N

N

Phronesis, a diagnosis and recovery tool for system
administrators
Christophe Haen

» To cite this version:

Christophe Haen. Phronesis, a diagnosis and recovery tool for system administrators. Other [cs.OH].
Université Blaise Pascal - Clermont-Ferrand II, 2013. English. NNT: 2013CLF22387 . tel-00950700

HAL Id: tel-00950700
https://theses.hal.science/tel-00950700
Submitted on 21 Feb 2014

HAL is a multi-disciplinary open access L’archive ouverte pluridisciplinaire HAL, est
archive for the deposit and dissemination of sci- destinée au dépot et a la diffusion de documents
entific research documents, whether they are pub- scientifiques de niveau recherche, publiés ou non,
lished or not. The documents may come from émanant des établissements d’enseignement et de
teaching and research institutions in France or recherche francais ou étrangers, des laboratoires
abroad, or from public or private research centers. publics ou privés.

https://theses.hal.science/tel-00950700
https://hal.archives-ouvertes.fr

N° d’ordre : D. U : 2388
EDSPIC: 620

UNIVERSITE BLAISE PASCAL - CLERMONT 11

ECOLE DOCTORALE
SCIENCES POUR L'INGENIEUR DE CLERMONT-FERRAND

These

Présentée par

Christophe Haen

pour obtenir le grade de

DOCTEUR D' UNIVERSITE

SPECIALITE : INFORMATIQUE

Phronesis, a diagnosis and
recovery tool for system administrators

Soutenue publiquement le 24 octobre 2013 devant le jury :

M. David Hill Président

M. Abdel-Illah MOUADDIB Rapporteur et examinateur
M. Philippe PREUX Rapporteur et examinateur
M. Niko NEUFELD Examinateur et superviseur

M. Vincent BARRA Directeur de these

Acknowledgments

First of all, I would like to express my deepest gratitude to Prof. Vincent Barra,
my thesis advisor, for agreeing on an extremely short notice to supervise me for
this project at CERN. Throughout the three years that my work lasted, he has
always and at all times provided me with all the help I was in need of, despite
the distance. I have greatly benefited from his knowledge of the various artificial
intelligence domains, his experience of the research world, and discussions with
him were always interesting, enjoyable and fruitful. Without his guidance and
persistent help this thesis would not have been possible.

Many thanks to my committee, Prof. David Hill, Prof. Abdel-Illah Mouaddib
and Prof. Philippe Preux for their guidance and helpful suggestions.

Dr. Niko Neufeld, deputy of the LHCb Online project, also deserves a special
thanks. As my official CERN supervisor, he has given me many opportunities to
get involved in several aspects of the Online work and the data acquisition world.
All the experience gathered there had a direct impact on my way of working and
made me professionally proficient.

I am also indebted to each and every person in the LHCb Online team: Enrico
Bonaccorsi (grazie!), Loic Brarda (merci!), Daniel Camporaf(jgracias), Luis Granado
Cardoso (obrigado!), Mohamed Chebbi (merci!), Paolo Durante (grazie!), Markus
Frank (danke!), Clara Gaspar (obrigado!), Beat Jost (danke!), Vijay Kartik (sorry
dude, no latex support for you ;-)), Guoming Liu (XiéXié!), Francesco Sborzacchi
(grazie!), Rainer Schwemmer (danke!) and Alexander Zvyagin (spasibo!). They
taught me all what I know about system and network administration and the
running of the LHCb experiment. They also made my three years at CERN a
unique and very pleasant human adventure.

Needless to say that there are many other people at CERN who had a positive
impact on my work one way or another. However, I will not take the risk of making
a list for fear of forgetting any, but it definitely includes the wonderful LHCDb
secretariat (to whom I am particularly grateful for protecting me from all kind of
administrative hassles).

Finally, thanks to AC4DC, Eric Clapton, Deep Purple, B.B. King, Mark
Knopfler, the Rolling Stones, Sigur Ros and ZZ Top to cut myself off from the
surrounding noise when writing this thesis. They all have a drink on me.

ii

Abstract

The administration of a large computer infrastructure is a great challenge in many
aspects and requires experts in various domains to be successful. One criterion
to which the users of a data center are directly exposed is the availability of the
infrastructure. A high availability comes at the cost of constant and performant
monitoring solutions as well as experts ready to diagnose and solve the problems.
It is unfortunately not always possible to have an expert team constantly on site.

This work presents a tool which is meant to support system administrators in
their tasks by diagnosing problems, offering recovery solutions, and acting as a
history and knowledge database.

We will first detail what large data centers are composed of and what are the
various competences that are required in order to successfully administrate them.
This will lead us to consider the problems that are traditionally encountered by
the administrators. Those problems are at the source of this project, and we will
define our goals from those issues. Finally we will detail the environment in which
this work took place, that is the LHCb experiment at CERN.

The second chapter contains the state of the art, which lists the methods that
try, one way or the other, to answer problems similar to ours. We will see what
these methods are, how they are applied, what the pros and cons are, and how they
fit in our context.

The third chapter is our proposition to address the issues and reach the goals
we set in the first chapter. This chapter gives all the approaches and methods we
adopted: some are a direct use or an adaptation of what was mentioned in the
state of the art, while some others are innovative techniques. Each proposition is
justified and put in relation with our goals.

The fourth chapter is a technical description on how our ideas of the third
chapter were put in practice. It details the software packaging, the various tools
that were developed as well as some explanations on how they are used.

The fifth chapter shows what results were obtained with your solution. The first
part of it is an analysis of various simulations that aim at showing the efficiency of
the methods described in Chapter 3. The second part is a description of how the
software is applied in the LHCb Online environment, as well as a feedback on its
usage.

The last chapter offers perspectives to improve the software, extend its function-
alities and address some of the issues that are detailed in the feedback of Chapter
d.

Contents

I Introduction
[.1 Administration of a large computer fabric
[.2 Problems
I3 Goal,
I.4 Conmtext.

IT State of the art

IIT LISA: LearnIng approach for System Administration

ITI.1 Restrictions
IT1.2 Diagnosis and recovery of a problem . . .
I11.3 Software running on Linux
I11.4 Adaptation of the MAPE-K loop
II1.5 Reinforcement learning
IT1.6 Shared Experience
I11.7 Convention over Configuration
II1.8 Diagnosis & Recovery
M9 Summary

IV Phronesis
IV.1 General considerations
IV.1.1 Basic components
IV.1.2 The packaging
IV.1.3 The database
IV2Tools
IV.2.1 Configuring the program
IV.2.2 Remote Agent
1V.2.3 Interaction with the user
IV3Core
IV.3.1 Algorithms
1V.3.2 Implementation

V Results
V.1 Simulations.
V.1.1 Importance of the dependency rules

N O e

15

21
21
22
24
25
27
28
28
29
30

33
33
33
38
39
40
40
33
55
58
38
72

iv Contents

V.1.2 Importance of the Shared Experience 80

V.1.3 Importance of the priority algorithm 83

V.2 Real case application L. 93
V.2.1 Oauline system configuration 94

V.2.2 Feedback from the real case application 99

VI Future 103
VI.1 Technical aspects 103
VI.2 Functional aspects 105
VIIConclusion 109
Bibliography 113
A Database 125
B Phronesis grammar 127
B.1 Formal description of the grammar 127
B.2 Examples of Phronesis configurations 130
B.2.1 Example 1: websites 130

B.2.2 Example 2 : serverso Lo 132

C Tree comparison algorithm 135
D API usage 143

E UML diagrams 147

List of Figures

I.1 AnLHC dipole 8
[.2 Overview of all the LHC experiments 9
[.3 Section of the LHCb experiment 11
[.4 Example of an event reconstructed by LHCb 12
IT1.1 Screenshot of the LHCb software stack 22
IT1.2 NMlustration of a kernel layout 25
IV.1 UML class diagram of the MetaAgent class 37
IV.2 Websites described using UML diagram 41
IV.3 Automatic naming of MetaAgent created by inheritance 51
IV.4 Example of Classification 51
IV.5 The Observer Design Pattern. 56
IV.6 Nlustration of the Shared Experience mechanism 66
IV.7 Example to illustrate the second policy 68
IV.8 Implementation principle of the diagnosis algorithm 74
V.1 Percentage of cases with correct diagnoses (Simu 1) 79

V.2 Additional user actions with respect to the optimal solution (Simu 1) 80
V.3 Additional visited agents with respect to the optimal solution (Simu 1) 81
V.4 Additional visited agents with respect to the optimal solution after 20

replications (Simu 2) oo oo 82
V.5 Comparison of learning speeds (Simu 2) 82
V.6 Comparison of learning speeds using logarithmic scale (Simu 2) . .. 83
V.7 Avg # of attempts to solve a problem 85
V.8 Comparison of the avg # of attempts per Node in scenario “even” . . 86
V.9 Comparison of the avg # of attempts per Node in scenario “1/2”. . . 86
V.10Comparison of the avg # of attempts per Node in scenario “k=1.1"7 . 87
V.11 Comparison of the avg # of attempts per Node in scenario ‘“64=1.2" . 87
V.12Comparison of the avg # of attempts per Node in scenario “6=1.8" . 88
V.13Comparison of the avg # of attempts per Node in scenario ‘k=1.4” . 88
V.14 Comparison of the avg # of attempts per Node in scenario “k=1.5" . 89
V.15Comparison of the avg # of attempts per Node in scenario “6=1.6" . 89
V.16 Comparison of the avg # of attempts per Node in scenario “6=1.7" . 90
V.17Comparison of the avg # of attempts per Node in scenario “6=1.8" . 90

V.18 Comparison of the avg # of attempts per Node in scenario “6=1.9” . 91

vi List of Figures
V.19Comparison of the avg # of attempts per Node in scenario “1+” . . . 91
V.20 Comparison of the avg # of attempts per Node in scenario “1-” . . . 92
V.21 Comparison of the avg # of attempts per Node in scenario “1/4”. . . 92
VI.1 Hllustration of the Copy-On-Write mechanism 105
A.1 Complete schema of the database 126

B.1 Representation of the configuration of an abstract website and two

INStances L 133
C.1 Content of the database. 137
C.2 Content of the new configuration 140
E.1 MetaAgent UML class diagram 147
E.2 AgentRecovery UML class diagram 147
E.3 Userlnteraction UML class diagram 148
E.4 Interaction diagram when the Core receives a message 148
E.5 Interraction diagram of the Syslog Observer 148

E.6 Interraction diagram of the AnalyzerEngine 149

List of Tables

IV.1 Problems and solutions for File problems 61
IV.2 Problems and solutions for Process problems 61
IV.3 Problems and solutions for Environment problems 62

V.1 Average # of attempts and standard deviation in each scenario 93

CHAPTER [

Introduction

Contents
I.1 Administration of a large computer fabric 1
12 Problems 4
1.3 Goal 5
T4 Context e 7

I.1 Administration of a large computer fabric

A data center or computer center is a facility used to house computer systems and
associated components, and are usually meant to fulfill a particular goal. Typical
goals include data storage, website hosting, cloud facilities or heavy computation.
The size and the components of a computer center strongly depend on the usage,
but some elements at the core of the facility are always present:

e Servers: these are of course the basic block of a data center and normally
represent the greatest share of the devices.

e Network components: the network infrastructure interconnects all the servers,
and is composed of various equipments such as switches, routers, patch panels
and of course a lot of cables.

e Storage: the storage system is usually a large pool of disks used to centrally
host the data and share it across the data center.

e Infrastructure equipments: cooling, power, UPS, racks... as many components
on which the computer infrastructure is based and relies.

Some middle-wares are not mandatory but are very frequent, such as:
e Databases: a specific setup optimized for the use of databases

e Virtualization: more and more common now, virtualization is a technique
for using computing resources and devices in a completely functional manner
regardless of their physical layout or location.

Taking care of such a data center implies a wide range of competences and different
tasks:

Chapter I. Introduction

e Hardware: be it server or network hardware, choosing suitable equipment is
crucial. Considerations such as performance, power consumption, or compat-
ibility are only a few of the aspects to look at when choosing material, and
one always has to consider them all at the same time. For example, a server
might be more expensive than two servers twice as less powerful, but be more
adapted regarding power consumption or space occupation. The “power us-
age effectiveness” (PUE) which measures how efficiently a data center uses
its power is also taken more and more into account now. Also, one should
not forget that each hardware model has not only different specifications, but
also different problems and malfunctions. And thus the more heterogeneous
an environment is, the more varied problems one might have to face. Proper
cabling becomes critical very quickly with the number of devices to intercon-
nect: one has to choose adapted lengths, make clever connection designs, and
S0 on.

e Networking: having all the hardware neatly interconnected is a first step, but
the logical interconnection is the next one. Networking experts have to divide
the infrastructure into logical sets of machines either to separate the different
functionalities of the center or to allow for more performances. But they have
to ensure as well that the parts that need to communicate can actually do it.
All this is achieved by designing clever addressing scheme and making use of
various protocols of routing and segmentation.

e Storage: the storage is the system on which shared data are kept. It can
easily become a single point of failure. Just as for the hardware and the net-
working, the so-called “good” storage system depends on the use case. Some
systems like tapes are targeted at providing huge storage capacity in the long
term, typically for backups, which they achieve at the cost of performance.
Other systems provide very fast access to data, but usually offer limited stor-
age capacities. The capacity and the speed are not the only aspects to con-
sider when designing the storage system. Fault tolerance, recovery capacities,
cluster or single access, are to be taken into account. Storage systems nowa-
days always rely on a RAID-like system, which involves aggregating disks in
various manners in order to overcome the limitations of the hardware disks
[Patterson 1988]. For example, RAID 0 improves the speed by striping the
data and writing the various chunks simultaneously on several disks; RAID
1 provides better reliability because it duplicates all the data, at the cost of
losing half the storage capacity; more modern versions like RAID 5 or 6 im-
prove both the speed and safety by striping the data and using checksums for
integrity.

e Software: In order to be used for anything, the data center has to run soft-
ware solutions, the first of them being the operating system (OS). The choice
of the OS is usually driven by the activity the data center is dedicated to, or
sometimes enforced by external constraints, and it is not rare to encounter

I.1.

Administration of a large computer fabric 3

several OS’s or even several versions of the same OS in an environment. But
it’s/their deployment, and of any other application on top of them cannot
be approached in the same way as on a desktop computer (i.e. with an in-
stallation CD). It requires special tools called “cluster management systems”
(CMS), which allow to deploy software and configurations at a large scale. Of
course, each OS has a different cluster management tool, thus duplicating the
maintenance work for the administrator.

Users: some data centers do not give direct access to their machines to the
users, but when they do, there is the need for a whole infrastructure in order
to manage the user profiles. This infrastructure needs to cover all the aspects
regarding the accounts, the authentication, the authorizations and so on. As
for the CMS, a unified system covering all the OS is not a trivial goal.

Security: this is a vast subject, which unfortunately can never be completely
solved in an environment. The strength of a chain is in its weakest link, the
same applies for security. And the security of a data center covers many layers:
network, software, users and more. Security experts have to decide what they
want to protect, against which type of threat, and how.

This list is far from being exhaustive, but already shows the complexity of

running a data center. Moreover, the difficulty does not increase linearly with the

size of the data center, but rather in a step manner. The reason is that all solutions

have a threshold after which they cannot cope anymore; neither can we decide to

put in place the most advanced solutions for low-end data centers because this

would be an overkill and possibly out of budget.

The International Data Corporation (IDC) [Vernon Turner 2005] has classified

(in 2006) the data centers into four categories, distinguished by size and based on

three criteria: the floor surface, the total amount of servers, and the amount of high

end servers. This classification is now deprecated, given the speed at which the field

evolves, but still of interest:

e Small Data Center:

— 1400 m?
— 350 - 500 volume servers

— 1 - 3 high end servers

e Medium Data Center:

— 1850 m?
— 1500 - 1700 volume servers

— 4 - 5 high end servers

e Large Data Center:

4 Chapter I. Introduction

— 3250 m?2
— 2000 - 2500 volume servers
— 6 - 7 high end servers

e Very Large Data Center:

— >9300 m?
— <25000 volume servers

— >8 high end servers

We shall now mention the problems that can be encountered when managing a data
center.

1.2 Problems

In the previous section, we have listed only some of the competences needed to suc-
cessfully run a data center, and mentioned only a fraction of the tasks it involves.
An important aspect has nevertheless been moved aside: the availability. The ex-
pectations on the availability strongly depends on the usage of the data center. A
commercial center will achieve a better availability than the cluster of a scientific
public institute, because high availability has a non negligible cost: it is usually
achieved by using higher quality material, having a fully redundant infrastructure,
and having available spares for every component. The Telecommunications Industry
Association (TTA) published and amended in 2010 a document TIA-942 [TIA 2010]
dividing data center into tiers according to their availability. The higher the tier

the higher the availability:
e Tier 1

— Single non-redundant distribution path serving the I'T equipment
— Non-redundant capacity components

— Basic site infrastructure with expected availability of 99.671%
o Tier 2

— Meets or exceeds all Tier 1 requirements
— Redundant site infrastructure capacity components with expected avail-
ability of 99.741%
e Tier 3

— Meets or exceeds all Tier 1 and Tier 2 requirements
— Multiple independent distribution paths serving the IT equipment

— All IT equipment must be dual-powered and fully compatible with the
topology of a site’s architecture

1.3. Goal 5

— Concurrently maintainable site infrastructure with expected availability
of 99.982%

o Tier 4

— Meets or exceeds all Tier 1, Tier 2 and Tier 3 requirements

— All cooling equipment is independently dual-powered, including chillers
and heating, ventilating and air-conditioning (HVAC) systems

— Fault-tolerant site infrastructure with electrical power storage and distri-
bution facilities with expected availability of 99.995%

While the unavailability tolerated for a tier 1 is almost 29 hours over one year,
the one for a Tier 4 represents only 26.28 minutes.

So in fact, the main challenge of the administrator team taking care of the
center is not to deploy it, but to maintain it in a working shape. In order to achieve
their goal, the administrators need to react quickly to a failure to first diagnose the
problem, and then solve it. Reaching the availability targets listed above, even for
Tier 1, requires very fast intervention 24h / 7 days and implies having a working
force on site at any time. This is a problem in most of the non-profit data centers,
which usually have an “exzpert on-call” system: this means that in case of problem,
at any time including the night, an expert will be contacted and eventually woken
up to solve the issue. Properly addressing the problem requires taking the measure
of the global situation, understanding what is impacted, recalling the interactions
between all the different components of the infrastructure, tracing down or
inferring the possible sources of problem, validating the diagnosis and finally taking
actions. All those steps stand in need of a clear mind, which is not an easy thing
when just having been roused. It usually results in a poor efficiency at the begin-
ning of the intervention, and thus in a loss of time and availability of the data center.

Of course, the difficulty of keeping the data center in an appropriate shape is
not only true in the middle of the night. However, this is the moment when it is the
most difficult. The reason is that one does not necessarily have a clear mind, and
because the expert might simply not know the whole system fully in details and is
usually not surrounded by his team at this time of the day.

1.3 Goal

Efficiency is a parameter of the data center to which the users are directly exposed
and very sensitive. So in cases where having a permanent on-site team of adminis-
trator is not an option, the straightforward alternative is to use a software solution.
Software solutions might have an initial cost of development or acquisition, and
eventually a certain running cost for licenses or support purposes, but on a long
term scale, the price is usually negligible compared to the one of an employee.

6 Chapter I. Introduction

Replacing a human administrator by a software is certainly not a reachable goal, at
least for now, because of the variety and complexity of the tasks. But using a soft-
ware as a support to the person is a more reasonable, common and fruitful approach.

In this particular context, where the goal is to support a system administrator
to keep the data center running, and fix a problem when it occurs, there are char-
acteristics and expectations that immediately come to mind regarding the software:

e Reduce the workload of the system administrator: although this statement
can sound like an obvious requirement, one still has to bear in mind this
constraint all along the development of the tool. Indeed, it is very easy to
forget, and this generally leads to a software which is so complex, requires
so much configuration and so much maintenance that using it is more time
consuming that actually performing the task. So ideally what one wants is a
tool which is as independent as possible.

e Propose a diagnostic and recovery solution: ultimately, the goal is a software
which is able to tell where a problem comes from and how to fix it. This is
definitely the best help a just woken up administrator can get.

e Improve with experience: we target at a tool providing more and more accurate
results as it encounters situations. The same way as one can expect from a
student that he uses what he has learned or what he has been taught, one can
expect a similar behavior from this software.

e Act as a knowledge base: since the aim of the tool is to assist an administrator
in maintaining a data center in a running condition, one can expect the tool
to have some kind of knowledge about that environment: mainly, what are
the different components, their behaviors, their interactions, and their depen-
dencies. An experienced administrator starting a new job, if provided with all
this knowledge, would be immediately efficient in its tasks.

e Act as a problem history base: problems are hardly unique. Experience shows
that if a setup does not change, problems are recurrent. Their frequency might
be very low, but they will eventually appear again. This “fatality” of problems
is not true only across time, but also across similar systems: if several systems
have a very similar design, then the chances for a problem to appear only on
one of them is almost null. This is the reason why the software may have
to remember previously encountered problems, and keep the history at the
disposal of the administrator or the helpdesk.

The following addresses all these points, through the development of both a
methodological framework and a dedicated tool for the LHCb Online team.

I.4. Context 7

1.4 Context

CERN, the “Furopean Organization for Nuclear Research”, sits on the Franco-Swiss
border, next to Geneva. It is one of the largest and most prestigious scientific
research centers across the globe. Founded in 1954, it is one of the first European
organizations, and counts 20 Member States and 7 observers today. Its primary
interest is fundamental physics: understanding the laws and constituents of our
universe. Currently, there are 2,400 full-time employees, 1,500 part-time employees,
and some 10,000 visiting scientists and engineers, representing 608 universities and
research facilities and 113 nationalities, that are dedicated to this task. CERN has
a great number of achievements in its fundamental research. One can mention:

e discovery of neutral currents

e discovery of W and Z bosons

determination of the number of light neutrino families

first creation and longest time maintaining antihydrogen atoms

discovery of a Higgs-like boson

Several Nobel prizes and many other valuable titles and medals have been
awarded to CERN scientists.

In order to reach such achievements, physicists need tools and materials that
are at the bleeding edge of the technologies, and sometimes even beyond immediate
reach. Those needs explain the multitude of competencies at CERN: the goal
of the biggest fraction of CERN scientists and engineers is not to develop new
fundamental theories but to develop the technologies and operate the advanced
tools in order to provide the physicists with data. This mission has brought
many technological breakthroughs, which are nowadays used daily in a variety of
fields: medical imagery instruments, solar panels, cooling technologies, large scale
computing, and, last but not least, the Web.

Across its history, CERN has always operated particle physics instruments that
were at the time setting new records in terms of size, power, temperature or other
values. In 2008, CERN has overcome more limits than ever before with the LHC.

The LHC, Large Hadron Collider, is the latest particle accelerator at CERN.
Particle accelerators are at the core of high energy physics (HEP). Their goal is to
accelerate particles at very high speed and energy in order to observe events that
are not visible at energies we encounter every day. The LHC is the most recent
particle accelerator, and is the most complex machine human beings have ever
built. Accelerators are either linear or circular. While linear accelerators were the
first to be used and will be the next generation, the current generation is mainly

8 Chapter I. Introduction

circular accelerators, and so is the LHC.

Very roughly described, a circular accelerator is made of two beam pipes in
which one accelerates particles in opposite directions via a radio-frequency system.
The particles accelerated might either be of the same charge sign like proton-proton,
proton-ions or ions-proton for the LHC, or of opposite charge, for example electron-
positron. Those beam pipes are inside cylindrical magnets (dipoles in Fig. 1.1,
quadrupoles, and even octupoles) in order to bend particles’ trajectory or shape
the particle clouds, which explain the size of these instruments. The pipes are
then crossed at definite places, bringing the particles into collision. The reason for
such an operation is to understand the building blocks of our universe by creating
particles that are too heavy to be present naturally in our environment: collisions
result in high energy generation, which in turn can transform into matter according
to Einstein’s special relativity theory.

Heat Exchanger Pipe
Beam Pipe
Superconducting Coils

Helium-II Vessel
Spool Piece
Superconducting Bus-Bar
Iron Yoke

Non-Magnetic Collars

Vacuum Vessel
Quadrupole

Bus Bars] ’ F ‘,\w:; Radiation Screen
//} : Thermal Shield

T The

15-m long

LHC cryodipole

Aucxiliary
Bus Bar Tube

. Instrumentation
Protection
Diode Feed Throughs

Figure I.1: An LHC dipole

The LHC sits 100 m below the ground, under the Franco-Swiss border, in a
27 km circumference tunnel as visible in Fig. I.2. This machine has outdone any
previous comparable instrument in all regards:

e With a temperature of about 2 K, the 1600 superconducting magnets of the
LHC are among the coldest places of the universe, chilled with almost 100
tons of liquid Helium.

I.4. Context 9

e The field of the dipole magnet goes up to 8.3 T', compared to the Earth field
which is of 31 uT.

e The vacuum present in the beam pipe is emptier than inter-galactic space.

e The particles travel at a speed of 0.999999991 ¢, which is only 3 m per second
slower than the speed of light.

e Each proton will have an energy of 7 TeV.

e A luminosity of 103* em=2s71.

A collision rate of 40 MHz, or a bunch collision every 25 nanoseconds.

Figure 1.2: Overview of all the LHC experiments

However, colliding particles is pointless if there is nothing to observe the result.
This is the purpose of the different detectors which sit on top of each of the four
interaction points of the LHC. Detectors are like big cameras that take snapshots of
what is happening when the collisions take place. There are four main experiments
using the collisions of the LHC:

e ALICE: “A Large Ion Collider Experiment”. The aim of this experiment is to
observe the Quark Gluon Plasma, a state of matter that is supposed to have
existed just after the Big Bang. In order to recreate this state, the LHC will
collide lead’s ions, producing temperatures more than 100,000 times hotter

10 Chapter I. Introduction

than at the heart of the Sun. Its dimensions are 26m long, 16m high and 16m
wide and it weighs 10,000 tons.

o ATLAS: “A Toroidal LHC Apparatus”. 1t is one of the two giant multi purposes
detectors of the LHC. Among its goals are the discovery of the Higg’s boson,
extra dimensions and dark matter. Its dimensions (46 m long, 25 m high and
25 m wide and 7000 tonnes) make it the largest volume particle detector ever
built.

e CMS: “Compact Muon Solenoid”. CMS is the second multi-purpose detector of
the LHC. It has the same physical goals as ATLAS, but uses different technical
solutions. With 21 m long, 15 m wide, 15 m high and 12 500 tons, it is smaller
but heavier than ATLAS.

e LHCb: “Large Hadron Collider Beauty”. The role of LHCD is to understand
the difference between matter and anti-matter, and why all the latest seems to
have completely disappeared from our Universe. For that, it observes particles
of the “charm” and “beauty” families.

The standard theory used to describe particles physics is known as “Standard
model”. Tt describes all the elementary particles, forces and their interactions. This
model is extremely successful, but still suffers from certain shortcomings.

Particle physics theory has foreseen and confirmed the existence of the so-
called “antiparticles”. Each “standard” particle has an antiparticle which has the
same mass and spin, but opposite charge. When put together, a particle and
its antiparticle annihilate, leaving only pure energy. The theory states that at
the beginning of the Universe, particles and antiparticles were created in equal
quantities. However, all that surrounds us is composed of ordinary matter, and
there is no sign of evidence for an “antiparticle reserve” in the universe. This means
that at some point in time, the balance was broken. The Standard Model predicts a
small asymmetry, but not big enough to explain the quantity of matter we observe.
The main goal of LHCb is to investigate this.

LHCb is different from the other LHC detectors by its geometry: while the
others are cylinders, LHCb is a forward detector, as visible in Fig. I1.3. With 21m
long, 10m high,13m wide and 5600 tons, it is also the lightest and smallest of all four.

LHCD, like any other experiment, is actually made of several components, called
sub-detectors, used together. One sub-detector is dedicated to perform one type
of measurement. LHCb has the following sub-detectors, in the order of particle
crossing:

e VELO: the VErtex LOcator is the first detector that the particles go through.
It is a cylindric silicon detector around the interaction point, very close to the

I.4. Context 11

S

,/ \\\
2 e S -
para NN
/ 3 N "
y > N %
S NN
R
// // \\ N\
/) N
/S / N
/ N\
// HCAL AN
/ ECAL M5 \
// SPD/PS Rig D \ \

Magnet

Figure 1.3: Section of the LHCb experiment

beam pipe. It is used to measure the trajectories of particles right after the
collision with extreme precision.

RICHI: the Ring Imaging CHerenkov detector identifies the particles’ with
low momentum using the Cherenkov effect.

TT: the Tracker Turicensis is a silicon strip detector used to measure particle’s
trajectories and their momenta.

Magnet: the magnet is not a measurement instrument. It is used to bend
particle’s trajectories.

IT and OT: three slices of a tracking system are placed behind the magnet.
The inner part of it is the IT (Inner Tracker), a silicon strip detector; The
outer part is the OT (Outer Tracker), a straw-tube detector.

RICH2: it is used as RICH1 for particle identification, but with high momen-
tum.

ECAL: the Electromagnetic CALorimeter measures the energy of electrons
and photons.

e HCAL: the Hadronic CALorimeter measures the energy of hadrons.

e MUON: the last layers are the MUON walls, which are used to identify muons.

12 Chapter I. Introduction

By crossing the informations provided by all the sub-detectors, we are able to
understand exactly what has happened and what was produced after the collisions
(see Fig. 1.4).

5.2.2013 5:30:36
Run 136734 Event 3832870 bld 1424

Figure 1.4: Example of an event reconstructed by LHCb

Nevertheless, the frequency of collisions produced by the LHC is way too high
to record all of them. It would mean to transport and store several Terabytes of
data per second, which was impossible at the time of the design of the experiment,
and would still be extremely challenging in the coming decade. Moreover, keeping
all the data does not make any sense since we are looking for very rare events,
and thus most of what we would record would be totally uninteresting and useless.
The straightforward solution is filtering: we need to choose which event should
be kept, and which one should be discarded. This discriminating process is called
“Triggering”.

