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Abstract

Nowadays, reducing the energy consumption of large scale and distributed infras-

tructures has truly become a challenge for both industry and academia. This is

corroborated by the many efforts aiming to reduce the energy consumption of those

systems. Initiatives for reducing the energy consumption of large scale and dis-

tributed infrastructures can without loss of generality be broken into hardware and

software initiatives.

Unlike their hardware counterpart, software solutions to the energy reduction

problem in large scale and distributed infrastructures hardly result in real deploy-

ments. At the one hand, this can be justified by the fact that they are application

oriented. At the other hand, their failure can be attributed to their complex na-

ture which often requires vast technical knowledge behind proposed solutions and/or

thorough understanding of applications at hand. This restricts their use to a lim-

ited number of experts, because users usually lack adequate skills. In addition,

although subsystems including the memory are becoming more and more power

hungry, current software energy reduction techniques fail to take them into account.

This thesis proposes a methodology for reducing the energy consumption of large

scale and distributed infrastructures. Broken into three steps known as (i) phase

identification, (ii) phase characterization, and (iii) phase identification and system

reconfiguration; our methodology abstracts away from any individual applications

as it focuses on the infrastructure, which it analyses the runtime behaviour and

takes reconfiguration decisions accordingly.

The proposed methodology is implemented and evaluated in high performance

computing (HPC) clusters of varied sizes through a Multi-Resource Energy Effi-

cient Framework (MREEF). MREEF implements the proposed energy reduction

methodology so as to leave users with the choice of implementing their own system

reconfiguration decisions depending on their needs. Experimental results show that

our methodology reduces the energy consumption of the overall infrastructure of up

to 24% with less than 7% performance degradation. By taking into account all sub-

systems, our experiments demonstrate that the energy reduction problem in large

scale and distributed infrastructures can benefit from more than “the traditional”

processor frequency scaling. Experiments in clusters of varied sizes demonstrate that

MREEF and therefore our methodology can easily be extended to a large number

of energy aware clusters. The extension of MREEF to virtualized environments like

cloud shows that the proposed methodology goes beyond HPC systems and can be

used in many other computing environments.



iv

Résumé

De nos jours, réduire la consommation énergétique des infrastructures de calcul à

grande échelle est devenu un véritable challenge aussi bien dans le monde académique

qu’industriel. Ceci est justifié par les nombreux efforts visant à réduire la consom-

mation énergétique de ceux-ci. Ces efforts peuvent, sans nuire à la généralité, être

divisés en deux groupes : les approches matérielles et les approches logicielles.

Contrairement aux approches matérielles, les approches logicielles connaissent

très peu de succès à cause de leur complexité. En effet, elles se focalisent sur

les applications et requièrent souvent une très bonne compréhension des solutions

proposées et/ou de l’application considérée. Ce fait restreint leur utilisation à un

nombre limité d’experts puisqu’en général les utilisateurs n’ont pas les compétences

nécessaires à leur implémentation. Aussi, les solutions actuelles en plus de leurs

difficultés de déploiement ne prennent en compte que le processeur alors que les

composants tels que la mémoire, le stockage et le réseau sont eux aussi de gros

consommateurs d’énergie.

Cette thèse propose une méthodologie de réduction de la consommation énergé-

tique des infrastructures de calcul à grande échelle. Elaborée en trois étapes : (i)

détection de phases, (ii) caractérisation de phases détectées et (iii) identification

de phases et reconfiguration du système ; elle s’abstrait de toute application en se

focalisant sur l’infrastructure dont elle analyse le comportement au cours de son

fonctionnement afin de prendre des décisions améliorant l’efficacité énergétique.

La méthodologie proposée est implémentée et évaluée sur des grappes de cal-

cul à haute performance de tailles variées par le biais de MREEF (Multi-Resource

Energy Efficient Framework). MREEF implémente la méthodologie de réduction

énergétique de manière à permettre aux utilisateurs d’implémenter leurs propres

mécanismes de reconfiguration du système en fonction des besoins. Les résultats

expérimentaux montrent que la méthodologie proposée réduit la consommation én-

ergétique de 24% pour seulement une perte de performance de moins de 7%. Ils

montrent aussi que pour réduire la consommation énergétique des systèmes, on

peut s’appuyer sur les sous-systèmes tels que les sous-systèmes de stockage et de

communication. Nos validations montrent que notre méthodologie s’étend facile-

ment à un grand nombre grappes de calcul sensibles à l’énergie (energy aware).

L’extension de MREEF dans les environnements virtualisés tel que le cloud montre

que la méthodologie proposée peut être utilisée dans beaucoup d’autres environ-

nements de calcul.
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1.1 Challenges of High Performance Computing

1.1.1 Need of raw performance

There is no single definition for High Performance Computing (HPC) or High Per-

formance Cluster. Figure 1.1 offers an outline of HPC nowadays. At the one hand,

from a user perspective HPC can be thought of as a set of services that enable

new levels of innovation and insights for organisations that seek excellence in fields

including Research and Development (R&D), science, engineering, among others.

At the other hand, from a technological perspective, HPC is viewed as the use of

clusters of servers and supercomputers, along with associated software, tools, inter-

connects, storage, and services involved in running an HPC environment or system1.

Servers in an HPC environment are often called nodes.

The increasing reliance on computing by scientific endeavours, industry and gov-

ernment agencies (particularly the military) has made HPC mainstream in several

areas including, but not limited to, climate research, disease control, homeland secu-

rity, drug discovery. Organisations often rely upon HPC for enhancing their product

line. For example, a bank uses HPC to analyse high volumes of digital transactions,

maximising investments and protecting its client from frauds. Likewise, to bring

superior products to market, a manufacturer may consider using HPC to built pro-

totypes of its products. Similarly, organisations seeking for the creation of large,

high fidelity models that yield accurate and detailed insight into the performance of

their designs often rely upon HPC for performing extensive simulations. Along the

same lines, architects use HPC to evaluate buildings/structures by simulating their

1Intersect360: http://www.intersect360.com
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Figure 1.1: An overview of high performance computing (HPC).

prototypes in realistic scenarios. Simulating structures in multiple environments

helps improve structural design to minimise damage and save lives under disasters.

As the demand for processing grows, HPC will likely gain interest in businesses of

all sizes, particularly for transaction processing and data warehouse.

1.1.2 Today’s HPC systems

HPC inevitably owes its success to the massive computational power it is capable of

achieving for solving complex problems. At the design level, to ensure that applica-

tions that run on HPC systems are reaching their maximum performance, system de-

signers generally place a great emphasis on a handful of components. These include

the processor architecture, memory subsystem, storage subsystem, communication

subsystem, and the management framework. The emphasis on these components is

justified by the fact that performance of the majority of HPC applications (use inter-

changeably with workload) relies upon them. For example, as the storage subsystem

is an important factor for IO intensive applications, selecting a suitable storage sub-

system for the application task can help enhance IO performance. A similar analysis

can be waged by dimensioning each subsystem. In practice, although this offers rea-

sonable performance over a wide range of applications, it often results in power

dissipation/inefficiency for some workloads or specific phases of a workload. Unfor-

tunately, addressing this at the system design stage is near to impossible; unless the

designer knows all user applications that the future platform will accommodate.

Still at the design level, computer chips seem to have hit a wall, meaning that

they can hardly be made any faster with current technology. Consequently, super-

computers designers just have to add more and more chips to increase computing

power. However, this approach has a significant impact on energy usage. In light

of what precedes, it is not surprising that, different from a decade ago where su-
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percomputers were only ranked by their peak performance2, nowadays, they are

also assessed based on their energy efficiency3. The ranking of supercomputers by

their energy efficiency places a great emphasis on their energy consumption through

the number of PFlops (petaflops) they can achieve per Watt. For example, the

Tianhe-2 machine, which sits on top of the performance list (Top500 list), delivers a

computing power of over 33PFlops and shows an energy efficiency of 1.9GFlops/W;

while CINECA which leads the green list (Green500 list) with an energy efficiency

of 3.9GFlops/W delivers a computing power of less than 2PFlops.

Tremendous efforts are being undertaken by HPC operators from multiple levels

to make supercomputers greener. This is evidenced by the Green500 list; its latest

issue shows that the greenest supercomputers are getting greener. Their sudden

improvement in energy efficiency can be attributed to the rise of graphic processors

in massive cluster servers and the acquisition of low power memories. Similar efforts

are being carried out in regard to the all HPC subsystems from the processor to

the memory to the storage and communications subsystems. Unfortunately, at the

current speed significant efforts still need to be done if today’s supercomputers want

to meet the 20MW constraint for exascale.

There is a common believe that a considerable share of energy consumed

by HPC systems during their operations could be potentially saved if user ap-

plications were programmed differently. Put it in another way, throughout

their life cycle, user applications exhibit behaviours whose understanding al-

lows implementing power reduction schemes which can significantly reduce the

amount of energy they consume at runtime. This has been proven right

by different work [Kimura et al. 2010, Kappiah et al. 2005, Rountree et al. 2009,

Lim et al. 2006, Choi et al. 2006, Ge et al. 2005].

Consequently, making HPC applications more energy friendly requires designing

or rewriting applications with energy constraints in mind. These alternatives may

not always be feasible. Although there is not any evidence, rewriting some HPC ap-

plications is so costly that most people find paying the electrical bill worth, whereas

application developers usually do not pay much attention to how much energy their

applications will consume. There are several reasons to this; besides the fact that

they are already struggling to get their code work, current power saving schemes are

platform specific. For example, let us consider the Dynamic Voltage and Frequency

Scaling (DVFS) technology which allows scaling the processor’s frequency accord-

ing to the workload in some cases. Integrating DVFS into a program source code

assumes that the developers know all the potential platforms that will run their

applications which is not realistic. Although DVFS support is available in nearly

all platforms today, at some point one need to select the appropriate frequency at

which a specific must run. This can be very difficult to achieve at the coding stage

since CPU frequency ranges are processor specific.

One could rely upon existing approaches such as those in the above references.

2Top500 List – June 2013: http://www.top500.org
3Green500 List – June 2013: http://www.green500.org
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Unfortunately, they require expert knowledge and/or vast technical details behind

the energy saving scheme proposed. As a result, it can be extremely difficult or near

to impossible to implement in once HPC environment.

The energy consumption problem in HPC has been widely investigated over the

past years. However, despite the fact that nearly all HPC subsystems are provided

with energy saving capabilities, current efforts for reducing the energy consumption

of HPC systems from a software perspective are directed toward the processor to

the best of our knowledge. In other words, current efforts ignore all subcomponents

save the processor.

With the current trend, to efficiently address the power consumption issue in

HPC, things need to be approached differently than in the past. The processor has

traditionally dominated supercomputers energy consumption, but the tendency is

being reversed. In 2010, HPC subsystems including the memory, storage, and com-

munications subsystems accounted for up to 55% of the total energy consumption

of a typical supercomputer [Liu & Zhu 2010]. Thus, a fine-grained management of

these subsystems can result in significant energy savings.

1.1.3 Problematic and objectives

High performance computing systems keep growing all around the globe increas-

ing the power demand for operating them. Which in turn contributes to the carbon

dioxide (CO2) emission. In 2009, the International Telecommunication Union (ITU)

has estimated the contribution of the Information and Communication Technology

sector (excluding the broadcasting sector) to climate change at between 2% and

2.5% of total global carbon emissions [ITU 2009]. This thesis investigates means

for reducing the energy consumption of large-scale and distributed infrastructures

without a priori information about applications or services that share the infrastruc-

ture, while taking into consideration any energy reduction opportunities available to

the most manageable components of the infrastructure. We concentrate on reducing

the energy consumption without a priori knowledge of application and services while

taking into consideration any energy reduction opportunities for several reasons in-

cluding the following:

• Current, energy saving schemes fail to find their way into real HPC deploy-

ments because they often require thorough understanding of proposed scheme

from a third party that would like to implement them on once system. In

addition, they often rely on the assumption that the environment is a single

task environment.

• Today’s HPC applications are not optimized for saving energy; however, they

are too complex to be rewritten or modified. This makes code instrumentation,

which is also error prone, nearly impractical and significantly limits the scope

of current energy saving schemes since they are application oriented.

• Although the current trend consists of adding more and more components

to servers for increasing the computational power, energy saving schemes for
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HPC have traditionally focused on the processor. As a misfortune, the power

demand of servers increases as more components are added. This is illustrated

by the increasing size of the memory subsystem. The same goes with storage

and communication subsystems with the rise of Big Data. As mentioned ear-

lier, these components account for more than half of the energy consumption of

a typical HPC system. Moreover, in current mid-market and high-end servers,

the memory subsystem already consumes more energy than the processor.

Our objectives in this thesis are to:

• Propose an energy reduction policy that concentrates on reducing the energy

consumption of high performance computing systems instead of that of indi-

vidual applications.

• Propose ways to address the energy consumption issue in HPC by taking

advantage of all HPC subsystems. A basic requirement to this is developing

power saving schemes that concentrate on reducing their energy.

• Propose an energy reduction policy that offers ways to benefit from variabilities

among HPC workloads or within a specific workload while abstracting away

from any individual applications.

• Propose a “user friendly” energy reduction policy for HPC systems. By user

friendly, we mean an energy reduction policy that: (i) does not require any

specific knowledge from a third party; (ii) takes into account the fact that

real life environments are often shared by multiple applications; (iii) allows

users to design and implement their own energy reduction strategies without

extensive efforts.

• Provide a software framework for reducing the energy consumption of HPC

systems that implements all features required to fulfil previously mentioned

objectives.

1.2 Contributions

In this thesis, we are more interested in proposing a solution to the energy con-

sumption problem in large-scale and distributed infrastructure. We introduce an

automated, and scalable approach for reducing the energy consumption of HPC

systems without a priori knowledge of workloads being executed. The approach

takes advantage of HPC’s workloads variability along with multi-configuration or

reconfigurable hardware to reduce the energy consumption of the overall computing

infrastructure. The main contributions of this thesis are as follows:

• We propose a methodology for reducing the energy consumption of HPC

systems, it is original in the sense that it does not require any knowl-

edge from users. Moreover, it takes into account all HPC subsystems –
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from the processor to the memory to the storage and communication sub-

systems – and allows users to implement their own power saving schemes

[Tsafack et al. 2012a, Tsafack et al. 2012c, Tsafack et al. 2013a].

• We propose on-line and off-line phase changes detection techniques

[Tsafack et al. 2013b, Tsafack et al. 2012b]. Although allowing the detection

of execution phases in specific program, our phase detection techniques inno-

vate in the sense that they concentrate on detecting phases of execution of

the system. System phase detection is similar to program phase detection,

but offers the advantage that it abstract away from any individual program.

As proposed techniques do not require any specific information about applica-

tions being executed, users lacking technical skills or expertise can use them

for system analysis.

• Multiple workload characterisation schemes are proposed and evaluated in

this thesis [Tsafack et al. 2013c]. Workload characterisation schemes serve the

purpose of guiding system management decisions. Their particularity lies on

the fact that they allow fast and accurate on-line characterisation of system

phases as well as workloads.

• We propose and evaluate simple, but effective off-line and on-line tech-

niques for identifying recurring phases in the runtime behaviour of a system

[Tsafack et al. 2013c, Tsafack et al. 2013b]. Recurring phase identification ba-

sically enable reuse of reconfiguration information. To support system recon-

figuration, we investigate the relevance of non conventional (not commonly

used) power saving schemes including: memory size scaling, energy consump-

tion prediction for platform selection, and core switch off/on.

• We present and demonstrate the effectiveness of a Multi-Resource Energy

Efficient Framework (MREEF), an implementation of our methodology for

reducing the energy consumption of high performance computing systems.

MREEF is evaluated both in HPC and cloud environments. MREEF is energy

oriented, so it emphasises on the use of green capabilities that we refer to as

power saving schemes for system reconfiguration.

1.3 Structure of the Manuscript

The remaining of the manuscript is organised as follows: Chapter 2 reviews the

state of the art on power/energy aware HPC. Our methodology for reducing the

energy consumption of HPC systems is summarised in Chapter 3. Two phase detec-

tion methodologies that we refer to as “power-based phase detection” and “EV-based
phase detection” methodologies are presented and evaluated in Chapter 4. Chapter 5

discusses several workloads characterisation schemes for on-line workload character-

ization. Chapter 6 discusses about system phase identification and power saving

schemes. Chapter 7 evaluates our energy reduction methodology in HPC and cloud
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environments through MREEF. Finally, Chapter 8 concludes our work in this thesis

and presents future directions.
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Over the past few years, reducing the energy consumption of High Performance

Computing (HPC) systems, or making them energy efficient, has become of one

of the biggest Information Telecommunication Technology (ITC) challenges. As a

result, several research activities focusing on large-scale HPC have been initiated,

such as understanding and/or modeling the energy consumption of HPC systems

and applications to design efficient hardware and implement effective energy effi-

ciency practices. This chapter reviews the state of the art on power/energy aware

HPC. Section 2.1 discusses methodologies for modeling and predicting the energy

consumption of HPC systems and applications. Section 2.2 surveys energy reduc-

tion techniques specific to HPC environments. Section 2.3 provides a comprehensive

overview of phase detection techniques, whereas Section 2.4.1 discusses the need for

having more sophisticated power saving schemes. Finally, Section 2.4.2 concludes

the chapter.
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2.1 Understanding HPC Systems’ Power Consumption

Improving the energy efficiency of HPC can be viewed as a two-step process, where

the first step may inevitably involve answering several questions, such as:

• How much energy does the system consume?

• What is the energy consumed by each system component?

• How can one measure the energy consumption of the overall system and its

components?

• What is the ratio between active and static power consumption?

Answers to these questions can lead to valuable insights into the energy con-

sumption of individual system components. This information can be a prerequisite

for the second step of improving the energy efficiency of HPC, which consists of

designing and evaluating energy aware architectures and algorithms (as discussed in

Section 2.2).

From a technological point of view, an HPC system can be viewed as a combina-

tion of servers, clusters, supercomputers, and required software, tools, components,

storage, and services, working in tandem to fulfil the intensive processing and stor-

age requirements of scientific, engineering, or analytical applications1. Consequently,

understanding how much energy an HPC system consumes boils down both to eval-

uating the energy consumption of massive numbers of servers and identifying how

applications perform. In the scope of this thesis, an HPC system is a set of servers

and application tasks they perform are referred to as HPC applications.

2.1.1 Components’ power models

Wattmeters, often used to measure the energy consumption of servers, can be com-

pletely external devices inserted between the wall socket and the server plug, or be

integrated into Power Distribution Units (PDU). Power modelling is a technique

that gained popularity as power dissipation of the most power consuming compo-

nents (i.e. processor and memory subsystems) within a server can be accurately

estimated by simple power models. Static power models rely on the relationship

between the supplied voltage and the electrical current traversing a component.

They are used to describe both the static power or idle power consumption – the

power consumed when there is no circuit activity – and the dynamic power of some

server components. The following describes power models for processor and memory

subsystems.

1http://www.intersect360.com



2.1. Understanding HPC Systems’ Power Consumption 11

2.1.1.1 Processor

The power consumption of the processor can be broken down into static and dynamic

power as described next.

(a) Static power consumption
Static consumption refers to the amount of power used due to leakage current

in the absence of any switching activity. Direct Current (DC) power dissipation

also known as static power can be estimated by the worse-case equivalent equation

[Maede & Diffenderfer 2003]:

Pstatic = IV (2.1)

where V is the supply voltage and I the direct current traversing the processor.

