. Il faut indiquer que cette croissance post-primaire est systématiquement associée à la différenciation centrifuge de la partie fibreuse dorsale.

Sur le cortex

Comme j'ai pu le montrer avec les *Caryoteae*, le cortex peut posséder plusieurs informations intéressantes. Malheureusement, celui-ci n'est pas toujours conservé dans le matériel actuel et est pratiquement toujours absent des tiges fossiles. Cependant la forme des cellules de l'épiderme ainsi que la présence ou non de *phellogène* sont à mon avis des descripteurs importants et robustes. J'ai nommé cet alignement *phellogène*, comme le font Tomlinson *et al.* (2011), en raison de son aspect et de sa position, mais je ne suis pas capable de comparer ce phellogène à celui observé chez les Angiospermes dicotylédones.

La largeur du cortex est, quant à elle, beaucoup plus difficile à étudier. Cependant, chez les *Caryoteae*, le cortex n'est absolument pas développé. Des études supplémentaires

permettraient de comprendre pourquoi certains ne sont formés que de faisceaux exclusivement fibreux alors que d'autres possèdent également des faisceaux fibro-vasculaires et des traces foliaires. Dans cette thèse je n'ai que très peu abordé cet aspect (la composition des cortex en faisceaux exclusivement fibreux et faisceaux fibro-vasculaires) mais ceci pourrait apporter quelques renseignements aussi bien du point de vue développemental que du point de vue de l'identification.

Sur les phytolithes

Parmi les *Coryphoideae*, la seule tribu à posséder des phytolithes de type trapéziforme est celle des *Caryoteae*. Ces phytolithes sont légèrement différents des trapéziformes stricts (Thomas et De Franceschi 2013). Ils montrent de nombreuses échinules à leur surface alors que les *Arecoideae*, qui présentent également des phytolithes trapéziformes, ne sont constitués que de très peu d'échinules. Ce type de phytolithe souligne également l'originalité des *Caryoteae* au sein des *Coryphoideae*. Les deux autres taxons à posséder des phytolithes de ce type sont les *Bactridinae* et *Iriarteae* (sauf *Socratea*). Tous les autres *Coryphoideae* possèdent des phytolithes sphéroïdes échinulés.

Lors de ce travail, il n'a pas été entrepris d'études spécifiques sur les phytolithes. En effet, il me semble assez illusoire d'essayer d'identifier les palmiers à partir de leurs phytolithes alors que leur mode de formation n'est pas encore élucidé, même si Schmitt *et al.* (1995) ont superficiellement étudié cet aspect chez *Calamus*. En fonction de l'âge de la tige, il semble que les phytolithes deviennent de plus en plus gros et avec de plus en plus d'échinules ce qui ne permet pas une comparaison directe des différents genres entre eux même si quelques tentatives ont été réalisées notamment par Albert *et al.* (2009) et Delhon et Orliac (2008).

12.2 Anatomie et phylogénie

D'après Baker et al. (2009), il est possible de séparer les Coryphoideae en deux groupes :

- (Chuniophoeniceae, Corypheae, Caryoteae, Borasseae);
- (Phoeniceae, Sabaleae, Cryosophileae, Trachycarpeae).

J'essaierai de présenter ici certains états de descripteurs qui peuvent être communs à quelques tribus et aux différentes sous-familles sans qu'il ne soit fait ici aucune analyse phylogénétique.

Les *Coryphoideae* se distinguent assez nettement des autres sous-familles si les *Caryoteae* ne sont pas considérés. En effet, aucun des genres observés ne possède une croissance post-primaire soutenue comme il a été observé chez les *Calamoideae* (*Eugeissona*, *Metroxylon*), les *Ceroxyloideae* (*Pseudophoenix*) ou bien les *Arecoideae* (*Gaussia*, *Iriartella*...). La différenciation centrifuge de la partie fibreuse dorsale n'a jamais été observée et le nombre d'éléments de vaisseau est toujours supérieur ou égal à deux.

12.2.1 Le groupe Chuniophoeniceae, Corypheae, Caryoteae, Borasseae

Borasseae

Cette tribu présente une relative homogénéité en ce qui concerne les *Lataniinae* mais cette homogénéité n'est pas possible à établir pour les *Hyphaeninae* où les deux genres analysés ne présentent pas la même anatomie. Ces deux derniers possèdent néanmoins une partie fibreuse dorsale nettement Reniforma et deux éléments de vaisseau par faisceau fibro-vasculaire.

Caryoteae

C'est une des tribus des *Coryphoideae* qui présente le plus d'homogénéité et les descripteurs qui permettent de l'identifier sont assez robustes. Cette tribu présente toutes les caractéristiques anatomiques, qui si aucune phylogénie moléculaire n'existait (Baker *et al.* 2009), confirmeraient les caractères morphologiques qui plaçaient cette tribu au sein des *Arecoideae* dans la classification proposée par Uhl et Dransfield (1987).

Chuniophoeniceae

Comme je l'ai montré dans le chapitre précédent, cette tribu est trop hétérogène pour qu'une quelconque information générale puisse être dégagée.

Corypheae

Cette tribu est monogénérique et il serait intéressant de la comparer aux tribus les plus proches. Deux relations phylogénétiques sont proposées par Baker *et al.* (2009) : (*Corypheae*, (*Caryoteae*, *Borasseae*)) ou (*Caryoteae*, (*Corypheae*, *Borasseae*)). Il est intéressant de remarquer que l'anatomie de *Corypha* se rapproche plus des *Borasseae* que des *Caryoteae* et que par conséquent, la deuxième relation est plus probable que la première au regard des caractères anatomiques.

Au sein des *Coryphoideae*, il semble se dégager un groupe possédant un seul élément de vaisseau (Fig. 12.2, *Corypheae*, *Caryoteae*, *Borasseae*) alors que toutes les autres tribus en ont deux ou plus.

12.2.2 Le groupe Phoeniceae, Sabaleae, Cryosophileae, Trachycarpeae Cryosophileae

Cette tribu semble être très homogène même si de fortes disparités existent entre les genres en ce qui concerne le nombre d'éléments de vaisseau. Je rappelle qu'un élément de vaisseau est observé pour *Chelyocarpus*, deux pour *Cryosophila*, *Hemithrinax* et *Thrinax* et plus de quatre pour *Coccothrinax* et *Zombia*. Ce qui définit anatomiquement ce groupe est une structure *Cocos-Type* poussée à l'extrême avec un cylindre central très homogène, un parenchyme fondamental assez compact et surtout des faisceaux fibro-vasculaires circulaires Vaginata à Lunaria.

Sabaleae

Cette tribu monogénérique forme un groupe monophylétique avec les *Cryosophileae* mais aucun critère anatomique ne permet de les rapprocher. En effet, le parenchyme fondamental de *Sabal* peut posséder de larges lacunes (cellules allongées et lobées formant un réseau régulier de lacunes). La partie fibreuse dorsale est Reniforma. Cette tribu partage ces états avec les *Trachycarpeae* alors qu'elle n'en partage pas avec les *Cryosophileae*.

Phoeniceae

Les différentes espèces de ce genre présentent une anatomie d'une grande homogénéité et il est à mon avis assez illusoire, au regret de certains archéobotanistes, de se lancer dans la discrimination des espèces à partir de leur anatomie.

Trachy carpeae

Les deux sous-tribus peuvent être assez facilement discriminées des *Trachycarpeae incertae sedis*. En effet, le parenchyme fondamental subit une croissance post-primaire plus importante pour les *Trachycarpeae* basaux alors que pour les *Livistoninae* et les *Rhapidinae*, cette croissance est moins marquée. Il faut remarquer que les *Rhapidinae* ont généralement plus de deux éléments de vaisseau.

12.2.3 Calamoideae

Cette sous-famille comporte à la fois des palmiers lianescents (rotins) et des palmiers arborescents. Les ports arborescent et lianescent impliquent des anatomies complètement différentes et se retrouvent dans toutes les tribus. C'est pour cette raison qu'il n'est pas évident de trouver une quelconque homogénéité au sein de cette sous-famille. Cependant,

FIGURE 12.2 – Nombre d'éléments de vaisseau chez les *Coryphoideae*, phylogénie d'après Baker *et al.* (2009).

FIGURE 12.3 – Type de parenchyme fondamental chez les *Coryphoideae*, phylogénie d'après Baker *et al.* (2009).

il est intéressant de remarquer que tous les genres arborescents de cette sous-famille possèdent un parenchyme fondamental à croissance post-primaire à cellules généralement trabéculaires. Je n'ai remarqué aucune caractéristique anatomique commune entre ces deux différents ports.

12.2.4 Ceroxyloideae

Cette sous-famille est assez originale du point de vue de son anatomie. En effet l'organisation générale du cylindre central est *Mauritia-Type* et les faisceaux fibro-vasculaires comportent deux ou plus éléments de vaisseau. Les autres genres d'organisation similaire (*Mauritia-Type*) présentent un seul élément de vaisseau au niveau de la zone subcorticale et parfois deux vaisseaux au niveau de la zone centrale. Et il faut souligner qu'il existe une très forte différence entre l'anatomie de *Phytelephas* celle des deux autres tribus.

FIGURE 12.4 – Type de parenchyme fondamental chez les *Coryphoideae*, phylogénie d'après Baker *et al.* (2009)..

12.2.5 Arecoideae

Une discussion approfondie n'est pas envisageable à ce stade des connaissance. Cependant il est possible de remarquer que la majorité des Arecoideae sont Mauritia-Type alors que ceux de faible diamètre sont Geonoma-Type. Certaines tribus sont constituées de genres présentant une anatomie très proche (Iriarteae, Chamaedoreeae, Euterpeae, Geonomateae). Les ((Sclerospermeae, Oranieae), Podococceae) forment un groupe monophylétique et d'après Tomlinson et al. (2011), Sclerosperma aurait une anatomie proche de Podococcus alors que celle d'Orania s'en détache nettement. Un autre groupe monophylétique peut être définit : ((Geonomateae, Manicarieae), Leopoldinieae) et il est possible de définir ce clade comme possédant une structure Geonoma-Type du cylindre central et un parenchyme fondamental compact (sans lacune) à cellules plus ou moins sphéroïdes. Pour les autres tribus, il est très difficile de définir des caractéristiques anatomiques communes en raison du nombre important de genres qui les composent. Par exemple, au sein des *Cocoseae*, *Cocos* et *Elaeis* ont une anatomie très proche et très originale pour cette tribu (*Cocos-Type*) alors que ces deux genres sont dans deux sous-tribus différentes. Les *Cocoseae* comportent également le genre *Desmoncus* qui est morphologiquement proche des rotins et une majorité de genres dont l'anatomie se rapproche des autres *Arecoideae* (cylindre central *Mauritia-Type*). Les *Areceae* présentent une anatomie avec une forte croissance post-primaire et une variabilité importante comme celle qui a été décrite au chapitre 11.11 et également par Tomlinson *et al.* (2011).

Même si des tendances peuvent se dégager au sein des différentes sous-familles, il n'est pas encore possible d'émettre des hypothèses crédibles sur l'évolution du stipe des palmiers et de dire quel type de stipe (ceux avec une croissance post-primaire et une différenciation centrifuge de la partie fibreuse dorsale et ceux qui en sont dépourvus) est dérivé par rapport à l'autre. Il en est de même pour le nombre d'éléments de vaisseau.

Cependant en examinant la littérature sur les fossiles, notamment Stenzel (1904), Sahni (1964) et Stockmans et Willière (1943), les fossiles les plus anciens ne sont jamais décrits comme étant *Mauritia-Type* (type de stipe associé dans cette thèse avec une croissance post-primaire) mais plutôt comme étant *Cocos-Type* ou *Corypha-Type*. Les faisceaux fibro-vasculaires ont toujours un nombre d'éléments de vaisseau supérieur ou égal à deux. Ceci est confirmé par Crié (1892) qui décrit le plus ancien stipe fossile de palmier (Turonien de l'Anjou). Son anatomie ne présente aucune caractéristique d'une croissance post-primaire du parenchyme fondamental ou d'une différenciation centrifuge de la partie fibreuse dorsale. La seule hypothèse qu'il peut être faite à ce stade est que les *Coryphoideae* présenteraient une anatomie de type plésiomorphe proche des stipes fossiles alors que les *Ceroxyloideae* et les *Arecoideae* présenteraient une anatomie dérivée. Il n'est pas possible d'émettre une hypothèse en ce qui concerne les *Calamoideae* (en raison des deux différents ports) et les *Nypoideae* (en raison de son anatomie et son écologie particulières).

12.3 Anatomie, environnement et climat

Au regard de ces résultats, il serait intéressant de réaliser des études sur l'influence de l'environnement et du climat sur certains descripteurs. Comme je l'ai indiqué en 12.1 il semble que certains descripteurs puissent être fortement contraints par le climat. Cette influence est très bien étudiée pour le bois des Angiospermes et des Conifères et il ne serait pas surprenant que la disponibilité en eau ait aussi une influence sur les structures conductrices des palmiers (les faisceaux fibro-vasculaires). En effet, des études statistiques préliminaires (études en cours, principalement basées par des analyses factorielles des correspondances) montrent qu'il existe une dépendance entre le climat et le diamètre des vaisseaux ainsi que le nombre de vaisseau au sein d'un faisceau fibro-vasculaire chez les palmiers arborescents (le cas des palmiers lianescents est sûrement différent). L'hypothèse est la suivante : plus la disponibilité en eau est importante, plus le diamètre des vaisseaux est important et plus le nombre de vaisseau par faisceau fibro-vasculaire diminue. Par exemple, un nombre élevé de vaisseau (plus de quatre) se retrouve chez des palmiers ou un manque d'eau plus ou moins important peu apparaître dans l'année (Chamaerops, Trachycarpus ou Coccothrinax). L'aire de répartition de Chamaerops se situe sur le pourtour méditerranéen où le climat présente des saisons à fort déficit hydrique. Le diamètre des vaisseaux est inférieur à 60 µm et est parmi le plus faible des palmiers. Trachycarpus se retrouve dans des régions tempérées à saisonnalité marquée sur terrains montagneux calcaire avec une couverture neigeuse possible de novembre à mars (Dransfield et al. 2008b). Enfin Coccothrinax se retrouve également dans des régions sèches montagneuse et généralement calcaires (Dransfield et al. 2008b). Le diamètre des vaisseaux est inférieur à 90 µm. Ces trois genres appartiennent à la sous-famille des Coryphoideae. Au sein de cette sous-famille, il est possible de remarquer que la majorité des genres possèdent deux éléments de vaisseau dont le diamètre ne dépasse que rarement les 200 µm et se retrouvent dans des régions où la saisonnalité est assez marquée et où une saison sèche est généralement présente. C'est dans cette sous-famille que l'on retrouve les palmiers les plus tolérants à la sécheresse ainsi qu'un nombre d'éléments de vaisseau par faisceau fibro-vasculaire élevé. La seule tribu des Coryphoideae qui possède une anatomie nettement différente est celle des Caryoteae : un seul élément de vaisseau est retrouvé dans la partie centrale du cylindre central. Les diamètres de ces vaisseaux sont parmi les plus larges de cette sous-famille (> 200μ m). Les genres de cette tribu se retrouvent dans zones tropicales humides. Cette remarque est aussi valable pour la plupart des Ceroxyloideae et des Arecoideae : les genres de ces sous-familles ne possèdent qu'un seul élément de vaisseau à large diamètre (généralement supérieur à 200 µm et jusqu'à 500 µm) et se retrouvent généralement dans des zones tropicales humides.

Ce qui précède ne présente qu'une hypothèse qu'il serait intéressant de tester dans le détail. Néanmoins, il semble que l'anatomie des stipes est fortement liée au climat. De plus, il est intéressant de remarquer que les palmiers les plus résistants à la sécheresse se retrouvent dans la même sous-famille (les *Coryphoideae*) et possèdent des caractéristiques anatomiques communes.

J'ai présenté dans cette partie l'anatomie du stipe des palmiers avec une étude détaillée en ce qui concerne les *Coryphoideae*. J'ai démontré qu'il est possible d'établir des descripteurs anatomiques afin d'identifier les différentes sous-familles ainsi que les tribus au sein des *Coryphoideae* mais aussi, dans une moindre mesure, au sein des *Calamoideae* et des *Ceroxyloideae*. Le genre *Nypa* est assez caractéristique et s'identifie sans problème. En revanche cette étude n'est pas rentrée dans le détail de la grande sous-famille des *Arecoideae* mais en a montré les principales caractéristiques.

Dans la partie suivante, je présente les applications que j'ai réalisées à partir de cette étude anatomique, à savoir :

- La mise à disposition des informations sur Internet (http://www.infosyslab.fr/ Palm-ID/) par l'intermédiaire du logiciel Xper²;
- Des identifications de stipes fossiles;
- Des identifications en archéologie.

Quatrième partie

Applications : Xper² paléobotanique & archéologie

Chapitre 13

IDENTIFICATION ASSISTÉE PAR ORDINATEUR — $XPER^2$

Sommaire

13.1 Présentation de la base de connaissance Palm-ID	
13.1.1 Statistiques générales	
13.1.2 Taxons inclus dans la base de connaissance	
13.1.3 Descripteurs inclus dans la base Xper disponible sur Internet \therefore 344	
13.2 Les différentes bases disponibles	
13.2.1 Particularité de la base Palm-ID	
13.2.2 Version complète $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots 347$	
13.2.3 Version simplifiée $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots 349$	
13.3 Le site Internet Palm-ID	
13.3.1 Présentation $\dots \dots \dots$	
13.3.2 Conseils sur l'utilisation de Palm-ID	
13.4 Génération de clefs	

E^N PARALLÈLE du travail présenté dans la partie précédente sur l'anatomie des stipes de palmiers actuels (Chapitres 7–11), j'ai développé une base de connaissance avec le logiciel Xper². Comme je l'ai expliqué dans le chapitre sur les méthodes, ce logiciel permet de réaliser des descriptions taxinomiques après avoir défini les *items* (taxons) et les descripteurs avec leurs états respectifs. Outre le fait que le logiciel permette de stocker informatiquement (sous la forme d'une base de données) les descriptions anatomiques, un module *identification* permet de réaliser des identifications à partir d'une description et des informations contenues dans cette base de données. La base Xper² développée durant cette thèse est décrite ici. Les différentes possibilités qu'offre ce logiciel sont présentées (analyse de la base, génération de clef...). La base de connaissance est disponible sur Internet (http://www.infosyslab.fr/Palm-ID/).

13.1 Présentation de la base de connaissance Palm-ID

Cette base de connaissance (Thomas 2011) est appelée à évoluer dans le temps. Au moment de l'impression de ces pages, cette base contient 37 taxons (appelés Items dans la base), 32 descripteurs et 107 états. Les statistiques de la base sont données ci-dessous et sont issues d'exports du logiciel (analyse de la base).

Le descripteur 1 permet de choisir ou d'exclure un ou des groupes taxinomiques (il est possible de sélectionner l'ensemble de la famille).

13.1.1 Statistiques générales

Base : Palm-ID (517 Images) Number of descriptors : 32 Illustrated : 24 Annotated : 28 Illustrated and annotated : 20 Descriptors without dependence (either father or son) : 0 (17 without descriptor 1) Parent descriptors : 5 (4 without descr. 1) whose 4 (1 without descr. 1) child also Child descriptors : 31 (12 without descr. 1) whose 4 (1 without descr. 1) parent also

Number of states : 108

Illustrated : 55 Annotated : 38 Illustrated and annotated : 21 Minimal number of states : 2 Maximal number of states : 11 Average number of states : 3.38

Number of groups : 7

Illustrated : 0 Annotated : 6 Illustrated and annotated : 0

Number of items : 37

Illustrated : 37 Annotated : 37 Illustrated and annotated : 37 With at less one undescribed value : 1 With at less one unknown value : 7 With at less one commented value : 37

13.1.2 Taxons inclus dans la base de connaissance

The base is complete at 98.73%

Borasseae / Hyphaeninae / Hyphaene : complete at 100.0% Borasseae / Hyphaeninae / Bismarckia : complete at 100.0% Borasseae / Lataniinae / Borassus / Latania : complete at 100.0% Borasseae / Lataniinae / Lodoicea : complete at 100.0% Caryoteae / Caryota : complete at 100.0% Caryoteae / Arenga / Wallichia : complete at 100.0% Cryosophileae / Zombia : complete at 100.0% Cryosophileae / Chelyocarpus : complete at 100.0% Cryosophileae / Coccothrinax : complete at 100.0%Cryosophileae / Cryosophila : complete at 100.0%Cryosophileae / Thrinax : complete at 100.0% Cryosophileae / Hemithrinax : complete at 100.0% Phoeniceae : complete at 100.0%Corypheae : complete at 90.63% Sabaleae : complete at 100.0%Chuniophoeniceae / Nannorrhops : complete at 93.75% Chuniophoeniceae / Chuniophoenix : complete at 96.88% Trachycarpeae / Serenoa : complete at 100.0% Trachycarpeae / Brahea : complete at 100.0% Trachycarpeae / Copernicia : complete at 100.0% Trachycarpeae / Pritchardia : complete at 96.88% Trachycarpeae / Washingtonia : complete at 100.0% Trachycarpeae / Livistoninae - Livistona : complete at 100.0% Trachycarpeae / Livistoninae - Licuala : complete at 100.0% Trachycarpeae / Rhapidinae - Chamaerops : complete at 100.0% Trachycarpeae / Rhapidinae - Trachycarpus : complete at 100.0% Trachycarpeae / Rhapidinae - Rhapis : complete at 100.0% Calamoideae (scandent) : complete at 100.0%Calamoideae / Eugeissona : complete at 100.0%Calamoideae / Raphia / Mauritia / Mauritiella : complete at 100.0% Calamoideae / Lepidocaryum : complete at 100.0% Calamoideae / Metroxylon / Pigafetta : complete at 100.0% Nypoideae : complete at 100.0%Ceroxyloideae / Cyclospatheae : complete at 96.88% Ceroxyloideae / Ceroxyleae : complete at 96.88%
$Ceroxyloideae \ / \ Phytelephas: complete at \ 90.63\%$ Arecoideae: complete at \ 90.63\%

Empty description : 0.25% Unknown description : 1.01%

13.1.3 Descripteurs inclus dans la base Xper² disponible sur Internet

Palm-ID 37 Items 32 Descriptors 31 children descriptors (12 without the first descriptor) 108 States

- identification within "subfamily" or "tribe": {1. all palm family, 2. subfamily Calamoideae, 3. subfamily Nypoideae, 4. subfamily Coryphoideae, 5. subfamily Ceroxyloideae, 6. subfamily Arecoideae, 7. tribe Chuniophoeniceae, 8. tribe Borasseae, 9. tribe Cryosophileae, 10. tribe Trachycarpeae, 11. without Arecoideae}
- 2. von Mohl's classification: {1. Cocos-Type, 2. Corypha-Type, 3. Mauritia-Type,
 4. Calamus-Type, 5. Geonoma-Type}
 - shape of fibrous part in transverse section: {1. Sagittata, 2. Reniforma to Cordata - Complanata, 3. Lunaria, 4. Vaginata} Conditions for inapplicability (Calamus-Type)
 - 27. vascular zone position: {1. included in the fibrous dorsal cap (between the two auricular lobes), 2. excluded from the fibrous dorsal cap, 3. excluded from the auricular lobes only in the central part}Conditions for inapplicability (Vaginata)
 - 28. auricular sinus: {1. angular, 2. rounded, 3. absent, 4. absent only in the central part} Conditions for inapplicability (Vaginata)
 - 30. **auricular lobe**: {1. very shallow to absent, 2. rounded, 3. angular} Conditions for inapplicability (Vaginata)
 - 29. median sinus: {1. very shallow to absent, 2. rounded, 3. angular} Conditions for inapplicability (Calamus-Type)

- 4. wide metaxylem element: {1. present, 2. absent (only long angular imperforate scalariform tracheids)}
 - 5. number of wide metaxylem element per fibrous vascular bundle: {1. mostly 1, 2. mostly 2 (3-4), 3. mostly 3-4, 4. more than 4, 5. 1 in the the subcortical zone and the zone of transition AND 2 in the central zone} Conditions for inapplicability (absent (only long angular imperforate scalariform tracheids))
 - 23. end wall slope: {1. extremely oblique, 2. very oblique, 3. oblique, 4. slightly oblique, 5. transverse} Conditions for inapplicability (absent (only long angular imperforate scalariform tracheids))
 - 24. specialisation value: {1. [0] tracheids only definite vessels not observed, 2. [1] multiple perforation plates with "pithlike" perforations that span ≤ 1 vesselparenchyma pit on the adjacent lateral wall, 3. [2] multiple perforation plates with "narrow" perforations that span >1 to ≤ 2 vessel-parenchyma pits, 4. [3] multiple perforation plates with "medium size" perforations that span >2 to ≤ 5 vessel-parenchyma pits, 5. [4] multiple perforation plates with "wide" perforations that span >5 vessel-parenchyma pits, or with ≤ 3 bars, 6. [5] mixture of multiples perforation plates (as in #4) and simple perforation plates, 7. [6] simple perforation plate only}

Conditions for inapplicability (absent (only long angular imperforate scalariform tracheids))

- 31. range of slope index (min_m_max): {1. 3,54 4,3 4,55, 2. 3,1, 3. 3 3,76 4,33, 4. 2,81 3,5, 5. 2,4 2,83 3,83}
 Conditions for inapplicability (absent (only long angular imperforate scalariform tracheids))
- 32. Tomlinson's end wall type: {1. least specialized, 2. unspecialized, 3. moderately specialized, 4. most specialized}Conditions for inapplicability (absent (only long angular imperforate scalariform tracheids))
- 6. **phytoliths**: {1. globular echinate to granulate, 2. trapeziform to rondel (ex hat shaped), 3. combined}
- 7. phytoliths distribution in central cylinder: {1. all around the dorsal fibrous

cap throughout the central cylinder, 2. largely restricted to the fvb of the subcortical zone in contact with the cortex}

- 8. fibrous dorsal cap centrifugal differentiation: {1. present, 2. absent}
- 9. ground parenchyma sustained growth: {1. absent (Type A), 2. present (Type B)}
- 10. ground parenchyma of the central cylinder: {1. spheroid to slightly elongated (length / width < 3–4) cells (\emptyset < 150 µm) and compact [sometimes few and little lacunae in old stems, 2. cells slightly elongated (length / width < 3–4), lobed with a random (rhombohedral) shape (maximal length < 200 µm) and irregular meshwork (lacunae < 200 µm), 3. rod-like cells (length > 200 µm; length / width > (3)–5) and more or less regular and large meshwork (lacunae > 250 µm), 4. trabecular (= stellate) with a regular meshwork (spheroid lacunae > 250 µm), 5. huge cells (\emptyset > 150 µm) [potential few and irregular lacunae], 6. appendicular parenchyma connecting fvb}
- 11. cortex: $\{1. \text{ developed}, 2. \text{ very thin}\}$
- 12. superficial protective layer (sub-epidermal): {1. permanent epidermis, 2. developed etagen meristem (alignment of more than 10 cells), 3. suberization and sclerosis of the existing ground parenchyma}
 - 13. multicellular epidermal hair: {1. present, 2. absent }Conditions for inapplicability (developed etagen meristem (alignment of more than 10 cells), suberization and sclerosis of the existing ground parenchyma)
 - 14. epidermal cells: {1. erect (radially elongate), 2. cone shaped, 3. elongated (tangentially elongate), 4. spheroid to cubical}Conditions for inapplicability (developed etagen meristem (alignment of more than 10 cells), suberization and sclerosis of the existing ground parenchyma)
- 15. tangential elongation and anticlinal divisions of subcortical parenchyma cells: {1. present, 2. absent}
- 16. radial elongation of the fibrous dorsal cap (in subcortical zone): {1. strongly developed, 2. absent}
- 17. fibrous bundles in central cylinder: $\{1. \text{ present}, 2. \text{ absent}\}$
- 18. fibrous ventral cap: {1. present (often only in the central part), 2. absent}

- 19. **number of phloem strand**: {1. one strand throughout the central cylinder, 2. one strand in the subcortical and transitional zones and two in the central zone of the central cylinder, 3. two strands throughout the central cylinder}
- 20. little fibrous vascular bundles (bridges): {1. present (well developed), 2. absent (poorly developed)}
- 21. radiating parenchyma: {1. present, 2. absent}
- 22. tabular parenchyma: {1. present, 2. absent}
- 25. metaphloem sieve plate: {1. compound, 2. simple or transitional}
- 26. **paravascular parenchyma**: {1. developed, 2. poorly developed or one layer of circumvascular cells}

Le descripteur 1 permet à l'utilisateur de choisir et d'exclure certains taxons avant de commencer l'identification.

13.2 Les différentes bases disponibles

Deux bases ont été réalisées. La première est une version détaillée et complète (pour le développement) qui présente tous les descripteurs et un grand nombre de taxons décrits (sans distinction de sous-famille, tribu, sous-tribu ou genre). La seconde est une version simplifiée pour un utilisateur non spécialisé dans l'étude de l'anatomie des palmiers où ne sont conservés que les descripteurs robustes et utiles pour la discrimination des tribus.

13.2.1 Particularité de la base Palm-ID

Cette base contient un descripteur supplémentaire qui n'est pas un descripteur anatomique. Celui-ci, le descripteur 1. *identification within "subfamily" or "tribe"*, permet de restreindre les taxons qu'on souhaite identifier. Ce descripteur est le suivant :

Ainsi, l'utilisateur peur décider de réaliser une identification au sein de la famille entière en sélectionnant l'état 1 ou d'une sous-famille ou d'une tribu en sélectionnant les états 2 à 10. Comme la sous-famille des *Arecoideae* n'est pas encore étudiée dans le détail et que les différentes tribus ne sont pas décrites, l'utilisateur peut aussi décider de ne pas retenir les *Arecoideae* lors de l'identification en sélectionnant l'état 11.

13.2.2 Version complète

La version complète est celle présentée ci-dessus.

Tableau 13.1 –	Liste des descrip	oteurs et de leu	r différents	s pouvoirs (discriminants.	En raison o	de la spécificité
du descripteur	1 (identification	within "subfa	mily" or "t	ribe"), celu	u-ci n'est pas j	présenté ici	•

Descriptors	Xper	Sokal & Michener	Jaccard
2. von Mohl's classification	$442/666 \ (0.66)$	$205/666\ (0.31)$	$481/666 \ (0.72)$
3. shape of fibrous part in transverse section	$220/630\ (0.35)$	$189/630\ (0.3)$	$316/630\ (0.5)$
4. wide metaxylem element	0/666 (0.0)	$18/666\ (0.03)$	$18/666\ (0.03)$
5. number of wide metaxylem element per fibrous vascular bundle	$395/666 \ (0.59)$	$226/666 \ (0.34)$	$460/666 \ (0.69)$
6. phytoliths	$99/666\ (0.15)$	$101/666 \ (0.15)$	$118/666 \ (0.18)$
7. phytoliths distribution in central cylinder	$224/666\ (0.34)$	$242/666\ (0.36)$	$242/666\ (0.36)$
8. fibrous dorsal cap centrifugal differentiation	$224/666\ (0.34)$	$242/666\ (0.36)$	$242/666\ (0.36)$
9. ground parenchyma sustained growth	$255/666\ (0.38)$	$335/666\ (0.5)$	$335/666\ (0.5)$
10. ground parenchyma of the central cylinder	$321/666 \ (0.48)$	$230/666\ (0.35)$	$457/666 \ (0.69)$
11. cortex	$230/666\ (0.35)$	$296/666 \ (0.44)$	$296/666\ (0.44)$
12. superficial protective layer (sub-epidermal)	$121/666 \ (0.18)$	$225/666 \ (0.34)$	$270/666\ (0.41)$
13. multicellular epidermal hair	$16/55\ (0.29)$	$21/55 \ (0.38)$	$21/55\ (0.38)$
14. epidermal cells	$16/55\ (0.29)$	$28/55 \ (0.52)$	$37/55\ (0.67)$
15. tangential elongation and anticlinal divi- sions of subcortical parenchyma cells	29/666 (0.04)	$134/666 \ (0.2)$	$134/666 \ (0.2)$
16. radial elongation of the fibrous dorsal cap (in subcortical zone)	0/666 (0.0)	66/666 (0.1)	66/666 (0.1)
17. fibrous bundles in central cylinder	$270/666\ (0.41)$	$336/666\ (0.5)$	$336/666\ (0.5)$
18. fibrous ventral cap	$162/666\ (0.24)$	$297/666\ (0.45)$	$297/666\ (0.45)$
19. number of phloem strand	$87/666\ (0.13)$	$123/666\ (0.19)$	$181/666 \ (0.27)$
20. little fibrous vascular bundles (bridges)	$140/666\ (0.21)$	$206/666\ (0.31)$	$206/666\ (0.31)$
21. radiating parenchyma	$81/666\ (0.12)$	$186/666\ (0.28)$	$186/666\ (0.28)$
22. tabular parenchyma	$156/666\ (0.23)$	$306/666\ (0.46)$	$306/666 \ (0.46)$
23. end wall slope	$70/666\ (0.11)$	$160/666\ (0.24)$	$311/666\ (0.47)$
24. specialisation value	$42/666\ (0.06)$	$175/666 \ (0.26)$	$284/666\ (0.43)$
25. metaphloem sieve plate	$180/666\ (0.27)$	$198/666 \ (0.3)$	$198/666\ (0.3)$
26. paravascular parenchyma	$276/666\ (0.41)$	$311/666 \ (0.47)$	$311/666\ (0.47)$
27. vascular zone position	$104/435\ (0.24)$	$148/435\ (0.34)$	$186/435\ (0.43)$
28. auricular sinus	$116/435\ (0.27)$	$139/435\ (0.32)$	$203/435\ (0.47)$
29. median sinus	$33/630\ (0.05)$	$96/630\ (0.15)$	$138/630 \ (0.22)$
30. auricular lobe	$62/435\ (0.14)$	$108/435\ (0.25)$	$147/435\ (0.34)$
31. range of slope index (min_m_max)	$304/666\ (0.46)$	$114/666 \ (0.17)$	$304/666 \ (0.46)$
32. Tomlinson's end wall type	$207/666 \ (0.31)$	$170/666 \ (0.26)$	288/666 (0.43)

13.2.3 Version simplifiée

Palm-ID 37 Items 25 Descriptors 24 children descriptors (6 without the first descriptor) 84 States

Les descripteurs qui ont été supprimés, afin de faciliter l'utilisation sans pour autant diminuer la potentialité d'identifier les taxons, sont les suivants :

- 26. **paravascular parenchyma** : {1. developed, 2. poorly developed or one layer of circumvascular cells}
- 27. vascular zone position : {1. included in the fibrous dorsal cap (between the two auricular lobes), 2. excluded from the fibrous dorsal cap, 3. excluded from the auricular lobes only in the central part}

Conditions for inapplicability (Vaginata)

28. **auricular sinus** : {1. angular, 2. rounded, 3. absent, 4. absent only in the central part}

Conditions for inapplicability (Vaginata)

- 29. **median sinus** : {1. very shallow to absent, 2. rounded, 3. angular} Conditions for inapplicability (Calamus-Type)
- 30. **auricular lobe** : {1. very shallow to absent, 2. rounded, 3. angular} Conditions for inapplicability (Vaginata)
- 31. range of slope index (min_m_max) : {1. 3,54 4,3 4,55, 2. 3,1, 3. 3 3,76 - 4,33, 4. 2,81 - 3,5, 5. 2,4 - 2,83 - 3,83}

Conditions for inapplicability (absent (only long angular imperforate scalariform tracheids))

32. Tomlinson's end wall type : {1. least specialized, 2. unspecialized, 3. moderately specialized, 4. most specialized}

Conditions for inapplicability (absent (only long angular imperforate scalariform tracheids))

Les Items (taxons) de la base ne sont pas modifiés.

13.3 Le site Internet Palm-ID

13.3.1 Présentation

J'ai développé un site Internet pour rendre accessible cette base en ligne (Figs. 13.1–13.2). Ce site est stocké sur le serveur du Laboratoire Informatique et Systéma-

tique (LIS) de l'université Paris 6 (http://infosyslab.fr/lis/) et son url est : http: //www.infosyslab.fr/Palm-ID/

FIGURE 13.1 - Copie d'écran de la page d'accueil du site Internet Palm-ID.

Ce site présente la base Palm-ID, son contenu, ses objectifs, ses limites et les spécimens qui ont été étudiés pour sa réalisation. Sur la page *identification*, l'utilisateur a le choix entre la version complète et la version simplifiée de la base.

13.3.2 Conseils sur l'utilisation de Palm-ID

Lors de l'identification, il est conseillé de sélectionner les descripteurs regroupés au sein du groupe *informative descriptors* (Fig. 4.7) afin de conserver uniquement les descripteurs qui se sont révélés être les plus fiables dans l'identification des stipes. Il peut-être utile de les classer en fonction de leur pouvoir discriminant (Chapitre 4.6.2, Tableau 13.1) afin de ne décrire que les descripteurs informatifs pour les taxons restant à identifier.

Xper² est un outil puissant qui s'avère très utile pour le stockage d'informations taxinomiques. Néanmoins, l'identification ne doit pas se faire « naïvement » sans apporter un regard critique sur le module *identification* de Xper². Ces précautions à prendre ne proviennent pas du logiciel qui offre de grandes possibilités mais bien de la base Palm-ID

FIGURE 13.2 – Copie d'écran de la page *identification* du site Internet Palm-ID.

elle-même. En effet, j'ai développé cette base en essayant de la rendre la plus accessible à tous pour qu'elle puisse être utilisée facilement tant par des chercheurs confirmés que par des étudiants ou des novices dans le domaine de l'anatomie. Mais cet effort de simplification et de *vulgarisation* peut donner l'apparence que l'identification d'un stipe de palmier à partir de son anatomie est une chose facile. Or il n'en est rien. En effet, un taxon identifié au terme de la description n'assure pas à 100% que le spécimen observé correspond bien au taxon terminal dans Xper². Un retour sur l'article Thomas et De Franceschi (2013) ou sur cette thèse est indispensable afin de confirmer l'identification.

13.4 Génération de clefs

Le logiciel développé par le LIS possède de nombreux outils périphériques très utiles. Parmi eux, MaKey permet de générer des clefs dichotomiques à partir d'une base de connaissance au format Xper. Cet outil est disponible à l'adresse suivante : http://baron. snv.jussieu.fr/.

Je présente ci-dessous un exemple de clef dichotomique pour la tribu des *Cryosophileae* (Figs. 13.3(a), 13.4). Il est bien sûr possible de générer des clefs pour d'autres unités taxinomiques, mais lorsque le nombre d'*Items* (genres) augmente, la clef possède un grand nombre de chemins et il n'est pas possible de la présenter entièrement ici. Lors de la génération d' une clef, il est possible de choisir une clef indentée ou en parallèle et de visualiser ses statistiques ainsi que ses paramètres (Fig. 13.3(b)).

```
1:1 little fibrous vascular bundles (bridges) = present (well developed)
 ==> 2
1:2 little fibrous vascular bundles (bridges) = absent (poorly developed)
 ==> Cryosophileae - Cryosophila
2:1 fibrous bundles in central cylinder = present
  ==> Cryosophileae - Coccothrinax
2:2 fibrous bundles in central cylinder = absent
  ==> 3
3:1 ground parenchyma of the central cylinder = spheroid to slightly elongated (length / width < 3-
4) cells (? < 150 \mum) and co2
  ==> 4
3:2 ground parenchyma of the central cylinder = cells slightly elongated (length / width < 3-
4), lobed with a random (rhombohed3
 ==> 5
4:1 number of wide metaxylem element per fibrous vascular bundle = mostly 1
 ==> Cryosophileae - Chelyocarpus
4:2 number of wide metaxylem element per fibrous vascular bundle = mostly 2 (3-4) ou mostly 3-4
 ==> Cryosophileae - Thrinax
 ==> Cryosophileae - Hemithrinax
5:1 ground parenchyma sustained growth = absent (Type A)
 ==> 6
5:2 ground parenchyma sustained growth = present (Type B)
 ==> Cryosophileae - Zombia
6:1 number of wide metaxylem element per fibrous vascular bundle = mostly 2(3-4)
  ==> Cryosophileae - Thrinax
6:2 number of wide metaxylem element per fibrous vascular bundle = mostly 3-4
 ==> Cryosophileae - Thrinax
   => Cryosophileae - Zombia
6:3 number of wide metaxylem element per fibrous vascular bundle = more than 4
  ==> Cryosophileae - Zombia
```

(a) Clef	en	paral	lèle.

	Nom de la valaure	Nb. de chemins		Nb. c	le questions dans le che	min:	
Nom de la valeur:		menant à cette	valeur:	le plus court	de longueur moyenne	le plus long	
C	ryosophileae - Zombia	3		4	4.67	.5	
Cryc	sophileae - Chelyocarpus	1		4	4.00	4	
Сгус	sophileae - Coccothrinax	1		2	2.00	2	
Cryosophileae - Cryosophila		1		1	1,00	1	
Cryosophileae - Thrinax		3		4	4.67	5	
Cryosophileae - Hemithrinax		1	1 4		4.00	4	
_	-						
	Nb. de chemins pour toutes les valeurs:		Nomb	re de question	as pour toutes les valeu	rs dans le cher	
-			le plus court		de longueur moyenne	le plus loi	
min	1.00		00.1		1.00	1.00	
	1.67		3.17		3.39	3,50	
moy		x 3.00					

(b) Statistiques et paramètres.