LHCDb has two levels of triggers:

e The LO trigger: the selection at the low level is done based on only a small
fraction of the global information representing an event. That is, the decision
is based on information coming from the calorimeters and the muons only.
The LO trigger is an FPGA-based electronic device, and decreases the data
rate to 1 MHz, which is still too much to be stored.

e The High Level Trigger or HLT: although not using the full picture, the HLT
has to partially reconstruct the event with data from all the sub-detectors in

I.4. Context 13

order to perform a more detailed selection. This filtering is software based,
and runs on many of the shelf servers, in the order of 1500 units. The output
rate of the HLT is in the order of 5kHz.

The events are then stored on a disk based storage system. This whole chain, go-
ing from the event creation in the detector until they are stored on disk, is called “the
Data Acquisition” (DAQ) system. With the control systems, it composes “the Online
System”. The data sits on the disk storage for a very limited time, in the order of 30
minutes in optimal conditions, before going in the “Offfine system”, where they are
permanently stored on tape, and analyzed in depth and multiple times by physicists.

The 1500 servers used in the filtering farm represents the majority, but only a
portion of the LHCb Online system. The whole detector itself is controlled with a
SCADA control system relying on a computer infrastructure. And of course, all the
systems listed in the section 1.1 are present: storage, database, LDAP, kerberos,
etc. In total, the LHCb online system comprises more than 2000 servers and more
than 200 switches.

The LHC and its experiments are running around the clock the whole year, with
a five day technical stop every six weeks and a longer Christmas break. We thus
have a situation as described previously with expert on-call duties, and fewer than
12 people, including part-timers, to have all the system running through the year.

CHAPTER 1

State of the art

Even when there is no constraint such as high availability, diagnostic and recovery
assistance has always been a goal, even outside the scope of system administration
— a status LED on a board or definite sound sequences coming from a device are
just examples.

There exist different approaches, methods and implementations that were
attempted in order to answer parts of our needs and meet the goals described in
part 1.3. Below is a description of those various methods, with their pros and cons,
and for each of them, some implementation examples to illustrate their applications.

The simplest approach to diagnosis consists simply of constantly looking at all
that could possibly go wrong in a system: this is called monitoring. There are two
approaches for monitoring: active or passive. The passive monitoring means that
the status of the device is not permanently updating, but rather that the device
is expected to inform the monitoring system in case of status changes. The active
monitoring, in turn, consists of actually fetching information from the device.

A very typical example of monitoring protocol implementing both aspects is
SNMP ([Harrington 2002]). SNMP, Simple Network Management Protocol, is
a standard protocol used to manage devices on IP network, by either getting
information about them or setting values in their configuration. It is most
commonly used to manage switches and routers. While SNMP can be used to
query the information from a device, the device can also be instructed to send an
“SNMP Trap” when something is happening, for example a temperature threshold
reached. The difference between the push, the pull and interrupt principles is a
very important topic in monitoring which occurs every time a monitoring task
needs to be put in place.

Monitoring protocols are only one part of the needs: the infrastructure to
use them properly is also needed. The way this is usually done in a professional
environment is to have one server, or a set of servers, responsible for aggregating the
monitoring data, collected via a dedicated network. While a very small environment
could possibly rely on a few scripts for its monitoring, large structures need dedi-
cated software. There are a great variety of such software (e.g. [Enterprises 2009],
[Project 2013b], [team 2010], [SIA 2012]), each having pros and cons, but one of

16 Chapter II. State of the art

them is really the reference open source solution: Nagios ([Enterprises 2009]).

The purpose of Nagios is to raise an alert in case of a problem, by sending
an email for example. It is primarily designed for performing active checks, but
also handles passive checks. It has a very modular architecture, which allows to
add many functionalities that are not part of the core software, such as plotting.
The configuration of the monitoring done by Nagios relies on two building blocks:
hosts and services. A host normally refers to a device such as a server or a router.
Services refer to all kinds of software, applications or resources like CPU or disk
space, etc. Services are then applied to Hosts. The main status for a Host are “Up”
and “Down”;, for Services there are “Ok”, “Warning”, “Critical”, “Unknown”. A user
defined executable for each Host and Service is then used at regular interval in
order to query its status.

Software like Nagios will work out of the box for most environments, but as
mentioned previously, there is a threshold after which simple setups collapse and
cannot perform anymore. Then very complex distributed installation is needed,
such as the one presently in place at LHCb using Icinga ([Project 2013b]), a fork
of Nagios [Haen C 2011]. This allows to cope with the 40,000 Services and 2200
Hosts monitored on a 5-minute base.

However, the amount of checks executed grows up exponentially with the
number of Hosts and Services, and that most of the checks executed will be useless
in a sense that they will return an OK state. On the other hand, relying completely
on passive monitoring is not a good option either, since it is very possible that
the service or the host dies before having the time to warn anyone. So for large
environment, there is no solution to reliably monitor everything without having
to struggle for performances (using for example plugins like [Nierlein 2010] to
distribute the work).

The other aspect which appears with classical monitoring on large scale
is the massive spamming that occurs when a problem on a core system will
impact many other systems, just like a power cut. This will have as a consequence
to trigger a lot of alarms, making it impossible to distinguish the root cause of them.

Despite these flaws, classical monitoring solutions are still used everywhere,
and are useful in many cases. However, there is clearly a need for having cleverer
solutions for big environments: instead of having the status for all our sensors, it
would be better to be warned only about the root problems.

The first solutions that tried to ease the work of administrators by providing
them with diagnoses were based on a branch of artificial intelligence (A.I) called
“Ezpert Systems” [Ginsberg 1993|. Expert Systems are said to be “rule based”: their
diagnoses are based on sets of simple rules and conditions. One can distinguish two

17

main components in such an architecture:

e the knowledge base: the knowledge base contains sets of rules and conditions
defined by the user. It is typically “IF' ... THEN ... ELSE” rules.

e the inference engine: this is the part which queries the knowledge base and uses
its contents in order to follow a stream of rules and finally offer a conclusion
to the user.

The DENDRAL project ([Lederberg 1987]) is considered to be the first “Ezpert
System” in history. This technique presents certain great advantages. The
information is given to the Expert System using declarative statements, which are
very easy to read, write, interpret and evaluate by a software or a human. This
means first of all that the knowledge base of the software is extremely modular.
Rules can be added, removed or modified at any time. The second consequence
of the declarative statements is that any conclusion given as an output by the
software can be explained and traced backward.This is very important if we want
to understand its decision.

Unfortunately, these kinds of systems have a major flaw: in order to be
useful, the knowledge base has to be constantly up to date and with exhaustive
information, which is extremely demanding and difficult to achieve. Moreover, their
diagnostic does not improve automatically with experience, since the knowledge
base is filled in with static user declared rules.

Expert Systems have had and still have a lot of success in various domains like
bio-medicine, agriculture, automobile, education ([Naser Samy 2008], [Khan 2008],
[Sarma 2012], [Lehman 2006], [Khan 2011]), but their limits make them unsuitable
for application with a very dynamic and wide range of knowledge, such as system
administration.

In 2001, IBM introduced the concept of “autonomic computing” in a manifest
[Horn 2001] regarding the coming problems of IT infrastructures. The manifest
pointed out that the major obstacle to keep improving in the IT infrastructure is the
complexity reached by those systems: it draws a parallel with the American telecom
industries in the 1920’s, when the lack of operators started to be critical and led
to the automated switchboard. The solution IBM offers [IBM 2001] [Kephart 2003]
is to give “self-managing” capabilities to IT systems. It relies on two fundamental
concepts, which are still the basis of all autonomic systems today [Huebscher 2008]:

e The self-X: in order to be “self-managing”, a system must verify four properties:

— self-configuration: auto configuration, following high level directives
— self-optimization: system should improve its performances

— self-healing: system detects, diagnoses, repairs

18 Chapter II. State of the art

— self-protection: against attacks, or cascade failures
e MAPE-K loop:

— monitor: collect details from managed resource
— analyze: data analysis and reasoning

— plan: structure the actions needed to solve the problem

execute: execute the action

knowledge: data about the resource

This control loop is the reference model. It introduces the different working
steps which lead to autonomic computing.

In principle, every element of an autonomic system (e.g. web services, DB
cluster) should implement its own MAPE-K loop. This naturally leads to a
multi-agent system: the autonomic systems are supposed to dialogue and negotiate
in order to keep the whole system running.

Many implementations of this loop have been done. Some aim at being generic
and are distributed as frameworks [Y. 2002], [Cheng 2006], [Kaiser 2003], [Li 2010],
while other approaches are much more specific [Martin 2007],[Solomon 2010] —

e ABLE [Y. 2002]: it is a JAVA framework written by IBM which allows to
develop and deploy multi-agent systems. The framework comes with libraries
thanks to which one can include A.I. algorithms in the agents.

e Kinesthetics Extreme [Kaiser 2003]: it takes actions, based on sensor and XML
rules. It is by definition close to the Rule-based systems.

e Rainbow [Garlan 2004]: offers a similar approach to the one of Kinesthetics
Extreme.

e Logs analysis: infers interactions based on a temporal analysis of the system
logs, and triggers actions based on user-defined rules.

Other approaches are much more specific

e An autonomic behavior for a set of web services, based on a model approach
[Solomon 2010].

e A adaptation of the WSDM specification to make it match the self-managing
principles [Martin 2007].

In any case, there are two situations: either the source code of the software is
available, in which case it is possible and better to adapt it to give it autonomic
capabilities; or the source code is completely hermetic.

Most of the papers concern the first situation, which covers various cases:

19

e Writing new software following some principles [Karsai 2001], [Poirot 2008]

e Adapting the code by following principles of aspect oriented programming
[Chan 2003], [Sadjadi 2005]

Some papers offer a method that they call “non intrusive”, which only works
for Java programs, since their solution consists of injecting code at runtime via
the Java Virtual Machine [Chan 2003]. This technique relies on aspect oriented
programming (AOP) [Kiczales 1997]. Roughly speaking, AOP consist of splitting
the program’s code and logic according to so-called “concerns”. By using dedicated
Java frameworks like AspectJ [PARC 2001], it is then possible to develop the
monitoring of an existing application as a concept, without modifying the original
code, and merge both at the bytecode level.

Papers about the second case are very rare because the only grip we can have
on software are those offered either on purpose via API, or via security issues. That
is, the only interaction points with a software are the interfaces (either command
line or graphical), the logs output (more or less verbose, and not always relevant)
and less frequently an API which gives you an interface easily usable in your own
code. It is thus very hard to have a generic approach.

It is worth to mention one other approach, which consists of giving the users a
new language in order to describe their system [Cheng 2006],[Trencansky 2006].

Other papers offer a more “systematic” approach of the problem. It is the case
of [Dolev 2008], which suggests to simply periodically reinstall the whole system, or
alternatively, to develop an operating from scratch system whose primary constraint
is the stability of the software.

Another common point of the different approaches is that they are “model based”
or “architecture based” (see [Brambilla 2012] or [Lano 2009] for an illustration of
those concepts in software development). This means that the autonomic mecha-
nism has a simplified representation of the system, which allows to see whether the
system behaves as expected (a monitoring system) and eventually to test changes
on the model before applying them. This methodology is also used in systems
based on the control theory and attempts have been made to mix control theory
and autonomic computing [Karsai 2001],[Diao 2005],[Stoilov 2010].

Eser Kandogan [Barrett 2004] has analyzed the characteristics an autonomic
system should have, from the point of view of system administrators. The main
points are:

e to be able to know what the system is doing, what it has done and what it
wants to do

20 Chapter II. State of the art

¢ a command line interface should be available for recurring tasks
e a graphical user interface is more suitable for exceptional cases
In conclusion, one can find several common points:

e In one way or another, there is a rule based system which makes the link
between measurements and actions

Need to describe what to monitor

Need to describe how to monitor

Need to specify the rules to trigger an action

Need to specify what to do in case of problems

The aim of this work is to improve the last four points quoted above.

CHAPTER III
LISA: Learnlng approach for
System Administration

Contents
ITI.1 Restrictions 21
IT1.2 Diagnosis and recovery of a problem 22
IT1.3 Software running on Linux 24
I11.4 Adaptation of the MAPE-K loop 25
IT1.5 Reinforcement learning 27
II1.6 Shared Experience 28
IT1.7 Convention over Configuration 28
IT1.8 Diagnosis & Recovery 29
III.9 Summary e e e e e e 30

As seen in the state of the art, most of the solutions offer an approach which is
fully dedicated to a given problem. One will always have much better results if the
autonomic functionalities are taken as a requirement when designing the solution,
rather than adding them afterwards. However, LHCD is running a great variety of
software:

e many are in-house software, counting more than a million lines of codes
(Fig. IIL.1).

e others are open-source or proprietary software, like for the databases, websites,
and most of the infrastructure software stack

While it is clearly impossible to rewrite or modify all those software, the aim is
to have a tool as generic as possible.

II1.1 Restrictions

Having a system which answers all our needs in all situations is out of reach, and
this is why we need to impose some restrictions.

The first of them concerns the operating system. While the LHCb Online
system is running several versions of Windows and Linux, the Windows variety

22 Chapter ITI. LISA: LearnIng approach for System Administration

16 projects match [50 +] loft

Filters Applied: None

Project - New Outstanding Resolved Total Newly Detected Newly Eliminated Last Commit Code Lines (LOC)
a 487 374 861 2 2 02/15/13 330082

0 163 58 m o 4

153 153 1 154 0 0

478 553 2177 2730 s7 64

1981

2411]] 845150

4076 0 345273

14801 64

1187093
0 263 314 577] 415188
120 1325 1445 0 308062
1980 1980 1750 3730 1 T 625373

273228

100 312 0 0 231222

1587 6142 7729 0 2 514751

470304
183607

Figure II1.1: Screenshot of the LHCD software stack

represents less than 5% of the total. The efforts will thus be focused on the
great majority, that means on Linux. For the time being, Windows machines are
completely ignored. The reason for it is that the philosophy of both operating
systems is completely different, and so is the diagnosis of a problem. However,
the software design and our algorithms contains, in principle, enough abstraction
layers to consider adding Windows diagnoses in the future. This aspect will not be
addressed at all in this work.

Another aspect of diagnoses and recoveries has been considered and discussed for
a while, before discarding it: network diagnoses. Network diagnoses and recoveries
are very special because they require that you look at the problem from different
perspectives and different points of view in order to understand it. This would have
required a highly distributed software, which brings many other complications, not
only in the development techniques but also in the algorithms, not mentioning
considerations like the split brain situation. The split brain situation occurs when
two or more parts of a distributed system lose communication with the others,
and that each of them considers that it is the only part running: this leads to
inconsistent situations, which are very often unrecoverable and fatal.

To summarize, our work will focus on the diagnoses and the recoveries of systems
running on the Linux operating system, and leaving the network problems aside.

ITI.2 Diagnosis and recovery of a problem

Before being able to design a software able to diagnose and recover problem on a
system, it is important to understand how a human expert would do it: after all,
the software tries to mimic his behavior. Let’s split an ideal diagnosis and recovery
process step by step:

I11.2. Diagnosis and recovery of a problem 23

e Alerting the expert: the very first step is to warn the expert about ongoing
problems. Most of the time, this will be done either by a classical monitoring
system as described previously, or, more likely, by an unhappy user.

e Filtering the information: whether it comes from the monitoring system or
from the user, the “problems report” done previously contains noise, that is,
useless information. The useless information is usually about unavailable ser-
vices reported as problems, while they are just consequences of an underlying
problem. From the monitoring, the noise will show up as additional alerts and
emails; from the user, the noise is usually a result of his poor knowledge of the
system and his emotions of not being able to use his favorite software at this
very moment. So the expert has to filter the information, and recall how the
investigated services work; that is, the different components, their behavior,
their dependencies and interactions.

e Making hypothesis: thanks to his knowledge about the system infrastruc-
ture, the expert can establish a list of possible culprits to explain the ongoing
problems. This list will be sorted according to the dependencies between the
components. There is yet more data that an experienced expert can use to
sharpen his hypothesis: the likelihood of a given component failing. This is a
very important piece of information. It allows to accelerate the diagnosis by
investigating the most likely cause of problems first. Once the list of hypoth-
esis having been established and sorted, the expert will test them one by one,
until he finds the correct one.

e Fixing the problem: once the problem has been tracked down to its root, fixing
it normally requires a simple, specific step. However, this specific step hardly
comes alone: it will indeed fix the root problem, but extra actions might be
required in order to take this fix into account. As an example, think of a
configuration file which is read at the start of a program. If an odd behavior
of a software is noticed, and tracked down to a mistake in the configuration
file, fixing the file will not be enough — a restart of the program will also be
needed. Similarly, just before taking an atomic recovery action, the expert
has to think of all the other actions that it implies.

e Updating the problem’s status: once the expert believes he has diagnosed and
fixed the problems, it is in good taste to cross check that the intervention was
indeed successful. This is done by having a look at the monitoring status, or
enquiring about the previously unhappy user. In any case, at the end of that
step, one should have an up-to-date list of problems. Ideally, it will be empty,
otherwise one goes back to the first step.

Of course, this description only works for ideal cases, and one has to take into
account all the complications that can occur, such as concurrent problems, wrong
diagnostics, inefficient recovery action, etc.

24 Chapter ITI. LISA: LearnIng approach for System Administration

The software that we want to design aims at following similar steps.

II1.3 Software running on Linux

This part is not intended to be a detailed description of the Linux operating system,
but rather to stress out some of its characteristics that will be relevant in our
context. Also, since our software is only meant for Linux, one can fully exploit its
specificities without thinking too much of the compatibility with other operating
systems.

Linux [Proffitt 2009] is an open source operating system compliant with the
POSIX norm. There are many Linux distributions, but the one used at LHCb and
at CERN is Scientific Linux Cern (SLC), which is based on RedHat Enterprise
Linux (RHEL). LHCb is currently running with two versions of this OS: SLC5 and
SLC6.

One of the defining features of Linux states that “Everything is a file”. This
means that any resources can be accessed through the filesystem with a unique
interface: documents, hard-drives, modems, keyboards, printers, network socket or
even memory.

A very special folder in the Linux OS is the “/proc” folder. This folder,
although looking like any other folder, is actually not stored on the disk, but is
in memory, and contains information about the Linux kernel and the running
processes. Processes are programs that are being executed. The kernel, illustrated
in Fig. II1.2, is the core part of an operating system which manages the resources,
provides an abstraction layer between the software and the hardware, and offers
facilities such as inter-process communication.

What this means is that the user is offered to access all the information
regarding the hardware, the system and the processes, via a unique interface: a file.
This is a very powerful tool, because the data possible to retrieve from these files
are precisely defined and formatted by standards.

Any service can be seen as one or several applications working together. An ap-
plication itself is nothing but one or several processes using files (as input or output).

In consequence, regardless of the way the software is implemented, or whether
it is an in-house application or a proprietary solution, it can always be described as
a set of elementary entities with well defined attributes, that is processes and files.
And this is exactly what we are looking for in our software.

There is of course a flip side to this approach, which is that one has to work at

II1.4. Adaptation of the MAPE-K loop 25

\/ \J \J
CPU Memory | |Devices

Figure II1.2: Illustration of a kernel layout

a low level, while using high level directives is much more natural and easier. Also,
one will remain blind regarding the implementation of the software, and about the
process information stored in memory only. Describing applications as a set of files
and processes can be quite complicated and cumbersome, but it is the most generic
and least invasive approach that is available under Linux.

III.4 Adaptation of the MAPE-K loop

The good results obtained by the various implementations of the MAPE-
K loop suggest to follow this principle. [Roblee 2005], [W. Strickland 2005],
[Xu 2005], [Schmerl 2002], [Sterritt 2005], [Y. 2002], [Kon 1999], [Hofmeister 1992],
[Magee 1989], [Kaiser 2003], [Parekh 2006], [Y. 2002] or [Cobleigh 2002] are some
examples of successful implementations. Also, it is quite close to the “diagnostic
and recovery procedure” previously described .

The existing solutions based on the MAPE-K loop use one loop per system
or service, and then rely on multi-agents theory to make them communicate.
The communication between the different loops is very important and cannot be
avoided, in particular at the “Plan” stage. Synchronization is a must to avoid taking
contradictory actions. The advantage of this method is to split the complexity of
the knowledge between various systems. Nevertheless, the complexity induced by
the communication between the systems grows exponentially, and quickly becomes
unmanageable.

26 Chapter ITI. LISA: LearnIng approach for System Administration

The innovative approach that we offer here is to have a unique MAPE-K loop,
shared by all the systems.

First of all, this allows to get rid of the complexity of the multi-agent commu-
nication, which is non-negligible in a big environment such as LHCb. Multi-agents
involve conflict resolutions and cooperation problems that are still fields of intense
research ([Lupu 1999], [Kamoda 2005]|, [Ananthanarayanan 2005], [Jennings 2000]
for instance). The cost of it is that all the knowledge is centralized, which is not
necessarily a bad thing per se.

The second and most powerful advantage of this approach is that it allows to
discover dependencies between the various systems. Because all the systems are
managed by a single loop, one can observe the influence an action on one service
has on the others. So while the user is able to inform the software of rules such
as “Service A needs Service B”, the software would be able to discover itself such
dependences, either forgotten by the user or simply not known to him. This is a
very useful feature because this means that the software is able to infer information
about the infrastructure, just as an expert would do.

The second modification that we propose concerns the Monitoring part of the
loop. The traditional approaches suggest having the monitoring as a part of the
loop and ideally as a part of the system itself. This means to have some kind of
sensors implemented through the application. The advantage of this is the precision
of the monitoring: the decisions that are taken by the MAPE-K loop, specific to
that system, are based on many inputs. The drawback is that we do not always
have the possibility to implement such sensors, and that it would anyway not be
efficient when working with a single MAPE-K loop for all the systems: this brings
us back to the classical monitoring solutions and their scalability issues. Finally,
this method ties monitoring and internal working together.

In the description of a standard “diagnosis and recovery procedure” described
above, the alerting is done by an external source: a software or a user, but not the
system itself. There is another major difference with the previous approach: the
monitoring implemented directly into the software will give low level information,
whereas the user reports high level information, that is whether a service works
or not. This has two direct consequences: the administrator has to monitor and
check much fewer sensors, and the monitoring is completely independent of the
internal working of the software. For that reason, the second modification we want
to apply to the MAPE-K loop is to outsource the monitoring and have high level
information. In the same way that the role of the expert is to fix the problems
reported by the user, we want to have our software to be notified of problems.
Another reason for not implementing monitoring feature is because there is already
a great variety of software designed for that purpose, and doing it very well. Finally,

I11.5. Reinforcement learning 27

having such a high level and independent monitoring allows to have several sources
of information: the complaints may come from users’ direct inputs, from ticketing
systems, from classical monitoring solutions, etc.

ITI1.5 Reinforcement learning

The first major flaw of classical monitoring and expert system techniques is that
they are very static: they are only able to do what the user configured them for.
Namely, a classical monitoring system will be only testing the probes users have
specifically mentioned, and an expert system will only follow the rules that users
have given it. As emphasized in section II, this requires to keep their configuration
up to date in order to have a useful system, which can be extremely cumbersome.
We have also seen that large configurations cause problems in terms of performance.

The solution we are looking for should overcome those limitations by being
more dynamic and perform in a large environment. The performance problem can
be addressed by having a methodology which is cleverer than exhaustive checking.
The dynamic aspect requires that the information at the disposal of the software is
modular, and that the software should be able to modify it, or even better, to infer
new information.

These expectations lead us to consider reinforcement learning techniques. Rein-
forcement learning is an area of machine learning, in which the goal is to learn from
experience what to do in various situations, in order to optimize a numeric reward
(see [Sutton 1998] for an introduction). The range of application of such algorithms
is extremely wide: from network routing to cell phone channels allocation, to
games intelligence, to combinatorial searches, robotics or even dialog strategies
([Vidal 2003], [Busoniu 2006], [P.R.J. Tillotsona 2004], [Riedmiller 2009]).

A faster diagnostic can be obtained by reducing the amount of components
that are checked, and by testing them in an appropriate order. The reinforcement
learning can help by optimizing the component sorting, based on previously encoun-
tered situations. This exactly mimics the approach a human expert would have.
Note that this also solves the performance problem, since much fewer components
are checked, and there are good chances to find the faulty one among the firsts tested.

The single MAPE-K loop principle described previously, together with rein-
forcement learning techniques, would allow to discover new dependencies between
systems, i.e., new rules, and thus answer the dynamism requirement.

28 Chapter ITI. LISA: LearnIng approach for System Administration

II1.6 Shared Experience

While answering our needs in terms of functionality, the reinforcement learning
techniques have a weakness in the application phase — in order to be efficient, they
require a lot of training. This is obviously a problem in an environment like LHCb,
in which voluntarily creating problems is out of the question and which is too big
and heterogeneous to be efficiently simulated.

The answer we have to this problem is the “Shared Experience”. The idea is
to share the experience gained by the various similar systems as much as possible,
under real conditions, thus minimizing the learning phase. If we were to draw
a parallel with a human expert, one could consider the following case: if an
administrator is able to maintain, diagnose and recover problems on a given web
server, there are very good chances that he is able to extrapolate his knowledge on
another web server. Our aim is to integrate this principle in our solution, and thus
gain a lot in efficiency.

The principle of grouping similar systems has another advantage for the
system administrators, which is that it dramatically reduces the description
and configuration workload compared to traditional systems. Indeed, for large
environments, the configuration required by classical monitoring system can be
extremely long. As an example, the Icinga configuration to monitor the LHCb
Online environment comprises about 34,000 lines. By extending the sharing logic
up to the configuration, one can reach a point where a system would be described
once, and all similar systems would refer to that primary one. This would save a
lot of time of the system administrators.

ITI.7 Convention over Configuration

Now we need to remember that we want to lighten the work of the system
administrators, and not give them extra workload by forcing them to write huge
amount of configuration lines. An approach that normally feels comfortable for the
users is called “Convention over Configuration” (CoC) as described in [Miller 2010].

The principle of CoC consists of assuming a default choice in all cases except
those specified by the users. This decreases the configuration workload of the users
a lot because they only need to configure what is not standard. This technique is
actually mostly used by frameworks to ease the work of the developers. Famous
examples are Java Spring [Rod Johnson 2009], Ruby on Rails [Team 2013] or
PHP Symfony [Labs 2013] .

Recall from III.3 that the basic blocks of the software will be files and processes,
and that there are standards to define their interfaces or the interactions one can

I11.8. Diagnosis & Recovery 29

have with them. We want to exploit this fact in our software to enforce the CoC
approach.

Note that this method is absent-mindedly used by human experts. For example,
if an expert tracks down the problem to a Linux service not running, that he does
not know, but that he knows should be running, then he will assume — correctly
in most of the cases — that it can be started like any standard Linux service.

The CoC principle is used through all the software, and is the main guarantee
that the first goal listed in 1.3 is not forgotten, that is to reduce the work of the
system administrators.

III1.8 Diagnosis & Recovery

Providing the expert with the faulty component is already a great help, but we
target even higher: we want to provide him with a recovery solution. In order to
achieve this goal, two sources of information will be used:

e Default actions: once again, using standard entities (Files and Processes) and
CoC gives the opportunity to provide the user with a recovery solution that
should work in most of the cases. As an example, if a file does not belong to
the right owner, there is only one way to change this, and this is the solution
we will be proposing; or if a service is not running, there is only one standard
way to start it.

e Custom actions: in some cases, the standard procedure does not work. For
this reason, when a problem occurs on a given entity, the user will be prompted
with the actions that have been taken on it in the past, with comments from
the expert that took the action.

In section III.2; the reasoning of a human expert to diagnose and solve a
problem was described. When the root problem is found, correcting the mistake is
usually a simple action, but it might require a full chain of events in order to take
this modification into account. This step should also be part of our solution.

Proposing to the user the action to fix a file or a process is not enough, one
needs to provide him with a full procedure that will bring the whole system in
the expected state. Unfortunately the software is not able to guess the procedure.
It is easy to understand why with an example: a web server such as Apache will
read its configuration files only when it is started, but it will read the files it serves
every time there is a request for it; so a modification in the configuration file will
require a restart of the Apache server, while a modification in the pages it serves
does not. And there is no way for a software aimed at being generic to be able to

30 Chapter III. LISA: LearnIng approach for System Administration

distinguish whether a modification on a file requires the restart of the service or
not. However, what can be done is to build the full recovery procedure from several
atomic pieces of information given by the user. An atomic information will have
the form “If <action X> is taken on <component A>, then execute <action Y> on
<component B> <before | after>”. By putting together all these statements, the
software is able to give all the steps required. Notice that executing an action on an
entity might require to take other actions after it (like restarting the process after
changing the file), or before (like stopping a process locking a file before modifying
this file). While this seems to be just a detail, it greatly improves the complexity of
the algorithm that compute the full procedure as we shall see later.

II1.9 Summary

To summarize, our software will have the following characteristics and be using the
following approaches:

e Focus only on Linux system, and not attempt to deal with network problems.

e Be totally non intrusive and as generic as possible by being based on files and
processes as basic blocks.

e Perform no monitoring, but rather wait to be informed of problems by external
sources.

e Adapt the MAPE-K loop, and use a single loop instance to look at all the
problems at once, and not treat them separately. This will allow the software
to spot the dependencies between the various systems.

e User Reinforcement learning algorithms to improve the diagnostic speed and
help in scalability by reducing the amount of components that are checked
before finding the faulty one.

e Reduce both the learning phase of the learning algorithms and the description
workload of the users with the Shared Experience principle.

e Using Convention over Configuration contributes in reducing the configuration
work of the software.

e The software will offer default recovery solution with the full procedure for it to
be efficient, as well as information regarding the previous situation encountered
on the same problematic entity.

This methodological framework should answer all the needs we have listed in
the section 1.3.

The principle of expecting information coming from a third party source sug-
gests active learning, which is a specific branch of machine learning. The idea of

I11.9. Summary 31

active learning is that the so-called learner will learn faster if he can query an oracle
who answers his questions. The role of the algorithms is to select unlabeled, that
is unclassified, instances to be labeled by the oracle. There is a great interest in
this when one can very easily have instances, but labeling is an expensive opera-
tion, like in speech recognition ([Zhu 2005] mentions a factor 400 between the times
needed to get instances and label them), information extraction ([Craven 2008] gives
many examples) or classification and filtering. Research focuses on how to improve
the choice of the instances to be labeled by the oracle: [Tong 2001], [Tong 2002],
[D. A. Cohn 1996], [Monteleoni 2006] or [Olsson 2008] are just a few examples of
the many approaches.