Most modern processors have multiple cores, which means that processors consist of

basically an integrated circuit to which more than one processor have been attached

(in this case, a single processor is referred to as a CPU core or simply core). Con-

sequently, the static power consumption of a multi-core processor can be expressed

as the arithmetic sum of the static power of its cores; hence, Equation 2.1 can be

rewritten as:

Pstatic =
nX

k=1

IkVk =
nX

k=1

Pk (2.2)

where k is the number of cores, and Vk and Ik are respectively the supplied voltage

and the DC current traversing the processor core k.

The power consumption of a core depends on its number of transistors; so in

using Equation 2.1, the power consumption of the lth transistor of the CPU core k

can be estimated by Equation 2.3,

Plk = IlkVlk (2.3)

where Ilk and Vlk are the leakage current and power voltage supplied to the lth

transistor of the CPU core k. Substituting Equation 2.3 into Equation 2.2 yields

Equation 2.4.

Pstatic =

nX
k=1

mX
l=1

IlkVlk (2.4)

(b) Dynamic power consumption
Dynamic power, the only mode of power dissipation in CMOS circuitry, represents

a considerable share of the total power consumed by CMOS based processors. It is

described by Equation 2.5 where C is the capacitance of switching nodes, V is the

supply voltage, and f is the effective operating frequency (frequency times activity

factor) [Weste & Eshraghian 1985].

Pdyn = CV 2f (2.5)
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As for the static power consumption, the dynamic power consumption of an N

core processor is described by Equation 2.6 where N is the number of CPU-cores;

the remaining parameters are the same as in Equation 2.5.

Pdyn =

NX
k=1

CV 2fk (2.6)

However, Basmadjian et al. [Basmadjian & De Meer 2012] show that the power

consumption of an n-core processor (n > 1) is not the exact arithmetic sum of the

power consumption of all its n CPU cores as suggested by Equation 2.6. Conse-

quently, to model the power consumption of a multi-core processor, they decompose

it into three component levels, which they refer to as (i) chip, (ii) die, and (iii) core

levels respectively, and model the power consumption of each. Their findings also

reveals that Equation 2.6 overestimates the processor’s power consumption quite

often. They handle this by proposing a power consumption model that takes into

account both resource-sharing and energy-saving mechanisms.

2.1.1.2 Memory

The power consumption of memory can also be broken down to total static power

and total dynamic power.

(a) Static power consumption
The static power consumption of the memory is described by Equation 2.1. Back in

1919 it was shown that there is a linear relationship between the supplied voltage V

and the DC current I when a device operates between 0 volt and 2 volts [Bijl 1919].

Since standard next-generation Dual Data Rate 3 (DDR3) memory technology and

Dual Data Rate 2 (DDR2) technology operate within the above voltage range, the

current traversing a memory is proportional to the supplied voltage as shown by

Equation 2.7 where the constant c equals 0.00043 and 0.00013 for DDR3 and DDR2

respectively.

I = cV (2.7)

The static power of a memory module of size s operating at frequency f can be

described by Equation 2.8.

P (f, s) = cV 2 (2.8)

To reflect the influence of the size and frequency of the memory module the static

power consumption of a memory module can also be described by Equation 2.9

P = cfsV 2 (2.9)

The memory or RAM of a typical server often comprises several memory mod-

ules; the static power of a memory with N modules is straightforward to determine.

Equation 2.10 where fk, sk, and Vk are respectively the operating frequency, the
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size, and the supply voltage of the kth memory module, describes the static power

of RAM composed of N memory modules.

Pstatic =

NX
k=1

cfkskV
2
k (2.10)

(b) Dynamic power consumption
The dynamic power of the memory subsystem mainly results from access (there is

only 1 active operating rank per channel regardless of the number of modules or mod-

ule ranks in the system2). The main memory is asynchronous in operation (modern

servers requiring large amounts of memory use Dynamic Read Access Memory for

main memory); thus, its power (actually the DRAM array power) is not depen-

dent on memory frequency only, but on access count. As the DRAM array draws

a constant amount of power regardless of the type of operation issued (write, read,

precharge) the dynamic power of the memory can be described by Equation 2.11

where γ 2 [0, 1] is the probability that a memory access is performed (i.e., either

the read, write or precharge command is active). β equals 7W , 17W , and 10W

for unbuffered DDR2, fully buffered DDR2, and unbuffered DDR3 memory modules

respectively.

γ reflects the utilisation of the memory and is expressed as the ratio of the used

memory to the total memory.

P 0

dyn = γβ (2.11)

2.1.2 HPC applications’ power: modelling and prediction ap-
proaches

Although modelling the power usage of individual applications has been widely

investigated in mobile computing environments, it has not received extensive

attention in HPC systems. This can be extremely difficult; especially, know-

ing that HPC applications are likely to spread over multiple nodes. How-

ever, it creates opportunities for energy based scheduling and power op-

timisation techniques [Bhattacharjee & Martonosi 2009, Merkel & Bellosa 2006,

Singh et al. 2009]. Moreover, hardware for direct power measurement is largely

nonexistent. In this section, we review power modelling and prediction techniques.

Power models have in common the fact that they monitor system components (in

particular the processor and the memory) during the program’s execution via hard-

ware performance/monitoring counters (PCM) and correlate them with the power

consumed by the system when running the program to derive its power model.

Embedded hardware events counters of modern microprocessors, or simple hard-

ware performance/monitoring counters are on-chip integrated facilities for counting

events, so reading them can be done without any additional overhead.

2http://www.rampedia.com
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Analytic processor power model based on performance counters are presented

in [Isci & Martonosi 2003b, Joseph & Martonosi 2001]. The proposed models are

highly accurate but only model the power consumption of the processor. Au-

thors of [Kadayif et al. 2001] propose a model, which they claim to be 2.4% as

compared to circuit level simulation, for estimating the energy consumption of the

UltraSPARC memory hierarchy [SUN 1995]. They estimate the UltraSPARC CPU

memory energy consumption considering PMCs providing the following information:

Data cache read hits, Data cache read references, Data cache write hits, Data cache

write references, Instructions cache references, Extended cache misses with write-

backs. Energy consumption of the high-performance processor AMD Phenom is

estimated in order to guide power aware policies in [Singh et al. 2009]. Authors use

a set of micro-benchmarks that stress specific components of the processors architec-

ture being modelled. They next categorise AMD Phenom PMCs into four buckets

– FP Units, Memory, Stalls, and Instruction Retired – and consider performance

events which express best their power consumption. These performance counters

include L2_cache_miss:all, Retired_uops, Retired_mmx_and_ft_instruction:all,

and Dispatch_stalls. These models often require knowledge of hardware component

implementation.

The assumption of a linear relationship between the processor’s power consump-

tion and several hardware monitoring counters (instruction retired and translation

look-aside buffer misses) has motivated the design of “black-box" microprocessor

power models. They get their name from the fact that they do not require any

knowledge of hardware component implementation in contrast to above power mod-

els. Authors of [Contreras 2005] present a first order linear model that uses hard-

ware monitoring counters to estimate the run-time energy consumption on the Intel

PXA255 [INTEL 2003] processor. They show that their model exhibits an average

estimation error of 4%. Table 2.1, where the first column provides CPU related

PMCs and the second provides PMCs related to the memory, offers an outline of

performance monitoring counters that authors used in their power model. A scheme

to associate energy usage pattern with every process for the purpose of thermal man-

agement in proposed in [Bellosa 2000]. The author correlates hardware monitoring

counters to energy determinate the energy pattern of a thread. He then uses that

energy information for energy-aware thread scheduling. One of the ideas behind

this kind of scheduling is that by respecting the cache affinity of individual threads,

and improving the cache reuse of individual threads that use share memory segment

bus transactions and CPU stall cycles due to cache misses can be avoided. These

models are simple and low-overhead; however, they do not model the whole system

power consumption. In addition, they do not take into account all subsystem and

may have portability related issues.

At the system level, [Economou et al. 2006] uses system components activity

metrics such as CPU load and IO activity, and hardware monitoring counters to

model the power consumption of a blade and an Itanium server. The proposed

model captures power characteristics of system components by correlating hard-

ware monitoring counters with power utilisation during the calibration phase. It
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Table 2.1: Performance events selected to estimate CPU and memory power con-

sumption for Intel PXA255 processor.

CPU performance events Memory performance events

Instructions executed Instruction Fetch Misses

Data dependencies Data Dependencies

Instruction Cache Misses

TLB Misses

next uses parameters of the derived model for power consumption prediction based

on the same PMCs. More recently, other researchers [Costa & Hlavacs 2010] have

presented a methodology of measurement of the energy consumption of a single

process application running on a standard PC. They defined a set of per pro-

cess and system-wide variables to demonstrate their accuracy in measuring the

energy consumption of a given process using multivariate regression. Authors of

[Spiliopoulos et al. 2012] propose a profile based measurement infrastructure for

measuring the power consumption of a program. The program goes through a

first execution during which data required for performance and power prediction

are collected. Still at the system level, some researchers attempt to take thermal

issues into account when designing system-wide energy consumption models. For

example, authors of [Lewis et al. 2012] propose a system-wide energy consumption

models for server blades. Their energy model, which makes use of PCMs along with

system ambient temperature, proposes a linear regression model that relates system

energy input to subsystems’ energy consumption.

To summarise, work listed above demonstrates that performance counters can

accurately estimate or predict the power consumption of a program. The research

also suggests that the accuracy of a power/energy model depends on the workload

at hand. Put simply, a power model designed for estimating the power consumption

of a compute-bound workload may not fit well a memory-bound workload. This is

obvious for communication intensive workloads.

2.2 Energy Reduction in HPC Systems

In the past few years, HPC systems have witnessed the emergence of energy con-

sumption reduction techniques from the hardware level to the software level. This

section reviews power reduction techniques used in HPC environments.

2.2.1 Energy efficient hardware design

At the hardware level, architects and equipment vendors are bringing to market

multi-configuration HPC subsystems – including processor, communications, mem-

ory and storage – that can be dynamically reconfigured to reduce the energy con-

sumption of the overall HPC infrastructure while maintaining reasonable perfor-



16
Chapter 2. Energy/Power Aware High Performance Computing: State

of the Art

mance. For example, the majority of modern processors is provided with Dynamic

Voltage and Frequency Scaling (DVFS) technology, which allows “on the fly" adjust-

ment of the processor’s frequency and voltage either to conserve power or to reduce

the amount of heat generated by the chip. Another emerging technology is the Low

Power Idle (LPI) for Network Interconnection Cards (NICs).

The power consumption of a CMOS integrated circuit (such as a modern pro-

cessor) can be described by Equation 2.12 where C is the capacitance of the feature

gate, f is the operating frequency and V is the supply voltage. As the supply volt-

age is determined by the frequency at which the circuit is clocked, it can be reduced

as the frequency decreases. Consequently, DVFS can significantly reduce the power

consumption of a CMOS integrated circuit because its dynamic power consumption

is proportional to the square of the supply voltage as shown in Equation 2.12.

P = CfV 2 + Pstatic (2.12)

Alternatively, some architects address this issue by using the most efficient com-

ponents for their equipments. This is illustrated by chip manufacturers who are

bringing low voltage Dynamic Random Access Memory (DRAM) to market. Mar-

ket leaders include Kingston “LoVo" (low voltage) HyperX DDR3 (DDR3 stands

for dual data rate 3, similarly DDR2 stands for dual data rate 2), Micron’s low

voltage Aspen Memory, and Samsung Green DDR3. As opposed to standard next-

generation DDR3 memory technology which operates at 1.5 volts and 1.8 volts for

DDR2 memory, low power memory chips operate either at 1.25 volts or 1.35 volts.

However, the impact of low power memory may not be noticeable because a large

amount of servers around the globe uses chip memories which operate at 1.5 volts

or higher.

Similarly, next-generation Solid State Drives (SSD) consume less power than

traditional hard drives. For example, Intel’s next-generation SSD DC 3700 Series

reduces active power consumption to 6 watts and idle power to 650 milliwatts3, which

lowers power and cooling costs. While Samsung’s Green SSDs drive approximately

consumes on average 60% less power than traditional hard disk drives4.

Power saving mechanisms are nonexistent in most of today’s network intercon-

nects. However, efforts are being undertaken to make interconnection networks

greener. IEEE’s task force on energy efficient Ethernet (IEEE 802.3az) examines

power saving techniques such as dynamic link-speed reduction, and Low-power-idle

(deep sleep states). In high bandwidth networks (100 Mbits/s and up), speed data

links energy is used to keep the physical layer on all the time. That energy could

be saved if they could be put in deep sleep when there is no data being transmitted

[Merritt 2013]. Upon receiving the Low Power Idle signal the transmit chip in the

system can be turned off when there is no data to sent and back on when needed.

Stage-changes can take up to 10 microseconds, so HPC applications whose perfor-

mance depends on the network are likely to suffer from performance degradation.

3Intel, http://newsroom.intel.com
4Samsung Green SSD, http://www.samsung.com
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However, software mechanisms can first be used for profiling the behaviour of the

application.

2.2.2 Software solutions to the energy consumption issue in HPC

Software initiatives for reducing the power consumption of HPC systems take advan-

tage of the variability of HPC workloads (in terms of resource demand) to reduce

the overall system’s power consumption. The power consumption is basically re-

duced by dynamically reconfiguring the processor via DVFS when executing some

workloads or specific phases of a workload. Speaking of phases, a program phase

or simply a phase is a period of execution of a program throughout which the pro-

gram is relatively stable w.r.t a given metric. Initiatives for reducing the energy

consumption in HPC environments can roughly be divided into off-line and on-line

approaches. They are alike since they both attempt to scale the processor’s fre-

quency down/up according to a program’s phases. However, on-line approaches

lack detailed knowledge of the program phases.

2.2.2.1 Off-line approaches

Off-line approaches necessitate human intervention and involve several steps includ-

ing source code instrumentation for performance profiling; execution with profiling;

determination of the appropriate processor frequency for each phase or region of

execution of the program throughout which the program is relatively stable with

respect to specific metrics; and source code instrumentation for inserting dynamic

voltage and frequency scaling instructions. In [Freeh & Lowenthal 2005] the authors

exploit MPI standard profiling interface (PMPI) to time Message Passing Interface

(MPI) to insert DVFS scheduling calls based on duration, while other researches

profile MPI communications [Cameron et al. 2005].

Similarly, authors of [Kimura et al. 2010] instrument the program source code

to insert DVFS directives according to the program’s behaviour. They divide the

program into regions or phases and execute phases with low computational require-

ments at lower CPU frequencies. A DVFS control algorithm for sequential codes is

presented in [Hsu & Kremer 2003], where the authors use compiler instrumentation

to profile the program.

To reduce the energy consumption of HPC systems, some work suggested us-

ing inter-node imbalance analysis [Kappiah et al. 2005, Rountree et al. 2009]. In

[Rountree et al. 2009] node imbalance is used to reduce the overall energy consump-

tion of a parallel application. Authors track successive MPI communication calls to

divide the application into tasks composed of a communication portion and a com-

putation portion. A slack occurs when a processor is waiting for data during the

execution of a task. This allows slowing the processor down with almost no impact

on the overall execution time of the application. Consequently, authors developed

Adagio [Rountree et al. 2009] which tracks task execution slacks and computes the

appropriate frequency at which it should run. Although the first instance of a task
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is always run at the highest frequency, further instances of the same task are exe-

cuted at the frequency that was computed after it is first seen. [Kappiah et al. 2005]

propose a tool called Jitter. Jitter detects slack moments in performance to perfor-

mance inter-node imbalance and next uses DVFS to adjust the CPU frequency so

that the processor does not have to wait for the completion of any task. In MPI pro-

grams, load imbalance often refers to situations where the completion of collective

operations is delayed by a slower process or processes.

2.2.2.2 On-line approaches

The way a program’s execution changes often falls into repeating behaviours also

knows as Phases. As on-line methodologies for reducing energy consumption in

HPC systems lack detailed information about programs’ phases they usually take

advantage of those repeating behaviours. Consequently, the effectiveness of such

power saving schemes depends on the accuracy of the program phase changes detec-

tion mechanism. We provide a comprehensive overview of program phase detection

techniques in Section 2.3.

In [Choi et al. 2006, Isci et al. 2006], authors use on-line techniques to detect

program execution phases or simply program phases, characterise them and set

the appropriate CPU frequency accordingly. They rely upon hardware moni-

toring counters to compute run-time statistics – including cache hit/miss ratio,

memory access counts, and retired instructions counts – that they use for pro-

gram phase changes detection and characterisation. However, policies developed in

[Choi et al. 2006, Isci et al. 2006] tend to be designed for single task environment.

[Lim et al. 2006] looked at on-line recognition of communication phases in MPI

applications. Authors apply CPU DVFS to save energy once a communication phase

has been reached. Their CPU DVFS accomplishes this saving by intercepting and

recording the sequence of MPI calls during program execution. During this time it

considers a segment of program code to be reducible if there are high concentrated

MPI calls or if an MPI call is long enough. The CPU is then set to run at the

appropriate frequency when the reducible region is recognised again. Authors of

[Ge et al. 2007] proposed a system-wide and application-independent DVFS sched-

uler which scales down the processor’s frequency when slower processor frequency

does not have a significant impact on performance. They assume the program’s

run-time is a succession of time intervals or phases, gather PMCs for each phase

and use past history to select the appropriate CPU frequency for the next interval.

More recently, a slack time based model for reducing the energy consumption was

presented in [Spiliopoulos et al. 2011]. Authors developed analytical DVFS models

with attempt to reduce slacks in the program’s execution, and therefore lower the

power consumption. Relying on an analytical DVFS model, authors propose a run-

time framework which breaks the program into fixed length interval, uses hardware

monitoring counters for characterising individual program interval and optimises

them for power reduction accordingly.
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2.3 Focus on Program Phase Detection for Energy Effi-

cient HPC

A phase change can be thought of as a sudden change in the program’s behaviour.

As presented in the previous section, on-line methodologies for reducing the energy

consumption of high performance computing systems generally go through program

phase changes detection.There is a large body of work dealing with program phase

changes detection in the literature. The most popular approaches are based on basic
bloc vector, working set signature, and conditional branch counter.

Authors of [Sherwood et al. 2003, Sherwood et al. 2001] and

[Ratanaworabhan & Burtscher 2008] use Basic Bloc Vectors (BBVs) to detect

program phase changes. A basic bloc vector is a list of all blocs entered during

program execution, and a count of how many times each basic bloc was run. They

keep track of basic bloc vectors at fixed interval and then use a similarity threshold

to decide whether a phase change has occurred or not. As similarity criterion, they

use the Manhattan distance between consecutive basic bloc vectors. The similarity

actually tells how close BBVs are to each other. Entire BBVs cannot be stored in

hardware, to overcome that limitation, authors suggested to approximate them by

hashing into an accumulator table containing a few larger counters.

Phase changes detection using conditional branch counters is presented in

[Balasubramonian et al. 2000]. Authors keep track of conditional branches exe-

cuted over a fixed execution interval, and detect a phase change when the difference

in branch counts between consecutive intervals exceeds a threshold which varies

throughout the program’s execution. As long as a program phase is a program

execution period throughout which specific metrics are relatively stable, there can

be many ways of detecting program phase changes. Authors of [Huang et al. 2003]

propose to use subroutines as a program phase granularity. They rely upon hard-

ware call stack for identifying major program subroutines and detect a program

phase change by comparing the program’s behaviour across different subroutines.

Typically, they track the time spent in each subroutine and detect a major phase

when the time spent in a subroutine is greater than a preset (fixed) threshold.