FIGURE 13.3 – Export html de le clef dichotomique en parallèle de la tribu des Cryosophileae.

```
1:1 little fibrous vascular bundles (bridges) : present (well developed)
  ==> 2
1:2 little fibrous vascular bundles (bridges) : absent (poorly developed)
  ==> Cryosophileae - Cryosophila
2:1 fibrous bundles in central cylinder : present
  ==> Cryosophileae - Coccothrinax
2:2 fibrous bundles in central cylinder : absent
  ==>3
3:1 ground parenchyma of the central cylinder : spheroid to slightly elongated (length / width < 3-4) cells (? <
150 µm) and co2
  ==>4
3:2 ground parenchyma of the central cylinder : cells slightly elongated (length / width < 3-4), lobed with a
random (rhombohed3
  ==> 5
4:1 number of wide metaxylem element per fibrous vascular bundle : mostly 1
  ==> Cryosophileae - Chelyocarpus
4:2 number of wide metaxylem element per fibrous vascular bundle : mostly 2 (3-4) ou mostly 3-4
  ==> Cryosophileae - Thrinax
  ==> Cryosophileae - Hemithrinax
5:1 ground parenchyma sustained growth : absent (Type A)
  ==>6
5:2 ground parenchyma sustained growth : present (Type B)
  ==> Cryosophileae - Zombia
6:1 number of wide metaxylem element per fibrous vascular bundle : mostly 2 (3-4)
  ==> Cryosophileae - Thrinax
6:2 number of wide metaxylem element per fibrous vascular bundle : mostly 3-4
  ==> Cryosophileae - Thrinax
  ==> Cryosophileae - Zombia
6:3 number of wide metaxylem element per fibrous vascular bundle : more than 4
  ==> Cryosophileae - Zombia
```

FIGURE 13.4 – Export pdf de la clef des Cryosophileae.

APPLICATIONS À LA PALÉOBOTANIQUE

Sommaire

14.1 État des connaissances $\dots \dots 357$
14.2 Les tiges fossiles : les Palmoxylon
14.2.1 Taxinomie et nomenclature des stipes fossiles de palmiers \ldots . 358
14.2.2 Considérations nomenclaturales sur les tiges fossiles $\ldots \ldots 362$
14.2.3 Analyse de l'affinité taxinomique de quelques $Palmoxylon$ 363
14.3 Échantillonnage des spécimens fossiles
14.4 Article

ES palmiers fossiles sont l'objet d'intérêt depuis plusieurs siècles. En effet, pendant cette thèse, nous avons pu remarquer que la plus ancienne publication de la bibliothèque de paléobotanique était celle de de La Hire (1692). Dans cette publication, il étudie un « tronc de palmier qui a été converti en pierre » provenant d'Afrique. Il se pose la question de l'origine de cette ressemblance entre les cailloux qu'il possède et les troncs de palmiers qu'il connait. « Mais les Naturaliftes ne conviennent pas de l'origine de ces pétrifications, ni de leur caufe. » N'ont-elles toujours été que pierres et cailloux et « pris par hasard la figure des chofes qu'ils répréfentent ? » Ou au contraire, proviennent-elles de véritables troncs ? « Et il y a des raifons affez probables de part & d'autre. [...] Cependant ces deux cailloux font tellement femblables aux deux morceaux du bois véritable, qu'il n'y a pas d'apparence que le hazard ait pû former deux corps fi femblables à deux autres d'une nature fi différente. [...] Mais il eft prefque inconcevable que l'autre morceau qui eft le bas du tronc, ait été formé par hazard. » Il finit par conclure « que cette pétrification n'eft point un jeu de la nature qui ait imité dans une pierre la figure d'un tronc d'arbre; mais que ces deux morceaux de caillou ont originairement été deux portions d'un véritable tronc de Palmiers lesquelles dans la fuite ont été changées en deux véritables cailloux. »

Il est sûr que de nos jours, cette question peut paraître désuète même si elle ne doit pas être mise de côté en raison de l'influence malheureusement grandissante de certains mouvements spiritualistes / anti-évolutionnistes ¹.

Cette anecdote de l'histoire des sciences montre à quel point les palmiers, actuels ou fossiles, ont depuis longtemps fait l'objet d'un intérêt particulier. Malgré cet intérêt, il faut souligner que parmi la grande quantité de stipes fossiles récoltés, le nombre d'identifications rigoureuses et exactes peut se compter sur les doigts d'une main. Ceci s'explique facilement par le fait qu'avant ce travail, aucune étude comparative sur l'anatomie des stipes de palmiers n'était disponible. Maintenant que nous avons la certitude que les échantillons fossiles que nous avons à disposition sont de véritables palmiers qui ont été transformés en pierre au cours du temps, et que cette thèse a permis de commencer l'étude comparative de l'anatomie des stipes actuels, il est tout à fait intéressant de les étudier dans cette thèse.

Ce chapitre commence par présenter l'état des connaissances des stipes fossiles continue par une analyse et une critique nomenclaturale des différents noms qui ont été donnés aux stipes de palmiers fossiles. Ensuite, je présente les quelques stipes fossiles qui ont été rapportés à des genres ou espèces actuelles. Lorsqu'il a été possible de le faire, une étude critique des identifications a été réalisée afin d'évaluer la robustesse des identifications à l'aide du référentiel présenté dans les chapitre 7 à 12. Une fois ce retour sur publications, l'article que nous avons rédigé, sur l'étude de quelques palmiers fossiles provenant de différents sites français datant du Tertiaire, sera inséré à la fin du chapitre.

Je rappelle que, comme dans les chapitres précédents, les descripteurs cités font références à l'article Thomas et De Franceschi (2013) (section 7.1, page 119).

^{1.} Aucune référence aux-dits mouvements ne sera faite ici.

14.1 État des connaissances

De P. de LA Hire (1692) à K.G. Stenzel (1904)

Comme il a été indiqué dans l'introduction de ce chapitre, la première description d'un stipe fossile est celle de La Hire (1692). Celle-ci est intéressante d'un point de vue historique mais ne nous apporte pas d'information anatomique. Brongniart (1822a,b, 1828) publie les noms d'Endogenites et de Palmacites ce qui peut-être considéré comme le point de départ de l'étude scientifique des palmiers fossiles et de leurs tiges (un historique et une analyse des différents noms donnés aux stipes fossiles est indiqué en 14.2). Sprengel (1828) publia le premier schéma d'un ffvsing d'une tige fossile (et sûrement d'une tige de palmier qu'elle soit actuelle ou fossile). Cotta (1832), Corda (1845) ont également joué un rôle important dans les premières descriptions des tiges fossiles. C'est Unger (1823-1850) qui réalisa une première synthèse sur ce qui avait été réalisé avant lui. Après cette date, de nombreux auteurs ont publié et décrit plusieurs stipes (de Saporta 1863, Watelet 1866, Schimper 1870–1872, Felix 1883, Fliche 1888, Schimper et Schenk 1890, Crié 1892, Stenzel 1897, Sterzel 1900). C'est ce qui conduit Stenzel (1904)² à réaliser la plus grande étude comparative des *Palmoxylon* de l'époque en reprenant toutes les descriptions depuis Sprengel (1828). Dans cet ouvrage, K.G. Stenzel présente l'anatomie des stipes et décrit une cinquantaine d'espèces fossiles. L'Annexe C.1 présente les descripteurs de la clef d'identification publiée dans Stenzel (1904). Juste avant lui, Schenk (1882a,b, 1883) s'intéressa à ces stipes et définit pour la première fois le genre Palmoxylon.

B. Sahni et les paléobotanistes indiens

Après K.G. Stenzel, il n'est pas possible de s'intéresser ici à l'intégralité des descriptions. Certains auteur ont également réalisés des synthèses sur les stipes fossiles. Un illustre paléobotaniste indien s'intéressa particulièrement aux palmiers dès 1928 (Sahni 1928) et publia par la suite une première liste des palmiers fossiles du continent indien (Sahni 1931). En suite, de nombreux autres auteurs indiens se sont intéressés aux *Palmoxylon* dont la très grande majorité des spécimens provient des trapps du Deccan (les citations suivantes ne sont qu'une sélection parmi l'ensemble des travaux réalisés) : Sahni (1932), Kaul (1938, 1943), Sahni (1943), Kaul (1944), Sahni (1946), Lakhanpal (1956), Ramanujam (1958), Prakash (1958b,a), Mahabale (1958), Prakash (1960), Kaul (1960), Prakash (1961), Rao et Menon (1962), Menon (1963), Rao et Menon (1963a,b, 1964, 1966, 1967), Rao et Achuthan (1969), Prakash et Ambwani (1980), Ambwani (1983), Ambwani et Prakash

^{2.} Il faudrait ajouter à cette publication, la thèse du même auteur (Stenzel 1850).

(1983), Ambwani (1985), Ambwani et Mehrotra (1989). Sahni (1964) et plus tard par Rao et Achuthan (1973) ont synthétisé la majeure partie de ces descriptions. Prakash et Boureau (1968) publièrent une liste de toutes les espèces de *palmoxylon*, regroupées géographiquement, qu'ils avaient en leur connaissance.

Les publications francophones

Il y a bien sûr Brongniart (1822a,b, 1828), de Saporta (1863), et Crié (1892). Ce dernier a décrit le plus ancien fossile de palmier (*Palmoxylon ligerinum* Crié). En effet, selon Kvaček et Herman (2004) « ... they appear as the oldest palm (stem) remain » et daterait du Turonien (Crétacé Supérieur) de Fontaine-Guérin (Maine-et-Loire). Malgré nos recherches, il n'a malheureusement pas été possible de retrouver cet échantillon.

Plus récemment, Stockmans et Willière (1943) réalisèrent un recueil de quelques stipes fossiles de Belgique. Du côté des auteurs français, le professeur E. Boureau réalisa quelques études sur les palmiers fossiles de France : Boureau (1947a,b, 1949), il a été suivi par Grambast (1957, 1965), Koeniger (1968, 1969), Privé-Gill et Pelletier (1981), Koeniger *et al.* (1985), Dupéron-Laudoueneix et Dupéron (1995).

Les publications contemporaines

Parmi les publication les plus récentes, il est intéressant de citer Nambudiri et Tidwell (1998) qui réalisent une analyse d'un stipe fossile en comparaison avec les précédents caractères définis entre autre par K.G. Stenzel ou B. Sahni. En suite Harley (2006) a réalisé un résumé complet des fossiles de palmiers. Ce résumé concerne les pollen, fruits, fleurs, feuilles, tiges et racines.Pan *et al.* (2006) a publié une étude sur l'histoire des palmiers en Afrique.

14.2 Les tiges fossiles : les *Palmoxylon*

14.2.1 Taxinomie et nomenclature des stipes fossiles de palmiers

Plusieurs noms ont été donnés aux tiges fossiles de palmiers. Un aperçu historique est réalisé dans cette section.

Endogenites Brongniart, 1822

Adolphe Brongniart a rédigé deux publications en 1822 (Brongniart 1822a,b) qui décrivent le genre *Endogenites*. La description originale semble être celle de Brongniart (1822a, pp. 354–357, Pl. x Fig. 1), qui base sa description sur celle d'*E. bacillaris* et d'*E. echinatus*. En ce qui concerne *Endogenites*, il écrit :

Rao et Menon (1966, 1967), Rao et Achuthan (1969)

Nous avons donnés ce nom à tous les bois fossiles qui appartiennent à des végétaux monocotylédons, ce qu'on peut reconnoître à l'absence de toutes couches concentriques, et à la disposition des vaisseaux par faisceaux isolés, distribués irrégulièrement dans l'intérieur du bois.

La description d'*E. bacillaris* ne fait référence à aucune illustration :

On a trouvé également dans ce lignite [de Cologne] et dans celui de Horgen des fibres cylindriques, ondulées, rapprochées parallèlement les unes des autres en masses assez considérables et que je crois appartenir à des tiges de végétaux monocotylédones; elles paroissent surtout avoir une grande analogie avec les faisceaux de vaisseaux également ondulés et presque libres au milieu d'un tissu cellulaire lâche, qui remplissent le centre de la tige de quelques Palmiers. Nous les désignerons par le dénomination d'Endogenites bacillaris.

S'en suit la description d'*E. echinatus* illustrée dans la même publication :

C'est une portion de tronc entièrement recouvert par la base persistante des pétioles des feuilles formant des sortes d'écailles très dilatées et un peu triangulaire à leur base[...] Quoique les feuilles forment environ douze séries longitudinales sur le tronc, nous ferons remarquer que la base amplexicaule très dilatée de chaque pétiole embrasse environ le quart ou le tiers du tronc, et que ces douze douze séries proviennent de ce que les feuilles supérieures ne sont pas placées directement au-dessus de celles qui sont au-dessus, mais en alternance avec elles : la même disposition s'observe sur le tronc de la plupart des Palmiers.

Brongniart (1822b, pp. 209–211), réalise également la description du genre *Endogenites* :

Bois composé de faisceaux de vaisseaux isolés plus nombreux à la circonférence qu'au centre.

Les Endogenites qui composent les genres suivants sont aisés à distinguer à leurs vaisseaux réunis en faisceaux plus serrés vers la circonférence qu'au centre et ne formant pas de couches concentriques. La forme, la grandeur, et la disposition de ces faisceaux paroît donc donner de bons caractères pour distinguer les espèces, mais ces caractères n'ayant pas non plus été étudiés sur les végétaux vivans, et les arbres auxquels ces fossiles paroissent appartenir étant presque tous exotiques, les comparaisons spécifiques sont peut-être encore plus difficiles à établir que dans le genre précédant /Exogenites].

Aucun spécimen n'est cité, aucune illustration n'est figurée. Il cite les palmiers, les genres *Dracaena*, *Yucca* et *Pandanus* comme pouvant se rapprocher le plus de cette structure fossile. Toujours dans ce même article, Brongniart (1822b, pp. 300–303, Pl. \vee Fig. 2), réalise la description d'*E. echinatus* présentant la même illustration ainsi que la même description que celle trouvée dans Brongniart (1822a). Ni l'illustration ni la description ne permettent de savoir si cet échantillon se rapproche plus d'un *Cycas* ou d'un palmier.

Sprengel (1828, pp. 15, 39–40) subdivise les *Endogenites* du système de Brongniart (1822b) (*Methodus Brongniartiana*) en six espèces, les palmiers se retrouvant dans l'espèce *Endogenites palmacites* avec la description suivante :

Endogenites : Lignum conflatum e fasciculis vasorum secretorum, quae peripheriam versus magis abundant, quam in centro. (Huc secundum Brongniartium : Palmae, Pandam, Dracaenae et Yuccae.)

Char. spec. : End. tubulis parallelis confertis subregularibus compressis, altero latere subtereti, altero angulato duos s. tres tubulos exiguos continente.

Les *Endogenites* se rapportent donc à des Monocotylédones arborescentes. Des faisceaux fibro-vasculaires parallèles sont décrits mais sans en préciser la structure. La mise au point de Sprengel (1828) reste assez floue pour inclure encore quelques Monocotylédones.

Palmacites Brongniart, 1822

Ce nom avait été publié par Schlotheim (1820) sous la forme de *Palmacitum* et fait référence aux stipes, mais ce nom ne peut être utilisé puisque la publication de Schlotheim (1820) est considérée comme antérieure à von Sternberg (1820). *Palmacites* fut de nouveau publié par Brongniart (1822b, pp. 210, 238, Pl. III Fig. 1) puis par Brongniart (1828, p. 120) avec un sens différent.

Brongniart (1822b) décrit ce genre de la façon suivante. Espèce type *Palmacites la*manonis Brongniart :

Feuilles flabelliformes. [Sans description supplémentaire.]

Brongniart (1828) décrit ce genre comme étant une tige. Espèce type *Palmacites echi*natus ; *Endogenites echinatus* Brongniart (1822), décrite dans Brongniart (1822a, pp. 356–357). La description est la suivante :

Tiges cylindriques, simples, couvertes de bases de feuilles pétiolées, à pétiole élargi et amplexicaule à sa partie inférieure.

 Schimper (1870–1872, p. 507) modifie la description originale, sans aucune référence à un spécimen déjà publié :

Trunci cylindrici vel ventricosi simplices, plerumque decorticati. Foliourm bases, ubi adsunt, horizontaliter insertae, dilatatae, semi-amplexicaules vel subamplexicaules; cicatrices post earum lapsum relictae lineares, annulares, plus minus approximatae. Cortex tenuis. Ligni fasciculi per truncum sparsi, versus peripheriam dense densiusque conferti, versus axin solitarii, subteretes, inferne recti, superne late arcuati arcuque aperto in folia egredientes, e vasi magnis minoribusque excentricis et fsciculo lunuliformi e cellulis pachydermis durissimis compositi. Medulla per truncum diffusa parenchymatosa, raro lacunosa. Vasa punctata et scalariforma, vagina propria, e cellulis tenuioribus composita inclusa. Il réunit au genre *Palmacites* tous les *Fasciculites* de Cotta et d'Unger qu'il considère comme étant des palmiers.

- Schenk (1880, p. 658), selon Stenzel (1904) donne une description du genre. Mais Schenk ne donne aucune description du genre ni aucune illustration. Il compare brièvement deux espèces fossiles qu'il décrit dans cette publication (*Palmacites zitelii* Schenk et *P. aschersoni* Schenk).

Il apparait clairement que le genre *Palmacites* Brongniart (1828) se rapportant aux tiges est illégitime et que seul le genre *Palmacites* Brongniart (1822) définissant une feuille est légitime. Stenzel (1904) cite le genre *Palmacites* Brongniart (1828) et non le genre *Palmacites* Brongniart (1822b) en synonymie de *Palmoxylon*.

Fasciculites Cotta, 1832

Publié dans Cotta (1832, pp. 45–46, Pl. IX Figs. 3–4). Ce genre a pour espèce type F. didymosolen (Sprengel) Cotta (1832) et est décrit de la manière suivante :

Caulis parallelos et cuticulis carentes fasciculos continet, in quibus perscissis plurimis nonnulli inordinate formati insunt pori.

- Unger (1823-1850, p. 51) définit ce genre de la façon suivante :

Trunci arborei e fasciculis vasorum aequabiliter distributis, nec strata lignea nec plexus articulorum formantibus compositi. Vasorum fasciculi e corpore lignoso, libro et fasciculo vasorum propriorum constantes.

Perfossus Cotta, 1832

Publié dans Cotta (1832, pp. 51–52, Pl. x Figs. 1–4). Ce genre a pour espèce type *P. angularis* Cotta (1832) et est décrit de la manière suivante :

Tenues et parallelae canales longitudinales, quae dimensione quadam inter se inordinate quidem, tamen aequaliter sunt separatae, stipitem, ceterum tela cellulosa repletum perforant.

Schenk (1882a, p. 386) considère les deux espèces décrites par Cotta comme appartenant au genre *Palmoxylon*. Il effectue les combinaisons suivantes : *Palmoxylon angulare* (Cotta) Schenk et *Palmoxylon punctatum* (Cotta) Schenk.

Palmacites Corda, 1845

Publié dans Corda (1845, p. 39) par une description latine. Elle diffère de celles de Brongniart (1828, 1822b). La publication du genre *Palmacites* Corda (1845) serait donc illégitime :

Fragmenta truncorum plerumque decorticata, fasciculis lignosis irregulariter sed basi vasifera versus centrum disposita, vagina propria nulla. Medulla parenchymatosa vel lacunosa. Vasa solitaria vel gregaria, scalariformia.

Palmoxylon Schenk, 1882

Publié dans Schenk (1882b, pp. 353–358). Il ne fait pas de description explicite du genre *Palmoxylon* mais donne la description de l'espèce *Palmoxylon blanfordii*. Il publie également l'espèce *P. liebigianum*. Aucune illustration n'est figurée.

- Schimper et Schenk (1890, pp. 885–886, fig. 427) donnent une description de ce genre :

Palmoxylon Schenk. Cylindrische Stämme mit isolirten in das Grundgewebe eingelagerten Leitbündel. Leitbündel entwerder mit hohlcylindrischer oder rinnenformiger Bastlage, einem einzelnen centralen oder zwei seitlichen Siebtheilen, Xylem aus einem bis drei grossen oder einer Gruppe und mehreren kleinen Gefässen bestehend, verbunden und umgeben von Libriform und Strangparenchym. Grundgewebe dicht oder von Luftlücken durchsetzt, in dasselbe entweder Sclerenchymbündel eingebettet oder diese fehlend.

Ils l'accompagnent de l'illustration de *Palmoxylon blanfordi* (p. 886). Les faisceaux fibro-vasculaires, le parenchyme fondamental ainsi que la présence possible de faisceaux exclusivement fibreux sont décrits. Il est alors évident que le morphotaxon *Palmoxylon* ne peut que se rapporter aux tiges fossiles de palmier.

- Stenzel (1904, p. 146) donne, une description du genre :

Caudices structurâ cum externa tum internâ palmaceâ a parenchymate contexti, fasciculis percurso fibro-ductoribus undique dispersis, nec strata concentrica nec plexus articulorum formantibus, e parte fibrosa in exterioribus certe fasciculis fasciculum ductorem pluries superante, e parte crobrosa minore et e parte lignosa constantibus vasa anteriora aut bilateralia aut mediana gerente. – Radices structurâ Palmarum viventium.

Cette description rajoute la présence possible de racines.

14.2.2 Considérations nomenclaturales sur les tiges fossiles

Il me semble impératif d'aborder une discussion sur la notion de morphotaxon utilisée en paléobotanique. En effet, celle-ci pose problème lors de l'étude des stipes fossiles.

Plusieurs propositions sont actuellement étudiées afin de modifier le prochain *Code international de nomenclature botanique*. Notamment un projet publié par Cleal et Thomas (2010) propose de supprimer du *Code* le concept de morphotaxon. L'Art. 1.2 serait amendé par la modification suivante :

A taxon based on a fossil type is a fossil-taxon. A fossil-taxon comprises the remains of one or more parts of the parent plants, or one or more of their life history stages, preserved in one or more preservational states, as indicated by the description or diagnosis of the taxon.

Ils proposent également d'insérer à l'Art. 1 les exemples suivant :

Ex. 3. Stamnostoma A. Long (in Trans. Roy. Soc. Edinburgh 64: 212. 1960) is a fossil-genus that was originally described with a single species, S. huttonense, comprising anatomically-preserved ovules with completely fused integuments forming an open collar around the lagensostome. Rothwell & Scott (in Rev. Palaeobot. Palynol. 72: 281. 1992) have subsequently enlarged the circumscription of the genus to include also the cupules in which the ovules were borne. The name Stamnostoma can be applied to either circumscription or to any other that may involve other parts, lifehistory stages or preservation states, so long as it includes S. huttonense, but not the type of any earlier generic name.

Ex. 4. The generic name Sigillaria Brongn. (Mém. Mus. Hist. Nat. 8: 222. 1822) was established for fossils of "bark" fragments, but Brongniart (in Arch. Mus. Hist. Nat. 1: 405. 1839) subsequently included anatomically-preserved stems within his concept of Sigillaria. Anatomically-preserved cones that may in part represent the same biological taxon are referred to as Mazocarpon M.J. Benson (in Ann. Bot. (London), ser. 2, 32: 569. 1918), whereas such cones preserved as adpressions are known as Sigillariostrobus Schimp. (Traité Paléont. Vég. 2: 105. 1870). All these generic names can be used concurrently in spite of the fact that they may, at least in part, apply to the same organism.

Ceci est important, puisque l'architecture des palmiers implique souvent que les fossiles retrouvés présentent plusieurs parties de l'appareil végétatif. En effet, il n'est pas rare de retrouver une base de stipe sur lequel sont insérées des racines. Il y a donc deux organes et deux noms peuvent donc s'appliquer au spécimen : *Rhizopalmoxylon* Felix 1883 et *Palmoxylon*. Il en est de même pour les fossiles présentant à la fois stipe et feuille (gaine ou pétiole) : en plus de *Palmoxylon*, *Palmocaulon* Menon 1964 est aussi correct pour nommer ce fossile.

14.2.3 Analyse de l'affinité taxinomique de *Palmoxylon* de la littérature

Plusieurs stipes fossiles ont été identifiés dans le sens où ils ont été rapportés comme se rapprochant de certains genres actuels. Les différentes tentatives d'identification sont présentées dans le Tableau 14.1.

Espèce	Identification	Publication	ion Stratigraphie Localité		Vérification Palm-ID
Palmoxylon arcotense	Livistona	Ramanujam (1953)	Tertiaire?	Pondicherry, Inde	Trachycarpeae possible
Palmoxylon aschersoni	$Borassus \ aethiopum$?	Louvet et Magnier (1971)	Miocène inférieur	Libye, Djebel Zelten Sud	Impossible à vérifier
Palmoxylon compactum	$Borassus^1$	EL-Saadawi et al. (2004)	Miocène inférieur	Égypte, Wadi Natrun	Borassus
$Palmoxylon\ coronatum$	Borassus?	Kaul (1960) et Roy et Ghosh (1980)	Miocène	Birmanie	Impossible à vérifier
Palmoxylon ghuguensis	Dypsis lutescens	Ambwani et Prakash (1983)	Early Éocène	Madhya Pradesh, Inde	Are coideae, Dypsidinae possible
$Palmoxylon\ homeochamaerops$	Chamaerops humilis	Biondi et Filigheddu (1990)	Miocène	Sardaigne	non Chamaerops, Trachycarpeae ?
Palmoxylon iriarteum	Iriartea?	Stenzel (1897)	?	Antigua	Impossible à vérifier
Palmoxylon kamalam	(Roystonea) Arecoideae	Kulkarni et Mahabale (1971)	Éocène	Maharashtra State, Inde	sûrement un Arecoideae
Palmoxylon khalsa	Livistona ²	Sahni (1964)	?	?	une simple comparaison est réalisée
Palmoxylon livistonoides	Livistona	Prakash et Ambwani (1980)	Éocène	Maharashtra State, Inde	Livistoninae, Livistona possible
Palmoxylon lametaei	Phoenix	Dutta <i>et al.</i> (2011)	Crétacé supérieur, Maastrichtien	Maharashtra State, Inde	non Phoenix, probablement Arecoideae
Palmoxylon phoenicoides	Phoenix	Agarwal et al. (2007)	Crétacé supérieur	Banswara District, Rajastan	Phoeniceae
Palmoxylon sabal	Sabal	Greguss (1954)	Miocène inférieur	Ipolytarmoc, Hongrie	Publication en hongrois

Tableau 14.1 – Liste des *Palmoxylon* identifiés. La colonne Vérification **Palm-ID** indique les vérifications de l'identification que j'ai pu réaliser avec le référentiel inclus dans la base de connaissance **Palm-ID** lorsque les informations dans les publications le permettaient.

Continue page suivante \dots

– Suite du Tableau 14.1 –					
Espèce	Identification	Publication	Stratigraphie	Localité	Vérification Palm-ID
Palmoxylon shahpuraensis	Licuala	Ambwani (1983)	Éocène basal	Madhya Pradesh, Inde	Livistoninae, Licuala possible
$Palmoxylon\ sundaram$	Cocos	Sahni (1946) Rao et Menon (1964)	Paléocène	Madhya Pradesh, Inde	Impossible à vérifier
Palmoxylon taroides	Corypha	Ambwani et Mehrotra (1989)	Paléocène- Éocène	Madhya Pradesh State, Inde	Impossible à vérifier
Palmoxylon vestitum	Coccothrinax	Thomas et De Franceschi (2012)	Rupélien (Oligocène)	Apt, Rustrel, Gignac	$Cryosophileae, \ Coccothrinax$
Palmoxylon vestitum	Coccothrinax	Thomas et De Franceschi (2012)	Tortonien (Miocène)	Castellane	$Cryosophileae, \ Coccothrinax$
Phytelephas sewardii	Phytelephas	Kaul (1943)	Miocène	Antigua	Phytelephas
Uhlia allenbyensis	Trachycarpeae ³	Erwin et Stockey (1994)	Éocène moyen (Princeton chert)	Colombie britannique, Canada	Trachy carpeae

 1 L'identification du spécimen est réalisée dans cette thèse.

 2 Sahni (1964) compare ce fossile avec *Livistona* tout en précisant qu'aucune affinité avec le genre actuel n'est impliquée.

³ Dans la publication originale (Erwin et Stockey 1994) les auteurs comparent ce spécimen fossile aux genres Brahea et Rhapidophyllum qui sont alors placés dans la tribu des Corypheae Mart. selon Uhl et Dransfield (1987).

- P. arcotense Ramanujam, 1953 La description donnée par Ramanujam (1953) ne correspond pas aux spécimens de *Livistona* que j'ai pu observer même si elle tend à s'en rapprocher par certains points. Le cortex est absent du spécimen, toutes les couches les plus internes sont présentes. Les faisceaux fibro-vasculaires sont Reniforma avec 2 éléments de vaisseau comme ceux de Livistona. Le phloème est entier et la partie fibreuse ventrale est absente. Le parenchyme fondamental est compact dans la zone subcorticale et devient lacunaire avec des lacunes de grandes tailles $(> 200 \ \mu m)$. Ceci est la première différence avec *Livistona* qui possède des lacunes de taille plus petite. La structure du parenchyme n'est pas conservé et il n'est pas possible de savoir si c'est un parenchyme trabéculaire (en étoile) ou un parenchyme fait de cellules allongées. Le cylindre central ne possède pas de faisceaux exclusivement fibreux contrairement au genre actuel qui en possède dans tous les échantillons observés. Le $f/v \subset [(2)3; 15]$ et les différents ratios $(\frac{f/v_{ext}}{f/v_{int}} \subset [5;7]$ et $\frac{d(FFV)_{ext}}{d(FFV)_{int}}$ \subset [4:5]) se rapprochent de ceux de Livistona. Certains Trachycarpeae présentent cette anatomie. Parmi eux, le genre Pritchardia s'en rapprocherait le plus. Il faut souligner que Pritchardia se retrouve aujourd'hui uniquement sur des îles de l'ouest Pacifique (Fiji, Tonga à Hawaï), les autres étant tous américains. L'anatomie du stipe de *Pholidocarpus* Blume (un *Livistoninae*) pourrait donner quelques renseignements supplémentaires dans l'identification de ce fossile.
- P. aschersoni Schenk, 1883 Louvet et Magnier (1971) ne donnent aucune description anatomique de ce spécimen. Ils indiquent uniquement qu'il semble devoir être rapproché de Borassus aethiopum mais sans qu'il ne soit possible de le vérifier.
- P. compactum Sahni, 1931 Espèce décrite et illustrée dans Sahni (1964). D'après la description de EL-Saadawi et al. (2004), il assez probable que ce spécimen puisse se rapporter au genre Borassus. En effet, son organisation générale est Cocos-Type, il ne possède q'un seul élément de vaisseau, une partie fibreuse dorsale Reniforma et un parenchyme fondamental compact avec de petites lacunes. Le parenchyme tabulaire est présent.
- P. coronatum Sahni, 1964 Il est impossible d'affirmer que ce spécimen possède des caractères permettant de le rapprocher des Borasseae (l'auteur indique que les faisceaux exclusivement fibreux sont absents).
- P. ghuguensis Ambwani & Prakash, 1983 Un retour sur la publication originale n'est pas évident mais il apparait que le description proposé partage certains caractères avec certaines espèce du genre Dypsis Noronha ex Mart. (qui en contient 150). L'anatomie de Dypsis lutescens (H.Wendl.) Beentje & J.Dransf. décrite par Tomlinson et al. (2011) est assez semblable à la description du fossile : faisceau fibro-

vasculaire circulaire à ovale (sans sinus auriculaire), la partie fibreuse dorsale est peu développée dans la zone centrale et est Reniforma, le $f/v \approx 1$. 1 élément de vaisseau par faisceau fibro-vasculaire. Le phloème est partitioné. Le parenchyme fondamental est assez compact avec des cellules présentant des allongements entre les faisceaux fibro-vasculaires. Même si la description de ce spécimen concorde avec *Dypsis*, étant donné que les *Arecoideae* n'ont pas été étudié de manière exhaustive, il n'est pas possible d'affirmer avec certitude que ce stipe fossile appartient aux *Dypsidnae*.

- P. homeochamaerops Biondi & Filigheddu, 1990 Les caractères décrit dans cette publication (Biondi et Filigheddu 1990) ne permettent pas de rattacher ce spécimen fossile au genre Chamaerops. En effet, même si la racine et la tige sont disponibles, les auteur semblent s'être trompés dans l'identification des deux parties. En ce qui concerne la tige, la principale différence provient du fait qu'aucun faisceau exclusivement fibreux n'a été observé alors que Tomlinson (1961), Tomlinson et al. (2011) et ce travail (Chapitre 7.11) citent la présence de ces structures. Étant donné que c'est la partie basale que ces auteurs étudient, si les faisceaux exclusivement fibreux étaient présent dans cette espèce, alors ils auraient du y être fortement développés comme chez Chamaerops or ce n'est pas le cas. Selon Seubert (1997), Biondi et Filigheddu (1990) décrivent des caractères racinaires trop généraux pour permettre une identification. Il se pourrait que ce spécimen appartiennent aux Trachycarpeae mais il faudrait pouvoir étudier de nouveau ce spécimen.
- P. iriarteum Stenzel, 1897 Cette espèce fossile est à la fois décrite dans Stenzel (1897, 1904), mais il n'est pas possible de vérifier l'exactitude de l'identification.
- P. kamalam Rode, 1933 Il est sûrement probable que ce palmier appartiennent aux Arecoideae. En effet, l'organisation générale est Mauritia-Type, les faisceaux fibrovasculaires possèdent 1 élément de vaisseau et le parenchyme fondamental est composé de cellules présentant une forte croissance post-primaire (cellules en-bâton) avec de larges lacunes. En l'état actuelle des connaissances, il n'est pas possible d'affiner l'identification et d'émettre l'hypothèse que ce spécimen et le genre Roystonea formeraient un groupe monophylétique.
- P. livistonoides Prakash & Ambwani, 1980 La description de ce spécimen par Prakash et Ambwani (1980) concorde parfaitement avec celle des Livistoninae réalisée dans la Chapitre 7.10. En effet, ce stipe fossile présente les caractères suivants : une organisation Corypha-Type, faisceaux fibro-vasculaires à partie fibreuse dorsale Reniforma, 2 éléments de vaisseau, parenchyme rayonnant présent, le parenchyme fondamental est constitué de cellules lobées (< 200 µm, longueur/largeur < 3–4) qui forment de petites lacunes en réseau irrégulier (généralement inférieures à 250 µm) entre les lobes de ces cellules, les faisceaux exclusivement fibreux sont absents. C'est

l'absence de faisceaux exclusivement fibreux qui peut remettre en cause l'appartenance de ce fossile au genre *Livistona* mais même avec une telle absence, ce spécimen partage tous les autres caractères avec un autre *Livistoninae* : le genre *Licuala*.

- P. lametaei Dutta et al., 2011 Même si Dutta et al. (2011) n'identifient pas explicitement ce spécimen comme appartenant au genre Phoenix, ils réalisent une comparaison avec ce genre ce qui laisse planer un doute lors de la lecture de l'article. Il semble y avoir une erreur dans la tentative d'identification de ce spécimen. En effet, Dutta et al. (2011) assignent ce spécimen au genre Phoenix. Dans leur description, il indiquent que ce spécimen possède des un seul élément de vaisseau alors que Tomlinson (1961), Tomlinson et al. (2011) et la les spécimens étudiés dans le Chapitre 7.8 indiquent clairement que Phoenix possède deux éléments de vaisseau. De plus, ces auteurs indiquent que le spécimen possède un parenchyme lacunaire, ce qui n'a jamais été observé chez Phoenix.
- **P.** phoenicoides Agarwal et al., 2007 Parmi les figures de la publication, aucune ne permet de confirmer ou d'infirmer l'affinité taxinomique donnée par les auteurs. Néanmoins la description anatomique réalisée est assez adéquate avec celle des *Phoeniceae*. Le cortex est développé. Le passage du cortex au cylindre central est instantanné. Les faisceaux fibro-vasculaires sont plus ou moins circulaires avec deux éléments de vaisseau. Les différents paramètres comme la taille, le $\frac{d(FFV)_{ext}}{d(FFV)_{int}}$ et le $\frac{f/v_{ext}}{f/v_{int}}$ sont constants dans toute la section transversale. La forme de la partie fibreuse dorsale est Reniforma à Lunaria. Le parenchyme fondamental est dense et sphéroïde et les faisceaux exclusivement fibreux sont absents. Selon la classification de von Mohl, ce spécimen appartient aux *Cocos-Type*. Il n'est donc pas exclu que ce fossile soit apparenté aux *Phoeniceae*.
- P. sabal Greguss, 1954 En raison de la langue de publication de Greguss (1954) (publication en hongrois, résumé en français), il est impossible de vérifier cette identification.
- P. shahpuraensis Ambwani, 1983 Ce spécimen présente toutes les caractéristiques anatomiques de la sous-tribu des Livistoninae. L'organisation générale est Corypha-Type. Les deux éléments de vaisseau sont exclus de la partie fibreuse dorsale qui est Reniforma à Lunaria. Le parenchyme fondamental présente des cellules légèrement allongées, lobées formant un réseau avec des lacunes de petites tailles. Pas de faisceaux exclusivement fibreux.
- P. sundaram Sahni, 1946 Il n'a pas été possible d'obtenir la publication de Sahni (1946) et celle de Rao et Menon (1964) ne font pas de référence à Cocos et il n'est pas possible de réaliser une identification à partir de leur description.

- P. taroides Ambwani & Mehrotra, 1989 Il n'est pas possible d'identifier avec précision le genre décrit par ces auteurs.
- P. vestitum (Saporta) Stenzel, 1904 Pour cette identification, il est possible de se référer à l'article Thomas et De Franceschi (2012) présenté ci-dessous. Cet article décrit les caractères anatomiques et morphologiques qui permettent d'identifier ce stipe fossile comme faisant partie de la tribu des Cryosophileae et comme ayant une anatomie très proche de celle de Coccothrinax. Une première tentative d'identification avait été réalisée par Grambast (1965) mais sans succès.
- Phytelephas sewardii Kaul, 1943 Il ne fait aucun doute sur l'identification de ce spécimen fossile comme appartenant au genre Phytelephas. En effet, Kaul (1943) décrit exactement la même anatomie que celle du genre actuel avec de très gros faisceaux exclusivement fibreux et des faisceaux fibro-vasculaires Reniforma avec plus de quatre éléments de vaisseau (entre 8 et 12).
- Uhlia allenbyensis Erwin et Stockey, 1994 C'est le premier spécimen fossile qui présente à la fois des racines et une feuille (pétiole et limbe) rattachés au stipe. Erwin et Stockey (1994) réalisent l'identification en se basant surtout sur l'anatomie du pétiole et du limbe. La description qu'ils donnent du limbe concorde avec celles de Tomlinson (1961). En ce qui concerne le stipe, son anatomie est en accord avec celle des Trachycarpeae : faisceaux fibro-vasculaires Reniforma à deux éléments de vaisseau, parenchyme fondamental à cellules lobées et à petites lacunes (< 200 µm) contenant des faisceaux exclusivement fibreux. Même si la description du stipe est assez sommaire, l'ensemble des organes permet de placer ce genre au sein des Trachycarpeae.</p>

14.3 Échantillonnage des spécimens fossiles

Tous les spécimens fossiles étudiés dans l'article présenté ci-dessous proviennent de la *Collection de plantes fossiles du Muséum national d'Histoire naturelle*. Cette collection est assez riche en stipes de palmiers silicifiés. Une grande partie de ces stipes provient de deux régions principales : les Antilles avec Antigua et Barbuda et le Sud-Est de la France avec la vallée d'Apt (Rupélien) et les environs de Castellane (Tortonien). Malheureusement, alors que leur fossilisation est exceptionnelle, pour la quasi totalité des spécimens des Antilles, aucune référence géographique précise n'est donnée. Ceci rend les spécimens inutilisables. En effet, le volcanisme régional implique de connaître avec certitude la provenance d'un échantillon si nous voulons connaître l'étage géologique. En ce qui concerne les gisements français, nous disposons de plus d'informations, et les couches géologiques desquelles les fossiles proviennent sont déterminées avec précision.

14.4 Article

L'article suivant (Thomas et De Franceschi 2012) a été soumis à *Review of Palaeobo*tany and Palynology et est accepté. Nous y présentons l'étude d'une espèce fossile (*Pal*moxylon vestitum). Son holotype ainsi que de nombreux autres spécimens appartenant à la collection de Plantes fossiles du Muséum national d'Histoire naturelle sont décrits du point de vue de leur anatomie. Une identification est réalisée et les implications paléoenvironnementales et évolutives son discutées.

1	First evidences of fossil Cryosophileae (Arecaceae) outside Americas (early Oligocene
2	and late Miocene of France): anatomy, palaeobiogeography and evolutionary
3	implications
4	
5	Romain Thomas ^{a, b} , Dario De Franceschi ^a
6	^a Muséum national d'Histoire naturelle — UMR 7207 MNHN–CNRS–UPMC Centre de
7	recherche sur la paléobiodiversité et les paléoenvironnements. Département histoire de la
8	Terre; Paris, France
9	^b Corresponding author:
10	Muséum national d'Histoire naturelle — UMR 7207. Département histoire de la Terre; 8, rue
11	Buffon; 75005 Paris, France
12	Tel: +33 1 40 79 34 58; Fax: +33 1 40 79 35 80
13	E-mail: thomas@mnhn.fr
14	
15	Abstract
16	A recent anatomical study of living palm stems provides evidences that the five palm
17	subfamilies and their tribes have useful identification characters. This study intends to show
18	that identification of fossil palm stems from anatomical descriptors is potentially possible at
19	the tribe level. As a concrete application, we study the holotype of <i>Palmoxylon vestitum</i>
20	(Saporta) Stenzel and some other stems of two localities. We study here five fossil palm
21	stems from the early Oligocene of Apt (Vaucluse, France) and two from the late Miocene of
22	Castellane (Alpes-de-Haute-Provence, France). These seven palm stems belong to the same
23	species (<i>P. vestitum</i>). With a referential of living stems, we improve the identification of this

24 species within the palm family. This species is a Cryosophileae (Coryphoideae) and the closer

25 living genus is *Coccothrinax* Sarg. This discovery has important consequences on the history

of the palm family. Indeed, it is the first record of this tribe outside Americas. Currently the
living Cryosophileae are mainly restricted to Central America and this identification provides
evidence for a Laurasian origin of this tribe, during the early Eocene as for its sister tribe
(Sabaleae). Furthermore, the ecology of this tribe and of this genus gives more information
about the palaeoclimatical conditions of these two localities (dry area to subtropical dry
forest).

Keyword: Coryphoideae, *Coccothrinax*, Miocene, Oligocene, *Palmoxylon*, palm stem
anatomy.