The methods we decided to use can be put in parallel to the active learning:

e Regarding the monitoring, all the information is expected to be given by the
user, which means that we do not select the information we request. This is
not in concordance with active learning.

e However, the potential failures to probe are chosen among all the known fail-
ures, and the verification done on the remote servers is the oracle queried.

e The user can be seen as an oracle who is asked to confirm the dependency
rules.

The “active feature acquisition” approach is a special case of active learning. The
assumption behind this method is that it is possible to request more information
about an instance at a certain cost. The goal in active feature acquisition is to choose
which information is the most relevant to request. [Zheng 2002], [P. Melville 2004],
[M. Saar-Tsechansky 2009], [Greiner 2002], [Charles X. Ling 2004], [X. Chai 2004],
[Sheng 2006] and [Ji 2007] all offer various methods to choose which information to
request.

As will be described in this document, the software actually queries the remote
servers for information, and not directly for a label. Also, based on the returned
information, the diagnosis will take different directions. The cost to bear is the
time it takes to retrieve the information. Thus, one could draw a parallel be-
tween the queries to the remote servers and the “active feature acquisition” approach.

To conclude with active learning, one could see similarities between our
approach and the “active class selection” ([Lomasky 2007]). While Active learning
usually assumes that instances are free and labels expensive, “active class selection”
assumes the opposite. Querying the remote servers or waiting for monitoring
updates takes much more time than comparing the returned values and so giving a

label, so there are similarities from that perspective.

One could also note that our approach matches the context of the on-line learn-
ing (see [Cesa-Bianchi 1997], [Littlestone 1994], [Vovk 1990] and [Sleator 1985] for
details on the on-line learning). On-line algorithms consist of the following steps:

32 Chapter III. LISA: LearnIng approach for System Administration

1. The learner receives an instance to label
2. The learner makes a prediction on the label
3. The learner gets a feedback which is the real label

The goal of those algorithms is to improve the labeling thanks to the feedback
(see [Kanal 2000] for the classical Perceptron example). The diagnosis algorithm
that we developed, detailed later in this document, has common points with the
on-line learning:

1. The software is notified about a problem
2. The software makes a prediction on what the root cause is

3. The software gets a feedback by querying the remote servers to confirm its
hypothesis

The next section focuses on the actual algorithms and implementation aspects.

CHAPTER IV

Phronesis

Contents
IV.1 General considerations 33
IV.1.1 Basic components 33
IV.1.2 The packaging 38
IV.1.3 The database 39
IV.2 Tools o 40
IV.2.1 Configuring the program 40
IV.2.2 Remote Agent 53
IV.2.3 Interaction with theuser 55
IV.3 Core o o e 58
IV.3.1 Algorithms o 58
IV.3.2 Implementation 72

We named our software “Phronesis”. Phronesis or gpévnoic is the Greek word
for wisdom or intelligence. We will first describe the software from a global point of
view, explaining the different components, the packaging and the database schema.
In the second part we will have a more in depth look at all the tools required to
use the software. The last part will then focus on the Core part, in which all the
algorithms are implemented.

IV.1 General considerations

Before looking at the actual algorithms and implementation details, it is important
to understand the global picture of the application.

IV.1.1 Basic components

In this part, we will describe the various components with which the software deals.
This means the internal representation of the various information the user can give.

The very basic entities we are working with are Files and Processes.

A file in Linux has the following properties, defined by the POSIX stan-
dard [IEEE 2013]:

34

Chapter IV. Phronesis

Filename: a file is identified by a name which is its full path to access it.
Owner: the username to whom the file belongs.
Group: the name of the group of users with which the file is associated.

Permissions: there are three types of permissions which are “Read”, “Write”
and “Ezecute”. For each file one defines the permissions for the owner, the
group and the others — so three sets of permissions. The way they are repre-
sented is with three octal numbers, one for each set of permissions. The octal
number represent groups of three bits in the permission field: Read’s bit has
the value 4 in octal, Write’s bit has 2 and Execute’s bit has 1. For example
a file with the permissions “754” means that the owner can Read, Write and
Execute, the group can Read and Execute, and all others can only Read.

Attributes: in addition to permissions, files have attributes which set options
on the filesystem. Each attribute is represented by a bit. Typical attributes

are for example “immutable”, “append only”, “undeletable”.

A Linux process has the following properties:

Process name: it is the full path to the executable and all the arguments given.
PID: the PID is a unique number used by the system to identify the process.

User: the user id (UID) to whom the process belongs. A process inherits the
permissions of the user. If a user has the permission to read a certain file, all
the processes owned by that user will have the permission to read that file.
Most of the time the process belongs to the user who started it.

Limits: the kernel will enforce certain limitations and quotas on every process.
For example, there may be a maximum number of files opened by the process or
a maximum of memory consumed by it. Note that the limit can be unlimited.

Parent: a process has a parent process, which is the process that started it.
Absolutely all the processes have a parent, except the process with a PID of
1, which is the root process.

Environment: every process has a so-called “environment”, which is a list
of key-value pairs colloquially referred to as environment variables. Those
variables are inherited from the parent process, given to the children process,
but can be modified by the process itself. A typical environment variable
example is $HOME, which contains the path to the home folder of the process
user.

In order to work with Files and Processes, a class called “Agent” was developed
for each of them. Those classes are used to represent the properties listed above, as
well as other useful information for diagnoses and recovery. The Agent representing

IV.1. General considerations 35

Files is called “FileAgent”, the one representing Processes is called “ProcessAgent”.
Each of them is responsible for checking that the actual properties of the associated
file or process correspond to what the user expects.

In addition to the file properties, the FileAgent contains a few more attributes:

e MD5 checksum: while not a property of a file per se, a file has a unique md5
checksum. Thanks to this property one can make sure that a file is exactly as
the user expects it to be.

e Content: as for the md5 checksum, the content of a file is not a real property.
A user might want a certain content to be present in the file, without giving
attention to the rest of the content. This attribute actually contains user
defined regular expressions that the file content should match.

The ProcessAgent also has extra attributes:

e max CPU: it may happen that a process — for one reason or another — starts
consuming computing power beyond what is reasonable, preventing the server
to do anything else. Sometimes this might be an expected behavior, but in
order to take into account cases in which a process should not be so compute
power intensive the user has the possibility to define a maximum threshold
after which the process is considered to have a problem.

e max memory: similar explanation as the max CPU, but for the memory con-
sumption.

e Command: it is frequent that the process name, which contains the executable
and all the arguments, is not the command the user uses to start the process.
Often, there is a wrapper that the user executes and which abstract the com-
plexity of starting many processes with many arguments. This Command
attribute contains the information of how the process was actually started.

e Service: a service in Linux is a process or a set of processes that are running
in the background to provide certain functionalities. For example a database
or an ssh server. At the low level Services are standardized wrapper scripts
described above with a defined uniform manner to start, stop or restart the
processes. The service attribute of the ProcessAgent contains the name of the
service used to manipulate the process.

e Multiplicity: it is not rare to have several instances of the same process. For
example, a web server will start as many processes as the amount of clients
it has to serve. Usually there is an option for maximum number of processes,
that the user can set. In case there is not, too many processes can kill the
machine. The multiplicity is the maximum number of simultaneous identical
processes that should be running on the machine.

36 Chapter IV. Phronesis

Another Agent was defined to represent the status of the machine and its
environment as a whole: the “EnvironmentAgent”. It contains information about
global values, such as the free disk space or the free memory, which are system
wide and impact all the services running on that server.

The properties of the EnvironmentAgent are the following:

e Maximum Load: the load is a measure of how much the system is used. In
simple cases, a small load value means that the server is mostly idle, while a
high value means that the server is being intensively used. A too high value
can cause all the applications to react very slowly, and sometimes become
unusable. This property allows the user to set a threshold after which the
machine is considered to be overloaded.

e Maximum memory: a system whose memory is full will have the same impact
on the applications as an overload one. Sometimes worse. This property sets
a threshold in the memory usage.

e Maximum swap: in case the machine runs out of memory, it can move rarely
used data to disk until it is needed again. This operation is called swapping.
The user can set a maximum swap space occupancy threshold.

e Fstab: the fstab is a special file which defines what filesystem, local or remote,
the system should mount. While it would have been possible to let the user
configure a FileAgent to check the content and properties of the fstab, it makes
more sense to abstract it from the user and just let him define what filesystem
he expects to be mounted and with what options. Also, the fstab should always
belong to a special owner and group (called root) and have the permissions set
to 644. Note that abstracting all this from the user corresponds to the CoC
principle.

e Disk space: threshold on the maximum disk usuage

e Inode usage: in a filesystem, every file is identified by an inode with a unique
id. When a file is created, the filesystem assigns an inode to it. If the filesystem
runs out of inodes, then no files can be created anymore.

To follow the CoC principle, all these thresholds have default values.
Because of unusual behaviors some file systems may have, the user also has the
possibility to specify a list of file system mountpoints to ignore.

The last agent that was defined is called “FolderAgent”. It represents a folder,
that is a container for files and sub-folders. At the lowest level a folder is just a
special file, whose data is the list of files it contains. The FileAgent can be used to
check the basic properties of a folder, like its owner or the permissions. The reason
for having a FolderAgent is to emphasize the “container role”. all the contents
of the folder must match defined properties. This gives some flexibility in case

IV.1. General considerations 37

files are often created or removed from a folder, but must always satisfy certain
conditions. For example: all the files in this folder must be owned by the user 'root’.

The properties of the FolderAgent are the same as those for the FileAgent
except the md5 checksum, which does not make any sense here.
In case the user does not want to check all the contents of a folder, there is a
possibility to filter the content names according to regular expressions.

All of these are Agents for describing the basic blocks that are files and pro-
cesses, as well as describing folders and environments. Now one needs to describe
an application or a service as an aggregation of all those Agents. This is the role of
the so-called “Coordinator”. Agents and Coordinators are both of the abstract type
“MetaAgent”, as seen in Fig. IV.1.

MetaAgent

Coordinator

|FiIeAgent| |ProcessAgent| |Fo|derAgent| [EnvironmentAgent
: 1| 1 1| |

Figure IV.1: UML class diagram of the MetaAgent class

A Coordinator contains a list of MetaAgent children that belong together
logically. For example, one could put together a process and its configuration file.
The Coordinator is responsible for checking the children in the appropriate order.
This order comes from the reinforcement learning algorithms that we will describe
later.

Of course, processes and files run on a given server, which the user needs to
define. A very simple class called “Server” contains a logical name as well as its
network address. A Server has always an EnvironmentAgent associated with it.
In fact, the user never has to define an EnvironmentAgent. The user defines a
server with certain properties and limits and the EnvironmentAgent is defined
automatically behind the scenes. This approach is much more natural.

The philosophy of Phronesis is to consider the services as central, not the
servers. It is the service provided by a Coordinator which matters, not the server on
which it runs. The user normally defines all the MetaAgents he needs, and states
that it runs on a given Server. There is however an exception to this. Sometimes

38 Chapter IV. Phronesis

it is necessary to consider that some Coordinators are tightly coupled to a server.
This happens when the coordinator does not represent a “service” (like a database,
a web service, etc) but more a configuration of the Server (such as the LDAP
client configuration for example). These kinds of Coordinators are called “Attached
Coordinators”, and are treated like the EnvironmentAgents. lL.e. a representation
of the Server configuration.

The Server and the MetaAgent classes allow to define all services, but not their
interactions and dependencies. For this, another type of information called “Rules”
is necessary. There are two types of Rules:

e “Dependency Rules”. a dependency rule simply states that a service/Coordi-
nator A needs a service/Coordinator B in order to be functional. There is no
more technical information, like on which component it depends. This infor-
mation is enough in order to diagnose problems in the appropriate order. If A
and B are down, starting with A is pointless since it relies on B. Those rules
can be user defined, but also discovered by the software.

e “Recovery Rules™ the recovery rules, also called “Trigger”, are the atomic re-
covery information mentioned in section IIL.8: “If <action X> is taken on
<component A>, then execute <action Y> on <component B> <before | af-
ter>”. These rules are user defined only. The actions are detailed in sec-
tion IV.3.1.ii.

The user now has the possibility to describe the components of its environment,
the dependencies between the different services, as well as the atomic steps involved
when performing recoveries. Note that the user does not need to specify how to get
the information or how to treat it. Everything is hard coded in the software, since
the software relies on standard manipulations.

Finally, it might happen that part of the system is not in its normal state, but
that it is an expected behavior, for example during maintenance periods. To cover
such cases, a “veto” functionality was added. A veto is just a name associated to a
boolean. A Coordinator can have several associated Vetoes. If one of these Vetoes
is true, the diagnosis stops and the Coordinator is ignored. Note that the value of
the Veto is never measured, but always given by the user.

We just described the approach we have in configuring the software. The actual
configuration tool is described in section IV.2.1. We will now take a look at the
different packages of the tool we developed.

IV.1.2 The packaging

The software has been divided into several packages, each having a dedicated
purpose. As we will see, they sometimes need to interact with each other. We will

IV.1. General considerations 39

now describe the partitioning of the software. Each package will have a dedicated
section further.

e Database : all the information used by the software is stored in a database,
whose schema will be detailed in section IV.1.3.

o “Configuration” package: The first tool the user will have to use. It consists
of a compiler which reads and interprets the configuration files given by the
user, and writes the data into the database. The advantage of having a package
dedicated to this task is that changes in the syntax described in section IV.2.1.ii
impact this package only.

e “Core”: the second package is the “Core” part of the software, in which all the
diagnosis and recovery algorithms are implemented. It represents the central
part of our solution. This package uses the information stored in the database,
expects inputs regarding the ongoing problems and queries the “Remote Agent”
Package.

o “Remote Agent” Package: it has to be deployed on all the servers that the user
wants to analyze. Its role is to answer the queries of the Core, which typically
consist of information about a file, a process, a folder or the environment. It
can be considered as a simple toolbox and a change in the algorithms used in
the Core should not have any impact on this package.

e API: it exposes Core functionalities to the outside, so that interfaces (com-
mand line tools or GUI) can be built on top of it. The great advantage of this
approach is that if there are technical changes in the Core, the API internals
can be changed and always offer the same interface to the tools built on top
of it.

IV.1.3 The database

The database is a central part in our system. The software will store in it:
e The configuration given by the user
e The results of the reinforcement learning process
e The history of previous diagnoses and recoveries

It will be filled by the Configuration package for what concerns the configuration
given by the user, and by the Core package for what concerns the history and the
algorithms’ results.

The full schema and its description are shown in appendix A.

40 Chapter IV. Phronesis

It is important to note that while all the tables are linked together using foreign
keys, all the history tables are decoupled from those keys. The tables refer to the
MetaAgent instances by their respective agent names and use these strings as part
of their index. The reason for this is that one may want to keep the history of
a particular service even after the configuration was removed. There is a pitfall
which is that if a new service has the same name as a previous service that was al-
ready deleted, the history of the original service will be associated with the new one.

We shall now see more in depth the different packages and tools used to make
the whole software work.

IV.2 Tools

IV.2.1 Configuring the program

As already mentioned, the user needs to provide our software with a minimum
number of parameters. Section IV.1.1 explained the concepts given to the user to
express this information. We will now look at the details of the configuration by
first explaining how to apply the Shared Experience principle at the configuration
level. We will then describe the grammar we have defined and finally give technical
details about the compiler we implemented.

IV.2.1.i Adapting the object model

We have seen in section III1.6 that sharing experience provides advantages for the
reinforcement learning algorithms, as well as for the user. The Shared Experience
principle consists in sharing experience between similar services. In order to do so,
the services need to be classified, i.e. we need to state that “a given service is of a
certain type”.

It turns out that the Object Model has very similar concept with inheritance,
and this is exactly what we want. In the configuration, the user can define a
so-called “Abstract Service”, and then define real services that inherit from the
Abstract one. All the services so defined will share the properties defined in the
Abstract Service. All the improvements brought by the reinforcement learning
algorithms on one service will benefit all others.

Let’s take again the website example, that we describe with an UML diagram
in Fig IV.2. A very general website can be defined as an aggregation of:

e A httpd process to serve the requests
e Configuration files to set the properties of the httpd process

e Data files to be served

IV.2. Tools 41

Using the terms seen in IV.1.1, we have a Coordinator Website containing:
e A ProcessAgent httpd
e A Coordinator WebData

e A Coordinator WebConf

WebData httpd WebConf
WebSite
Sitel Site2

Figure IV.2: Websites described using UML diagram

Note that if all the configuration files are in the same folder and share the same
properties, a FolderAgent could have been used instead of the Coordinator. The
same for the data files. However the Coordinator is much more general, and this is
what is wanted for an Abstract Service definition.

While the WebData and WebConf Coordinators are empty, some properties of
the ProcessAgent can already be set because they should be the same for all websites.

Finally, one can define a Coordinator Sitel and state that “Site! inherits from
WebSite”. All that needs to be done is to detail the configuration and data files and
associate it with the proper Coordinator. There is no need to mention anything
about the httpd process, since it is already known by WebSite.

Note that contrary to some implementations of the object paradigm, such as the
C++ one, multiple inheritance is not supported. For instance, it would be possible
in C++ to define an abstract class Pet and an abstract class Mammal, and then
define a class Cat which would inherit from Pet and Mammal. This is not supported.

Multiple layers of inheritance are supported. For example, it is possible to define
a class Cat that inherits from class Pet that inherits from class Animal.

42 Chapter IV. Phronesis

IV.2.1.ii Grammar

We will now describe the grammar used by the user for the configuration.

The definition of any entity starts by using the keyword describing the type
of the entity (like Server, FileAgent, etc) followed by its name. The name of the
entity is what is used through all the configuration to refer to it. The definition
of its properties is contained between the two curly braces and each property is
<propertyName> — <propertyValue>;”. While some
properties are mandatory (signaled with the letter “M” when listing the properties

set using the convention: “

of an entity type), some are optional, in which case they are either ignored, or set
to a default value. Except for a very few exceptions, an attribute appears only once

per definition.

The simplest of all is to define a Server. This is done the following way:

A comment
Server <serverName> {
address —> <serverAddress >;

}

The following attributes can be defined for a Server:

e address (M): A DNS name or an IP address. It defines the network address
of the server.

e maxLoad: A floating point number. It defines the maximum load tolerated
on the host before considering it responsible for a problem. 0 corresponds to
a completely idle host, and everything above 1 means that some queuing in
the execution of the process is accepted. The number is normalized with the
number of cores in the machine. The default value is 2.

e maxMemory: A percentage. It defines the percentage of memory allowed to
be filled in. The default value is 100.

e maxSwap: A percentage. Similar to maxMemory. The default value is 99.

e mountpoint: A line that is supposed to be in the fstab. The mountpoint
attribute can be used several times in a Server definition.

Because constraints on the Server, such as the maxLoad or the maxMemory, can
be related to a particular process, the user has a way to set Server attributes outside
the Server definition. This is done using the following syntax:

setEnv <serverName> <attributeName> <attributeValue >;

The <attributeName> can be maxlLoad, maxMemory, maxSwap or mountpoint,
like inside the server.

IV.2. Tools 43

(i

Finally, the Server has an “ attach <coordName>; ” directive, which attaches

the given Coordinator to the Server (see section IV.1.1 for a reminder of the
Attached Coordinator concept), and a “detach <coordName>;” directive.

The definitions of FileAgent, FolderAgent and ProcessAgent share a few
common attributes, among which is the mandatory “server* attribute. It states
which Server the Agent refers to. This attribute will not be mentioned anymore in
the following explanations.

The FileAgent definition starts with the keyword “ File Agent’ and can have the
following attributes:

e filename (M): A string. The full path of the file.

e owner: A string. The owner of the file.

e grp: A string. The group to which the file is associated.

e permissions: Three octal digit. The Linux permissions of the file.
e attributes: A string. The Linux attributes of the file.

e md5: the checksum of the file.

e content: Any POSIX compliant regular expression that the file content should
match. This attribute can be used multiple times, in which case the file has
to match all the patterns.

The FolderAgent definition starts with the keyword “ Folder Agent’, and has the
same attributes as the FileAgent, except for the md5. It has however two attributes
that the FileAgent does not have:

e nameFilter: restricts the content that will be analyzed based on the regular
expression given as argument (e.g.: *.txt for all the text files, log-2013-* for
the log files from 2013 only, etc)

e maxDepth: the maximum depth at which the folder and its sub-folders will
be explored.

The ProcessAgent definition starts with “ ProcessAgent’, and has the following
attributes:

e procName (M): A string. The name of the process, with the full path to the
binary and the arguments, as seen in the linux ps command.

e user: A string. The user running the process.

e maxCpu: A percentage. The maximum CPU consumption the process can
have. The default value is 100.

44 Chapter IV. Phronesis

e maxMemory: A percentage. The maximum memory consumption the process
can have. The default value is 100.

e command: the command to execute to start the process.
e service: the name of the Linux service the process is associated with.

e parent: A string. The name of the ProcessAgent representing the parent
process. The child ProcessAgent will inherit all the attributes from the parent
ProcessAgent.

e multiplicity: an integer. Denotes how many processes matching this agent can
be running on the server. The default value is unlimited (-1).

Although the “command” and “service” attributes are not mandatory, it is
suggested to give at least one of them. If none is provided, the procName will be
used as a starting command.

There is one attribute for each of the process’ limits that the system can set. The
name of the attribute is the name of the limit (as written in the /proc/<pid>/limits

2

file), replacing the space by an “ ", and removing the preceding word “maz”. For
example, the limit name “Maz cpu time” has the attribute “cpu_time”. For a full

list and a full definition of the limits, please refer to the linux kernel manpage.

In the definition of the FileAgent, FolderAgent and ProcessAgent, the user can
define “Recovery Rules”, or “Triggers”, as defined in section IV.1.1. A Trigger defi-
nition is as follows:

<when> <actionl> trigger <action2> on <target >;

<when> can either be “before”’ or “after’. The <actionl> and <action2> are
specific actions that are taken either on the Agent being defined (<actionl>) or on
the <target> Agent (<action2>). The list of actions will be detailed later in this
document.

The definition of Coordinator is different from the definition of Agents. Like
the Agents, it starts with the keyword “ Coordinator”, followed by its name, and
the definition between curly braces. The differences lie inside the braces. There is
no attribute as before, but rather a list of directives.

First of all, as a Coordinator is meant to aggregate other MetaAgents, there is
a directive which is used to express what the Coordinator is supposed to aggregate.
This is done with the “needs” directive. It has the following syntax:

needs <MetaAgentType> <needName >;

IV.2. Tools 45

where the MetaAgentType is one of “ Coordinator”, “ FileAgent’, “ Folder Agent’
or “ProcessAgent’, and needName is just a name to uniquely identify this need.

A need then requires to be assigned. This is done with the following syntax:

<needName> = <MetaAgentName >;

where needName is the name of the need as defined previously, and MetaAgent-
Name is the name of the MetaAgent that fulfill this need.

Since it can be handy to define and assign a need at the same time, the following
syntax is supported:

needs <MetaAgentType> <needName> = <MetaAgentName >;

The Coordinator definition also contains the “Dependency Rule” definitions.
Such a dependency is defined with the following syntax:

requires <CoordinatorName >;

where CoordinatorName is the name of the Coordinator from which the current
Coordinator is dependent.

To associate a Veto to the Coordinator:

veto <vetoName >;

It sometimes happens that not all the children are needed to work fine so that
the full service works. For example, if the work is distributed between ten servers,
it is maybe not a critical condition if a couple of them die. This is the purpose of
the “tolerate” directive. It is written the following way:

tolerate <n>;

which means that the service represented by the Coordinator will be considered
okay up to n children having a problem. This can be very dangerous and has
to be used with great care. The way it works internally is that the Coordinator
will check its children in the order given by the reinforcement algorithm. If one
returns a faulty behavior, but the threshold set by the “tolerate” directive is not
reached, it is ignored and the diagnosis continues. Depending on the order in which
the children are checked, one might have unexpected behavior. This feature is
recommended only in Coordinators where all the children are strictly the same and
redundant.

The last directive in a Coordinator is the following:

set <varName> <value >;

46 Chapter IV. Phronesis

This gives a value to a given variable, where the value can be another variable name.

The values given to the attributes in the Agent definitions can be variables.
Variables start with “$” and do not need to be previously declared. The interest
of the variables is to factorize the information. For example, the definition of
an application with processes, files and folders, all running on the same server.
Instead of hardcoding the name of the server in all the Agent definitions, it is set
to a variable, and the actual server name is assigned to the variable in the top
Coordinator. If one ever moves the application to another server, the Server name
has to be changed in one place only. When assigning a value to a variable, all the
children of the Coordinator assign the same value to the variable.

Variables are most relevant in the inheritance process. The inheritance relation
is specified when declaring an entity by appending the following:

: <parentName>

The parentName is the name of the MetaAgent from which the current MetaA-
gent inherits, very much like in C++ programming. The complete definition of a
MetaAgent inheriting from another one is as follows:

<MetaAgentType> <childName >: <parentName>

Of course, the child and parent MetaAgent have to be of the same type.

When the inheritance mechanism takes place, much information is copied from
the parent to the child. This includes all the attributes, information regarding
the Shared Experience mechanism, the “needs” in case of a Coordinator, and the
unassigned variables.

As a consequence, one could fully define a standard installation of a standard
application (for example Apache, MySQL), using variables for the unknown
parameters (such as the user running it or the md5 of the configuration file).
Then every instance of that application can be fully defined in a few lines. It is
enough to create a Coordinator inheriting from the top Coordinator of the abstract
application, in which the values of the variables are set.

Because it is often more convenient to split the configuration into several files,
an “emport’ directive was defined, which is as follows:

import <filename >;

These directives must be at the beginning of a file, and the file extension must be

14

phr”.

Appendix B contains a more formal description of the grammar, as well as many
examples covering the various aspects we have seen.

IV.2. Tools 47

IV.2.1.iii The compiler

Now that we have seen how a user configures the software, it is interesting to
understand how the configuration is read and interpreted. This section will
give details about the algorithms used to parse the user input, as well as some
implementation technicalities.

The parser gets the configuration file and folder paths either from command
line arguments or from an option file. The very first task is to sort these files and
make sure that there is no cyclic dependencies, based on the import statements.
This is done using Tarjan’s algorithm [Tarjan 1971]. This Algorithm is a graph
theory algorithm for finding the strongly connected components of a graph. A
directed graph is called strongly connected if there is a path from each vertex in the
graph to all other vertices. This means that if a graph where the vertices are the
files and the edges are the dependency requirements is defined, there is no circular
dependency in the files if and only if there is no strongly connected component in
the graph using Tarjan’s algorithm.

Note that the files are sorted in the correct order, but the MetaAgent definitions
within a file have to be ordered by the user.
If a circular dependency is found, it is signaled to the user and the program exits.
Otherwise, a sorted list of files is obtained.

From a global perspective, the following functions are in turn applied to all the files
from the configuration list:

e Server parsing

ProcessAgent parsing

FileAgent parsing

FolderAgent parsing

Coordinator Parsing
e setEnv constraints parsing

Each of the MetaAgent types and the Servers are associated to a class that
holds their configuration in memory. The purpose of the functions listed above is
to create all the object instances from the flat configuration files.

Core At the center of the process sits a class called Core, which acts as a big
repository for all the MetaAgents and Servers created. Among other things, it
provides ways to register new instances, ways to retrieve the MetaAgent objects by
their associated names and it keeps a list of the instances currently being treated

48 Chapter IV. Phronesis

(there is one type of each entity in this list).

Server parsing The first step is the Server parsing. When a Server definition is
encountered, a new Server object is created, as well as a new EnvironmentAgent
object and a FileAgent object to describe the fstab file of the server. All three
instances are registered, and set as currently being treated. Every attribute
which is then parsed is passed to the current Server object. If the attribute is
the server address, the Server object keeps it for itself. Otherwise, it forwards
it to the EnvironmentAgent associated with it. The EnvironmentAgent will
assign the parsed attribute and value to its associated object attribute. If the
attribute is “mountpoint”, it adds a “content” property (see section IV.1.1 FileAgent
for a reminder) to the FileAgent representing the fstab file instead. When an
“attach” directive is encountered, the name of the required Coordinator is appended
to a list, that will be used later. The “detach” directive removes a name from this list.

Process parsing Following the same principle, the Process parsing function will
loop through all files. When it encounters a ProcessAgent definition, it creates the
instance, registers it, sets it as the currently active ProcessAgent, and then set
the attributes depending on the read properties. If the property being read is the
“parent” property, the Core is asked to return a link to the parent object. This
link is given to the child, and all the attributes copied from the parent to the child
object. If a ProcessAgent has a parent ProcessAgent, it always has to be declared
before any other property.

File parsing For the FileAgent parsing the function will create a new object,
register it and set it as currently active when parsing a FileAgent definition. The
only exception to the classical “property read sets one attribute in the object” rule
is the “content” property, because it may appear several times. The way this is
handled is that the FileAgent object contains a list in which all the “content”
properties are appended.

Folder parsing The FolderAgent parsing is very similar to the FileAgent parsing,
since the FolderAgent class inherits from the FileAgent class.

Trigger parsing A treatment which is common to all Agents is the Trigger
definition. Each Agent object has a list of Trigger objects associated with it.
Contrary to the rest of the classes, the Trigger class only contains the name of the
MetaAgent to which it refers (as opposed to the MetaAgent classes which contains

IV.2. Tools 49

reference to the object). This has to do with the inheritance mechanism we will see
later in this section.

Coordinator parsing The parsing of the Coordinators is slightly more compli-
cated, since it is not properties but directives that are parsed. The only exception
is the “tolerate” directive, which can be represented as an attribute. Regarding the
“needs” definitions and assignments, this is done using internal dictionaries:

e The first one, called the definitionDic, is populated when reading a need defi-
nition. The key is the "needs name”, and the value is the type of MetaAgent
expected.

e The second one, called the assignmentDic, is populated when reading a “needs
assignment”. When reading the assignment, the Core is asked to return the
object associated with the MetaAgent name to be associates. If its type cor-
responds to the one expected in the definitionDic, an entry is added in the
assignmentDic, with the need name as the key, and the value a link to the
MetaAgent object to which it refers. Otherwise the error is signaled and the
program exits.