In [Dhodapkar & Smith 2002b] authors use program instruction working set

to detect phase changes. They define a program phase as a set of instruc-

tions touched in a fixed interval of time and refer to that as an instruction

working set. Similarly to BBVs, complete working sets can be too large to

efficiently represent and compare in hardware. Authors handle this by using

a loosy-compressed representation of working sets called working set signature

[Dhodapkar & Smith 2002a, Dhodapkar & Smith 2002b]. Instruction working sets

are compared for phase changes detection. To accomplish this, authors use the rel-

ative signature distance between consecutive working set intervals to detect phase

changes when that relative signature distance exceeds a predefined threshold.

Other researchers use methods from signal processing for program phase detec-

tion. In [Casas et al. 2007], signal processing techniques are used to automatically
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detect periodic phases in MPI programs. The approach works by analysing the

correlation of message passing activity in the application. The phase detection

approach proposed in [Casas et al. 2007] and that in [Fürlinger & Moore 2008] are

very similar; however, they differ in that the latter identifies iterative phases in

the application by directly analysing the control flow graph of the application. In

[Wimmer et al. 2009] trace compilation is used for detecting program phase changes.

The program’s execution is a collection of trace trees. Speaking of trace trees, a trace

tree is a collection of frequently executed code paths through a code regions. Assum-

ing that the program execution remains within a trace tree during a stable phase,

a phase change occurs when there is a sudden increase in side exits from the trace

tree.

ScarPhase an execution history-base on-line library for detecting and clas-

sifying phases in serial and parallel applications was recently proposed in

[Sembrant et al. 2012, Sembrant et al. 2011]. The library divides the program’s ex-

ecution into non-overlapping windows and samples conditional branches during the

execution of each window using performance monitoring counters. The address

of each branch instruction is next hashed into a conditional branch vector whose

entries show how many times corresponding branches were sampled during the win-

dow. Program phases are next determined by clustering branch conditional vectors

so that similar vectors belong to the same phase.

A power oriented phase detection mechanism has also been investigated.

In [Isci & Martonosi 2003a] authors employed run-time power measurements and

power estimated with performance counters to identify execution phases of a pro-

gram. The methodology lies on the assumption that changes in the program’s

behaviour are also reflected in its power consumption behaviour.

2.4 Conclusions and Discussion

2.4.1 Discussion: need to address the energy consumption issue in
HPC environments differently

As we have seen in the previous sections, the problem of energy consumption in high

performance computing has been widely investigated. However, software solutions

to that problem are less successful than their hardware counterpart. Current power

reduction techniques as presented herein show that they are effective in the sense

that they permit to reduce application’s energy consumption without significant

performance degradation. Unfortunately, to use these techniques, one would have

to be an expert because of the complexity of their nature based on many different

applications. Although intercepting MPI calls may be transparent, there is still

the need to know what the application is doing in between those calls to set the

appropriate frequency for example.

Power/energy reduction techniques presented above all have in common the fact

that they attempt to reduce the energy consumption of the infrastructure from

the application perspective, i.e., the focus is put on the application instead of the
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infrastructure itself. This is a limiting factor for several reasons including the fact

that one would have to possess wast technical details behind the energy reduction

scheme proposed. Moreover, the HPC infrastructure operator may not be authorised

to look into users’ workloads for specific reasons. In summary, more accessible (easy

to use), easy to scale, and automated energy saving schemes need to be designed. In

other words, energy saving schemes cannot succeed in real-life environments, unless

they can be implemented without extensive efforts.

The processor has long been considered the most power hungry hardware among

HPC subsystems, recent statistics place the memory subsystem at the top of the

list. According to Samsung, considering the 8 hours active and 16 hours idle sta-

tus in server, the memory subsystem is responsible for 15% of the overall energy

consumption of a 16GB, 60nm 1GB dual data rate 2 (DDR2) based server. The

share of energy consumed by the memory is even more for 32GB and 48GB servers

using the same process technology, accounts for 21% and 26% of their total energy

consumption respectively. In the last case, the energy consumption of the memory

exceeds that of the processor (20%). Consequently, power saving schemes must take

the memory subsystem more seriously. In other words, energy saving schemes must

provide means for reducing the power consumption of the memory. The same goes

for other HPC subsystems including the storage and communication subsystems.

In a few words, it must offer users the opportunity to design system specific power

saving schemes i.e., power saving schemes of their own.

2.4.2 Conclusions

This chapter discussed approaches for making High Performance Computing (HPC)

systems more energy efficient. Existing solutions are presented along with support-

ing mechanisms. Without lost of generality, these techniques include power and

program analysis techniques.

Unlike hardware solutions, software approaches are often too complex and lim-

ited to the processors subsystem although other subsystems – memory, storage, and

network interconnects – hold a considerable share in the overall power consumption

of a typical supercomputer. By using the aforementioned steps to improve the effi-

ciency of HPC systems the last step should emphasise on the design of user friendly

solutions.





Chapter 3

A Blind Methodology for

Improving Computing

Infrastructures’ Energy

Performance

This introductory chapter summarizes our methodology for improving computing

infrastructures’ energy performance. We think of improving energy performance of

a computing infrastructure as reducing its energy consumption without significant

performance degradation. The term “significant performance degradation” being a

relative term, it may be interpreted differently; however, a performance degradation

of up to 10% is often acceptable. Note, unless expressly stated otherwise, we assume

that (i) a high performance computing (HPC) system is a set of computing and

storage nodes excluding network equipment such as routers and switches because

of their nearly flat power consumption; (ii) whereas the term “system” designates a

single node of the HPC system.

A typical HPC system throughout its life cycle exhibits several behaviours – in

terms of utilization of available resources (processor, memory, storage, and com-

munication subsystems) – reflecting phases of execution of a specific workload or

workloads. Some of those phases or workloads are often similar in comparison with

other workloads or regions of execution of a specific workload.

We saw in Chapter 2 that HPC equipment vendors are bringing multi-

configuration or reconfigurable hardware to market in response to the energy re-

duction challenge in those environments. Relying upon those multi-configuration

hardware, we propose a “blind” and general purpose methodology that leverages

HPC workloads variability to reduce the energy consumption of the overall infras-

tructure [Tsafack et al. 2013c]. Our methodology breaks into multiple steps includ-

ing: (i) phase detection, (ii) phase characterization, and phase identification and
reuse of configuration information. It is labeled as blind because it does not require

any information about workloads. Roughly speaking, users do not need any a priori

information about workloads being executed.

Figure 3.1 offers an outline of the whole methodology on a system which succes-

sively runs five different workloads. For this specific case, each workload is detected

as a phase or behaviour the system went through. As it can be seen, upon receiving

a new execution vector or simply EV (the concept of execution vector is explained

later on in Chapter 4), all the three steps are performed if necessary. Especially,
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when the newest EV suggests a change in the behaviour of the system, the just

completed phase is characterized; in any case, the newest EV is assigned to one

of the classes represented by existing phases and reconfiguration decisions taken

accordingly.
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Figure 3.1: A summary of the methodology on a system which successively runs five

different workloads.
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Step 1: phase detection

The initial step, which we refer to as phase detection, is the process through which

program/system phase changes are detected. A program phase is defined with re-

spect to the stability of a specific metric or metrics. This stability is also translated in

the program’s performance, meaning that performance of the program is relatively

stable throughout a phase of execution of the program as well. Phase detection

techniques fall into on-line and off-line techniques.

As a rule, phase detection mechanisms attempt to detect program phase changes.

This often requires thorough understanding of the program at hand. To abstract

away from any particular program, we suggest detecting phase changes at the system

level [Tsafack et al. 2013b]. The rational behind detecting phases of execution of the

system or simply system phases is that changes in the programs are also reflected

in the behaviour of the system through resource utilization. For example, when a

program changes from a compute intensive/bound (we use the terms intensive or

bound interchangeably) phase to a communication phase, this also results in changes

in the utilization patterns of processor and communication subsystems. Further

details in regard to our phase detection methodology are provided in Chapter 4

Step 2: phase characterization

In the presence of dynamically reconfigurable hardware, initiating system reconfig-

uration at the right time is as important as selecting hardware or software eligible

for reconfiguration. Current, only the processor hardware is often reconfigured for

energy savings purposes in HPC. As we brought up earlier, a system goes through

different phases or behaviours throughout its life cycle, so initiating system recon-

figuration at the boundary of a phase seems natural; however, reconfiguring “non

eligible for reconfiguration” hardware can result in significant performance degrada-

tion.

Therefore, our phase characterization process, which is described in Chapter 5,

aims to determine the type of reconfiguration decisions that are acceptable for a

given workload or any specific phase of a workload.

Step 3: phase identification and system reconfigura-

tion/adaptation

Phase identification is the ability to identify recurring phases, or more generally

to identify phases with each other. It is a desirable property for phase detection

techniques, since it can be used in tuning algorithms to reuse previously found

optimal configurations for recurring phases.

Phase identification is often used in conjunction with phase prediction. The

idea behind this is that by predicting the upcoming phase, it is possible (when

the predicted phase is successfully identified with an existing phase) to set up an
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optimal system configuration (adequate processor speed, memory size, storage space,

and network bandwidth) for that phase before it gets started.

Reconfiguration decisions involve dynamically tuning available resources or sub-

systems to workloads’ requirements, and often depend on the target objective (de-

tails are provided in Chapter 6).
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4.1 Introduction

A large array of today’s High Performance Computing (HPC) applications exhibits

recurring behaviours or phases during their execution. Accurate detection of applica-

tion or program phases allows for reconfiguring a system for better performance and

for exploring energy trade-offs. As energy consumption becomes a limiting factor in

the operation of HPC systems, detecting program phases can help devise schemes

to reduce the energy consumption of HPC environments by enabling dynamic re-

configuration of available resources (e.g. processor, memory, storage, network inter-

connects) for specific phases of a workload or workloads. This can reduce the over-

all energy consumption while maintaining reasonable performance [Lim et al. 2006,

Kimura et al. 2010, Balasubramonian et al. 2000, Huang et al. 2003].
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Detecting phases often requires extensive knowledge of an application and/or

the system architecture, or that the application be compiled with special instru-

mentation libraries. HPC users, however, rarely posses adequate knowledge for

performing such tasks. HPC applications are generally complex, have been devel-

oped throughout several years and are often built exploring expert knowledge from

multiple domains. Furthermore, HPC infrastructure commonly accommodates mul-

tiple workloads that are executed concurrently (i.e. the infrastructure is shared by

multiple applications), in which case detecting phases of individual executions is

nearly impossible. However, from a system stand point applications can be treated

as a single workload when considering they might have uniform resource utilisation.

Application phases also result in different system behaviours or phases (e.g. sys-

tem resource utilisation depends on how applications consume resources), which

can be used as an alternative means of program phase detection for users lacking

expertise or who are not aware of all intricacies of their applications. Similar to a

program phase, a system phase is an execution region where the system behaviour is

stable in comparison to other execution regions. More formally, a system phase is a

continuous execution interval wherein measured system metrics are relatively stable.

Detection of system-phase changes (hereafter also called system phase detection) ex-

ploits the fact that program phase changes are also reflected in different behaviours

the system undergoes during its lifecycle. System phase detection abstracts away in-

dividual applications and reduces the burden of discovering the phases of individual

applications.

This chapter describes the concept of system-phase detection and details two

system-phase detection methodologies which we refer to as “power-based phase de-
tection" and “Execution Vector (EV) based phase detection". The power-based

methodology is off-line and detects phases using the system’s power consumption

footprint; whereas the EV-based approach is on-line and relies upon system’s re-

source utilisation and explores concept of EV to detect phases.

The system-phase changes detection methodologies introduced in this chapter

use similar principles to those employed in detecting program phases. Program

phase detection methods are generally interval-based. In other words, during fixed

length intervals (also known as sampling intervals), specific metrics are measured;

values of those metrics between consecutive intervals are compared afterwards to

determine whether a phase change has occurred. This means that phase detection

methods detect changes in program behaviour that are assumed to result from phase

changes.

This chapter is organised as follows. Section 4.2 details the power-based sys-

tem phase detection approach and shows how it can be used for modelling an HPC

system. Section 4.3 presents the EV-based phase detection approach and evaluates

it using synthetic benchmarks. A case study where phases of a real-life applica-

tion are detected using the EV-based phase detection methodology is presented in

Section 4.4. Finally, Section 4.5 concludes the chapter.
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4.2 Power-based Phase Detection

The power-based phase detection methodology which is also referred to as DNA-like

system modelling attempts to describe a system (basically a single node of the HPC

system) as a state graph whose final and initial states are configurations wherein

it is idle. As idle goes, an idle system is defined as a system on which no user

application is running. A transition between two states sn and sm of the graph is

weighted by conditional probability that the system goes from sn to sm. Each state

of the graph describes the system’s behaviour over a fixed length time interval, and

the sequence of successive states which the system undergoes throughout its life cycle

is referred to as its “DNA-like" structure. Since each state of the graph describes

a behaviour of the system over a given period of time, the DNA-like structure of

a system can be thought of as the succession of behaviours through which it went

over time. To remain in line with what precedes, we define the terms “letter" and

“system description alphabet" respectively as follows: a letter or phase is defined as

a behaviour in the DNA-like structure of a system; whereas the system description

alphabet designates the set of possible behaviours.

Given the above, the run-time behaviour of a system can be described by a se-

quence of the form Li . . . Xj . . . Lk where the Li are elements of the system descrip-

tion alphabet (details regarding their construction are presented in Section 4.2.1).

Not all behaviours may be known, i.e., some states could not appear in the system

description alphabet; the Xj notation is used for representing such states.

4.2.1 Phase tracking or letter modelling

Performance Monitoring Counters (PMC) have successfully been used for modelling

the energy/power consumption of a wide range of applications (details can be found

in Chapter 2). However, Chapter 2 also highlights that PMCs used in a model are

strongly related to the type of application at hand. For example, PMCs used to

model the power consumption of a CPU-intensive application often differ from those

that are used to model the power consumption of a memory intensive application.

Some power models may use more than PMCs for predicting or estimating the

power consumption of an application, so without loss of generality, we will use the

term “sensor” to designate either a PMC or any other system metric (network bytes

sent/received and disk read/write counts for example) that can be used in a power

model.

We assume that if a finite set of sensors is used to model the power consumption

of a specific category of workloads, then a change in the set of sensors used for

modelling the power consumption may suggest a change in the behaviour of the

system (change of the type of workload or in the behaviour of the workload being

executed). Based on this assumption, we propose an algorithm (Algorithm 1) for

partitioning the run-time behaviour of a system into phases, so that the power

consumption of the system over a phase is estimated using a unique set of sensors.

In other words, a system-phase change occurs when there is a change in the set of
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sensors relevant to power estimation.

Data: A: a set of units, where a unit is composed of values of sensors

collected at a given time; units are sampled on a per second basis.

Note that they are arranged in their order of occurrence in time.

Result: P = {ti} where ti are points in time at which changes in the

behaviour of the system were detected.

Initialization: remove k successive (starting from the first unit) units from

A and put them in S; let us denote by tS the time stamp of the last unit in

S; k is chosen such that k > p+ 1, where p is the number of sensors.

P  P [ {t0}, where t0 is the point in time at which the first unit of S was

sampled

Compute the set R0 of sensors relevant to power consumption estimation

using the dataset composed of units in S

while units available in A do
Remove k more successive units from A starting at tS + 1 and add them

to those contained in S

tS  tS + k (S upper bound is updated to tS + k )

Compute the set Rt of relevant sensors from S

if Rt−1 6= Rt then
Find the point in time j 2 [tS − k, tS ] such that the set of relevant

sensors R computed from the set whose last unit was sampled at time

j is the same as Rt−1

Remove all units whose time stamp if less or equal to j from S

Go to Initialization

Algorithm 1: Power-based system phase detection algorithm.

Finding out which sensors are relevant to power estimation of a given work-

load is not always straightforward. To accomplish this, we conduct multi-linear

regression where we retain coefficients αi and sensors Ci exhibiting a 5% (or higher)

level of statistical significance to power consumption estimation given the power

model described by Equation 4.1, where αi and Ci are model coefficients and sen-

sors respectively. For the sake of simplicity, the number of sensors relevant to power

consumption estimation is limited to 4 (i.e. basically a letter or phase is described

by 4 sensors).

Power ⇠

nX
k=1

αiCi (4.1)

Although phases or letters are represented using only four sensors, comparing

them can be very costly if they are left that way. To handle that, once a phase is

defined, we use the following formalism for its encoding: let us assign each sensor

to a four-bit aggregation or half-byte. Our quadruplet is therefore of the form

(b1, b2, b3, b4) where each bi is half byte. Now deleting commas in between the bi gives
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a sixteen-bit aggregation, which converted into decimal is an unsigned integer. The

unsigned integer obtained from the above transformation serves as the representation

of a letter or phase.

4.2.2 Example

This example illustrates our power-based phase detection methodology on a system

which successively runs the following from NAS Parallel Benchmark (NPB) suite

[Bailey et al. 1991]: Integer Sort (IS) and Embarrassingly Parallel (EP). These ap-

plications are opposite from their computational stand point in the sense that EP

is mainly computing while IS is not. Data collected during their execution serve

as input to Algorithm 1. Figure 4.1 where doted vertical lines respectively indi-

cate the beginning and the end of detected phases (Figure 4.1(a)), and the actual

beginning and finishing time of each workload (Figure 4.1(b)); offers a graphical rep-

resentation of Algorithm 1 on a system that successively runs the benchmarks we

just mentioned. Figure 4.1 shows that it is possible to detect phases a system went

through by exploiting its power consumption. We can also observe in Figure 4.1

that points in time at which phase changes are detected are slightly shifted from

actual start times of the programs. This is normal because when a new program

starts, the system needs some adaptation time prior to reflecting its actual power

consumption.

4.3 EV-based System Phase Detection Mechanism

Despite its effectiveness, the power-based phase detection approach may not perform

well when the device recording the power consumption lacks accuracy (the power

consumption is nearly constant). This is because the linear regression often yields

less interesting results when the predicted parameter, the power consumption in our

case, is constant.

Figure 4.1(b), where the y-axis represents the access rate of PMCs or more

generally sensors and the x-axis the execution time-line, suggests that changes in

the system’s behaviour are also reflected in the access pattern of sensors. As sensors

go, the access rate of a sensor is the ratio of its raw value to the number of CPU

cycles. Using sensor’s access rates instead of their raw values prevents different

dimensions from compensating one another.

We introduce here the concept of “execution vector” (EV), which seems ad-

equate for system phase detection because of its similarity to power vectors in

[Isci et al. 2006]. An execution vector is defined as a column vector in a 9-

dimensional space (each EV has nine entries) and whose entries are access rates

of system’s metrics, including performance monitoring counters, network bytes

sent/received, and disk read and write counts. Performance monitoring coun-

ters provide insight into the processor and memory activities, while network bytes

sent/received, and disk read and write provide information about network and disk

activities respectively.
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Table 4.1: List of sensors describing an execution vector (we will use more human

friendly names to refer to those sensors).

PERF_COUNT_HW_INSTRUCTIONS

PERF_COUNT_HW_CACHE_MISSES PERF_COUNT_HW_CACHE_REFERENCES

PERF_COUNT_HW_BRANCH_INSTRUCTIONS PERF_COUNT_HW_BRANCH_MISSES

netSENTbyte netRCVbyte

Write IO Read IO

To avoid redundancy, only general purpose PMCs are considered as sensors,

hence providing the following information: the number of retired instructions (can

be thought of as the number of instructions that are actually executed and completed

by the processor), last level cache references and misses, and branch instructions

and misses. Table 4.1 offers an outline of sensors describing an execution vector

(for further information about performance counters refer to the documentation

available in Linux kernel source1).

4.3.1 EV-based phase changes detection algorithm

The EV-based phase detection approach works with the concept of execution vector

we have just introduced. Unlike most phase detection mechanisms, the EV-based

phase detection uses variable size intervals (i.e., all the phases do not necessary

have the same length); however, EVs are sampled on a per second basis and the

unweighted sliding-average smooth is applied to remove short-term fluctuations.