9

10 **1**. Introduction

11 Precise affinities of fossil palm stems have always been difficult to determine due to 12 the lack of knowledge of living palm stems. A thorough anatomical survey of all living palm 13 subfamilies and tribes was a compulsory preliminary to refine the reinvestigations on fossil 14 palm stems. With this aim, we made a systematic anatomical study of palm stems (Thomas, 15 2011a, b; Thomas and De Franceschi, personal communication). In these studies we extend 16 the investigations of Tomlinson et al. (2011) by describing the stem anatomy of the diverse 17 subfamily Coryphoideae and, to a more limited extent, the other four palm subfamilies. 18 Indeed, the recent survey of palm anatomy (Tomlinson et al., 2011) documented the stem 19 anatomy of many palms, but leaf anatomy was mainly emphasized. In our previous studies, about 80 palm genera of the five subfamilies were studied in order to provide a comparative 20 21 study on the palm stem anatomy. In the present study we re-examine specimens from the old 22 collection of palm fossil stems of the Muséum national d'Histoire naturelle of Paris, collected 23 in the 19th century, and still not precisely described and identified. These fossils come from 24 the southeast of France (Vaucluse and Alpes-de-Haute-Provence) from several localities in outcrop dated from Rupelian and Tortonian. 25

We propose, in the methods, to provide anatomical descriptors with their different states
(Thomas, 2011a, b) that have taxonomic information. Thus, with these standardized
descriptors and with the interactive Web-based tool (Thomas, 2011b) we intend to make
possible comparisons between the different *Palmoxylon* Schenk and between the *Palmoxylon*and the living palms (at the genus, tribe and/or subfamily levels).

6 Geological and palaeontological settings

7 Fossil specimens come from two main areas (Fig. 1). The first one is the Vallée d'Apt 8 from Rupelian outcrops (early Oligocene) with two localities: Rustrel and Gignac (Vaucluse, 9 France), now well geologically known and described (Goguel et al., 1966). One level called "Calcaire de Campagne Calavon" (Rupelian, Sannoisian in the description) still contains palm 10 11 fossil fragments. The second outcrop is in the Castellane surroundings (Alpes-de-Haute-12 Provence, France), most probably from Tortonian (late Miocene; Kerckhove et al., 1976), 13 from the layer called "marnes vertes gypsifères". Specimens were collected by Requien, 14 Emeric and Duval in the middle of the 19th century and preserved in the MNHN collections 15 until now. 16

17 Insertion of Figure 1.

18

19 2. Material and methods

20 2.1. Material

Seven fossilized palm stem specimens are analyzed (MNHN.F.1964., MNHN.F.2344.,
MNHN.F.2345., MNHN.F.2353., MNHN.F.4549., MNHN.F.4550., MNHN.F.6347.). They
are portions of silicified stems of about 100 mm in diameter, elliptical in transverse section
due to compression in the sediments, and for some of them leaf bases cover the stem. The
anatomy is more or less well preserved. Until recently, no detailed studies were done, except

for one sample from Gignac (MNHN.F.6347.), morphologically described and named
 Palmacites vestitus Saporta (1863). The other were just labelled and simply referenced in the
 collection as "palm".

4 The living specimens presented herein come from the living collection of the 5 Komarov Botanical Institute (St Petersburg, Russia) (LE), the xylarium of the Fairchild 6 Tropical Botanic Garden (Florida) (FTG), the xylarium of the Royal Museum for Central 7 Africa (Tervuren, Belgium) (MRAC), the Economic botany collection of Kew (UK) (K) and 8 the xylarium of Paris (France) (P). Chamaerops humilis L.; Pers., R. Thomas sn. C. humilis; 9 MRAC, Tw 40121, R. Dechamps & H. Doutrelepont sn. C. humilis, P, P00395018. C. 10 humilis; P. P00397191 B202. Chelvocarpus dianeurus (Burret) H.E.Moore; MRAC, 11 Tw43237, J. Cuatrecasas 16702. Coccothrinax argentea (Lodd. ex Schult. & Schult.f.) Sarg. ex Becc.; LE. C. miraguama (Kunth) Becc.; FTG 91357E, J.B. Fisher and FTG 60798C, J.B. 12 13 Fisher. C. barbadensis (Lodd. ex Mart.) Becc.; RM1012C, J.B. Fisher. Cocos nucifera L.; K. EBC 69867. C. nucifera; MRAC, Tw 26873, Renard sn. Cryosophila nana (Kunth) Blume; 14 15 K, EBC 26209. Hemithrinax compacta (Griseb. & H.Wendl.) M.Gómez; MRAC, Tw43225, 16 Leon (Frère) sn. Nannorrhops ritchieana (Griff.) Aitch.; Pers., R. Thomas sn. Phoenix 17 dactylifera L.; K, EBC 26329. P. dactylifera; Pers., R. Thomas sn. P. reclinata Jacq.; MRAC, 18 Tw 44588, F. Malaisse sn. P. sylvestris (L.) Roxb.; K, EBC 26340. Phytelephas macrocarpa 19 Ruiz & Pav.; K. EBC 26341. Thrinax radiata Lodd. ex Schult. & Schult.f.; FTG; P2312, J.B. Fisher. T. radiata; FTG, RM1011, J.B. Fisher. T. radiata; P, P00406202. 20 21 2.2. Methods

Modern palm stems. We preserved and softened fresh material in a solution (2:1:1) 95% ethanol: glycerol: water. Various techniques were used for anatomical preparations. For the very hard material we used an adapted method of the petrographic thin sections. First, specimens were embedded in an unsaturated epoxy resin – araldite 2020 (XW 396/XW 397)

4

1 standard mixture (Huntsman, Basel, Switzerland). Then, before sectioning and polishing, 2 three embedding methods were followed according to the timing of the preparation: (i) 3 embedding with resin for at least one week at 40°C; (ii) embedding with resin for 1 hour at 4 80°C; (iii) some samples were not totally embedded with the resin but only the first 5 millimetres below the polished transverse surface and placed under vacuum (Brot 6 Technologies, Argenteuil, France) to eliminate air bubbles in the base of the sample. Finally, 7 the embedded specimens were stuck with the same resin on a frosted slide and polished to 8 obtain the suitable thickness (about 15 to 30 µm) to allow microscopic observations. The 9 glass covering was mounted using the same araldite resin as for embedding. For soft 10 materials, transverse (TS) and longitudinal (LS) were obtained with a sliding microtome 11 (Reichert, Austria) and sometimes stained with iodine-green or safranin/fast green coloration. 12 For some samples, we made direct observations on surfaces polished with successive 13 increasingly fine abrasives. This method allowed microscopic observations with the use of a 14 reflected light (episcopic) microscope (BXFM Olympus, Tokyo, Japan). Preliminary 15 polishing was done using macrogrit sandpaper 80 (in the international standard ISO 6344, 16 equivalent to 200 µm) and final polishing was done using microgrit 2400 (7 µm). Complete 17 transverse sections of the stem were prepared for narrow stems; subsections covering the 18 diagnostic parts of the stem (i.e. cortical, subcortical and central part) were prepared for wider 19 stem.

Fossil material. Classical petrographic thin sections were used. (a) The specimen is
cut on the defined cutting plan with a diamond saw (circular or dicing). (b) Then it is polished
on a rotating plate to obtain a plane surface with successive increasingly fine abrasives
(Silicon carbide, particles from 70 µm to 5 µm). (c) The polished surface is stuck on a slide of
appropriate size with an unsaturated epoxy resin (araldite AY103-1 standard mixture,
Huntsman, Basel, Switzerland). (d) A thin section of the specimen (cut with a diamond saw)

5

1 is maintained on the slide; then the thickness is reduced with a grinding machine (Brot 2 Technologies, Argenteuil, France) and finally with successive increasingly fine abrasives 3 (silicon carbide) to obtain a final thickness of $20-30 \mu m$. (e) The glass covering was done by 4 using an unsaturated epoxy resin-araldite 2020 (XW 396/XW 397). When it was possible, 5 complete transverse sections of the stem were prepared. When the stems were too large, 6 subsections covering the diagnostic parts (i.e. cortical, subcortical and central part) were 7 prepared. The observations were done using a Microscope Nikon ECLIPSE80i. We used also 8 direct observations on polished surfaces with successive increasingly fine abrasives for 9 microscopic observations with the use of an episcopic microscope. The method is the same as 10 before but replacing steps (c) through (e) by the use of polishing cloth disc (containing 11 Aluminium oxide and Cerium oxide of ¹/₄ µm) on a rotating plate. Photography was done 12 using a Nikon D300 digital camera (Nikon, Tokyo, Japan) or a CCD camera DP12 13 (Olympus). Image was adjusted for contrast and colour level in Adobe (San Jose, California, 14 USA) Photoshop CS. Only background areas outside the object were cleared to improve the 15 clarity of the image. Measurements were made using ImageJ software (version 1,44A) 16 (Rasband, 1997–2008). All the characters presented here, come from original observations of 17 the sampled specimens.

18 Measurements of individual fibrovascular bundles (fvb) in a radial strip of a TS is 19 given by the average of about 10 fvb in each considered zone: the subcortical zone (out) and 20 the central zone (in) (Fig. 2).

21 *2.3. Proposal to standardize the fossil palm stem descriptors*

In the previous literature more than 150 fossil palm stems have been described, notably by Stenzel (1904), Stockmans and Willière (1943), Kaul (1960) and Sahni (1964). Even if descriptors were defined (von Mohl, 1823–1850, 1845 and Stenzel, 1904), no clear definition of them and no criteria were given in order to know how to choose among the

1 different states. Moreover, these different characters have been established almost only on the 2 fossil stems. These authors have made very few studies on the living palm stems. Thus, some 3 characters are not informative while other need more explanations. Thereby, palm stem 4 descriptors that have taxonomic information are presented herein in order to make possible 5 comparisons between the different *Palmoxylon* and between the *Palmoxylon* and the living 6 palms. P.B. Tomlinson and M.H. Zimmerman had extensively studied the vascular system of 7 living palm stems (Zimmermann and Tomlinson, 1965, 1967, 1969, 1972, 1974; Tomlinson 8 and Zimmermann, 1966, 1967; Tomlinson, 1970). Then, the anatomical changes along the 9 longitudinal axis (axial variation, from the apical toward basal region of the stem) and the 10 radial axis (radial variation, from the subcortical toward the central zone of the central 11 cylinder, Fig. 2) are well known. Indeed, the size of the different structures is not constant in 12 the same specimen and in two specimens of the same species. Some palms present a sustained 13 growth of the ground parenchyma cells (Monoyer, 1924; Waterhouse and Quinn, 1978; Fig. 2 14 B). Schoute (1912), Monoyer (1924), Tomlinson (1969) Waterhouse and Quinn (1978) and 15 Rich (1987) have described these radial and axial variations for palms with ground 16 parenchyma sustained growth. Swamy and Govindarajalu (1961) and Ambwani (1985) have 17 described these radial and axial variations for palms without this sustained growth (Fig. 2 A). 18 These studies clearly show that quantitative measurements are useless. Indeed, the density of 19 the fibrous vascular bundles (fvb) or of the fibrous bundles and the f/v (fibrous/vascular) ratio decreases in these axial and radial variations (Figs. 2–3). The size of the ground parenchyma 20 21 cells increases in these two axis variations.

The results of Tomlinson (1964, 1965, 1969), Tomlinson and Zimmerman (1967), Parthasarathy and Tomlinson (1967), Parthasarathy (1968) and Klotz (1978b) show that the variation of the quantitative measurements (length, diameter) of metaxylem vessel elements and of metaphloem within a single specimen is often more important than the differences of

7

1 measurements between different taxa. Length of metaxylem elements increases with the age 2 of the palm stem and increases slightly with the depth in the central cylinder and the diameter 3 varies but not constantly. 4 5 Insertion of Figures 2 and 3. 6 7 The previous results allow us to assert that the quantitative measurements of various 8 anatomical features as the density of fvb, the size of anatomical structure (H_{max}, l_{max}, H_{vasc} and 9 l_{vasc} as in Fig. 3) or any specifications about lignification are useless for the identification of a 10 palm stem. Therefore we propose to use qualitative descriptors or ratio of quantitative 11 descriptors (Thomas and De Franceschi, submitted; Thomas, 2011a). Indeed, a diagnosis with 12 anatomical measurement could exclude some specimens of the same taxa, depending on the

13 axial position of the sample. Descriptors with taxonomic information are presented in Table 1

14 and come from Thomas (2011a) and http://www.infosyslab.fr/Palm-ID/ (Thomas, 2011b).

15

16 Insertion of Table 1.

17

18 3. Results

3.1. Systematic palaeobotany

All the specimens presented herein come from the same fossil taxa (*Palmoxylon vestitum*) and are separately presented in order to have the more complete stem reconstitution of the taxa found in the two studied localities. In the following descriptions (summarized in the Table 2) and with the previous proposal of standardisation, we propose to emend the diagnosis of this fossil species.

25 Family ARECACEAE Schultz Sch., 1832

- 1 Subfamily CORYPHOIDEAE Burnett, 1835
- 2 Tribe CRYOSOPHILEAE J.Dransf. et al., 2005
- 3 Genus *Palmoxylon* Schenk, 1882
- 4 *Type species*: *Palmoxylon blanfordi* Schenk, 1882
- 5 *Palmoxylon vestitum* (Saporta) Stenzel, 1904
- 6 = Palmacites vestitus Saporta, 1863
- 7 Holotype: MNHN.F.6347., illustrated by Saporta (1863, Pl. 1, fig. 5).
- 8 *Repository*: Plant fossil collection of the MNHN, Paris.
- 9 Stratigraphic horizon: Limestone of Campagne-Calavon, Rupelian.
- 10 Locality: Gignac, near Apt (Vaucluse), France.
- 11 *Species diagnosis emended*: Palm stem with leaf sheaths in apical part (if present) showing a
- 12 finely and regular "net-like" (reticular) structure with a dense mesh and an inverted net
- 13 framework orientation of two successive leaf sheaths well delimited. Narrow leaf scars
- 14 obliquely ringed. Internally to this leaf scars layer, a wide cortical zone of (up to 5 mm and
- 15 more) made of few fibrous vascular bundles and fibrous bundles. Central cylinder well
- 16 delimited from the cortical zone with a sudden increase of the density of the fibrous vascular
- 17 bundles. The general stem pattern (Von Mohl classification) is Cocos-Type: the density of the
- 18 fibrous vascular bundles, d(fvb), is highly constant (the ratio between the d(fvb) of the
- 19 subcortical zone and the d(fvb) of the central zone is between 1 and 3); the fibrous vascular
- 20 surface ratio, f/v, is constant throughout the transverse section (the ratio of the f/v of the
- subcortical and the f/v of the central zone is between 1 and 3); then, the fibrous covering index
- 22 (*R*) defined as the ratio between *a*, the surface area of the fibrous part of all the fvb in an
- examined transverse section (TS) and A, the whole surface area of the examined TS (R = a/A)
- is also the same in all the TS (between 1 and 3). Shape of fibrous part in TS (Stenzel
- 25 classification): circular (Vaginata to Lunaria and slightly Reniforma in young stems).
1 Auricular sinus is absent. More than four vessel elements per fibrous vascular bundles 2 (usually between 7 and 10) with simple to multiple perforation plates. Vessel elements are 3 distributed in two superposed bands (Plate I, 6, and Plate II, 7, 10, 14). One phloem strand. 4 Tabular parenchyma is well developed. No modification of the fibrous dorsal cap between the 5 subcortical zone and the central zone. The ground parenchyma is compact with spheroid to 6 elongate cells. Fibrous bundles are present and well developed. Phytoliths are globular 7 echinate. Vascular bridges (small fibrous vascular bundle connecting the main bundles, Plate 8 I, 9) are sometimes well developed.

9 *Description*: Plate I, 1–6. This specimen is an elliptical stem $(55 \times 147 \text{ mm, height} = 110 \text{ mm})$ mm) due to the compression in the sediments (Plate I, 1–2). Fine "net-like" leaf sheaths 10 11 surround the stem (Plate I, 2). The net framework orientation of two successive leaf sheaths is 12 inverted. About 8-10 concentric leaf sheaths are visible in TS (Plate I, 3). These numerous 13 leaf-sheaths indicate that the specimen comes from the apical part of a stem (below the shoot 14 apex). The cortex is wide (3–5 mm, Plate I, 4). Cocos-Type (see Table 1 for the definitions of the following ratios): $d(fvb)_{out}/d(fvb)_{in} = 1,5 (500/\text{cm}^2 \text{ in the central zone and up to } 800/\text{cm}^2$ 15 in the subcortical zone, Plate I, 5); $f'_{V_{out}}/f'_{V_{in}} \subset [1,5;2]$ (f/V < 0,5); $R_{out}/R_{in} \subset [1;3]$. The fvb 16 are not completely sheathed by fibrous cells because of the apical position of the specimen 17 18 (Plate I, 6). Indeed, in young stems, the fibrous sheath is not well-developed and is only 19 visible in mature stems, then, the shape of the fibrous dorsal cap appears Reniforma but the 20 fvb are circular in TS without auricular sinus. The *fvb* have the following mean dimension: $H_{max} = 335 \ \mu\text{m}$, $I_{max} = 260 \ \mu\text{m}$, $H_{vasc} = 240 \ \mu\text{m}$, $I_{vasc} = 252 \ \mu\text{m}$. More than four vessel 21 elements per *fvb* are divided in two superposed bands, vessel mean diameter = $46 \mu m$. The 22 density of the fibrous bundles varies from 900 to 1400 per cm^2 , and their mean diameter is 63 23 24 μ m (Plate I, 6). Phytoliths are globular echinate (mean diameter = 16 μ m). The ground

1 parenchyma, not well preserved, is compact with small spheroid to few elongate cells

2 (diameter $< 50 \,\mu$ m). Vascular bridges are present (Plate I, 5).

3 Affinity: Grambast (1965) made a first identification attempt but without clear taxonomic 4 conclusion because of the knowledge gaps about the living taxa stem anatomy. This specimen 5 is an apical part of palm stem. These finely "net-like" fibrous sheaths (Plate I, 7) are 6 characteristic of some tribes in the palm family: Caryoteae, Cocoseae, Cryosophileae and 7 Trachycarpeae (Table 3). Anatomical investigations make it possible to improve the 8 taxonomic position of this specimen. This stem portion presents some characteristics and 9 some differences with that of the middle and of the basal portions, indeed, in the apical part, 10 the fvb are not well developed. This results in the poor development of the fibrous dorsal and 11 ventral caps: fibre cells have a thin wall and are not visible on the side of the vascular part 12 (ventral cap). Then, some fvb appear to be not Vaginata and are more Lunaria to Reniforma 13 (Plate I, 10–11). Even if these fvb do not have a complete fibrous sheath, they are circular 14 without auricular sinus. Circular fvb with a high homogeneous cortex (Cocos-Type) are found 15 in Cryosophileae, *Phoenix* L., *Chamaerops* L., *Nannorrhops* H.Wendl. and some Cocoseae 16 (Tomlinson, 1961; Tomlinson *et al.*, 2011; Thomas and De Franceschi, submitted; Thomas, 17 2011 a, b). Fibrous bundles in the central cylinder are not found in *Phoenix* and are very 18 sparse in *Nannorrhops*. The fvb of *Chamaerops* have only three to four vessel elements. 19 Anatomy of Cocoseae is sometimes close to Cryosophileae (e.g. Cocos L. and Elaeis Jacq.) 20 but they contain one vessel element (rarely two) and fvb are Reniforma with auricular sinus to 21 Vaginata (Tomlinson, 1961; Tomlinson et al., 2011; Thomas and De Franceschi, submitted, 22 Thomas, 2011 a, b). Then the anatomy of this *Palmoxylon* is closed to the Cryosophileae 23 (Plate I, 8–11, Table 3). In Cryosophileae, *Coccothrinax* Sarg. is highly characteristic. Indeed, 24 fvb are made of several vessel elements (more than four) whereas the other show only two 25 vessel elements or one for *Chelvocarpus* Dammer. Numerous vessel elements (more than

1	four) are also found in <i>Phytelephas</i> Ruiz & Pav. and in <i>Trachycarpus</i> H.Wendl. (Tomlinson,
2	1961; Ambwani, 1985; Thomas 2011a, b). But <i>Phytelephas</i> has Reniforma fvb with the wider
3	fibrous bundles (100 to 350 μ m) and the wider phytoliths (> 20 μ m) found in palms (Kaul,
4	1943; Tomlinson, 1961; Tomlinson et al., 2011; Thomas 2011a, b) and Trachycarpus have
5	Reniforma fvb without fibrous bundles (or rarely observed in the subcortical zone of the
6	central cylinder). The specific organization and the number of the vascular elements in a ffv
7	(between 7 and 10, with a distribution in two superposed bands) are highly exclusive to the
8	genus Coccothrinax in the palm family. These two bands seem to be an autapomorphy of
9	Coccothrinax. Then this specimen presents numerous characters which are today restricted to
10	the living genus Coccothrinax.
11	
12	Insertion of Plate I.
13	
14	<i>Material</i> : MNHN.F.2344.
15	Repository: Plant fossil collection of the MNHN, Paris.
16	Stratigraphic horizon: Limestone of Campagne-Calavon, Rupelian.
17	Locality: Gignac, near Apt (Vaucluse), France.
18	<i>Description</i> : Plate II, 1–3. This sample is elliptical (16×10 cm, height = 2 cm). The cortex is
19	wide (> 2,5 mm) but the superficial protective layer (bark and leaf sheaths) is not preserved.
20	Cocos-Type: $d(fvb)_{out}/d(fvb)_{in} = 1,5$ (48/cm ² in the central zone and up to 70/cm ² in the
21	subcortical zone), $f'_{v_{out}}/f'_{v_{in}} = 1,6$ ($f/v = 2,5$ in the subcortical zone and 1,5 in the central
22	zone), and $R_{out}/R_{in} = 1,3$. Fibrovascular bundles are Lunaria to Reniforma (fibrous ventral cap
23	not visible Plate II 2). The full have the following mean dimension: $H_{\rm c} = 780$ µm $I_{\rm c} =$
20	not visible, Flate II, 2). The two have the following mean dimension. $T_{max} = 780 \mu m$, $T_{max} =$
24	652 μm, $H_{vasc} = 362$ μm, $I_{vasc} = 490$ μm. The mean vessel diameter is 60 μm. Between 7 and

- 1 bundles varies from 60 to 90 per cm² and their mean diameter is 95 μ m (Plate II, 2).
- 2 Phytoliths are globular echinate (mean diameter = $18 \mu m$). The ground parenchyma is well
- 3 preserved, and is compact with small spheroid to few elongate cells (mean maximal length =
- 4 106 μm, Plate II, 3). Numerous vascular bridges are visible.
- 5 Affinity: As for the previous stem, this fossil specimen presents some characters in common
- 6 with the living genus *Coccothrinax*.
- 7
- 8 *Material*: MNHN.F.2345.

9 *Repository*: Plant fossil collection of the MNHN, Paris.

10 *Stratigraphic horizon*: Limestone of Campagne-Calavon, Rupelian.

- 11 *Locality*: Gignac, near Apt (Vaucluse), France.
- 12 Description: Plate II, 4–6. This fossil sample is in two parts (1 and 2) and it is not possible to
- 13 say if it comes from the same stem or not. The two parts are complete stem elliptical
- 14 transverse section $(34 \times 142 \text{ mm height} = 143 \text{ mm for the basal portion and } 35 \times 145 \text{ mm height}$
- 15 = 107 mm for the apical portion). One is the apical part of a stem because of the several
- 16 concentric leaf sheaths seen in TS and of their "net-like" characteristic seen on the surface
- 17 (Plate II, 4–5). The other is a more basal portion of a stem. Indeed several leaf scares
- 18 obliquely ringed are seen on the surface of the stem (14–17 leaf scares on 10 cm, Plate II, 6).
- 19 The anatomy of these two parts is not well preserved and the complete description of it is not
- 20 possible. However, it is possible to distinguish a Cocos-Type general stem pattern. The fvb
- 21 are circular in TS and have more than four vessel elements. Fibrous bundles are present in the
- 22 ground parenchyma, which is not preserved.
- 23 Affinity: As for MNHN.F.6347., this specimen has the morphological and the anatomical
- 24 diagnostic characters of *P. vestitum* and of the living Cryosophileae and the closer living
- 25 genus of this fossil specimen is *Coccothrinax*.

- 1
- 2 *Material*: MNHN.F.2353.
- 3 *Repository*: Plant fossil collection of the MNHN, Paris.

4 *Stratigraphic horizon*: Limestone of Campagne-Calavon, Rupelian.

5 *Locality*: Gignac, near Apt (Vaucluse), France.

6 Description: Plate II, 7–8. It is one of the best-preserved *P. vestitum*. The specimen is a full 7 elliptical section in TS of a central cylinder $(13,5 \times 7 \text{ cm}, \text{height} = 1 \text{ cm})$ without information 8 about its axial position. Nevertheless, given the size of the sample and the well-developed 9 fibres cells of the fibrous vascular bundles (fvb), it is possible to place this sample in the 10 mature part of a stem (somewhere between the middle and the basal part of the stem). The cortex is not preserved. Cocos-Type: $d(fvb)_{out}/d(fvb)_{in} = 1,4$ (65/cm² in the central zone and 11 up to 90/cm² in the subcortical zone), $\frac{f}{V_{out}}/\frac{f}{V_{in}} = 1,5$ (f/V in the central zone = 1,5, f/V in 12 the subcortical zone = 2) and R_{out}/R_{in} = 1,3. The fvb are almost completely sheathed by 13 fibrous cells and are Vaginata to Lunaria (Plate II, 7). The fvb have the following mean 14 15 dimension: $H_{max} = 739 \ \mu\text{m}$, $I_{max} = 640 \ \mu\text{m}$, $H_{vasc} = 377 \ \mu\text{m}$, $I_{vasc} = 506 \ \mu\text{m}$. The mean vessel 16 diameter is 58 µm. Between 7 and 10 vessel elements per fvb divided in two superposed bands. The density of the fibrous bundles varies from 40 to 70 per cm^2 and their mean 17 diameter is $\pm 100 \,\mu\text{m}$. Phytoliths are globular echinates (mean diameter = $21 \,\mu\text{m}$). The ground 18 19 parenchyma is well preserved, and is compact with small spheroid to few elongate cells 20 (maximal length between 90 and 108 µm, Plate II, 8). Vascular bridges are observed. 21 Affinity: Even if the "bark" is not preserved, the anatomy of this sample is similar to P. *vestitum* and *Coccothrinax* stem. The closer living genus of this fossil specimen is 22 23 Coccothrinax.

- 1 *Repository*: Plant fossil collection of the MNHN, Paris.
- 2 Stratigraphic horizon: Limestone of Campagne-Calavon, Rupelian.
- 3 *Locality*: Rustrel, near Apt (Vaucluse), France.

4 *Description*: Plate II, 9–10. This specimen is elliptical $(12 \times 8.5 \text{ cm}, \text{height} = 3-4 \text{ cm})$. Four 5 slightly oblique leaf scars are present but no concentric leaf sheath is visible in TS. Thus, it is 6 probable that this sample belongs to a middle or a basal portion of a stem. The cortex is wide 7 (5 to 6 mm, Plate II, 9). The general stem pattern is Cocos-Type: the density is highly constant $d(fvb)_{out}/d(fvb)_{in} = 1,3 (150 \text{ fvb/cm}^2 \text{ in the central zone to } 200 \text{ fvb/cm}^2 \text{ in the}$ 8 subcortical zone); $\frac{f}{v_{out}} \frac{f}{v_{in}} = 1,5$ (f/v = 1,3 in the central zone and f/v = 2 in the 9 subcortical zone); $R_{out}/R_{in} = 1,3$. Fibrous vascular bundles are circular in TS (Reniforma to 10 11 Lunaria, without auricular sinus) and have more than four vessel elements per fvb (Plate II, 10). The fvb have the following mean dimension: $H_{max} = 438 \ \mu\text{m}$, $I_{max} = 401 \ \mu\text{m}$, $H_{vasc} = 212$ 12 μ m, $l_{vasc} = 293 \mu$ m. The mean vessel diameter is 47 μ m. Between 7 and 10 vessel elements 13 per fvb with a distribution in two superposed bands. The density of the fibrous bundles varies 14 from 900 to 1300 per cm² and their mean diameter is 58 μ m. Phytoliths are globular echinate 15 16 (mean diameter = $14 \mu m$). The ground parenchyma is not well preserved, and is compact with small spheroid to few elongate cells (maximal length mean = 65μ m). Vascular bridges are 17 18 observed.

Affinity: The anatomy of this sample is similar to *P. vestitum* and *Coccothrinax* stem. The
much closer living genus of this fossil specimen is *Coccothrinax*.

21

22 *Material*: MNHN.F.4550.

23 *Repository*: Plant fossil collection of the MNHN, Paris.

24 *Stratigraphic horizon*: Gypseous green marl, Tortonian.

Locality: Near the St-Thyrs hamlet at the foot of the Destourbes mountain, Castellane (Alpes de-Haute-Provence), France.

3 *Description*: Plate II, 11–12. This sample is more or less circular (5,5-6 cm, height = 1 cm), 4 and is not well preserved, thus the anatomy of the stem is delicate to interpret. The outer part 5 of the stem is made of several concentric leaf sheaths, which are "net-like" on the surface of 6 the stem (Plate II, 11). It is possible that this specimen comes from an apical part of a stem. In 7 spite of the coarse-textured mineralization, the general pattern of the stem is however visible 8 (Cocos-Type) (Plate II, 12). Fibrous vascular bundles are circular with more than four vessel 9 elements. The ground parenchyma is not preserved. 10 Affinity: Even if the anatomy is not well preserved, we have sufficient diagnostic characters to

- 11 report this specimen to *P. vestitum*.
- 12

13 *Material*: MNHN.F.1964.

14 *Repository*: Plant fossil collection of the MNHN, Paris.

15 *Stratigraphic horizon*: Gypseous green marl, Tortonian.

16 Locality: Near the St-Thyrs hamlet at the foot of the Destourbes mountain, Castellane (Alpes-

- 17 de-Haute-Provence), France.
- 18 *Description*: Plate II, 13–14. This specimen is more or less elliptical (8×5 cm height = 2,5–

19 5,5 cm). The cortex is not preserved. The general stem pattern of the central cylinder is

20 Cocos-Type (Plate II, 13): $d(fvb)_{out}/d(fvb)_{in} = 1,2$ (270/cm² in the subcortical zone, 240/cm²

- 21 in the central zone). The f/v ratio is also constant: $\frac{f}{v_{out}}/\frac{f}{v_{in}} = 1,7$ (from 2,5 in the
- subcortical zone to 1,5 in the central zone). Thereby the *R* ratio is constant: $R_{out}/R_{in} = 1,4$.
- 23 Fibrous vascular bundles are circular with a Lunaria to Vaginata fibrous dorsal cap (Plate II,
- 14). The fvb have the following dimension: $H_{max} = 570 \ \mu m$, $I_{max} = 508 \ \mu m$, $H_{vasc} = 220 \ \mu m$,
- $l_{vasc} = 353 \,\mu\text{m}$. The mean diameter of the vessel is 55 μ m. Between 7 and 10 vessel elements

1	per fvb divided in two superposed bands. The density of the fibrous bundles varies from 900
2	to 1300 per cm ² , with a mean diameter of 82 μ m. Phytoliths are globular echinate (mean
3	diameter = 14 μ m). The ground parenchyma is not visible on this specimen.
4	Affinity: The anatomy of the central cylinder shows exactly the same structure as the previous
5	fossil stems. This palm stem belongs to P. vestitum.
6	
7	Insertion of Plate II.
8	
9	Insertion of Table 2.
10	Insertion of Table 3.
11	
12	4. Palaeobiogeographical perspectives
13	4.1. Previous records of Cryosophileae
14	Only three fossil records of Cryosophileae have been yet published (Fig. 4). Berry
15	(1914, 1924) described leaves of Thrinax L.f. ex Sw. in the middle Eocene of Georgia
16	(McBean formation, Claiborne Group, near Grovetown, Richmond County, USA):
17	Palmacites eocenica (Berry) Daghlian, 1978 ('Thrinax eocenica'). One specimen is a leaf
18	impression and another specimen presents a preserved cuticle from the adaxial face. These
19	leaves may be part of Cryosophileae species because of the characteristic induplicate palmate
20	leaf as in Thrinax, the presumed much closer living genus. However, Daghlian (1978)
21	described specimens attributed to the same species with an analysis of the cuticles (from the
22	same Claiborne Group in Georgia). With the anatomical analyses, he concluded that "it may
23	be related to some of the presumably primitive genera of the Trithrinax Mart. alliance [],
24	but it is not certain". An opinion we share because of the differences in the stomatal complex
25	(4 lateral and 2 polar cells for the living genus and only a single lateral subsidiary cell on each

1 side of the guard cell for the fossil cuticle). Poinar (2002) attributed thirteen hermaphroditic 2 fossil flowers to Trithrinax (Trithrinax dominicana Poinar, 2002) from amber of the 3 Dominican Republic. The age of this amber is not certain, between the late Oligocene and the 4 early Miocene according to Poinar (2001). As Dransfield et al. (2008) we agree with this 5 author on the flower identification. Indeed, both fossil and living flowers present 6 unspecialized trimerous flowers with stamens greatly exceeding the petals in length, character 7 unique in palms. Reid and Chandler (1926) described a leaf of *Palaeothrinax mantelli* from 8 the uppermost Rupelian of the Isle of Wight (the Bembridge flora, UK), but because of the 9 thickened margins of the pinnules and the absence of a marked midrib, this specimen is not a 10 Cryosophileae (Chandler, 1962), it may belong to the genus *Trachycarpus* (Trachycarpeae). 11 Graham (1991) identified a bisymmetrical and finely reticulate monosulcate palm pollen from 12 the Pliocene of the Gatun Lake Formation (Panama). This pollen is comparable to 13 Cryosophila Blume (Cryosophileae), Colpothrinax Griseb. & H.Wendl. (Trachycarpeae) and Neonicholsonia Dammer. (Euterpeae). Of these latter names, Cryosophila is the most 14 15 probable (Dransfield et al., 2008). Links between fossils and modern palm taxa are sometimes 16 doubtfully accurate. Thus, of these fossils records, the hermaphroditic fossil flowers present 17 the most diagnostic morphological characters to identify these flowers as Cryosophileae 18 flowers. 19

- 20 Insertion of Fig. 4.
- 21

22 4.2. Origin and diversification of the Coryphoideae subfamily

With this identification, this work provides the first records of Cryosophileae in
Europe during Oligocene and Miocene. Furthermore, these stems could be the oldest record
of a Cryosophileae because of the uncertain identification of Berry (1914) and of Daghlian

1 (1978). The stem remains found in Oligocene sediment from South of France confirm the 2 hypothesis of Dransfield et al. (2008) that suggests that Cryosophileae and Sabaleae should 3 have a common biogeographic history and then, have a probable Laurasian origin. This 4 assumption is based on the fact that: (i) Cryosophileae and Sabaleae share a modern 5 geographic distribution, and (ii) they are sister taxa. This statement was only based on the 6 fossil records of Sabal Adans. Indeed, records of Sabaleae (summarized in Zona, 1990; 7 Harley, 2006; Dransfield et al., 2008; Manchester et al., 2010) are well extensive. Leaves and 8 fruits of Sabal are highly characteristic (Read and Hickey, 1972; Mai, 1976; Dransfield et al., 9 2008; Manchester et al., 2010). Thus, even if some of the specimens attributed to Sabal are 10 questionable, there are early palaeobotanical evidences from the presence of this genus in 11 Laurasia during Cretaceous and the lower Paleocene. We can not enumerate all the literature, 12 but the most obvious remains belonging to Sabal are: (i) North America with Sabal 13 bigbendense Manchester et al. and S. bracknellense (Chandler) Mai from the Upper 14 Cretaceous of Big Bend National Park (Texas) (Manchester et al., 2010), Sabalites 15 carolinensis Berry from the late Coniacien of South Carolina (Berry, 1914); (ii) Europe with 16 Sabalites longirhachis (Unger) J. Kvaček et Herman from the Maastrichtian of Pyrénées 17 (Mami et al., 2010) and with the same species from the Early Campanian (Cretaceous) of 18 Grünbach, (Lower Austria) (Kvaček and Herman, 2004). Other more recent fossil records 19 confirm the presence of Saba/during the Tertiary outside the current range of the genus as in 20 Great-Britain (Reid and Chandler, 1933). Because of these records, Zona (1990) indicates that 21 the tribe Sabaleae has probably a Laurasian origin, as a component of the boreotropical floras 22 of the early Eocene (Morley, 2000; Couvreur et al., 2011). 23 As for Sabaleae, occurrences of a Cryosophileae species in Europe – in Oligocene or 24 in Miocene – provides palaeobotanical data for a probable Laurasian origin of this tribe

25 previously suggested by Dransfield et al. (2008). Our study also confirms the hypothesis of

1 Bjorholm et al. (2006) who suggested a Laurasian origin for the Coryphoideae. Moreover, the 2 presence of this Coryphoideae tribe (Cryosophileae), in Europe or in North America from 3 Eocene to Miocene provides new evidence that adaptation to non-tropical rain forest (TRF) 4 biomes did not arise until the Palaeocene within Coryphoideae (Couvreur et al., 2010). 5 Indeed, 40% of the coryphoid genera are found in non-TRF and 70% of the non-TRF palm 6 genera are in this subfamily. Our results show: (i) the fossil records of Sabaleae and of 7 Cryosophileae had also a similar distribution in the past; (ii) and these two tribes could have 8 had a parallel diversification in similar locations. Thereby, as for Sabaleae, this origin is 9 probably prior to the early Eocene (maybe during the Paleocene). Indeed, after this geological 10 period, no continental way with a tropical climate was possible between North American and 11 Europe continents (Parish, 1987; Ziegler, 1990; Dercourt et al., 1993; Smith et al., 1994). A 12 continuous distribution between Europe and North America could have existed only when the 13 coastlines were more or less permanent as Smith et al. (2006) suggested.

14

15 *4.3. Palaeoclimatical and palaeogeographical correlation*

16 Today, the ten Cryosophileae genera are restricted to the inter-tropical biomes of 17 Central America (from tropical rainforest to dry area) and generally grow in costal habitats. 18 Most of these genera (including *Coccothrinax*) are found in the Greater and Lesser Antilles 19 archipelago. Half of the Cryosophileae genera and all of the archipelago genera are restricted 20 to dry habitat (bushy slopes, dry wood, dry and exposed highlands, dry evergreen woodland). 21 The palaeoclimatical (Utescher and Mosbrugger, 2007; Bruch et al., 2007; Bosellini and 22 Perrin, 2008) and palaeogeographical (Dercourt et al., 2000, Popov et al., 2004) models show 23 that during the Oligocene and Miocene, the studied region should have had the same 24 topographical context as the regions where the Cryosophileae are growing today: an archipelago with a (para) tropical climate. However, we have to point out that *Chelyocarpus* 25

1 Dammer, *Itaya* H.E.Moore and *Trithrinax* are found in TRF of central South America 2 (Dransfield et al., 2008). These three genera may be the result of the Pebas Sea (or Pebas Lake) in western Amazonia: a huge (1 million km²) system of long-lived lakes and wetlands 3 4 from at least 17 to 11 Ma (Hoorn, 1994; Hooghiemstra and van der Hammen, 1998; 5 Wesselingh et al., 2002). Indeed, this wetland system was connected to the Caribbean marine 6 incursion in the north. For example, *Chelyocarpus* occurs at low elevations in areas of high 7 rainfall. The distribution of this genus corresponds to three of nine refuges - Madeira-8 Tapajos, East Peruvian, Choco — postulated by Haffer (1969) as regions where rain forest 9 persisted during drier times of the Pleistocene. The Amazonian Cryosophileae could be the 10 result of a more recent radiation than in Europe. 11 The past climate in the Rupelian of the Vaucluse has been revealed by the study of the 12 other elements of the palaeoflora. Saporta (1863) reported several leaf imprints assemblages 13 from the same area with relatively close ages. The "gypse de Gargas", is the closest layer both 14 geographically and stratigraphically (10 Km to the East). Its palaeoflora is composed of small 15 dicots leaves with taxa like Zizyphus ungeri Herr, 1859, Cinnamomum polymorphum Heer, 16 1856, Quercus cuneifolia Saporta, 1863, Myricophyllum zachariense Saporta, 1863, 17 Echitonium cuspidatum Heer, 1859, Myrtus caryophylloides Saporta, 1863, Laurus 18 primigenia Unger, 1850 and also Flabellaria incerta Saporta, 1863 a palm leaf (Saporta, 19 1863). In Saint-Zacharie, from little more recent layers (Nury, 1988), Saporta (1863) has also 20 described a palaeoflora from a sub-arid environment. The environment was also warm and 21 dry. From MNHN Saporta collection, we estimate, with the LMA and LA methods (Wilf, 22 1997; Wilf et al., 1998), the MAT \pm 18,5°C and the MAP \pm 500 mm (unpublished results). 23 The Castellane specimens indicate that Cryosophileae were still present in the South 24 of France at least until late Miocene. The Miocene floras are known in south-western Europe and Mediterranean regions by several works (Fauquette et al., 2006; Jimenez-Moreno and 25

1 Suc, 2007; Zidianakis et al., 2007; Ivanov et al., 2011) and suppose the presence of a sub-arid 2 environment. During the latest Tortonian and the Messinian, the global temperature decreases, 3 and more specifically the Cold Month Mean Temperature or CMMT (Mosbrugger et al., 4 2005; Bruch et al., 2007), and coincides with the Arctic permanent ice-sheets formation. 5 Palaeoclimatical models corroborate the information obtained from plant fossil assemblages, 6 and explain the replacement of a subtropical evergreen forest by a halophytic system during 7 Messinian (François et al., 2006; Favre et al., 2007; François et al., 2011). Locally enhanced 8 by geographic changes in the Alpine realm, this temperature decrease and the Messinian 9 salinity period, or later glaciations during Pliocene, could be responsible for the disappearing 10 of the Cryosophileae from that region.

11

12 5. Conclusion

13 The anatomy of palm fossil stems based on living stem studies as referential structures 14 is of great help to distinguish stem parts and efficient to identify palm fossil stems despite 15 intra-individual variations. This leads to give a single diagnosis for the different parts of the 16 same stem without confusion. Therefore, anatomical descriptors derived from living palm 17 structure appear to be useful to produce efficient palm fossil morphotaxa. With this method, 18 we can also expect to attribute correspondences between fossils and modern tribes, and in 19 many cases, with sufficient diagnostic characters, the fossils could even be reported to 20 modern genera.