U

The “Dependency Rules” are managed with a simple list. When a “requires’
property is read, the Core is asked to return the object associated with the name
and it is pushed to that list.

The last function to be executed is the “setEmv” parsing. When such a directive
is read, the Server object is loaded from the Core using the Server’s name, and the
properties in the directive are given to it.

At the end of the execution of all these functions, the Core contains all the
objects described in the configuration files. There are two important aspects whose
internal behavior have not yet been described: variables and inheritance handling.

Every MetaAgent has a dictionary called “variableDic”. The keys are the names
of the variables (starting with “$”). The values are the lists of attributes to which
the variables are assigned. For example, a FileAgent is defined the following way:

FileAgent myFile {
filename —> $var filename;
server —> $srv;
owner —> $var name;
grp —> $var name;

}

It will have the following entries in the variableDic:

o $srv: [server |

50 Chapter IV. Phronesis

e $var name: | owner, grp |
e $var_filename: | filename |

This dictionary is one of the attributes which is passed to the child Process-
Agent, as well as to the inheritance mechanism.

When a variable is assigned a value using the “set” keyword in a MetaAgent,
the MetaAgent looks into the dictionary to know which attribute the variable
is assigned to. It then sets the value to all the attributes in the dictionary. In
the Coordinator, the assignment mechanism is then passed recursively to all
children. In order to be properly propagated to all the Children of the Coordi-
nator, the “set” directives have to be written at the end of the Coordinator definition.

Variables can be used anywhere where the properties are treated as a normal
class attribute, which means everywhere in the Agents except for the FileAgent
content. Also, the value assigned to a variable can be another variable.

The inheritance mechanism takes place when a new MetaAgent is defined.
When MetaAgent A inherits from MetaAgent B, a deep copy of B is executed first.
What this means is that all the dictionaries, all the needs, but also all the children
in case of Coordinator inheritance are actually copied: a copy of the whole tree is
done. To keep all names unique, the names of the newly created children have the
original name, with a suffix being the name of the class being defined.

Fig. IV.3 illustrates this principle. All of the “A tree” is defined first, and then
states that the Coordinator B inherits from A. The “A tree” is copied, and all the
children keep their original names to which “ B”is appended. To avoid excessively
long names in case of chained inheritance, the original name are only concatenated
with the latest inheritance. If a Coordinator C was inheriting from B, the children

would be named “A z C”, “A y (” and so on.

The next task is to attach the Coordinators to the Servers as required, using
the list kept by the Server and mentioned earlier: for each name in the list, the as-
sociated instance is retrieved from the Core, and pushed to another list in the Server.

The following step consists of assigning a so-called “classification” to every Co-
ordinator. The classification uniquely identifies a Coordinator and its position in a
tree. The classification is composed of a succession of integers. The first integer is
the tree index, and the next are the edge indices necessary to reach the Coordinator.
On the example of Fig. IV.4, possible classifications would be:

o E: 1

o F: 151

IV.2. Tools 51

Figure IV.3: Automatic naming of MetaAgent created by inheritance

o A:2
e B:2:1
e D: 2151

o C:2:2

:

“2(2)

N\

Figure IV.4: Example of Classification

This classification is used in the Core software that we will describe later.

Note that so far, no mention was done regarding the reinforcement learning
concerns at the compilation step. The reason is that it requires to understand the
algorithms involved, and that they will be described later only. For now one can

52 Chapter IV. Phronesis

consider that what relates to them can be described as a standard class attribute,
and are thus copied and shared via inheritance.

Once all the configuration is parsed, it is necessary to distinguish the Ab-
stract entities from the others. An entity is considered Abstract if it is not
fully defined, that means if there are still unknown parameters regarding it. An
Agent is fully defined if all the mandatory fields described in section IV.2.1.ii are
completed, and if no variable remains unassigned. For a Coordinator, being fully
defined means to have all the variables assigned, all the needs assigned, and its
parent as well as children fully defined. Abstract entities are later ignored by
the Core software, but they hold a crucial role in the Shared Experience mechanism.

The last step is to load this configuration into the database. Because the
database cannot be changed while the Core software is running, the parser actually
produces an SQL script. The user has to decide by himself when to load it into the
database.

The straight-forward way of doing this would be to completely erase the
database, and recreate the configuration in it. While easy to apply, this method has
a major drawback: all the experience that was gained thanks to the reinforcement
learning would be lost. The solution is to load the content of the database into
memory, compare it with the configuration files and commit only the changes to
the database. However, because it might sometimes be desired, the user has the
possibility to apply the straight-forward method: in this case, the database is
dropped, all the tables are recreated, and all the objects are simply inserted in the
appropriate order.

The algorithm used to modify the database without losing its previous content
is more complex, and consists of a graph matching like algorithm. There is one
consideration which is very important to keep in mind: a Coordinator and more
generally an entity is considered as changed if and only if the tree under it has
changed. This mean the following:

e An Agent will be considered the same, even if its attributes (for example the
filename or the process user) have changed. The reason of this choice is because
we prefer to consider the Agents “logically”. For example, the Agent used to
represent a configuration file of a web server is not defined by its attributes
(filename: /etc/httpd/conf.d/mySite.conf; owner: root; grp: root; and others)
but by what it represents. It is a file containing the configuration for a website.
A change in the website configuration will change the configuration file, but
not what it represents.

e A Coordinator is considered changed if any of its children, direct or indirect
in the hierarchy was changed.

IV.2. Tools 53

Coordinators whose parent changed are not necessarily considered modified.
Changing A x in Fig. IV.3 will change A but A_y, A uand A v will be
considered unchanged. The experience gathered by them is still valid. This is
useful in situations when a graph is split. For example, a Coordinator Web-
Sites aggregates two Coordinators, SiteA and SiteB. Later, the configuration
is split, the Coordinator WebSites is removed, and SiteA and SiteB become
independent. The experience gathered by the two sites independently still
remains valid. That is why a change higher in the tree does not necessarily
propagate down. While a change in the parent does not change the children,
it does modify the links between them.

At a high level, the algorithm consists of the following steps:

Load all the MetaAgents and the MetaAgent tree which are in the database,
as well as the dependency rules and the Servers.

Based on the name, establish lists of new, deleted and unchanged
Servers/MetaAgents.

The deleted entities will be removed at the beginning of the SQL script.

For the unchanged entities, the indices used internally are renumbered, so
that they match those in the database. The SQL script then uses “update”
directives.

The new entities are assigned ids which do not conflict with those used in the
db, and are inserted by the script.

Appendix C contains an illustration of the tree comparison algorithm.

The actual implementation of the parser is done using Python and the library
pyparsing. Pyparsing is a library which contains many facilities to describe a file

content structure as a set of syntactical rules.

There are two reasons for using Python (as opposed to the rest of the software):

The main reason is that the introspection mechanisms, the weak typing, as
well as other dynamic features make the designing of a parser much easier
than with C++.

While the C++4 part of the software has quite a few dependencies that we
will see later, the compiler can work with just a few python files. Thus, this
portability allows users to easily test configuration on their local machines.

IV.2.2 Remote Agent

The remote agent is a piece of software that runs on all the machines the user
wants to supervise. Its only purpose is to answer queries from the Core. As such,

54 Chapter IV. Phronesis

it makes it a fairly simple program. Wait for a query, perform the task, send
back the answer. The complexities of it are more at the technical level, and are
just implementation details. The query concerns all the attributes of files, folders,
environment or processes.

The agent is developed in C+ -+, using several boost libraries [Boost-team 2013].

The choice of C++ was made to keep the same programming language as the
core, but also for the tight coupling between C-++ and the system calls. Because of
constraints on the boost::serialize version and in order to reduce the dependencies
of our software, it is statically compiled against boost.

The queries are made over the network using a C+-+ class called “Request”. This
class has three main attributes:

e Type: what type of request it is

e Target: what the request refers to

e Require: what does the user want to know
The Type attribute is one of the following:

e Alive: this request is the simplest one, and just expects an empty answer. The
Target and Require arguments are empty. The goal of this request is to make
sure that the remote agent is running and is responsive.

e Environment: this request concerns information about the environment of the
server. The Target is empty in this case as well.

e PidTree: this request asks for the full process id tree based on a process
command line. The Target contains the command line to look for.

e ProcessPid: this requests information about a process given its PID, which is
set in Target.

e File: requests information about a File given in Target.

e Mountpoint: given a filename in Target, this requests information about the
mountpoint on which it is stored.

e Folder: a request for the content of a folder given as Target

Sometimes the user does not want all the information regarding an entity. For
example, if the software does not have anything to compare it with, it might be
useless to ask for the checksum of a file. This is the role of the Require attribute:
only the information explicitly stated there will be fetched.

IV.2. Tools 55

Intuitively, the Environment requests are made by EnvironmentAgents, the
Folder requests are made by FolderAgents, and so forth. The Mountpoint request
are done by FileAgents, FolderAgents and EnvironmentAgents.

While there is a unique class to make the query, there is as many answer classes
as query Types. The attributes of those classes are the same as those of the class
they represent: the ProcessPid answer class will have similar attributes as the
ProcessAgent class, and so on.

There is one extra attribute shared by all the answer classes, which contains
errors that might have been encountered while fetching the information required.
The error is then handled appropriately by the Core.

While very basic, this approach of only answering what is needed without
further manipulating the data offers a nice decoupling between the algorithm logic
and the information collection. If the algorithms of the Core change, it does not
impact the agent running on the clients, as long as the informations that are
required are not different.

Finally, there is a certain amount of parameters the user can tune, such as the
timeout duration to execute the query, or the port on which to listen for the Core’s
queries. Note that all the Remote Agents must listen on the same port.

IV.2.3 Interaction with the user

There are two kinds of interaction between the software and the user:

e Output: it is important that the user knows what the software is doing, or
what it has done.

e Input: as stated before, the software is not monitoring anything, it expects to
be notified about problems by either a user, a physical person, or any third
party program.

This bidirectional communication is made possible using an Application
Programing Interface (API). The purpose of the API is to provide the user with an
access to the software functionalities. This access should be as agnostic as possible
to the internal complexity.

The API, called phrApi, is based on the Observer design pattern, visible in
Fig. IV.5. It handles the outgoing communication from the software to the user.

The principle is that the client, called an Observer, does not actively check if
there is new information available from the Subject or Observable. Instead, the

56 Chapter IV. Phronesis

Subject
Observer ———<>{+observerCollection
- +registerObserver(observer)
+notify() +unregisterObserver(observer)
+notifyObservers()

notifyObservers()
for observer in observerCollection

call observer.notify()

ConcreteObserverA ConcreteObserverB

+notify() +notify()

Figure IV.5: The Observer Design Pattern

Subject will notify the Observer any time there is something new.
The great advantage of this approach is that it implies a much lower load on both
the Observer’s and the Observable’s sides, compared to active polling.

The input communication is similar to a Remote Procedure Call (RPC): the
Core is notified that the user wants a given action with given arguments to be
executed.

All the communication is done over the network using similar technical imple-
mentations as for the Remote Agent. The messages are exchanged using a single
class called “api_message”. It has four main fields:

e Type: the type of message

e Text: the content of the message

e Date: the date when the message was issued
e Time: the time when the message was issued

The Date and Time are only used for the output communication. The Text
attribute contains either what the Core has to report, or the parameters the Client
gives to the Core. The Type attribute can be one of the following:

e newMsg (output): a “Message” is information which is sent to the user and
which requires an acknowledgment. They are used to make sure the user sees
the message. Of course, it is up to the interface implementation to keep it
displayed until it is acknowledged; the Core will keep track of it until it is.

e ackMsg (input): acknowledgment for a given Message.

e newLog (output): informative text.

IV.2. Tools 57

newQuestion (output): the Core sometimes requires input from the user. It is
done using this type.

newProblemQuestion (output): a specialization of the newQuestion Type.
The Core requires the user to tell it what the current problems are.

newYnQuestion (output): another specialization of the newQuestion Type. It
represents a “yes or no question”.

answerQuestion (input): sent by the Client to answer a question

currentProblem (output): when the Core is treating problems, it notifies all
the observers about it.

giveProblem (input): a facility to use answerQuestion, which is used to specif-
ically notify the Core about ongoing problems.

setVeto (input): used to set the value of a Veto.
newVeto (output): used by the Core to notify clients that a Veto was set.

statistic (output): used by the core to send the value of counters in order to
make statistics.

error (output): this is used to notify the Client about a problem in the com-
munication. For example, if the answer to a “yes or no question” is “maybe”.

The phrApi abstracts all the complexity of the input communication by providing

simple methods:

bool isConnected(): return true if the Client is connected to the Core, false
otherwise

void answerQuestion(int, std::string): answer to a given question, identified
by an index

void ackMessage(int): acknowledge a given message, identified by an index
void giveProblemList(std::string): notify problems to the Core

void setVeto(std::string,bool): set a value to a veto

For the output communication the reaction to a given message is completely
dependent on the Client. The user has to specify what to do. This is done by

implementing “virtual void update (api message)”, which is the callback method for

a message received by a Client. Appendix D contains examples of implementations

of usable Clients, based on the phrApi.

Based on the phrApi, several ready-to-use user interfaces were developed:

phrUtils: a command line tool for all the functionalities listed above

58 Chapter IV. Phronesis

e phrGUL still being prototyped. A GUI interface based on the Qt framework.

e phrXml: only for the output communication. This stores all the output into
an XML ring buffer file.

e phrSimu: an interface used by our simulation software describe later.

e phrlcinga: an interface that gathers data from Icinga, the monitoring software
used at LHCD.

e phrWeb: a web interface based on phrXml.

The phrApi does not give access to other information that a user might want,
such as the list of Servers or MetaAgents, the state of the reinforcement learning
algorithms, the history and so on. The reason is that the Core does not pro-
vide such functionalities. Some information still has to be fetched from the database.

The most convenient way to display information to the user wherever they are
is with a web interface: phrWeb.
Based on the Python Framework “Django”, phrWeb exposes all the content of the
database to the user, and allows the modification of some of the data. Since the
database does not contain ‘live information”, such as problems being treated, or
logs, it was necessary to make use of the phrApi. This is the point of the phrXml
interface: by writing all the output into a formatted XML file, its content can be
dynamically loaded into the web page using AJAX technology.

Note that there are two special observers: the “cout” and the “syslog” observers.
Those are threads of the Core, and are used to print to the console of the Core
(when not daemonized) and to use the syslog facility.

IV.3 Core

The Core part of the software is the central piece which contains all the algorithms
used to actually diagnose problems and offer recovery solutions. In a first part, we
will describe the different aspects the Core has to deal with, and which algorithms
are used to address them. The second part will contain more technical details
regarding the actual implementation.

IV.3.1 Algorithms

Throughout the previous sections, we have mentioned several aspects of Phronesis
that were left aside until now, for example the reinforcement learning aspects
or the diagnosis approach. This section will now cover all those algorithms in depth.

IV.3. Core 59

IV.3.1.i Sorting algorithm

When several problems occur at the same time the question with which one to
start arises. In section III.2, we have seen that a human expert addresses the issue
by “sorting” the problems based on their respective dependencies, as well as the
likelihood of each to be responsible. This sorting is made possible by the knowledge
the expert has about the system as well as the experience he accumulated.The
filtering that the expert is doing on the information he receives from the user or
the monitoring system is very important as well.

To reduce the noise (filtering) of the input, the Core uses the following criterion.
If several problems concern the same Coordinator tree, only the deepest reported
Coordinators are considered. The reason for this is quite straight forward: the root
problems are always to be found in the leafs of the trees. The lower a Coordinator
is in the tree, the closer it is to the potential real problem.

To illustrate it, the example of several websites, Sitel and Site2, aggregated
under the Coordinator Web can be used again. Depending on how the monitoring
is implemented, an actual failure in Sitel could trigger alarms concerning Sitel and
Web. If Web was considered in the diagnosis, the wrong branch of Site2 might be
explored. If it is considered “normal” to have a problem on Web, because one of its
children, namely Sitel, has a problem, then it can be ignored. Only Sitel would be
left to diagnose, which is what is expected.

The question is then how to find which one is the lowest in the tree. Doing
a graph exploration for every reported problem is not efficient at all because of
the cost of the operation. Moreover, this information is completely static. One
can compute it once, and store the result in the database. This is the role of
the “Classification” attribute of the Coordinator seen previously. Thanks to this,
filtering the problem list is done with simple integer comparison.

After the noise is filtered out, the entities need to be analyzed in the appropriate
order. It would be useless to start analyzing the problem on a website if the
software was also informed about a problem on the storage where the site gets its
files from. That is where the dependency rules start to matter.

Every Coordinator is associated to a “Weight”, which represents how important
in a system a given Coordinator is. The higher the Weight, the more Coordinators

depends on it.

The formula is the following:

W(X)=1+> W(Xy) (IV.1)

n

60 Chapter IV. Phronesis

This means that the weight of a Coordinator X is 1 added to the sum of the
weights of all the Coordinators that depend on X.

It could be objected that by doing this, an “absolute” Weight is calculated, which
is not based only on the problems currently being treated. Dependencies that are
not notified as problematic are also taken into account. While slightly more time
consuming, computing an absolute Weight presents two advantages:

e First of all, and very important, the sorting result would be exactly the same
than with a Weight taking into account current problems only.

e A Coordinator with a high absolute Weight represents a central service. Start-
ing the diagnosis on the highest Weight Coordinator can pay off, even if none
of the other currents problems depends on it. Even if known dependency rules
say otherwise, there might be unknown dependencies not yet in the database.

Also, while not completely static because of the dependency rules that can
change dynamically, the absolute Weight of a Coordinator can be somehow cached,
and thus reduce the computation time of the Weight calculation.

Once all the problematic Coordinator Weights are calculated, they are sorted
in descending order.

If several Coordinators tied for the highest Weight, the one that had the most
problems in the past is chosen.

If there is still a draw between several Coordinators, a random one is picked.

This step tells in which order to analyze the problems given as input. The
actual diagnosis algorithm will be detailed later in this chapter (see section IV.3.1.v).

IV.3.1.ii Recovery Algorithm

In this part, we will explain the recovery steps that follow the discovery of the root
cause of a problem. As already mentioned in the section III.2, once the root cause
is found, correcting the mistake is normally quite easy. What is less trivial is how
to have the correction be taken into account.

First let’s look at the possible root causes, as well as the potential solutions.

The tables IV.1, IV.2 and IV.3 will list the problems one can encounter
with various entities, the solutions to them, as well as a name for the situation.
These names are the action names to be used when defining the Triggers in the
configuration.

IV.3. Core 61
Name Problem Solution
FILE _MOUNT | The device where the file is Mount the device

supposed to be is not mounted

FILE CREATE

The file is not present

Create it

sions

FILE CHOWN | The file has the wrong owner Assign it the right owner
FILE CHGRP | The file has the wrong group Assign it the right group
FILE CHMOD | The file has the wrong permis- | Assign the correct permissions

FILE CHATTR

The file has the wrong at-
tributes

Set the correct attributes

FILE PATTERN

Not all the patterns match the
file

Correct the file content

FILE MD5 The file does not have the cor- Correct the file content
rect checksum
Table IV.1: Problems and solutions for File problems
Name Problem Solution
PROCESS START | The process is not running Start it
PROCESS RESTART | The process is not behaving Restart it

as it should (too high CPU,
mem...)

PROCESS_STOP

Stop the process

PROCESS_ ULIMIT

Some of the system limits of
the process are not properly
set

Set them properly

PROCESS_CHUSER

The process is not running un-
der the right user

Restart it with the proper one

linux service) is not behaving
properly

SERVICE START The process (associated with Start it
a linux service) is not running
SERVICE _RESTART | The process (associated with a Restart it

SERVICE STOP

Stop the service

SERVICE_RELOAD

Reload the service

Table IV.2: Problems and solutions for Process problems

62 Chapter IV. Phronesis

Name Problem Solution
ENV_MOUNT A mountpoint is not mounted mount it
ENV_UNMOUNT Unmount a mountpoint
ENV_DISK A device is full Free space
ENV_INODE No more free inode Free some
ENV_OVERLOAD | The system is overloaded Free some resources
ENV_ON The server is off Turn it on

Table IV.3: Problems and solutions for Environment problems

Those actions cover most of the situations one can encounter. Note that
a keyword “ANY” exists, that the compiler will understand as “all the possible
actions” for the type of MetaAgent being treated. The Trigger rules defined by
the user define the consequences that those actions will have. For example, after
changing the group of the httpd configuration file, restart the httpd process.
Building the full recovery procedure is not easy. In fact, a restart of the httpd
process might require steps to be executed before or after.

The complexity of this task comes from the fact that two graphs are needed
to describe all of the Trigger rules: one for the “After” rules, and one for the
“Before” rules. One has to bear in mind that the Trigger rules are not symmetric:
“after actionX on A, do actionY on B” does not imply “before actionY on B, do
actionX on A”, and hence the complexity. To address this problem, we found two
algorithms that satisfy our needs.

The first algorithm is a custom solution designed to answer our particular needs.
The basic idea is to construct a single “trigger graph” from the “before graph” and the
“after graph”, where every edge is a requirement, whatever the direction. When the
software needs to find the full recovery procedure starting from an atomic action
A, it first finds the connex components of A in the “trigger graph”. This connex
components are all the actions that will be involved one way or another. The
second step is to sort those actions. For this, the following comparison criteria is
used:

For two actions A and B, A < B if one of the following statement is satisfied:

e There exists a path from A to B in the “after tree”
e There exists a path from B to A in the “before tree”
One can compute the complexity of this algorithm in the worst case. We define:
e |Vt| = cardinality of vertices of the Trigger graph
e |Ft| = cardinality of edges of the Trigger graph

e |Va| = cardinality of vertices of the After graph

IV.3. Core 63

e |FEa| = cardinality of edges of the After graph

e |Vb| = cardinality of vertices of the Before graph

e |Eb| = cardinality of edges of the Before graph

e |N| = cardinality of the connex components of the start element

By definition |Vt| < [Va| + |Vb| and |Et| < |Ea| + |ED|

All the graphs are constructed only once at the startup of the program, therefore
their construction cost is not counted here.

The first step is to find the connected part of the start element in the “trigger
graph”, which can be done with a Breadth First Search algorithm (BFS). Its
complexity in the worst case is O(|V| + |E|). In our case, we have O(|Vt| + |Et]).
The BFS returns a list of vertices of cardinality N that need to be sorted.

The used sort algorithm performs in the order of N-log(N) comparisons, where N
is the amount of elements to sort.

Our comparison criteria consists of checking the existence of a path in two different
graphs. This check can be done using again a BFS algorithm. Thus, in the worst
case, when comparing two elements, the complexity is ©(|Va|+|Fa| + |Vb| +|Eb|).

In the end, the complexity of the algorithm is:

O(|Vt| + |Et| + N-log(N)- (|[Va| + |Ea| + |Vb| + |Eb|)))

Using the inequality of |V¢| and |Et| and defining |Vm| = max(|Val|,|Vb|) and
|Em| = max(|Fal, |Eb|):

O(|Vt| + |Et| + N-log(N)- (|Vm| + |Em]|))

In practice, many layers of caching and optimizations were added that dramati-
cally reduce the complexity. In particular, the results of comparisons are stored, so
in the long term the complexity is rather of the order:

O(|Vt| + |Et] + N-log(N)) (IV.2)

The alternative algorithm is to build a new graph every time a full recovery
procedure will be needed. The new graph represents the execution sequence of the
actions. It is made by starting from the start action in the “after” and “before”
graph, and then explore those graphs. While the edges from the “after” graph are
simply copied, the edges from the “before” graph are inverted. An edge “A -> B”in
the “before” graph means that “B has to be executed before A”, so in the new graph
one wants a “B -> A” edge.

64 Chapter IV. Phronesis

In order to build the new graph, as many BFS as vertices in the new graph are
needed in the worst case. Using the same notation as before, building the new graph
has a worst case complexity of:

O(N- ([Vm| + [Em]))

The second step of the algorithm is to do a topological sort on the new tree, which
has a complexity of

(vl +[Et])
In the end, the total worst case complexity of the second algorithm is
O(N- ([Vm|+ |Em|) + |Vit| + |Et|) (IV.3)

Given the similarities in the worst case complexity of the two algorithms, and
the fact that we do not have any control over the graph type, both of them were
implemented, and the user can make his choice in the configuration file.

IV.3.1.iii Reinforcement Learning Algorithm

The role of the reinforcement learning algorithm is to allow performance improve-
ments over time and to take advantage of previous experiments. In our case, this
translates into faster and better diagnosis.

Drawing again a parallel with section III.2, the human expert speeds up his
diagnosis by recalling previously encountered situations of the same or a similar
problem. For a given problem, the expert will check his hypothesis based on the
likelihood of each of them. The likelihood of the hypothesis is evaluated based on
previous experiments, and every repetition will modify the probability. It is the
very same behavior we wish to reproduce with our software.

Ultimately, the goal can be stated like this: “given a problem, find the real
root cause as fast as possible”, or in other words “starting from a problematic
Coordinator, find the child Agent responsible for it as fast as possible”. Note
that here one considers a single Coordinator, and that one tries to improve the
exploration of its tree. Not improving the choice between several Coordinators
reported by the user. This is treated in the following section.

In our case, the optimal speed is reached when the tree is traversed directly
using the correct path that leads from the faulty Coordinator to the responsible
leaf agent. In the worst case, a complete traversal of the tree is made; in the best
case, the correct path is taken directly. The challenge is to optimize this choice
based on previous experience.

There are a great variety of algorithms treating the subject of machine learning.
While some are classified as “unsupervised learning”, those that interest us are under

IV.3. Core 65

the branch “supervised learning”. This means that the algorithm gets feedback
regarding the output it produces (for a complete review, see [Duda 2000]). In our
context, there is a direct feedback. It is the comparison the Agent will do between
the values it expects and the values it measures. If they match, it means that this
agent is not faulty, and that the choice was not good. On the other hand, if it finds
a mismatch in the agent, it has chosen the appropriate path, which means that it
has to keep this information, and “reinforce” this path for future uses.

The choice of reinforcement learning algorithms is quite large: Q-learning, TD-
learning, etc. Some strong constraints have to be kept in mind:

e All those algorithms have tunable parameters, that are adjusted either based
on user’s preferences or at the learning phase. For example the learning rate
or the discount factor of the Q-learning algorithm. The problem is that the
optimal values for these parameters are strongly dependent on the situation,
and that there is no such thing as an absolute good value. This contradicts
the requirement for a generic software. On top of it, no cross-validation is
possible.

e Because we cannot afford to have a long learning phase, the Shared Experience
must be used. This means that the algorithm itself has to be compatible with
the principle of sharing and extrapolating experience.

The algorithm that we finally decided to use is very simple but very efficient:
every edge in a Coordinator tree is associated to a counter. When a path turns
out to be correct, the counters from all the edges that make up this path are
incremented. This is a trivial way of knowing which decisions were good.

Regarding the Shared Experience, the manipulation is straight forward as
well. The counters are shared, as illustrated in Fig. IV.6. The labels on the edges
indicate the counter IDs which are used. One can see that the common part of
the Coordinator tree shares the same counter ID, whereas the other edges have
different counter IDs. When one of the sites increases the value associated to the
counter IDs, all the other sites gain this experience.

Note that all parts of the path are updated. If F1 happens to be faulty, the values
of the counters 1 and 4 will be incremented. What this means is that even if
the other Sites do not know anything about F1, they gain the experience that
there was a problem with the configuration of the Site. Once again, this follows
the approach of considering the MetaAgents logically, that is for what they represent.

The counter associated to an edge is called “Occurrence”. While not strictly
necessary for the reinforcement algorithm, each Coordinator has also a counter
associated which is called “Total”, and which represents the total amount of time a
Coordinator was diagnosed as faulty. As for the Occurrence, the Total counter is
shared between similar Coordinator Trees. Because it might be of interest to the

66 Chapter IV. Phronesis

user, there are local Occurrence and Total for each node and edge, which are never
shared.

Figure IV.6: Illustration of the Shared Experience mechanism

In section IV.2.1.iii, when describing the compiler algorithms, we explained that
the data relevant to the reinforcement learning can be considered as standard class
attributes. These attributes are the Occurrence and Total IDs.

Finally, there is another great advantage of using such a simple system which
is not to be neglected. One of our goals was to come up with an algorithm whose
output should be corrected by the user in case of wrong diagnosis. This algorithm
answers our need better than expected since the user can not only correct a wrong
diagnosis by changing the counters, but he can also give a priori knowledge to the
algorithm without any learning phase.

The methodology previously described allows to gradually construct a probabil-
ity tree. The question then arises on how to traverse it. There are two strategies
that were considered:

IV.3. Core 67

e Explore the children in the order of decreasing probability. The advantage of
this approach is that one will go directly to the child which is the most often
culprit. On the other hand, if the responsible is the least probable, one will
explore the entire tree before finding it.

e Make a weighted random choice between the children, where the weight is the
probability measured on previous experience. While less performant than the
previous method in the best case, this approach is better for the worst case.

In order to choose one of the methods, we decided on a criterion which is the

average amount of attempts to find the responsible child, given the probabilities of
the tree.

To find this number, one can consider that the tree has only one level, because
the Occurrence of a given level is the sum of the Occurrences of the lower level. The
following can then be defined:

e N(X): average amount of attempts to find out that X is responsible

e 7): average amount of attempts to find the responsible

e V.. Occurrence of X

e Vit =Y, Vk: sum of the Occurrences of all the Agents of the tree

From the previous definitions, the probability that the agent X is responsible is

given by ‘th

First policy We write {X7, X, ..., X;,} the Agents ordered by decreasing occur-
rence. To find the responsible Agent, one needs, by definition:

Vzl
Viot

e 1 attempt with a probability of

VIQ

e 2 attempts with a probability of T

e n attempts with a probability of “2‘;

So for the first policy:

n

n=> i Vo (IV.4)

i—1 tot

<

68 Chapter IV. Phronesis

< |I<
n |T

Figure IV.7: Example to illustrate the second policy

Second policy To understand how to compute 7 for the second policy, one can
take a simple example with only three branches.