A system phase is an interval during which the system behaviour must be stable

according to a given metric (or metrics). Let us consider a system that runs four

workloads – including Lower-Upper symmetric Gauss-Seidel (LU), EP, Conjugate

Gradient (CG), and IS from NPB benchmark suite – separated by random length

idle periods. Figure 4.2 where the diagonal line from the upper left corner to the

lower right represents the execution time-line offers a graphical representation of the

matrix of distance (Manhattan) between execution vectors collected on the system

we just described. At coordinate i, j in the upper matrix of Figure 4.2 the colour

represents on a greyscale the distance between the EVi and EVj (EVs sampled at

time i and j respectively). Hence, the colour at the point i, j tends to black when the

distance between EVi and EVj tends to zero; conversely, the colour at the point i, j

tends to white as the distance between EVi and EVj increases. Along the diagonal

line, we can easily observe 7 triangular blocks representing either workload or idle

periods. Actually, it reflects the order workloads are executed; that is, LU, idle, EP,

idle, CG, idle, and IS. More interestingly, Figure 4.2, shows that distances between

EVs within the same block tend to 0 (they are closer), while in between blocks the

distance between EVs tends to 1 (white on a greyscale).

Based on the above observation, we define a similarity or resemblance criterion

between EVs as the Manhattan distance between them. The Manhattan distance,

which suits the case, is the distance between two points in an n-dimensional space

if a grid-like path is followed and offers the advantage that it does not depend on

1https://www.kernel.org
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Figure 4.2: Graphical representation on a greyscale of the matrix of distance (Man-

hattan) between execution vectors; where the diagonal represents the execution time

line. The darker a point of coordinate i and j is, the closer are EVi and EVj .

the translation of the coordinate system with respect to a coordinate axis, i.e., it

weights more heavily differences in each dimension.

A phase change occurs when the Manhattan distance between consecutive EVs

exceeds a preset (fixed) threshold. The threshold is fixed in the sense that it is

always the same percentage – that percentage is referred to as the detection thresh-
old – of the maximum distance between consecutive EVs. In other words, if the

detection threshold is X%, then the threshold is X% of the maximum distance be-

tween consecutive EVs. However, maximum distance between consecutive EVs is

zeroed when a phase change is detected. Hence, the threshold varies throughout

the system’s lifecycle. In addition, the maximum existing distance between con-

secutive EVs is continuously updated until a phase change is detected, when it is

then zeroed. Doing so allows detecting phase changes when moving from a phase

where distances between consecutive EVs are big to a phase where they are not and

vice-versa. Algorithm 2, which we refer to as EV-based Phase Detection Algorithm

(EVPDA), offers an outline of the EV-based phase detection methodology. To sum-

marise, for each newly sampled EV, the EVPDA computes the Manhattan distance

between that vector and the previously (along the execution timeline) sampled EV

and detects a phase change accordingly.

4.3.2 Illustrative scenarios and analysis

This section investigates the effectiveness of the EV-based phase detection method-

ology by detecting phase changes of a two-node cluster system running synthetic

benchmarks. Synthetic benchmarks composed of several benchmarks – including
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Initialization: max_distance = 0 ; phase_start = False
// threshold is a fixed percentage of the maximum existing

distance max_distance

while True do
Compute EVt: basically, sample a new execution vector

Compute dist : the distance between EVt and EVt−1

//update the maximum existing distance max_distance

if max_distance  dist then
max_distance dist

end
if dist  max_distance ⇤ threshold and phase_start is True then

Start a new phase

phase_start = False
end
else

if dist > max_distance ⇤ threshold and phase_start is False then
phase_start = True
//reinitialize the maximum existing distance

max_distance = 0
end

end
t t+ 1

end

Algorithm 2: EVPDA (EV-based Phase Detection Algorithm): an on-line

algorithm for system phase changes detection.
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Multi-Grid (MG), Block Tri-diagonal solve (BT), Embarrassingly Parallel (EP),

Integer Sort (IS), and Conjugate Gradient (CG) from NPB-3.2 benchmark suite

[Bailey et al. 1991] – only differ in that fixed length idle periods are inserted in

between workloads in one of them.

Benchmarks composing the synthetic benchmark have unique execution pat-

terns; consequently, using them guarantees that the system will go through different

behaviours. More importantly, assuming that the execution of a workload in the

synthetic benchmark corresponds to an execution phase of the synthetic benchmark,

we know in advance when phase changes occur. So doing allows us to tell how close

to reality is the EV-based phase detection methodology. In the remaining of this

chapter, an empirical evidence based detection threshold of 15% is used; thus, the

threshold is 15% of the maximum existing distance between consecutive EVs.

We further consider two scenarios. In the first scenario, a synthetic benchmark

referred to as bench_1 is used. bench_1 successively runs benchmarks listed above

(from left to right starting with MG). The second scenario involves bench_2, which

runs the same list of benchmarks as bench_1 (in the same order). bench_1 and

bench_2 are alike except that 30 second idle periods are inserted in between bench-

marks in bench_2. Inserting idle periods in between workloads (bench_2 ) coerces

the system to effectively go through different behaviours, while bench_1 presents a

more complex scenario where successive behaviours might not differ.

Figure 4.3(a) where dashed vertical lines indicate the beginning time and the

end time of workloads in the synthetic benchmark, offers a graphical representation

of the output of EVPDA when the system was running bench_1. The left end

of horizontal solid lines indicates the point, in the execution time-line, at which

phase changes are detected and their length indicate the duration or length of the

corresponding phases. Note, the x-axis represents the execution time-line, while

the y-axis represents IDs associated to detected phases (IDs are non zero integers

ordered by their appearance order).

It can be seen from Figure 4.3(a) that all expected phase changes are successfully

detected. Figure 4.3(c) which shows the variation of the distance between consec-

utive EVs along the execution time-line (x-axis) indicates that micro phases could

have been detected when running BT if the threshold would have been different.

This is easily achievable depending on the granularity at which one wants to detect

phase changes. Indeed, the detection mechanism can use a tighter threshold to de-

tect these regions. As for bench_1, Figure 4.4(a) and Figure 4.4(c) offer a graphical

representation of the output of Algorithm 2 when the system was running bench_2.

One can easily notice that the EV-based phase changes detection methodology is

capable of differentiating periods wherein the system is loaded from those in which

it is not (idle periods). Figure 4.3(b) and Figure 4.4(b) where the x-axis represents

the access rate to sensors and the y-axis the execution time-line corroborates our

phase-change detection. Indeed, it can be seen that phase changes results in differ-

ent access pattern of sensors. Note, not all sensors are plotted for the sake of clarity.

Figure 4.3(d) and Figure 4.4(d) offer a graphical representation of phases detected

on the second node which is referred to as the slave node as opposite to the master
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Figure 4.3: Phase changes detection using EVPDA when running bench_1 ; the

threshold is 15% of the maximum existing distance between consecutive EVs.
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Figure 4.4: Phase changes detection using EVPDA when running bench_2 ; the

threshold is 15% of the maximum existing distance between consecutive EVs.
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4.3.3 Evaluation of the EV-based phase detection algorithm: false
positives, sensitivity, and mean detection time

Phase detection generally serves as starting point for power/performance optimisa-

tion algorithms [Kimura et al. 2010, Lim et al. 2006, Balasubramonian et al. 2000]

and simulation (see Chapter 2 for further details). The simulation time of a

program can significantly decrease given an effective identification of sections of

code whose performance is representative of that program [Sherwood et al. 2003,

Sherwood et al. 2001]. Consequently, it is essential that the phase detection mech-

anism detects phases that actually result in significant change in the program’s or

system’s behaviour.

To evaluate the EV-based phase detection mechanism, we consider three metrics:

(i) sensitivity, (ii) number of false positive, and (iii) mean time to detection. It is

difficult to tell how significant a change in the system’s behaviour has to be in order

to be considered as a significant change. For the evaluation, we assume without loss

of generality that a significant phase change in the behaviour of the system boils

down to a change of workload. bench_1 and bench_2 are executed five times each

to compute above listed evaluation metrics.

The sensitivity is defined as the ability of the phase detection mechanism to

detect a change that results in significant change in the system’s behaviour (or

performance knowing that performance is relatively stable during a phase). For

example, let us assume that the system has 100 significant behaviour changes. If

the phase detection mechanism indicates 87 of these 100 behaviour changes, then

its sensitivity is 87%. Similarly, if the detection mechanism detects all of the 100

significant behaviour changes, then it is said to be 100% sensitive. Note that the

sensitivity will still be 100% if the phase detection mechanism indicates some other

phase changes in addition to those expected.

Seeking a good sensitivity often leads to false positives. We define the number of

false positives as the number of points in time where the system shows no significant

behaviour change, but the phase detection mechanism indicates a phase change. The

third and last evaluation metric which we refer to as the mean detection time is the

average time that the phase detection mechanism takes to notice a significant phase

change (only expected phase changes are taken into account). In other words, the

mean detection time will be the average time the phase detection mechanism takes

to notice a change of workload.

Figure 4.5 – where the steps of the drawn step function indicate detected phases

and vertical lines delimit workloads – provides a graphical representation of the

output of the EV-based phase detection algorithm (EVPDA - Algorithm 2) for

five successive executions of bench_2. We can observe that the sensitivity of the

detection mechanism for that workload is 100%. There is a handful of false positives;

however, that is understandable since they occur during idle periods. Despite the

assumption that the system has a stable behaviour during idle periods, there might

be some system related tasks that are executed during those periods. And whose

execution can potentially change the behaviour of the system throughout an idle
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Table 4.2: Performance summary of our phase detection algorithm considering the

two synthetic benchmarks.

Benchmark sensitivity false positives mean detection time

Bench_1 100% 0 0.15 seconds

Bench_2 100% 4 0.5 seconds

period. Still from Figure 4.5, we can observe that recurring workloads approximately

have the same length (duration) according to the phase detection mechanism.

Table 4.2 offers a summary of evaluation statistics for synthetic benchmarks

bench_1 and bench_2. We can observe that the mean detection time is less than

one second (false positives are not taken into account). The mean detection time

suggests that the latency of detecting a phase is on average less than one second.

This comes from the fact that the phase detection software is contained within

an independent thread which runs as any other application. The phase detection

software nearly has no overhead since it boils down to reading a few sensors and

computing the Manhattan distance between vectors in a 9-dimensional space (each

execution vector has nine entries).

Modern processors are provided with on-chip facilities for counting events

[Intel 1996, Welbon et al. 1994, MIPS 1996]. These facilities enable very fast ac-

cess to all necessary register and allow reading and setting performance counters

without any additional overhead.

4.3.4 Phase representation and selection of simulation points

Depending on its length, a phase can be too costly (storage space and computation

time) to efficiently represent and compare in hardware. Consequently, each detected

phase is summarised with three pieces of information: a representative vector, a

reference vector, and the average distance from all vectors in a phase to the reference

vector. That average distance can be used for classifying new execution vectors in

existing phases. The reference vector of a phase is defined as the closest vector

to the centroid of the group of EVs belonging to that phase and is used for phase

identification. Finally, the representative vector of a phase is the EV resulting from

the component-wise arithmetic average of all EVs belonging to the corresponding

phase.

The latter (representative vector) can be used in conjunction with selected sim-

ulation points to reconstruct the original traces for simulation. We do not give

much space to trace reconstruction because we are more interested in real systems;

however, traces can easily be reconstructed by applying linear regression techniques

provided an abstract model for the data is defined. As a simulation point goes, we

consider as simulation point for a phase the start point (the point along the execution

time-line at which the first EV occurs) of that phase. The literature suggests select-

ing simulation points earlier in the execution time-line in order to reduce the time

to fast forward (executing the program without performing any cycle accurate simu-
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lation) the selected simulation points [Sherwood et al. 2002, Perelman et al. 2003].

4.4 Case Study: The Advance Research Weather Re-

search Forecasting (WRF-ARW) model

Previous sections demonstrate the effectiveness of the EV-based phase detection

mechanism using synthetic benchmarks. In this section, we investigate its ef-

fectiveness using a real life workload that is representative of HPC applications:

the Advance Research Weather Research and Forecasting (WRF-ARW) model

[Skamarock et al. 2005]. WRF-ARW is a fully compressible conservative-form non-

hydrostatic atmospheric model. It uses an explicit time-splitting integration tech-

nique to efficiently integrate the Euler equation.

4.4.1 Phase analysis and detection results

Figure 4.6 offers a graphical representation of system phases detected using EVPDA

when running WRF-ARW. Figure 4.6(c) where the x-axis represents the execution

time-line and the y-axis the access rate of a few sensors, shows without loss of

generality WRF-ARW’s resources utilisation pattern. In using the assumption that

phase changes methods detect changes in program behaviour that result from phase

changes, Figure 4.6(a) indicates that system phases detected by the EV-based phase

detection algorithm actually correspond to phase changes in the runtime behaviour

of WRF-ARW. Note in passing that in Figure 4.6(a) – where the y-axis represents

ids of phases and the x-axis the execution timeline – dashed vertical lines indicate the

beginning time and finishing time of the program, and the left end of horizontal solid

lines indicates the point at which phase changes are detected. Variation of distances

between consecutive EVs along the execution time-line is depicted in Figure 4.6(b).

The corresponding distance matrix (Figure 4.7) corroborates the results of the

EVPDA. It can be seen that along the execution time-line the colour at the points at

which phase changes are detected tends to white, which is interpreted as a significant

change in the behaviour of the system.

Overall, it can be seen that EVPDA performs as well with “home made” syn-

thetic benchmarks as with a real life workload. The sensitivity is 100% and for this

specific case there is no false positive. The mean detection time is still less than

one second. However, phase changes detection may be influenced by the selected

detection threshold. Figure 4.8 offers a graphical representation of the output of the

phase detection algorithm using a 10% detection threshold. Note that the number

of detected phases has slightly increased from 12 (Figure 4.6(a)) to 13 (Figure 4.8).

The next section analyses the impact of the detection threshold on phase changes

detection.
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Figure 4.6: Phase changes detection using the EVPDA (Algorithm 2) when run-

ning WRF-ARW; the detection threshold is 15% of the maximum existing distance

between consecutive EVs.
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Figure 4.7: Matrix of distance between EVs for WRF-ARW (the matrix corresponds

to half of the execution of the program).
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Figure 4.8: Phase changes detection using the EVPDA when running WRF-ARW;

the detection threshold is 10% of the maximum existing distance between consecu-

tive EVs.
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4.4.2 Influence of the detection threshold

The selection of the detection threshold basically depends on the granularity at

which one wants phases to be detected. Table 4.3 shows how the number of phases

detected varies with respect to the detection threshold when the system is running

WRF-ARW. The number of phases detected is one when the whole application is

considered as a single phase. Table 4.3 suggests that when the detection thresh-

old is too low, nearly no execution vector is similar to another. Likewise, when

the detection threshold is too high, all execution vectors are similar to each other.

There is no linear relationship between the detection threshold and the number of

detected phases. That number mainly depends on the distances between consecutive

execution vectors.

Table 4.3: Variation of the number of phases detected with respect to the detection

threshold.

Detection threshold (%) 1 5 10 15 20 30 35 40 50

Number of phases detected 1 2 13 12 27 52 1 1 1

4.5 Conclusions

As shown in this chapter, system-phase detection is more user-friendly compared

to detecting application phases. We proposed two methodologies to detect system

phases. The power-based phase detection, which is off-line, uses the linear relation-

ship between sensors and the power consumption to detect phase changes. It fails,

however, to detect system phases when the power measurements lack accuracy and

hence cannot be used for on-line system optimization.

The EV-based phase detection methodology leverages the fact program phase

changes affect system behaviour by using resources; this fact is used to detect phases

of the system instead of those of individual applications. System resource utilisation

related information encapsulated in the concept of execution vectors is transmitted

to the detection mechanism which computes their similarities for phase change de-

tection. Its effectiveness is shown on scenarios using synthetic benchmarks and a

real life application. Proposed evaluation metrics (number of false positive, sensi-

tivity, mean detection time) reveal the ability of our phase detection mechanism to

capture program phases including idle periods at the system level. A methodology

for representing fixed runtime execution periods of the system with a small set of

execution vectors and selecting simulation points is discussed.

As our phase detection methodologies do not require any information about ap-

plications being executed (user friendly) it can be used to address a wide range of

problems, including the energy consumption problem by users lacking good under-

standing of their applications. We presented results for a two node cluster, but the

methodology can be adapted to HPC systems as it applies to individual systems or

nodes of the HPC system.
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As we mentioned earlier, phase change detection allows system optimisation for

energy saving purposes. We also brought up the fact that their complexity often

limits their scope. In this chapter, we have introduced an easy to use and user

friendly (in the sense that it does not require any specific knowledge from users)

phase detection mechanism. We will show in the remaining chapters of this thesis

how it can efficiently be used for reducing the energy consumption of HPC systems

without any knowledge on the workloads being executed.
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5.1 Introduction

Our three-step methodology (or roadmap) for improving the energy efficiency of

High Performance Computing (HPC) systems comprises phase characterisation fol-

lowed by phase identification and system reconfiguration. Phase characterisation

serves as a pre-requisite for reusing optimal configuration information for recurring

phases or workloads since it implicitly suggests reconfiguration decisions given a

specific class or type of workload. As characterisation can use techniques similar

to those used for phase-change detection, our characterisation methodology works

with the concept of Execution Vectors (EVs).

Although gathering EVs throughout a phase is quite straightforward, extracting

relevant information from the data can be difficult. Our phase characterisation

process aims to provide insights into the computational behaviour of the system

throughout a phase. It aims to group phases into labelled classes so that similar

phases according to system resource utilisation appear under the same label. We

consider processor, memory, disk and network interconnects as HPC resources or

subsystems. A label has the particularity that it implicitly dictates the kind of

reconfiguration decisions that are acceptable for the class of workload to which it

refers. This is needed to prevent some reconfiguration decisions from hindering

system’s and workload’s performances.
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From a resource utilization point of view, HPC workloads commonly fall into

the following categories: compute intensive, memory intensive, IO intensive, com-

munication intensive, and any combinations of these. There is no uniform definition

of those groups of workloads; nevertheless, the meaning we associate to each group

can be found in Table 5.1.

We further divide communication intensive workloads into network transmit and

network receive. The rationale behind dividing communication intensive workloads

into network receive and transmit is that on most systems, receiving packets requires

more processing than sending; thus, they can be treated differently. We define six

types of labels inline with HPC workloads and according to system’s resource uti-

lization. These labels are: “compute-intensive”, “memory-intensive”, “mixed”, “IO-
intensive”, “network-transmit”, and “network-received”. They are self explanatory

with the exception of “mixed”. Workloads/phases labelled as mixed are both mem-

ory and compute intensive as they alternate between compute intensive and memory

intensive behaviours. At one hand, they do not spend enough time being compute

intensive to be labelled as compute-intensive and at another hand, they do not spend

enough time being memory intensive to be considered as memory-intensive either.

As labels dictate reconfiguration decisions, they also reflect the predominant be-

haviour of a phase and can be thought of as “basic” workloads classes or categories.

Hence, a workload or phase can potentially combine two or more labels. However,

for the sake of simplicity, the characterisation process makes compute-intensive,

memory-intensive, and mixed labels mutually exclusive.

The effectiveness of system reconfiguration decisions widely depends on the ac-

curacy of the phase characterization mechanism. Consequently, it is important that

the characterisation process be carefully performed, for misleading decisions can

result in significant performance degradation.