In the present work, the presence of Cryosophileae in the old world, and the affinity with the genus *Coccothrinax* is a direct result of these new anatomical studies. The consequences of the revealed past distribution of this tribe, now restricted to Central America, is of great interest for the past links between the northern continents during Cenozoic, and for palaeobiogeographical reconstructions.

2 Acknowledgments

3	Research was supported by a doctoral grant of the French Ministère de l'Enseignement
4	supérieur et de la Recherche and by the Centre national de la Recherche scientifique (CNRS).
5	The authors thank L. Cazes and V. Rommevaux who have shown great patience for the
6	anatomical preparation of the slides. M. Guiomar (Réserve Naturelle Géologique de Haute-
7	Provence) and C. Balme (Réserve Naturelle Géologique du Luberon) allow us to have
8	exhaustive information about the geology of the two sites. We thank M. Jeanson for
9	commenting and revising on this version of the manuscript.
10	References
11	Ambwani, K. 1985. Observations on the anatomy of the stem of <i>Trachycarpus martiana</i> H.
12	Wendl. Geophytology, 15(2): 199–205.
13	Berchtold, F. and J. S. Presl. 1820. 0 přirozenosti rostlin. Krala Wiljma Endera, Praha.
14	Berry, E. W. 1914. The Upper Cretaceous and Eocene Floras, of South Carolina and Georgia.
15	United States Geological Survey, Professional Paper, 84: 1–200.
16	Berry, E. W. 1924. The Middle and Upper Eocene floras of southeastern North America.
17	United States Geological Survey, Professional Paper, 92: 1–206.
18	Bjorholm, S., JC. Svenning, W. J. Baker, F. Skov and H. Balslev. 2006. Historical legacies
19	in the geographical diversity patterns of New World palm (Arecaceae) subfamilies. Botanical
20	Journal of the Linnean Society 151:113–125.
21	Bosellini, F. R. and C. Perrin. 2008. Estimating Mediterranean Oligocene-Miocene sea-
22	surface temperatures: An approach based on coral taxonomic richness. Palaeogeography,
23	Palaeoclimatology, Palaeoecology, 258(1-2): 71-88.

- 1 Bruch, A. A., D. Uhl and V. Mosbrugger. 2007. Miocene climate in Europe Patterns and
- 2 evolution: A first synthesis of NECLIME. Palaeogeography, Palaeoclimatology,
- 3 Palaeoecology, 253(1-2): 1–7.
- Burnett, G. T. 1835. A general history of the vegetable kingdom. Outlines of Botany, 1: 1–
 518.
- 6 Chandler, M. 1962. Flora of the pipe-clay series of Dorset (lower Bagshot). In: The lower
- 7 Tertiary floras of southern England, volume 2. British Museum (Natural History), London.
- 8 Cheadle, V. 1943. The origin and certain trends of specialization of the vessel in the
- 9 Monocotyledoneae. American Journal of Botany, 30(1): 11–17.
- 10 Cheadle, V. and H. Kosakai. 1975. Vessels in Juncales: II. Centrolepidaceae and
- 11 Restionaceae. American Journal of Botany, 62(10): 1017–1026.
- 12 Couvreur, T., F. Forest and W. Baker. 2011. Origin and global diversification patterns of
- 13 tropical rain forests: inferences from a complete genus-level phylogeny of palms. *BMC*
- 14 *Biology* 9(1): 44.
- 15 Daghlian, C. P. 1978. Coryphoid palms from the lower and middle Eocen of Southeastern
- 16 North America. Palaeontographica Abteilung B, Paläophytologie, 166(1-3): 44–82.
- 17 Dercourt, J., M. Gaetani, B. Vrielynck, E. Barrier, B. Biju-Duval, M. Brunet, J. Cadet, S.
- 18 Crasquin and M. Sandulescu. 2000. Atlas Peri-Tethys Palaeogeographical Maps. Commission
- 19 de la carte géologique du Monde, Paris.
- 20 Dercourt, J., L. Ricou and B. Vrielynck. 1993. Atlas Tethys Palaeoenvironmental Maps.
- 21 Gauthier-Villars, Paris.
- 22 Dransfield, J., N. Uhl, C. B. Asmussen, W. J. Baker, M. M. Harley and C. E. Lewis. 2005. A
- 23 New Phylogenetic Classification of the Palm Family, Arecaceae. Kew Bulletin, 60(4): 559–
- 24 569.

- 1 Dransfield, J., N. Uhl, C. B. Asmussen-Lange, W. J. Baker, M. M. Harley and C. E. Lewis.
- 2 2008. Genera Palmarum: The Evolution and Classification of Palms. 2nd edition. Kew
- 3 Publishing, Kew.
- 4 Fauquette, S., J.-P. Suc, A. Bertini, S.-M. Popescu, S. Warny, N. B. Taoufiq, M.-J. P. Villa,
- 5 H. Chikhi, N. Feddi, D. Subally, G. Clauzon and J. Ferrier. 2006. How much did climate
- 6 force the Messinian salinity crisis? Quantified climatic conditions from pollen records in the
- Mediterranean region. Palaeogeography, Palaeoclimatology, Palaeoecology, 238(1-4): 281–
 301.
- 9 Favre, E., L. François, F. Fluteau, R. Cheddadi, L. Thévenod and J.-P. Suc. 2007. Messinian
- 10 vegetation maps of the Mediterranean region using models and interpolated pollen data.
- 11 Geobios, 40(3): 433–443.
- 12 François, L., M. Ghislain, D. Otto and A. Micheels. 2006. Late Miocene vegetation
- 13 reconstruction with the CARAIB model. Palaeogeography, Palaeoclimatology,
- 14 Palaeoecology, 238(1-4): 302–320.
- 15 François, L., T. Utescher, E. Favre, A.-J. Henrot, P. Warnant, A. Micheels, B. Erdei, J.-P.
- 16 Suc, R. Cheddadi and V. Mosbrugger. 2011. Modelling Late Miocene vegetation in Europe:
- 17 Results of the CARAIB model and comparison with palaeovegetation data. Palaeogeography,
- 18 Palaeoclimatology, Palaeoecology, 304(3-4): 359–378.
- 19 Goguel, J., M. Dorkel, J.-Y. Grégoire, J.-M. Belleville, A. Pachoud, J. Savornin, J.-P.
- 20 Destombes, E. Roch, P. de Peyronnet and G. Demarcq. 1966. Carte géologique de la France
- 21 1/50000 (1 feuille en coul.) et notice explicative (11 p.)–Feuille 968: Reillane. Bureau de
- 22 recherches géologiques et minières, Orléans.
- 23 Graham, A. 1991. Studies in neotropical American paleobotany. VIII. The Pliocene
- 24 communities of Panama introduction and ferns, gymnosperms, angiosperms (monocots).
- 25 Annals of the Missouri Botanical Garden, 78: 190–200.

- 1 Grambast, N. 1965. Particularités anatomiques du Palmoxylon vestitum (Saporta) Stenzel.
- 2 Bulletin du Muséum national d'Histoire naturelle, 36(5): 707–712.
- 3 Haffer, J. 1969. Speciation in amazonian forest birds. *Science* 165(3889): 131–137.
- 4 Hooghiemstra, H., and T., van der Hammen. 1998. Neogene and quaternary development of
- 5 the neotropical rain forest: the forest refugia hypothesis, and a literature overview. *Earth-*
- 6 *Science Reviews* 44(3–4): 147–183.
- 7 Hoorn, C. 1994. An environmental reconstruction of the palaeo-amazon river system (middle-
- 8 late miocene, nw amazonia). *Palaeogeography, Palaeoclimatology, Palaeoecology* 112(3–4):
- 9 187–238.
- Harley, M. M. 2006. A summary of fossil records for Arecaceae. Botanical Journal of the
 Linnean Society, 151: 39–67.
- 12 Ivanov, D., T. Utescher, V. Mosbrugger, S. Syabryaj, D. Djordjevic-Milutinovic and S.
- 13 Molchanoff. 2011. Miocene vegetation and climate dynamics in Eastern and Central
- 14 Paratethys (Southeastern Europe). Palaeogeography, Palaeoclimatology, Palaeoecology,
- 15 304(3-4): 262–275.
- 16 Jiménez-Moreno, G. and J.-P. Suc. 2007. Middle Miocene latitudinal climatic gradient in
- 17 Western Europe: Evidence from pollen records. Palaeogeography, Palaeoclimatology,
- 18 Palaeoecology, 253(1–2): 208–225.
- 19 Kaul, K. 1943. A palm stem from the Miocene of Antigua, W. I. *Phytelephas sewardii sp.*
- 20 *nov.* Proceedings of the Linnean Society of London, 155(1): 3–4.
- 21 Kaul, K. 1960. The anatomy of the stem of palms and the problem of the artificial genus
- 22 Palmoxylon Schenk. Bulletin of the National Botanical Garden, 51: 1–52.
- 23 Kerckhove, C. and M. Roux. 1976. Carte géologique de la France 1/50000 (1 feuille en coul.)
- 24 et notice explicative (39 p.)-Feuille 971: Castellane. Bureau de recherches géologiques et
- 25 minières, Orléans.

- 1 Klotz, L. H. 1978a. Form of the perforation plates in the wide vessels of metaxylem in palm.
- 2 Journal of the Arnold Arboretum, 59(2): 105–128.
- 3 Klotz, L. H. 1978b. Observations on Diameters of Vessels in Stems of Palms. Principes,
- 4 22(3): 99–106.
- 5 Kvaček, J., and A. B Herman. 2004. Monocotyledons from the Early Campanian (Cretaceous)
- 6 of Grünbach, Lower Austria. *Review of Palaeobotany and Palynology* 128: 323–353.
- 7 Mai, D.H. 1976. Fossile Früchte und Samen des Geiseltales aus den Mitteleozän.
- 8 *Abhandlungen des Zentralen Geologischen Instituts* 26: 93–149.
- 9 Manchester, S. R., T. M Lehman, and E. A. Wheeler. 2010. Fossil palms (Arecaceae,
- 10 Coryphoideae) associated with juvenile herbivorous dinosaurs in the upper cretaceous aguja
- 11 formation, Big Bend National Park, Texas. *International Journal of Plant Sciences* 171(6):
- 12 679–689.
- 13 Marmi, J., B. Gomez, C. Martin-Closas and S. Villalba-Breva, 2010. A reconstruction of the
- 14 fossil palm Sabalites longirhachis (Unger) J. Kvacek et herman from the maastrichtian of
- 15 pyrenees. *Review of Palaeobotany and Palynology* 163(1–2): 73–83.
- 16 von Mohl, H. 1823-1850. De Palmarum Structura. In Martius, K. F. P. v. (éd.), Historia
- 17 naturalis Palmarum. Opus tripartitum, volume 1. F. Fleischer, Lipsiae.
- 18 Monoyer, A. 1924. Anatomie du Cocos botryophora. Mémoires de l'Académie Royale
- 19 Belgique, Classe des Sciences (8 Vol.), Série 2, 8: 1–44.
- 20 Morley, R. 2000. Origin and Evolution of Tropical Rainforests. Wiley, Chichester.
- 21 Mosbrugger, V., T. Utescher and D. L. Dilcher. 2005. Cenozoic Continental Climatic
- 22 Evolution of Central Europe. Proceedings of the National Academy of Sciences, 102(42): 14
- 23 964–14 969.

- 1 Nury, D. 1988. L'Oligocène de Provence méridionale. Stratigraphie- dynamique
- 2 sédimentaire-reconstitutions paléogéographiques. Numéro 163 in Documents du BRGM.
- 3 Bureau de recherches géologiques et minières, Orléans.
- 4 Parish, J. 1987. Global palaeogeography and palaeoclimate of the Late Cretaceous and Early
- 5 Tertiary. In: Friis, E., W. G. Chaloner and P. Crane (Eds.), The origins of angiosperms and
- 6 their biological consequences. Cambridge University Press, Cambridge.
- 7 Parthasarathy, M. 1968. Observations on Metaphloem in the Vegetative Parts of Palms.
- 8 American Journal of Botany, 55(10): 1140–1168.
- 9 Parthasarathy, M. and P. B. Tomlinson. 1967. Anatomical features of metaphloem in stems of
- 10 Sabal, Cocos and two other palms. American Journal of Botany, 54(9): 1143–1151.
- 11 Philipp, M. 1923. Über die verkorkten Abschlußgewebe der Monokotylen. Bibliotheca
- 12 Botanica. Kassel, 92: 1–27.
- 13 Poinar, G. 2002. Fossil flowers in Dominican and Mexican amber. Botanical Journal of the
- 14 Linnean Society, 138: 57–61.
- 15 Poinar, G. and R. Poinar. 2001. The amber forest: a reconstruction of a vanished world.
- 16 Princeton University Press, Princeton.
- 17 Popov, S. V., F. Rögl, A. Rozanov, F. Steininger, I. Shcherba and M. Kovac. 2004.
- 18 Lithologic-Paleogeographic maps of Paratethys. Courier Forschungsinstitut Senckenberg,
 19 250: 1–46.
- 20 Prychid, C. J., P. J. Rudall and M. Gregory. 2004. Systematics and Biology of Silica Bodies
- 21 in Monocotyledons. Botanical Review, 69(4): 377–440.
- 22 Rasband, W. 1997–2008. ImageJ. Technical report, U. S. National Institutes of Health,
- 23 Bethesda, Maryland, USA. Website: http://rsb.info.nih.gov/ij/ [accessed 15 October 2010].
- 24 Read, R. W. and L. J. Hickey. 1972. A revised classification of fossil palm and palm-like
- 25 leaves. Taxon, 21(1): 129–137.

- 1 Reid, E. and M. Chandler. 1926. The Bembridge flora. In: Reid, E., M. Chandler and J.
- 2 Groves (Eds.), Catalogue of Cainozoic plants in the Department of Geology, volume 1.
- 3 British Museum (Natural History), London.
- 4 Reid, E., and M. Chandler. 1933. *The flora of the London Clay*. British Musueum (Natural
 5 History), London.
- 6 Rich, P. M. 1987. Developmental Anatomy of the Stem of Welfia georgii, Iriartea gigantea,
- and Other Arborescent Palms: Implications for Mechanical Support. American Journal of
 Botany, 74(6): 792–802.
- 9 Sahni, B. 1964. Revision of Indian fossil plants: Part iii. Monocotyledons. Monographs,
- 10 Birbal Sahni Institute of Palaeobotany, 1: 1–89.
- de Saporta, G. 1863. Études sur la végétation du Sud-Est de la France à L'Epoque tertiaire.
- 12 Annales des Sciences Naturelles; Botanique, 4(19): 5–124.
- 13 Schenk, A. 1882. Die von den Gebrüdern Schlagintweit in Indien gesammelten fossilen
- 14 Hölzer. Botanische Jahrbücher für Systematik, Pflanzengeschichte und Pflanzengeographie,

15 3(4): 353–358.

- 16 Schoute, J. C. 1912. Über das Dickenwachstum der Palmen. Annales du Jardin Botanique de
- 17 Buitenzorg, 2^e Série, 11(26): 1–209.
- 18 Smith, A. G., D. G. Smith and B. M. Funnell. 1994. Atlas of Mesozoic and Cenozoic
- 19 coastlines. Cambridge University Press, Cambridge.
- 20 Smith, T., K. D. Rose and P. D. Gingerich. 2006. Rapid Asia–Europe–North America
- 21 geographic dispersal of earliest Eocene primate *Teilhardina* during the Paleocene–Eocene
- 22 Thermal Maximum. Proceedings of the National Academy of Sciences, 103(30): 11 223–11
- 23 227.
- 24 Stenzel, K. G. 1904. Fossile Palmenhölzer. Beiträge zur Paläontologie und Geologie
- 25 Österreich-Ungarns und des Orients, 16(3-4): 107–228.

- 1 Stockmans, F. and Y. Willière. 1943. Palmoxylons paniséliens de la Belgique. Mém. Mus.
- 2 Roy. Hist. Nat. Belg., 100: 1–76.
- 3 Swamy, B. and E. Govindarajalu. 1961. Studies on the anatomical variability in the stem of
- 4 *Phoenix sylvestris*. I. Trends in the behaviour of certain cells and tissues. Journal of the Indian
- 5 Botanical Society, 40: 243–262.
- 6 Thomas, R. 2011a. Anatomie comparée des palmiers, Identification-assistée par ordinateur,
- 7 applications en paléobotanique et en archéobotanique. Ph. D. thesis. Muséum national
- 8 d'Histoire naturelle, Paris.
- 9 Thomas, R. 2011b [continuously updated]. Published on the Internet. Palm-ID, a database to
- 10 identify the palm stem anatomy with an expert system (Xper²). Université Paris 6 Muséum
- 11 national d'Histoire naturelle, Paris. URL http://www.infosyslab.fr/Palm-ID/ [July 2011].
- 12 Tomlinson, P. B. 1961. Palmae. In: Metcalfe, C. (Ed.), Anatomy of the Monocotyledons,
- 13 volume 2. Oxford University Press, Oxford.
- 14 Tomlinson, P. B. 1964. Stem anatomy in the palm Sabal palmetto. The American
- 15 Philosophical Society Year Book, 300–301.
- 16 Tomlinson, P. B. 1965. Trends in cell dimensions in palms. The American Philosophical
- 17 Society Year Book, 354–355.
- 18 Tomlinson, P. B. 1969. The anatomy of the vegetative organs of *Juania australis* (Palmae).
- 19 Gentes Herbarum 10, 4 , 412–424.
- 20 Tomlinson, P. B. 1970. Monocotyledons Towards an Understanding of their Morphology
- and Anatomy. Advances in Botanical Research, 3: 207–292.
- 22 Tomlinson, P. B. and M. H. Zimmermann. 1966. Vascular bundles in palm stems—Their
- 23 bibliographic evolution. Proceedings of the American Philosophical Society, 110(3): 174–
- 24 182.

- 1 Tomlinson, P. B., J. W. Horn, and J. B. Fisher, 2011. *The anatomy of palms*. Oxford
- 2 University Press, Oxford,
- 3 Tomlinson, P. B. and M. H. Zimmermann. 1967. The "wood" of Monocotyledons.
- 4 Association of Wood Anatomists, 2: 4–24.
- 5 Tomlinson, P. B. and M. H. Zimmermann. 1969. Vascular anatomy of Monocotyledons with
- 6 secondary growth—An introduction. Journal of the Arnold Arboretum, 50(2): 159–179.
- 7 Utescher, T. and V. Mosbrugger. 2007. Eocene vegetation patterns reconstructed from plant
- 8 diversity-A global perspective. Palaeogeography, Palaeoclimatology, Palaeoecology, 247(3-
- 9 4): 243–271.
- 10 Waterhouse, J. and C. Quinn. 1978. Growth patterns in the stem of the palm Archontophoenix
- 11 cunninghamiana. Botanical Journal of the Linnean Society, 77(2): 73–93.
- 12 Wilf, P. 1997. When are leaves good thermometers? A new case for leaf margin analysis.
- 13 Paleobiology, 23(3): 373–390.
- 14 Wesselingh, F., M. Räsänen, G. Irion, H. Vonhof, R. Kaandorp, W. Renema, L.
- 15 Romero Pittman and M. Gingras. 2002. Lake pebas: a palaeoecological reconstruction of a
- 16 miocene, long-lived lake complex in western amazonia. *Cainozoic Research* 1(1–2): 35–81.
- 17 Wilf, P., S. L. Wing, D. R. Greenwood and C. L. Greenwood. 1998. Using fossil leaves as
- 18 paleoprecipitation indicators: An Eocene example. Geology, 26(3): 203–206.
- 19 Zidianakis, G., B. Mohr and C. Fassoulas. 2007. A late Miocene leaf assemblage from
- 20 Vrysses, western Crete, Greece, and its paleoenvironmental and paleoclimatic interpretation.
- 21 Geodiversitas, 29(3): 351–377.
- 22 Ziegler, A. 1990. Geological Atlas of Western and Cenral Europe. Shell Internationale
- 23 Petroleum Maatschappij B.V., The Hague.
- 24 Zimmermann, M. H. and P. B. Tomlinson. 1965. Anatomy of the palm *Rhapis excelsa*, I.
- 25 Mature vegetative axis. Journal of the Arnold Arboretum, 46: 160–178.

1	Zimmermann, M. H. and P. B. Tomlinson. 1967. Anatomy of the palm Rhapis excelsa, IV.
2	Vascular development in apex of vegetative aërial axis and rhizome. Journal of the Arnold
3	Arboretum, 48: 122–142.
4	Zimmermann, M. H. and P. B. Tomlinson. 1972. The Vascular System of Monocotyledonous
5	Stems. Botanical Gazette, 133(2): 141–155.
6	Zimmermann, M. H. and P. B. Tomlinson. 1974. Vascular patterns in palm stems: variations
7	of the Rhapis principle. Journal of the Arnold Arboretum, 55(3): 402–424.
8	Zona, S. 1990. A monograph of Sabal (Arecaceae: Coryphoideae). Aliso, 12(4): 583-666.
9	
10	Figure captions
11	Fig. 1. Localization of the two sites in the South of France.
12	
13	Fig. 2. Transverse sections of the two main organizations of the erect palm stems. A.
14	Cocos-Type. This organisation is found in most of Coryphoideae and in few Arecoideae. The
15	cortex (CT) is developed and well delimited from the subcortical zone (SZ, noted "out" for
16	the ratios in text and Table) by a thin layer of little fibrovascular bundles (fvb), then the
17	central zone (CZ, noted "in" for the ratios in text and Table, the inner part of the central
18	cylinder) with fvb slightly more spaced than in the SZ. Fvb are uniformly distributed
19	throughout the cross section with $d(fvb)_{out}/d(fvb)_{in} \subset [1;4(6)]$. They are similar in size and

structure with $\frac{f}{v_{out}}/\frac{f}{v_{in}} \subset [1;3]$ (*t/v* ratio with minor modification along the radial axis). Thus the fibrous covering index is also more or less constant ($R_{out}/R_{in} \subset [1;3]$). The ground parenchyma is compact. B. Mauritia-Type. This organisation is found in most of Arecoideae, some of erect Calamoideae and Ceroxyloideae. CT is usually not developed. In SZ, fvb are densely crowded with a fibrous dorsal cap strongly developed, whereas the fvb of CZ are widely spaced and have a very poor development of fibrous dorsal cap (there is a strong f/v 1 decrease from the subcortical zone to the central zone of the central cylinder:

 $d(fvb)_{out}/d(fvb)_{in} \subset [2;8(>10)], \frac{f}{v_{out}}/\frac{f}{v_{in}} \subset [20;80]). A \text{ zone of transition (TZ) appears}$ between the SZ and the CZ. Thus, the fibrous covering index (R) is very high $(R_{out}/R_{in} \subset [15;>100]). \text{ The ground parenchyma undergoes a sustained growth (with enlarged and
elongated cells forming large intercellular spaces). SZ, TZ and CZ are the 3 zones of the
central cylinder. From Thomas (2011 a).$

7

8 Fig. 3. A fibrous vascular bundle (fvb) with its different characters. A fvb is made of a 9 fibrous part and a vascular part, which contains metaphloem and metaxylem elements with 10 paravascular parenchyma. The fvb presented here has a Reniforma fibrous dorsal cap (dcap). 11 But other types of dcap are encountered in: a. Sagittata, b. Cordata, c. Complanata, d. 12 Reniforma, e. Lunaria, f. Vaginata. Fibrous vascular bundles of *Coccothrinax* are Lunaria to 13 Vaginata without auricular sinus. AL: auricular lobe; AS: auricular sinus; dcap: fibrous dorsal 14 cap; MS: median sinus; RP: radiating parenchyma; TP: tabular parenchyma; vasc: vascular; 15 vcap: fibrous ventral cap, H_{max} : height of the total fvb, I_{max} : maximal width of the fvb, H_{vasc} : height of the vascular part, l_{vasc}: width of the vascular part at the auricular sinus level. From 16 17 Thomas (2011 a).

18

Fig. 4. Current distribution of the living Cryosophileae and of their previous fossil records. Only three fossil records of Cryosophileae were known until now: one presumed leaf of *Palmacites eocenica* from the middle Eocene (but the anatomy does not confirm the identification of this palm leaf, see text), one flower of *Trithrinax dominicana* from the middle Miocene and a recent (Pliocene) pollen assigned to the Cryosophileae.

24

- 1
- 2 Plate captions

Plate I. *Palmoxylon vestitum* (Saporta) Stenzel, 1904 (holotype MNHN.F.6347) and different
species of *Coccothrinax*. 1–6: holotype MNHN.F.6347; 7–11: living *Coccothrinax*.

5 1. General view of the holotype with numerous leaf-sheaths. This provides an indication
6 about the axial position of the fossil specimen: this stem portion comes from a sub apical part

7 of a palm.

8 2. Detailed view of the leaf-sheaths showing the finely net-like structure.

9 3. Transverse section of the leaf-sheaths. Between 8 and 10 concentric sheaths are visible all

10 around the cortex. It is a characteristic of a sub apical stem section.

11 4. Transverse section of the wide cortex, between the leaf-sheath (ls) and the central cylinder

12 (cc). The cortex is made of several fibrous bundles with few fibrous vascular bundles and leaf13 traces bundles.

14 5. Transverse section of the central zone of the central cylinder. Fibrous vascular bundles are

small and with a high density (between 500 and 900/cm²). Fibrous bundles are also visible

16 (more than 1000/cm²). A characteristic splitting fvb is visible (circle), see Plate I, 9. Vascular

17 bridges are present (arrows) as in Plate I, 9.

18 6. Transverse section of a fibrous vascular bundle (fvb) and a fibrous bundle. This fvb is

19 circular (without auricular sinus), with 10 wide metaxylem elements. As the specimen is a sub

20 apical part of palm stem, the fibrous part of the fvb is not completely developed. A fibrous

21 bundle is also visible (arrow).

22 7. Detailed view of the sub apical stem surface of *Coccothrinax argentea* Sarg. ex Becc. The

23 living species and the fossil specimen have the same finely net-like structure.

1 8. Transverse section of the wide cortex from a middle part of a stem of *Coccothrinax*

miraguama. That is why a sort of bark is developed (arrow) and the fibrous vascular bundles
are bigger than in 4.

4 9. Transverse section of the central zone of the central cylinder from a middle part of a stem

5 of *C. miraguama*. The general anatomical structure is the same as the fossil specimen (high

6 density of fibrous vascular bundles and of fibrous bundles). A characteristic splitting fvb is

7 visible (circle) as for Plate I, 5. The arrow points a vascular bridge.

8 10. Detailed view of a fibrous vascular bundle (fvb) of *Coccothrinax barbadensis*. This fvb is

9 circular with 11 wide metaxylem elements. Because of the more basal part of the section, the

10 fibrous sheath is well developed and the fvb is Vaginata (fibre cells all around the fvb).

11 11. Detailed view of a fibrous vascular bundle and of fibrous bundle (arrow) of C.

12 *miraguama*. Same structure as before.

13 Scale bar: 1, 2, 7 = 5 cm; 3, 4, 5, 8, 9 = 1 mm; 6, 10, 11 = $200 \mu m$.

14 Key to labelling: cc, central cylinder; ls, leaf sheath.

15 Plate II. Palmoxylon vestitum (Saporta) Stenzel, 1904 (MNHN.F.2344., MNHN.F.2345.,

16 MNHN.F.2353., MNHN.F.4549., MNHN.F.4550., MNHN.F.1964.).

17 1. MNHN.F.2344. Transverse section of the central zone of the central cylinder with fibrous

18 vascular bundles (fvb), fibrous bundles (arrow) and ground parenchyma between the fvb.

19 2. MNHN.F.2344. Detailed view of a fibrous vascular bundle with eight wide metaxylem

20 elements and a fibrous bundle (arrow). Phytoliths all around the fibrous dorsal cap are visible.

21 3. MNHN.F.2344. Detailed view of the ground parenchyma (slightly elongate cells, compact).

4. MNHN.F.2345.1. General view of the stem with numerous leaf-sheaths. This provides an

23 indication about the axial position of the fossil specimen: this stem portion comes from a sub

apical part of a palm stem.

5. MNHN.F.2345.1. Detailed view of the leaf-sheaths showing the finely net-like structure.

6. MNHN.F.2345.2. General view of the stem with obliquely ringed leaf scare. This provides
an indication about the axial position of the fossil specimen: this stem portion comes from a
middle to basal part of a palm.

7. MNHN.F.2353. Transverse section of a fibrous vascular bundle (fvb): circular, 9 wide
metaxylem elements, well developed fibrous sheath and Vaginata fvb (fibre cells all around
the fvb), phytolith all around the fvb (arrow).

- 7 8. MNHN.F.2353. Transverse section, detailed view of the ground parenchyma. Small
- 8 spheroid cells without lacunae (compact ground parenchyma).

9 9. MNHN.F.4549. Transverse section of the outer part of the stem showing the cortex (ct) and

- 10 the subcortical zone of the central cylinder (cc).
- 10. MNHN.F.4549. Detailed view of the central zone of the central cylinder. Circular fibrous

12 vascular bundles with eight wide metaxylem elements and fibrous bundles are visible (arrow).

13 11. MNHN.F.4550. Transverse section of the leaf sheaths (seven to ten are visible, ls).

14 12. MNHN.F.4550. Transverse section of the central cylinder which shows the non well

- 15 preserved anatomy because of the coarse-textured mineralization. Circular fibrous vascular
- 16 bundles and fibrous bundles are visible.
- 17 13. MNHN.F.1964. Transverse section of the central zone of the central cylinder. Same
- 18 structure as for MNHN.F.4549.
- 19 14. MNHN.F.1964. Transverse section of a circular fibrous vascular bundle with ten wide
- 20 metaxylem elements. Fibrous bundles are also visible.
- Scale bar: 4, 6 = 5 cm; 5 = 3 cm; 9 = 5 mm; 1, 11–13 = 2 mm; 2, 7, 10, 14 = 500 μm; 3, 8 =
 200 μm.
- 23 Key to labelling: cc, central cylinder; ct: cortex; ls, leaf sheath.

Figure 1

Table 1 Click here to download Table: table_1.doc

Anatomical descriptors	Corresponding states and definition	Bibliographic references
General stem pattern	1. Cocos-Type, 2. Corypha-Type, 3. Mauritia-Type, 4. Calamus-Type, 5. Geonoma-Type	Von Mohl, 1823–1850
(Von Mohl classification)	General organization of the stem in transverse section. See Fig. 2.	Thomas, 2011a,b
Shape of fibrous part in TS	1. Sagittata, 2. Cordata, Complanata, Reniforma, 3. Lunaria, 4. Vaginata	Stenzel, 1904
(Stenzel classification)	Shape of fibrous part in transverse section. See Fig. 3.	Thomas, 2011a,b
Auricular sinus	1. Present 2. Absent.	Stenzel, 1904
	See Fig. 3.	
Vessel elements per fvb	1. Mostly 1, 2. Mostly 2 (3–4), 3. Mostly 3–4, 4. More than 4, 5. 1 in the subcortical zone and the zone of transition and 2 in	Tomlinson, 1961
	the central zone, 6. Only long angular imperforate scalariform tracheids	Thomas, 2011a,b
Fibrous bundles in central cylinder	1. Present, 2. Absent	Stenzel, 1904
Developed cortex of the stem	1. Developed cortex (0,5 to 2 cm), 2. Very thin cortex (less than 500 μm)	Thomas, 2011a,b
		N. W. 1000
Superficial protective layers	1. Permanent epidermis and cell shape (with multicellular epidermal hair or not), 2. Developed etagen meristem (alignment of	Philipp, 1923
	more than 10 cells), 3. Suberization and sclerosis of the existing ground parenchyma	Thomas, 2011a,b
Ground parenchyma of the central cylinder	1. Spheroid to slightly elongated (length / width < 3–4) cells (ϕ < 150 μ m) and compact [sometimes few and little lacunae in	Thomas, 2011a,b
	old stems], 2. Cells slightly elongated (length / width < 3-4), lobed with a random (rhombohedral) shape (maximal length <	
	200 μm) and irregular meshwork (lacunae < 200 μm), 3. Rod-like cells (length > 200 μm; length / width > (3)–5) and more or	
	less regular and large meshwork (lacunae > 250 μm), 4. Trabecular (= stellate) with a regular meshwork (spheroid lacunae >	
	250 μm), 5. Huge cells (Ø > 150 μm) [sometimes few and irregular lacunae], 6. Appendicular parenchyma connecting fvb	
Stem phytoliths	1. Globular Echinate to Granulate, 2. Trapeziform to rondel (ex hat shaped), 3. Combined	Tomlinson, 1961
		Prychid et al., 2004
		Thomas, 2011a,b
Phytoliths distribution in central cylinder	1. All around the fibrous dorsal cap throughout the central cylinder, 2. Largely restricted to the fvb of the subcortical zone in	Thomas, 2011a,b
	contact with the cortex	

Radiating parenchyma (around fvb)	1. Present, 2. Absent	Stenzel, 1904
	Radiating parenchyma is only observed around the fvb of the central cylinder. See Fig. 3.	
Tabular parenchyma (around fvb)	1. Present, 2. Absent	Stenzel, 1904
	See Fig. 3.	
Radial elongation of dorsal cap	1. Present (strongly developed), 2. Absent). Radial elongation present if the following ratio is found: ($H_{max} - H_{vasc}$) / $L_{max} > 3$	Thomas, 2011a,b
	See Fig. 3.	
Number of phloem strand	1. One strand, 2. One strand in the subcortical and transitional zones and two in the central zone of the central cylinder, 3.	Tomlinson, 1961
	Two strands	Thomas, 2011a,b
Paravascular parenchyma	1. Developed, 2. Poorly developed or one layer of circumvascular cells	Thomas, 2011a,b
	The paravascular parenchyma is the parenchyma surrounding the metaxylem elements seen in transverse section.	
Metaxylem perforation plate	End wall slope & Types of perforation plates of the wide metaxylem elements	Cheadle, 1943; Klotz ,1978a
		Cheadle and Kosakai, 1975
$\frac{d(fvb)_{out}}{d(fvb)_{out}}$	The ratio between the density of the fvb of the subcortical zone (out) and the density of the fvb of the central zone (in, as in	Thomas, 2011a,b
$d(fvb)_{in}$	Fig. 2).	
	The f/v ratio, is defined as the average ratio (of about 10 to 30 fvb) between the surface area of f , the fibrous part of a vascular	Thomas, 2011a,b
Range of <i>f/v</i>	bundle, as seen in transverse section (fibrous dorsal cap, above the phloem and fibrous ventral cap, under the xylem, and the	
	surface area of <i>V</i> , the vascular part including the paravascular parenchyma (phloem + xylem and paravascular parenchyma).	
f/v out	The ratio between the l/ν of the subcortical zone (out) and l/ν of the central zone (in, as in Fig. 2).	Thomas, 2011a,b
$f'_{v in}$		
Rout	The fibrous covering index (R) defined as the ratio between a , the surface area of the fibrous part of all the fvb in an examined	Thomas, 2011a,b
R _{in}	transverse section (TS) and A , the whole surface area of the examined TS ($R = a/A$). R_{out} is the proportion of the fibrous surface	
	area in the subcortical zone and R_{ii} is the proportion of the fibrous surface area in the central zone.	

Table 1. The descriptors, their states and their bibliographic references useful in the fossil stem descriptions. Abbreviation used in the table: fvb,
 fibrous vascular bundle. All definitions of these descriptors are defined in Thomas (2011 a, b): http://www.infosyslab.fr/Palm-ID/.

Table 2 Click here to download Table: table_2.doc

	Palmoxylon vestitus	Palmoxylon vestitus	Palmoxylon vestitus	Palmoxylon vestitus	Palmoxylon vestitus	Palmoxylon vestitus	Palmoxylon vestitus	Coccothrinax
Collection number	MNHN.F.6347.	MNHN.F.2344.	MNHN.F.2345.	MNHN.F.2353.	MNHN.F.4549.	MNHN.F.4550.	MNHN.F.1964.	FTG 91357E, FTG 60798C, PM1012C
Locality	Gignac	Gignac	Gignac	Gignac	Rustrel	Castellane,	Castellane	
Stratigraphic horizon	Sannoisian	Sannoisian	Sannoisian	Sannoisian	Sannoisian	Tortonian	Tortonian	_
Specimen axial position	Apical	Basal	Apical and middle	Middle to basal	Middle to basal	Apical	_	Middle to basal
Specimen radial position	Full TS	Full TS	Full TS	TS Without cortex	Full TS	Full TS	Without cortex	Full TS
General stem pattern	Cocos-Type	Cocos-Type	Cocos-Type	Cocos-Type	Cocos-Type	Cocos-Type	Cocos-Type	Cocos-Type
Shape of fibrous part in	Reniforma to	Reniforma to	Fvb circular	Lunaria to Vaginata,	Reniforma to	Fvb circular	Vaginata to Lunaria,	Reniforma to
TS	Lunaria, fvb circular	Lunaria, fvb circular		fvb circular	Lunaria, fvb circular		fvb circular	Vaginata, fvb
								circular
Auricular sinus	Absent	Absent	Absent	Absent	Absent	Absent	Absent	Absent
Vessel elements per fvb	> 4	> 4	> 4	> 4	> 4	> 4	> 4	> 4
Fibrous bundles	Present	Present	Present	Present	Present	Present	Present	Present
Developed cortex	Present	Present	Present	_	Present	Present	- (not visible)	Present
Ground parenchyma of	Compact, spheroid	Compact, spheroid	- (not visible)	Compact, spheroid	- (not visible)	- (not visible)	(not visible)	Compact,
the central cylinder	to elongate	to elongate		to elongate				spheroid to
								elongate
Radiating parenchyma	Absent	Absent	- (not visible)	Absent	- (not visible)	- (not visible)	- (not visible)	Absent
dcap centrifugal≠	Absent	Absent	- (not visible)	Absent	Absent	— (not visible)	Absent	Absent
Divided phloem	Absent	Absent	- (not visible)	Absent	Absent	— (not visible)	Absent	Absent
Taxonomic affinity	Cryosophileae	Cryosophileae	Cryosophileae	Cryosophileae	Cryosophileae	Cryosophileae	Cryosophileae	Cryosophileae

Table 2. Summary of the studied specimens. This table presents different information on the specimens (extrinsic and intrinsic descriptors).

Table 3 Click here to download Table: table_3.doc

	Narrow leaf scars obliquely ringed	Finely "net- like" fibrous sheaths, closely ringed	General stem pattern	Shape of fibrous part in TS	Auricular sinus	Vessel elements per fvb	Vessel elements disposition	Fibrous bundles	G round parenchyma of the central cylinder
Palmoxylon vestitum	Present	Present	Cocos-Type	Vaginata to Lunaria, fvb circular	Absent	> 4	2 strand	Present	Compact, spheroid to elongate
Coccothrinax	Present	Present	Cocos-Type	Vaginata to Lunaria, fvb circular	Absent	> 4	2 strand	Present	Compact, spheroid to elongate
Chelyocarpus	Present	Present	Cocos-Type	Vaginata, fvb circular	Absent	1	1 strand	Absent	Compact, spheroid to elongate
Cryo s ophila	Present	Present (loose meshes)	Cocos-Type	Vaginata to Reniforma	Absent	2	1 strand	Absent	Spheroid to elongate, lacunae
Thrinax	Present	Present	Cocos-Type	Vaginata to Lunaria, fvb circular	Absent	2 (3)	1 strand	Absent	Spheroid to elongate, lacunae
Hemithrinax	Present	Present	Cocos-Type	Vaginata, fvb circular	Absent	2	1 strand	Present	Compact, spheroid to elongate
Chamaerops	Present (persistent petiole bases)	Present	Cocos-Type	Reniforma to Lunaria	Absent / Present	3-4	1 strand	Present	Compact, spheroid to elongate ¹
Nannorrhop s	Present	Absent	Cocos-Type	Vaginata to Lunaria	Absent	2	1 strand	Present	Compact spheroid to elongate
Phoenix	Absent (spirally arranged leaf base)	Wide meshes	Cocos-Type	Vaginata to Lunaria	Absent	2	1 strand	Absent	Compact spheroid to elongate
Phytelepha s	Present	Wide meshes	Cocos-Type	Reniforma to Lunaria	Present / Absent	> 4	1 strand	Present	Compact spheroid
Cocos	Absent (ringed with large leaf scars)	Present	Cocos-Type	Vaginata to Reniforma	Absent / Present	1 – 2	1 strand	Present	Compact spheroid to elongate

Table 3. Stem descriptions of different palm genera.¹ Often very altered, cells can collapse, and thus large lacunae appear.

Plate 1

Plate 2

CHAPITRE 15 APPLICATIONS À L'ARCHÉOLOGIE

Sommaire

15.1	Utilisation des palmiers	8
15.2	Article sur l'identification d'un filet du Makran 42	0
15.3	Article sur l'étude des charbons de Madâ'in Sâlih 43	0

ES PALMIERS ont toujours été beaucoup utilisés par l'Homme et de nombreux restes attribués à cette famille sont retrouvés dans plusieurs sites archéologiques du bassin méditerranéen, du Proche et Moyen-Orient. Dans ce chapitre je présente dans un premier temps un rapide aperçu des différentes utilisations que l'Homme peut faire avec le palmier puis dans un deuxième temps les travaux auxquels j'ai participé. Ces travaux se résument à deux articles. Le premier (Thomas *et al.* 2012) concerne l'identification d'un filet carbonisé découverts sur le site de Shahi Tump de la première moitié du IV^e millénaire AEC¹ (Makran, Pakistan). Le deuxième article (Bouchaud *et al.* 2011) est en cours de rédaction et une première ébauche est présentée ici. Il concerne l'application de mon travail d'anatomie sur les tiges de palmiers à l'étude des charbons provenant de foyers domestiques d'un site archéologique de la péninsule arabique (Madâ'in Sâlih) entre le II^e siècle BCE et le VII^e siècle EC.