To calculate N(A) in Fig. IV.7, which is the average amount of attempts one
needs to choose A when A is the responsible, one needs to know the probability of
choosing A in the first (N1(A)), second (N2(A)) and third (N3(A)) position. By
following the probability tree:

— Vo _ Vs
Nl(A) - Va+Vb+Vc = Viot

VeV Vo Va Vi Va Ve Va
N2(A) = vt vl T VT A, T Va Vi T Ve Vi

WV Ve Va Ve . W | Va
N3(A) = 02 VoW Vi Ve T Vi Vi Ve Vi Ve W

We get: N(A) = N1(A) + 2- N2(A) + 3- N3(A)

Knowing the average amount of attempts for each entity, and the probability
that a given entity is faulty, one can write:

a V C
n =y N(A) + = N(B) + 3= N(C)
The formula can be generalized. We denote with {X7, X, ..., X,,} the Agents,
without any specific order. If, for an element X, we assign QkX as all the arrange-
ments of size k, with X in the last position, we can write:

n 127
. - Vi
NX)=> i Y]] — =+ (IV.5)
i=1 QX k=1 Viot — Zj:ll V}

The j being an index for the element in the set, and not a counter as such.
Finally:

IV.3. Core 69

% Va)| L
_ N(X;) _ . . IV.6
(EPILLENS h S il DI L & i Vi — 241V, o

It is impossible to say if one or the other policy is better. It all depends on the
case. Neither is there an easy criteria to define which one to use. Simulations of the
two policies are shown in section V.1.3. For this reason, we decided to let the user
choose the algorithm he thinks is the best for his environment.

IV.3.1.iv Dependency algorithm

One of the most interesting features of our software is that it is able to find
dependencies between Coordinator trees based on previous experience. In a way,
it is also a reinforcement learning. This capacity allows our software to infer new
Dependency rules, and thus provides better diagnoses.

The importance of the dependency rules should not be neglected. Not only
are they helpful to make a faster diagnosis, but without them, some diagnoses
would simply be wrong or the recovery impossible. Let’s illustrate this with the
following example: suppose that one has a simple web server, which gets its
content from an NFS server. If the NFS server becomes unavailable, people would
experience problems on the website. If one declares the two problems, NFS and
Site, and if the dependency rule is not known, there is a certain chance to start
diagnosing Site, and eventually find a problem. While the problem is real, there
is no way for our software to know that this problem is just an artifact of another
problem. Even worse: there is absolutely no action that could be taken on the
Site to correct the problem, so one would constantly loop. Of course, there is
a protection against this situation. However, if one starts with the NFS prob-
lem, the issue of the website will either resolve itself or at least be solvable afterward.

This is why the dependency rules are so crucial. Because the dependencies are
sometimes not as obvious as the previous example, or sometimes unknown, having
the software discovering them for the user is a great advantage.

The new rules are discovered using the user or the monitoring software feedback.
When problems are flagged, the software keeps the list of problems in memory,
and then tries to diagnose one. Once the diagnostic and the recovery solution is
calculated, the user is prompted to give an update on the situation. The user then
presents a new list of problems. It is the difference between two consecutive lists
that allows to see what was the impact of fixing the entity that was diagnosed
earlier. In the previous example, if the website problem disappears after diagnosing
NFS, the dependency “Site depends on NFS” can be inferred.

All the problems that are not present anymore at the next iteration create a

70 Chapter IV. Phronesis

new dependency rule. If the rule already exists, an occurrence counter on this
rule is incremented. The reason for having such a counter is that the rules
are not active by default. This means that they are not taken into account
by the software. It might happen that the monitoring was flickering for a
reason or another, and this would then result in a new rule, which happens to
be wrong. To avoid this, the user has to manually approve the rule, and the
counter is a good indicator of how “reliable” the rule is. For convenience, the user
has the option to set a threshold after which the rule will be automatically validated.

While the principle is easy to understand, the actual application of it is much
more complex. There are indeed many cases that are not as obvious, and require
careful thinking. For example, can new rules be inferred if the diagnosed problem
is still reported as faulty, but other problems are gone? There is no definite answer
to this, it all depends on the situation. The problems related to a Server, with their
EnvironmentAgent or their attached Coordinators, also require special treatment.
All those cases make the implementation of this dependency discovery mechanism
a fairly complicated piece of logic.

Another consideration is what to do with new problems that appear after a
diagnosis was made. It is not possible to know whether they are a consequence of
our previous recovery attempts, or if they are independent. Even if they were a
direct consequence of our action, there is nothing much one could do. The user
should maybe define more Triggers if this is what is required. Completely ignoring
the new problems would not be reasonable either. The consensus found is to keep
a detailed history of previous situations and use it at the proper time, but without
impacting the logic. When a diagnosis has been made and the suggested action has
been applied by the user, the action taken, the list of problems before and after
and a user comment are stored in the database. The next time a problem occurs
on the same Agent, the user will be warned with all this history.

The process of deducing dependencies between entities exists in the literature
as “Association rule learning”. It is a form of data mining which focuses on
discovering relations between variables in large databases. Rakesh Agrawal was
a pioneer in the domain with his Apriori algorithm, and he has contributed
in many important papers such as [Agrawal 1993], [Hipp 1998], [Srikant 1995],
[Srikant 1996a], [Zaki 1997] or [Pasquier 1999]. Those algorithms however focus on
transactions and do not have any notion of order in the items.

“Sequence mining” answers the need of finding sequential patterns, once again
initiated by Agrawal in [Agrawal 1995]. Tt is a very active field of research
(for example [Mannila 1997|, [Srikant 1996b]) and is nowadays applied a lot to
track users’ Internet browsing or shopping habits (see [Chen 2009], [Pei 2000],
[El-Sayed 2004], [Liu 2007] or [Zheng 2004] for some examples).

The situation of Phronesis is a bit different, because the rules are not searched
for in a large database, but inferred step by step. This avoids the complexity

IV.3. Core 71

required by all of the algorithms mentioned above to cope with the big amount of
data. However, the dependency algorithm uses set intersections, and so do many
algorithms, like the famous “0CLAT” [Zaki 2000].

IV.3.1.v Diagnosis algorithm

We have now seen all the different pieces that makes each operation possible. This
section will explain how all these different algorithms work together to achieve the
final goal.

Everything starts when an ongoing list of problems is given to the software.
Each problem is first associated to its Coordinator. The list of Coordinators is
then filtered based on their depth in the tree, and sorted based on the Dependency
rules, as explained in section IV.3.1..

The Coordinator trees are then traversed in turn, until a faulty one is found.
The exploration is made using the algorithm of section IV.3.1.ii. If a Coordinator
tree is visited without finding a problem, this Coordinator is added to an “Undiag-
nosed list”. The interest of this list is to avoid to recheck a tree that was already
found to be sane.

If a faulty Agent is found, the recovery procedure describe in section IV.3.1.ii is
triggered. Note that this does not execute any action, but prompts to the user the
exact steps he should follow to solve the problem.

The problem list is then updated, following section IV.3.1.iv. The whole pro-
cess is started again until the Problem list as well as the Undiagnosed list are empty.

While this global picture works in most cases, there are two cases that require
special handling.

The first case concerns the EnvironmentAgent as well as the Attached Co-
ordinators, which are normally not reported to the software. When exploring a
normal Coordinator tree, the attributes of files, folders and processes have to be
verified, using their respective Agents. The measurements are done by contacting
the Remote Agent described in section 1V.2.2. Before verifying any attribute, all
those Agents will verify that the remote Server is pingable, and that the Remote
Agent is running properly. If any of these tests fail, the problem is considered
to come from the server, and it is a so-called “Environment problem”. It might
also happen that even if the server and the remote agent are up and running, the
problem comes from the environment (heavy load, disk problem, etc). If this is the
case, it would only be noticed after going through all the reported Coordinators,
and none of them being faulty. In such a situation, a complete environment check

72 Chapter IV. Phronesis

(EnvironmentAgent and Attached Coordinators) of the Servers is done until a
faulty one is found.

Once the failed server is found, all the problematic Coordinators that have an
Agent running on the faulty server are reported to the user as being affected. The
standard recovery procedure then applies the EnvironmentAgent or the Attached
Coordinator.

The second case happens when no problem could be found in the reported
Coordinators, and all the environments were found to be sound. In that case the
Coordinators that the reported problems depend on are loaded, based on the valid
Dependency rules. The full diagnosis process starts again with this new batch of
Coordinators. If again no problem is found, the non valid Dependency rules are
used, and the process starts all over again. If even then no problem can be found,
the software gives up.

Note that in case of Environment problems, or when the software works on non
reported Coordinators, no new dependency rules are inferred.

IV.3.2 Implementation

The Core software was designed in C++, making use of several boost libraries. The
choice of C++ was made to ensure the best performance. At the beginning of the
development, it was not clear what the CPU and memory footprint would be, nor
which computing power would be needed. We decided to go for a safe choice, and
use C++, despite all the overhead of complexity compared to a language like Python.

The design is object oriented and is multi-threaded.

There are two main threads, which are for the interactions with the user, and
for the Core functionalities. A few more threads might be started on demand
for specific cases, mainly related to the Remote Agent queries or for user interactions.

UML diagrams are given in appendix E regarding the detailed implementation,
but some highlights are given here. First of all, the code is split in three parts:

e phrDbApi: this part is compiled as a dynamic library and provides an interface
between the Core and the database.

e phrLib: this dynamic library contains the elementary classes that are used by
the Core.

e Core: this package contains mainly the algorithms that make use of the
phrDbApi and the phrLib to provide the diagnosis and recovery solutions.

IV.3. Core 73

The phrDbApi is a unique class which contains all the helper methods one needs
to query the database, such as retreiveAllCoordinators”, “incrementOccurrence”,
etc.

In phrLib, the equivalent to the classes described in the parser section is found:
Server, MetaAgent, Coordinator, Agent, FileAgent, FolderAgent, ProcessAgent and
EnvironmentAgent. The classes AgentRecovery, FileRecovery, ProcessRecovery and
EnvironmentRecovery, given a faulty Agent, will propose the necessary recovery
action.

Several classes are used for communication purposes, either with the user or the
remote agents: Client, Message and Connection, UserMsg, UserQuestion, and the
like.

The Core contains mainly the following classes:
e SyncManager: used for thread synchronization
e ServerPool: aggregates and manages all the Server objects

e MetaAgentPool: aggregates and manages all the MetaAgent objects and ob-
jects inherited from it

e InteractionManager: manages the interaction with the user

e ProbabilityManager: manages all the counters related to probability and re-
inforcement learning

e RuleManager: manages the Dependency Rules as well as the triggers
e VetoManager: deals with the list of Veto and their values

o Aggregator: manages the lists of ongoing problems, filters the problem list,
takes care of the comparison of successive problems list, triggers the recovery
procedure and manages history.

e Scheduler: sort the problem list according to dependencies, start the diagnosis
of a Coordinator Tree

e Recovery engine: constructs all the recovery procedures of a faulty agent,

The global picture of the implementation of the diagnosis algorithm is shown in
Fig. IV.8:

To start it, the software needs to be provided with a mandatory configuration
file which will be detailed later. With no other option, the process will start, stay
in the foreground, and wait for user’s input. There are however different running
modes. The “daemon” mode runs just as the default one, that is it waits for the

74 Chapter IV. Phronesis

1) problem list
AGGREGATOR
ST monTtor request]
;zn)roT&st 5) Value request
9) Add rules SCHEDULER 4) Call AbStraCtAgent
7) Update
a
3) Use rules I
RULES 6) Use rules Coordinator Agent
|

Figure IV.8: Implementation principle of the diagnosis algorithm

user’s input, but runs as a daemon process in the background. Those two modes
never exit, unless demanded by the user.

The “list” mode allows the user to start the program with a list of problematic
Coordinators. Once all Coordinators are diagnosed, the program exits.

The “full” mode will check every single Agent listed in the database, report on
them, and exit.

The “checkAll” mode will make the diagnosis of all the Coordinators in the
database. This is very different from the “full” mode. While the “full” mode will
ignore all kinds of dependencies and relations between Agents to make raw tests,
the“checkAll” mode will proceed with all diagnosis steps (filtering, dependency, etc)
as if all the Coordinators were reported as problematic. At the end, it reports, and
exits.

Note that the “full” and “checkAll” modes do not give recovery solutions.

The configuration file needed to start the software contains the following informa-
tion:

e Database information: server address, port, user, password, name needed to
connect to the database.

e Interaction information: the port number for the user to connect and interact.

e Remote Agent information: the port number to connect to the Remote Agents
(note that all the Remote Agents have to be configured to listen on this same
port); the timeout after which the software considers the Agent unresponsive
(this has to be tuned taking into account the execution timeout on the Remote
Agent side)

e Syslog information: the user can activate logging using the Syslog facility, and
tune the amount and type of information he wants to be logged

IV.3. Core 75

e Cout information: when running in the default mode, information is printed
on the console. The user can tune the amount and type of information he
wants to be printed

e Algorithm parameters: options such as the automatic validation threshold for
dependency rules, the choice of graph traversal algorithms, or the random
seed.

At the time of writing, we are still consolidating the implementation, fixing
bugs and adding extra capabilities to the software. Doxygen is used to ensure a
proper code documentation, and the code is checked against the static analysis of
cppcheck.

CHAPTER V

Results

Contents
V.1 Simulations e 77
V.1.1 TImportance of the dependency rules 78
V.1.2 Importance of the Shared Experience. 80
V.1.3 Importance of the priority algorithm 83
V.2 Real case application 93
V.2.1 Ounline system configuration 94
V.2.2 Feedback from the real case application 99

As Lhcb runs a large farm, that cannot be disturbed for the sake of our tests,
it was important to be able to simulate the behavior of the software in various
situations. To achieve this goal, a tool was developed which takes care of simulating
problems given a probability distribution, interacts with the Core just as a user
would, and produces some statistics. The first part of this chapter shows the different
simulations we ran. The second part details the current utilization of our software
in our production environment.

V.1 Simulations

It was important in order to test our algorithms to be able to simulate realistic
situations. To achieve this result, we developed a complete set of tools to produce
Monte-Carlo simulations.

Phronesis needs to be compiled in a special way. The reason is that the
simulation tool tests the algorithms of the Core, and not the code quality of the
Agents: when in a normal usage, an Agent would query the remote server to get
an information and process it, in simulation mode, the Agent is instructed what to
return. This allows to simulate any kind of environment on one single machine.

Another piece of software is used to randomly generate problems based on
user’s input, inject signals to the Core to fake the agent’s analysis, interact with
it to confirm or deny its diagnoses, and produce statistics about the behavior of
Phronesis. This tool allows to reproduce almost any kind of environment, including
the LHCD one.

78 Chapter V. Results

V.1.1 Importance of the dependency rules

The idea of the first simulation was to present to the software a use case which is
typical of what can be found in classical and in the LHCb environment, and
see how it behaves. The focus was on the dependency rules.

The test bench is the following:

e One NFS server

e One MySQL server

e One website (Sitel) getting its content from MySQL

e Another website (Site2) getting its content from NFS and MySQL
The configuration entered in the database is the following;:

e A Coordinator “Nfs”, which contains three FileAgents for the export file and
the two files it serves, and one ProcessAgent for the NFS processes.

A Coordinator “Mysql” which contains only a ProcessAgent for the mysqld

process

e A Coordinator “Sitel” which contains one FileAgent for the file it serves and
two ProcessAgent for the httpd processes

A Coordinator “Site2” structured as “Sitel”. Those two inherits from the same
template in order to share their experience.

e A Coordinator “Web” which contains the Coordinators “Sitel”, “Site2” and
LlMySqlﬂ

To make the experiment more interesting, the dependencies between those var-
ious entities are not known by the software at the beginning. The test protocol
consists of creating up to four simultaneous random problems on the various sys-
tems and measure the actions of the software under various circumstances:

e No dependency rule used (valid0 in Fig. V.1, Fig. V.2 and Fig. V.3).

e Dependency rule valid after appearing 200 times (valid200 in Fig. V.1, Fig. V.2
and Fig. V.3).

e Dependency rule valid after appearing 100 times (valid100 in Fig. V.1, Fig. V.2
and Fig. V.3).

e Dependency rule valid as soon as appearing (validl in Fig. V.1, Fig. V.2 and
Fig. V.3).

To add even some more realism, the problems are reported as they would be
seen by a classical monitoring system:

V.1. Simulations 79

e A real problem on the NFS server will trigger alarms on Nfs, Site2 and Web

e A real problem on Sitel or Site2 will trigger alarm on Web and the associated
Site

e A real problem on Mysql will trigger an alarm on Sitel, Site2, Web and Mysql

The first positive outcome is that in every situation, all the dependency rules
were found by the software.

The first value of interest is the percentage of diagnosed problems in the various
tests. Fig. V.1 makes clear that the situation improves a lot: from 93.2% to 99.9%.
An analysis of the simulations shows that the non spotted errors are actually found,
but considered as false positives.This situation appears when distinct problems
happen at the same time and have similar consequences on the alarms sent by the
monitoring. For example, if the nfs or the http daemons are down, Site 2 becomes
unreachable for the monitoring. If both daemons are down at the same time, the
NFS daemon needs to be fixed first.If the software decides to fix httpd first —
because there is no priority rule — it will get the false positive situation.

|
100 |- 99.91

96.63
96 |

Percentage of cases

94 - 93.66 -

93.28
a1

Configuration

valid0
validl

valid200
valid100

Figure V.1: Percentage of cases with correct diagnoses (Simu 1)

The second value of interest is how many time a users or a monitoring tool
needs to interfere with the software in order to solve a problem. In order to update

80 Chapter V. Results

probabilities and deduce priority rules, the aggregator needs to update its alarm list
after each attempt to solve one of the problems. In case of n concurrent problems,
at least n interactions are needed. Fig. V.2 shows the percentage of extra actions
(i.e. more than the optimal) in different situations. The priority rules clearly
help to improve the situation. The 40% of the cases that required additional user
intervention, when no rules were used, are managed in an optimal way if the rules
are used as soon as they are deduced.

T
100 I —
Z 90| |
s L
Gy
o I
go 80 | i .
= L
g
5 70| e
~ |
60 | :
Configuration
Oof10o@sM4al5+
(e () o —
> S S g
= 3 = =
4 = = =
g g

Figure V.2: Additional user actions with respect to the optimal solution (Simu 1)

To finish, it is interesting to compare the amount of involved agents when
solving problems. Less involved agents, means faster solving. Fig. V.3, similar to
Fig. V.2, shows how many additional agents are visited. In that case as well, the
priority rules improve the percentage of optimal resolutions from 57.63% to 95.95%.
The percentage of situations requiring more than one additional check decreases
from 36.05% to less than 1%.

V.1.2 Importance of the Shared Experience

As seen previously, the Shared Experience principle reduces the configuration
workload for the user, but also shows very useful in environment where many
replications cannot be ran to train the reinforcement learning algorithms. The
second simulation attempts to demonstrate this.

V.1. Simulations 81

100 - =

90 |- a

70 |- A

Percentage of cases

60 - -

Configuration

Ool10o@3 M4 M5+

valid0
validl

valid200
valid100

Figure V.3: Additional visited agents with respect to the optimal solution (Simu 1)

The test case simply consists of 20 Coordinators, each of them having 20
FileAgents, on which problems were simulated. In 62% of all cases a selected file
had a problem. The other 38% of failure are equally shared between the remaining
19 files. Fig. V.4 is a comparison of the amount of visited Agents after only 20
replications in both cases. While the Coordinators using the Shared Experience
offer an optimal resolution in 57.14% of cases, the independent Coordinators reach
only 28.57% of cases.

Fig. V.5 and Fig. V.6 illustrates the learning speeds by comparing the number
of optimal resolutions : while the “shared” curve reaches the optimal value (62% =+
5%) after about 70 replications, the “not shared” curve needs about 400 replications.

This situation of having perfectly equivalent Coordinators is of course idealistic.
However, considering that the greatest share of software has a deterministic
behavior, it is safe to consider that several instances of the same Software running
on different machines will have the same behavior, and thus the same failures.

82 Chapter V. Results

100 8
¢
s 80| 8
kS
]
&0
= 60 -
=
8
5]
[l 40 I |
shared unshared
Configuration
Ool102@4m7Mo+

Figure V.4: Additional visited agents with respect to the optimal solution after 20
replications (Simu 2)

g

g 60f |
<t

sl

Q

Z 501 |
g

240t 1
(&)

E

ERE 1
o)

o

B

S 20 |
a0

]

g

% 10 |- -
~ |

| | | | |
0 100 200 300 400 500
of problems

’ —e— shared —#— unshared ‘

Figure V.5: Comparison of learning speeds (Simu 2)

V.1. Simulations 83

—_ T T T T T T T
g
60| .
<
gl
&)
% 50 -
=
40 1
o
=
£ 30| :
o,
o
kS
- 20| |
20
o]
=
S 10 2
5
A~ Lo L1 L

10! 102
of problems

’ —e—shared —=— unshared

Figure V.6: Comparison of learning speeds using logarithmic scale (Simu 2)

V.1.3 Importance of the priority algorithm

We have discussed in section IV.3.1.ii the two strategies to choose the order in
which the MetaAgents are analyzed. The mathematical formulas that give an
average amount of visited agents are too complex to be compared as such. In this
section, we will look at simulations covering a wide range of situations, and see how
the two algorithms, called “best” and “rnd” perform.

The test protocol consists of one Coordinator with ten Agents, on which the
created problems follow various probability distributions. 200 repetitions were made.
The probability distributions represents the following situations:

e All Agents have an even probability of being faulty (scenario “even”)

Half the Agents have a higher probability than the other half (scenario “1 /2”)

A quarter of the Agents have a higher probability than the other three quarters
(scenario “1/4”)

The probability difference between two “consecutive” Agents increase by a
factor k, where k is in 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9 (scenario ‘%...”)

One Agent has a much higher probability than the others (scenario “I+”)

84 Chapter V. Results

e One Agent has a much lower probability than the others (scenario “I-”)

First of all, Fig. V.7 shows that in all the situations, the average amount
of visited Agents is almost identical : the algorithm using weighted probability
(“rnd” algorithm) needs in average 0.06% (with a 1.97% standard deviation) more
attempts to find the good one that the algorithm using sorted probabilities.

A more detailed analysis (visible on Fig. V.8, Fig. V.9, Fig. V.10, Fig. V.11,
Fig. V.12, Fig. V.13, Fig. V.14, Fig. V.15, Fig. V.16, Fig. V.17, Fig. V.18, Fig. V.19,
Fig. V.20, Fig. V.21 and Table V.1) of each situation reveals that, as expected, the
weighted probability curve is more equalized than the other one.

All even Fig. V.8 shows the average amount of attempts per node when the
probabilities of each node are the same.

Half dominant Fig. V.9 shows the average amount of attempts per node when
the probabilities of half of the Nodes is much higher than the other half.

k=1.1 Fig. V.10 shows the average amount of attempts per node when the prob-
ability difference between two consecutive Nodes increases by a factor 1.1

k=1.2 Fig. V.11 shows the average amount of attempts per node when the prob-
ability difference between two consecutive Nodes increases by a factor 1.2

k=1.3 Fig. V.12 shows the average amount of attempts per node when the prob-
ability difference between two consecutive Nodes increases by a factor 1.3

k=1.4 Fig. V.13 shows the average amount of attempts per node when the prob-
ability difference between two consecutive Nodes increases by a factor 1.4

k=1.5 Fig. V.14 shows the average amount of attempts per node when the prob-
ability difference between two consecutive Nodes increases by a factor 1.5

k=1.6 Fig. V.15 shows the average amount of attempts per node when the prob-
ability difference between two consecutive Nodes increases by a factor 1.6

k=1.7 Fig. V.16 shows the average amount of attempts per node when the prob-
ability difference between two consecutive Nodes increases by a factor 1.7

k=1.8 Fig. V.17 shows the average amount of attempts per node when the prob-
ability difference between two consecutive Nodes increases by a factor 1.8

V.1.

Simulations

85

Avg # of attempts

dnoix)

best
rnd

best
rnd

best
rnd

best
rnd

best
rnd

best
rnd

best
rnd

best
rnd

OLIRTIIOG
T 6T T LT 9T ST I €T T T'TY ¢/T wao

best
rnd

best
rnd

best
rnd

best
rnd

best
rnd

!

best
rnd

v/1

Figure V.7: Avg # of attempts to solve a problem

86 Chapter V. Results

0.12

9 - -
z 3 -0.11
o
5
= T * <
B . [o 2
S &
< < |
£
< 5l 491072

4 - -

Configuration

0

Nodel
Node2
Node3
Node4
Node
Node6
Node7
Node8
Node9
Nodel0

Figure V.8: Comparison of the avg # of attempts per Node in scenario “even”

410.3
8 - -
w
=
A
g 6l 102
= <
< 2
s :
F= 4+
0 0.1
<
2 - -
410
Configuration

— N M D © I 0w D O

Q [« (]] (] Q <] [] [)

=T © 98 °T 8 T T T T QO

S ° © © o ¢ o o o T

s L A A A A A A A 2

Figure V.9: Comparison of the avg # of attempts per Node in scenario “1/2”

V.1. Simulations 87

—10.15
z 8 |
o
5
56 1% 2
4
;%o 4+ 15.10"2
2, -
10

Configuration

Nodel
Node2
Node3
Node4
Nodeb
Node6
Node7
Node8
Node9
Nodel0

Figure V.10: Comparison of the avg # of attempts per Node in scenario “6=1.1"

102
8, -
3
) 1015
<]
= 6 R @
] Q2
la; 101 2
= Af |
- 151072
2, -
1o

Configuration

Nodel
Node2
Node3
Node4
Nodeb
Node6
Node7
Node8
Node9
Nodel0

Figure V.11: Comparison of the avg # of attempts per Node in scenario “6=1.2"

88 Chapter V. Results

8, ,
é 10.2
g 6F 1
: 3
K &
= 4+ 0.1
2
<

2, .

)

Configuration

Nodel
Node2
Node3
Node4
Nodeb
Node6
Node7
Node8
Node9
NodelO

Figure V.12: Comparison of the avg # of attempts per Node in scenario “4=1.3"

101 i
g 8)
g 102
5 6F 1 B
= g
= | |
0 4 0.1
<t

2, |

1o

Configuration

Nodel
Node2
Node3
Node4
Nodeb
Node6
Node7
Node8
Node9
NodelO

Figure V.13: Comparison of the avg # of attempts per Node in scenario “6=1.4"

V.1. Simulations 89

8, -
10.3
a2 6 8
£
Q
E *O.QE
5 A 1 %
o
o 0.1
0 | 0.
‘E 2
0 10

Configuration

Nodel
Node2
Node3
Node4
Node5
Node6
Node7
Node8
Node9
Nodel0

Figure V.14: Comparison of the avg # of attempts per Node in scenario “k=1.5"

10 F

10.4
8 [-
2]
£ 10.3
g
5 0 log £
=z 102
© a
B 41 R
o0
& 0.1
2 |- -
10
Configuration
— N M Hn © = W O
(] (<] [(] Q [(] [[]
T © °v ©v °T °©T °v T T <
o © © © o o o o o T
Z L L A A A A A A 2

Figure V.15: Comparison of the avg # of attempts per Node in scenario “6=1.6"

90 Chapter V. Results

10.4
8, .
2
) 103
% 6 ’)
< <o
3 102 &
4 .
20
= 0.1
2, ,
10

Configuration

Nodel
Node2
Node3
Node4
Nodeb
Node6
Node7
Node8
Node9
NodelO

Figure V.16: Comparison of the avg # of attempts per Node in scenario “4=1.7"

81 104
z
g 6 10.3
= <
: £
s 102 &
H# 0 4p 7
2
< <10.1

2 [|

-0
Configuration

Nodel
Node2
Node3
Node4
Nodeb
Node6
Node7
Node8
Node9
NodelO

Figure V.17: Comparison of the avg # of attempts per Node in scenario “6=1.8"

V.1. Simulations 91

k=1.9 Fig. V.18 shows the average amount of attempts per node when the prob-
ability difference between two consecutive Nodes increases by a factor 1.9

105
8, -
P 0.4
&
g 6p 103
: 2
) 2
w4l H0.2 &
&0
< H0.1
2, -
H0

Configuration

Nodel
Node2
Node3
Node4
Nodeb
Node6
Node7
Node8
Node9
Nodel0

Figure V.18: Comparison of the avg # of attempts per Node in scenario “6=1.9"

One dominant Fig. V.8 shows the average amount of attempts per node when
one of the Node has a much higher probability than the others.

1
] 40.8
3
3
10.6
= 6 =
: £
—
© 104 Z
_— 1
£
<t 10.2
2 [-
10
Configuration

Nodel
Node2
Node3
Node4
Nodeb
Node6
Node7
Node8
Node9
Nodel0

Figure V.19: Comparison of the avg # of attempts per Node in scenario “1+”

92 Chapter V. Results

One inferior Fig. V.8 shows the average amount of attempts per node when one
of the Node has a much lower probability than the others.

0.12
0.1
z 8 |
=) -2
= 18-10
<5}
E 2
= 61 46-1072 o
< 2,
0 14-1072
<
4t |
12-1072
0
Configuration

— N M =f 9 © - 0 o O

[} [« (]] (] [}] [<] [« —

g 8 8 8 8 8 v T T @

c O © 0o © © o o o =T

A A A A A A A A4 ;

Figure V.20: Comparison of the avg # of attempts per Node in scenario “1-”

Quarter dominant Fig. V.8 shows the average amount of attempts per node
when a quarter of the Node has a much higher probability than the others.