This chapter discusses our workload/system phase characterisation schemes and

is organised as follows: Section 5.2 presents the Last Level Cache References per

Instruction Ratio based (LLCRIR-based) phase characterisation, which suggests a

scheme to classify workloads according to their cache sensitivity. Two system phase

characterisation schemes using statistical techniques are presented in Section 5.3.

A comparative analysis of two phase characterisation algorithms, which rely upon

above mentioned characterisation schemes, is presented in Section 5.4. Finally,

Section 5.5 presents concluding remarks.

5.2 LLCRIR-based Workload Characterization

Although there is no standard definition of cache sensitivity, here it refers to last-

level cache references per instruction ratio. This section proposes a scheme to classify

workloads according to their cache sensitivity.



5.2. LLCRIR-based Workload Characterization 49

Table 5.1: HPC workloads categories and their description.

Workload category Description

Compute intensive applies to any computer application that demands

a lot of computation; their performance are often

limited by the processor’s speed.

memory intensive used to refers to applications that require more

shared memory than what is available on standard computers.

mixed refers to any computer application that shares the

characteristics of memory intensive and compute intensive.

applications

communication refers to any computer application that has relatively high

intensive/ network network requirements for receiving large volumes of

receive data from the network

communication refers to any computer application that has relatively high

intensive/ network network requirements for sending large volumes of

transmit data over the network

IO intensive refers to applications that read and/or write a large

amount of data; performance of such applications depends

on the speed of the peripheral device.

5.2.1 Workload characteristics and cache sensitivity

The amount of memory available on modern HPC servers has considerably increased

over the past years. To find out whether an application can fully benefit from the

memory available on the system (very useful when planning capacity for new sys-

tems), it is necessary to know its cache usage characteristics. To accomplish this,

we execute benchmarks representative of HPC workloads and collect data that we

use to compute statistics in regard to the last level cache utilization. The statistic

of concern is the LLCRIR. Benchmarks we just mentioned – including Lower-Upper

Guass-Seidel solver (LU), Block Tri-diagonal solve (BT), Conjugate Gradient (CG),

Embarrassingly Parallel (EP), Integer Sort (IS), Unstructured Adaptive mesh (UA),

Scalar Penta-diagonal solver (SP), and Multi-Grid (MG) from NAS Parallel bench-

mark suite [Bailey et al. 1991] – exercise different aspects of the system.

These benchmarks serve as reference workloads and are used to expose charac-

teristics that workloads may have in common. In this particular case, we want to

investigate their use of the last-level cache knowing that except for CG and EP,

which are either extremely memory intensive (CG) or extremely compute intensive

(EP); the aforementioned benchmarks are somewhere in between memory intensive

and compute intensive. Table 5.2 where “standard dev.” is the relative standard

deviation of the mean LLCRIR (mean) offers an outline of statistics in regard to

last level cache references per instruction ratio of workloads listed above. Note,

we use the OpenMP version of the benchmarks on an Intel Quad-core Xeon E5506
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Table 5.2: Per program average LLC references per instruction ratio (average over

15 runs of each program). The first column lists programs names and the first row

represents class problem sets.

A B C
mean standard mean standard mean standard

dev. dev. dev.

CG 1.30 ⇥ 10-2 1.05 ⇥ 10-2 7.79 ⇥ 10-2 2.59 ⇥ 10-2 8.93 ⇥ 10-2 2.09 ⇥ 10-2

IS 1.24 ⇥ 10-2 1.14 ⇥ 10-2 1.58 ⇥ 10-3 1.43 ⇥ 10-3 1.35 ⇥ 10-1 9.02 ⇥ 10-2

EP 4.69 ⇥ 10-4 9.27 ⇥ 10-4 2.13 ⇥ 10-4 4.26 ⇥ 10-4 1.70 ⇥ 10-4 2.82 ⇥ 10-4

BT 1.44⇥ 10−3 3.45⇥ 10−4 1.51⇥ 10−3 2.72⇥ 10−4 2.76⇥ 10−3 5.24⇥ 10−4

FT 4.77⇥ 10−3 7.34⇥ 10−4 9.63⇥ 10−3 2.96⇥ 10−3 - -

MG 4.01⇥ 10−3 1.04⇥ 10−3 3.30⇥ 10−3 8.51⇥ 10−4 - -

SP 3.78⇥ 10−3 1.34⇥ 10−4 4.03⇥ 10−3 1.08⇥ 10−4 4.42⇥ 10−3 4.10⇥ 10−4

UA 3.33⇥ 10−3 1.16⇥ 10−4 3.38⇥ 10−3 1.25⇥ 10−4 3.30⇥ 10−3 5.58⇥ 10−4

Table 5.3: Order of magnitude of LLC references per instruction ratio and associated

labels.

Workload label order of magnitude of LLCRIR

Compute intensive  10−4

memory bound ≥ 10−2

mixed (both memory compute intensive) 10−3

CPU with 12GB of RAM (Random Access Memory), and a last-level cache size of

4MB. In Table 5.2, block letters A,B, and C in the headline refer to problem classes;

each class englobes a problem size and its parameters. For classes A, B, and C the

problem size increases going from one class to the next.

At a glance, Table 5.2 indicates that we can roughly group those workloads by

the order of magnitude of their average LLCRIR regardless of the problem set (the

order of magnitude of LLCRIR is the power of ten of the number that describes

it). However, using that grouping, IS kernel does not always fall in the same group.

This can be attributed to its irregular memory access patterns.

We group our workloads in three categories or classes according to the order of

magnitude of their average LLCRIR. The first class, which we label as compute-
intensive, includes EP. The memory-intensive class includes CG and IS. Finally, the

mixed class is composed of FT, MG, SP, and UA. Table 5.3 summarises the rela-

tionship between workloads classes and cache sensitivity of workloads belonging to

the corresponding classes. Labels assigned to a workload also reflect our knowledge

of that workload.

The above analysis indicates that our cache sensitivity metric can successfully

classify memory intensive, compute intensive workloads and mixed workloads under

the appropriate label regardless of the program input (problem set).



5.2. LLCRIR-based Workload Characterization 51

Table 5.4: Per program average LLCRIR (average over 15 runs of each program) at

different processor’s frequency (class B problem set).

1596 MHz (class B problem) 1862 MHz (class B problem) 2128 MHz (class B problem)
mean standard mean standard mean standard

dev. dev. dev.

CG 7.76⇥ 10−2 2.48⇥ 10−2 7.24⇥ 10−2 2.77⇥ 10−2 7.79⇥ 10−2 2.59⇥ 10−2

IS 1.52⇥ 10−3 1.57⇥ 10−3 1.52⇥ 10−3 1.42⇥ 10−3 1.58⇥ 10−3 1.43⇥ 10−3

EP 2.13⇥ 10−4 4.70⇥ 10−4 2.08⇥ 10−4 4.75⇥ 10−4 2.13⇥ 10−4 4.26⇥ 10−4

BT 1.41⇥ 10−3 2.96⇥ 10−3 1.44⇥ 10−3 2.32⇥ 10−4 1.51⇥ 10−3 2.72⇥ 10−4

FT 8.27⇥ 10−3 2.63⇥ 10−3 8.95⇥ 10−3 2.73⇥ 10−3 9.63⇥ 10−3 2.96⇥ 10−3

MG 2.30⇥ 10−3 1.04⇥ 10−3 2.82⇥ 10−3 9.47⇥ 10−3 3.30⇥ 10−3 8.51⇥ 10−4

SP 3.45⇥ 10−3 2.11⇥ 10−4 3.76⇥ 10−3 2.23⇥ 10−4 4.03⇥ 10−3 1.08⇥ 10−4

UA 2.73⇥ 10−3 1.86⇥ 10−4 3.06⇥ 10−3 1.40⇥ 10−4 3.38⇥ 10−3 1.25⇥ 10−4

5.2.2 Impact of input and system parameters of LLCRIR-based
workload characterization

One of the most famous power saving schemes often referred to as Dynamic Voltage

and Frequency Scaling (DVFS) consists of scaling the CPU frequency down/up

according to workload requirements. Hence, one may be interested to know whether

our workload characterization scheme does not suffer from CPU frequency changes;

whether the characterization scheme guarantees that the class of a workload remains

unchanged independently of the processor’s frequency.

We showed in the previous section that our characterization does not change

with the program’s input (problem sets). To find out whether a label associated to

a workload persists when the processor’s frequency changes, we consider the Class

B problem set of the benchmarks described in Section 5.2.1. Table 5.4 offers an

outline of statistics regarding the LLCRIR for each of our benchmarks at different

CPU frequencies. IS kernel is the only workload that does not remain in the class

into which it was originally assigned (memory intensive).

We have just shown that the LLCRIR metric is a useful to determine whether a

workload is either memory intensive, compute intensive or both memory and com-

pute intensive regardless of programs’ inputs and the processor’s speed. Unfortu-

nately, it does not tell how to determine whether a workload is either IO intensive or

communication intensive. This being an on-line power oriented workload character-

ization, a detailed workload characterization might be too costly. For characterising

IO intensive workloads, we use the percentage of CPU time during which IO requests

were issued to any storage devices (bandwidth utilization for the device) as the IO

sensitivity metric. That percentage increases as the load on the disk increases; typ-

ically, a value close to 100% indicates that the disk is fully loaded. Unless expressly

mentioned, we assume that a workload is IO intensive when its disk utilization ex-

ceeds 50% (CPU time during which IO requests are issued). Although this allows

determining whether a workload is IO intensive, it also brings an additional over-

head; the overhead related to reading and processing storage statistics, which can

be costly for an on-line characterization algorithm.

We do not characterize network or communication intensive workloads using the
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LLCRIR approach, because they may seem to be mixed workloads while they are

not; alternatively, we proceed by discrimination meaning that, if a workload does

not fall into a known and characterized class, then it is probably network inten-

sive. The LLCRIR-based system phase characterization excludes periods wherein

the system is idle. However, idle periods must be properly addressed, since our

methodology focuses on the system which is likely to experience idle periods from

time to time throughout its lifecycle. Furthermore, some workloads may combine

multiple behaviours (compute intensive and network intensive for example), which

is difficult to identify using the LLCRIR-based workload characterization.

5.3 Statistical-based Phase Characterization

To overcome the limitations of the LLCRIR-based phase characterization methodol-

ogy, this section introduces two phase characterization schemes. They all attempt to

extract useful information from the data using statistical analysis techniques. More

precisely, they use Principal Component Analysis (PCA) [Hastie et al. 2001]; how-

ever, they differ in the way PCA results are interpreted. PCA is mainly concerned

with identifying correlations in the data. It is used for two objectives: (i) removing

redundant variables in a dataset while retaining the variability in the data (can also

be thought of as reducing the number of variables) and (ii) identifying patterns in

the data and classifying them according to how much of the information stored in the

data, they account for. In a dataset comprised of numerous dimensions (variables),

it is likely that subsets of variables are highly correlated with each other. Highly

correlated variables are in fact redundant because of the linear relationship that

exists between them. In summary, PCA permits to identify the principal directions

in which the data vary.

5.3.1 A low overhead phase characterization approach

Our low overhead phase characterization approach which we refer to as “sensors-

based workload characterization” is very simple; it exploits the first objective of

PCA. The main purpose is to find out what the predominant behaviour of a phase

is by interpreting data collected throughout that phase. To this end, we apply PCA

to the dataset made up with EVs sampled during the execution of the phase. We

next select five variables (sensors in this specific case) among those contributing

the least to the first Principal Component (PC) of PCA. Variables contributing the

least to the first PC of PCA do not shape much of the information contained in the

data. As a consequence, one can without loss of generality assume that information

in regard to what the system did not do during a phase is captured by sensors

contributing the least to the first PC of PCA.

Sensors selected from PCA serve as phase characteristic and are used to assign

labels to phases following rules given in Table 5.5. Rules of Table 5.5 are based on

observation; however, beneath is an attempt to explain a few.
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Table 5.5: Rules for assigning labels to phases given sensors selected from PCA.

Sensors selected from PCA Label associated
for phase characterisation

cache_ref & cache_misses & branch_misses or branch_ins compute-intensive

no IO related sensor communication

IO intensive

branch_misses & hardware_ins or branch_ins mixed

hardware_ins & cache_ref or cache_misses memory-intensive

Let us comment the first row of Table 5.5. Workloads/applications with frequent

cache references and misses are likely to be memory intensive. The fact that sensors

referring to cache misses and references (cache_ref and cache_misses) are selected

from PCA indicates that the workload is not memory intensive. If in addition

we have branch misses or branch instructions selected from PCA then we assume

the workload to be compute intensive. For the second row, sensors selected from

PCA exclude any IO related sensor; we can therefore assume that the system was

running either a communication or an IO intensive workload. Similar analysis based

on empiric evidences can explain the remaining rules of Table 5.5.

5.3.2 System phase characterization using principal component
analysis (PCA)

The sensor-based workload characterization as presented in the previous section

is very simple to compute, but it is not very accurate because it depends on the

way variables are interpreted. Moreover, similarly to the LLCRIR-based phase

characterization it does not allow characterizing idle periods and performs poorly

for IO and communication intensive workloads. In this section, we present a third

phase characterization scheme that we refer to as PCA-based phase characterization.

It is similar to the sensor-based approach in the sense that they both use PCA.

The main objective of our PCA-based workload characterization is to discover

patterns shared by workloads of the same category. It aims to extract characteristics

shared by workloads having the same predominant behaviour. To accomplish this,

we define a set of “reference” workloads – composed of compute intensive, memory

intensive, IO intensive, and communication intensive workloads – in line with the

general trend of HPC workloads. We next apply PCA to individual datasets made

up with execution vectors collected during the execution of each workload category

(CPU intensive, memory intensive, IO intensive, communication intensive) to find

out how variables (sensors to be specific) correlate with principal components (PCs)

of PCA. The correlation of a variable with a PC is defined as the value of that PC

in the projection onto the plane of PCs. Figure 5.1 offers a graphical representation

of PCA results for CG, FT, MG, SP, and BT benchmarks. Figure 5.1 reveals that

excepting CG with is exclusively memory intensive, the first principal component

of PCA (PC 1) opposes sensors related to the processor (hardware instructions,
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branch instructions, and branch misses) to those related to the memory (cache misses

and cache references) for all listed workloads which appear to be mixed workloads.

Hence, we can postulate that for mixed workloads, sensors related to the memory

are negatively correlated to PC 1 while those related to the processor are positively

correlated to PC 1. The correlation of sensors related to network and IO activities is

nearly zero because they have very low network and IO activities. This also allows

us to postulate that for workloads that are neither communication nor IO intensive,

the correlation of sensors related to IO and network activities with PC 1 and PC 2

is insignificant.

For a memory intensive workload such as CG (Figure 5.2), we can easily notice

that sensors related to the memory (cache references and cache misses) are sym-

metric with respect to the origin of the two-dimensional plane generated by PC 1

and PC 2. Similar observations in regard to IO related sensors (wIO and rIO) can

be made from Figure 5.3(b) which offers a graphical representation of PCA results

applied to the dataset made up of EVs collected when running IOzone. IOzone is a

file system benchmark tool1.

Figure 5.3 corroborates our assumption that for workloads which are neither IO

intensive nor network intensive, the correlation of IO and network related sensors

with PC 1 and the second principal component of PCA (PC 2) is insignificant.

Figure 5.3(a) offers a graphical representation of the result of PCA applied to the

dataset made up of execution vectors collected when running a network intensive

program: Netperf2. It can be seen that unlike graphics of Figure 5.1 the correlation

of network related sensors (sentBytes and recvBytes) with either PC 1 and PC 2 is

no longer negligible.

We also applied PCA to datasets made up of EVs collected when the system

was running extremely compute intensive workloads such as embarrassingly parallel

(EP) from NAS parallel Benchmark and cpubrun, a CPU stress tester available to

Linux platforms. However, the corresponding graphics are not plotted, as for those

workloads, PCA only produces one principle component.

As discussed earlier, the main issue with LLCRIR-based and sensor-based phase

characterization schemes is that they do not permit us to characterize periods

wherein the system is not running any user applications (i.e., idle periods). To

characterize idle periods, we consider two datasets made of EVs collected at two

different points in time when the system was idle. We refer to those datasets as

“idle_1” and “idle_2” respectively. Figure 5.4 offers a graphical representation of

the result of PCA applied to “idle_1” and “idle_2”. It can be seen that correlations

of sensors with either PC 1 or PC 2 are nearly the same in both cases except that

Figure 5.4(a) seems to be the translation of Figure 5.4(b) with respect to PC 1 and

vice versa. We can also observe that CPU related sensors are highly correlated with

PC 1 (negative correlation) and have very low correlations with PC 2.

Overall, for each category of workloads, variables have a specific patterns with

1http://www.iozone.org/
2Netperf, http://www.netperf.org
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(a) SP, PC 1 and PC 2 explain 86.9% and

7.7% of the variability respectively.
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(b) FT, PC 1 and PC 2 explain 63.9%

and 23.4% of the variability respectively.

−1.0 −0.5 0.0 0.5 1.0

−1
.
0
−0
.
5

0
.
0

0
.
5

1
.
0

PC 1: 70.5%

P
C
 
2
:
 
1
8
.
6
%

HwIns

CacheRef

CacheMiss

BrIns

BrMisses

recvBytes

(c) BT, PC 1 and PC 2 explain 70.5%

and 18.6% of the variability respectively.
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(d) MG, PC 1 and PC 2 explain 68.7%

and 22.3% of the variability respectively.

Figure 5.1: Principal component analysis (PCA) of Benchmarks from NPB bench-

mark suite. Variables are projected on the plane of the first two principal compo-

nents. Variables may not be the same in all cases because, we remove correlated

variables before applying PCA.
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(a) CG, PC 1 and PC 2 explain 54.2%

and 21.3% of the variability respectively.

Figure 5.2: Principal component analysis (PCA) of CG benchmark Benchmarks

from NPB benchmark suite. Variables are projected on the plane of the first two

principal components. Variables may not be the same in all cases because we remove

correlated variables before applying PCA.
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(a) Netperf (send and recieve), PC 1 and

PC 2 explain 41.5% and 21% of the vari-

ability respectively.
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(b) IOzone read-write test, PC 1 and PC

2 explain 48.7% and 21.6% of the vari-

ability respectively.

Figure 5.3: Principal component analysis (PCA) of network 5.3(a) and IO inten-

sive 5.3(b) workloads. Variables are projected on the plane of the first two principal

components. Variables may not be the same in all cases because, we remove corre-

lated variables before applying PCA.
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(a) idle_1, PC 1 and PC 2 explain 56.2%

and 20.3% of the variability respectively.
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(b) idle_2, PC 1 and PC 2 explain 59.1%

and 20.6% of the variability respectively.

Figure 5.4: Principal component analysis (PCA) applied to data collected when the

system was idle. Variables are projected on the plane of the first two principal com-

ponents. Variables may not be the same in all cases because, we remove correlated

variables before applying PCA. The two datasets are made up of EVs collected at

two different points in time when the system was idle.

respect to the first principal component of PCA (PC 1) and the second principal

(PC 2). Now we are left with writing specific code segments describing each class

of workloads for on-line use. For memory intensive workloads for example, it boils

down to expressing the fact that sensors related to the memory are symmetric with

respect to the origin of the PC1-PC2 plane.

5.4 Phase Characterization Algorithms: a Comparative

Analysis

As we mentioned earlier, the effectiveness of system reconfiguration based on reuse

of known optimal configurations is closely constrained by the characterization pro-

cess. In other words, the characterization process must be accurate enough to

guarantee either performance and/or energy performance improvement depending

on the target objective. To mitigate misleading reconfiguration decisions we devise

and compare two phase characterization algorithms using characterization schemes

described above.