^{1.} Ce terme (*avant l'ère commune*) sera préféré à celui à forte connotation religieuse qui n'aurait pas sa place ici et participe ainsi au respect de la neutralité, de la laïcité et de l'ouverture vers l'autre. L'utilisation de cette notation ne modifie pas les usages ordinaires. Il suffit de remplacer l'ancienne notation par la nouvelle, ainsi, la bataille d'Alésia a bien eu lieu en septembre 52 AEC et Adolphe Théodore Brongniart est né le 14 janvier 1801 de l'ère commune (EC) et mort le 18 février 1876 EC. Il est aussi d'usage d'utiliser la version anglaise CE et BCE (*common era* et *before common era*).

15.1 Utilisation des palmiers

Les attestations de l'utilisation du stipe comme bois d'œuvre sont très nombreuses dans les descriptions ethnographiques et, les exemples actuels et archéologiques ne manquent pas. En Mésopotamie et dans la région du Golfe, de nombreux sites ont livré des restes de poutres et de poteaux, pour la plupart carbonisés lors des incendies, et cela depuis l'âge du Bronze. Il y a également mention de l'utilisation des stipes de palmier comme « mâts » devant des temples et dans les cours des palais (Mari, Syrie, par exemple).

Selon Richardson et Dorr (2003), D'autres utilisations sont également possibles :

The trunk of the date palm (jitha') is used chiefly as a source of wood for architectural work, most often being split into quarters and used as beams for the ceiling. It is also used as a support pillar for wells and other structures, and as a brace for slanting date palms in danger of collapse. Sections of the trunk are partially hollowed and used as a mortar, or split in half for use as cattle troughs. Palm trunk cylinders, sealed at either end by clay and ash plugs, are favoured by Omani beekeepers, who stack them in long rows for use as hives.

En ce qui concerne les feuilles, le même ouvrage continue :

Palm fronds (zawrah) are lashed together in their entirety to form panels (da'an) which are used in the construction of dwellings and livestock pens, and find application as ceiling sheets, decking for make skewer-like "needles" that are employed in basketwork. The triangular, flanged base portion (karbah) of a frond is naturally buoyant, and used to make fishing floats, as well as being stacked inside the shasha to provide flotation.

Finalement, après avoir décrit également l'utilisation des folioles et des fruits, ce texte arrive à ce qui nous intéresse plus particulièrement :

Surplus date-palm material is used as fuel for the firing of pottery and the boiling of dates.

En général, l'utilisation du « bois » des palmiers comme combustible est peu traitée dans les sources, actuelles ou anciennes, probablement parce qu'il s'agit d'une utilisation secondaire, banale, que l'on ne prend pas la peine de mentionner explicitement.

Cependant, les exemples ethnographiques de l'utilisation du « bois » de palmier comme combustible ne manquent pas.

Dans la palmeraie d'Adam en Oman on brûle systématiquement (et partout) stipes et feuilles dans les jardins pour ensuite utiliser leurs cendres comme engrais (15.1). Les pétioles sont également utilisés comme combustible (15.2), par exemple pour griller du café (15.3). Lorsque les villages qui se trouvent à l'intérieur de la palmeraie étaient encore habités (jusqu'aux années 1970), j'imagine que l'essentiel du combustible utilisé pour le chauffage et la cuisine provenait des feuilles de ces palmiers. En effet, le stipe étant le plus souvent réservé à la construction (Figs. 15.5–15.6). Ce type

de gestion des ressources végétales se retrouve également dans l'étude de (Bouchaud $et \ al. \ 2011$).

Au Sud-Est de l'Iran, les tannours sont alimentés par des pétioles (Fig. 15.4). Je ne sais pas si ces pratiques sont plutôt motivées par les qualités combustibles du « bois » de palmier ou par sa disponibilité dans l'environnement proche. Typiquement une question simple mais importante que l'on ne pense pas à poser aux gens quand on est sur place! Munier (1973, p. 181) :

Les palmes sont aussi utilisées comme bois de chauffage domestique. Elles peuvent servir à la confection d'un charbon de bois léger d'excellente qualité.

FIGURE 15.1 – Engrais. Photo : M. Tengberg.

FIGURE 15.2 – Fagots de feuilles de *Phoenix*. Photo : M. Tengberg.

FIGURE 15.3 – Grillage du café. Photo : M. Tengberg.

FIGURE 15.4 – Tannour (four domestique). Photo : M. Tengberg.

FIGURE 15.5 – Division du stipe. Photo : M. Tengberg.

FIGURE 15.6 – Poutres réalisées à patir de stipes de palmiers. Photo : M. Tengberg.

15.2 Article sur l'identification d'un filet du Makran

Cet article (Thomas *et al.* 2012) est publié dans *Archaeological and Anthropological Sciences*. Il présente l'analyse d'un filet protohistorique découvert au Baluchistan. Ce filet est vraisemblablement un filet de pêche fabriqué à partir de fibres provenant de *Nannor-rhops*.

ORIGINAL PAPER

Analysis of a protohistoric net from Shahi Tump, Baluchistan (Pakistan)

Romain Thomas • Margareta Tengberg • Christophe Moulhérat • Vincent Marcon • Roland Besenval

Received: 23 July 2011 / Accepted: 15 September 2011 © Springer-Verlag 2011

Abstract The fire that partly destroyed a 4th millennium BCE building at Shahi Tump in the Kech Valley of southwestern Pakistan is responsible for the exceptional preservation by carbonisation of a net found on the burnt floor as a heap of entangled cords and knots. Macro- and microscopic observation has allowed a reconstruction of the techniques used to manufacture the net from a twostrand plied cord. The comparison of the phytoliths extracted from the archaeological net to those from a modern reference collection suggests the use of fibres that originate from the leaves of a local palm species: the desert palm or Nannorrhops ritchieana (Griff.) Aitch. Besides the technical and archaeobotanical aspects of the study, the paper discussed past and present uses of the desert palm in the arid regions of the Middle East as well as the possible utilisation (fishing, carrying etc.) of the protohistoric net.

Keywords Cordage · Net · Fibre crafts · Baluchistan · Protohistoric period · Phytolith analysis · *Nannorrhops ritchieana*

R. Thomas

Natural History Museum of Paris, UMR 7207 MNHN-CNRS-UPMC, Centre de recherche sur la paléobiodiversité et les Paléoenvironnements, 57, rue Cuvier, 75005 Paris, France e-mail: thomas@mnhn.fr

M. Tengberg (^[\begin{subarr}])
Natural History Museum of Paris, UMR 7209 MNHN-CNRS
Archéozoologie, archéobotanique: Sociétés, pratiques et environnements, 55 rue Buffon, 75005 Paris, France
e-mail: margareta.tengberg@mnhn.fr

Published online: 28 October 2011

Introduction

Due to the perishable nature of the materials involved, part of the craft activities of the past are largely unknown to us even though they may have played a major role in daily life. This is particularly true for crafts using flexible fibres of animal or vegetal origin in order to produce a vast array of utilitarian items: threads, strings, cords, nets, mats, basketry, woven textiles, knitted and felted fabrics etc. At archaeological sites, this type of artefacts only survives when particular conditions prevent the decay of organic material. This is the case in humid environments like those found in lacustrine settlements from the Neolithic and the Bronze Age excavated in the Circum-Alpine region of Western Europe. The recovery of abundant cords and textile remains from these sites has allowed a detailed study of the exploitation and transformation of fibres of various origins (Médard 2010). The same is true for the astonishingly wellpreserved finds from hyper-arid environments, for example in Egypt or in Peru (D'Harcourt 2008; Doyon-Bernard

C. Moulhérat
Quai Branly Museum,
37 Quai Branly,
75007 Paris, France
e-mail: Christophe.moulherat@quaibranly.fr

V. Marcon · R. Besenval National Centre for Scientific Research (CNRS), UMR 9993 CNRS Centre de recherches archéologiques Indus-Baluchistan-Asie centrale et orientale, Musée Guimet, Panthéon Bouddhique, 19 avenue d'Iéna, 75116 Paris, France e-mail: vincentmarcon@udr1.cnrs.fr

R. Besenval e-mail: rolandbesenval@hotmail.com 1990; Durand and Saragoza 2002). Still, the abovementioned examples rather constitute exceptions in the long history of the use of fibres for which our knowledge is most often based on sporadic finds, fortuitously preserved due to particular micro-local conditions, for example in tombs where the association of corroding metals and textiles (garments, shrouds etc.) enhance mineralisation or where the exposure to fire occasionally allows the carbonisation of fibres.

The latter case applies to the piece of netting that has been discovered in an early 4th millennium BCE context at Shahi Tump in the Kech district of the Makran division of southern Baluchistan, Pakistan (Fig. 1). Trapped under a mud brick wall of a building partly destroyed by fire the carbonised net was found in an exceptional state of preservation. Even though this object is unique of its kind in this part of the Middle East, it does not constitute the only example of early fibre crafts in the region. Indeed, Baluchistan has provided the earliest evidence of the use of cotton fibres known so far in the Old World in the form of a piece of string discovered inside a bead of native copper from a 6th millennium BCE burial at Mehrgarh (Moulhérat et al. 2002). For later periods, remains of textiles made of cotton, flax or wool have been encountered at several sites in the Indo-Iranian borderland (Good 1999; Tengberg and Moulhérat 2008).

A first aim of the present study is to describe the net from Shahi Tump, the context of its discovery and the techniques used for its manufacturing. A second objective is to establish the nature of the fibres used and their origin. Finally, the results of the technical and microscopic analysis are included in a wider discussion on the production and use of cords, mats, nets and basketry in the Kech valley during Protohistory. Even though woven textiles have also been recognised at Shahi Tump, they have been deliberately excluded from this discussion as they will be the subject of a more detailed study later.

Archaeological context

The excavation of Shahi Tump is part of a larger research project undertaken since 1987 by a French research team under the direction of Roland Besenval (Centre National de Recherche Scientifique, CNRS) in the Makran division of south-western Pakistan. Through regional surveys and the excavation of a few chosen sites, the archaeological programme, largely sustained by the French Ministry of Foreign Affairs, aims at reconstructing the settlement history of this region situated on the borderland between the Iranian plateau to the West and the Indus valley to the East (Besenval

Fig. 1 Localisation of Shahi Tump and the neighbouring site of Miri Qalat in the Kech valley, Makran division, Baluchistan, Pakistan

1997). The excavation of Shahi Tump and Miri Qalat, two sites located on opposite sides of the Kech River a few kilometres from the modern town of Turbat, has allowed the establishment of a chronological framework for the region (Besenval 2000, 2005). The protohistoric occupation has been divided into four main periods (I–IV) spanning more or less 2,000 years from the late 5th until the late 3rd millennium BCE. After a hiatus during the 2nd and early 1st millennium BCE, the region was reoccupied from early historical times until present day.

During the entire protohistoric period, subsistence economies in the Kech valley were based on agro-pastoral activities as shown by the analysis of faunal and floral remains (Tengberg 1999; Desse et al. 2008). The herding of sheep, goats and cows took place alongside the cultivation of wheat, barley and pulses, probably benefitting from the annual flooding of the Kech river. Besides subsistence activities, the protohistoric populations of Makran were involved in various craft industries—pottery making, metallurgy, bone, shell and stone working—showing more or less close ties, according to the periods, to the craft traditions of other sites on the Indo-Iranian borderlands (Besenval and Didier 2004; Marcon and Lechevallier 2000; Mille et al. 2001).

The net discussed in this article was found in 2005 during the excavation of a large building dated to Period II, that is to the first half of the 4th millennium BCE. The building, constructed of mud brick and stone, was situated in the eastern part of Trench II. Several rooms were recognised during the excavation carried out by B. Mutin and C. Thellier. The southernmost of these shows clear traces of destruction by fire (Fig. 2). Under the collapsed mud brick wall, the excavators discovered carbonised roof beams as well as several items trapped between the

Fig. 2 Southern room of stone and mud brick building in Trench II with burnt layer (stratigraphic unit, 2,236; photograph by the Mission Archéologique Française au Makran (MAFM))

Fig. 3 The carbonised net after excavation and consolidation (photograph by MAFM)

destruction level and the floor: pottery shards, animal bones, cereal remains, carbonised woven mats as well as the net.

Two 14C dates obtained from the level situated immediately above and sealing the burnt layer provides a *terminus ante quem* to the net and associated material. Thus, the burnt layer cannot be later than the two dates obtained: 5125 ± 65 BP (3984–3803 cal BCE, Pa2399) and 5040 ± 30 BP (3938–3787 cal BCE, Pa2396), respectively.

The carbonised net was found as a heap of entangled cords. In order to stabilise its fragile structure it was consolidated in situ by the application of a solution of paraloid B-72 acrylic resin. The whole net was then transported in one piece to the field laboratory for further cleaning and documentation (Fig. 3). Finally, a selection of pieces of cord and knots was exported to France where detailed analysis of manufacturing techniques and microscopic observations were to take place.

Manufacturing techniques

Selected pieces from the Shahi Tump net were analysed at the Research and Restoration Centre of French Museums situated at the Louvre in Paris. Observations were made with help of a binocular microscope (Nikon SMZ-10A) and with a Scanning Electron Microscope (SEM, Philips XL30CP).

The net seems to have been produced from one continuous strand of thin cord or twine as all the analysed fragments were similar in shape and diameter and apparently manufactured according to the same procedure. The cord was produced in two steps. First, bundles of fibres were twisted or plied together to form a fine yarn of around 2 mm in diameter. The twisting was done clockwise

Fig. 4 Structure of a doublestranded S-lay cord obtained by the association of two Z-lay yarns

resulting in a so-called 'Z-lay' strand according to the slanting of the fibres compared to that of the letter 'Z' (Fig. 4). Two of these Z-lay yarns were then twisted around each other in the reverse direction to form a 'S-lay' cord. It is this counter-twist that holds the final two-ply cord together. The analysed cord fragments measured between 2 and 4 mm in diameter according to their state of preservation.

The twisted (or laid) cord thus obtained was then transformed into a net by connecting two loops of the same strand in so-called mesh knots. All the knots analysed were S-laid (Figs. 5 and 6) which means that the net-maker did not turn the net around but constantly worked from the same side, first from the left to the right, then on the following line from the right to the left and so on. The mesh

Fig. 5 Example of a S- and Z-lay mesh knots

Fig. 6 Net made of S-lay mesh knots of the type found at Shahi Tump

size of the Shahi Tump net is of at least 7 cm according to the longest cord fragments analysed.

The craftsman probably used a few rudimentary tools in order to produce his net. In traditional net making in Oman nets are knotted with the help a rectangular piece of wood or 'mesh stick' ensuring regular dimensions of the meshes. For more convenient handling, the strand of cord is usually also wound onto a wooden bobbin (Richardson and Dorr 2003, p. 369).

Identification of the fibres

A second aim of the present study was to determine the nature of the fibres used to make the net as well as their origin. Close observation of their morphology with the help of an episcopic microscope as well as a SEM showed strands of filaments corresponding rather to the parallel veins of a monocotyledonous¹ leaf than to stem fibres such as flax or hemp (Fig. 7). The characteristic hollow fibres (in fact epidermal hairs developing on the seeds) of cotton could also be excluded. A method for identifying leaves, based on the observation of the cellular structure of their epidermis has been developed by R. Thomas (2008). Although the net is relatively well preserved, this method could not be applied as the carbonisation and subsequent conditions of preservation had caused the elimination of the outermost and diagnostic epidermal layer of the leaves. Secondly, the consolidation of the fragile fibres with paraloid had rendered the surface somewhat shiny and difficult to observe in detail.

Considering these difficulties, it was decided to attempt an identification based on the analysis of phytoliths instead. These silica bodies forming in and between the cells of the living plant appeared numerous on the surface of the cords (Fig. 8b, c).

¹ The monocotyledons constitute a class of flowering plants (Angiosperms) characterised by several morphological criteria, among them the presence of parallel venation of the leaves. Several economically important plant families belong to the monocotyledons for example the grasses (*Poaceae*) and the palms (*Arecaceae*).

Fig. 7 Longitudinal view of the fibres, SEM×1,000 (© C2RMF C. Moulhérat)

Fig. 8 Anatomical study of the Shahi Tump net: **a** cord fragments, **b**, **c** detail of fibres and **d** globular echinate phytolith. *Scale bars*: **a** 1 cm, **b** 50 μm, **c** -30 μm and **d** 10 μm (photographs by R. Thomas)

Before identification an extraction of phytoliths was necessary. The techniques used were those of Albert and Weiner (2001) and Bamford et al. (2006). Between 5 and 10 g of material were extracted from two different fragments of cord (Fig. 8a) and were reduced to a fine powder before placing in a porcelain receptacle in an oven at 500°C for 3 h. The ash was decarbonated with an equivolume solution of 3 N HCl and 3 N HNO₃ for 30 min at 100°C. The residue was then rinsed with distilled water and centrifuged several times. After the last centrifugation, a volume of ethanol was added to the residue. After evaporation of 100 µl of residue on a slide, a conventional mounting in Canada balsam was used to permit microscopic observation.² Inclusion within a resin was also performed in order to observe the anatomical structure of fibres but without obtaining positive results.

The observation of the sample extracted from the archaeological net revealed the presence of globular echinate phytoliths characteristic of the family of palms or the Arecaceae Bercht. & J.Presl (Tomlinson 1961; Madella et al. 2005).

Once it had been established that the net from Shahi Tump had been manufactured from the lamina of palm leaves, the question of the precise identity of this palm species arose. The flora of Pakistan (Moore 1980; Kamal 1984) records two endemic genera of palms: *Nannorrhops* H.Wendl. (monospecific genus: *Nannorrhops ritchieana* (Griff.) Aitch.) and *Phoenix* L. (*Phoenix sylvestris* Roxb, *Phoenix dactylifera* L. and *Phoenix loureirii* Kunth). A third genus should also be considered in this context—*Hyphaene* Gaertn.—of which the single species (*Hyphaene dichotoma* (White) Furtado) knows a vast distribution from eastern Africa to India and Sri Lanka (Dransfield et al. 2008). Even though it is not reported to grow spontaneously in Pakistan today, its presence cannot be entirely excluded for the past.

Studies on the morphometry of palms phytoliths are fairly recent (Delhon and Orliac 2008; Albert et al. 2009) and do not cover the genera concerned by our study. Therefore a comparative morphological study based on modern samples was undertaken in order to precise the identification of the phytoliths extracted from the archaeological net. For this purpose, we used modern leaf material collected, on the one hand, from palm specimens in the Middle East by M. Tengberg and obtained, on the other hand, from herbarium specimens held in the Natural History Museum of Paris. The techniques used for the extraction of modern phytoliths were the same as those applied to the net described above. The slides thus obtained were observed by optical microscope (Fig. 9). For each specimen, 50 phytoliths were analysed and described according to precise criteria. A summary of the observations is presented in Table 1. Two morphotypes are found: globular echinate (e.g. Fig. 9a-c) and ellipsoid echinate

² The observation of these silica particles is best in a mounting with a refractive index different from that of silica. Silica having a refractive index (*n*) between 1.41 and 1.47, it is preferable to use a mounting solution with a different refractive index, such as Canada balsam (n= 1.54) (Parry and Smithson 1958; Locquin and Langeron 1978; Prychid et al. 2004).

Fig. 9 Phytoliths of different palm genera: **a**-**c** net, **d**-**f** *Nannorrhops*, **g**-**o** *Phoenix*, **p**-**s** *Hyphaene* (**p**-**r**). *White arrow and dotted circle*, basal feature appearing during the phytolith genesis. *Black arrow*, pilate or tuberculate surface. *Scale bar*: **a**-**s** 10 μm (photographs by R. Thomas)

(Fig. 9q). The descriptor class size indicates the presence of different size classes among the phytoliths. This is in particular the case for Hyphaene where a bimodal distribution can be observed (Fig. 9s). The indication psilate surface means that at least certain phytoliths within a specimen are not echinate (Fig. 9i). Tuberculate or pilate protrusions indicates a more or less smooth surface presenting nevertheless some irregularities with very small tuber-like protuberances (Fig. 9g-h, black arrow), some of them are clearly 'holes'. In some specimens, a spheroid feature is observed (Fig. 9i-n, r, white arrow and circle). We interpret this morphological character as the result of the development of the phytolith in the stegmata.³ More studies are required but we suppose that this feature is no more visible in fully developed phytoliths. Thus, the phytoliths i, j and k in Fig. 9 show different maturation stages: i and j are not fully developed and are photographed according to two different perpendicular planes; k is in the same plane as i but with more silica aggregation (more developed). Psilate or tuberculate phytoliths with a hole could derive from a specific leaf tissue but more in situ studies are required to clarify this. The Number of spinules

appears to be highly variable within a single specimen and between two specimens of the same genus.

The comparison between the characters of the archaeological and modern phytoliths suggests that the former belong to *N. ritchieana* (Table 1). Only one class size of phytoliths and no ellipsoid morphotypes were observed in the archaeological sample, thus excluding *Hyphaene*. Moreover, the net phytoliths did not show pilate/tuberculate or psilate surface, characters found in both *Hyphaene* and *Phoenix*.

Notwithstanding these first results, further studies will be needed on the genesis of phytoliths (greater number of genera and greater number of specimen per species) in order to know if the differences observed are purely taxonomic or depend also on the state of development of the organs.

Discussion

Present and past uses of the desert palm

The desert or dwarf palm (*N. ritchieana*) is a small and shrubby palm species found in the arid areas of southern Oman, Yemen and in the Indo-Iranian borderlands where it usually form thickets in dry wadis and depressions (Fig. 10). Leaves are fan shaped, 30–130 cm long and divided into numerous (8–40) 30–45 cm long linear leaflets (eFloras.org

³ The stegmatas are the cells associated with fibres and in which phytoliths form.

The T Development of modern and alcohogical phytomas							
	Hyphaene	Nannorrhops	Phoenix	Archaeological net			
Morphotype	Globular echinate ellipsoid echinate	Globular echinate	Globular echinate	Globular echinate			
Class size	2	1	1	1			
Psilate surface	Present	Absent	Present	Absent			
Pilate or tuberculate surface	Present	Absent	Present	Absent			
Number of spinules ^a	0, 12, 16.8, 18, 50	8, 12, 13.2, 15, 18	0, 11, 15, 16, 22	11, 15, 16.9, 18.5, 26			
Diameter (µm) ^{a, b}	4, 6, 8.1, 9, 23	4, 6, 6.2, 7, 8	5, 7, 7.8, 9, 11	5, 7, 8.1, 9, 11			
Number of spinules/diameter ^b	2	2.17	1.9	2.12			

 Table 1
 Description of modern and archaeological phytoliths

This table presents the comparative structure of the phytoliths found in the different genera. See text for detail

^a Min, 1st quartile, mean, 3rd quartile, max

^b The phytolith diameter without the spinules

(Floras online) Flora of Pakistan). The terminal inflorescence forms an erect and ramified panicle reaching up to 2 m above the tuft of leaves. Flowering takes place between July and November, the globular edible fruits (berries) ripen in summer.

Nannorrhops is of prime importance to the populations living in the deserts where it grows. Like the date palm, now extensively cultivated in the same regions, it has multiple uses. The leaflets are transformed through plying, braiding, weaving or coiling into various artefacts used in daily life: cords, mats, bags, baskets, fans, brooms, food covers, sandals and caps etc. (Hughes-Buller 1906; Miller and Morris 1988, pp. 224, 328) (Fig. 11). In the coastal areas of Oman, fishing gear and milking bowls are traditionally produced from leaves of desert palm, the latter being coated with goatskin to make them impermeable (Richardson and Dorr 2003, pp 378–385). In the area of Jazmurian in South-eastern Iran, the leaves from are also used in traditional architecture for covering huts and making shelters (Fig. 12).

N. ritchieana may also serve as a source of food. The growing shoot of the leaves is said to have been eaten uncocked as a vegetable in times of scarcity (Hughes-Buller 1906, p. 218). The fruits were commonly consumed either fresh or transformed by crushing into a meal used in various preparations (Miller and Morris 1988). The consumption of Nannorrhops fruits in the past is attested by the presence of carbonised berries throughout the occupation at Miri Oalat and Shahi Tump (Tengberg 1999). A second palm species (Phoenix sp.) has also been identified at both sites by the archaeobotanical study. While the general morphology of the lignified seeds allows an identification to the genus level, morphometric studies are needed in order to determine if these belong to the cultivated date palm (P. dactylifera) or were collected from wild palm trees, such as the sugar-date palm (P. sylvestris) which, in that case, would have known a wider distribution towards the West than today.

Fig. 10 *N. ritchieana* growing in a dry wadi bed in Makran, Pakistan (photograph by M. Tengberg)

Fig. 11 Rope-making by plying (or twisting) four leaf strands of *N. ritchieana*, Makran, Pakistan. The rope-maker sits on a mat equally produced from palm leaves (photograph by M. Tengberg)

Fig. 12 Woman splitting palm leaves in front of a village of traditional palm leaf huts in the region of Jazmurian, south-eastern Iran (photograph by N.A. Soleimani)

Possible uses of the net from Shahi Tump

Due to the fragile nature of the carbonised net, it could unfortunately not be unfolded. Undoubtedly, the knowledge of its dimensions and shape (round? quadrangular?) would have been helpful in order to understand its use. Concerning this last aspect, several possibilities can be considered. First, if we presume that the net was used for fishing several questions arise: were the material and the mesh size of the net (≥ 7 cm) appropriate for such a use? What are the indications for fishing activities in protohistoric Makran in general and at Shahi Tump in particular?

In Oman, the leaves of desert palm are traditionally used along the Jazir coast and in Dhofar for making fishing-nets of various dimensions (Richardson and Dorr 2003, p. 369). The fibres of this species are said to be preferred to those of date palm as they increase in strength when wet, contrary to the latter (Miller and Morris 1988, p. 224). Before use, the leaves are buried in wet sand, the humidity making them more supple and easy to work. According to the type of fish, different mesh sizes are used. The largest mesh (15– 30 cm) is used for catching sharks. Yellow-fin tuna, barracuda and kingfish are caught with a mesh of around 10 cm. Finally, for smaller species a net with a mesh size of 8 cm or less is used (Richardson and Dorr 2003, p. 368).

Coastal Makran, named the land of fish-eaters or *ichtyophagi* by Greek authors, has a long tradition of exploitation of marine resources as shown by the surveys and excavations undertaken along the coast by Nathalie Desse-Berset and Jean Desse in the framework of the French Archaeological Mission (Desse and Desse-Berset 2005a). Numerous fish and shellfish species were caught and prepared, by drying and/or salting, in the coastal area. Part of these were transported inland to villages located in the interior valleys such as Shahi Tump and Miri Qalat.

Indeed, in the Kech valley situated at a distance of approximately 120 km from the coast (corresponding to more or less three days by foot) evidence of contacts with the coast is plentiful. Shells used for jewellery or as containers are frequently found in burials dated to period II. From the same period, remains of marine fish are abundant both in domestic and funeral contexts. Some of these are particularly spectacular: a more than a metre long rostrum from a sawfish was found in a room next to the one with the net. A smaller rostrum of a saw shark and a spine of a ray were discovered in burials. Numerous vertebraes belonging to saw fish and shark as well as shark teeth are also attested (Desse and Desse-Berset 2005b). In the light of these discoveries, there seems to be no doubt that fish and fishing played an important role for the inhabitants of the Kech valley, both as a source of food and symbolically.

Even though it is tempting to make an association between the net and the apparently important exploitation of marine resources, alternative uses cannot be ruled out. In particular, it could have been used as a carrying net for transporting items of a certain size.

Conclusion

The fortuitous preservation of a net made of palm leaves at Shahi Tump has allowed us to get a glimpse into a craft activity that is very little known in this part of the world. Its exceptional state of preservation permitted a detailed analysis of the techniques of manufacture as well as an identification of the raw material used for producing the cord. Even though no other object of this kind has been found so far in Makran, examples of the use of monocotyledoneous leaves (probably from palms even though this cannot be absolutely confirmed) for the making of various items are not rare at Miri Qalat and Shahi Tump. Mattings have been regularly attested during the excavation in the form of imprints on soils or even preserved by carbonisation as the piece of mat found together with the net. From the same period, two other categories of objects indirectly bear witness to the presence of basketry and matting. Flat terracotta bangles produced during period II are decorated by the impression of interwoven leaf strips. It has been suggested that these were shaped on a mould made of leaves (Besenval 1997, p. 13). The second category of objects is a particular type of pottery-'basket-ware'shaped inside a basket that has left its impression on the external wall of the vessels (Besenval 1997; Mutin 2007).

In conclusion, bringing together precise information on the whole body of vestiges of this kind through a systematic technical and morphological analysis appears as an interesting perspective for the Kech valley as well as for other archaeological contexts.

References

- Albert RM, Weiner S (2001) Study of phytoliths in prehistoric ash layers using a quantitative approach. In: Meunier J, Colin F (eds) Phytoliths: applications in Earth sciences and human history. A.
 A. Balkema Publishers, Leiden, pp 251–266
- Albert RM, Bamford MK, Cabanes D (2009) Palaeoecological significance of palms at Olduvai Gorge, Tanzania, based on phytolith remains. Quatern Int 193(1–2):41–48
- Bamford MK, Albert RM, Cabanes D (2006) Plio-Pleistocene macroplant fossil remains and phytoliths from Lowermost Bed II in the eastern palaeolake margin of Olduvai Gorge, Tanzania. Quatern Int 148:95–112
- Besenval R (1997) Entre le Sud-Est iranien et la plaine de l'Indus: le Kech-Makran. Recherches archéologiques sur le peuplement ancien d'une marche des confines indo-iraniens. Arts Asiatiques 52:5–36
- Besenval R (2000) New data for the chronology of the Protohistory of Kech-Makran (Pakistan) from Miri Qalat 1996 and Shahi Tump 1997 field-seasons. In: Taddei M and De Marco G (eds) South Asian Archaeology 1997, Rome, pp 161–187
- Besenval R (2005) Chronology of Protohistoric Kech-Makran. In: Jarrige C, Lefèvre V (eds) South Asian Archaeology 2005. Editions Recherche sur les Civilisations, Paris, pp 1–9
- Besenval R, Didier A (2004) Peuplement protohistorique du Kech-Makran au 3e millénaire av. J.-C.: l'assemblage céramique de la période IIIc sur le site de Miri Qalat. Paléorient 30(2):159–178
- D'Harcourt R (2008) Les textiles anciens du Pérou et leurs techniques. Flammarion, Paris (re-edition from 1934)
- Delhon C, Orliac C (2008) Les palmiers disparus de l'Île de Pâques: Nouvelles données radiocarbones et phytolithiques. In: Valentin F (ed) Etudes pluridisciplinaires sur les sociétés anciennes du Pacifique Sud. CNRS, Paris
- Desse J, Desse-Berset N (2005a) Ancient exploitation of marine resources on the Makran Coast (Balochistan, Pakistan). In: Jarrige C, Lefèvre V (eds) South Asian Archaeology 2005. Editions Recherche sur les Civilisations, Paris, pp 85–93
- Desse J, Desse-Berset N (2005b) Les ichtyophages du Makran (Béloutchistan, Pakistan). In: Desse J, Desse-Berset N (eds) Past exploitations of aquatic ecosystems in south-west Asia: Environmental approaches. Special issue of Paléorient 31/1, pp. 86–96
- Desse J, Desse-Berset N, Henry A, Tengberg M, Besenval R (2008) Faune et flore des niveaux profonds de Shahi-Tump (Balochistan, Pakistan). Premiers résultats. Paléorient 34(1):159–171
- Doyon-Bernard SJ (1990) From twining to triple cloth: experimentation and innovation in ancient peruvian weaving (ca. 5000–400 BC). Am Antiq 55(1):68–87
- Dransfield J, Uhl N, Asmussen-Lange CB, Baker WJ, Harley MM, Lewis CE (2008) Genera palmarum: the evolution and classification of palms, 2nd edn. Kew Publishing, Kew
- Durand M, Saragoza F (2002) Egypte, la trame de l'histoire: Textiles pharaoniques, coptes et islamiques. Exhibition catalogue, Department Museum of Rouen, Somogy Art Editions, Paris

- eFloras.org (Floras online) Flora of Pakistan. Available at: http://www. efloras.org/flora_page.aspx?flora_id=5. Accessed 12 July 2011
- Good IL (1999) The ecology of exchange: textiles from Shahr-i Sokhta, eastern Iran. University of Pennsylvania, Dissertation
- Hughes-Buller R (1906) Makran (text and appendices). Baluchistan District Gazetteer Series VII. Times Press, Bombay
- Kamal A (1984) Palmae. In: Nasir E, Ali S (eds) Flora of Pakistan, Pakistan Agricultural Research Council, vol 153. Shamin Printing Press, Karachi, p 33
- Locquin M, Langeron M (1978) Manuel de microscopie. Masson, Paris
- Madella M, Alexandre A, Ball T (2005) International code for phytolith nomenclature 1.0. Ann Bot 96:253–260
- Marcon V, Lechevallier M (2000) Lithic industries of the Indo-Iranian border. Technological approach of blade debitage in the assemblages of Mehrgarh, Nausharo and Miri Qalat in Baluchistan, Pakistan. In: Taddei M and De Marco G (eds) South Asian Archaeology 1997, Rome, pp 215–235
- Médard F (2010) Le tissage au Néolithique sur les sites lacustres du Plateau suisse. Matières premières, techniques et contexte de production. Collection CRA monographies, CNRS éditions
- Mille B, Bourgarit D, Besenval R (2001) Metallurgical study of the "Leopards Weight" from Shahi-Tump (Pakistan). In: Jarrige C, Lefèvre V (eds) South Asian Archaeology 2005. Editions Recherche sur les Civilisations, Paris, pp 237–244
- Miller AG, Morris M (1988) Plants of Dhofar. The southern region of Oman. Traditional, economic and medicinal uses. The Office of the Adviser for Conservation of the Environment, Diwan of Royal Court Sultanate of Oman
- Moore HE Jr (1980) Palmae. In: Rechinger K (ed) Flora des Iranischen Hochlandes und der Umrahmenden Gebirge. Akademische Druck-u, Verlagsanstalt, Graz, p 6
- Moulhérat C, Tengberg M, Haquet J, Mille B (2002) First evidence of cotton at Neolithic Mehrgarh, Pakistan. Analysis of mineralised fibres from a copper bead. JAS 29:1393–1401
- Mutin B (2007) La "Basket Ware", une production céramique originale de la Protohistoire des confins indo-iraniens. Paléorient 32(2):175–193
- Parry DW, Smithson F (1958) Techniques for studying opaline silica in grass leaves. Ann Bot 22:543–549
- Prychid CJ, Rudall PJ, Gregory M (2004) Systematics and biology of silica bodies in monocotyledons. Bot Rev 69(4):377–440
- Richardson N, Dorr M (2003) The craft heritage of Oman, 2 vols. Motivate Publishing, Dubai
- Tengberg M (1999) Crop husbandry at Miri Qalat, Makran, SW Pakistan (4000–2000 BC). VHA 8(1–2):3–12
- Tengberg M, Moulhérat C (2008) Les "arbres à laine". Origine et histoire du coton dans l'Ancien Monde. Les Nouvelles de l'Archéologie 114:42–46
- Thomas R (2008) Anatomie des palmiers (Arecaceae Bercht. & Presl) et identification: application à l'archéobotanique. Master dissertation, Natural History Museum of Paris
- Tomlinson PB (1961) Palmae. In: Metcalfe C (ed) Anatomy of the monocotyledons, vol 2. Oxford University Press, Oxford

15.3 Article sur l'étude des charbons de Madâ'in Sâlih

Cette étude (Bouchaud *et al.* 2011) concerne l'identification de charbon provenant de foyers domestiques d'un site archéologique de la péninsule arabique (Madâ'in Sâlih) entre le II^e siècle BCE et le VII^e siècle EC. Elle met en évidence l'utilisation de stipe et de pétiole de *Phoenix* comme combustible.

The multipurpose date palm "tree": Anatomical identification of modern palm stems and practical application in the archaeological site of Madâ'in Sâlih (Saudi Arabia)

Charlène Bouchaud¹, Romain Thomas², Margareta Tengberg³

1 University of Paris 1 – UMR 7041 CNRS-University of Paris 1, Archéologies et Sciences de l'Antiquité – 21, allée de l'Université, 92000 Nanterre, France, charlene.bouchaud@gmail.com

2 Muséum national d'Histoire naturelle – UMR 7207 MNHN-CNRS-UPMC, Centre de recherche sur la paléobiodiversité et les

paléoenvironnements – 57, rue Cuvier 75005 Paris, France, thomas@mnhn.fr
Muséum national d'Histoire naturelle – UMR 7209 MNHN-CNRS-University of Paris 1, Archéozoologie et archéobotanique – 55, rue Buffon 75005 Paris, France, margareta.tengberg@mnhn.fr

Summary: Anatomical characterization of modern palms enables to identify various genera of palms and the different part of these plants: stem, petiole, lamina and root. Practical application of this anatomical study is applied for the first time on the archaeological site of Madâ'in Sâlih (Saudi Arabia) where charred plants have been found in domestic contexts dating from at least the 2nd century B.C. until the 7th century A.D. Date palm (Phoenix dactylifera L.) dominates the assemblage. Petiole remains are more testified than stem fragments. Some date palm root and leave remains are also present. These results will be discussing in a large perspective including literary sources and ethnographic observations in order to underline the management of the palm grove and the various use of the date palm during Antiquity.

Key words: Palm, stem, anatomy, Phoenix dactylifera L., archaeology. Madâ'in Sâlih

INTRODUCTION

During Prehistory the date palm (Phoenix dactylifera L.) has played an important role in the economies of the hot deserts of the Middle East. Cultivated for its numerous useful products (fruits for food and fodder; leaves for covering and basketry; fibres for ropes and "wood" for construction and fuel), the date palm also constitutes the main species of oasis agrosystems. Besides seeds, carbonized fragments of ground and vascular tissues are commonly found on archaeological sites in the Arabian Peninsula (Lombard et Tengberg, 2001). Until now they were identified taxonomically without considering if they came from the palm stem or from the woody leaf base (petiole). Yet, the differentiation is important in order to understand practices of date palm exploitation and management of date palm garden in the past. In this paper we suggest a method for distinguishing between the different parts of the palms on the basis of morphoanatomy. This method is applied at material from Madâ'in Sâlih (northwest Saudi Arabia) (Fig. 1) and interpreted in terms of plant use and fuel economy.

FIGURE 1. Localization of the site (after H.David and S.Vatteoni)

ANATOMICAL STUDY ON MODERN SAMPLES

The main descriptors that discriminate palm petioles and stem are based on the fibrous vascular bundles (*fvb*) (Tomlinson 1961). Those of petiole (and thus of the leaf) are made of a ventral fibrous part (under xylem) well developed and a dorsal fibrous part (above phloem) (Fig. 1D). At the level of the metaxylem, a discontinuity between these two fibrous parts is always prominent. Those of stem have a well-developed dorsal fibrous part. A ventral fibrous part could exist for some genera but is only made of few fibre cells or sclerenchymatous parenchyma cells and not so prominent than that of the petiole (as for Phoenix L.). Within the stem, discrimination between some genera is possible (Thomas, 2011; Thomas and De Franceschi, submitted). Only Phoenix and Hyphaene Gaertn. are endemic to northwest Saudi Arabia (Fig. 2) (Dransfield et al. 2008) with a possible presence of Nannorrhops H.Wendl. Fig. 1 A–C shows the differences between their stem fvb.

FIGURE 2. Transversal sections of Fibrous vascular bundles (fvb). A. Stem fvb of Hyphaene thebaica, without vcap and with a Reniforma dcap. B. Stem fvb of Nannorrhops ritchieana with Reniforma to Lunaria dcap and with an isolated fb. C. Stem fvb of Phoenix dactylifera with a Vaginata fibrous part (fibres cells all around the fvb). D. Petiole fvb of P. dactylifera with a small dcap and a welldeveloped vcap, these two fibrous cap are interrupted at the level of metaxylem (mx). Key to labeling: dcap: fibrous dorsal cap, fb: fibrous bundle, mx: metaxylem, vcap: fibrous ventral part. Scale bar: A–D: 500 µm.

THE ARCHAEOLOGICAL DATA

The French-Saudi Arabian archaeological and restoration mission of Madâ'in Sâlih started in 2008, directed by Laïla Nehmé (CNRS), Daifallah al-Thali (Saudi Commision for Tourism and Antiquities) and François Villeneuve (University of Paris 1) (Nehmé et al. 2010).

Madâ'in Sâlih, the antique site of *Hegra*, is located in a wide desert plain surrounded by mountains (Fig. 1). Arid conditions (\pm 50 mm of mean annual precipitation) are attenuated by mountain runoff that supplies subterranean groundwater. Today, the natural vegetation is composed mainly by open thorn shrublands.

The site was occupied at least between the 2nd century B.C. and the 7th century A.D. Numerous rock-cut monuments underline various funeral and cultic areas. The excavation of the residential area located in the middle of the town has revealed dense domestic occupations. 1509.8 liters (145 samples) of sediment from fireplaces, refuses and destruction layers were processed by flotation. Palms fragments represent 30% to 50% of the total of wood observed per zone and period. Date palm fruits and seeds dominate the seed assemblages. Among the cultivated plants of the seed or wood corpus, others fruit trees (Olea europaea L., Punica granatum L., Vitis vinifera L.), annual crops (Triticum aestivum/durum L., Hordeum vulgare L., Lens culinaris Medik., Medicago sativa L.) and textile plants (Gossypium sp.), were also identified. Charred seeds and wood of wild plant as Acacia spp., Tamarix sp. and the Chenopodiaceae family are abundant (Bouchaud 2010).

RESULTS AND DISCUSSION

The observation of specific anatomical criteria on the palms archaeological fragments allow to distinguish petioles, stems, *lamina* and roots. Petioles dominate the palm assemblages. Stem remains are abundant only in few contexts. Root and leaf fragments appear also but in less extend, maybe because of their fragility to fire. Only *P. dactylifera* species was identified among the archaeological stems.

We can assume that date palms were grown during all periods of occupation. This hypothesis is supported by archaeological survey that had revealed agricultural spaces outside from the residential area irrigated from wells (Courbon 2008). Date palm was probably the main crop, cultivated with others species mentioned above.