<10.3
z 8)
5
] *0.2@
= 6 7 o)
H
w4l Ho1
=
2| 1o

Configuration
—e—best —#—rnd
-~ N [5eIRSN 0 © I~ 0w o O
[] L] [%] [[)
T 8 g 8 g8 8T T @
Q [Qo o Qo Q] Qo o T
LA A4 A A A A Z 2

Figure V.21: Comparison of the avg # of attempts per Node in scenario “1/4”

The only conclusion that can be drawn out of those simulations is that it
is irrelevant to choose one or the other algorithm, except if all the probabilities

V.2. Real case application 93

Distribution Average “best” | Standard | Average “rnd” | Standard

deviation deviation
“best” “rnd”
allEven 5.54 1.49 5.48 0.57
halfDominant 5.61 2.54 5.54 2.23
k.1.1 5.63 1.35 5.67 2.19
k.1.2 5.5 1.58 5.6 2.46
k.1.3 5.6 1.68 5.6 2.45
k.14 5.72 2.68 5.68 2.06
k.1.5 4.67 2.72 4.62 2.27
k.1.6 5.69 2.68 5.66 2.26
k.1.7 5.68 2.65 5.51 2.23
k.1.8 5.63 2.3 5.65 2.61
k.1.9 5.69 2.31 5.69 2.59
oneDominant 5.76 1.61 5.69 2.22
oneSub 5.78 1.74 5.58 1.15
quarterDominant 5.62 2.24 5.77 2.56

Table V.1: Average # of attempts and standard deviation in each scenario

are pretty even: in that case, one should prefer the algorithm using weighted
probabilities.

V.2 Real case application

Phronesis is now being deployed on all the LHCb Online Cluster. One has to bear
in mind that it is not a replacement to any solution already in place, but comes
in addition to it. For example, the SCADA system which is used to control all
the detector as well as the data flow comes with embedded recovery capacities: it
would be a big mistake not to use them, as we have seen that a dedicated solution
is always more efficient than a general approach. What the SCADA system does is
to rely on a “process manager” which will make sure that all the SCADA processes
are running properly, and attempts restart and likes if needed. Note that the
process manager could be placed under the control of Phronesis.

LHCb, as well as all the other LHC related infrastructures, are at the time of
this writing 2013 in an exceptional situation: all the equipment, as well as many
software and methods, are being reviewed, reinforced, repaired or sometimes even
replaced. This period, running from February 2013 till end of 2014 is called “LS17,
which stands for “Long Shutdown 1”7. During those two years, the LHC and all the
experiments are running in a stand-by mode and are upgraded in order to cope

94 Chapter V. Results

with the energy increase of the LHC. In the environment of the LHCb Online, it
consists of reshuffling the servers and network infrastructure, replacing a lot of
hardware and redesigning the data flow, which translates into rewriting or adapting
part of the software stack.

While thrilling because involving a lot of R&D in many areas, this stand-by mode
has as a direct consequence for us, which is to lower the opportunities to test the
software.

However, at the time of writing, a fair share of the LHCb Online system is
already covered and the few diagnoses one had the opportunity to trigger showed
useful.

V.2.1 Online system configuration

We shall now see the different systems that are known to Phronesis at the time of
writing.

V.2.1.i Central Storage System

All the Online system makes a heavy use of a central storage system. The setup
consists of a rack of disk trays with two active-active controllers that export all the
devices to six servers. Those six servers are running a clustered file system, and are
exporting the data via NFS for the linux clients ([Shepler 2003]), and Samba for
the windows clients. The six servers, called “store modes”, form together a cluster:
if one of them is failing, another one takes the load and endorses the role of the
dead node. In principle, all six nodes are equivalent. Some of the data that are
shared like this are for example the user’s home folders, or part of the software stack.

The cluster system and all the failover mechanism is managed by two packages
called “PaceMaker” (|[Beekhof 1999]) and “Corosync” (|[CorosyncTeam 2008|). The
role of PaceMaker is to manage the resources (such as an NFS server or a database
instance) and make sure they are running in one and only one place (to avoid the
split brain situation mentioned in section ITI.1). In order to achieve this, PaceMaker
relies on Corosync, which is a messaging system: it makes sure that all nodes that
belong to the cluster gets the communication and ensures synchronization.

Thus, thanks to those two software, the storage system already has recovery
capacities. However, it sometimes happens that the migration of a service from one
store node to the other is not successful, and it is in this situation that Phronesis
can help.

Nevertheless, the management of the resources using PaceMaker is not standard,
and makes use of special tools. Also, because PaceMaker and Corosync do not use

V.2. Real case application 95

ASCII files to store their configuration and their status, it is extremely difficult to
know what the present situation is without using the dedicated tools.

Given those constraints, the only help Phronesis can provide is to make sure
that a resource (a process, most of the time) is running on one of the store node.
If it is not the case, the “command” attribute of the ProcessAgent allows to give
the command line that will instruct PaceMaker to start the resource, instead of
suggesting the default solution. This diagnosis and recovery suggestion are correct.

Another type of resources are IP addresses: some IP addresses are moved from
one node to the other. The aim of it is to keep the client agnostic to the cluster
configuration. For this type of resource, Phronesis unfortunately does not behave
properly. In fact, the only thing one can do is to define those floating addresses
as Servers. If one of them is not assigned to any of the store node, Phronesis will
detect the associated Server as down, and suggest to start it up. This diagnosis is
not really clear, and not even exact: it is a flaw of Phronesis. On the other hand,
one could argue that floating IP addresses are more of a network concern, which
were consciously discarded from the beginning.

Finally, Phronesis can make sure that all store nodes are running the required
processes to have Corosync and PaceMaker fully functional.

V.2.1.iii CVMFS

CVMFS ([CVMFSTeam 2010]) is the “cernVM file system”. It is a way to distribute
file over a large number of client. The main idea is that when a client tries to access
a file, it will receive it from a central server, and keep it in a local cache. This
means that the clients have no write access on the files. Note that it is very different
from the behavior of an NFS share: while one gets a local copy of a file with
CVMFS, with NFS one directly instructs the server to perform the action on the file.

CVMFS is installed on the Online cluster for less than a month at the time
of writing, and is meant to replace NFS in exporting the software stack to the nodes.

Phronesis is configured to diagnose the client side (all needed processes running,
correct configuration, cache directory correct), as well as the server side. In fact, the
LHCb Online does not have a real CVMFS server: the files are hosted somewhere
else at CERN, where the LHCb Online team has no control. However, the store
nodes are running proxies that forward the client requests to the real server, and
Phronesis can diagnose this (with the same limitations as for the central storage,
since it is also managed with PaceMaker).

The case of CVMFS is interesting in terms of dependency between the clients

96 Chapter V. Results

and the servers: indeed, the client will totally depend on the server the first time
it will access a file; however, because of the cache mechanism, even if the server
then fails, the client will still be able to access the file. So in fact, it is a “temporary
dependency on a per file basis”. To avoid any confusion, the client is considered
dependent on the server.

V.2.1.iii CASTOR

CASTOR ([CastorTeam 1999]) is the “Cern Advanced STORage manager”. 1t
provides a way to manipulate to a certain extent the files that are on tape. Because
the commands to manipulate CASTOR are different from the standard Linux one,
castorfs was developed. Castorfs is a Fuse file system which allows to browse the
files on CASTOR just like one would browse a folder on a standard file system (like
ext3, btrfs or else).

Phronesis is configured to make sure that the client side is working properly.
However, as for CVMFS, the LHCb Online team has absolutely no control on the
server side, which is totally unknown to Phronesis.

V.2.1l.iv DIM

DIM ([Gaspar 1993]) is the “Distributed Information Management system”, an-
other piece of software developed at CERN. DIM is a communication system for
distributed / mixed environments, it provides a network transparent inter-process
communication layer. It is very heavily used in LHCb for various purposes, but
primarily for control and monitoring.

The idea of DIM is to give to processes an easy way to offer a so-called “Service”
on the network (e.g.: publishing the value of a counter when it changes, or at
regular interval), and an easy way to “subscribe” to them (e.g.: triggering a callback
function when the value of the counter has changed). The processes that want to
subscribe to a service do not know at first where the service runs, and they do not
not need to: central to this system is the “DIM DNS”, which is like a catalog where
all the processes can declare themselves as offering a service, and where all the
processes can see which services are offered. So when a process wants to subscribe
to a given service, it will make the request to the DIM DNS, which will forward
it to the process offering the service. Once the connection is established, the DIM
DNS is not involved anymore.

Phronesis is configured to make sure that the DIM DNS is running properly,
and that the processes have the address of the correct address for the DIM DNS:
there is a full net of them in the LHCb Online environment, and a process that will

V.2. Real case application 97

contact the wrong one will not find the service it is looking for.

V.2.1.v Event filter

The primary goal of the Online farm is to run the High Level Trigger, that is a
selection process ([Alessio 2008]). The software stack developed for it is sometimes
referred as “event filter”. It consists of a handful of processes running on each farm
node, that Phronesis is configured to diagnose.

For historical reasons, all those processes are not started in a standard Linux
way, but are managed by a custom made process manager. This process manager
normally takes care of restarting dead processes. Once again, the “command”
attribute of the ProcessAgent shows useful in this situation.

V.2.1.vi Web Services

All the web services are currently under the control of Phronesis. Until very
recently, the web service infrastructure was exactly as described in the simulation
V.1.1, in which Phronesis has proved to be efficient. In fact, the first version
of Phronesis was tested against the real web service infrastructure before the
conference CHEP ([Haen Christophe 2012]), and the diagnostics were always
correct, which confirms the results of the simulation.

However, the NFS share for the web servers was recently changed: it is not
anymore relying on a standard server to export the files via NFS, but on a
proprietary hardware which behaves as a black box for the user. This means that
Phronesis cannot be used to diagnose the NFS server. Nevertheless, this proprietary
solution is known to be very reliable, and one can expect the NFS service provided
by it to be very rarely the root cause of problems.

V.2.1.vii Databases

The LHCb Online environment runs a certain amount of databases. Some of
them are Oracle, on which the LHCb Online team does not have any control. But
the environment runs several MySQL servers ([Corporation 2013]), as well as one
MariaDb server ([Foundation 2013]), which is a fork of MySql . Those database
instances are configured in Phronesis: it contains information about the processes
and the files needed by the database instance, just like in the simulation.

The case of MySql is one of those where Phronesis really shows useful: the
processes are started in a standard way using linux services, the configuration
is stored in standard locations in ASCII files, there is no embedded feature of

98 Chapter V. Results

diagnosis or advanced recovery, etc. However, note that Phronesis cannot detect
failure that are inherent to the application itself: if for example a table is corrupted,
all the services using this table will be impacted, but Phronesis will not be able to
notice it out of the box.

A possibility for this particular case would be to define a FileAgent which parses
the log file for lines containing “corrupted”. In this case, Phronesis would report
that the log file contains an unwanted pattern, which is a correct diagnosis. But
the recovery solution it would offer would be to modify the file content, which is
of very little help here. However, since it is possible for a user to leave comments,
one can always associate a comment which explains the real recovery procedure.
Finally, note that one would need to rotate the log file, or remove the “corrupted”
line from the log file in order to avoid fake diagnoses because of ancient problems.

V.2.1.viii Icinga

The monitoring system infrastructure is based on Icinga, as mentioned in chapter II.
However, Icinga used out of the box is not able to cope with large environments like
the LHCb one. One thus needs to put in place a much more complex monitoring
system, as described in [Haen C 2011].

To summarize the setup:

e a central server running Icinga, Ido2db to write the monitoring data into
a database (a local MySql instance), gearmand (which manages in-memory
queues in which Icinga puts checks to execute).

e many servers running a gearman worker that fetches tasks to execute from the
gearmand server, and puts the result back into a special queue.

An NFS server running on the central server is also used to share files with all
the workers, but this is meant to be replaced very soon.

Phronesis is configured to diagnose all of this monitoring setup: it involves
many configuration files and many processes running on a large number of servers,
with a lot of dependencies between each other.

V.2.1.ix Log servers

Keeping track of what is happening or what has happened is very important to
troubleshoot problems. Since it can be cumbersome, and sometimes not possible,
to go on each and every machine to read the logs, LHCb has put in place a central
logging system [J.C. Garnier 2011]. It consists of several machines running in a
cluster mode similar to the one of the store nodes, and running many different
processes that are meant to collect and gather the logs from all over the Online

V.2. Real case application 99

system.

Phronesis has been configured to diagnose problems on those various processes,
as well as on their configuration files.

V.2.1.x Still missing

At the time of writing, there is still a certain amount of systems that could be
placed under the control of Phronesis but that have not been done yet.

It is for example the case of the virtualization infrastructure, which is more and
more developed [E. Bonaccorsi 2011]. In fact, all the servers running web services
are now virtualized, so it would be good to have the virtualization infrastructure as
a dependency of the web services. Even though the question was not analyzed in
depth, tracking down a problem to a failure in the virtualization system promises
to be very challenging because it works with similar concept of failover and
redundancy as PaceMaker.

Another example would be a new performance monitoring system recently put
in place called “Ganglia” [Project 2013a]. The role of Ganglia is to propagate in
a tree like structure information about performances in order to plot graphs on a
central head node. Finding why the plots for a given node are empty is typically
the use case in which Phronesis can show useful.

V.2.2 Feedback from the real case application

As mentioned at the beginning of this chapter, LHCb is in a standby mode with
many downtimes, and despite the fact that there were not so many opportunities
to test Phronesis on real unexpected and not provoked situations, we could still
learn quite a few interesting lessons.

First of all, on the positive side, it is to be noted that Phronesis could place
several diagnoses that turned out to be correct, and offer appropriate solutions.
Among these, several diagnoses were a direct consequence of the Convention Over
Configuration approach taken, because the root cause was pointing at elements the
user did not defined manually.

Examples of diagnoses are:

e Full inodes for the log servers: the log servers store on a clustered file system
a huge amount of tiny files. As a consequence, the pool of inodes ran out
way before the actual storage space did. The solution, correctly suggested by
Phronesis, was to remove files. In fact, this problem was spotted before it
actually happened because of the default threshold set to 99% of used inodes:

100 Chapter V. Results

it is a great chance, because otherwise all the new logs that would have required
a new file would have been silently lost.

e Bad mount options on a web service: one of the web service required a par-
ticular folder to be mounted with the write option, which was not the case.
Phronesis suggested to remount it with the appropriate option. Although cor-
rect, this would not have worked immediately, because the “black box NFS
server” on which Phronesis has no control was not configured to accept it.

e Incorrect DIM DNS address: the file containing the information was corrupted

e Various problems on MySql servers: running out of disk space and error in the
configuration files were among the problems diagnosed by Phronesis on the
MySql database

e Various problem on the monitoring infrastructure: the mail alerts not being
sent tracked down to a process not running, the results out of date tracked
down to a full disk space and checks not executed because of some gearman
workers not running are a few issues that Phronesis correctly diagnosed.

Of course, in some cases, Phronesis completely missed the root cause of the
problems. This was either because of situation not forecasted in the design (see
section VI.1) or because of an incomplete configuration. When it was the latest,
the configuration was always updated to make sure to cover that case in the future.
When it was due to a non expected situation, the code was improved if it did not
imply too heavy modifications in order to avoid destroying what already works;
other cases were left on the “todo list” for future developments.

One of the really positive surprises was how useful the principle of Convention
Over Configuration proved to be. In general, although more verbose that what
we would have wished at the beginning, the configuration grammar described in
section IV.2.1.i is quite satisfying. Some flaws, addressed in chapter VI , were
found when dealing with this large configuration, and they were corrected when
possible. The Shared Experience principle was very heavily used: one defined from
the beginning very abstract templates for web services, for NFS, for databases
and more, that were specialized more and more to the LHCb environment using
inheritance, up to the point where configuring a new instance of them is about
five lines. There were not enough cases to diagnose to benefit from the Shared
Experience at the diagnosis level.

In terms of raw performances (CPU and memory consumption, running time,
etc), improvements can be addressed in many places (see chapter VI).

The parser needs about 7mn, 100% CPU on one core, and 3 Gb of memory to
treat the almost 9 000 lines of configuration for the online environment and produce

V.2. Real case application 101

almost 30 000 MetaAgents.

The footprint of the Core on the machine is pretty low, even during a diagnosis,
however it needs about 30 minutes to check every single of those 30 000 MetaAgents.
This long time is explained by the fact that they are treated sequentially, and
also because each MetaAgent timing out will take 20 seconds. Also, recall that
Phronesis is not meant to check so many MetaAgents, but rather to diminish the
amount it needs to check before finding the culprit.

The footprint of the RemoteAgent on a server is completely negligible.

CHAPTER VI

Future

Contents
VI.1 Technical aspects 103
VI.2 Functional aspects 105

Despite our software already proved useful in certain situations, we already see
many improvements that would be possible for it, both in terms of functionalities
and technicalities.

VI.1 Technical aspects

The development of Phronesis and all its software stack was done by a single
person. Also the final results counts only about 25 000 lines of code — taking
into account only what is needed to run the Core and the Remote Agent, and
not the simulation tool or the various API implementations — it has taken many
more to reach this point. Because of mainly time constraints, some aspects of the
development were taken a bit lightly.

This is especially the case of all the testing functionalities: there is no unit tests,
nor regression tests, nor integration tests. Adding these, or at least cover the most
central parts of the code, would be well invested time for future developments.

The error handling in Phronesis is based on the exception mechanism of C++-.

Although it was tried during the development to cover as many situations as
possible, there are still some places where exceptions are not handled, and thus
leading to an abortion of the program. Those bugs are corrected as soon as they
are detected. Another type of error handling which is missing in Phronesis is the
advanced control of the data: for example, there is hardly any protection against
buffer overflow.
Nevertheless, great care has been taken and relatively complex implementations
were done in the Core and the Remote Agent in order to avoid any kind of deadlock
that could result from network communication glitches or system commands
hanging.

104 Chapter VI. Future

The configuration parser is the place where big improvements are the easiest to

do. First of all, the running time and the memory consumption could be greatly
reduced. A profiling of the code running against the configuration of the Online
environment showed that about 50% of the running time was spent making copies
of objects. Those copies are the result of the inheritance mechanism. A behavior
that would greatly improve the situation is a “copy-on-write” mechanism. The
principle is, when performing a copy, to actually points to the original memory
location, and only performing the real copy and duplicating the memory when a
write operation is to be executed. This is for example what happens behind the
scene in C+-+ with string objects. Unfortunately, Python does not have such a
behavior and one needs to perform it manually.
In fact, we already have a technical solution to implements this behavior, without
modifying too heavily the existing code, but it is not implemented yet because of
time constraints. The idea is to use a pool of values, a bit like the flyweight design
pattern does, and to give to the objects the position of their values in the pool
instead of the actual value.

Let’s illustrate the principle: suppose, as visible in Fig. VI.1, a class “A”, which
has two attributes, for example integers, “u” and “v”. If one has an instance X(u =
1, v = 2), on which one performs a deep copy to get the instance Y(u = 1, v = 2),
and then updates “v” to get Y(u = 1, v = 4), four memory locations will actually
be used to store the values of both “u” and both “v”.

If instead of this, the possible values for “u” and “v” are kept in a pool of values,
the X and Y attributes just have to point to those values. If all the attributes were
integers, it would not be interesting, because indexes are integers. However, for any
bigger type, string values for example, it shows extremely efficient.

The great advantage of this solution in our case is that there is no need at all to
change the logic of the algorithms. One needs to replace attributes of the classes
with index pointing to the pool of values, and replace the setter and getter methods
to actually act on the pool rather than the object itself; but all the rest, including
the calls to deep copy, will remain exactly the same.

Another technical improvement that should be done on the parser is the error
handling. While program aborts when it should, the exception handling is not
done properly enough to be able to provide the user with detailed explanations on
the cause. For example, if a Coordinator X requires a Coordinator Y that does
not exist, a message “Coordinator Y does not exist” will be printed, while “Co-
ordinator Y required by Coordinator X at line n does not exist” would be more useful.

VI.2.

Functional aspects 105

N
OB X by ¥

+u = 1 — [fu =1
v =2 +v o= 2
AttributePool
+u = [1]
+v = [2,4)

Obj X | Copy-0n-Write | Obj Y
+id_u = 0 —P [+idu =0
tid v =0 +id v = 1

Figure VIL.1: Illustration of the Copy-On-Write mechanism

V1.2 Functional aspects

There are certain functionalities that we have been thinking of, and that were not

implemented, once again because of time constraint.

To start with the parser, some extension to the grammar would be very useful,
but challenging technically. Here are some examples:

Reverse Trigger: for the time being, the Triggers are defined only in one
direction. For example, if a modification of a file requires a process restart,
one has to define the Trigger on the FileAgent. One would like the possibility
to define it on the ProcessAgent, or eventually in the Coordinator that contains
both of them.

Dependencies on attached Coordinators are not supported yet. Although not
crucial, this feature would allow a faster diagnosis, since the attached Coordi-
nators are checked at the end only

If a line is not understood by the grammar, it is silently ignored, which is not
good. The parsing should stop and print error messages.

A useful feature would be to support variable in part of the attribute. For
example “content -> my file content with a $myVar that I define later;”, or
“filename -> /my/base/path/SvarFile;”

For the time being, variables cannot be reassigned. Once a variable was as-
signed, it is forgotten by the MetaAgent, and thus cannot be overwritten.

Apply group treatment: one of the reason which makes the grammar more
verbose than one would like is because there is no “group” notion. If for

106 Chapter VI. Future

example one wants to define a Coordinator for each servers in which one just
inherits an abstract template and sets the server attribute, one needs to write
three lines as many times as servers. It would be useful to define groups and
macros to apply the loop by itself.

The improvements at the Core level consist of adding checks and tests to cover
more situations. Some examples are:

e Check disk health

Add test on the uid and gid of files and processes

Check open ports: this, as well as other checks like iptable rules, are half way
between system and network, and were left aside so far.

Add constraint that are evaluated dynamically: the grammar should for ex-
ample support statement like “user readable” or “group writable”, and the Core
should be able to cope with it

Deal better with clusters: although there is no concrete plan for it, clusters
should be better taken into account.

e Custom Agents: as we have seen all along this document, Phronesis works
primarily with files and processes, which is sufficient for most cases. However,
situations which are hardly manageable with those entities were mentionned,
such as the Corosync and PaceMaker tools. To treat such cases, one could give
the possibility to users to develop their own pieces of code to define custom
agent. The technical solution for this would be to use dynamic libraries loaded
at run time for the Core, use meta-tables in the database (tables that describe
tables), and use the flexibility of python for the compiler. Even though way too
complicated to be fully implemented in a reasonable time, a proof of concept
for the Core could be developed and tested. No attempt were made to make
the compiler support dynamic grammar.

While there was no need yet for it, given the growing popularity of Python, an
attempt to write a wrapper of the API in Python was made. Unfortunately, the
multi threaded implementation of the API makes a simple wrapper impossible, and
one would need to develop a native Python API. No time was invested in this at
the time of writing.

More than real improvements to the existing software, we felt the need of
integration with other tools to lower even more the work of the system adminis-
trator in configuring Phronesis. The idea was to develop a tool which will, given
Phronesis configuration files containing abstract entities as well as some directives,
extract information from the cluster management software and produce Phronesis
configuration files containing instantiations of those abstract entities. This project
was given to a student that worked on it for about six months. Unfortunately, it

VI1.2. Functional aspects 107

never came to work, and one would need to start it all over again.

A possibility that was considered to be feasible but has not been implemented
was to add very simple algorithms to forecast problems based on historical data.
Since Phronesis is idle most of the time, a possibility is to collect data — such as
disk space, swap consumption, and so on — on a regular basis on all the servers,
and using simple interpolation mechanisms, forecast soon to come problems. One
could also notice if a value has changed compared to usually: the owner of a file
different from what it used to be, or a process CPU consumption way off the usual
value, etc. From a pure technical point of view, this could be easily implemented
in a separate thread, without perturbing the normal behavior of Phronesis.

One feature which is currently missing in Phronesis and will probably show
useful — or even needed — in the future is the possibility to receive inputs from
multiple sources. This means that one monitoring system would report a given set
of problems, while another system would report other problems. This situation
is very realistic, since it is also what happens to a human expert: various users
are reporting problems depending on the systems they are using, and if a failure
impacts several users, they will all report it to you more or less simultaneously.
While from a pure technical perspective, Phronesis is able to receive informations
from multiple sources, its logic is absolutely not adapted to such a case. This
comes from the dependency inference mechanism: it is the difference between two
consecutive reports that gives new rules. So if the reports come from two different
systems that are monitoring different services, all the logic will fail and induce
errors in the rules. One way to deal with this would be to track the sources of the
problem report: if they are different, reported problems are added to the existing
problems. This represents a great technical challenge — that would require,
among other things, a different approach for the threads and locking management
— but also deep changes in the logic of Phronesis. It would really be a major change.

Finally, there is currently no improvement of the recovery procedure offered by
Phronesis. While its diagnosis improve with time, the recovery solution remain the
same, and are just enhanced with historical data and user comments on previous
cases. It might be interesting to see whether some kind of reinforcement learning
phase could be applied here as well. Another potential approach would be to apply
association rule learning algorithms mentioned in section IV.3.1.iv on the history
data that are kept.

CHAPTER VII

Conclusion

This work aims at supporting system administrators in their task of managing large

computer environments, requiring a very broad range of competences. We have
seen that users are directly exposed to the availability of a data center, and that a

high availability can be reached only at a very high cost. Not all the data centers

can afford a full-time on-site expert team, and this leads to have on-call experts.

However, this incurs a certain reaction time, and the diagnosis and recovery process

of a problem are not always realized in optimal conditions, which results in a lower

availability. We have enumerated several properties a tool should have in order to
assist the experts:

reduce the workload of the experts by requiring as little maintenance and
configuration as possible

offer a diagnosis to problems, as well as a recovery solution
improve with experience

act as knowledge base to centralize as much information as possible about the
computer environment. This is mandatory in order to propose diagnoses.

act as a problem history base in order to keep encountered situations at the
disposal of experts

Chapter 2 documents the various attempts that were made in order to address
such problems:

classical monitoring: this involves having as many probes as possible in the
environment. We have seen that it is not self-sufficient, but still an essential
element in any infrastructure.

expert system: consisting of a set of rules and an inference engine that will
follow the rules in order to draw conclusion. It has proven to be extremely
successful in many areas, but not adapted to broad domains such as system
administration.

autonomic computing: introduced by IBM and implemented using the MAPE-
K loop, autonomic computing requires giving self management capacities to
each element of an environment. We have seen that it shows high efficiency
when the autonomic behavior is implemented directly in each element, and
taken as a constraint from the beginning. Adding autonomic behavior a pos-
teriori is very challenging.

110 Chapter VII. Conclusion

This work tried to mimic the exact reflection process of a human expert in order
to provide a software as generic as possible to match the heterogeneous environment
of the LHCb experiment. To do so, we have adapted various methodologies from
the literature, and offered original approaches:

e be totally non-intrusive for the existing components of the environment by
focusing on Linux systems and using files and processes as the building blocks
for our diagnoses.

e perform no active monitoring but wait to be informed of problems.

e adapt and use a single MAPE-K loop to control all the elements instead of
one per element. This allows the software to infer dependency rules between
elements.

e use reinforcement learning to improve the diagnosis speed and increase the
scalability.

e use the Shared Experience principle to overcome the limitations of reinforce-
ment learning and reduce the workload of administrators, together with the
Convention Over Configuration principle.

e offer a default recovery action for each standard problem, and build a full
recovery procedure out of it.

Putting into practice all these methods required the development of various
pieces of software, as well as the definition of a new grammar for the system
administrator to express the environment setup. We wrote a compiler to read,
interpret and load the configuration files into a database without loosing the
experience previously gained. A small agent running on every node to make
all the measures required for diagnosis was implemented. Finally, the Core
software contains all the algorithms that mimic the behavior of a human expert to
provide the user with diagnosis and recovery procedure. An API was also devel-
oped to export the functionalities to third party code. The result is called Phronesis.

Phronesis was tested in a first period against simulations:

e the first simulation showed the ability of our software to address situations
similar to those encountered in many environments, including LHCb. It also
illustrates the importance of the dependency rules, as well as the capacity of
Phronesis to discover them.

e the second simulation proved that the Shared Experience principle has a big
impact in terms of performance and scalability, and that it improves the learn-
ing speed of the reinforcement learning algorithms.

e the last simulation was meant to compare the two different exploration strate-
gies discussed in Chapter 4. The conclusion is that there is hardly any differ-
ence.

111

The simulations confirmed that our methods were successful in various cases,
and we could then apply Phronesis to the LHCb environment. At the time of
writing, all the LHC experiments are in a consolidation phase, which means that
Phronesis could not be tested in real running situation. However, there were still
several opportunities for our software to prove useful: it made several correct
diagnoses and offered appropriate recovery solutions. A very positive surprise from
the real case application was the efficiency of the Convention Over Configuration
principle: several diagnoses Phronesis made were a direct consequence of the
principle. The interest of the Shared Experience principle in terms of performance
was not visible because of the low number of problems Phronesis diagnosed, but it
proved very useful when writing the description of the environment.

Together, the simulations and the application on the LHCb environment proved
that Phronesis can be helpful for system administrators and fulfill the goals we
originally set. They also illustrate that the various aspects of our approach —
like the concept of reinforcement learning, the unique MAPE-K loop or Shared
Experience — are efficient, and that they can, when used together, mimic to a
certain extend the diagnosis process of a human expert.

However, there is still large room for improvement, both in terms of the technical
implementation and of functionality. This includes, for example, an extension of
the grammar, which is unfortunately more verbose than what we hoped at the
beginning; better native support for cluster systems; and dynamic constraints on
the properties of files and processes.

Phronesis was mentioned at OSMC 2012, the Open Source Monitoring Confer-
ence. It received great attention, and developers of open source projects showed
an interest in participating in the development of Phronesis. We hope to be able
to release it as an open source solution that the community would pick up, and
extend it following the recommendations made in chapter VI.

Bibliography

[Agrawal 1993] Rakesh Agrawal, Tomasz Imielinski and Arun Swami. Mining asso-
ciation rules between sets of items in large databases. SIGMOD Rec., vol. 22,
no. 2, pages 207-216, June 1993. (Cited on page 70.)

[Agrawal 1995] Rakesh Agrawal and Ramakrishnan Srikant. Mining Sequential Pat-
terns. In Proceedings of the Eleventh International Conference on Data En-
gineering, ICDE 95, pages 3-14, Washington, DC, USA, 1995. IEEE Com-
puter Society. (Cited on page 70.)