Our first characterization algorithm is a majority-rule-based algorithm. It is

majority-rule-based because to a given phase it applies the three phase character-

ization schemes we just presented (Section 5.2.1, Section 5.3.1, and Section 5.3.2)

and uses the majority rule to pick-out the appropriate label. When the rule of

majority cannot apply (i.e., labels returned by all three characterization schemes

are all different). The result of the characterization scheme deemed more accu-
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rate is selected. For example, the LLCRIR-based phase characterization has very

high accuracy predicting compute intensive workloads; thus, if the majority-rule

fails and the LLCRIR scheme says it is compute intensive then the selected label

for the phase will be compute-intensive. Similarly, as the PCA-based approach is

the most accurate for memory intensive, IO intensive, and communication intensive

workloads, when the rule of majority cannot apply its result is considered the most

relevant. We also use the PCA-based result when the rule of majority fails and the

PCA-based approach suggests that the workload is mixed.

In the same line, the second phase characterization algorithm we propose consists

of using the LLCRIR-based phase characterization scheme when the PCA-based

schemes fails to return a label (it is referred to as “PCA then LLCRIR” in Table 5.6).

This may happen in some cases, the PCA-based scheme assigns a workload/phase

to the appropriate class (by selecting the label representing that class of workloads)

using known patterns. Therefore, when the pattern of the new phase is unknown,

it is unable to assign that phase to a given class. The LLCRIR-based scheme takes

over at this point as it is guaranteed to always return a label.

To see how close to reality our characterization algorithms are, we executed a

set of workloads that we characterize by assigning each to a label using the two

algorithms described earlier. Table 5.6 – where “IDLE" is assimilated to a program

within which only operating system (OS) related tasks are executed – offers an

outline of the characterization results using individual schemes and when they are

combined (majority-rule-based and PCA then LLCRIR). Note, when labels returned

by the three characterization schemes are all different, the PCA-based label is se-

lected; however, if the PCA-based failed to return a label the one returned the by

LLCRIR-based scheme is used. Programs under consideration were executed from

top to bottom as they appear in Table 5.6. SCP or secure copy is a remote file copy

program which copies files between hosts on a network. Excepting SCP and IDLE,

the remaining programs are from NAS Parallel Benchmark suite [Bailey et al. 1991].

We can observe that our two algorithms in most cases assign the same label to

a given workload, but they have relatively poor performance when the workload

at hand is the IDLE program. This can be easily addressed by filtering out idle

periods; for example, using the system’s load provided an acceptable definition of

the concept of “idle system” in regard to the system’s load.

5.5 Conclusions

In this chapter, we proposed three system phase characterization schemes and

showed how they can be used in a real life environments. The proposed charac-

terization schemes mainly intend to facilitate reuse of configuration information for

recurring phases. To accomplish this, they assign system phases to classes repre-

sented by labels which implicitly tell the kind of reconfiguration decisions acceptable

for a specific class of workloads depending on the target objective. We defined six

basic classes of workloads (in line with high performance computing workloads)
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Table 5.6: Sample characterization results with varied workloads. Program names

are written in block letters

Program Characterization schemes Algorithms
names LLCRIR- PCA- Sensor-based Majority-rule PCA then

based based LLCRIR

IDLE mem idle mem mem idle

FT mixt mixt mem mixt mixt

SCP mixt IO netRecv mem IO netRecv mem netRecv
netTransmit mem netTransmit mem IO netTransmit

BT mixt mixt mixt mixt mixt

IDLE mem netRecv mem mem netRecv
netTransmit mem mem netTransmit

CG mem mem mem mem mem

IDLE mem idle mem mem idle

EP cpu cpu cpu cpu cpu

IDLE mem idle mem mem idle

UA mixt mixt mixt mixt mixt

IDLE mem idle mem mem idle

MG mixt – mixt mixt mixt

IDLE mem netRecv mem mem mem netRecv mem

SP mixt cpu mixt mixt cpu

IDLE mem idle mem mem idle

FT mixt mixt mixt mixt mixt

SCP mixt cpu mem cpu cpu

BT mixt mixt mixt mixt mixt

IDLE mem netRecv mem mem mem netRecv mem

CG mem mem cpu mem cpu

IDLE mem netRecv mem mem netRecv

EP cpu cpu cpu cpu cpu

IDLE mem idle mem mem idle

UA mixt mixt mixt mixt mixt

IDLE mem netRecv mem mem mem netRecv mem

MG mixt netRecv mixt mixt mixt netRecv mixt
netTransmit netTransmit

IDLE mem netRecv mem mem mem netRcev mem

SP mixt cpu mixt mixt cpu

EP mixt cpu cpu cpu cpu

SCP mixt IO mem mixt mixt IO mem
netTransmit mixt mixt netTransmit

BT mixt mixt mixt mixt mixt

IDLE mem idle mem mem idle

CG mem mem mem mem mem

EP cpu cpu cpu cpu cpu

IDLE mem idle mem mem idle

UA mixt mixt mixt mixt mixt

MG mixt – mixt mixt mixt

SP mixt – mixt mixt mixt

IDLE mem idle mem mem idle

Meaning of characterization labels:
cpu compute intensive

mem memory intensive

mixt both memory and compute intensive

netRecv receive intensive (communication)

netTransmit transmit intensive (communication)

idle idle system (no user application running)

– no label was returned by the corresponding characterization scheme
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according to system resource utilization and provide simple, but accurate charac-

terization algorithms to identify them at run-time.

Although some phase characterization schemes may seem very complex for on-

line use, they are very fast and have nearly no impact on system performance. The

amount of time needed for computing our three phase characterization schemes is

generally in the order of a second because phases are of relatively short durations

(from a few seconds to a few minutes or hours). In addition, phase characteriza-

tion is only performed when the process of identifying the phase or workload at

hand with an existing phase fails. In summary, the time it takes to perform phase

characterization is negligible.
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6.1 Introduction

Chapter 4 and Chapter 5 presented the two first stages of our methodology for im-

proving the energy efficiency performance of High Performance Computing (HPC)

systems. This chapter presents the third and last step which we refer to as phase

identification and system reconfiguration (used interchangeably with the term adap-

tation hereinafter). Phase identification and system reconfiguration is the stage

where phase detection and characterization are exploited; it is a desirable property

of phase detection mechanisms since it enables reuse of known optimal configuration

information for recurring phases.

To exploit phase detection and characterization, it is essential that recurring

phases be identified. However, phase identification techniques assume that phases

being identified are already finished, which is not useful for an on-line system.

This is justified by the fact that system reconfiguration decisions triggered when

the appropriate phase finishes might not lead to the expected result. The litera-

ture suggests predicting the upcoming or next phase along the execution timeline

[Sherwood et al. 2003, Ge et al. 2007, Spiliopoulos et al. 2011] (further details can

be found in Chapter 2). Unfortunately, predicting the upcoming phase is a non

trivial task when there is no information about workloads being executed.
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System reconfiguration decisions, depending on the target objective, can be ei-

ther performance oriented (the focus is put on reducing the execution time of the

application running) or energy performance oriented. The last case focuses on re-

ducing the energy consumption of the program being executed or that of the overall

infrastructure without necessarily reducing the execution time of applications being

executed. In this thesis, we are interested in aspects of energy performance improve-

ment; thus, system reconfiguration decisions which we also refer to as “power saving
schemes” or “green capabilities” are energy performance oriented.

This chapter discusses about our phase identification techniques and power sav-

ing schemes; it is organised as follows: Section 6.2 presents two complementary

phase identification and prediction methodologies. Section 6.3 introduces and anal-

yses potential power saving schemes for HPC systems. Finally, concluding remarks

are provided in Section 6.4.

6.2 Recurring Phase Identification and Prediction

Phase identification is often used in conjunction with phase prediction; however,

as we already discussed, it is difficult to predict the behaviour of the upcoming

phase in scenarios wherein the system can potentially run multiple applications

(recall that the term application is used interchangeably with the term workload)

about which there is no information. This section presents two alternatives to phase

prediction: partial phase recognition and Execution Vectors (EVs) classification.

They are tightly related to the phase detection mechanism; in other words, they

work with the concept of execution vector.

In both cases, when phase identification is successful, rules defined in Table 6.1

are used to determine adequate power saving schemes referring to labels assigned to

the known phase (the phase that the new phase is identified with). For example, in

a compute intensive phase (compute-intensive label in Table 6.1), one can consider

switching off memory banks, putting disks into sleep mode, and putting Network

Interconnects (NICs) into the Low Power Idle (LPI) mode. The previous example

assumes that the compute-intensive label is the only label associated to the corre-

sponding phase. When there are several labels associated to a given phase, the re-

sulting system reconfiguration decisions attempt to offer reasonable performance. To

illustrate, in the presence of memory-intensive and communication-intensive labels

for example, the system will be configured so as to guarantee “good” performance

to both memory intensive and communication intensive workloads.

6.2.1 Partial phase recognition

Partial phase recognition suggests identifying an ongoing phase by comparing well

defined portions of two phases then extrapolating the result to the remaining part.

In a more formal way, partial phase recognition is the process of identifying an on-

going phase (the phase has started, but is not finished yet) Pongoing with a known
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Table 6.1: Phase labels and associated power saving schemes.

Phase label Possible reconfiguration decisions

compute-intensive switch off unused memory banks; send disks to sleep;

scale the processor frequency up;

put NICs into LPI mode.

memory-intensive scale the processor frequency down; decrease disks;

or send them to sleep; switch on memory banks.

mixed switch on memory banks; scale the processor frequency up;

send disks to sleep; put NICs into LPI mode.

communication switch off memory banks; scale the processor frequency down;

intensive switch on disks.

IO-intensive switch on memory banks; scale the processor frequency down;

increase disks (if needed).

phase Pj by only considering the already executed part of Pongoing. The just men-

tioned already executed part of Pongoing, expressed as a percentage of the length

(duration) of Pj is referred to as the “recognition threshold ” and denoted as RT .

Thus, with a RT% recognition threshold and assuming that the reference vector of

Pj is EVPj
and that its length is lj , an ongoing phase Pongoing is identified with

Pj if and only if: the Manhattan distance between EVPj
and each EV pertaining

to the group made up of EVs collected when running the already executed part of

Pongoing (corresponding in length to RT% of lj) is within a threshold called ST .

Note that the detection threshold ST is the same that was introduced in Chapter 4

for phase detection. In fact, two EVs are within the threshold when they are similar;

in other words, the Manhattan distance between them is smaller than the thresh-

old. Partial phase recognition is summarised in the pseudo algorithm bellow, where

Manhattan(v,EVPj
) is the Manhattan distance between v and EVPj

1 Let Pj be a completed phase, EVPj
its reference vector, and lj its duration

2 Pongoing whose initial EV is timestamped t is partially recognized/identified

as Pj

() 8 v, 2 { vi, EVs sampled from t to t+RT ⇥ lj}

Manhattan(v,EVPj
)  ST

With respect to reusing known configuration information, partial phase recog-

nition can be very effective. In fact, when partial phase recognition is successful,

the reconfiguration decision is made and lasts for the remaining part of the ongoing

phase. In other words, if adequate decisions are made (the decision making pro-

cess relies upon the phase characterization mechanism), the system can experience

significant performance improvements; otherwise (reconfiguration decisions did not

lead to the expected results), significant performance degradation. To mitigate the
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impact of misleading reconfiguration decisions, the next section introduces a new

phase identification and prediction methodology.

6.2.2 Execution vectors’ classification

The execution vector classification and prediction approach explicitly attempts to

match each newly sampled EV with known phases. When the attempt to match

an EV sampled at time t to an existing phase succeeds, system reconfiguration

decisions or power saving schemes are triggered to reconfigure the system for the

next second (the matching process is discussed in the next paragraph) accordingly.

Roughly speaking, when the EV sampled at time t matches to an existing phase P ,

the configuration of the system at time t + 1 is the configuration that was found

optimal for P . In summary, instead of predicting the next phase, we determine

the behaviour of the next EV along the execution time line using a principle widely

exploited by caching algorithms. The idea behind can be expressed as follows: if the

system is running a task labelled as label1 at time t, then it is likely to be running

a task with the same label a time t+ 1.

The matching process is as simple as comparing a candidate pattern (EV just

sampled) to known patterns i.e., representative vectors of known phases. To accom-

plish this, we define the error resulting from matching an EV to the representative

vector of an existing phase as a vector of component-wise absolute difference between

them (each element in one vector is subtracted to its counterpart from the other).

In a formal manner, given two vectors X(x1, x2, . . . , xn) and Y (y1, y2, . . . , yn) in

an n-dimensional space, the error resulting from matching them is given by a new

vector W (abs(y1 − x1), . . . , abs(yn − xn)). Note, the Manhattan distance between

X and Y is obtained by summing elements of W .

Entries of W which we refer to as “component-wise” errors, show how each

component in the vector X differs from its counterpart in Y , while the Manhattan

distance between X and Y shows how X differs from Y . In using the component-

wise error between two vectors, we assume that an EV matches to a representative

vector of a phase when each entry of the vector made up of their component-wise

absolute difference is not greater than a threshold th. In mathematical literature, X

matches to Y if wi  th, 8wi 2 {abs(y1 − x1), . . . , abs(yn − xn)}. Empirical analyses

showed that a threshold of 0.1 (th = 0.1) is effective in our case.

6.2.3 Off-line phase identification

Phase identification techniques we presented so far are designed for on-line use; how-

ever, off-line phase identification is often needed when performing program simula-

tion (not simulating recurring phases can save a lot of time). It is off-line because

phase being compared have both competed. We systematically perform off-line

phase identification for each newly detected phase in order to avoid unnecessary

phase characterization. Off-line phase identification is a way easier than its on-

line counterpart, for it uses traces of execution of the application. Put simply, in
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an off-line context, all phases are finished, which makes phase identification a lot

easier.

Remember from Chapter 4 that we represent a phase with a reference vector

along with some other information. Now, let us look at Figure 4.7, from Chapter 4,

which for the sake of clarity is replicated here as Figure 6.1. It is obvious that

for comparing phases only a single point in the similarity matrix is needed. That

point of coordinates, let us say, (i, j) is the point representing on a gray-scale the

Manhattan distance between EVs sampled at times i and j respectively; i and j only

have to be the timestamps associated to reference vectors of the phases we want to

compare. More importantly, those vectors can be compared in the same way as all

other vectors, i.e., by using a fixed percentage on the maximum distance between

reference EV.

Consequently, we state that two phases P1 and P2 are identified with each other

if the Manhattan distance between them (technically their reference vectors) does

not exceed a specific percentage of the maximum distance between all reference

execution vectors. In light of what precedes, we suggest that the percentage of the

maximum distance between reference EVs be the same as the detection threshold

used for phase detection.

To illustrate our off-line phase identification approach, we conduct some experi-

ments using synthetic benchmarks (bench_1 and bench_2 ) introduced in Chapter 4.

In a few words, bench_1 successively runs workloads from NAS Parallel Benchmark;

bench_2 runs the same set of workloads, but inserts fixed length idle periods in be-

tween them. We execute each of these benchmarks five times and attempt to identify

recurring phases among those that are detected. Figure 6.2 – where doted vertical

lines indicate the start and end times of the programs, and horizontal solid lines

detected phases – offers a graphical representation of the result of our phase identi-

fication methodology. Note that phases that are identified with each other are on the

same virtual horizontal line. It can be seen that with this simplistic approach, we

loosely capture recurring phases. More interestingly, idle phases are not identified

with non idle phases (Figure 6.2(b)).

6.3 Power Saving Schemes

Section 6.2 discusses scenarios that permit the trigger of power saving schemes. In

this Section, we will review in details “non conventional” (not commonly used) power

saving schemes.

There is no uniform definition of a power saving scheme, but we use it to refer

to any action destined to reduce the power/energy consumption of a system or

an HPC system without significant performance degradations (recall that up to

10% performance degradation is often acceptable). Power saving schemes range

from management practices including system reconfiguration to “good” practices

such as executing programs on less power/energy hungry platforms. We do not

emphasise on proven power saving schemes such as Dynamic Voltage and Frequency
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Figure 6.1: Matrix of distance between EVs for WRF-ARW (the matrix corresponds

to half of the execution of the program).
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(a) Graphical view of system phase distributions resulting from five successive executions of bench_1.
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(b) Graphical view of system phase distributions resulting from five successive executions of bench_2.

Figure 6.2: Phase identification illustrated with five successive run of each bench-

mark; the detection threshold is 15% . Phases are compared using their reference

vectors.
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Scaling (DVFS), and LPI mode for network interconnects as they where introduced

in Chapter 2. For the same reasons, we will not discuss about disk spin-down, which

consists of switching the disk between operating modes.

6.3.1 Platform selection via cross platform energy prediction

6.3.1.1 Methodology

Users often have more that one candidate platform for running their jobs, in which

case choosing the least energy consuming platform can be beneficial both for them

and the platform provider. However, it is difficult to know in advance, how much

energy an application will consume on a given platform. We suggest a methodology

to gather that piece of information. In other words, given an application we attempt

to estimate/predict its energy consumption on a target platform.

To achieve this, we implicitly use two datasets: one from the reference platform

– a platform on which the application is well known – and the other from the target

platform. The target platform is the platform on which we want to estimate the

power consumption of our application. The dataset from the reference platform is

provided by its DNA-like structure (see Chapter 4 for details). For simplicity, we

assume that the application we are interested in estimating its power consumption

is the sole program running on the platform. A reference platform will always exists,

because each application is written and tested on at least one reference platform. It

is the platform on which the DNA-like structure of that application was built. Note,

the DNA-like structure of a program is a succession of behaviours through which

the system went at the time that program was running. It provides information

including the power consumption of the corresponding application.

With the DNA-like structure of an application, one can easily identify applica-

tions having similar computational requirements. We accomplish this by comparing

the DNA-like structure of the application of interest to known DNA-like structures.

A match is found when a given percentage of the application whose energy consump-

tion is being predicted is identified with the same percentage of a known application.

Let us denote by Etar the energy consumption of the part of the application

whose energy is being estimated and by Eref the energy consumption of the cor-

responding part of the application whose DNA-like structure matches which the

application at hand. For example, considering an application that lasts 60 minutes

on its reference platform, let us assume that Etar represents the energy consumed by

the same application on the target platform after 10 minutes; therefore, Eref repre-

sents the energy consumed by the application on the reference platform during the

first 10 minutes of its execution. We introduce the concept of relative energy con-

sumption described by Equation 6.1 and denoted as Erelative; it basically captures

the variation in energy consumption between the target and the reference platforms.

Erelative =
Etar

Eref

(6.1)

Using the relative energy consumption between the two platforms, the estimated
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energy consumption of the application on the target platform can be expressed by

Equation 6.2 where
R X%

0
P (t)i,tar dt is the energy consumed by the application on

the target platform before a match is found with a known DNA-like structure. Either

measured or estimated, P (t)i,tar is the instantaneous power usage of the application

on the target platform. Likewise, P 0(t)j,ref is the instantaneous power usage of

the application on the reference platform and can be obtained from its DNA-like

structure.

Eest =

Z X%

0

P (t)i,tar dt+ Erelative ⇤

Z end

X%

P 0(t)j,ref dt (6.2)

The power consumption might unexpectedly change after the X% threshold.

If that change does not result in a change in the set of sensors used to estimate

the power consumption as defined in Chapter 4, then we assume it is the same

application; otherwise, we seek for another match.

The estimation/prediction accuracy described by Equation 6.3 is defined as the

ratio between the estimated and measured energy consumption on the target plat-

form.