The pre-eminence of petiole fragments may result from the palm groves maintain, notably the pruning practices, as it is shown in ethnographic examples (Battesti 2005) and classical literary sources (Theophrastus, *Historia Plantarum* II.6.4) Indeed, stems are less likely to be cut. Use of date palm as a building material seems to be underlined in some destructions layers. Most of the archaeological contexts are fireplaces or refuse layers, which put on light the use of date palm as fuel. This is a common practice in oasis regions. However, little things are known about it. Modern sources indicate that petioles are considering as a good fuel (Munier 1973), whereas Theophrastus maintain that the "tree" is not appropriate (*Historia Plantarum* V.9.5) because of its smell.

Our results show that petioles are widely much used than stems for fuel purposes. It is very difficult to say if their use as fuel is lead by intrinsic properties (better consumption than stems?) or by their availability on nearest environment, as by-products resulting from agricultural management.

CONCLUSION

The present study attempts to underline the scientific potentiality offered by the modern anatomical characterization of palm stems and petioles and its practical application in archaeological context. Welldefined archaeological layers compared with ethnographic and literary sources put on light agricultural practices and fuel management.

REFERENCES

- BATTESTI, V., 2005. Jardins au désert: évolution des pratiques et savoirs oasiens: Jérid tunisien. IRD éditions, Paris.
- BOUCHAUD, C., 2010. Archaeobotanical report. In: Nehmé, L., Al-Thali, D., Villeneuve, F. (eds) *Report* on the Third Excavation Season (2010) of the Madâ'in Sâlih Archaeological Project, 233-252. http://halshs.archives-ouvertes.fr/halshs-00542793/fr/
- COURBON, P., 2008. Les puits nabatéens de Madâ'in Sâlih (Arabie Saoudite). *Arabian Archaeology and Epigraphy* 19, 48-70.
- DRANSFIELD, J., UHL, N., ASMUSSEN-LANGE, C. B., BAKER, W. J., HARLEY, M. M., LEWIS, C. E., 2008. *Genera Palmarum: The Evolution and Classification of Palms*. Kew Publishing, Kew, 2nd edition.
- LOMBARD, P., TENGBERG, M., 2001. Environnement et économie végétale à Qal'at al-Bahreïn aux périodes Dilmoun et Tylos. Premiers éléments d'archéobotanique. *Paléorient* 27, 167-181.
- MUNIER, P., 1973. *Le palmier-dattier*. Maisonneuve & Larose, Paris.
- THOMAS, R., 2011. Palm-ID, a database to identify the palm stem anatomy with an expert system (Xper²). http://www.infosyslab.fr/Palm- ID/
- TOMLINSON P.B., 1961. Palmae. In: Metcalfe, C. (ed) Anatomy of the Monocotyledons. Oxford University Press, Oxford.

CONCLUSION

La particularité anatomique du stipe des palmiers est connue depuis l'antiquité avec les travaux du philosophe grec Théophraste (372–288 BCE). Cette singularité a été redécouverte par les français de La Hire (1692) et un siècle plus tard par Desfontaines (1799). Mais ce n'est véritablement qu'avec les travaux du botaniste allemand von Mohl (1823-1850) que l'étude de l'anatomie du stipe a pu prendre son essor. Par la suite, de nombreux auteurs se sont intéressés aux stipes fossiles (Sahni 1964, Stenzel 1904, Stockmans et Willière 1943) et ont décrit plus de 150 espèces fossiles quasiment toutes attribuées au morpho-genre Palmoxylon. Ces descriptions ont presque toujours été réalisées sans connexion avec l'anatomie des palmiers actuels (cf. Chapitre 14). Dans la deuxième moitié du xx^e siècle, alors que les paléobotanistes décrivaient un nombre important de stipes fossiles (Prakash et Boureau 1968), deux botanistes, P.B. Tomlinson et M.H. Zimmermann ont réalisé plusieurs études sur le système vasculaire des palmiers ce qui a permis de mieux comprendre les différentes structures anatomiques qui sont observées. Alors que la littérature sur l'anatomie des palmiers devenait de plus en plus importante, aucune étude de grande ampleur ne concernait l'étude de l'anatomie comparée des stipes. Et même si quelques auteurs ont pu décrire ponctuellement certains genres actuels, comme ces travaux n'étaient pas coordonnés, il n'est pas évident de les comparer. C'est à partir de ce constat que cette thèse a vu le jour, afin de combler ce manque.

Au regard de la structure anatomique du stipe, de la difficulté d'échantillonnage et du nombre important de genres, l'étude anatomique détaillée de la famille entière n'était pas envisageable et j'ai donc décidé de me concentrer sur la sous-famille des *Coryphoideae* sans pour autant mettre de côté les quatre autres (*Calamoideae*, *Nypoideae*, *Ceroxyloideae* et *Arecoideae*). J'ai également décidé d'inclure les descriptions anatomiques de ce travail dans une base de connaissance (Thomas 2011) réalisée avec Xper² et disponible sur Internet (http://www.infosyslab.fr/Palm-ID/). Ce logiciel est un outil très puissant pour l'édition et la gestion des descriptions taxinomiques et permet de réaliser des identifications en ligne.

Les travaux de recherche menés ici permettent d'apporter des réponses à la question de départ qui était de savoir s'il était possible d'identifier les palmiers d'après leur stipe. Comme bien souvent en science et encore plus dans le domaine des sciences naturelles, la réponse (si réponse il y a) n'est pas aussi simple que la question, fait place à de nouvelles interrogations et trouve ses limites lors de son élaboration.

Dans cette thèse j'ai démontré qu'il existe certains descripteurs anatomiques qui per-

mettent d'établir une discrimination entre différentes tribus (et parfois même entre différents genres). Cette étude va donc à l'encontre de l'idée générale qui est que le stipe des palmiers présente une trop grande variabilité qui rend impossible l'élaboration de critères d'identification. C'est pour cette raison que dans un chapitre de cette thèse je me suis intéressé à cette variation afin d'en dégager les principales caractéristiques, même si certains auteurs s'étaient déjà penchés sur ce problème (Monoyer 1924, Waterhouse et Quinn 1978, Rich 1986, 1987a,b). Dans l'article sur l'étude des stipes actuels (Thomas et De Franceschi 2013), nous avons montré que ces variations peuvent être expliquées par trois types de croissance qui sont définis à partir de deux mécanismes : la croissance post-primaire du parenchyme et la différenciation centrifuge de la partie fibreuse. L'absence des deux mécanismes sus-mentionnés permet de définir un premier type de croissance. À partir de la croissance post-primaire, deux types sont définis : un premier type avec une différenciation centrifuge et un second type sans différenciation centrifuge. La différenciation centrifuge de la partie fibreuse n'avait encore jamais été décrite. Ce mécanisme consiste à la formation de nouvelles fibres à la périphérie de la partie fibreuse dorsale des faisceaux fibro-vasculaires lorsque ces derniers migrent de la zone centrale vers la zone subcorticale. Il en résulte que les faisceaux fibro-vasculaires des zones périphériques du cylindre central ont une partie fibreuse plusieurs fois supérieure à celles des faisceaux fibro-vasculaires de la zone centrale. Cette spécificité anatomique n'est retrouvée que dans une seule tribu des Coryphoideae, celle des Caryoteae, qui était encore placée au sein des Arecoideae par Uhl et Dransfield (1987).

Les descripteurs anatomiques. – J'ai pu montrer au cour de cette thèse qu'il existe certaines limites pour l'identification d'un stipe (notamment avec les variabilités axiale et radiale). Néanmoins si certaines précautions sont prises, il est possible de délimiter des descripteurs taxinomiques. Les principaux descripteurs qui permettent d'identifier les différentes tribus sont les suivants :

- L'organisation générale de la tige (ou Classification de von Mohl);
- La forme de la partie fibreuse dorsale (ou Classification de Stenzel);
- Le type de cortex (développé ou non, à étagement, présence d'épiderme, de poils épidermiques);
- Le nombre d'éléments de vaisseau par faisceaux fibro-vasculaires;
- Le type de phytolithe;
- Le type de parenchyme fondamental;
- La présence de la différenciation centrifuge de la partie fibreuse dorsale;
- Le type de phloème (en une bande, partitionné, en deux bandes);
- La présence de partie fibreuse ventrale.

À partir de ces descripteurs, j'ai pu décrire l'anatomie des différentes sous-familles et de l'ensemble des tribus des *Coryphoideae*. Parmi toutes ces descriptions, plusieurs points peuvent être soulignés ici.

L'anatomie des différentes sous-familles. – Les *Coryphoideae* peuvent se distinguer des autres sous-familles si la tribu des *Caryoteae* n'est pas considérée. En effet, aucun des genres observés ne possède une forte croissance post-primaire comme il a été observé chez les *Calamoideae*, les *Ceroxyloideae* ou bien les *Arecoideae*. Leur organisation générale est très homogène (*Cocos-Type* à *Corypha-Type*). La différenciation centrifuge de la partie fibreuse dorsale n'a jamais été observée et le nombre d'éléments de vaisseau est toujours supérieur ou égal à deux.

Les *Calamoideae* arborescents sont *Mauritia-Type*. Ils présentent une croissance postprimaire ainsi qu'une différenciation centrifuge de la partie fibreuse dorsale. Le nombre d'éléments de vaisseau au niveau des zones périphériques du cylindre central est toujours égal à un, alors que dans la zone centrale il peut y avoir un ou deux vaisseaux. Le parenchyme est trabéculaire (en étoile, lacuneux) ou à cellules géantes.

Le stipe de *Nypa* a été étudié et a révélé une anatomie particulière : le cylindre central est *Cocos-Type*, les faisceaux fibro-vasculaires sont de petites tailles avec une partie fibreuse Reniforma assez peu développée et deux éléments de vaisseau. Le trajet de ces faisceaux fibro-vasculaires ainsi que des faisceaux exclusivement fibreux est très sinueux et certains sont coupés longitudinalement dans une section transversale.

Les *Ceroxyloideae* sont *Mauritia-Type* et présentent un cortex relativement peu développé avec une sorte de phellogène et un épiderme permanent à cellules dressées (allongées radialement). Le parenchyme fondamental présente une croissance post-primaire (cellules géantes, parenchyme connectif, lacunes). Au sein de cette sous-famille, le genre *Phytelephas* présente une anatomie particulière (*Cocos-Type*). Aucune croissance post-primaire n'est observée. Ce genre possède les plus larges faisceaux exclusivement fibreux des palmiers ainsi qu'un nombre d'éléments de vaisseau très important (> 8).

Les Arecoideae n'ont été étudiés qu'à titre de comparaison afin de présenter une vue d'ensemble de l'anatomie du stipe des palmiers. Il en ressort que cette sous-famille est très majoritairement Mauritia-Type, néanmoins la tribu des Geonomateae est Geonoma-Type et quelques Cocoseae (Cocos et Elaeis) sont Cocos-Type.

Application de l'étude anatomique des stipes : paléobotanique et archéobotanique. – Ce travail de thèse a permis d'apporter de nombreux nouveaux éléments pour la compréhension de l'anatomie des stipes fossiles de palmiers qui sont très abondants dans les gisements fossiles. L'article sur l'identification de plusieurs d'entre eux appartenant à la tribu des *Cryosophileae* (Thomas et De Franceschi 2012) démontre l'importance d'un retour sur les collections de plantes fossiles afin d'identifier (ou d'essayer d'identifier) certains stipes dont l'assignation taxinomique se limite à la famille. L'étude de ces quelques palmiers fossiles, qui a été réalisée à la fin de cette thèse, ne concerne que quelques spécimens de la collection du Muséum national d'Histoire naturelle. Le potentiel de ce travail ne se limite pas à cette seule application et d'autres études sont en cours avec d'autres spécimens des deux mêmes sites (Apt et Castellane) et d'autres localités comme Belleville, Paris (Yprésien), et Villers-en-Prayères, Aisne (Priabonien).

Ces travaux ont également de nombreuses potentialités dans l'identification de restes archéologiques comme je l'ai montré avec les deux applications que j'ai présentées. Une première étude (Thomas *et al.* 2012) a montré l'utilisation de *Nannorrhops* pour la fabrication d'un filet retrouvé dans un site protohistorique (Shahi Tump, Baluchistan, Pakistan). Une autre application (Bouchaud *et al.* 2011) a permis l'identification de stipe de *Phoenix* comme combustible dans le site archéologique de Madâ'in Sâlih (Arabie Saoudite).

Perspectives. – Dans cette thèse sur l'anatomie des stipes de palmiers, j'ai montré qu'il existe trois types de croissance. Néanmoins, des études approfondies sur ces différents modes sont indispensables afin d'en préciser les caractéristiques. Ils ont d'importantes conséquences sur la façon dont le diamètre maximal du stipe est atteint et sur la répartition des structures de soutien (la partie fibreuse des faisceaux fibro-vasculaires). Cependant, de nombreuses questions restent en suspens. Ces modes de croissance sont-ils liés à certains facteurs environnementaux? ou reflètent-ils la phylogénie des palmiers? Dans ce cas là, il serait intéressant d'essayer d'étudier certains fossiles afin de connaître le mode de croissance ancestral et celui qui en est dérivé.

Néanmoins des études préliminaires laissent penser que le climat modifie les structures anatomiques. Mais dans quelles mesures ? Des études supplémentaires sont donc nécessaires afin de connaître son influence sur l'anatomie des stipes de palmiers et les variations des structures anatomiques engendrées. Les structures anatomiques qui sont susceptibles d'être les plus affectées sont les faisceaux fibro-vasculaires. Les observations réalisées au cours de cette thèse permettent d'apporter des premiers éléments de réponse. Il semble que lorsque la disponibilité en eau diminue, le nombre d'éléments de vaisseau par faisceau fibro-vasculaire augmente et le diamètre de ces vaisseaux diminue. Ceci pourrait avoir d'importantes conséquences lors de l'identification de stipes de palmiers fossiles. En effet, les palmiers sont dans la grande majorité des cas associés à un climat chaud et humide. Cependant, certains peuvent résister à une couverture neigeuse pendant plusieurs semaines et à des températures de -20 °C (*Trachycarpus*). D'autres sont particulièrement bien adaptés à des événements de sécheresse extrême. Par exemple, *Medemia* se trouve dans le désert de Nubie où il peut ne pas pleuvoir pendant plusieurs années. Il serait donc particulièrement intéressant de pouvoir apporter des informations paléoenvironnementales complémentaires lors de la découverte de stipes fossiles.

Cette thèse fournit un outil d'identification des stipes de palmiers basé sur des descripteurs anatomiques et participe ainsi à l'amélioration de la connaissance de cette magnifique famille. Ainsi, l'étude et l'identification des fossiles de palmiers en est améliorée, ce qui permettra à terme, avec l'étude d'autres organes fossiles qu'ils soient végétatifs ou reproducteurs, de fournir d'importantes informations pour la calibration des phylogénies et d'approfondir la connaissance de leur histoire évolutive.

- AGARWAL, A., K. AMBWANI, D. DUTTA ET C. VERMA. 2007. *Palmoxylon phoenicoides* sp. nov. : a *Phoenix*-like fossil palm wood from the Deccan Trap of Banswara district, Rajasthan. *Phytomorphology*, 57(3–4) : 171–176.
- ALBERT, R. M., M. K. BAMFORD ET D. CABANES. 2009. Palaeoecological significance of palms at Olduvai Gorge, Tanzania, based on phytolith remains. *Quaternary Internatio*nal, 193(1–2): 41–48.
- AMBWANI, K. 1983. Palmoxylon shahpuraensis sp. nov., a fossil palm resembling Licuala from the Deccan Intertrappean beds of Mandla District, Madhya Pradesh. Palaeobotanist, 31: 52–59.
- AMBWANI, K. 1985. Observations on the anatomy of the stem of *Trachycarpus martiana* H. Wendl. *Geophytology*, 15(2) : 199–205.
- AMBWANI, K. ET R. MEHROTRA. 1989. A new fossil palm wood from the Deccan intertrappean beds of Shahpura, Mandla District, Madhya Pradesh. *Geophytology*, 19(1) : 70–75.
- AMBWANI, K. ET U. PRAKASH. 1983. Palmoxylon ghuguensis sp. nov. resembling Chrysalidocarpus from the Deccan Intertrappean beds of Mandla District in Madhya Pradesh. Palaeobotanist, 31: 76–81.
- ASMUSSEN, C. B. 1999. Toward a chloroplast phylogeny of the tribe *Geonomeae* (*Palmeae*). Memoirs of The New York Botanical Garden, 83 : 121–129.
- ASMUSSEN, C. B., W. J. BAKER ET J. DRANSFIELD. 2000. Phylogeny of the palm family (Arecaceae) based on rps16 inton and trnL-trnF plastid DNA sequences. In WILSON, K. ET D. MORRISSON (éds.), Monocots : Systematics and Evolution, 525–537. CSIRO, Melbourne.
- ASMUSSEN, C. B. ET M. W. CHASE. 2001. Coding and noncoding plastid DNA in palm systematics. *American Journal of Botany*, 88(6): 1103–1117. URL http://www.amjbot. org/cgi/content/abstract/88/6/1103.
- ASMUSSEN-LANGE, C. B., J. DRANSFIELD, V. DEICKMANN, A. S. BARFOD, J.-C. PIN-TAUD ET W. J. BAKER. 2006. A new subfamily classification of the palm family (*Arecaceae*) : evidence from plastid DNA phylogeny. *Botanical Journal of the Linnean Society*, 151 : 15–38.
- AYENSU, E. 1972. Dioscoreales. In METCALFE, C. (éd.), Anatomy of the Monocotyledons, volume 6. Oxford University Press, Oxford.
- BAAS, P., E. WERKER ET A. FAHN. 1983. Some ecological trends in vessel characters. IAWA Bulletin, new serie, 4(2–3) : 141–159.

- BAKER, W. J., C. B. ASMUSSEN, S. C. BARROW, J. DRANSFIELD ET T. A. HEDDERSON. 1999. A phylogenetic study of the palm family (*Palmae*) based on chloroplast DNA sequences from the *trnL trnF* region. *Plant Systematics and Evolution*, 219 : 111–126. URL http://dx.doi.org/10.1007/BF01090303.
- BAKER, W. J. ET A. H. B. LOO. 2004. A Synopsis of the Genus *Hydriastele (Arecaceae)*. *Kew Bulletin*, 59(1): 61–68. URL http://www.jstor.org/stable/4111074.
- BAKER, W. J., V. SAVOLAINEN, C. B. ASMUSSEN-LANGE, M. W. CHASE, J. DRANS-FIELD, F. FOREST, M. M. HARLEY, N. UHL ET M. WILKINSON. 2009. Complete Generic-Level Phylogenetic Analyses of Palms (*Arecaceae*) with Comparisons of Supertree and Supermatrix Approaches. *Systematic Biology*, 58(2): 240–256.
- DE BARY, A. 1877. Vergleichende Anatomie der Vegetationsorgane der Phanerogamen und Farne. Wilhelm Engelmann, Leipzig.
- BECCARI, O. ET R. PICHI-SERMOLLI. 1956. Subfamiliae Arecoidearum palmae gerontogeae. Webbia, 11: 1–188.
- BENTHAM, G. ET J. HOOKER. 1883. *Genera plantarum*, volume 3. L. Reeve & Co., Londoni.
- BERCHTOLD, F. ET J. S. PRESL. 1820. 0 přirozenosti rostlin. Krala Wiljma Endera, Praha.
- BHAT, K. M., K. MOHAMMED NASSER ET P. THULASIDAS. 1993. Anatomy and identification of south Indian rattans (*Calamus* species). *IAWA Journal*, 14(1): 63–76.
- BIONDI, E. ET R. FILIGHEDDU. 1990. A palm fossil closely related to *Chamaerops humilis* L. from the Lower Miocene of Sardinia. *Giornale botanico Italiano*, 124(6) : 711–724.
- BOUCHAUD, C., R. THOMAS ET M. TENGBERG. 2011. The multipurpose date palm "tree" : anatomical identification of modern palm stems and practical application in the archaeological site of Madâ'in Sâlih (Saudi Arabia). In BADAL, E., Y. CARRIÓN, E. GRAU, M. MACIAS ET M. NTINOU (éds.), 5th International Meeting of Charcoal Analysis, Saguntum extra, volume 11, 47–48. Valencia. URL http://ojs.uv.es/index.php/ saguntumextra/article/view/1538/912.
- BOURA, A. ET D. DE FRANCESCHI. 2008. Une méthode simple de collecte de bois, de liber et d'écorce pour des études anatomiques. Adansonia, 30(1): 7–15.
- BOUREAU, E. 1947a. Étude anatomique et paléogéographique du Palmoxylon lacunosum (Unger) Felix. Sa présence dans les couches tertiaires de Gignac (Vaucluse). Bulletin du Muséum national d'Histoire naturelle, 19(5): 422–427.
- BOUREAU, E. 1947b. Sur la présence du Palmoxylon achersoni Schenk dans les couches tertiaires de la vallee du Chélif (Algérie). Bulletin du Muséum national d'Histoire naturelle, 19(2): 230–236.
- BOUREAU, E. 1949. Étude anatomique et paléogéographique de deux tiges de Palmiers fossiles (*Palmoxylon ligericum* Crié) récoltés aux environs de Savigné-sur-Lathan (Indreet-Loire). Bulletin de la Société Géologique de France, 5^e série, 19 : 601–609.

- BRONGNIART, A. 1822a. Description géologique des environs de Paris. In CUVIER, G. ET A. BRONGNIART (éds.), Description des végétaux fossiles du terrain de sédiment supérieur, cités dans la descritpion géologique du bassin de Paris, 353–373. G. Duffour et E. d'Ocagne, Paris.
- BRONGNIART, A. 1822b. Sur la classification et la distribution des végétaux fossiles en général, et sur ceux des terrains de sédiment supérieur en particulier. Mémoires du Muséum d'Histoire Naturelle. Paris, 8 : 203–240; 297–348.
- BRONGNIART, A. 1828. Prodrome d'une histoire des végétaux fossiles. F. G. Levrault, Paris.
- BURKILL, I. 1966. A dictionary of the economic products of the Malay Peninsula. 2^e édition. Ministry of Agriculture and Cooperatives, Kuala Lumpur.
- BURRET, M. 1953. Systematische Übersicht über die Gruppen der Palmen. Willdenowia, 1(1): 59–74.
- CARLQUIST, S. 2001. Comparative wood anatomy, Systematic, Ecological, and Evolutionary Aspects of Dicotyledon Wood. Springer series in wood science, 2^e édition. Springer, Berlin.
- CATTAI, M. ET N. L. DE MENEZES. 2010. Primary and secondary thickening in the stem of *Cordyline fruticosa* (*Agavaceae*). *Anais da Academia Brasileira de Ciências*, 82(3) : 653–662.
- CHASE, M. W. ET J. L. REVEAL. 2009. A phylogenetic classification of the land plants to accompany APG III. *Botanical Journal of the Linnean Society*, 161 : 122–127.
- CHASE, M. W., J. L. REVEAL ET M. F. FAY. 2009. A subfamilial classification for the expanded asparagalean families *Amaryllidaceae*, *Asparagaceae* and *Xanthorrhoeaceae*. *Botanical Journal of the Linnean Society*, 161 : 132–136.
- CHEADLE, V. I. 1937. Secondary Growth by Means of a Thickening Ring in Certain Monocotyledons. *Botanical Gazette*, 98(3) : 535-555. URL http://www.jstor.org/stable/ 2471543.
- CHEADLE, V. 1942. The Occurrence and types of vessels in the various organs of the plant in the *Monocotyledoneae*. American Journal of Botany, 29(6): 441–450.
- CHEADLE, V. 1943a. The origin and certain trends of specialization of the vessel in the Monocotyledoneae. American Journal of Botany, 30(1): 11–17.
- CHEADLE, V. 1943b. Vessel specialization in the late metaxylem of the various organs in the Monocotyledoneae. American Journal of Botany, 30(7): 484–490.
- CHEADLE, V. ET H. KOSAKAI. 1975. Vessels in Juncales : II. Centrolepidaceae and Restionaceae. American Journal of Botany, 62(10) : 1017–1026.
- CHEADLE, V. ET N. UHL. 1948. Types of vascular bundles in the *Monocotyledoneae* and their relation to the late metaxylem conducting elements. *American Journal of Botany*, 35(8): 486–496.

- CLEAL, C. J. ET B. A. THOMAS. 2010. (101103) Proposals to modify the provisions in the Code for naming plant fossils. *Taxon*, 59(1) : 312-313. URL http://www. ingentaconnect.com/content/iapt/tax/2010/00000059/00000001/art00051.
- CORDA, A. J. 1845. Beiträge zur Flora der Vorwelt. J.G. Calve'sche Buchhandlung, Prag.
- CORNER, E. 1966. The Natural History of Palms. The World Naturalist, London.
- COTTA, B. 1832. Die Dendrolithen in Beziehung auf ihren inneren Bau. Arnoldische Buchhandlung, Dresde und Leipzig. URL http://www.archive.org/details/ diedendrolithen00cottgoog.
- CRIÉ, L. 1892. Recherches sur les Palmiers silicifiés des terrains crétacés de l'Anjou. Bulletin de la Société d'Études scientifiques d'Angers, 21 : 97–103.
- DELHON, C. ET C. ORLIAC. 2008. Les palmiers disparus de l'Île de Pâques : Nouvelles données radiocarbones et phytolithiques. In VALENTIN, F. (éd.), Études pluridisciplinaires sur les sociétés anciennes du Pacifique Sud. CNRS, Paris.
- DESFONTAINES, R. 1799. Sur l'organisation des monocotyledons, ou plantes à une feuille séminale. Mémoires de l'Institut national des sciences et arts. Sciences mathématiques et physiques, 1 : 478–502.
- DRABBLE, E. 1904. On the Anatomy of the Roots of Palms. Transactions of the Linnean Society of London. Botany, 6: 427–490.
- DRANSFIELD, J., M. RAKOTOARINIVO, W. J. BAKER, R. P. BAYTON, J. B. FISHER, J. W. HORN, B. LEROY ET X. METZ. 2008a. A new Coryphoid palm genus from Madagascar. *Botanical Journal of the Linnean Society*, 156 : 79–91.
- DRANSFIELD, J. ET N. UHL. 1986. An outline of a classification of palms. *Principes*, 30(1): 3–11.
- DRANSFIELD, J., N. UHL, C. B. ASMUSSEN, W. J. BAKER, M. M. HARLEY ET C. E. LEWIS. 2005. A New Phylogenetic Classification of the Palm Family, Arecaceae. Kew Bulletin, 60(4): 559–569. URL http://www.jstor.org/stable/25070242.
- DRANSFIELD, J., N. UHL, C. B. ASMUSSEN-LANGE, W. J. BAKER, M. M. HARLEY ET C. E. LEWIS. 2008b. Genera Palmarum : The Evolution and Classification of Palms. 2^e édition. Kew Publishing, Kew.
- DRUDE, O. 1889. Gymnospermen und Monocotylen. In ENGLER, A. ET K. PRANTL (éds.), Die natürlichen Pflanzenfamilien, numéro 3 in 2, 1^{re} édition. W. Engelmann, Leipzig.
- DUNN, D. B., G. K. SHARMA ET C. C. CAMPBELL. 1965. Stomatal Patterns of Dicotyledons and Monocotyledons. *The American Midland Naturalist*, 74(1): 185–195.
- DUPÉRON-LAUDOUENEIX, M. ET J. DUPÉRON. 1995. Inventory of Mesozoic and Cenozoic woods from Equatorial and North Equatorial Africa. *Review of Palaeobotany and Palynology*, 84(3–4): 439–480.

- DUTTA, D., K. AMBWANI ET E. ESTRADA-RUIZ. 2011. Late Cretaceous palm stem Palmoxylon lametaei sp. nov. from Bhisi Village, Maharashtra, India. Revista Mexicana de Ciencias Geológicas, 28(1): 1–9.
- EL-SAADAWI, W., S. G. YOUSSEF ET M. M. KAMAL-EL-DIN. 2004. Fossil palm woods of Egypt : II. Seven Tertiary *Palmoxylon* species new to the country. *Review of Palaeobotany and Palynology*, 129(4) : 199-211. URL http://www.sciencedirect.com/ science/article/B6V6W-4C5PWOR-3/2/f40f4654773b021690b2b8ed4a0242ed.
- ERWIN, D. ET R. A. STOCKEY. 1994. Permineralized Monocotyledons from the Middle Eocen Princeon chert (Allenby Formation) of British Columbia, Canada : Arecaceae. Palaeontographica Abteilung B, Paläophytologie, 234(1-2) : 19–40.
- FALKENBERG, P. 1876. Vergleichende Untersuchungen über den Bau der Vegetationsorgane der Monocotyledonen. Ferdinand Enke, Stuttgart.
- FELIX, J. 1883. Die fossilen Hölzer Westindiens. Sammlung Palaeontologischer Abhandlungen, 1(1): 1–29.
- FISHER, J. B. 1975. Eccentric Secondary Growth in Cordyline and Other Agavaceae (Monocotyledonae) and its Correlation with Auxin Distribution. American Journal of Botany, 62(3): 292-302. URL http://www.jstor.org/stable/2441864.
- FISHER, J. B., J. N. BURCH ET L. R. NOBLICK. 1996. Stem Structure of the Cuban Belly Palm (*Gastrococos crispa*). *Principes*, 40(3) : 125–128.
- FISHER, J. B. ET K. JAYACHANDRAN. 1999. Root structure and arbuscular mycorrhizal colonization of the palm *Serenoa repens* under field conditions. *Plant and Soil*, 217 : 229–241.
- FISHER, J. B., H. T. TAN ET L. P. TOH. 2002. Xylem of rattans : vessel dimensions in climbing palms. *American Journal of Botany*, 89(2) : 196–202.
- FLICHE, P. 1888. Sur les bois silicifiés de la Tunisie et de l'Algérie. Comptes rendus hebdomadaires des séances de l'Académie des sciences, 107(14) : 568–572.
- FRENCH, J. C., K. CLANCY ET P. B. TOMLINSON. 1983. Vascular Patterns in Stems of the Cyclanthaceae. American Journal of Botany, 70(9): 1386–1400. URL http://www. jstor.org/stable/2443429.
- FRENCH, J. C. ET P. B. TOMLINSON. 1981a. Vascular Patterns in Stems of Araceae : Subfamilies Calloideae and Lasioideae. Botanical Gazette, 142(3) : 366-381. URL http: //www.jstor.org/stable/2474361.
- FRENCH, J. C. ET P. B. TOMLINSON. 1981b. Vascular Patterns in Stems of Araceae : Subfamily Monsteroideae. American Journal of Botany, 68(8) : 1115–1129. URL http: //www.jstor.org/stable/2442721.
- FRENCH, J. C. ET P. B. TOMLINSON. 1981c. Vascular Patterns in Stems of Araceae : Subfamily Philodendroideae. Botanical Gazette, 142(4) : 550-563. URL http://www. jstor.org/stable/2474326.

- FRENCH, J. C. ET P. B. TOMLINSON. 1981d. Vascular Patterns in Stems of Araceae : Subfamily Pothoideae. American Journal of Botany, 68(5) : 713-729. URL http:// www.jstor.org/stable/2442799.
- FRENCH, J. C. ET P. B. TOMLINSON. 1983. Vascular Patterns in Stems of Araceae : Subfamilies Colocasioideae, Aroideae and Pistioideae. American Journal of Botany, 70(5) : 756-771. URL http://www.jstor.org/stable/2443130.
- FRENCH, J. C. ET P. B. TOMLINSON. 1986. Compound Vascular Bundles in Monocotyledonous Stems : Construction and Significance. *Kew Bulletin*, 41(3) : 561–574. URL http://www.jstor.org/stable/4103117.
- GENEVES, L. 1962. Manipulations de botanique. Dunod, Paris.
- GOVAERTS, R., J. DRANSFIELD, S. ZONA, D. R. HODEL ET A. HENDERSON. 2011. World Checklist of *Arecaceae. Base de données nomenclaturale*, The Board of Trustees of the Royal Botanic Gardens, Kew. URL http://www.kew.org/wcsp/.
- GRAMBAST, N. 1957. Un *Palmoxylon* nouveau du Nummulitique de Provence. *Bulletin de la Société Géologique de France*, 6(7) : 361–368.
- GRAMBAST, N. 1965. Particularités anatomiques du *Palmoxylon vestitum* (Saporta) Stenzel. *Bulletin du Muséum national d'Histoire naturelle*, 36(5) : 707–712.
- GREGUSS, P. 1954. Les vestiges de bois silicifié du Miocène inférieur d'Ipolytarnoc. Földtani Közlöny, 84(1-2): 91–109.
- GUILLAUD, A. 1878. Recherches sur l'anatomie comparée et le développement des tissus de la tige des Monocotylédones. Thèse de doctorat, Faculté des sciences de Paris, Paris.
- HABERLANDT, G. 1884. Physiologische Pflantzenanatomie. Wilhelm Engelmann, Leipzig.
- HAHN, W. J. 2002. A Molecular Phylogenetic Study of the *Palmae* (*Arecaceae*) Based on atp B, rbc L, and 18S nrDNA Sequences. *Systematic Biology*, 51(1) : 92–112.
- HARLEY, M. M. 2006. A summary of fossil records for Arecaceae. Botanical Journal of the Linnean Society, 151: 39–67.
- HARLEY, M. M. ET W. J. BAKER. 2001. Pollen aperture morphology in *Arecaceae* : application within phylogenetic analyses, and a summary of the fossil record of palm-like pollen. *Grana*, 40 : 45–77.
- HODEL, D. R. ET D. R. PITTENGER. 2003. Studies on the establishment of date palm (*Phoenix dactylifera* 'Deglet Noor') offshoots. Part I. Observations on root development and leaf growth. *Palms*, 47(4): 191–200.
- HORN, J. W., J. B. FISHER, P. B. TOMLINSON, C. E. LEWIS ET K. LAUBENGAYER. 2009. Evolution of lamina anatomy in the palm family (*Arecaceae*). *American Journal* of Botany, 96(8): 1462–1486.

- JACCARD, P. 1901. Distribution de la flore alpine dans le bassin des Dranses et dans quelques régions voisines. Bulletin de la Société vaudoise des sciences naturelles, 37 : 547–579.
- KAUFF, F., P. J. RUDALL ET J. G. CONRAN. 2000. Systematic root anatomy of Asparagales and other monocotyledons. *Plant Systematics and Evolution*, 223 : 139–154.
- KAUL, K. 1938. An analysis of the artificial genus Palmoxylon into natural genera. Proceedings of the 25th Indian Science Congress, 149–150.
- KAUL, K. 1943. A palm stem from the Miocene of Antigua, W. I. *Phytelephas sewardii* sp. nov. *Proceedings of the Linnean Society of London*, 155(1): 3–4.
- KAUL, K. 1944. A fossil palm stem from South Africa (Palmoxylon du toitii) sp. nov. Proceedings of the Linnean Society of London, 156(3): 197–198.
- KAUL, K. 1960. The anatomy of the stem of palms and the problem of the artificial genus *Palmoxylon* Schenk. *Bulletin of the National Botanical Garden*, 51 : 1–52.
- KEATING, R. 2003. Acoraceae and Araceae. In CUTLER, D. ET M. GREGORY (éds.), Anatomy of the Monocotyledons, volume 9. Oxford University Press, Oxford.
- KLOTZ, L. H. 1977. A systematic survey of the morphology of tracheary elements in palms. Thèse de doctorat, Cornell University, Ithaca.
- KLOTZ, L. H. 1978a. Form of the perforation plates in the wide vessels of metaxylem in palm. *Journal of the Arnold Arboretum*, 59(2) : 105–128.
- KLOTZ, L. H. 1978b. Observations on Diameters of Vessels in Stems of Palms. Principes, 22(3): 99–106.
- KOENIGER, J.-C. 1968. Sur la présence des genres Taxodioxylon et Palmoxylon dans l'Yprésien de Cuise-la-Motte (Oise). Mémoire du Bureau de recherches géologiques et minières, 58 : 311–323.
- KOENIGER, J.-C. 1969. Sur quelques structures de palmiers du Mio-Pliocène de Lybie. In 94^e Congrès national des Sociétés savantes, sciences, volume 3, 175–189. Sociétés savantes, Pau.
- KOENIGER, J.-C., M. LAURAIN, J. MOUTON, J.-C. PLAZIAT, R. WYNS ET E. BOUREAU. 1985. Sur de nouveaux gisements cénozoïques à végétaux fossiles dans le Bassin de Paris : végétation et paléoclimats. Comptes rendus de l'Académie des sciences, Paris. Série 2, Sciences de la terre et des planètes, 301(7) : 509–514.
- KULKARNI, K. ET T. MAHABALE. 1971. *Palmoxylon kamalam* Rode from Kondhali, district nagpur, M.S., and its resemblance with other palms. *Palaeobotanist*, 20(2): 170–178.
- KVAČEK, J. ET A. B. HERMAN. 2004. Monocotyledons from the Early Campanian (Cretaceous) of Grünbach, Lower Austria. *Review of Palaeobotany and Palynology*, 128 : 323–353.

- DE LA HIRE, P. 1692. Description d'un tronc de palmier pétrifié, et quelques réflexions sur cette pétrification. *Recueil de l'Académie*, 10 : 95–98.
- LAKHANPAL, R. N. 1956. *Palmoxylon surangei*, a new species of petrified Palms from the Deccan Intertrappean series. *Palaeobotanist*, 4 : 15–21.
- LANGERON, M. 1949. Precis de microscopie. 7^e édition. Masson.
- LEBBE, J. 1991. Représentation des concepts en biologie et en médecine : introduction à l'analyse des connaissances et à l'identification assistée par ordinateur. Thèse de doctorat, Université Pierre et Marie Curie, Paris.
- LEBBE, J. 1998. Représentation par objets et classifications biologiques. In DUCOURNEAU, R., J. EUZENAT, G. MASINI ET A. NAPOLI (éds.), Langages et modèles à objets, 421– 447. INRIA, Le Chesnay.
- LEWIS, C. E. 2002. A phylogenetic analysis of the palm subtribe *Oncospermatinae* (Arecaceae) based on morphological characters. Brittonia, 54(2): 78–91.
- LEWIS, C. E., W. J. BAKER ET C. B. ASMUSSEN. 2000. DNA and Palm Evolution. *Palms*, 44(1): 19–24.
- LEWIS, C. E. ET J. J. DOYLE. 2001. Phylogenetic Utility of the Nuclear Gene Malate Synthase in the Palm Family (*Arecaceae*). *Molecular Phylogenetics and Evolution*, 19(3): 409 - 420. URL http://www.sciencedirect.com/science/article/B6WNH-45B592H-6/2/ eadOff455ed614826f85edac6a8428db.
- LIESE, W. 1998. The anatomy of bamboo culms. Brill Academic Publishers, Leiden.
- LINDORF, H. 1994. Eco-anatomical wood features of species from a very dry tropical forest. *IAWA Journal*, 15(4): 361–374.
- VON LINNÉ, C. 1766. Systema Naturae, volume 1. 2^e édition. Laurentii Salvii, Holmiae.
- LOCQUIN, M. ET M. LANGERON. 1978. Manuel de microscopie. Masson, Paris.
- LOUVET, P. ET P. MAGNIER. 1971. Confirmation de la dérive du continent Africain au Tertiaire par la paléobotanique. 96^e Congrès national des sociétés savantes, sciences, 5 : 177–189.
- MAHABALE, T. 1958. Resolution of the artificial palm genus *Palmoxylon* : a new approach. *Palaeobotanist*, 7(1) : 76–84.
- MAHABALE, T. ET N. UDWADIA. 1959. Studies on palms : part IV—Anatomy of palm roots. Proceedings of the National Institute of Sciences of India. Part B, biological sciences, 26(2) : 73–104.
- MARTIUS, K. F. P. v. 1823-1850. *Historia naturalis Palmarum. Opus tripartitum.* F. Fleischer, Lipsiae.

- MCNEILL, J., F. R. BARRIE, H. M. BURDET, V. DEMOULIN, D. L. HAWKSWORTH, K. MARHOLD, D. H. NICOLSON, J. PRADO, P. C. SILVA, J. E. SKOG, J. H. WIERSEMA ET N. J. TURLAND. 2006. International Code of Botanical Nomenclature (Vienna Code) adopted by the Seventeenth International Botanical Congress Vienna, Austria, July 2005. In Regnum Vegetabile, volume 146. A.R. Gantner Verlag, Ruggell.
- MENON, V. K. 1963. A new species of *Palmoxylon* from the Deccan intertrappean beds. *Proceedings, Indian Academy of Sciences. Section B, biological sciences,* 49: 77–86.
- MENON, V. K. 1964. Palmocaulon raoi, possibly a new species of petrified palm petiole from Mohgaon Kalan area in Madhya Pradesh. Proceedings, Indian Academy of Sciences. Section B, biological sciences, 30 : 15–24.
- METCALFE, C. 1960. *Gramineae*. In METCALFE, C. (éd.), Anatomy of the Monocotyledons, volume 1. Oxford University Press, Oxford.
- METCALFE, C. 1961. The anatomical approach to systematics. General introduction with special reference to recent work on monocotyledons. *In NINTH INTERNATIONAL BO-*TANICAL CONGRESS (éd.), *Recent Advances in Botany*, 146–150. University of Toronto Press, Toronto.
- METCALFE, C. 1971. Cyperaceae. In METCALFE, C. (éd.), Anatomy of the monocotyledons, volume 5. Oxford University Press, Oxford.
- DE MIRBEL, C. 1844. Suite de recherches anatomiques et physiologiques sur quelques végétaux monocotylés. Annales des sciences naturelles. Botanique. Sér. 3, 3 : 321–337.
- MISSOURI BOTANICAL GARDEN. 2011. Tropicos.org, Database of the Missouri Botanical Garden. Base de données nomenclaturale, Missouri Botanical Garden, Saint Louis. URL http://www.tropicos.org.
- VON MOHL, H. 1823-1850. De Palmarum Structura. In MARTIUS, K. F. P. V. (éd.), Historia naturalis Palmarum. Opus tripartitum, volume 1. F. Fleischer, Lipsiae.
- VON MOHL, H. 1849. On the structure of the palm-stem. In HENFREY, A. (éd.), Reports and papers on botany, English translation. Ray Society, London.
- MONOYER, A. 1924. Anatomie du Cocos botryophora. Mémoires de la classe des sciences, Académie Royale de Belgique. Collection in 8vo. Sér. 2, 8 : 1–44.
- MOORE JR., H. E. 1973. The Major Groups of Palms and Their Distribution. *Gentes Herbarum*, 11(2): 27–141.
- MOORE JR., H. E. ET N. UHL. 1982. Major trends of evolution in palms. *Botanical Review*, 48(1): 1–69.
- MUNIER, P. 1973. Le palmier dattier. Collection Techniques agricoles et productions tropicales, XXIV. G.P. Maisonneuve & Larose, Paris.