[Alessio 2008] F Alessio, C Barandela, L Brarda, M Frank, B Franek, D Galli,
C Gaspar, E v Herwijnen, R Jacobsson, B Jost, S Kostner, G Moine,
N Neufeld, P Somogyi, R Stoica and S Suman. LHCbh Online event pro-
cessing and filtering. Journal of Physics: Conference Series, vol. 119, no. 2,
page 022003, 2008. (Cited on page 97.)

[Ananthanarayanan 2005] Rema Ananthanarayanan, Mukesh K. Mohania and Ajay
Gupta. Management of Conflicting Obligations in Self-Protecting Policy-
Based Systems. In ICAC, pages 274-285, 2005. (Cited on page 26.)

[Barrett 2004] R. Barrett, P.P. Maglio, E. Kandogan and J. Bailey. Usable auto-
nomic computing systems: the administrator’s perspective. In Autonomic
Computing, 2004. Proceedings. International Conference on, pages 18 — 25,
may 2004. (Cited on page 19.)

[Beekhof 1999] Andrew Beekhof. PaceMaker website, 1999. (Cited on page 94.)
[Boost-team 2013] Boost-team. Boost libraries, 2013. (Cited on page 54.)

[Brambilla 2012] Marco Brambilla. Model-driven software engineering in practice.
Morgan & Claypool Publishers, 2012. (Cited on page 19.)

[Bugoniu 2006] L. Bugoniu, B. De Schutter and R. Babugka. Decentralized rein-
forcement learning control of a robotic manipulator. In Proceedings of the
9th International Conference on Control, Automation, Robotics and Vision
(ICARCV 2006), pages 1347-1352, Singapore, December 2006. (Cited on
page 27.)

[CastorTeam 1999] CastorTeam. CASTOR website, 1999. (Cited on page 96.)

[Cesa-Bianchi 1997] Cesa-Bianchi, Freund Yoav, Haussler David, Helmbold David
P., Schapire Robert E. and Warmuth Manfred K. How to use expert advice.
J. ACM, vol. 44, no. 3, pages 427 485, May 1997. (Cited on page 31.)

114 Bibliography

[Chan 2003] Hoi Chan and Trieu C. Chieu. An approach to monitor application
states for self-managing (autonomic) systems. In Companion of the 18th an-
nual ACM SIGPLAN conference on Object-oriented programming, systems,
languages, and applications, OOPSLA '03, pages 312-313, New York, NY,
USA, 2003. ACM. (Cited on page 19.)

[Charles X. Ling 2004] Jianning Wang Charles X. Ling Qiang Yang and Shichao
Zhang. Decision trees with minimal costs. In Proceedings of the twenty-first
international conference on Machine learning, ICML 04, pages 69—, New
York, NY, USA, 2004. ACM. (Cited on page 31.)

[Chen 2009] Yen-Liang Chen, Mi-Hao Kuo, Shin-Yi Wu and Kwei Tang. Discovering
recency, frequency, and monetary (RFM) sequential patterns from customers
purchasing data. Electron. Commer. Rec. Appl., vol. 8, no. 5, pages 241-251,
October 2009. (Cited on page 70.)

[Cheng 2006] Shang-Wen Cheng, David Garlan and Bradley Schmerl. Architecture-
based self-adaptation in the presence of multiple objectives. In Proceedings
of the 2006 international workshop on Self-adaptation and self-managing
systems, SEAMS ’06, pages 2-8, New York, NY, USA, 2006. ACM. (Cited
on pages 18 and 19.)

[Chomsky 1956] Noam Chomsky. Three models for the description of language. IRE
Transactions on Information Theory, vol. 2, pages 113-124, 1956. http:
//www . chomsky .info/articles/195609--.pdf — last visited 14" January
2009. (Cited on page 127.)

[Chomsky 1957] Noam Chomsky. Syntactic structures. Mouton & Co., 1957. (Cited
on page 127.)

[Cobleigh 2002] Jamieson M. Cobleigh, Leon J. Osterweil, Alexander Wise and Bar-
bara Staudt Lerner. Containment units: a hierarchically composable archi-
tecture for adaptive systems. In Proceedings of the 10th ACM SIGSOFT
symposium on Foundations of software engineering, SIGSOFT ’02/FSE-10,
pages 159-165, New York, NY, USA, 2002. ACM. (Cited on page 25.)

[CorosyncTeam 2008] CorosyncTeam. Corosync website, 2008. (Cited on page 94.)
[Corporation 2013] Oracle Corporation. MySQL website, 2013. (Cited on page 97.)

[Craven 2008| B. Settles M. Craven and L. Friedland. Active learning with real
annotation costs. In NIPS Workshop on Cost-Sensitive Learning, page 1-10,
2008. (Cited on page 31.)

[CVMFSTeam 2010] CVMFSTeam. CVMFS website, 2010. (Cited on page 95.)

[D. A. Cohn 1996] Z. Ghahramani D. A. Cohn and M. I. Jordan. Active Learning
with Statistical Models. In Journal of Artificial Intelligence Research, Volume
4, pages 129 145, 1996. (Cited on page 31.)

Bibliography 115

[Diao 2005] Y. Diao, J.L. Hellerstein, Sujay Parekh, R. Griffith, G. Kaiser and
D. Phung. Self-managing systems: a control theory foundation. In Engineer-
ing of Computer-Based Systems, 2005. ECBS ’05. 12th IEEE International
Conference and Workshops on the, pages 441 — 448, april 2005. (Cited on
page 19.)

[Dolev 2008] S. Dolev and R. Yagel. Towards Self-Stabilizing Operating Systems.
Software Engineering, IEEE Transactions on, vol. 34, no. 4, pages 564 576,
july-aug. 2008. (Cited on page 19.)

[Duda 2000] Duda and Hart. Pattern classification. Wiley-Interscience, 2000. (Cited
on page 65.)

[E. Bonaccorsi 2011] M. Chebbi E. Bonaccorsi L. Brarda and N. Neufeld. Virtual-
ization for the LHCb experiment. In Proceedings of ICALEPCS2011, pages
1157-1160, 2011. (Cited on page 99.)

[El-Sayed 2004] Maged El-Sayed, Carolina Ruiz and Elke A. Rundensteiner. FS-
Miner: efficient and incremental mining of frequent sequence patterns in
web logs. In Proceedings of the 6th annual ACM international workshop on
Web information and data management, WIDM ’04, pages 128-135, New
York, NY, USA, 2004. ACM. (Cited on page 70.)

[Enterprises 2009] Nagios Enterprises. Nagios website, 2009. (Cited on pages 15
and 16.)

[Foundation 2013] MariaDB Foundation. MariaDb website, 2013. (Cited on
page 97.)

[Garlan 2004] D. Garlan, S.-W. Cheng, A .-C. Huang, B. Schmerl and P. Steenkiste.
Rainbow: architecture-based self-adaptation with reusable infrastructure.
Computer, vol. 37, no. 10, pages 46 — 54, oct. 2004. (Cited on page 18.)

[Gaspar 1993] Clara Gaspar. DIM website, 1993. (Cited on page 96.)

[Ginsberg 1993] Matt Ginsberg. Essentials of artificial intelligence. Morgan Kauf-
mann, 1993. (Cited on page 16.)

[Greiner 2002] Russell Greiner, Adam J. Grove and Dan Roth. Learning cost-
sensitive active classifiers. Artificial Intelligence, vol. 139, no. 2, pages 137
— 174, 2002. (Cited on page 31.)

[Haen C 2011] N. Neufeld Haen C E. Bonaccorsi. Distributed monitoring system
based on Icinga. In Proceedings of ICALEPCS2011, pages 1149-1152, 2011.
(Cited on pages 16 and 98.)

[Haen Christophe 2012] Bonaccorsi Enrico Haen Christophe Barra Vincent and
Neufeld Niko. Artificial Intelligence in the service of system administrators.
May 2012. (Cited on page 97.)

116 Bibliography

[Harrington 2002] D. Harrington. An Architecture for Describing Simple Network
Management Protocol (SNMP) Management Frameworks. Rapport tech-
nique, Network Working Group, 2002. (Cited on page 15.)

[Hipp 1998] Jochen Hipp, Andreas Myka, Riidiger Wirth and Ulrich Guntzer. A
New Algorithm for Faster Mining of Generalized Association Rules. In In
Proceedings of the 2nd European Symposium on Principles of Data Mining
and Knowledge Discovery (PKDD 98, pages 74-82. Springer, 1998. (Cited
on page 70.)

[Hofmeister 1992] Christine Hofmeister and James Purtilo. Dynamic reconfiguration
in distributed systems: adapting software modules for replacement. Rapport
technique, College Park, MD, USA, 1992. (Cited on page 25.)

[Horn 2001] Paul Horn. IBM’s Perspective on the State of Information Technology,
2001. (Cited on page 17.)

[Huebscher 2008] Markus C. Huebscher and Julie A. McCann. A survey of auto-
nomic computing degrees, models, and applications. ACM Comput. Surv.,
vol. 40, pages 7:1-7:28, August 2008. (Cited on page 17.)

[IBM 2001] IBM. An architectural blueprint for autonomic computing, May 2001.
(Cited on page 17.)

[IEEE 2013] IEEE. IEEE Std 1003.1, 2013 Edition, POSIX definition, 2013. (Cited
on page 33.)

[J.C. Garnier 2011] N. Neufeld J.C. Garnier L.Brarda and F. Nikolaidis. LHCb on-
line log analysis and maintenance system. In Proceedings of ICALEPCS2011,
pages 1228-1231, 2011. (Cited on page 98.)

[Jennings 2000] Nicholas R. Jennings and Michael Wooldridge. On agent-based soft-
ware engineering. Artificial Intelligence, vol. 117, pages 277-296, 2000. (Cited
on page 26.)

[Ji 2007] Shihao Ji and Lawrence Carin. Cost-sensitive feature acquisition and clas-
sification. Pattern Recogn., vol. 40, no. 5, pages 1474-1485, May 2007. (Cited
on page 31.)

[Kaiser 2003] G. Kaiser, J. Parekh, P. Gross and G. Valetto. Kinesthetics eXtreme:
an external infrastructure for monitoring distributed legacy systems. In Au-
tonomic Computing Workshop. 2003. Proceedings of the, pages 22 — 30, june
2003. (Cited on pages 18 and 25.)

[Kamoda 2005] Hiroaki Kamoda and Krysia Broda. Policy conflict analysis using
free variable tableaux for access control in web services environments. In In
Policy Management for the Web Workshop, pages 5-12, 2005. (Cited on
page 26.)

Bibliography 117

[Kanal 2000] Laveen N. Kanal. Perceptron. In Encyclopedia of Computer Science,
pages 1383-1385. John Wiley and Sons Ltd., Chichester, UK, 2000. (Cited
on page 32.)

[Karsai 2001] Gabor Karsai, Akos Ledeczi, Janos Sztipanovits, Gabor Peceli, Gyula
Simon and Tamas Kovacshazy. An Approach to Self-Adaptive Software based
on Supervisory Control. In In 2 nd International Workshop in Self-adaptive
software, (IWSAS-01), Robert Laddaga, Howard Shrobe, and Paul, 2001.
(Cited on page 19.)

[Kephart 2003] J.O. Kephart and D.M. Chess. The vision of autonomic computing.
Computer, vol. 36, no. 1, pages 41 — 50, jan 2003. (Cited on page 17.)

[Khan 2008] Fahad Shahbaz Khan, Saad Razzaq, Kashif Irfan, Fahad Magbool,
Ahmad Farid, Inam Illahi and Tauqeer Ul Amin. Dr. Wheat: A Web-based
Expert System for Diagnosis of Diseases and Pests in Pakistani Wheat. In
Proceedings of the World Congress on Engineering 2008, 2008. (Cited on
page 17.)

[Khan 2011] Abdur Rashid Khan, Hafeez Ullah Amin and Zia Ur Rehman. Applica-
tion of Expert System with Fuzzy Logic in Teachers’ Performance Evaluation.
February 2011. (Cited on page 17.)

[Kiczales 1997] Gregor Kiczales, John Lamping, Anurag Mendhekar, Chris Maeda,
Cristina Lopes, Jean marc Loingtier and John Irwin. Aspect-oriented pro-
gramming. In ECOOP. SpringerVerlag, 1997. (Cited on page 19.)

[Kon 1999] Fabio Kon, Roy H. Campbell, M. D Mickunas and Klara Nahrstedt. 2K:
A Distributed Operating System for Dynamic Heterogeneous Environments.
Rapport technique, Champaign, IL, USA, 1999. (Cited on page 25.)

[Labs 2013] Sensio Labs. Symfony website, 2013. (Cited on page 28.)

[Lano 2009] Kevin Lano. Model-driven software development with uml and java.
Course Technology, 2009. (Cited on page 19.)

[Lederberg 1987] J. Lederberg. How DENDRAL was conceived and born. In Pro-
ceedings of ACM conference on History of medical informatics, HMI ’87,
pages 5-19, New York, NY, USA, 1987. ACM. (Cited on page 17.)

[Lehman 2006] Christopher Wynn Lehman. A rule-based expert system for the di-
agnosis of convergence problems in circuit simulation. PhD thesis, 2006.
AAT3209104. (Cited on page 17.)

[Li 2010] Tao Li, Wei Peng, C. Perng, Sheng Ma and Haixun Wang. An Inte-
grated Data-Driven Framework for Computing System Management. Sys-
tems, Man and Cybernetics, Part A: Systems and Humans, IEEE Transac-
tions on, vol. 40, no. 1, pages 90 99, jan. 2010. (Cited on page 18.)

118 Bibliography

[Littlestone 1994] Nick Littlestone and Manfred K. Warmuth. The weighted magor-
ity algorithm. Inf. Comput., vol. 108, no. 2, pages 212-261, February 1994.
(Cited on page 31.)

[Liu 2007] Bing Liu. Web data mining: Exploring hyperlinks, contents, and usage
data. Springer, 2007. (Cited on page 70.)

[Lomasky 2007] R. Lomasky, C. E. Brodley, M. Aernecke, D. Walt and M. Friedl.
Active Class Selection. In Proceedings of the 18th European conference
on Machine Learning, ECML ’07, pages 640-647, Berlin, Heidelberg, 2007.
Springer-Verlag. (Cited on page 31.)

[Lupu 1999] Emil C. Lupu and Morris Sloman. Conflicts in Policy-Based Distributed
Systems Management. IEEE Trans. Softw. Eng., vol. 25, no. 6, pages 852—
869, November 1999. (Cited on page 26.)

. Saar-Tsechansky . Melville M. Saar-Tsechansky and F. Provost. Active

M. Saar-Tsechansky 2009| P. Melville M. Saar-Tsechansk dF.P A
feature-value acquisition. Management Science, vol. 55, pages 664—684, 2009.
(Cited on page 31.)

[Magee 1989] Jeff Magee and Morris Sloman. Constructing Distributed Systems in
Conic. TEEE Trans. Softw. Eng., vol. 15, no. 6, pages 663—-675, June 1989.
(Cited on page 25.)

[Mannila 1997] Heikki Mannila, Hannu Toivonen and A. Inkeri Verkamo. Discovery
of Frequent Episodes in FEvent Sequences. Data Min. Knowl. Discov., vol. 1,
no. 3, pages 259-289, January 1997. (Cited on page 70.)

[Martin 2007] P. Martin, W. Powley, K. Wilson, W. Tian, T. Xu and J. Zebedee.
The WSDM of Autonomic Computing: Experiences in Implementing Auto-
nomic Web Services. In Proceedings of the 2007 International Workshop on
Software Engineering for Adaptive and Self-Managing Systems, SEAMS '07,
pages 9—, Washington, DC, USA, 2007. IEEE Computer Society. (Cited on
page 18.)

[Miller 2010] J Miller. Design For Convention Ouver Configuration. Microsoft MSDN
Magazine, April 2010. (Cited on page 28.)

[Monteleoni 2006] Claire E. Monteleoni. Learning with online constraints: shifting
concepts and active learning. Rapport technique, Massachusetts Institute of
Technology, 2006. (Cited on page 31.)

[Naser Samy 2008] S. Abu Ola Abu Zaiter A Naser Samy. An ezpert system for di-
agnosing eye diseases using CLIPS. pages 923-924, 2008. (Cited on page 17.)

[Nierlein 2010] Sven Nierlein. Mod_ gearman website, 2010. (Cited on page 16.)

Bibliography 119

[Olsson 2008] Fredrik Olsson. Bootstrapping Named Entity Annotation by Means
of Active Machine Learning. PhD thesis, University of Gothenburg, 2008.
(Cited on page 31.)

[P. Melville 2004] F. Provost P. Melville M. Saar-Tsechansky and R. Mooney. Active
feature-value acquisition for classifier induction. In In Proceedings of the
IEEE Conference on Data Mining (ICDM), pages 483-486, 2004. (Cited on

page 31.)
[PARC 2001] PARC. AspectJ framework, 2001. (Cited on page 19.)

[Parekh 2006] Janak Parekh, Gail Kaiser, Philip Gross and Giuseppe Valetto.
Retrofitting Autonomic Capabilities onto Legacy Systems. Cluster Comput-
ing, vol. 9, no. 2, pages 141-159, April 2006. (Cited on page 25.)

[Pasquier 1999] Nicolas Pasquier, Yves Bastide, Rafik Taouil and Lotfi Lakhal. Dis-
covering Frequent Closed Itemsets for Association Rules. In Proceedings of
the 7th International Conference on Database Theory, ICDT 99, pages 398
416, London, UK, UK, 1999. Springer-Verlag. (Cited on page 70.)

[Patterson 1988] David A. Patterson, Garth Gibson and Randy H. Katz. A case
for redundant arrays of inexpensive disks (RAID). SIGMOD Rec., vol. 17,
no. 3, pages 109-116, June 1988. (Cited on page 2.)

[Pei 2000] Jian Pei, Jiawei Han, Behzad Mortazavi-Asl and Hua Zhu. Mining Access
Patterns Efficiently from Web Logs. In Proceedings of the 4th Pacific-Asia
Conference on Knowledge Discovery and Data Mining, Current Issues and
New Applications, PADKK 00, pages 396-407, London, UK, UK, 2000.
Springer-Verlag. (Cited on page 70.)

[Poirot 2008] P.-E. Poirot, J. Nogiec and Shangping Ren. A Framework for Con-
structing Adaptive and Reconfigurable Systems. Nuclear Science, IEEE Trans-
actions on, vol. 55, no. 1, pages 284 —289, feb. 2008. (Cited on page 19.)

[P.R.J. Tillotsona 2004] P.M. Hughes P.R.J. Tillotsona Q.H. Wua. Multi-agent
learning for routing control within an Internet environment. March 2004.
(Cited on page 27.)

[Proffitt 2009] Brian Proffitt. What Is Linuxz: An Overview of the Linux Operating
System, April 2009. (Cited on page 24.)

[Project 2013a] The Ganglia Project. Ganglia website, 2013. (Cited on page 99.)

[Project 2013b] The Icinga Project. icinga website, 2013. (Cited on pages 15
and 16.)

[Riedmiller 2009] Martin Riedmiller, Thomas Gabel, Roland Hafner and Sascha
Lange. Reinforcement learning for robot soccer. Auton. Robots, vol. 27,
no. 1, pages 55 73, July 2009. (Cited on page 27.)

120 Bibliography

[Roblee 2005] Christopher Roblee and George Cybenko. Implementing Large-Scale
Autonomic Server Monitoring Using Process Query Systems. In Proceedings
of the Second International Conference on Automatic Computing, ICAC 05,
pages 123-133, Washington, DC, USA, 2005. IEEE Computer Society. (Cited
on page 25.)

[Rod Johnson 2009] Juergen Hoeller Rod Johnson and all. Java Spring framework,
Convention over Configuration, 2009. (Cited on page 28.)

[Sadjadi 2005] S. Masoud Sadjadi, Philip K. McKinley and Betty H. C. Cheng.
Transparent shaping of existing software to support pervasive and autonomic
computing. SIGSOFT Softw. Eng. Notes, vol. 30, pages 1-7, May 2005.
(Cited on page 19.)

[Sarma 2012] Shikhar Kr. Sarma, Kh. Robindro Singh and Abhijeet Singh. knowl-
edge acquisition of an expert system for rice plant disease diagnosis. October
2012. (Cited on page 17.)

[Schmerl 2002] Bradley Schmerl and David Garlan. Ezploiting architectural design
knowledge to support self-repairing systems. In Proceedings of the 14th in-
ternational conference on Software engineering and knowledge engineering,
SEKE ’02, pages 241-248 New York, NY, USA, 2002. ACM. (Cited on
page 25.)

[Sheng 2006] Victor S. Sheng and Charles X. Ling. Feature value acquisition in
testing: a sequential batch test algorithm. In Proceedings of the 23rd in-
ternational conference on Machine learning, ICML 06, pages 809-816, New
York, NY, USA, 2006. ACM. (Cited on page 31.)

[Shepler 2003] S. Shepler and all. Network File System (NFS) version 4 Protocol.
Rapport technique, Network Working Group, 2003. (Cited on page 94.)

[SIA 2012] Zabbix SIA. Zabbiz website, 2012. (Cited on page 15.)

[Sleator 1985] Daniel D. Sleator and Robert E. Tarjan. Amortized efficiency of list
update and paging rules. Commun. ACM, vol. 28, no. 2, pages 202-208,
February 1985. (Cited on page 31.)

[Solomon 2010] Bogdan Solomon, Dan Ionescu, Marin Litoiu and Gabriel Iszlai.
Autonomic computing control of composed web services. In Proceedings of
the 2010 ICSE Workshop on Software Engineering for Adaptive and Self-
Managing Systems, SEAMS ’10, pages 94-103, New York, NY, USA, 2010.
ACM. (Cited on page 18.)

[Srikant 1995] Ramakrishnan Srikant and Rakesh Agrawal. Mining Generalized As-
sociation Rules. In Proceedings of the 21th International Conference on Very
Large Data Bases, VLDB 95, pages 407-419, San Francisco, CA, USA, 1995.
Morgan Kaufmann Publishers Inc. (Cited on page 70.)

Bibliography 121

[Srikant 1996a] Ramakrishnan Srikant and Rakesh Agrawal. Mining quantitative
association rules in large relational tables. SIGMOD Rec., vol. 25, no. 2,
pages 1-12, June 1996. (Cited on page 70.)

[Srikant 1996b] Ramakrishnan Srikant and Rakesh Agrawal. Mining Sequential Pat-
terns: Generalizations and Performance Improvements. In Proceedings of
the 5th International Conference on Extending Database Technology: Ad-
vances in Database Technology, EDBT '96, pages 3-17, London, UK, UK,
1996. Springer-Verlag. (Cited on page 70.)

[Sterritt 2005] Roy Sterritt, Barry Smyth and Martin Bradley. PACT: Personal
Autonomic Computing Tools. In Proceedings of the 12th IEEE Interna-
tional Conference and Workshops on Engineering of Computer-Based Sys-
tems, ECBS ’05, pages 519-527, Washington, DC, USA, 2005. IEEE Com-
puter Society. (Cited on page 25.)

[Stoilov 2010] Todor Stoilov and Krasimira Stoilova. Potential formal models for
autonomic computing applications. In Proceedings of the 11th International
Conference on Computer Systems and Technologies and Workshop for PhD
Students in Computing on International Conference on Computer Systems
and Technologies, CompSysTech ’10, pages 305-310, New York, NY, USA,
2010. ACM. (Cited on page 19.)

[Sutton 1998] Richard S. Sutton and Andrew G. Barto. Introduction to reinforce-
ment learning. MIT Press, Cambridge, MA, USA, 1st édition, 1998. (Cited
on page 27.)

[Tarjan 1971] Robert Tarjan. Depth-First Search and Linear Graph Algorithms.
In STAM Journal on Computing, pages 146 160, August 1971. (Cited on
page 47.)

[teamn 2010] Shinken team. Shinken website, 2010. (Cited on page 15.)
[Team 2013] Rails Core Team. Ruby on rails website, 2013. (Cited on page 28.)

[TIA 2010] Data Center Standards Ouverview. White Paper
(http://www.adc.com/us/en/Library/Literature/102264AE.pdf), 2010.
(Cited on page 4.)

[Tong 2001] Simon Tong. Active Learning: Theory and Applications. PhD thesis,
Standford University, 2001. (Cited on page 31.)

[Tong 2002] Simon Tong and Daphne Koller. Support vector machine active learning
with applications to text classification. J. Mach. Learn. Res., vol. 2, pages
45 66, March 2002. (Cited on page 31.)

[Trencansky 2006] Ivan Trencansky, Radovan Cervenka and Dominic Greenwood.
Applying a UML-based agent modeling language to the autonomic computing

122 Bibliography

domain. In Companion to the 21st ACM SIGPLAN symposium on Object-
oriented programming systems, languages, and applications, OOPSLA 06,
pages 521-529, New York, NY, USA, 2006. ACM. (Cited on page 19.)

[Vernon Turner 2005] IDC Vernon Turner. Defining the landscape: Trends and
forecasts for the enterprise server market and data centers. Sun Summit on
21st Century Eco-Responsibility, 2005. (Cited on page 3.)

[Vidal 2003] J M Vidal. Learning in Multiagent Systems: An Introduction from a
Game-Theoretic Perspective. Rapport technique ¢s.MA /0308030, Aug 2003.
(Cited on page 27.)

[Vovk 1990] Volodimir G. Vovk. Aggregating strategies. In Proceedings of the
third annual workshop on Computational learning theory, COLT ’90, pages
371-386, San Francisco, CA, USA, 1990. Morgan Kaufmann Publishers Inc.
(Cited on page 31.)

[W. Strickland 2005] Jonathan W. Strickland, Vincent W. Freeh and Sudharshan
S. Vazhkudai. Governor: Autonomic Throttling for Aggressive Idle Resource
Scavenging. In Proceedings of the Second International Conference on Au-
tomatic Computing, ICAC 05, pages 64 75, Washington, DC, USA, 2005.
IEEE Computer Society. (Cited on page 25.)

[X. Chai 2004] Q. Yang X. Chai L. Deng and Charles X. Ling. Test-Cost Sensitive
Naive Bayes Classification. In Proceedings of the Fourth IEEE International
Conference on Data Mining, ICDM ’04, pages 51-58, Washington, DC, USA,
2004. IEEE Computer Society. (Cited on page 31.)

[Xu 2005] Jing Xu and Jose A. B. Fortes. Towards Autonomic Virtual Applications
i the In-VIGO System. In Proceedings of the Second International Con-
ference on Automatic Computing, ICAC ’05, pages 15-26, Washington, DC,
USA, 2005. IEEE Computer Society. (Cited on page 25.)

[Y. 2002] Bigus J. P.; Schlosnagle D. A.; Pilgrim J. R.; Mills IIT W. N.; Diao Y.
ABLE: A toolkit for building multiagent autonomic systems. IBM Systems
Journal, vol. 41, pages 350-371, 2002. (Cited on pages 18 and 25.)

[Zaki 1997] Mohammed J Zaki, Srinivasan Parthasarathy, Mitsunori Ogihara and
Wei Li. New Algorithms for Fast Discovery of Association Rules. Rapport
technique, Rochester, NY, USA, 1997. (Cited on page 70.)

[Zaki 2000] Mohammed J. Zaki. Scalable Algorithms for Association Mining. IEEE
Trans. on Knowl. and Data Eng., vol. 12, no. 3, pages 372-390, May 2000.
(Cited on page 71.)

eng . Zheng and B. Padmanabhan. On active learning for data acquisi-
Zh 2002] Z. Zh d B. Pad bh 0 l d
tion. In In Proceedings of the IEEE Conference on Data Mining (ICDM),
pages 562 569, 2002. (Cited on page 31.)

Bibliography 123

[Zheng 2004] Tong Zheng. WebFrame, In pursuit of computationally and cognitively
efficient web mining. PhD thesis, University of Alberta, 2004. (Cited on
page 70.)

[Zhu 2005] Xiaojin Zhu. Semi-Supervised Learning with Graphs. PhD thesis,
Carnegie Mellon University, 2005. (Cited on page 31.)

APPENDIX A

Database

The database contains 19 tables :

MetaAgent: this the table in which all the MetaAgent are defined. The fields
of this table are enough to fully define Coordinators, which thus do not need
an extra table.

Veto: associates the Coordinator to their Veto

FileAgent: this table completes information from the MetaAgent table for the
FileAgents and the FolderAgent.

FileContentRules: contains the patterns that files defined in the FileAgent
table are supposed to match.

FilenameFilter: it contains the patterns that the content of a Folder has to
match in order to be taken into account.

ProcessAgent: this table completes information from the MetaAgent table for
the ProcessAgent.

Limits: contains the default limits that the system puts on processes.

ProcessLimits: contains the custom limits for a process defined in the Proces-
sAgent table.

EnvironmentAgent: this table completes information from the MetaAgent ta-
ble for the EnvironmentAgent.

IgnoredFS: list of filesystems to ignore, linked to a given EnvironmentAgent.
Server: contains the definition of the Servers

MetaAgentTree: defines which MetaAgent is a child of which Coordinator
Rule: the dependency rules

RecoveryRule: the recovery rules

Total and Occurrence: used to store information for reinforcement learning.

RecoveryHistory, recoveryHistory Problem, recoveryHistory Action: define
all the diagnoses and recoveries’ history. In particular, what were the problems
before and after what action on each Agent.