Accuracy =
Eest_tar

Etar

(6.3)

Comparing two DNA-like structures boils down to comparing two strings. There-

fore, the overhead associated with matching the DNA-like structure of a running

application with previously seen and known applications is proportional to the num-

ber of already known applications (could be classes of applications instead) times

the size of the DNA-like structure of the application at hand.

To simplify, we assume that our profile database (list of known applications)

contains a unique DNA-like structure, that of the application whose energy con-

sumption is being estimated on the target platform. We also assume that applica-

tions follow a very simple execution pattern (it is actually the case for the majority

of scientific applications) which starts with an initialisation phase and finishes with

a finalisation phase. Between the initialisation and the finalisation phases there are

some iterative computation followed by optional communications or IO activities.

Finally, from the assumption that the power consumption of the application in each

iteration is approximately the same, Equation 6.2 can be simplified to Equation 6.4

where Einit is the energy consumed by the application on the target platform dur-

ing the initialisation phase, Eref−init is the energy consumed by the application on

the reference platform from the end of the initialisation phase to the completion of

the whole application, and Eref−exe is the measured energy consumption (resulting

from its whole execution) of the application on the reference platform.

Eest = Einit + Erelative ⇤ (Eref−exe − Eref−init) (6.4)
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6.3.1.2 Illustrative example

This example serves to illustrate the power saving scheme we just introduced. We

attempt to predict the power consumption of two applications: (i) a synthetic bench-

mark workload_1 which iteratively computes the inverse of a 10 ⇥ 10 matrix and

copies a large file from a remote repository; and (ii) GeneHunter [Conant et al. 2002]

a real life program for linkage analyses.

We further consider three scenarios: (a) the first scenario estimates the energy

consumption of workload_1 on an Intel Xeon node running at 2.13GHz. And uses

the same node running at 1.6GHz as the reference platform. (b) The second scenario

still estimates the energy consumption of workload_1, but uses a Dell Power Edge

server and a Sun fire V20z as reference and target platforms respectively. (c) In

the third scenario, we attempt to estimate the energy consumption of GeneHunter.

In the last scenario, we consider as reference platform an Intel Xeon E5506 with 8

cores and 12GB of RAM (Random Access Memory) and as target platform an Intel

Xeon X3440 with 4 cores and 16GB of RAM.

In each scenario, an empiric partial recognition threshold of 20% is used. This

means that a match with an existing DNA-like structure DS is found if the already

executed part of the workload whose energy is being estimated matches with 20% of

DS. For example, assuming that DS lasted 60s, a match will be found if the already

executed part of the workload matches with the DNA-like structure describing the

first 12s of DS. We compute for each scenario the estimated energy consumption

using Equation 6.4. Figure 6.3 – where the y-axis represents the accuracy of the

prediction and the x-axis corresponding scenarios – offers an outline of the accuracy

of our energy prediction methodology. We can observe that the accuracy, which is

computed using Equation 6.3 is relatively high. Note in passing that the statistics

shown in Figure 6.3 are based on average energy consumption. Although the energy

consumption is overestimated with respect to that baseline (average energy con-

sumption), we believe it is acceptable to do so since the peak energy consumption

is typically higher than the average. For GeneHunter, the accuracy approaches 1.2.

The program uses a hidden Markov model (HMM) to calculate identity by descent

(IBD) sharing probabilities, so the computation requirement of all iterations might

not be the same, which diverges from our assumption that all iterations are nearly

the same. This could possibly explain its overestimated energy consumption.

6.3.2 Memory size scaling

This section investigates the relevance of memory size scaling (MSS), which consists

of adapting the size of the memory to workload’s demands in a CPU frequency

scaling like fashion. To this end, we execute a set of “reference” workloads – including

Lower-Upper Gauss-Seidel solver (LU), Block Tri-diagonal solver (BT), Conjugate

Gradient (CG), Embarrassingly Parallel (EP), Integer Sort (IS), and Unstructured

Adaptive mesh (UA) – from NAS Parallel benchmark suite [Bailey et al. 1991] while

statically limiting the size of the main memory.
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Figure 6.3: Per scenario energy prediction accuracy.
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Figure 6.4: Average execution time of NPB-3.3 benchmarks with respect to the

memory size.

Figure 6.4 offers an outline of the average execution time of each workload w.r.t

the size of the memory on a 48GB server system. Based on the graphic of Figure 6.4,

we introduce the concept of “optimal memory (RAM) size” which we define as the

memory size from which the execution time of the workload remains nearly constant.

The optimal memory or RAM size being workload dependent, Table 6.2 offers an

outline of the optimal RAM size for workloads involved in our analysis. For example,

EP’s optimal RAM size is 8GB which means that EP’s execution time is nearly

constant as long as the memory size is greater than 8GB. Figure 6.5 outlines the

difference between the power consumed by each workload at its optimal point and

the power consumed when the 48GB of memory available are used. It suggests that

depending on the workload, one could possibly reduce the peak power consumption

of our server of up to 10%, if it was possible to scale the memory’s size down when

needed. Still on Figure 6.5, on top of each point is displayed the corresponding

percentage of the peak power consumption (278 Watts) of our 48GB server.

We believe memory size scaling has great potentials for reducing the energy

consumption of high performance computing infrastructure. The latent message

behind Figure 6.4 and Figure 6.5 is that: “the more memory you have the more

power you are likely to waste”. To illustrate our point, we conducted a survey of
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Table 6.2: Optimal RAM size per workload.
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Figure 6.5: Difference in power usage between the optimal memory size and the

total memory.

users of the Reims site of Grid’5000 [Bolze et al. 2006] to determine the average

amount of memory they usually need for their experiments. Grid’5000 is a French

large-scale experimental platform distributed over 10 sites (refer to Chapter 7 for

further details) while the Reims site hosts a cluster of 44 HP Proliant DL165 G7

nodes, each provided with 48GB of memory. As shown in Figure 6.6 nearly 60% of

users out of 35 users who responded to the survey need in average 6GB of RAM per

node, while less that 10% need 48GB of RAM. In our opinion, memory size scaling

is probably an effective way of addressing the memory’s power consumption issue,

because HPC systems’ designers just don’t know in advance how much memory

users’ applications will require.

6.3.3 CPU cores switch on/off

Modern processors chips are often provided with several CPU cores. Following the

logic that the more CPU cores you have the more energy you consume, this section

investigates whether core switching, which consists of dynamically switching off/on

some CPU cores when executing specific workloads, can be of any help in regard

to the energy reduction problem in HPC systems. To accomplish this, we consider

four workloads that we successively run while varying the number of available CPU

cores. These workloads include: Lower-Upper Gauss-Seidel solver (LU), Conjugate

Gradient (CG), Embarrassingly Parallel (EP) from NAS Parallel Benchmarks suite,

and Netperf1 a network performance benchmark. Netperf is configured to send

10GB of data over the network. The host system is an Intel Xeon E5506 with 8

cores and 12GB of RAM. Note, each benchmark has the same workload regardless

1Netperf, http://www.netperf.org/netperf/



72 Chapter 6. Phase Identification and Power Saving Schemes

0 %

20 %

40 %

60 %

80 %

100 %

2-6 6-12 12-18 18-24 24-30 30-36 36-42 42-48

P
e
rc

e
n
ta

g
e
 o

f 
u
se

rs

Memory size (GB)

Figure 6.6: Memory requirement per node on the Reims site of Grid5000 for users

experiments.

of the number of CPU cores available.

Figure 6.7 where the y-axis represents the average execution time (Figure 6.7(a))

or the average energy consumption (Figure 6.7(b)) offers an outline of the variations

of both the energy consumption and the execution time of workloads we just men-

tioned with respect of the number of CPU cores available. Although performance

seems relatively stable when the number of CPU cores ranges from 4 to 7, the main

conclusion we can draw is that CPU core switch off/on might not be a viable option

for certain types of workloads; more precisely, compute intensive, memory intensive

and mixed workloads. For example, LU experiences a 58% performance degradation

when executed on 7 CPU cores instead of 8 CPU cores.

Contrary to LU, EP, and CG, CPU core switch on/off is worth when running

network intensive workloads such as Netperf. Considering as baseline configuration

the configuration within which there is only one CPU core active, Figure 6.8 com-

pares the baseline system configuration with system configurations within which the

number of active CPU cores ranges from 2 to 8. The difference in energy consump-

tion between the baseline and the system configuration wherein there are 2 active

CPU cores is insignificant; however, the difference in energy consumption between

the same baseline and the system configuration wherein 8 CPU cores are active is

nearly 8% of the energy consumed by the baseline configuration. More interestingly,

we can notice that regardless of the number of active CPU cores, the execution time

of the program is the same (this is the reason why the execution time histogram is

non-existent in Figure 6.8).
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6.4 Conclusions

In this chapter, we presented different techniques for recurring phase or workload

identification and showed how they can exploit phase detection and characterization

to suggest system reconfiguration decisions. These techniques are namely partial

phase recognition, execution vectors’ classification, and off-line phase identification.

Partial phase recognition and execution vectors’ classification are used as alterna-

tive to phase or workload prediction for guiding system reconfiguration. Although

labelled “off-line” the off-line phase identification mainly serves a single purpose in

our on-line methodology. That purpose is preventing unnecessary phase or workload

characterization and redundancies among known phases. By identifying a newly

detected phase with an existing, it is no longer necessary to characterize it; nev-

ertheless, off-line phase identification can also be used for reducing the program

simulation time by identifying section of codes whose performance is critical to the

entire program. Phase identification techniques as presented in this chapter can

serve as a basic point for different types of system optimisations; however, we fo-

cused on system reconfiguration decisions having as target objective the reduction of

the overall system’s energy consumption. We have also introduced non trivial power

saving schemes – including platform selection, memory size scaling, and core switch

off/on – and studied their feasibility and effectiveness in real life systems. Our static

analyses revealed that core switch on/off might not be adequate for our processor

class. Nevertheless, we expect future processors to handle it more efficiently.

Memory size scaling has great potentials for reducing the energy consumption

of today’s High-End and Mid-Market servers. Unfortunately, that feature is not

yet available to today’s computing systems, but we believe that kernel developers

and/or organisations dedicated to performance tuning who have been working on

its implementation into future Operating Systems (OSs) (a few patches for Linux

OS are under evaluation) will soon come up with a memory size scaling enabled OS

or at least with an OS provided with a similar feature.

Platform energy prediction can potentially be used in today’s systems, but re-

quires that the program whose power usage is being estimated to be the only appli-

cation running on the system, which slightly departs from our promise to provide a

methodology that focuses on the system and can fully handle the fact that a sys-

tem can be shared by multiple applications. However, it could be used to provide

feedback as whether a power saving scheme will be effective.

We are now left to explore DVFS, NIC speed scaling, and disk spin-down. DVFS

is very well supported by processors, so we will use it as our main power saving

scheme. Network interconnect speed scaling is poorly supported by some NICs, but

it can still be used and we will show that one can benefit from it. Nowadays, nearly

all hard disk drives have multiple operating modes, in particular the “sleep” mode

which significantly reduces its power consumption.
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7.1 Introduction

Typically, before an energy/power reduction methodology can be implemented in a

production environment, its gains must be verified against a large number of appli-

cations. As energy reduction and performance (in terms of reduction of applications’

execution time) may be conflicting goals, performance degradation resulting from

energy reduction decisions must be assessed. Thus far we focused on proposing

techniques that allow automated analysis of High Performance Computing (HPC)

systems. This chapter investigates the effectiveness of our energy reduction method-

ology on real systems considering both real life HPC applications and benchmarks

that are representative of HPC workloads. We present and evaluate Multi-Resource

Energy Efficient Framework (MREEF), an implementation of our methodology for

reducing the energy consumption of HPC systems. It is multi-resource in the sense

that it can be used to efficiently address the energy consumption issue of all HPC

subsystems (or resources) ranging from the processor to memory to network com-

munications and storage subsystems. The diagram in Figure 7.1 offers a graphical
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representation of the way components of our energy reduction methodology are ar-

ranged in MREEF. In a nutshell, when a phase change is detected, off-line phase

identification is performed to determine whether the newly detected phase should

be characterized and/or stored. Meanwhile, regardless of whether a phase change

is detected, on-line phase identification is performed and system reconfiguration

decisions taken accordingly.

The remaining of this chapter is organised as follows: details in regard to our

implementation of the energy reduction methodology are discussed in Section 7.2.

Section 7.3 describes our experimentation methodology and evaluation protocols.

Section 7.4 presents and discusses experimental results. Section 7.5 investigates the

relevance of our MREEF in Cloud based HPC environments. Finally, Section 7.6

concludes the chapter and provides recommendations.

7.2 Implementation

This section highlights the most important implementation aspects of the MREEF,

which implements our methodology for reducing the energy consumption of HPC

systems through two components: the “coordinator” and the “reconfiguration deci-

sions enforcer” which both reside on each node of the HPC system and act in a client

server fashion. The coordinator performs system profiling related tasks including

phase detection, phase characterization and phase identification. It then notifies the

reconfiguration decision enforcer to reconfigure the system when the phase identifi-

cation process is successful. However, if the reconfiguration decision is to configure

the system for a given type of workloads, there is no need of going through if the

system is already configured to accommodate such workloads. The reconfiguration

decisions enforcer captures resource utilization metrics by reading sensors and im-

plements system reconfiguration decisions. Figure 7.2 summarises the interactions

between the coordinator and the reconfiguration decisions enforcer. Decisions are

local to each system, but the coordinator, which is also local to each node, is capable

of acting in a centralised manner if needed. To illustrate the last point, our first

experiment (Section 7.4.1.1) presents and evaluates a centralised version of MREEF.

In Chapter 6 we have introduced and demonstrated the usefulness of several

power saving schemes (system reconfiguration decisions). Unfortunately, most of

those power saving schemes are either not well supported by today’s systems (inter-

connect speed scaling for example) or not fully implemented (memory size scaling)

in current systems. Consequently, unless expressly mentioned, all power saving

schemes (system reconfiguration decisions aiming to reduce the energy consumption

of the system) we apply are oriented toward the processor through the use of DVFS.

Using two different components for profiling the system (phase detection, phase

characterization, and phase identification) and implementing power saving schemes

makes our implementation very flexible enough to reflect the proposed methodology.

Users who are interested in integrating any power saving scheme of their choosing

only have to concentrate on that. More importantly, those power saving schemes can
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Figure 7.1: Overview of the way in which components of the roadmap are arranged

in MREEF.
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Coordinator: system profiling

implements phase detection; phase characterization; 

phase identification and prediction

Reconfiguration decisions enforcer

implements power saving schemes; 

captures system resource utilization

Operating system and other tools

Resource utilization

metrics 

System optimization 

decisions

Figure 7.2: MREEF architecture overview.

be directed toward the processor, memory, storage and communications subsystems.

7.3 Experimental Setup and Methodology

We have conducted several experiments with various configurations of MREEF un-

der multiple settings to demonstrate the practicality of our methodology for reducing

the energy consumption of HPC systems. In this section, we present our evaluation

platform along with experimental protocols and tools.

7.3.1 Evaluation platform description

7.3.1.1 Hardware

Our reference experimental testbed is the French large-scale platform called

Grid’5000 [Bolze et al. 2006]. Grid’5000, as depicted by Figure 7.3, is a distributed

experimental platform funded by the French Ministry of Research, regional coun-

cils, the French National Center of Scientific Research1 (CNRS), the French National

Institute for Research in Computer Science and Control2 (INRIA), and several uni-

versities. Grid’5000 is a nation-wide infrastructure distributed across 10 sites, con-

taining 30 clusters with nearly 7000 CPU cores, interconnected through 10Gbps

links supported by the Renater Research and Educational Network3.

Grid’5000 offers an extremely flexible experimental platform as users are free

to deploy their own computing environments (from selecting their own operating

system to defining CPU cores aggregation: clusters systems against cloud envi-

ronments) along with associated tools. Grid’5000 implements a general purpose

Application Programming Interface (API) that allows users to gather information

1http://www.cnrs.fr
2http://www.inria.fr
3http://www.renater.fr
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Figure 7.3: The Grid’5000 infrastructure. Each site is labeled by the name of the

city in which it is deployed.

– including processor, network, storage, and memory usage – from nodes of the

platform. More interestingly, Grid’5000 also provides a power monitoring API that

permits to retrieve on a user-defined granularity the power consumption logs for

specific nodes [Dias de Assuncao et al. 2010]. However, this feature is not available

for all nodes of the Grid’5000 platform as some nodes are not provided with power

monitoring units or wattmeters. Since in any research aiming to improve energy

efficiency, the ability to measure power consumption of compute devices is a pre-

requisite, the size of our experimental platform is limited by the number of nodes

whose power usage can be monitored. Therefore, depending on the number of mon-

itored nodes, in our experiments we use HPC clusters of 15 (60 CPU cores) to 34

(136 CPU cores) Intel Xeon X3440 servers (the exact figure will always be specified).

Each Intel Xeon server of our experimental support is provided with 4 cores, 16GB

of RAM and has DVFS enabled. Available frequency steps for each core are: 2.53

GHz, 2.40 GHz, 2.27 GHz, 2.13 GHz, 2.00 GHz, 1.87 GHz, 1.73 GHz, 1.60 GHz,

1.47 GHz, 1.33 GHz and 1.20 GHz.

Grid’5000 is not a full production environment, but its flexibility, high availabil-

ity, and the fact that we can easily reproduce experiments with identical settings

justify its use in our research. Furthermore, issues addressed on an experimental

platform such as Grid’5000 are equally relevant on any production environment.

7.3.1.2 Software and tools

As stated earlier, we use clusters of varied sizes with nodes operating under Linux

kernel 2.6.35. The Linux kernel 2.6.35 is a production kernel intended for everyday

use. On each system or node, we use perf_events API for accessing sensors related
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to Performance Monitoring Counters (PMCs), and retrieve disk and network usage

information from the Linux’s /proc/stat file.

Perf_events interface offers the advantage that it is included in the Linux ker-

nel. It provides a common subset of useful events that are available on modern

processors and allows for querying by any application. Currently, the documenta-

tion on perf_events is poor, but further information can be found in [Weaver 2013].

Python interface to R statistical software [R Core Team 2013] is used for performing

Principal Component Analysis (PCA) when needed.

Throughout the experiments, we used subsets of benchmarks representative of

HPC applications as well as real life HPC applications. The benchmark set is com-

posed of Lower-Upper Gauss-Seidel solver (LU), Block Tri-diagonal solve (BT), Con-

jugate Gradient (CG), Embarrassingly Parallel (EP), Integer Sort (IS), and Unstruc-

tured Adaptive mesh (UA) from NAS Parallel Benchmark suite [Bailey et al. 1991].

The set of real life applications includes Molecular Dynamic Simulation (MDS)

[Binder et al. 2004], the Advanced Research Weather Research and Forecasting

(WRF-ARW) model [Skamarock et al. 2005], the Parallel Ocean Program (POP)

X1 benchmark 4, and GeneHunter [Conant et al. 2002]. A short description of these

applications is as follows:

• Molecular Dynamics solves numerical Newton’s equations of motion for the

interaction of the many particles system.

• WRF-ARW is a fully compressible conservative-form non-hydrostatic atmo-

spheric model. It uses an explicit time-splitting integration technique to effi-

ciently integrate the Euler equation.

• POP is an ocean circulation model, the model solves the three-dimensional

primitive equations for fluid motions on the sphere under hydrostatic and

Boussinesq approximations.

• GeneHunter is a program for linkage analysis. It provides a wide range of

analyses for performing linkage and disequilibrium analyses. The backbone

of the system is the very rapid extraction of complete multipoint inheritance

information from pedigrees of moderate size.