- NAMBUDIRI, E. ET W. D. TIDWELL. 1998. *Palmoxylon hebbertii*, from the Lower Oligocene Goldens Ranch Formation of central Utah, U.S.A., with an analysis of some characteristics previously used in the classification of *Palmoxylon*. *Canadian Journal of Botany*, 76: 517–529.
- PAN, A. D., B. F. JACOBS, J. DRANSFIELD ET W. J. BAKER. 2006. The fossil history of palms (*Arecaceae*) in Africa and new records from the Late Oligocene (28-27 Mya) of north-western Ethiopia. *Botanical Journal of the Linnean Society*, 151 : 69–81.
- PARTHASARATHY, M. 1968. Observations on Metaphloem in the Vegetative Parts of Palms. American Journal of Botany, 55(10) : 1140–1168.
- PARTHASARATHY, M. 1974a. Ultrastructure of phloem in palms. I. Mature sieve elements and parenchmatic elements. *Protoplasma*, 79: 59–91.
- PARTHASARATHY, M. 1974b. Ultrastructure of phloem in palms. II. Structural changes, and fate of the organelles in differentiating sieve elements. *Protoplasma*, 79: 93–125.
- PARTHASARATHY, M. 1974c. Ultrastructure of phloem in palms. III. Mature phloem. *Pro*toplasma, 79: 265–315.
- PARTHASARATHY, M. 1980. Mature Phloem of Perennial Monocotyledons. Berichte der Deutschen Botanischen Gesellschaft, 93: 57–70.
- PARTHASARATHY, M. ET L. H. KLOTZ. 1976. Palm "Wood" I. Anatomical Aspects. Wood Science and Technology, 10: 215–229.
- PARTHASARATHY, M. ET P. B. TOMLINSON. 1967. Anatomical features of metaphloem in stems of *Sabal*, *Cocos* and two other palms. *American Journal of Botany*, 54(9) : 1143–1151.
- PHILIPP, M. 1923. Über die verkorkten Abschlußgewebe der Monokotylen. *Bibliotheca Botanica. Kassel*, 92 : 1–27.
- PINTAUD, J.-C. ET W. J. BAKER. 2008. A revision of the palm genera (*Arecaceae*) of New Caledonia. *Kew Bulletin*, 63 : 61–73.
- POTZTAL, E. 1964. Reihe Principes. In A. Engler's Syllabus der Pflanzenfamilien, volume 2, 12^e édition. Borntraeger, Berlin.
- PRAKASH, U. 1958a. Studies in the Deccan intertrappean flora : Two palm woods from Mohgaon Kalan. *Palaeobotanist*, 7(2) : 136–142.
- PRAKASH, U. 1958b. Studies in the Deccan intertrappean flora : Two silicified woods from Madhya Pradesh. *Palaeobotanist*, 7 : 12–20.
- PRAKASH, U. 1960. A Survey of the Deccan Intertrappean Flora of India. *Journal of Paleontology*, 34(5): 1027–1040. URL http://www.jstor.org/stable/1301028.
- PRAKASH, U. 1961. *Palmoxylon eocenum* sp. nov., from the Deccan Intertrappean beds of Mahurzari. *Palaeobotanist*, 10(1–2) : 6–9.

- PRAKASH, U. ET K. AMBWANI. 1980. A petrified Livistona-like palm stem, Palmoxylon livistonoides sp. nov. from the Deccan Intertrappean beds of India. Palaeobotanist, 26(3): 297–306.
- PRAKASH, U. ET E. BOUREAU. 1968. Bois fossiles de Palmiers. Mémoires de la section des sciences du Comité des travaux historiques et scientifiques, 2 : 130–146.
- PRIVÉ-GILL, C. ET H. PELLETIER. 1981. Sur quelques bois silicifiés du Tertiaire de limagne, dans la region d'Aigueperse (Puy-de-Dôme), France. Review of Palaeobotany and Palynology, 34 : 369–405.
- RAMANUJAM, C. 1953. *Palmoxylon arcotense* sp. nov., a fossil palm resembling the living genus *Livistona* from South India. *Palaeobotanist*, 2 : 89–91.
- RAMANUJAM, C. 1958. *Palmoxylon puratanam*, a new species of petrified palms from the Tertiary rocks of South India. *Journal of the Indian Botanical Society*, 37(1): 128–137.
- RAO, A. ET V. ACHUTHAN. 1969. Two New Pieces of Petrified Palm Wood from the Deccan Intertrappean Beds of Mohgaon Kalan, (M.P.) India. In SANTAPAU, H., A. GHOSH, S. CHANDA, S. ROY ET S. CHAUDHURI (éds.), J. Sen memorial volume, 319–329. J. Sen Memorial Committee and Botanical Society of Bengal, Calcutta.
- RAO, A. ET V. ACHUTHAN. 1973. A review of fossil palm remains from India. Palaeobotanist, 20(2): 190–202.
- RAO, A. ET V. K. MENON. 1966. A new species of petrified palm stem from the Deccan Intertrappean series. *Palaeobotanist*, 14(1–3) : 256–263.
- RAO, A. ET V. K. MENON. 1962. Palmoxylon narayanai, a new species of petrified palm stems from Mohgaon Kalan, India. Proceedings, Indian Academy of Sciences. Section B, biological sciences, 56 : 286–295.
- RAO, A. ET V. K. MENON. 1963a. Palmoxylon maheshwarii a petrified palm wood from the Deccan Intertrappean beds. Proceedings of the National Institute of Sciences of India. Part B, biological sciences, 29(4): 423–433.
- RAO, A. ET V. K. MENON. 1963b. *Palmoxylon parthasarathyi* sp. nov., a pretrified palm stem from Mohgaon Kalan. *Palaeobotanist*, 12(1): 1–6.
- RAO, A. ET V. K. MENON. 1964. On a new specimen probably of *Palmoxylon sundaram* Sahni from Mohgaon Kalan, Madhya Pradesh. *Proceedings, Indian Academy of Sciences.* Section B, biological sciences, 49(3): 137–144.
- RAO, A. ET V. K. MENON. 1967. Palmoxylon mahabalei, a new petrified palm wood from Mohgaon Kalan, India. Journal of the Geological Society of India, 8 : 51–60.
- RASBAND, W. 1997-2008. ImageJ. *Rapport technique*, U. S. National Institutes of Health, Bethesda. URL http://rsb.info.nih.gov/ij/.
- REVEAL, J. L. ET M. W. CHASE. 2011. APG III : Bibliographical Information and Synonymy of *Magnoliidae*. *Phytotaxa*, 19 : 71–134.

- RICH, P. M. 1986. Mechanical Architecture of Arborescent Rain Forest Palms. *Principes*, 30(3): 117–131.
- RICH, P. M. 1987a. Developmental Anatomy of the Stem of Welfia georgii, Iriartea gigantea, and Other Arborescent Palms : Implications for Mechanical Support. American Journal of Botany, 74(6) : 792-802. URL http://www.jstor.org/stable/2443860.
- RICH, P. M. 1987b. Mechanical Structure of the Stem of Arborescent Palms. Botanical Gazette, 148(1): 42–50.
- RICHARDSON, N. ET M. DORR. 2003. The Craft heritage of Oman. Motivate Publishing, Dubai.
- ROY, S. ET A. GHOSH. 1980. On the occurrence of *Palmoxylon coronatum* in West Bengal, India. *Ameghiniana*, 17: 130–134.
- RUZIN, S. E. 1999. Plant microtechnique and microscopy. Oxford University Press, Oxford.
- SAHNI, B. 1928. Some petrified palms from the central Museum, Nagpur, C.P. Proceedings of the 15th Indian Science Congress, 228.
- SAHNI, B. 1931. Material for a monograph of the Indian petrified palms. *The Proceeding* of the Academy of Science, 1 : 140–144.
- SAHNI, B. 1932. *Palmoxylon mathuri*, a new species of petrified palms from Cutch, Western India. *Proceedings of the 19th Indian Science Congress*, 19: 322.
- SAHNI, B. 1943. A new species of petrified palm stems *Palmoxylon sclerodermum* sp. nov., from Deccan Intertrappean Series. *Journal of the Indian Botanical Society*, 22(2–4) : 209–204.
- SAHNI, B. 1946. A silicified *Cocos*-like palm stem, *Palmoxylon* (*Cocos*) sundaram from the Deccan Intertrappean beds. *Journal of the Indian Botanical Society*, M.O.P. Iyengar commemoration volume : 361–374.
- SAHNI, B. 1964. Revision of Indian fossil plants : Part III. Monocotyledons. *Monographs, Birbal Sahni Institute of Palaeobotany*, 1 : 1–89.
- DE SAPORTA, G. 1863. Études sur la végétation du Sud-Est de la France à L'Époque tertiaire. Annales des sciences naturelles. Botanique. Sér. 4, 4(19) : 5–124.
- SATAKE, T. 1962. A new system of the classification of *Palmae*. *Hikobia*, 3 : 112–133.
- SCHENK, A. 1880. Über fossile Hölzer aus der Libyschen Wüste. *Botanische Zeitung*, 38(39): 657–661.
- SCHENK, A. 1882a. Die Perfossus-Arten Cotta's. Botanische Jahrbücher für Systematik, Pflanzengeschichte und Pflanzengeographie, 3(5): 483–486.
- SCHENK, A. 1882b. Die von den Gebrüdern Schlagintweit in Indien gesammelten fossilen Hölzer. Botanische Jahrbücher für Systematik, Pflanzengeschichte und Pflanzengeographie, 3(4): 353–358. URL http://www.biodiversitylibrary.org/item/662.

- SCHENK, A. 1883. Fossile Hölzer. Palaeontographica Abteilung B, Paläophytologie, 30(1-2): 1–17.
- SCHIMPER, W. 1870–1872. Traité de paléontologie végétale ou la flore du monde primitif dans ses rapports avec les formations géologiques et la flore du monde actuel, volume 2. J.B. Baillère et fils, Paris.
- SCHIMPER, W. ET A. SCHENK. 1890. Handbuch der Palaeontologie. Abteilung II : Palaeophytologie. In ZITTEL, K. (éd.), Handbuch der Palaeontologie. Ed. Oldenbourg, München und Leipzig.
- SCHLOTHEIM, E. 1820. Die Petrefaktenkunde auf ihrem jetzigen Standpunkte durch die Beschreibung seiner Sammlung versteinerter und fossiler Überreste des Thier- und Planzenreichs erläutert. Becker Buchhandlung, Gotha.
- SCHMITT, U., G. WEINER ET W. LIESE. 1995. The fine structure of the stegmata in *Calamus axillaris* during maturation. *IAWA Journal*, 16(1): 61–68.
- SCHOUTE, J. 1912. Über das Dickenwachstum der Palmen. Annales du Jardin Botanique de Buitenzorg, 2^e Série, 11(26): 1–209.
- SCHULTZ-SCHULTZENSTEIN, C. H. 1832. Naturliches System des Pflanzenreichs. August Hirschwald, Berlin.
- SEUBERT, E. 1996a. Root anatomy of palms II. Calamoideae. Feddes Repertorium, 107(1–2): 43–59.
- SEUBERT, E. 1996b. Root anatomy of Palms III. Ceroxyloideae, Nypoideae, Phytelephantoideae. Feddes Repertorium, 107(7): 597–619.
- SEUBERT, E. 1997. Root anatomy of palms I. Coryphoideae. Flora, 192: 81–103.
- SEUBERT, E. 1998a. Root anatomy of Palms IV. Arecoideae, part 1, general remarks and descriptions on the roots. Feddes Repertorium, 109(1-2) : 89-127.
- SEUBERT, E. 1998b. Root anatomy of Palms IV. Arecoideae, part 2, systematic implications. Feddes Repertorium, 109(3–4): 231–247.
- SOKAL, R. ET C. MICHENER. 1958. A statistical method for evaluating systematic relationships. University of Kansas science bulletin, 38(22) : 1409–1438.
- SOLEREDER, H. ET F. J. MEYER. 1928. Systematische Anatomy der Monocotyledonen. Heft 3. Principes – Synanthae – Spathiflorae, volume 3. Borntrager, Berlin.
- SPRENGEL, A. 1828. Commentatio de psarolithis ligni fossilis genere. Halae, sumtibus librariae antonianae édition. Halae, sumtibus librariae Antonianae.
- STEBBINS, G. L. ET G. S. KHUSH. 1961. Variation in the Organization of the Stomatal Complex in the Leaf Epidermis of Monocotyledons and Its Bearing on Their Phylogeny. *American Journal of Botany*, 48(1): 51–59.
- STENZEL, K. G. 1850. *De trunco Palmarum fossilium*. Thèse de doctorat, Academia Vratislaviensis, Wrocław.
- STENZEL, K. G. 1897. Palmoxylon iriarteum n. sp., ein fossiles Palmenholz aus Antigua. Bihang till Kongl. Svenska vetenskaps-akademiens handlingar, 22(3).
- STENZEL, K. G. 1904. Fossile Palmenhölzer. Beiträge zur Paläontologie und Geologie Österreich-Ungarns und des Orients, 16(3–4): 107–228.
- VON STERNBERG, K. M. G. 1820. Versuch einer geognostisch-botanischen Darstellung der Flora der Vorwelt, 1–24. Numéro 1 in Vol. 1. In Kommission im Deutschen Museum, Fr. Fleischer, Leipzig und Prag.
- STERZEL, J. 1900. Über zwei neue *Palmoxylon-Arten* aus dem Oligocän der Insel Sardinien. *Vierzehnter Bericht Naturwissenschaften Gesellschaft*, 1–13.
- STEVENSON, D. W. ET J. B. FISHER. 1980. The Developmental Relationship between Primary and Secondary Thickening Growth in *Cordyline (Agavaceae)*. *Botanical Gazette*, 141(3): 264–268. URL http://www.jstor.org/stable/2474412.
- STOCKMANS, F. ET Y. WILLIÈRE. 1943. Palmoxylons paniséliens de la Belgique. Mémoires du Musée Royal d'Histoire Naturelle de Belgique, 100 : 1–76.
- SWAMY, B. ET E. GOVINDARAJALU. 1961. Studies on the anatomical variability in the stem of *Phoenix sylvestris*. I. Trends in the behaviour of certain cells and tissues. *Journal of the Indian Botanical Society*, 40 : 243–262.
- THE ANGIOSPERM PHYLOGENY GROUP. 2009. An update of the Angiosperm Phylogeny Group classification for the orders and families of flowering plants : APG III. *Botanical Journal of the Linnean Society*, 161 : 105–121.
- THE INSIDEWOOD WORKING GROUP. 2004. InsideWood database. *Continuously updated*, North Carolina State University, Raleigh. URL http://insidewood.lib.ncsu.edu/ search.
- THÉOPHRASTE. 1988. Recherche sur les plantes Livres I et II. [De Historia Plantarum, texte établi et traduit par Suzanne AMIGUES], volume 1. Les Belles Lettres, Paris.
- THOMAS, R. 2011. Palm-ID, a database to identify the palm stem anatomy with an expert system (Xper²). *Continuously updated*, Université Paris 6 Muséum national d'Histoire naturelle, Paris. URL http://www.infosyslab.fr/Palm-ID/.
- THOMAS, R. ET D. DE FRANCESCHI. 2012. First evidence of fossil Cryosophileae (Arecaceae) outside the Americas (early Oligocene and late Miocene of France) : Anatomy, palaeobiogeography and evolutionary implications. *Review of Palaeobotany and Palynology*, 171(0) : 27 - 39. URL http://www.sciencedirect.com/science/article/pii/ S0034666711001874.
- THOMAS, R. ET D. DE FRANCESCHI. 2013. Palm stem anatomy and computer-aided identification : The Coryphoideae (Arecaceae). *American Journal of Botany*, 100(2) : 289–313. URL http://www.amjbot.org/content/100/2/289.abstract.

- THOMAS, R., M. TENGBERG, C. MOULHÉRAT, V. MARCON ET R. BESENVAL. 2012. Analysis of a protohistoric net from Shahi Tump, Baluchistan (Pakistan). Archaeological and Anthropological Sciences, 4(1): 15–23. URL http://dx.doi.org/10.1007/ s12520-011-0078-8.
- TOMLINSON, P. B. 1961. Palmae. In METCALFE, C. (éd.), Anatomy of the Monocotyledons, volume 2. Oxford University Press, Oxford.
- TOMLINSON, P. B. 1963. Commelinales Zingiberales. In METCALFE, C. (éd.), Anatomy of the Monocotyledons, volume 3. Oxford University Press, Oxford.
- TOMLINSON, P. B. 1965. Stem anatomy in the palm Sabal palmetto. The American Philosophical Society Year Book, 1964: 300–301.
- TOMLINSON, P. B. 1966. Trends in cell dimensions in palms. *The American Philosophical Society Year Book*, 1965 : 354–355.
- TOMLINSON, P. B. 1969. The anatomy of the vegetative organs of Juania australis (Palmae). Gentes Herbarum, 10(4): 412–424.
- TOMLINSON, P. B. 1970. Monocotyledons Towards an Understanding of their Morphology and Anatomy. *Advances in Botanical Research*, 3 : 207–292.
- TOMLINSON, P. B. 1973. The Monocotyledons; their evolution and comparative biology. VIII. Branching in Monocotyledones. *Quarterly review of biology*, 48(3): 458–466.
- TOMLINSON, P. B. 1990. The Structural Biology of Palms. Clarendron Press, Oxford.
- TOMLINSON, P. B. 1995. Non-homology of vascular organisation in Monocotyledons and Dicotyledons. In RUDALL, P. J., P. CRIBB, D. CUTTLER ET C. HUMPHRIES (éds.), Monocotyledons : systematics and evolution, 589–622. Royal Botanic Gardens, Kew.
- TOMLINSON, P. B. ET J. B. FISHER. 2000. Stem vasculature in climbing Monocotyledons : a comparative approach. In WILSON, K. ET D. MORRISSON (éds.), Monocotyledons : systematics and evolution, 89–97. CSIRO, Melbourne.
- TOMLINSON, P. B., J. B. FISHER, R. SPANGLER ET R. RICHER. 2001. Stem vascular architecture in the rattan palm Calamus (Arecaceae-Calamoideae-Calaminae). American Journal of Botany, 88(5): 797–809.
- TOMLINSON, P. B., J. W. HORN ET J. B. FISHER. 2011. *The Anatomy of Palms*. Oxford University Press, Oxford.
- TOMLINSON, P. B. ET J. VINCENT. 1984. Anatomy of the palm *Rhapis excelsa*, x. Differenciation of stem conducting tissue. *Journal of the Arnold Arboretum*, 65 : 191–224.
- TOMLINSON, P. B. ET G. J. WILDER. 1984. Systematic Anatomy of *Cyclanthaceae* (*Monocotyledoneae*) An Overview. *Botanical Gazette*, 145(4) : 535–549. URL http://www.jstor.org/stable/2474264.

- TOMLINSON, P. B. ET M. H. ZIMMERMANN. 1966a. Anatomy of the palm *Rhapis excelsa*, II. Rhizhome. *Journal of the Arnold Arboretum*, 47 : 248–261.
- TOMLINSON, P. B. ET M. H. ZIMMERMANN. 1966b. Anatomy of the palm *Rhapis excelsa*, III. Juvenil phase. *Journal of the Arnold Arboretum*, 47 : 301–312.
- TOMLINSON, P. B. ET M. H. ZIMMERMANN. 1966c. Vascular bundles in palm stems— Their bibliographic evolution. *Proceedings of the American Philosophical Society*, 110(3): 174–182.
- TOMLINSON, P. B. ET M. H. ZIMMERMANN. 1967. The "wood" of Monocotyledons. International Association of Wood Anatomists, news Bulletin, 2: 4–24.
- TOMLINSON, P. B. ET M. H. ZIMMERMANN. 1968a. Anatomy of the palm *Rhapis excelsa*, V. Inflorescence. *Journal of the Arnold Arboretum*, 49(3) : 291–306.
- TOMLINSON, P. B. ET M. H. ZIMMERMANN. 1968b. Anatomy of the palm *Rhapis excelsa*, VI. Root and branch insertion. *Journal of the Arnold Arboretum*, 49 : 307–316.
- TOMLINSON, P. B. ET M. H. ZIMMERMANN. 1969. Vascular anatomy of Monocotyledons with secondary growth—An introduction. *Journal of the Arnold Arboretum*, 50(2): 159–179.
- TOMLINSON, P. B. ET M. H. ZIMMERMANN. 2003. Stem vascular architecture in the American climbing palm Desmoncus (Arecaceae – Arecoideae – Bactridinae). Botanical Journal of the Linnean Society, 142 : 243–254.
- TOMLINSON, P. B., M. H. ZIMMERMANN ET P. SIMPSON. 1970. Dichotomous and pseudodichotomous branching of Monocotyledonous trees. *Phytomorphology*, 20(1) : 36–39.
- UHL, N. ET J. DRANSFIELD. 1987. Genera Palmarum : a classification of palms based on the work of Harold E. Moore, Jr. 1^{re} édition. Allen Press, Lawrence.
- UHL, N., J. DRANSFIELD, J. DAVIS, M. LUCKOW, K. HANSEN ET J. J. DOYLE. 1995. Phylogenetic relationships among palms : cladistic analyses of morphological and chloroplast DNA restriction site variation. In RUDALL, P. J., P. CRIBB, D. CUTTLER ET C. HUMPHRIES (éds.), Monocotyledons : systematics and evolution, 623–661. Royal Botanic Gardens, Kew.
- UNG, V., G. DUBUS, R. ZARAGÜETA-BAGILS ET R. VIGNES-LEBBE. 2010. Xper² : introducing e-taxonomy. *Bioinformatics*, 26(5) : 703-704. URL http://bioinformatics.oxfordjournals.org/content/26/5/703.abstract.
- UNGER, F. 1823-1850. De Palmis fossilibus. In MARTIUS, K. F. P. v. (éd.), Historia naturalis Palmarum. Opus tripartitum, volume 2. F. Fleischer, Lipsiae.
- VIGNES-LEBBE, R., J. LEBBE, G. DUBUS, A. CHALUBERT, H. FRADIN, B. PAVIE ET F. CAUSSE. 2011. Xper², version 2.2. Programme informatique. URL http://www.infosyslab.fr/lis/.

- WATELET, A. 1866. Description des plantes fossiles du bassin de Paris. J.-B. Baillière, Paris.
- WATERHOUSE, J. ET C. QUINN. 1978. Growth patterns in the stem of the palm Archontophoenix cunninghamiana. Botanical Journal of the Linnean Society, 77(2): 73–93.
- WEINER, G. ET W. LIESE. 1990. Rattans Stem anatomy and taxonomic implications. *IAWA Bulletin, new serie*, 11(1): 61–70.
- WEINER, G. ET W. LIESE. 1993. Generic identification key to rattan palms based on stem anatomical characters. *IAWA Journal*, 14(1): 55–61.
- WHEELER, E. A., P. BAAS ET S. RODGERS. 2007. Variations in dicot wood anatomy : a global analysis based on the insidewood database. *IAWA Journal*, 28(3) : 229–258.
- YOSHIDA, T., Y. YAMAMOTO, T. MATSUDA, F. JONG ET A. HASSAN. 2002. Morphological and Anatomical Observations of Adventitious and Lateral Roots of Sago Palms. *Plant* production science, 5(2): 139–145.
- ZIMMERMANN, M. H. 1973. Transport Problems in Arborescent Monocotyledons. Quarterly review of biology, 48(2): 314-321. URL http://www.jstor.org/stable/2820543.
- ZIMMERMANN, M. H., K. F. MCCUE ET J. S. SPERRY. 1982. Anatomy of the palm *Rhapis* excelsa, VIII. Vessel network and vessel-length distribution in the stem. Journal of the Arnold Arboretum, 63 : 83–95.
- ZIMMERMANN, M. H. ET J. S. SPERRY. 1983. Anatomy of the palm *Rhapis excelsa*, IX. Xylem structure of the leaf insertion. *Journal of the Arnold Arboretum*, 64 : 599–609.
- ZIMMERMANN, M. H. ET P. B. TOMLINSON. 1965. Anatomy of the palm *Rhapis excelsa*,I. Mature vegetative axis. *Journal of the Arnold Arboretum*, 46 : 160–178.
- ZIMMERMANN, M. H. ET P. B. TOMLINSON. 1966. Analysis of complex vascular systems in plants : optical shuttle method. *Science*, 152(3718) : 72–73.
- ZIMMERMANN, M. H. ET P. B. TOMLINSON. 1967. Anatomy of the palm *Rhapis excelsa*, IV. Vascular development in apex of vegetative aërial axis and rhizome. *Journal of the Arnold Arboretum*, 48 : 122–142.
- ZIMMERMANN, M. H. ET P. B. TOMLINSON. 1969. The vascular system in the axis of Dracaena fragrans (Agavaceae) — 1. Distribution and developpement of primary strands. Journal of the Arnold Arboretum, 50: 370–383.
- ZIMMERMANN, M. H. ET P. B. TOMLINSON. 1970. The vascular system in the axis of Dracaena fragrans (Agavaceae) — 2. Distribution and developpement of secondary vascular tissue. Journal of the Arnold Arboretum, 51: 478–491.
- ZIMMERMANN, M. H. ET P. B. TOMLINSON. 1972. The Vascular System of Monocotyledonous Stems. *Botanical Gazette*, 133(2): 141–155. URL http://www.jstor.org/stable/ 2473813.

- ZIMMERMANN, M. H. ET P. B. TOMLINSON. 1974. Vascular patterns in palm stems : variations of the *Rhapis* principle. *Journal of the Arnold Arboretum*, 55(3) : 402–424.
- ZIMMERMANN, M. H., P. B. TOMLINSON ET J. LECLAIRE. 1974. Vascular construction and development in the stems of certain *Pandanaceae*. *Botanical Journal of the Linnean Society*, 68 : 21–41.

ANNEXES

Annexe A

COMPARAISON DES SUPERTREES DE BAKER *et al.* 2009

FIGURE A.1 – Supermatrix et les différents supertrees, d'après Baker et al. (2009)

Annexe B Les Monocotylédones Arborescentes

Sommaire

B.1 Org	anisation générale des Monocotylédones arborescentes 462
B.2 Ana	tomie de quelques Monocotylédones arborescentes 462
B.2.1	Alismatales
B.2.2	Asparagales
B.2.3	Dioscoreales
B.2.4	<i>Liliales</i>
B.2.5	Pandanales
B.2.6	<i>Poales</i>
B.2.7	Zingiberales

'OBJECTIF de cette annexe est de fournir quelques exemples de l'anatomie du stipe de cer-↓ taines Monocotylédones non-palmier afin de souligner la singularité de celle des palmiers présentée dans les chapitres suivants. Je fais ici référence à une liste importante (mais non exhaustive) de publications, ce qui permet de faire le point sur les connaissances actuelles en ce qui concerne l'anatomie des Monocotylédones.

Cette rapide description s'intègre dans un cadre d'identification, en effet, il est impératif de connaître les caractères qui permettent de distinguer l'anatomie d'un palmier à celle des autres Monocotylédones. Cette comparaison s'articulera autour du stipe. Le lecteur intéressé pourra se reporter à la bibliographie associée aux groupes présentés.

B.1 Organisation générale des Monocotylédones arborescentes

Une synthèse sur l'anatomie des Monocotylédones arborescentes peut-être réalisée à partir des travaux de Zimmermann et Tomlinson (1972) et French et Tomlinson (1986).

D'autres publications sont également importantes en ce qui concerne leur étude. Il faut naturellement commencer par Guillaud (1878) et ses travaux sur l'anatomie des Monocotylédones, Philipp (1923) avec ses recherches sur les tissus subérifiés et Solereder et Meyer (1928) qui ont publié une anatomie systématique de ce groupe. Quelques années plus tard, une suite de travaux a été publié par Cheadle avec les publications suivantes : Cheadle (1937, 1942, 1943a,b), Cheadle et Uhl (1948) sur la croissance secondaire, les types de vaisseaux et de faisceaux fibro-vasculaires rencontrés dans les différents organes, ainsi que sur l'évolution et la spécialisation des vaisseaux au sein de plusieurs familles de ce groupe tout comme les travaux de Metcalfe (1960). Viennent en suite certaines références de la série sur l'anatomie des Monocotylédones éditée par Metcalfe : Tomlinson (1961, 1963) pour les palmiers et les Commelinaes – Zingiberales, Metcalfe (1971) pour les Cyperaceae, Avensu (1972) pour les *Dioscoreales* et Keating (2003) (édité par Cutler et Gregory) pour les Acoraceae et les Araceae. Par la suite, une série d'article généraux a été publiée par Tomlinson et Zimmermann sur la structure des Monocotylédones en abordant les problèmes de transport, du système vasculaire et de l'évolution générale des structures anatomiques : Tomlinson et Zimmermann (1969), Tomlinson et al. (1970), Tomlinson (1970), Zimmermann et Tomlinson (1972), Tomlinson (1973), Zimmermann (1973), Tomlinson (1995), Tomlinson et Fisher (2000).

B.2 Anatomie de quelques Monocotylédones arborescentes (non-palmiers)

La structure arborescente se retrouve dans de nombreuses familles de Monocotylédones. La phylogénie utilisée ici est celle de The Angiosperm Phylogeny Group (2009), Chase et Reveal (2009) et Chase *et al.* (2009). Les principaux groupes comprenant des espèces pérennes dont les tiges comportent des tissus lignifiés sont présentés ici avec, lorsqu'elles existent, certaines références bibliographiques pour permettre une comparaison avec les palmiers.

B.2.1 Alismatales R.Br. ex Bercht. & J.Presl

Araceae Juss.

Cette famille a été particulièrement bien étudiée par French et Tomlinson (1981a,b,c,d, 1983).

B.2.2 Asparagales Link

Asparagaceae Juss.

En ce qui concerne cette famille, quelques descriptions ont été réalisées, notamment par Zimmermann et Tomlinson (1969, 1970) pour Dracaena fragrans (L.) Ker Gawl.; Fisher (1975) pour Cordyline fruticosa (L.) A.Chev., Yucca gigantea Lem., Beaucarnea recurvata Lem., Dracaena reflexa Lam. et Dracaena fragrans; Cattai et de Menezes (2010) pour Cordyline fruticosa.

- Agavoideae Dumort (ex-Agavaceae Dumort.)

Agave beauleriana Jacob : Planche XXIII, 1–4.

Hesperoyucca whipplei (Torr.) Trel. : Planche XXIII, 5–8. La structure des faisceaux fibro-vasculaires est très particulière et mériterait une étude approfondie.

Yucca gloriosa var. recurvifolia (Salisb.) Engelm. : Planche XXIII, 9–14.

- Lomandroideae Thorne & Reveal (ex-Laxmanniaceae Bubani)

Cordyline Comm. ex R.Br. (Partiellement étudié par Stevenson et Fisher (1980)).

– Nolinoideae Burnett (ex-Ruscaceae M. Roem.)

Il est à souligner que certains genres sont arborescents. Aucune références bibliographique n'a pu être trouvée. Ces genres sont cités pour exemple. *Nolina* Michx.

Beaucarnea Lem.

Dracaena Vand. ex L.

Xanthorrhoeaceae Dumort

- Asphodeloideae Burnett (ex-Asphodelaceae Juss.)
 Aloe arborescens Mill. : Planche XXIII, 15–18.
- Xanthorrhoeoideae M.W. Chase (ex-Xanthorrhoeaceae Dumort)
 Xanthorrhoea Sm.. Ce magnifique genre n'a pas pu être examiné. Aucune référence bibliographique n'a été trouvée.

B.2.3 Dioscoreales Mart.

Dioscoreaceae R. Br.

Aucune publication n'a été trouvée en ce qui concerne l'anatomie de la tige de cette famille. Cependant, la tige des espèces de cette famille ne devient que rarement ligneuse et reste de petite taille (espèces lianescentes).

Dioscorea sansibarensis Pax. : Planche XXIII, 19–21. Dioscorea cochleariapiculata De Wild. : Planche XXIII, 22–23.

B.2.4 Liliales Perleb

Smilacaceae Vent.

Il est à indiquer que les espèces ligneuses de cette famille possèdent toujours des tiges de faible diamètre. Leur anatomie n'a pas été étudiée.

B.2.5 Pandanales R.Br. ex Bercht. & J.Presl

Cyclanthaceae Poit. ex A. Rich.

Les Cyclanthaceae ont été étudiées par French *et al.* (1983), Tomlinson et Wilder (1984). Carludovica marceana Wawra & Bermann. : Planche XXIV, 1–4.

Cyclanthus bipartitus Poit. ex A.Rich. in J.B.G.Bory de Saint-Vincent. : Planche XXIV, 5–8.

Evodianthus funifer (Poit.) Lindm. : Planche XXIV, 9–13. Ludovia lancifolia Brongn. : Planche XXIV, 14–16.

Pandanaceae R. Br.

La tige des *Pandanaceae* a été partiellement étudiée par Zimmermann *et al.* (1974). *Pandanus utilis* Bory. : Planche XXIV, 17–22.

Pandanus tectorius Parkinson ex Du Roi. : Planche XXIV, 23-24.

Les taxons suivants sont donnés à titre indicatif en raison de leur tige ligneuse. En effet, aucune référence n'a pu être trouvée dans la littérature et un échantillonnage n'a pas été possible.

B.2.6 *Poales* Small

Bromeliaceae Juss.

Puya Molina.

Cyperaceae Juss.

Cyperus papyrus L. : Planche XXIV, 25–27.

Poaceae Barnhart

Bambusoideae Luerss. : Planche XXIV, 28–29.
 L'anatomie de cette sous-famille a particulièrement bien été étudiée par Liese (1998).

Thurniaceae Engl.

Prionium E.Mey.

B.2.7 Zingiberales Griseb.

Strelitziaceae Hutch.

Ravenala Scop. Strelitzia Banks

Légende de la planche XXIII

Planche photographique du stipe de quelques Monocotylédones arborescentes

1-4 : coupe transversale d'Agave beauleriana, carmin-vert d'iode. 1. Vue générale montrant un cortex très peu développé. 2. Cylindre central. 3. Détail du cortex montrant l'épiderme. 4. Un faisceau fibro-vasculaire avec deux vaisseaux de petite taille et une partie légèrement lignifié du côté du xylème. — 5-8 : coupe transversale d'Hesperoyucca whipplei, safranine O fast green FCF. 5. Vue générale montrant un cortex quasiment absent. 6. Le cylindre central avec des faisceaux fibro-vasculaires caractéristiques. 7. Détail du cylindre central. 8. Détail d'un faisceau fibro-vasculaire : les fibres entourent complètement le faisceau fibre-vasculaire. -9-14 : coupe transversale de Yucca gloriosa var. recurvifolia, safranine. 9. Cortex de plusieurs mm avec la zone la plus superficielle fortement lignifiée. 10. Vue générale de la zone subcorticale du cylindre central. 11. Transition vers la zone centrale. 12. Détail de l'alignement sub-épidermique, une sorte d'écorce se forme. 13. Détail du cylindre central. 14. Détail d'un faisceau fibro-vasculaire caractéristique. — 15–18 : coupe transversale d'Aloe arborescens, safranine O fast green FCF. 15. Une sorte d'écorce subérifiée aparait très nettement en vert. Un alignement des cellules de parenchyme au niveau de la zone subcorticale du cylindre central s'observe également. 16. Cet alignement cesse dans la zone centrale du cylindre central. 17. Zone centrale du cylindre central. 18. Détail d'un faisceau fibro-vasculaire. Des cellules lignifiées (fibres?) s'observent tout autour des faisceaux fibro-vasculaires. Le phloème et le xylème (très peu dévelopé) sont encerclés par ces cellules.— 19–21 : coupe transversale de Dioscorea sansibarensis. 19. Vue générale du cortex et du cylindre central. 20. Détail du cylindre central. 21. Détail des faisceaux fibro-vasculaires. Ce type de faisceau a une organisation très spécifique au sein des Monocotylédones. — 22–23 : coupe transversale de Dioscorea cochleariapiculata. La même organisation que précédemment est observée.

Abréviations utilisées — cc : cylindre central, ct : cortex, ext : vers l'extérieur. Échelle — 1 mm : 1–2, 5–6, 9–11, 15–17, 19–20, 22. 500 µm : 23. 200 µm : 3–4, 7–8, 12–14, 18, 21.

PLANCHE XXIII – Stipe des Monocotylédones

Annexe B

Légende de la planche XXIV

Planche photographique du stipe de quelques Monocotylédones arborescentes

1-4 : coupe transversale de *Carludovica marceana*, safranine O. 1. Partie corticale, cortex et zone subcorticale du cylindre central. 2. Partie centrale du cylindre central. 3. Détail de phytolithes globulaires échinulés. 4. Détail d'un faisceau fibro-vasculaire. - 5-8 : coupe transversale de Cyclanthus bipartitus, safranine O fast green FCF. 5. Zone de transition entre le cortex et le cylindre central. 6. Détail du cylindre central. 7. Détail d'un faisceau fibro-vasculaire. 8. Partie centrale du cylindre central avec très peu de faisceaux fibro-vasculaires et de grandes cellules sphériques caractérisitiques. — 9-13 : coupe transversale d'Evodianthus funifer, safranine O. 9. Cortex. 10. Limite entre le cortex et le cylindre central. 11. Détail d'un faisceau fibro-vasculaire. 12. Aspect du cylindre central avec ses faisceaux fibro-vasculaires composés. 13. Un faisceau fibrovasculaire composé. — 14–16 : coupe transversale de Ludovia lancifolia. 14. Détail d'un faisceau fibro-vasculaire. 15. Très large cortex sans élément conducteur, faisceaux exclusivement fibreux présents. 16. Cylindre central. -17-22: coupe transversale de Pandanus utilis, safranine O fast green FCF. 17. Vue générale du cortex et du cylindre central. 18. Détail du cylindre central montrant les faisceaux fibro-vasculaires composés. 19. Détail de la zone épidermique du cortex : une activité cambiale existe juste sous l'épiderme, une sorte d'écorce apparaît. 20–21. Détails de faisceaux fibro-vasculaires composés. 22. Un faisceau fibro-vasculaire simple. -23-24: coupe transversale de Pandanus tectorius, safranine O fast green FCF. La même structure que précédemment est observée. 23. Cylindre central. 24. Un faisceau fibro-vasculaire composé. — 25–27 : coupe transversale de Cyperus papyrus, safranine O. 25. Détail de la partie périphérique montrant l'absence de cortex. 26. Vue générale du cylindre central. Détail d'un faisceau fibro-vasculaire et du parenchyme fondamental en réseau caractéristique. — 28–29 : coupe transversale de *Phyllostachys edulis* (Carrière) J. Houz. et de Phyllostachys viridiglaucescens (Carrière) Rivière & C. Rivière. 28. Vue générale du cylindre central des bambous. 29. Détail dun faisceau fibro-vasculaire.

Abréviations utilisées — cc : cylindre central, ct : cortex, ext : vers l'extérieur. Échelle — 1 mm : 1, 2, 5, 8–9, 10, 12, 15–18, 23, 26. 500 µm : 6, 21. 200 µm : 4, 7, 11, 13–14, 19, 20, 22, 24–25, 27, 29. 20 µm : 3.

PLANCHE XXIV – Stipe des Monocotylédones

Annexe C

DIFFÉRENTES CLEFS D'IDENTIFICATION / CLASSIFICATION

Sommaire

C.1 Clef	d'identification de Stenzel (1904)
C.2 Clas	sification de Schoute (1912)
C.2.1	Starkes Dickenwachstum
C.2.2	Gutes Dickenwachstum
C.2.3	Schwaches Dickenwachstum
C.2.4	Wahrscheinlich gutes Dickenwachstum
C.2.5	Wahrscheinlich schwaches Dickenwachstum
C.2.6	Schwaches oder fehlendes 480
C.2.7	Kein Dickenwachstum
C.3 Des	cripteurs discriminant du stipe selon Tomlinson (1961) 481

C.1 Clef d'identification de Stenzel (1904)

Dans sa publication, Stenzel (1904) produit une clef d'identification permettant d'identifier tous les fossiles qu'il décrit.

I. Stammholz. A. Die Faserbündel mit Kranzzellen.

- a) Faserteil am Grunde flach oder mit seichter breiter Bucht.
 - 1. Faserteil viel größer als Leitbündel; seine Zellen alle dickwandig; Gafäße bilateral.
 - † Freies Grundgew. Kleinlückig; Zellen gestreckt; um den Holzteil strahlig, Längsbündel locker gestellt.
 - ^{††} Fr. Gr. großlück.; Zellen gestreck, um den Holzeil nicht strahlich; längsbd. voneinander entfert.
 - ††† Fr. Gr. dicht, Z. vieleckig; um d. Holtz. nicht strahlig; längsbd. gedrängt

- Faserteil kleiner als Leitb., seine hinteren Zellen dickwand, d. übr. dünnwand.; Längsbd. voneinander um den eigenen Durchmesser abstehend; Gefäße bilateral
- b) Faserteil am Grunde abgerundet mit sehr schmaler Bucht; Gefäße bilateral.
 - 1. Freies Grundgew. quer gestreckt
 - 2. Freies Grundgew. radial gestreckt
- c) Faserteil am Grundemit breiter, tiefer, sowohl vorn wie beiderseits hinten abgerundeter Bucht; Gefäße median.
 - 1. Fr. Grundgew. vieleckig, weniges kurz gestreckt; Längsbündel gedrängt, bis 1 mm dick.
 - 2. Fr. Grundgew. meist lang gestreckt; Längsbündel um den eigenen Durchmesser voneinander abstehend; über 1mm dick.
- d) Faserteil am Grunde mit breiter, tiefer, vorn eckiger, hinten abgerundeter Bucht (Querschn. herzförm.).
 - 1. Fr. Grundgew. meist lang gestreckt; Längsbündel um den eigenen Durchmesser voneinander abstehend; über 1mm dick.
- e) Faserteil am Grunde mit tiefer, vorn oft eckiger, hinten beiderseits scharfkantiger Bucht (Querschn. pfeilförm)
 - Fr. Grundgew. rundl.-vieleck.; Längsbd. dünn (1/2–2/3 mm), genähert; Gefäße median.
- f) Faserteil mond- oder sichelförmig.
 - 1. Fasert. mondförm., Längsbd. dünn, genähert, Gefäße median.
 - 2. Faserteil mond- oder sichelförmig, Längsbd. sehr dünn; weit voneinander abstehend; Gefaße bilaeral.