The full schema is visible in Fig. A.1

126 Appendix A. Database

m _| Fite
) TidINT
<id_anvAgent INT Cid_foidar INT
lises g id_file INT
. rule VARCHAR(10000)
i INT
&id_metaAgent INT 7
id_metafgent INT < filename VARCHAR(500) T
id fstab INT % cwner VARCHAR(1 00) & _metaAgent INT
<»maxLoad FLOAT L _sp! < grp VARCHAR(100) . procName VARGHAR(200)
< maxhdemory FLOAT < permissions VARCHAR(4) o < -, user VARCHAR(100) ==
- maxSwap FLOAT % attributes VARCHAR(18) |4 — — — i procEnvFie INT i
‘Indexes > md5 VARCHAR(32) & id_parent INT - I
& maxDepin INT > multiplicity INT ‘ i
Indexes > command VARCHAR(300) | *
W < sewvica VARCHAR[100) >I—J e
> maxCpu FLOAT T
@ maxemory LOAT > name VARCHAR(45)

< defValue BIGINT

[———————

(et i

Tid INT
> dCoord INT
> name VARCHAR(200)

H——————

' id INT W e B

CidINT

< name VARGHAR(200) >
———< & id_parent INT
i INT < type VARCHAR(45)
: VARCHAR(200 ©d_total INT wiim "
> name VARCHAR(200) = 1] WL INT

© classilication VARGHAR(45)
id_sarver INT
© valid BOOL
“rlocal_total INT
iolemteNT 20 H—————
‘indexes

> address VARCHAR{200) . local_oecurrence INT

i INT

> id_mat INT

< action! VARCHAR(45)
©id_ma2 INT

< action2 VARCHAR(45)
< direction VARGHAR(45)

_J Reci

Cid INT
»id_recoveryHistory INT

. matafAgent VARCHAR(200)
> action VARCHAR(45)
 Indoxos

m

=2 . i INT

»date VARCHAR{45)
©id_recoveryHistory INT :
» metaAgent VARGHAR(200) i

< responsibie VARCHAR(200)
> before_after VARCHAR(45) userEntry VARCHAR(1000}
. . > userEntry (1000

Figure A.1: Complete schema of the database

APPENDIX B

Phronesis grammar

B.1 Formal description of the grammar

Following the formalism described my Noam Chomsky in [Chomsky 1957] and
[Chomsky 1956], one can define the Phronesis grammar using:

e A finite set N of nonterminal symbols

e A finite set X of terminal symbols

e A finite set P of production rules

o A distinguished symbol S € N that is the start symbol.

In the case of the Phronesis Grammar, ¥ is composed of the following elements:
{Coordinator, set, veto, needs, FileAgent, FolderAgent, ProcessAgent, requires,
tolerate , #, before, after, trigger, on, triggerSuffiz, content, nameFilter, parent,
mountpoint, mazLoad, maxMemory, mazSwap, setEnv, Server, attach, detach,
import}.

The nonterminal symbols set N is {agent_ type, attribute, coordinatorDef, coor-
dinator_end, coordinatorMiddle, coordinator mneeds, coordinator needs assign,
coordinator _requires, coordinator _start, coordinator_tolerate, coordinator wveto,
env_ constraint, file_content, fileDef, file_end, file_middle, file_start, fold-
erDef, folder end, folder filenameFilter, folder maiddle, folder start, im-
portStatment, load env, memory env, metaAgent attribute, metaAgent end,
metaAgent_inheritance, metaAgent_middle, metaAgent_setTriggerSuffiz,
metaAgent _start, metaAgent_trigger, mountpointDefinition, mountpoint env,
name, number, parent attribute, processDef, process_end, process_midle, pro-
cess start, server attachCoord, serverDef, server detachCoord, server end,
server_inheritance, server_ middle, server start, setEnvDef, Sigma, swap_env,
variable Assignment, variable _name, variable_ value, when, definitions,

phr_config_file}.

The production rules are:
e agent_type = Coordinator
e agent_type = FileAgent
e agent_type = FolderAgent

® agent_type = ProcessAgent

128 Appendix B. Phronesis grammar

® name = Word(alphanums + ’_’)

e number = Word(nums)

e attribute = Word(alphanum $/*_ -.=\\"[1())
e variable_name = "$" name

® variable_value = attribute

® variable_value = variable_value variable_value

® variableAssignment = '"set" variable_name variable_value ";"
® when = "before"
® when = "after"

® coordinator_inheritance -> " name

® coordinator_start = "Coordinator" name "

® coordinator_start = "Coordinator" name coordinator_inheritance "{"
® coordinator_needs_assign = name "=" name

® coordinator_needs_assign = name "=" variable_name

® coordinator_veto = "veto" name ";"

® coordinator_needs = '"needs" agent_type name

® coordinator_needs = "needs" agent_type name

® coordinator_requires = '"requires'" name

® coordinator_tolerate = "tolerate" number ";"

e coordinator_end = "}"

® coordinatorMiddle = coordinator_tolerate

® coordinatorMiddle = coordinator_veto

® coordinatorMiddle = coordinator_needs

® coordinatorMiddle = coordinator_needs_assign

® coordinatorMiddle = variableAssignment

® coordinatorMiddle = coordinator_requires

® coordinatorMiddle = coordinatorMiddle coordinatorMiddle

® coordinatorDef = coordinator_start coordinator_end

® coordinatorDef = coordinator_start coordinatorMiddle coordinator_end

e metaAgent_inheritance = ":" name

e metaAgent_start = name

e metaAgent_start = name metaAgent_inheritance

o metaAgent_attribute = name "->" attribute

® metaAgent_trigger = when name "trigger" name "on" name ";"

® metaAgent_setTriggerSuffix = "triggerSuffix" "->" variable_name
® metalAgent_middle = metaAgent_setTriggerSuffix

® metaAgent middle = metaAgent_attribute

e metaAgent_middle = variableAssignment

e metaAgent _middle = metaAgent_trigger

B.1.

Formal description of the grammar

129

metaAgent_middle = metaAgent middle metaAgent _middle
metalgent_end = "}"
file_start = "FileAgent" metaAgent_start

file_content = "content" "->" attribute

file_end = metaAgent_end

file_middle = file_content

file_middle = metaAgent_middle

file_middle = file_middle file_middle

fileDef = file_start file_end

fileDef = file start file middle file_end

folder_start = "FolderAgent" metaAgent_start

folder_end = "}"

folder_filenameFilter = "nameFilter" "->" attribute ";"

folder_middle = folder_filenameFilter

folder_middle = file_middle

folder_middle = folder_middle folder_middle

folderDef = folder_start folder_end

folderDef = folder_start folder_middle folder_end

process_start = '"ProcessAgent" metaAgent_start

parent_attribute = "parent" "->" name ";"

process_midle = metaAgent_middle

process_end = metalgent_end

processDef = process_start process_end

processDef = process_start parent_attribute process_end

processDef = process_start parent_attributeprocess_midle process_end

processDef = process_start process_midle process_end

mountpointDefinition = attribute

mountpoint_env = "mountpoint" mountpointDefinition ";"
load_env = "maxLoad" number ";"

memory_env = "maxMemory" number ";"

swap_env = "maxSwap" number ";"

env_constraint = mountpoint_env

env_constraint = load_env

env_constraint = memory_env

env_constraint = swap_env

env_constraint = env_constraint env_constraint

setEnvDef = "setEnv" name env_constraint

server_inheritance = name

server_start = "Server'" name '

130 Appendix B. Phronesis grammar

® server_start = "Server" name server_inheritance "{"
® server_attachCoord = "attach" name ";"

® server_detachCoord = "detach" name ";"

® server_end = "}"

e server_middle = general_server_attribute

® server_middle = server_attachCoord

® server_middle = server_detachCoord

® server_middle = metaAgent_attribute

® server_middle = server_middle server_middle

o serverDef = server_start server_end

® serverDef = server_start server_middle server_end
e path = Word(alphanums ./_)

o importStatment = "import" path ";"

e definitions = coordinatorDef

® definitions = fileDef

o definitions = folderDef

® definitions = processDef

e definitions = serverDef

e definitions = definition definition

® phr_config file = importStatment phr_config_file

® phr_config file = definitions

And finally, the Start symbol is “phr_config_file”.

B.2 Examples of Phronesis configurations

B.2.1 Example 1 : websites

This configuration demonstrates how one can define abstract MetaAgents for a web-
site, and then inherit them to instantiate real websites. The comments inside the
configuration file detail each action and give information on the consequences of
them.

We start by defining a completely abstract website

which is made of an httpd process (with one child),
and 2 coordinators : one for the data and one for the
configuration

This ProcessAgent is the definition of a standard

httpd root process : the binary is /usr/sbin/httpd

and should be run as root. It is started with

a standard linux process called "httpd". There should only
be 1 instance of this process.

Bventhough this is not very standard, we have defined
two constraints on our process : it should have an

environment variable ORACLE LIB whose value is

/usr/lib/oracle/, and the maximum number of file

descriptors is 2000.
The server on which it runs is a variable called $webSrv
to be defined later

Bihiz

34

36

38

40

84

86

88

96

98

100

B.2. Examples of Phronesis configurations 131

ProcessAgent abs_httpd {
procName —> /usr/sbin/httpd;
multiplicity —> 1;
user —> root;
service —> httpd;
server —> $webSrv;
envVar —> ORACLE_LIB=/usr/lib /oracle /;
open_files —> 2000;

}
The httpd process has one root process (abs_httd)
and then forks off a lot. This ProcessAgent describes
the children. Because we define abs_ httpd as the parent
process, abs_httpdChild will have all the attributes
of its parent (procName, multiplicity , user, service,
server envVar and open files). However, we overwrite
two of those attributes : the multiplicity
(a maximum number of children processes can actually
be set in the real httpd configuration files)
and the user, which is set to a variable $webUser
ProcessAgent abs_httdpChild {

parent —> abs_httpd;

multiplicity —> 100;

user —> S$webUser;

}

We define a Coordinator to represents the webSite.
It has three needs, out of which only one is assigned
to abs httpd.
Coordinator abs webSite {
needs Coordinator n_c_data;
needs Coordinator n_c_conf;
needs ProcessAgent n_p_ httpd = abs_httpd;
}

We can now define a default website

The Coordinator where the data are stored
is composed by only one folder.

FolderAgent default_documentRoot {
filename —> /var/www/html;
server —> $webSrv;

}

Coordinator default Data {
needs FolderAgent n_fo_ data = default documentRoot;
}

The Coordinator that contains the configuration
is composed by only one file

We expect the file to contain a line with "DocumentRoot"
as well as a line containing "Listen 80"
FileAgent default_httpdConf

filename —> /etc/httpd/conf/httpd.conf;

owner —> root;

grp —> root;

content —> Listen 80;

content —> DocumentRoot;

server —> $webSrv;

}

Coordinator default_Conf {
needs FileAgent n_fi_conf = default_httpdConf;
}

default website inherits from abs_webSite.
This means that default webSite has 3 needs

— one ProcessAgent, which is already assigned
to a copy of the abs_httpChild
— two Coordinators, non assigned yet

We assign the Coordinators previously defined
to our two needs
We assign a value to the $webUser variable
this assignation is propagated in all the tree,
so it will reach the copy of abs_httpdChild.
Coordinator default_ webSite : abs_webSite {
n_c_data = default Data;
n_c_conf = default_Conf;
set SwebUser apache;

132 Appendix B. Phronesis grammar

We need to define servers on which to run
104
First , we define an abstract Server, a model

106 |# for all the webserver

It will have 2 montpoints, and two file system have
108 |# to be ignored. Also, we override the default maxLoad
to a value of 9.

110
Server abs_srv {

112 mountpoint —> nfs:/ nfsexports/sharedFiles /sharedFiles nfs rw,hard,intr ,nolock 0 O0;
mountpoint —> nfs:/ nfsexports/otherFiles /otherFiles nfs rw,hard,intr 0 0;

114 ignoreFs —> /castorfs;

ignoreFs —> /cvmfs;

116 maxLoad —> 9;

118
120 |# Because srvl inherits from abs_server,

it will have all the caracteristic from abs_server,
122 |# and its address is 192.168.0.50

Server srvl : abs_srv {
124 address —> 192.168.0.50;
}
126
Because srv2 inherits from abs_server,
128 [# it will have all the caracteristic from abs_server,
except the maxLoad which is redefined to 6.
130 |# Its address is 192.168.0.51
Server srv2 : abs srv{
132 address —> 192.168.0.51;
maxLoad —> 6;
134 |}
136

Sitel inherits from default_website
This will create 2 Coordinators

— one containing a newly created FolderAgent, for the data

— one containing a newly created FileAgent, for the configuration
It will also create 2 ProcessAgents to represent the http process.
The only unknown left is the server on which to run, which is assigned
with a simple line. (The value of $webUser is apache since Sitel

5
(=}
4

144 [# inherits from default_ webSite)
Coordinator Sitel : default_ webSite {
146 set SwebSrv srvl;
}
148

As for Sitel

150 | Coordinator Site2 : default_webSite {
set SwebSrv srv2;

152 |}

It can be seen in Fig. B.1 that all the sites share the occurrences id 1,2, and 3 that
they inherit from abs website, and that the occurrences id 4 and 5 are inherited
from default website and shared by Sitel and Site2.

B.2.2 Example 2 : servers

This second example illustrates how one can define a hierarchy of servers, attach
and detach Coordinators.

We define two Coordinators that will be attached to Servers

®)

4 |# Note that eventhoug mandatory, the
server attribute is not set. It is because
6 |# it will be set when attached to a Server

8 | FileAgent confl {
filename —> /path/to/conf;
10 |}

12 | FileAgent conflbis {
filename —> /path/to/conf/bis;
14|}

16 |# The first Coordinator contains 2 FileAgents
However, the "tolerate 1" directive means

B.2. Examples of Phronesis configurations 133

Figure B.1: Representation of the configuration of an abstract website and two
instances

134 Appendix B. Phronesis grammar

that out of the two, only one needs to be okay.
This is useful for example when a file used for
20 |# the same purpose (e.g. ldap configuration)
is in a different location

depending on the operating system version.

C

oordinator attachl {

tolerate 1;

26 needs FileAgent fl1 = confl;
needs FileAgent flbis = conflbisj;

On this file , the server attribute is assigned

32 |# a variable. When attached to a Server, the compiler
will make sure to remove the server from the list
34 |# of attributes waiting for S$variable to be set.

36 | FileAgent conf2{
filename —> /path/to/conf2/;
38 server —> $variable;

}

40

Coordinator attach2{
42 needs FileAgent f2 = conf2;
44

abs_srv is an abstract server (it has no address)
46 |# with two attached Coordinators.

48 | Server abs_srv {
attach attachl;

50 attach attach2;
}
52
real _srv_1 inherits from abs_srv
54 |# and so has two attached Coordinators
which are copies of attachl and attach2
56 | Server real_ srv_1 : abs_srv {
address —> 192.168.1.50;
58 |}
60
real_srv_2 inherits from abs_srv
62 |# but we detach attachl, so the only
attached Coordinator it has is
64 |# a copy of attach2
Server real_srv_2 : abs_srv {
66 detach attachl;

address —> 192.168.1.51;
68 |}

APPENDIX C

Tree comparison algorithm

This appendix will illustrate the algorithm which is used in order to update the
configuration in the database without loosing all the experience already gathered.
It is recommended to read appendix A first to learn about the database schema.

The content of the database at the beginning is visible in Fig. C.1 and was
defined using C.1 . The labels on the verticies are the Occurrence Ids and the
number in the edges are the Total Ids. Note that only the Coordinators have a
Total Id.

Since Sitel and Site2 inherit from MetaSite, their Occurrence and Total Ids are
the same. All other Ids are used only once.

Listing C.1: Configuration file originaly loaded in the database

Server localhost {
address —> localhost;
}

ProcessAgent MetaHttpd {
procName —> /usr/sbin/httpd;
user —> root;
server —> $webSrv;

}

Coordinator MetaSite {

needs Coordinator MetaData;

needs Coordinator MetaConf;

needs ProcessAgent Metahttpd = MetaHttpd;
}

FileAgent F1 {
server —> $webSrv;
filename —> f1;

}

FileAgent F2 {
server —> $webSrv;
filename —> f2;

Coordinator Confl {
needs FileAgent f = F1;
¥

Coordinator Datal {
needs FileAgent f = F2;
}

Coordinator Sitel : MetaSite {
MetaData — Datal;
MetaConf = Confl;
set $webSrv localhost;
set $webUser apache;

84

86

88

90

94

96

98

100

102

104

106

108

136 Appendix C. Tree comparison algorithm

FileAgent F3 {
server —> SwebSrv;
filename —> f3;

}

FileAgent F4 {
server —> $webSrv;
filename —> f4;

}
Coordinator Conf2 {

needs FileAgent f = F3;
}

Coordinator Data2 {
needs FileAgent f = F4;

}
Coordinator Site2 : MetaSite {
MetaData = Data2;
MetaConf = Conf2;
set SwebSrv localhost;
set SwebUser apache;
}

FolderAgent Y{
filename —> Y;
server —> localhost;

}

Coordinator X{
needs FolderAgent n_x = Y;
}

FileAgent D{
filename —> Dj
server —> localhost;

}

Coordinator B{
needs FileAgent fl1 = D;
}

FileAgent E{
filename —> E;
server —> localhost;

}

FileAgent F{
filename —> F;
server —> localhost;

}

Coordinator C{

needs FileAgent f1 = E;
needs FileAgent f2 = F;
}
Coordinator A{
needs Coordinator fl = B;
needs Coordinator f2 = C;
}
The new configuration file visible in C.2 has some differences with the previous
one:

e The tree composed by X and Y is removed.

e A new tree composed by U and V appears.

The complete tree of Site2 is removed.

A new tree, Site3, inherits from MetaSite.

Part of the A tree is removed : A itself, as well as the complete B tree.

137

Figure C.1: Content of the database

138 Appendix C. Tree comparison algorithm

e The Agent F3 that was originaly part of Conf2 is now part of Datal.

e The Agent F4 that was originaly part of Data2 is now part of Conf3.

Listing C.2: New configuration file to update the database

Server localhost {
address —> localhost;
}

FolderAgent V{
6 filename —> V;
server —> localhost;

8 |}

10 | Coordinator U{
needs FolderAgent n_v = V;
12 |3

14 | ProcessAgent MetaHttpd {

procName —> /usr/sbin/httpd;
16 user —> root;

server —> SwebSrv;

IR

20 | Coordinator MetaSite {

needs Coordinator MetaData;

22 needs Coordinator MetaConf;

needs ProcessAgent Metahttpd = MetaHttpd;
24 |}

26 | FileAgent F1 {
server —> $webSrv;

28 filename —> f1;

}
30

FileAgent F2 {
32 server —> $webSrv;

filename —> f2;

34 after ANY trigger FILE CHOWN on F1;
36 |}

38 | FileAgent F3 {
server —> $webSrv;

40 filename —> f3;
}
42
Coordinator Confl {
14 needs FileAgent f = F1;
R
46
Coordinator Datal {
18 needs FileAgent f = F2;
needs FileAgent f3 = F3;
50 |}
52 | Coordinator Sitel : MetaSite {
MetaData = Datal;
54 MetaConf = Confl;
set SwebSrv localhost;
56 set SwebUser apache;
}

60 | FileAgent F4 {
server —> $webSrv;
62 filename —> f4;

}

FileAgent F5 {
66 server —> SwebSrv;
filename —> f5;

64

68 |}

70 | Coordinator Conf3 {
needs FileAgent f = F4;
72 |}

74 | Coordinator Data3 {
needs FileAgent f = F5;

139

}

Coordinator Site3 : MetaSite {
MetaData = Data3;
MetaConf = Conf3;
set SwebSrv localhost;
set $webUser apache;

}

FileAgent E{
filename —> E;
server —> localhost;

}

FileAgent F{
filename —> F;
server —> localhost;

}

Coordinator C{
needs FileAgent f1
needs FileAgent {2

(Il
]

}

Coordinator G{
requires C;
}

Because one wants to keep the experience already gathered, the update
algorithm must ensure that removing Site2 will not destroy all the experience about
the websites, and that removing part of the A tree will not destroy the experience
of the C tree, since it remains valid.

The first step consists of a normal parsing of the file, without looking at what
is in the database. This parsing produces objects represented in Fig. C.2

The role of the update algorithm is to find what has changed based on the criteria
described in section IV.2.1.iii. For each of the Occurrences and the Total Ids, the
algorithm will establish three lists:

e Elements to remove: some indexes are not needed anymore and can be re-
moved.

e Elements to create: when new independent entities are created, they need to
be assigned a unique index.

e Elements to update: entities that are already present in the database must
conserve their index, so the algorithm establishes a correspondence between
the index assigned during this compilation and the one set in the database.

In this example, the Total ids lists produced by the algorithm will be the following:

Total Ids to delete:
e 8: Coordinator X
e 11: Coordinator A

e 12: Coordinator B

140 Appendix C. Tree comparison algorithm

MetaHttpd_Site3

Figure C.2: Content of the new configuration

141

Thee three Coordinators do not exist in the new configuration anymore and can
thus be deleted. However, even if Site2 is deleted, the total Id 1 associated with it
is not removed, because it is used by all the other websites.

Total Ids to create:

e 15: Coordinator U is completely new and thus needs to be assigned a Total
Id which is not yet used in the database. This is simply done by attributing
indexes starting from the highest one in the database.

The algorithm also constructs a mapping list to match the new indexes to the old:

e 1 = 15: Coordinator U that was assigned 1 during the parsing will have 15
in the database.

2 = 1: The Total id used for the MetaSite Coordinators was assigned 2 during
the parsing, and is matched to 1 to be the same than what is already in the
database.

e 3 = 2: The Total id used for the Data Coordinators is matched to 2.
e 4 = 3: The Total id used for the Conf Coordinators is matched to 3.
e 9 = 13: The Total id of C is matched from 9 to 13.

As for the Total ids, one can establish by looking at Fig. C.1 and Fig. C.2 what
lists the algorithm will produce.

Occurrence Ids to delete:

e 5 (Datal = F2): The tree bellow Datal is changed, so the experience there is
not valid anymore.

e 6 (Conf2 = F3): Site2 is removed and this Occurrence id was not shared.
e 7 (Data2 = F4): Site2 is removed and this Occurrence id was not shared.
e 8 (X = Y): The X tree is removed.

(

e 9 (B = D): The B tree is removed.

12 (A = B): The B tree is removed.

e 13 (A = C): The A Coordinator is removed.
New Occurrence Ids are created:

e 14: U=V

e 15: Datal = F3

142 Appendix C. Tree comparison algorithm

e 16: Datal = F2
e 17: Data3 = F5
e 18: Conf3 = F4

Note that the Agents F3 and F4 will remain in the database and will not be
newly created; however all their experience is reinitialized.

Finally, as for the Total Ids, a correspondence is established between the newly
parsed Ids and those already in the database:

e 1 = 17: Occurrence id for Data3 = F5

e 2 = 1: Occurrence id for MetaSite = MetaData, shared by all the sites
e 3 = 2: Occurrence id for MetaSite = MetaConf, shared by all the sites
e 4 = 3: Occurrence id for MetaSite = MetaHttpd, shared by all the sites
e 5 = 4: Occurrence id for Confl = F1

e 6 = 14: Occurrence id for U = V

e 7 = 15: Occurrence id for Datal = F3

e 8 = 18: Occurrence id for Conf3 = F4

e 9 = 16: Occurrence id for Datal = F2

Similar lists are established for all the other Ids used in the database, but they
do not suffer the same complications since they are all unique: either the entity to
which they are attached is kept or not, and there is no need to make sure that the
id is used by another entity.

APPENDIX D

API usage

This appendix shows an example of a class that inherits from the AbstractPhrone-
sisClient class. It is necessary to inherit from it and to implement the pure virtual
“update” method. The class phrExamplelnterface defined in D.1 implements this
method by printing the messages it receives using different colors (red for errors,
blue for questions and so on).

Listing D.1: Example of API inheritance class

#include <iostream>
#include <fstream>
#include "phronesisAnalyzerClientApi.hpp"

#define START COLOR "\033[1;"

#define START RED START COLOR"31im"
#define START_ GREEN START COLOR"32m"
#define START YELLOW START COLOR'"33m"
#define START BLUE START COLOR"34m"
#define END COLOR "\033[0m"

class phrExamplelnterface: public AbstractPhronesisClient {
public:

phrExamplelnterface () :
AbstractPhronesisClient () {
}

phrExamplelnterface(std:: string serverAddr, std::string port)
AbstractPhronesisClient (serverAddr, port) {
}

void update(api message e) {
switch (e.nr_type) {
case api_message ::NEW_MSG:
std::cout << START_YELLOW << "[NEW_MESSAGE] (" << e.m_id
<< ") " << e.m_text << END_COLOR;
break ;
}
case api_message ::NEW_LOG:
std::cout << "[NEW LOG] " << e.m_text;
break ;
}
case api_message ::NEW_QUESTION: {
std::cout << START_BLUE << "[NEW QUESTION] (" << e.m_id
<< M) : " << e.m text << END COLOR;
break ; N N
}
case api_message ::NEW_YN_QUESTION: {
std::cout << START BLUE << "[YES/N0] (" << e.m_id << ") : "
<< e.m_text << END_COLOR;
break ;
}
case api_message ::NEW_PB_QUESTION: {
std::cout << START_BLUE << "[PROBLEM] " << e.m_text
<< END_COLOR;

break ;

}

case api_message ::ERROR_TEXT: {
std::cout << START RED << "[ERROR] : " << e.m_text << END_ COLOR;
break ;

}

case api_message :: STATISTIC: {
std::cout << "[STATISTIC] : " << e.m_text << " " << e.m_id;

144 Appendix D. API usage
break;
}
case api_message::CURRENT PB: {
std :: cout << START_GREEN << "[CURRENT PROBLEM] : " << e.m_text
<< END_COLOR;
break;
}
case api_message::NEW_VETO: {
std ::cout << "L[VETO0] " << e.m_text << " : " << e.m_id
<< std::endl;
break;
}
default :
std ::cout << "[UNKNOWN TYPE] " << e}
break;
}
std::cout << std::endl;
}

The code in D.2 shows how one can simply use the phrExamplelnterface class

to observe all what the Core sends as output communication. The program will

never exit.

Listing D.2: Example of usage of the API for output communication

int main

(int argc, char =% argv) {

// define the server address and port

std:

std ::

:string server = "127.0.0.1";
string port = "7172";

// create the class instance and give the server and the port to the constructor
phrExampleInterface phrApi(server, port);

// defaultRun can be used instead of run(server ,port) since the arguments were

provided to the constructor already

phrApi.defaultRun () ;

return 0;

The code in D.3 shows how one can simply use the phrExamplelnterface class
to send data to the Core: it periodically reads a file and send its content to the
Core. One could imagine that this file is a regular dump of the monitoring status

written

by an external program. The program will exit only if there is a problem

with the file read. As for the example D.2, all the output communication will be

printed

in the console, since the “run” method was started in a new thread.

Listing D.3: Example of usage of the API for input communication

int main(int argc, char *x argv)
std:: string server = "127.0.0.1";
std::string port = "7172";
std::string line;
bool error — false;

phrExamplelnterface phrApij

// Start the run method in a new thread.

// The arguments server and port are needed because not provided
// to the constructor

boost ::thread t(&phrExamplelnterface::run, &phrApi, server ,port);

// Every 10 seconds, open the file and if there is a content , send it to the core.
// Loop exists if there is a problem with the file
while (lerror) {

std::ifstream myfile("errorFile.txt");
if (myfile.is_open()) {

getline (myfile, line);

if (!line.empty())

145

phrApi.giveProblemList (line);
myfile.close ();

else {
std :: cout << "Unable to open file";
error — true;

}
sleep (10);
}

return error;

In order to compile, these examples must be linked against the boost system,
boost _thread and boost _serialization libraries.

APPENDIX E

UML diagrams

This appendix contains only a few UML class and interaction diagrams. The
aim is to give a very brief overview of the Core software structure. For complete
documentation, please refer to the doxygen generated pages.

The class diagrams visible in Fig. E.1, Fig. E.2, Fig. E.3 illustrate the object
approach that was used as well as the will to factorize as much as possible the classes.

| EnvironmentAgent ‘ | FileAgent | | FolderAgent | \ ProcessAgent ‘

Figure E.1: MetaAgent UML class diagram

AgentRecovery

| EnvironmentRecovery I | FileRecovery I | ProcessRecovery |

Figure E.2: AgentRecovery UML class diagram

When the Core receives a message from a user, it will interpret this message,
and according to the message type will take actions, before eventually answering.
Those actions involve several components of the Core, such as the VetoManager or
the InteractionManager. The Fig. E.4 is an interaction diagram of what happens
when a message is received.

The Syslog and the Cout observers are different from the API clients because
they are local: they listen directly to the update of the InteractionManager without
going through all the API network session mechanism. The Fig. E.5 shows the
direct connections of the Syslog observer.

148 Appendix E. UML diagrams

Userlinteraction

UserMsg UserQuestion

| ProblemQuestlon

YesNoQuestion

Figure E.3: Userlnteraction UML class diagram

InteractionManager::ackMsg

InteractionManager::getGurrentDate
,I api wiite |

[InteractionManager: getveto }—.l VetoManager:getAllveto |

| InteractionManager: addLog

InteractionManager::getCurrentTime

[VetoManager::getVeto |

SyncManager::end_wiite

o]
Veto ‘[Veto | I SyncManager: start_write ‘

api_session:wait_for_data

Figure E.4: Interaction diagram when the Core receives a message

InteractionManagerAbstract

m_questions

Userinteraction

_____ LocalObserver |<—| SyslogObserver
et 7
m_msg e o

m_uManager . ~

VetoManage! |g- — — - = =~ - A
SyncManager - S

Figure E.5: Interraction diagram of the Syslog Observer

149

Although there is no point in detailing the Fig. E.6 which is the interaction
diagram of the AnalyzerEngine when performing an analysis, it is interesting to see
that every single component of the Core software is involved in the process. This
illustrates the overall complexity of the logic behind this single method.

SyncManager. end wite

,__

RecoveryEngine: getLastProcedure.

FuleManager. addSolveRule

InteractionManager: getCurentDate

IneraciorManageriadalog | S8

] imteractionmanager:getCurentTime:

e

<]

= SN

[server: getatachedCoordnators |

‘Scheduler: gethext
‘Server:getEnvironmentAgent Coodinator:analyze

EnvironmentAgent:isEnvironmentSain

4
EnvionmentAgent: wasEnviromentTested MetaAgentPool:getCoordinator
‘Agoregator:analyzeEnvironments
N EnvionmentAgent: analyze. RuleManager:sortAccordingDependencies.
p

Scheduler::getDiagnosedProblem
s
e ——

MetaAgent:getCause

e

MetaAgent. s EnvironmentResponsible

RueManager-getPredecessors

Figure E.6: Interraction diagram of the AnalyzerEngine

150 Appendix E. UML diagrams