B. Faserbündel ohne Kranzzellen.

- a) Grundgewebe dicht.
 - 1. Längsbündel sehr dünn (bis $\frac{1}{2}$ mm)
 - † Grundgew. um Holzteil u. Faserteil gestreckt abstehend; Fasert. mondförmig mit d. hinteren Sklerenchymbogen e. Scheide bild.; Gefäße bilateral.
 - †† Fr. Grundgew. vieleckig; um d. Holzteil gestreckt-strahlig; Fasert. nierenförm., Gefäße median.
 - ††† Grundgew. um d. Holzteil nicht strahlig.

- * Faserteil nierenförm. Oder verkehrt-eirund, am Grunde mit seichter Bucht, meist mit abgerundeten Rändern; Gefäße bilateral.
- ** Faserteil am Gr. flach oder seicht seicht buchtig, mit eckigen Rändern; Grundgew. rundlich-vieleckig, etwas dickwandig; Gefäße ä. median, i. bilateral.
- *** Faserteil am Gr. flach oder seicht seicht buchtig mit scharfkantigen Rändern; Längsbündel dünn, genähert; Gefäße bilateral.
- **** Faserteil am Gr. seicht oder tief buchtig, mit scharfkantigen oder in Schneiden auslaufenden Rändern; Längsbd. sehr dünn, genähert.
- ***** Faserteil mondförmig, mit d. hinteren Sklerenchymbogen zu e. Scheide das Leitbündel verschmolzen; Längsbd. genähert.
- ***** Faserteil sichelförmig, das größere Leitbundel nur vorn umfassend; Längsbd. weit voneinand. abstehen.
- **2.** Längsbündel dicker (1/2 11/2 mm).
 - † Grundgew. um d. Holzteil strahlig.
 - * Fr. Grundgew. gestreckt, um d. Holzteil in einer Reihe strahlig; Faserteil am Gr. nierenförmig; Faserbündel sehr dünn.
 - ** Grundgew. vieleckig oder gestreckt, um einige Holzteile einreihigstrahlig; Faserteil mit Schmalem Spalt (pfeilförm.), dreieckiger oder halbkreisförmiger Bucht mit scharfkantigen Rändern.
 - *** Fr. Grundgew. vieleckig; um d. Holzteil ein- bis dreireihig-strahlig; Faserteil mondförmig mit tiefer Bucht.
 - **** Fr. Grungew. vieleck.; um d. Holzteil oft einreihig-strahlig; Faserteil nierenförmig, wenig größer als d. Leitbündel; Faserbündel dick.
 - ***** Fr. Grundgew. vieleck.; um d. Holzteil verworren-strahlig; Faserteil vielmal größer als d. kleine Leitbündel; Faserbündel dünn u. sehr dünn.
 - †† Grundgew. um d. Holzteil nicht strahlig.
 - * Hinterer Sklerenchymbogen mit d. pfeilförmigen Faserteil das Leitbundel scheidenförmig umschließend; Grundgew. sehr dünn.
 - ** Kein hinteren Sklerenchymbogen.
 - 🔘 Leitbündel größer als Faserteil.
 - Fr. Grundgew. gestreckt, wenige Zellen vieleck.
 - ○○ Leitbündel wenig kleiner als Faserteil.
 - Fr. Grundgew. von innen nach außen gestreckt; Leitbd. Den Grund des Faserteiles beiderseits umfassend.
 - $\bigcirc \bigcirc \bigcirc$ Leitb. vielmal kleiner als Faserteil.

Fr. Grundgew. vieleckig oder wenig verlängert; Faserteil am Grunde nierenförmig.

Fr. Grundgew. quer gestreckt; Faserteil rundlich, hinten flach.

Fr. Grundgew. vieleckig oder gestreckt; Faserteil am Grunde mit schmalem Spalt oder oder dreieckiger oder halbkreisförm. Bucht mit scharfkantigen Ränden.

b) Grundgewebe lückig.

1. Längsbundel dicker (2/3 - 11/3 mm).

- † Grundgew. kleinlückig (Lücken durch mehrere Zell schichten getrennt); Längsbündel locker gestellt.
 - * Grundgew. gestreckt, rings um den Holzteil strahlig, hinten abgerundet; Faserteil ei-nierenförm., am Grunde abgeflacht; Faserbündel zieml. dick.
- †† Grundgew. großlückig (Lücken durch einfache Zellschichten getrennt); Längsbd. weit voneinander abstehend.
 - * Grundgew. um d. Holzteil strahlig, nach hinten vorgezogen; Faserteil rund; Faserbündel sparsam, ziemlich dich.
 - ** Grundgew. um d. Holzteil strahlig, hinten abgerundet; Faserteil einierenförm., Faserbündel zahlreich, sehr dünn.
 - *** Grundgew. gestreckt, vom Holzteil nur seitwärts abstehend, hinten kurzzellig; Faserbündel zieml. dick.

**** Grungew. um den Holzteil nicht strahlig; Faserbündel zieml. dick.

2. Längsbündel sehr dünn (unter 1/2 mm).

Faserteil mondförmig; Faserbündel sehr zahlreich.

c) Grundgew. unkenntlich.

Längsb. Dick (1 mm); Faserteil eiförmif mit dreieck. Bucht mit abgerundeten Rändern (herzförmig).

C. Ohne Faserbündel.

a) Grundgew. dicht.

- 1. Grundgew. vieleckig, um den Holzteil nicht strahlig.
 - † Faserteil am Gr. nierenförmig.
 - * Faserteil kleiner als Leitbündel (Grundgew. zweifelhaft).
 - 🔘 Längsbündel weit voneinander abstehend; Gefäße zahlreich, bilateral.
 - ** Faserteil Größer als Leitbündel; kein hinterer Sklerenchymbogen.

- Längsbd. dünn (2/3 mm); locker gestellt; Faserteil am Grunde fllach, oft eckig begrentz, Grundgew. etwas dickwandig
- \bigcirc Längsbd. dick (4/5 mm); gedrängt; Gefäße bilat.
- $\bigcirc \bigcirc \bigcirc$ Längsbd segr dick (1 1/5 mm); genähert; Gef. bilat.
- *** Faserteil größer als Leitbündel; ein hinterer Sklerenchymbogen.
 - \bigcirc Längsb
d. dünn (2/3 mm); genähert; Gef. bilat.
- †† Faserteil mondförmig.
 - * Gefäße median.
 - \bigcirc Längsbd. dünn (2/3 mm); locker gestellt; Faserteil mit breiter Bucht.
 - \bigcirc Längsbd. sehr dick (11/2 mm); locker gestellt; mit halbkreisförmiger Bucht, in der das viel kleinere Leitbündel liegt.
 - ** Gefäße bilateral.
 - Längsbd. dick (4/5 mm); gedrängt; Faserteil nach hinten verschmälert mit schmaler Bucht für das viil kleinere Leitbündel.
 - \bigcirc Längsbd. dünn (2/3 mm); genähert; Faserteil mit breiter, seichter Bucht für das fast ebenso große Leitbündel.
 - $\bigcirc \bigcirc \bigcirc$ Längsbd. dünn (2/3 mm); genähert; Faserteil mit breiter, tiefer Bucht mit scharfen Rändern; kleiner als das Leitbündel.
- ††† Faserteil scheidenförmig das viel kleinere Leitbündel rings umgebend.
 - * Längsbd. dick (9/10 mm), gedrängt, Gefäße median, Grundgew. dickwandig.
- 2. Fr. Grundgew. quer gestreckt, um d. Holzteil strahlig.

Faserteil mit hinterem Sklerenchymbogen eine Scheide um das Laitbündel bildend; Gef. lateral.

b) Grundgew. lückig.

- 1. Grundgew. vieleck., Zellen of etwas verlängert, um den Holzteil nicht strahlig.
 - † Faserteil am Grunde nierenförmig.
 - * Längsbd. mehr als 1 mm dick, straff; Grundgew. vieleckig.
 - ** Längsbd. 4/5 mm dick, sclaff; grundgew. vieleckig, Zellen oft etwas verlängert, vom Holzteil seitlich abstehend.
 - †† Faserteil mondförmig.
 - * Längsbd. locker gestellt, sehr dick (11/2 mm); Faserteil rundlich, a. Gr. mondförmig mit halbkreistörmiger Bucht für das kleine Leitbündel, das kaum aus ihm heraustritt; Gefäß median.

- ** Längdbd. locker gestellt, dick (1 mm); Faserteil mondförmig mit abgerundet Bucht; Leitbd. Weit heraustretend; Gefäß median.
- *** Längsbd. gedrängt, innere genähert, dick (über 1 mm), Faserteil im Querschnitt pfeilförmig oder oder mondformig; Gefäße bilateral.
- 2. Grundgewebe gestreckt, um den Holzteil strahlig; Faserteil nierenförmig; Längsbündel weit voneinander abstehend.
 - † Die Lücken des Grundgewebes durch einfache Zellschichten getrennt.
 - * Längsbd. dick (1 mm); Gefäße bilateral; Grundgewebe von einem Längsbündel zum anderen srahlig gestreckt.
 - †† Die Lücken des Gr. durch mehrfache Zellschichten getrennt.
 - $\ast\,$ Längsb
d. dick (über 1 mm), Gefäße bilateral; Grundgew.
 nicht strahlig.
 - ** Längsb. dünn (1/2 mm); Leitbündel kleiner als der Faserteil.
- c) Grundgewebe unkenntlich.
 - 1. Längsbd., genähert, dick; Faserteil mit dreieckiger Bucht mit etwas abgerundeten Rändern (Herz-pfeilförmig).
 - Längsbd. weit voneinander abstehend; dick (4/5 mm); Faserteil nierenförmig, kleiner als das Leitbündel, mit zahlreichenbilateralen Gefäßen.

C.2 Classification de Schoute (1912)

Schoute (1912) réalise une classification des stipes en fonction de leur croissance en épaisseur (das Dickenwachstum).

C.2.1 Starkes Dickenwachstum

Acanthorrhiza aculeata Wendl (Cryosophila	Hydriastele Wendlandiana Wendl. et Drude
nana (Kunth) Blume)	(Hydriastele wendlandiana (F.Muell.)
Actinophloeus propinquus Becc. Var Keyen-	H.Wendl. & Drude)
sis Becc (Ptychosperma propinquum (Becc.)	Oncosperma fasciculatum Thw.
Becc. ex Martelli)	O. filamentosum Bl. (Oncosperma tigilla-
Chrysalidocarpus madagascariensis Becc.	rium (Jack) Ridl.)
(Dypsis madagascariensis (Becc.) Beentje &	O. horridum Scheff.
J.Dransf.)	Oreodoxa acuminata Willd. (Prestoea acu-
Dictyosperma album Wendl. et Drude (?	minata (Willd.) H.E.Moore)
Dictyosperma album (Bory) Scheff., Ann.	O. oleracea Mart.
Jard. Bot. Buitenzorg $1:157$ (1876))	O. regia Kunth (Roystonea regia (Kunth)
Dypsis sp. Mauritius	O.F.Cook).
Euterpe oleracea Mart.	

C.2.2 Gutes Dickenwachstum

Actinophloeus Macarthuri Becc.	Heterospathe elata Scheff.		
$\label{eq:archontophoenix} A lexandrae {\rm Wendl}.$	\mathbf{et}	Oncosperma sp. Bangka	
Drude		O. sp. Sarawak	
Areca Catechu L. var. alba	O. sp. Sumatra		
Caryota sp. Tjiapoes	Rhopaloblaste hexandra Scheff.		
Dictyosperma aureum Wendl. et Drude			

C.2.3 Schwaches Dickenwachstum

Areca triandra Roxb., mit var.	Cyrtostachys Renda Bl.
Arenga obtusifolia Mart.	${\it Livistona}$ sp. Wonodjatti
A. obtusifolia (?)	Phoenix farinifera Roxb.
Bactris speciosa Karst	Pinanga maculata Porte.

C.2.4 Wahrscheinlich gutes Dickenwachstum

Acantophoenix rubra Wendl.	Calyptrocalyx spicatus Bl.
Areca Normanbyi F. Muell	Caryota urens L.
A. sp. N. Guinea	Orania aruensis Becc.

C.2.5 Wahrscheinlich schwaches Dickenwachstum

Areca imperialis Hort.	Michophloeus paniculata Scheff.
Caryota sp. Noesa Kembangan	Pritchardia pacifica Seem et Wendl
Loxococcus rupicola Wendl. et Drude	Ptychococcus paradoxus Becc.
Martinezia erosa Lind.	

C.2.6 Schwaches oder fehlendes

Actinophloeus Macarthuri Becc.	Eugeissona triste Griff
Areca Alicae F. Muell	Licuala Rumphii Bl.
Areca macrocalyx Zip.	Livistona Jenkinsiana Griff
A. sp. Groot Kei	L. rotundifolia Mart.
$Astrocaryum \ aculeatum \ Mey$	Nephrosperma Van Houtteana Balf. f.
Bactris major Jacq.	Phoenix reclinata Jacq.
B. pallidispina Mart.	Ph. sp.
B. Verschaffelti Hort.	Pigafettia elata Wendl.
Cocos nucifera L.	Wallichia disticha And.
C. oleracea Mart.	

C.2.7 Kein Dickenwachstum

Acoelorrhaphe Wrightii Wendl.ManActinophloeus propinquus Becc. Var. Keyen-
sis Becc.Metsis Becc.M.Astrocaryum gynacanthum Mart.M.Bactris Corossila Karst, B. sp. TrinidadNemChamaedorea elatior Mart.PinCh. Karwinskiana Wendl.P. HGeonoma Verschaffelti Hort.P. HGronophyllum microcarpum Scheff.P. HLatania Commersonii GmelRhaL. Loddigesii Mart.Rh.Livistona chinensis R, Br.SabaL. Hoogendorpii Hort.Saba

Martinezia caryotaefolia H. B. et K.
Metroxylon longispinum Mart.
M. Rumphii Mart.
M. sp.
Nenga Schefferina Becc.
Pinanga coronata Bl.
P. Kuhlii Bl., mit var.
P. malaiana Scheff.
P. patula Bl. mit var.
Rhapis flabelliformis L'Hérit.
Rh. humilis Bl.
Rh. Maior Bl.
Sabal mauritiiforme Gris et Wendl.

C.3 Descripteurs discriminant du stipe selon Tomlinson (1961)

A. Central vascular bundles1. Mostly with 1 wide vessel

Lacosperma ^a	$Geonoma$ c	Plectocomia
Areca	$Howea \ ^d$	Ptychosperma
Borassus	Korthalsia	Rhap is
Calamus	Leopoldinia ^e	Roystonea
Dypsis ^b	Metroxylon	Salacca
Daemonorops	Pinanga	

a. Ancystrophyllum dans la publication originale

 $b.\ Chrysalidocarpus$ et Neophloga sont également cités, mais sont actuellement placés en synonyme de Dypsis

c.d'après von Mohl (1823-1850)

 $d\!.$ Howeia dans le texte

e. d'après von Mohl (1823-1850)

2. Mostly with 2 wide vessels

Arenga	Copernicia	Myrialepis
Bactris	Elae is	Phoenix
Calamus	Eremos patha	Raphia
Caryota	$Brahea \ ^b$	Rhap idophyllum
Chamaedorea	Hyphaene	Serenoa
Cocos	Livistona	Wallichia
Colpothrinax ^a	Lodoicea	

a. d'après von Mohl (1823-1850)

b. Erythea dans la publication originale

3. With many wide xylem elements

Chamaerops

Phytelephas

 ${\it Trachy carpus}$

4. Mostly with only a single phloem-strand. The following are exceptionnal :

a. Central vascular bundles including 2 ph. Strands

Calamus	Korthalsia
Daemonorops	Dypsis ^a

a. Chrysalidocarpus dans la publication originale

B. Central ground tissue This is usually uniformly parenchymatous; the following are exceptionnal :

1. Including scattered fibrous strands

Bactris	Leopoldinia ^b	Rhapidophyllum
Cocos	Phytelephas	Salacca
Brahea ^a	Pinanga	Sclerosperma

a. Erythea dans la publication originale

b.d'après von Mohl (1823-1850)

C. Vascular elements 1. Sieve-tubes

In leaf and stem with simple sieve-plates. (Compound sieve-plates in all parts in most

palms.)

All Lepidocaryoid palms which have been examined.

2. Vessels

a. In stem always with scalariform perforation plates; simple perforation plates not observed

Areca	Howea ^b	Phoenix
Chamaedorea	Licuala	Pinanga
Dypsis ^a	Livistona	Rhap is

a. Chrysalidocarpus dans la publication originale

b. Howeia dans le texte

b. Absent from the stem

Phytelephas

c. In root always with scalar iform perforation plates; simple perforation plates not observed

Chamaedorea

Nypa

ANNEXE D RAPPELS

CETTE annexe présente un rappel des principaux descripteurs anatomiques délicat à utiliser ainsi qu'un rappel de la phylogénie des tribus. Il est possible de la déplier afin de pouvoir visualiser les informations qu'elle présente en parallèle de la lecture du texte.

Annexe E LOGICIEL XPER

Xper²: an open tool to manage descriptive data!

Formalization of knowledge is the main difficulty for taxonomists. How to structure and organize different types of data? How to keep the scientific sources of the data in order to maintain traceability? Xper² is designed to manage this rich and heterogeneous information. Divided into four modules, Xper² allows taxonomists to either access the descriptive environment, the taxonomic description module, the management tools or the free access key:

⇒ Descriptive model: here, one can edit a standardized description model, it means the list of descriptors or characters, their possible states or values expressed in a unified terminology, groups and logical dependencies.

Taxonomic description: in this module, one can enter all the characteristics of the taxa (name, descriptions and any additional comments, external links or pictures).

Solution State Control and prevent inconsistencies by providing a check base function. One can also have a completeness summary of the knowledge base created.

Creation Free access key: the last possibility is the creation of Interactive Identification Keys (IIK)

<section-header><section-header><text><text><text>

Centre de Recherche sur la Paléobiodiversité et les Paléoenvironnements

UMR 7207 CNRS - MNHN - UPMC Equipe "Paléobiodiversité des lignées et commonautés animales et végétales" Improvement of interoperability and diffusion of knowledge! Xper² is a wide-open system!

Xper² is a powerful tool for editing and managing taxonomic descriptions. Freely download your Windows[™] Mac[™] or Linux version in French, English or Spanish at

http://lis-upmc.snv.jussieu.fr/

Our mailing-list facility provides users with full support.

Publish and distribute your work in CD or on-line.

Xper²: How to edit a knowledge base?

Descriptive model

Xper² can be used in two different modes: one can edit all the descriptors and the other one the taxa depending on which kind of treatment to realize.

Mode: Edit Descriptors

In the Taxa Edition mode, one can see at a glance the taxa and their descriptors and states. Commentaries (text, images, legendes, html links...) can be associated with each entry, providing a complete traceability of the sources of data.

Traceability of sources Interactive text (HTML): links to databases, collections, bibliography, sequences...

In the Descriptor Edition mode, one can display all the descriptors (with their description and commentaries in the visualization window, and their dependencies), their character states, the exception ones (if applicable) and groups (if defined).

Mode: Edit Taxa

Metadata

The properties of the base:

- name
- authors
- date of creation
- number of taxa
- number of descriptors

78

The Edition mode: Describe your taxa Define your descriptors Illustrate everything Keep a full traceability of your sources Complete your taxonomist work by linking your base to external data Just be descriptive and informative!

Xper²: How to analyze my descriptions?

Managing descriptive data is the first aim of Xper². Xper²'s functionalities allow an easy analysis of your descriptions.

The « Check Base » function

Use Xper²'s own discriminant index or one of the two other available measurements to choose your best descriptor!

Number of couples with no common values

Xper²'s index= (for one descriptor)

Total number of couples

Just be consistent and powerful!

Prevents you from inconsistencies

Visualization simplified in a matrix

discriminant power Summary of your base

Sort your descriptors according to their

Xper² functionalities:

71 L I S 🚳

Xper²: How to import/export from/towards other formats?

Exporting Xper² files towards other formats

Increase your chance to be relevant!

UMR 7207 CNRS - MNHN - UPMC Equipe "Paléobiodiversité des lignées et communautés animales et végétales"

Centre de Recherche sur la Paléobiodiversité et les Paléoenvironnements

Xper²: How to identify?

Free access key

INDEX

Table alphabétique des noms latins

Α

Acoelorrhaphe, 19, 258, 262 wirghtii, 262 Acrocomia, 94, 301 aculeata, 301 crispa, 94, 98, 301 Actinorhytis, 306 calapparia, 306, 320 Agave, 461 beauleriana, 461, 464 Aqavoideae, 461 Aiphanes, 301 minima, 301 Alismatales, 461 Aloe, 461 arborescens, 461, 464 Ammandra, 291, 292 Ancystrophyllum, 479 Aphandra natalia, 287 Araceae, 461 Archontophoenix, 81 cunninghamiana, 81 Areca, 306, 479 catechu, 306, 320 Arecaceae, 17 Arecales, 17 Areceae, 18, 305, 320 Arecoideae, 16, 17, 297, 362 Arenga, 20, 187, 190, 479 microcarpa, 190, 192 Asparagaceae, 461 Asparagales, 461 Asphodeloideae, 461 Astrocaryum, 301 sp., 301 Attalea, 301 fairchildensis, 301

В

Bactridinae, 187 Bactris, 301, 312, 479, 480

catinga, 316 gasipaes, 301, 312 plumeriana, 98, 301, 312 Bambusoideae, 463 Beaucarnea, 461 recurvata, 461 Beccariophoenix, 301 madagascariensis, 301 Bentinckia, 306 nicobarica, 306 Bismarckia, 20, 171–173 nobilis, 118, 173, 174 Borasseae, 18, 20, 171, 177 Borassodendron, 20 machadonis, 28 Borassus, 12, 20, 30, 96, 178, 179, 182, 362, 364, 479 aethiopum, 98, 179, 182, 362, 364 flabellifer, 179, 182 Brahea, 19, 260, 363, 479, 480 dulcis, 260 Bromeliaceae, 462

\mathbf{C}

Calameae, 269 Calamoideae, 16, 17, 267 Calamus, 12, 30, 268, 272, 479 sp., 272 deerratus, 272 manan, 30 ovoideus, 267 Calyptrogyne sp., 305 Carludovica, 462 marceana, 462, 468 Caryota, 20, 190, 192, 479 mitis, 98, 190, 192 rumphiana, 190, 192 urens, 190, 192 zebrina, 190, 192 Caryoteae, 16, 18, 20, 185 Ceroxyleae, 287, 289 Ceroxyloideae, 16, 17, 287

Ceroxylon, 30, 289 sp., 292, 294 quindiuense, 30, 287 Chamaedorea, 30, 299, 479-481 tepejilote, 299, 308 Chamaedoreeae, 299, 308 Chamaerops, 19, 29, 251, 362, 479 humilis, 251, 254, 362 Chambeyronia, 306 macrocarpa, 306 Chelyocarpus, 18, 210, 211 dianeurus, 211, 216 Chrysalidocarpus, 479, 480 Chuniophoeniceae, 18, 19, 195 Chuniophoenix, 19, 20, 195–197 nana, 197, 200 Coccothrinax, 18, 210, 211, 363, 367 barbadensis, 211, 216 miraguama, 211, 216 miraquama subsp. roseocarpa, 211 Cocos, 12, 301, 363, 366, 479, 480 nucifera, 301, 312 Cocoseae, 18, 300, 312 Colpothrinax, 19, 479 Copernicia, 19, 260, 479 alba, 260, 264 baileyana, 118, 260, 264 berteroana, 260 gigas, 260 macroglossa, 28 tectorum, 261, 264 Cordyline, 461 fruticosa, 461 Corypha, 20, 178, 203, 204, 363 umbraculifera, 204, 206 Corypheae, 18, 20, 203 Coryphoideae, 16–18, 27, 117 Cryosophila, 18, 211 nana, 211, 220 Cryosophileae, 18, 209, 363, 367 Cycas, 357 Cyclanthaceae, 462 Cyclanthus, 462 *bipartitus*, 462, 468 Cyclospatheae, 287, 288

Cyperaceae, 463 Cyperus, 463 papyrus, 463, 468 Cyrtostachys, 306 loriae, 306, 320

D

Daemonorops, 479, 480 Desmoncus, 297, 312 sp., 301 Dictyosperma, 306 album, 306 Dioscorea, 462 cochleariapiculata, 462, 464 sansibarensis, 462, 464 Dioscoreaceae, 462 Dioscoreales, 462 Dracaena, 357, 461 fragrans, 461 reflexa, 461 Dracaenae, 358 Dypsidinae, 362 Dypsis, 306, 364, 479, 480 cabadae, 306, 320 lutescens, 362, 364 madagascariensis, 306 tenuissima, 30

\mathbf{E}

Elaeis, 12, 301, 312, 479 guineensis, 301, 312 Endogenites, 356–358 bacillaris, 356, 357 echinatus, 356–358 palmacites, 358 Eremospatha, 479 Erythea, 479, 480 Eugeissona, 269, 272 insignis, 272 minor, 272 utilis, 272, 278 Eugeissoneae, 269 Euterpe, 303, 316 sp., 303 catinga, 303 Euterpeae, xi, 303, 316 Evodianthus, 462 funifer, 462, 468 Exogenites, 357

\mathbf{F}

Fasciculites, 359 didymosolen, 359

G

Gaussia, 31, 80, 89, 90, 94, 102, 299 attenuata, 80 maya, 80, 91, 102, 106, 299, 308 Gaussia sp., 299 Geonoma, 297, 479 sp., 305 Geonomateae, 304 Guihaia, 19, 30

Η

Hemithrinax, 18, 211 compacta, 211, 220 Hesperoyucca, 461 whipplei, 461, 464 Heterospathe, 306 elata, 98, 320 elata var. elata, 306 Howea, 306, 479, 480 belmoreana, 306 Hyophorbe, 299 verschaffeltii, 299, 308 Hyospathe, 303 elegans, 303, 316 $Hyphaene,\,12,\,20,\,45,\,172\text{--}174,\,479$ petersiana, 173, 174 thebaica, 98, 173, 174 Hyphaeninae, 20, 171

Ι

Iguanura, 307 wallichiana, 307 Iriartea, 94, 298, 362 deltoidea, 81, 298 Iriarteeae, 187, 298, 308 Iriartella, 102, 298 setigera, 102, 106, 298, 308 Itaya, 18

J

Johannesteijsmannia, 19 Juania, 289, 292 Jubaea chilensis, 30 Jubea, 297

K

Kentiopsis, 307 oliviformis, 307 Kerriodoxa, 20, 53, 199 Korthalsia, 271, 479, 480

L

Lacosperma, 479 Latania, 20, 178, 179 loddigesii, 178, 179 verschaffeltii, 179, 182 Lataniinae, 20, 177 Leopoldinia, 304, 479, 480 pulchra, 304 Leopoldinieae, 304 Lepidocaryeae, 269 Lepidocaryum, 269, 272, 274 tenue, 272, 274 tenue var. casiquiarense, 272, 274 Leucothrinax, 18 Licuala, 19, 27, 96, 240, 363, 366, 480 grandis, 28, 240, 244 lauterbachii, 240, 244 Liliales, 462 Livistona, 19, 240, 362-364, 479, 480 chinensis, 240, 244 mariae, 240, 244 merrillii, 240, 244 Livistoneae, 19

Livistoninae, 19, 238, 362–366 Lodoicea, 20, 178, 179, 479 maldivica, 179, 182 Lomandroideae, 461 Loxococcus, 307 rupicola, 307 Ludovia, 462 lancifolia, 462, 468

Μ

Manicaria, 303 saccifera, 303, 316 Manicarieae, 303, 316 Mauritia, 269, 272 flexuosa, 98, 267, 272, 274 Mauritiella, 269 Mauritiinae, 269 Maxburretia, 19, 251 Medemia, 20, 45 Metroxylinae, 269 Metroxylon, 269, 272, 479 sagu, 272, 278 Myrialepis, 479

Ν

Nannorrhops, vii, 20, 43, 46, 47, 195–197, 211, 226, 418 ritchieana, 197, 200 Neophloga, 479 Nolina, 461 Nolinoideae, 461 Nypa, 14, 282, 283, 481 fruticans, 281, 283, 284 Nypoideae, 16, 17, 281

0

Oenocarpus, 303, 316 sp., 303 mapora, 303 minor, 303 Oncocalamus, 268, 272 mannii, 272 Orania, 303 dafonsoroensis, 303, 316 palindan, 303 Oranieae, 302, 316

Ρ

Palmacites, 358, 359 aschersoni, 359 echinatus, 358 lamanonis, 358 zitelii, 359 Palmacitum, 358 Palmae, 17, 358 Palmocaulon, 361 Palmoxylon, 356-415 angulare, 359 arcotense, 362, 364 aschersoni, 362, 364 blanfordi, 360 blanfordii, 360 compactum, 362, 364 coronatum, 362, 364 ghuguensis, 362, 364 homeochamaerops, 362, 365 iriarteum, 362, 365 kamalam, 362, 365 khalsa, 362 lametaei, 362, 366 liebigianum, 360 ligerinum, 356 livistonoides, 362, 365 phoenicoides, 362, 366 punctatum, 359 sabal, 362, 366 shahpuraensis, 363, 366 sundaram, 363, 366 taroides, 363, 367 vestitum, 363, 367, 368 Pandanaceae, 462 Pandanales, 462 Pandanus, 357, 462 tectorius, 462, 468 utilis, 462, 468 Perfossus, 359 angularis, 359

Phoeniceae, 18, 19, 223, 362, 366 Phoenix, 12, 19, 29, 30, 197, 211, 226, 362, 366, 479, 480 dactylifera, 80, 84, 226, 228 reclinata, 226, 228 sylvestris, 226, 228 Pholidocarpus, 19, 364 *Phyllostachys* edulis, 468 viridiglaucescens, 468 Phytelephantoideae, 16 Phytelephas, 14, 292, 363, 367, 479, 480 macrocarpa, 292, 294 sewardii, 363, 367 Phytelepheae, 287, 291 Piqafetta, 269, 272 filaris, 272, 278 Piqafettinae, 269 Pinanga, 479, 480 Plectocomia, 479 Poaceae, 463 Poales, 462-463 Podococceae, 301 Podococcus, 302 barteri, 302 Prionium, 463 Pritchardia, 19, 261, 364 beccariana, 261 minor, 98, 261, 264 thurstonii, 261 Pritchardiopsis, 19 Pseudophoenix, 31, 95, 292 sargentii, 98, 292, 294 vinifera, 80, 292 Ptychosperma, 479 Puya, 462

R

Raphia, 12, 269, 274, 479 sp., 272 farinifera, 267 Raphiinae, 269 Ravenala, 463 Ravenea, 31, 289, 292, 294 albicans, 292 julietiae, 292, 294 moorei, 292, 294 xerophila, 287 Rhapidinae, 19, 247 Rhapidophyllum, 19, 363, 479, 480 hystrix, 28 Rhapis, 2, 19, 30, 34, 197, 251, 479, 480 humilis, 251, 254 subtilis, 251, 254 Rhizopalmoxylon, 361 Roystonea, 30, 33, 299, 362, 365, 479 regia, 299, 312 Roystoneeae, 299, 312

\mathbf{S}

Sabal, 18, 30, 33, 233, 362 etonia, 30 minor, 30 palmetto, 118, 231, 233, 234 rosei, 231, 233, 234 yapa, 231, 233, 234 Sabaleae, 18, 231 Salacca, 479, 480 Satranala, 20 Schippia, 18 Sclerosperma, 480 Serenoa, 19, 30, 261, 479 repens, 30, 118, 261, 264 Smilacaceae, 462 Socratea, 187, 298 exorrhiza, 298, 308 Strelitzia, 463 Strelitziaceae, 463 Syagrus, 301 campos-portoana, 301 picrophylla, 301 sancona, 98, 301, 312 schizophylla, 301

\mathbf{T}

Tahina, 18, 20, 53, 199 Thrinax, 18, 210, 211, 226 sp., 118 radiata, 211, 220 Thurniaceae, 463 Trachycarpeae, 18, 19, 237, 238, 247, 257, 362–365, 367 Trachycarpus, 19, 237, 251, 479 fortunei, 28 martianus, 251, 254 Trithrinax, 18 acanthocoma, 28

\mathbf{Z}

Zingiberales, 463 Zombia, 18, 214

U

Uhlia allenbyensis, 363, 367

V

Veitchia, 102, 307 arecina, 98, 307 winin, 307, 320

W

Wallichia, 20, 187, 190, 192, 479 disticha, 190, 192
Washingtonia, 19, 101, 261 filifera, 118 robusta, 102, 261, 264
Welfia regia, 81
Wettinia, 298 quinaria, 298, 308
Wodyetia, 306, 307 bifurcata, 307, 320

Х

Xanthorrhoea, 461 Xanthorrhoeaceae, 461 Xanthorrhoeoideae, 461

Y

Yucca, 357, 461 gigantea, 461 gloriosa var. recurvifolia, 461, 464 Yuccae, 358

т				1		. •		
I	n	tr	00	111	C 1	51	on	
-		•••	~ `			•••	~	

-
_

Ι	GÉI	NÉRALITÉS SUR LES PALMIERS, PHYLOGÉNIE ET ANATOMIE	9
1	Les 1.1 1.2 1.3 1.4 1.5	palmiers: présentation générale et phylogéniePrésentation générale	11 12 14 14 15 16 16 18
2	Ana 2 1	atomie de l'appareil végétatif des palmiers La racine	25 26
	2.2		30
		2.2.1 Les différents ports chez les palmiers	30
		2.2.2 Les différentes phases de développement	30
		2.2.3 Anatomie générale	32
		2.2.4 Le système vasculaire – parcours des faisceaux fibro-vasculaires	34
	2.3	La feuille	42
		2.3.1 L'axe foliaire	42
		2.3.2 Le limbe	43
II	M.	ATÉRIEL ET MÉTHODES	49
3	Mat	tériel	51
	3.1	Échantillonnage des spécimens	52
	3.2	Problème de l'identification taxinomique des stipes de palmier	53
4	Mét	thodes	57
	4.1	Préparation des spécimens actuels	58
		4.1.1 Niveaux standards d'observation pour les lames de références	58
		4.1.2 Conservation et préparations préliminaires des échantillons	58
		4.1.3 Pour les racines, stipes et pétioles homogènes et non fibreux	59
		4.1.4 Pour les stipes et pétioles hétérogènes, fibreux ou très sclérotiques .	61 62
		4.1.0 Dilaceration nour l'étude anatomique du limbe	03 62
		4.1.0 Treparation pour retude anatomique du ninbe	03 65
		4.1.7 I fotocole d inclusion d centantinon dans du l'EG 1.500	05

		4.1.8 Protocole d'extraction des phytolithes	65
	4.2	Préparation des spécimens fossiles	66
	4.3	Avantages et désavantages des techniques d'inclusion et de polissage	67
	4.4	Observation, mesure et traitements d'image	68
	4.5	Formalisation de la description taxinomique	69
	4.6	Le logiciel Xper	70
		4.6.1 Présentation	70
		4.6.2 Calcul du pouvoir discriminant des descripteurs dans Xper	74
II	I A	NATOMIE DU STIPE DES PALMIERS	77
F	Tag	différente modes d'accreissement dismétrel des polosions	70
Э	Les	Les consistions du ctine	(9 01
	0.1		81
		$5.1.1 \text{La variation axiale} \dots \dots \dots \dots \dots \dots \dots \dots \dots $	81
	5 0	5.1.2 La variation radiale \ldots \vdots	81
	5.2	Etude de deux palmiers à croissance différente	84
		5.2.1 Phoenix dactylifera \ldots \ldots \ldots \ldots \ldots \ldots \ldots	84
		5.2.2 Gaussia sp. \ldots	90
	5.3	Discussion sur ces deux différents modes de croissance	93
	5.4	La croissance des cellules du parenchyme fondamental	94
	5.5	La différenciation de la partie fibreuse dorsale	101
		5.5.1 La lignification centrifuge	101
		5.5.2 La différenciation centrifuge	102
	5.6	Conséquence de ces deux caractéristiques anatomiques	109
		5.6.1 Les différents modes de croissance	109
		5.6.2 Conséquence sur la prise de mesure	109
6	Fori	malisation et présentation des descripteurs	111
	6.1	Organisation générale d'une description	112
		organization of and and the formation of the second s	
7	Ana	atomie du stipe des Coryphoideae	117
	7.1	Article	119
	7.2	Les Borasseae—Hyphaeninae	171
	7.3	Les Borasseae—Lataniinae	177
	7.4	Les Caryoteae	185
	7.5	Les Chuniophoeniceae	195
	7.6	Les Corypheae	203
	7.7	Les Cryosophileae	209
	7.8	Les Phoeniceae	223
	7.9	Les Sabaleae	231
	7.10	Les Trachycarpeae—Livistoninae	240
	7.11	Les Trachycarpeae—Rhapidinae	249
	7.12	Les Trachycarpeae—incertae sedis	259

8	Anatomie du stipe des <i>Calamoideae</i>	269
	8.1 Les Calamoideae lianescents	270
	8.2 Les Calamoideae arborescents	271
9	Anatomie du stipe des <i>Nunoideae</i>	283
0	9.1 Nypa	284
10		000
10	Anatomie du stipe des <i>Ceroxyloiaeae</i>	289
	10.1 Les $Cyclospatheae$	290
	10.2 Les <i>Ceroxyleae</i>	291
	10.3 Les <i>Phytelepheae</i>	293
11	Anatomie du stipe des Arecoideae	299
	11.1 Les Iriarteeae	300
	11.2 Les Chamaedoreeae	301
	11.3 Les Roystoneeae	301
	11.4 Les <i>Cocoseae</i>	302
	11.5 Les Podococceae	303
	11.6 Les Oranieae	304
	11.7 Les Euterpeae	305
	11.8 Les Manicarieae	305
	11.9 Les Leopoldinieae	306
	11.10 Les Geonomateae	306
	11.11 Les Areceae	307
12	Discussion sur les descripteurs	325
14	12.1 Discussion sur les descripteurs	326
	12.1 Discussion sur les déscripteurs	330
	12.2 1 Le groupe Chunionhoeniceae Corunteae Carvoteae Borasseae	331
	12.2.1 Le groupe Phoeniceae Sabaleae Cruosonbileae Trachucarneae	332
	12.2.2 Le groupe l'hoenieue, Dubuieue, Orgosophileue, Truchgeurpeue	332
	12.2.5 Carambiacae	222
	12.2.4 Cerolycollecter	224
	12.2.5 Arcconcerce environnement et climat	335
		000
т	Applications: Xper paléobotanique & archéologie	339
		000
13	Identification Assistée par Ordinateur — Xper	341
	13.1 Présentation de la base de connaissance Palm-ID	342
	13.1.1 Statistiques générales	342
	13.1.2 Taxons inclus dans la base de connaissance	343
	13.1.3 Descripteurs inclus dans la base Xper disponible sur Internet \ldots	344
	13.2 Les différentes bases disponibles	347
	13.2.1 Particularité de la base Palm-ID	347
	13.2.2 Version complète	347

		13.2.3	Version simplifiée	. 349
	13.3	Le site	Internet Palm-ID	. 349
		13.3.1	Présentation	. 349
		13.3.2	Conseils sur l'utilisation de Palm-ID	. 350
	13.4	Généra	ation de clefs \ldots	. 352
14	App	olicatio	ns à la paléobotanique	355
	14.1	État d	es connaissances	. 357
	14.2	Les tig	ges fossiles : les <i>Palmoxylon</i>	. 358
		14.2.1	Taxinomie et nomenclature des stipes fossiles de palmiers	. 358
		14.2.2	Considérations nomenclaturales sur les tiges fossiles	. 362
		14.2.3	Analyse de l'affinité taxinomique de quelques <i>Palmoxylon</i>	. 363
	14.3	Échan	tillonnage des spécimens fossiles	. 369
	14.4	Article	9	. 370
15	App	olicatio	ns à l'archéologie	417
	15.1	Utilisa	tion des palmiers	. 418
	15.2	Article	e sur l'identification d'un filet du Makran	. 420
	15.3	Article	e sur l'étude des charbons de Madâ'in Sâlih	. 430
Co	onclu	ision		433
Bi	iblio	graphi	e	438
٨		TEC.		450
		ĿЭ		409
Α	Con	nparais	son des supertrees de Baker <i>et al.</i> 2009	459
В	Les	Mono	cotylédones arborescentes	461
	B.1	Organ	isation générale des Monocotylédones arborescentes	. 462
	B.2	Anato	mie de quelques Monocotylédones arborescentes	. 462
		B.2.1	Alismatales	. 463
		B.2.2	Asparagales	. 463
		B.2.3	Dioscoreales	. 464
		B.2.4	Liliales	. 464
		B.2.5	Pandanales	. 464
		B.2.6	Poales	. 464
		B.2.7	Zingiberales	. 465
С	Diff	érente	s clefs d'identification / classification	473
	U.I	Clef d	$1 \text{dentification de Stenzel (1904)} \dots \dots$. 473
	U.2	Classif	Ication de Schoute (1912)	. 479
		U.2.1	Starkes Dickenwachstum	. 479
		C.2.2	Gutes Dickenwachstum	. 479

		C.2.3	Schwaches Dickenwachstum	. 479
		C.2.4	Wahrscheinlich gutes Dickenwachstum	. 479
		C.2.5	Wahrscheinlich schwaches Dickenwachstum	. 480
		C.2.6	Schwaches oder fehlendes	. 480
		C.2.7	Kein Dickenwachstum	. 480
	C.3	Descri	pteurs discriminant du stipe selon Tomlinson (1961)	. 481
D	Rap	pels		485
\mathbf{E}	Le l	ogiciel	Xper	489
In	dov			400
III	uex			499
	Tabl	le alpha	abétique des noms latins	. 499

TABLE DES MATIÈRES