HPC applications generally follow either the OpenMP (Open Multi-Processing)

or the Message Passing Interface (MPI) model of parallel programming. An appli-

cation built with the hybrid model of parallel programming can run on a computer

cluster using both OpenMP and MPI. We use the OpenMP version of the NAS paral-

lel benchmarks and the MPI version of the real life applications (MDS, WRF-ARW,

POP X1, and GeneHunter).

4The Parallel Ocean Program, http://climate.lanl.gov/Models/POP/index.shtml
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7.3.2 Experimental protocol and tools

Throughout this chapter, we compare MREEF our implementation of the method-

ology for reducing the energy consumption of HPC systems with the well known

on-demand and performance governors available to Linux platforms. As its name

indicates the performance governor will always ensure that the system operates at

the highest processor’s frequency available. The on-demand governor commits to of-

fer maximum performance whenever necessary and lowers the processor’s operating

frequency to reduce the energy consumption of the system whenever possible. This

mechanism is made possible through the Dynamic Voltage and Frequency Scaling

(DVFS) technology – as shown in Chapter 2, by reducing the processor voltage and

frequency one can significantly reduce its power usage. Note that throughout the

experiments the on-demand governor is left to its default configuration, which relies

on its “up threshold” parameter to make a decision whether or not it should increase

the frequency (the default value of that parameter is ‘80’).

Unlike energy reduction methodologies presented in Chapter 2, Linux’s on-
demand governor is system oriented and does not require any knowledge from appli-

cations being executed on the system. In addition, it takes into account the fact that

multiple applications can share the infrastructure. This makes Linux’s on-demand
governor the closest power reduction policy to our energy reduction methodology.

However, the difference is significant, our management policy does not stop with ad-

dressing the processor’s energy consumption, but goes further to take into account

other HPC subsystems or resources from memory to storage to communications

subsystems.

Linux operating system also provides a management policy dedicated to reduce

the system’s power usage: the powersave governor. One may wonder why we do not

compare our methodology with Linux’s powersave governor, but the reason is simple.

In the power save mode, the system runs at the lowest CPU frequency available,

which of course reduces its instant power usage. However, the pitfall is that in most

cases (e.g., when the workload being executed is either compute intensive, memory

intensive or mixed) workloads being executed will last much more longer, which in

turn increases their energy consumption, which is expressed as the product of power

and execution time.

7.4 Results Analysis and Discussion

7.4.1 MREEF: partial phase recognition related results

7.4.1.1 Centralized coordinator

This section evaluates a centralised version of our implementation of the method-

ology for reducing the energy consumption of an HPC systems. It is labelled as

centralised because a single node, which in following the model presented earlier

is referred to as the coordinator, is responsible for systems profiling related tasks.

In summary, the coordinator performs phase detection, phase characterization, and
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under different configurations.
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Figure 7.4: Phase tracking and partial recognition guided processor adaptation re-

sults. They are averaged over 20 executions of each workload under each system

configuration; they are normalized with respect to baseline execution “on-demand".

phase identification for all nodes. Management activities on other nodes boil down

to sending relevant data to the coordinator and implementing system reconfiguration

decisions. It is worth mentioning that the coordinator is not a dedicated node, so it

also participates in the execution of applications that the platform accommodates.

The centralised version of MREEF is evaluated on a 15 node cluster system (60

cores in total) on Grid’5000. We consider three management policies of the cluster of

interest. These policies are: “on-demand”, “performance”, and “MREEF”. Under on-

demand and performance policies, Linux’s on-demand and performance governors

are respectively enabled on each and every node of the cluster. The MREEF policy

corresponds to the configuration wherein MREEF is used.

During this initial experiment, MREEF uses the following techniques among

those described earlier herein: the EV-based phase detection mechanism for sys-

tem phase changes detection, the sensor-based phase characterization technique,

and partial phase recognition. Partial phase recognition is used as an alternative

means of phase prediction for on-the-fly system reconfiguration. Since all system

reconfiguration decisions are directed toward the processor through DVFS, we define

three operating levels for the processor according to classes/labels associated with

workloads: “high ” for compute intensive workloads, “medium” for memory intensive

workloads, and “low” which involves both IO intensive and communication intensive

workloads. Note that at the time we only had three workloads categories defined.

The “high” operating level is associated with the highest processor’s frequency avail-

able, i.e., 2.53 GHz on our platform. As opposite to the high operating level, the

low operating level operates at the lowest available processor’s frequency (1.20 GHz

on our platform). The medium operating level on our platform is set to 2.00 GHz.

Figure 7.4(a) depicts the normalised average energy consumption of the overall

cluster for each application under the three cluster’s configurations. Whereas Fig-
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ure 7.4(b) shows their execution time respectively. These results are normalised with

respect to the baseline execution (on-demand) and averaged over several executions

of each workload under each system configuration. Figure 7.4 indicates that our

management framework MREEF consumes in average 15% less energy than “per-

formance” and “on-demand” while offering nearly the same performance. For LU,

BT, and SP the average energy gain ranges from 3% to 6%; however, the maximum

amount of possible energy savings depends on the workload at hand and was 19%

for WRF-ARW.

From Figure 7.4(b), we see a performance loss of nearly 3% for LU and less

for the others. Performance loss with benchmarks comes from the fact that some

phases were wrongly identified as being memory intensive. However, these results

are similar to those observed in work using a methodology different from ours

[Lively et al. 2011]. In addition, these applications do not offer much opportuni-

ties for saving energy without degrading performance. Contrarily, the numerical

weather forecast model (WRF-ARW) has load imbalance which can help reduce its

energy consumption without a significant impact on its performance (in terms of

execution time) [Chen et al. 2005, Kimura et al. 2006].

Above results demonstrate the effectiveness of our methodology for reducing the

energy consumption of HPC systems through a centralised version of MREEF. Our

approach outperforms a Linux’s governor because the Linux’s “on-demand” governor

will not scale the processor frequency down unless the system’s load decreases below

a specific threshold. The problem at this point is that the processor’s load is in

general very high even when running memory intensive codes that do not necessarily

require the system’s full computational power. In this particular scenario, network

and disk intensive phases are too short (from milliseconds to a few seconds) and are

often considered as boundaries of memory and compute intensive phases. Hence, the

energy reduction mainly comes from scaling the processor’s down in phases which

according to the phase characterization and partial phase recognition mechanisms

are memory intensive.

The overhead resulting from our management is counted both in the program’s

execution time and energy consumption. From Figure 7.4, we can claim that the

overhead of our management policy is almost insignificant. However, a centralised

coordinator may bring a network overhead because of messages that are exchanged

between the coordinator and reconfiguration decisions enforcers which reside on

nodes of the platform.

7.4.1.2 Decentralized coordinator

Section 7.4.1.1 evaluated a centralised implementation of our methodology for reduc-

ing the energy consumption of HPC systems. This section evaluates the performance

of a decentralised implementation, where each and every node profiles itself in ad-

dition to implementing system reconfiguration decisions. For the evaluation, we set

up a twenty five node cluster on the Grid’5000 [Bolze et al. 2006] French large scale

experimental platform. The settings are the same as in the previous experiment,
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Figure 7.5: Phase tracking and partial recognition guided processor adaptation re-

sults for the decentralized version of MREEF. They are averaged over 20 executions

of each workload under each system configuration; they are normalized with respect

to baseline execution “on-demand".

i.e., we use the three processor operating levels defined in Section 7.4.1.1 and con-

sider three basic system configurations: “on-demand”, “performance” and “MREEF”.

The meaning associated to these system configurations is also the one given in Sec-

tion 7.4.1.1. However, as test applications, we use MDS and WRF-ARW model. In

this section, we do not use NAS Parallel benchmarks because they have low net-

work and disk activities in comparison with MDS and WRF. We further consider

two levels of system adaptation:

• system adaptation level one: In system adaptation level one, only processor re-

lated optimizations are performed, i.e., all system reconfigurations are directed

toward the processor through the use of DVFS.

• system adaptation level two: It embraces level one, and additionally considers

optimizing the interconnect and the disk.

(a) System adaptation level one: processor’s only optimization
With processor’s only optimization, the processor’s frequency is adjusted to either

“high”, “medium”, or “low” according to the system’s workload when partial phase

recognition is successful. Figure 7.5 offers an outline of the results in terms of energy

consumption (Figure 7.5(a)) and execution time (Figure 7.5(b)). Those graphics

indicate that MREEF saves up to 19% of the total energy consumption with less

than 4% performance degradation.

(b) System adaptation level two: processor, disk and network opti-
mization
In the level two system adaptation, we attempt to send disks to sleep mode and

reduce the interconnect speed when they are suspected not to be in use. Nodes are
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Figure 7.6: Phase tracking and partial recognition guided processor, disk, and net-

work adaptation results for a decentralized version of MREEF. They are averaged

over 20 executions of each workload under each system configuration; they are nor-

malized with respect to baseline execution “on-demand".

interconnected via 1Gbps links supporting the following modes: 10baseT Half/Full

duplex, 100baseT Half/Full, and 1000baseT/Full. During these experiments the link

speed is scaled down to 10baseT Full (10Mbps) when the network interconnect is

suspected not to be in use. It is worth mentioning that 1Gbps links consume a few

watts more than 100Mbps [Gunaratne et al. 2005]. Also, the operating system (OS)

is tuned to prevent unnecessary disk accesses regardless of the system configuration

(on-demand, performance, MREEF).

Figure 7.6 offers an outline of performance (energy consumption and execution

time) under different system configurations. These graphs suggest that considering

the processor along with the disk and network interconnect improves energy per-

formance of 24% with nearly the same performance degradation as with processor’s

only adaptation. In other words, reconfiguring the disk and the network interconnect

also contributes in reducing the energy consumption of the system.

Figure 7.4(b), Figure 7.5(b), and Figure 7.6(b) show that “on-demand” and “per-

formance” governors nearly achieve the same performance. This can be attributed to

the fact that Linux’s on-demand governor does not lower the processor’s frequency

unless the system’s load has decreased below a certain threshold. Figure 7.7 – where

the y-axis is the load percentage and the x-axis the execution time-line – offers a

graphical representation of load traces for one node of our system participating in

the computation of WRF-ARW under the on-demand system configuration. The

graphic clearly indicates that the processor’s load remains above 85% in which case

the on-demand governor have the same behaviour as the performance governor. A

similar observation applies to all our workloads; consequently, in the following we

only consider two system configurations: the on-demand configuration and the man-

aged configuration. Also, since network speed scaling is not supported by all nodes
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Figure 7.7: Load traces for one a node participating in the computation of WRF-

ARW under the on-demand configuration.

it limits the number of nodes that we can use for the experiments. Moreover, as disk

optimisation sometimes require tuning the system – which slightly departs from our

promise to provide a user friendly and generic methodology for improving energy

performance – we will be focusing on the processor subsystem. In the following,

unless expressly stated otherwise, we use the decentralised implementation of our

methodology for reducing the energy consumption of HPC systems.

7.4.1.3 Recognition threshold selection and energy performance

Thus far, we have been using a 10% recognition threshold, in this section, we inves-

tigate how that parameter influences the system’s power usage using WRF-ARW as

test application. Recall that an X% recognition threshold means that an ongoing

phase is recognised as a known phase if the already executed part of the ongoing

phase matches with X% (of the duration) of a known phase. In this section, we

investigate the influence of the recognition threshold on applications’ performance

and energy performance. In order to achieve this aim, we execute WRF-ARW on a

25 node cluster multiple times while varying the partial recognition threshold.

Figure 7.8, where the x-axis represents the recognition threshold and the y-

axis either the average energy consumption (Figure 7.8(a)) or the average execution

time (Figure 7.8(b)) summarises the impact of the partial recognition threshold on

both the execution time and the energy consumption of WRF-ARW. According to

Figure 7.8, a partial phase recognition threshold of 15% is more effective both in

terms of energy consumption and execution time for WRF-ARW.

Overall, the partial recognition threshold depends on the target objective; it may

also depend on the application at hand. The partial recognition threshold has and

impact on adequate reconfiguration as well as inadequate reconfiguration decisions.

In fact, if adequate decisions are made earlier enough, one can save more energy;

inversely, making a wrong decision earlier in the execution of a phase can result in

significant energy waste and/or performance degradation.
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Figure 7.8: Influence of the partial phase recognition threshold on WRF-ARW’s

performance (execution time and energy consumption).

7.4.1.4 Performance analysis on a shared platform

Our approach being system oriented, it can equally be used on shared infrastruc-

tures; that capability is investigated in this section. To accomplish this, we consider

two test applications, which simultaneously share a 24 node cluster system, the nu-

merical whether research and forecasting model WRF-ARW [Skamarock et al. 2005]

and Block Tri-diagonal solver (BT) [Bailey et al. 1991] from NAS parallel bench-

mark. The number of nodes is limited to 24 because we want them to equally share

the platform. Hence, each application runs on 12 nodes and spans 48 processes. As

for previous experiments, we execute those applications multiple times and compute

their average power consumption and execution time. Figure 7.9, where the x-axis

represents the percentage of energy consumption or execution time compares our

management policy where MREEF is used with the baseline on-demand configu-

ration. In Figure 7.9, a positive value along the y-axis indicates in proportion the

increase in energy consumption or program execution time resulting from the use of

MREEF. Conversely, a negative value along the y-axis indicates in proportion the

reduction in energy consumption or program execution time resulting from the use

of MREEF. The same goes for Figure 7.10, and Figure 7.11.

Although BT shows relatively bad performance (for the same reasons that we

discussed earlier herein) in terms of execution time, our management policy still

offers good results.

7.4.1.5 Overhead analysis

Reusing known phases often require storing optimal configurations along with an

instance of those recurring phases for future utilisation. Consequently; one may

be interested in knowing how much disk space is used for that purpose. Basically,

disk space required for storing known phases is proportional to their number i.e.,

if there is a thousand of known phases, one will probably store all of them. Using
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Figure 7.9: Comparison of our management policy in terms of programs’ energy

consumption and execution time with baseline on-demand system configuration.

HPC workloads, we have defined earlier herein six categories/classes of workloads

(compute-intensive, memory-intensive, mixed, IO-intensive, network-transmit, and
network-receive) into which we attempt to classify all the phases we detect on our

system. Ideally, we will have at most 6 phases stored because we do not keep idle

phases. Note that by storing a phase we mean storing its reference and representative

execution vectors along with the average distance of all EVs to the reference vector

of the phase and its length (duration) for partial phase recognition if needed.

In practice, there can be more than six phases stored; this is explained by the fact

that there is no exact match between two phases. We use the off-line phase identifi-

cation scheme (Section 6.2.3) to limit the number of stored phases. Throughout our

experiments, which last on average 72 hours, (this holds for all the experiments we

present in this chapter), we store at most 10 phases per node, which is insignificant.

Consequently, those information are kept in memory at runtime.

7.4.2 Execution vectors’ classification related results

Section 7.4.1 demonstrates the effectiveness of the proposed MREEF.The evaluated

implementation relies upon partial phase recognition and the sensor-based phase

characterization scheme (Section 5.3.1) to enable reuse of optimal configuration in-

formation for recurring phases. Although effective, it might suffer from the partial

recognition threshold selection and can often lead to significant performance degra-

dation. This section presents a modified version of MREEF; it takes the partial

phase recognition threshold selection away from users hands by using the EV classifi-

cation mechanism. Instead of predicting an entire phase as partial phase recognition

does, it predicts the behaviour of the system for the next time unit (a second to be

more precise) through EVs classification and the use of a principle widely exploited

by caching algorithms (see Section 6.2.2 for details).

In the following, experiments we present either use the Last Level Cache per

Instruction Ratio (LLCRIR) based phase characterization scheme or the majority-

rule-based phase characterization algorithm for phase characterization instead of the
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sensor-based phase characterization scheme.

7.4.2.1 Last level cache references per instruction ratio related results

In experiments whose results are presented in this section, we are more interested

in knowing the long run behaviour of MREEF. To accomplish this, we consider a

28 node cluster system made up on Grid’5000. At this time all workloads cate-

gories/classes (compute-intensive, memory-intensive, mixed, IO-intensive, network-
transmit, and network-receive) defined in Chapter 5 apply, but in this specific exper-

iment mixed and compute-intensive workloads are treated alike. Treating mixed and

compute intensive workloads differently from memory intensive workloads, permits

us to easily notice the impact of reconfiguration decisions taken through MREEF. As

discussed earlier, the processor is the only subsystem that is reconfigured. Workloads

labelled either as compute-intensive or mixed are executed at the highest available

processor’s frequency (2.53 GHz on our cluster), while those labelled as memory-

intensive are executed at a lower frequency (2.27 GHz) and all other at the low-

est available frequency (1.20 GHz). Our test workloads include Block Tri-diagonal

solver (BT), Conjugate Gradient (CG), Integer Sort (IS), Scalar Penta-diagonal

solver (SP), and Embarrassingly Parallel (EP) from NAS Parallel Benchmark suite

[Bailey et al. 1991].

We next randomly run workloads just listed 55 times each (nearly 72 hours in

total without any idle period) while letting MREEF determine by itself the adequate

label through setting the appropriate processor frequency at which each type of

workload should be executed. Each node makes its own decisions regardless of the

others.

Initially, the processor’s frequency on each and every node is the highest avail-

able. This means that the first instance of each workload is always considered as

being compute intensive because at that time its execution pattern is unknown to

the management framework MREEF. Although treating first instances of workloads

as compute intensive is arguable, we believe that in doing so we guarantee a certain

quality of service to workloads that are actually compute intensive. As the first in-

stance of a workload is treated as compute intensive (corresponds in practice to being

executed at the highest frequency), it also serves as a reference execution for per-

formance comparison (energy consumption and execution time reduction/increase)

and is referred to as the baseline execution.

Figure 7.10 offers an outline of the difference between the energy consumption

(respectively the execution time) of the baseline execution of each workload and the

average energy consumption (respectively the average execution time) of all other

instances of the corresponding workload. For compute intensive (EP) and mixed

(BT and SP) workloads the difference is insignificant, meaning that their energy

consumption as well as their execution time is nearly constant among instances.

However, we can observe a gab, up to 14% difference between the energy consump-

tion of the baseline execution and the average energy consumption of other instances

for memory intensive workloads such as CG and IS. This comes at the expense of
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Figure 7.10: Average energy variations and execution time increase with respect to

the baseline execution.

increased execution time; however, performance degradation is less than 7%.

What we can learn from this experiment is that even in the long run, our man-

agement policy can effectively take advantage of workload variability in a high per-

formance computing system for reducing its power consumption. More interestingly,

it can distinguish relevant classes of workloads without any information about actual

workloads and any human intervention.

7.4.2.2 Majority-rule-based phase characterization related results

In the previous section, we have shown that even at long run, MREEF performs

well. However, our target objective remains reducing the energy consumption while

offering “good” performance over a wide range of applications. This section still

evaluates our implementation of the methodology for reducing the energy consump-

tion of HPC systems: MREEF. However, this other version differs from the previous

in that it uses the majority-rule-based algorithm for phase characterization. In the

evaluation presented here, a 34 node cluster system (136 cores in total) set up on

the French large-scale experimental platform Grid’5000 is shared by multiple work-

loads. Class B problem set of benchmarks (CG and MG) along with Molecular

Dynamics Simulation (MDS), the Advance Research Weather Research and Fore-

casting (WRF-ARW) model, Parallel Ocean Program (POP) X1 benchmark, and

GeneHunter are used as test workloads.

Due to their significantly long execution time, MDS and WRF-ARW are exe-

cuted on 25 nodes (100 cores), NAS benchmarks on 9 nodes (36 cores in total), and

POP X1 and GeneHunter on 4 nodes (16 cores). Some applications are launched

simultaneously when available resources can accommodate them. This is because

WRF-ARW and MDS run on 25 nodes and they cannot be run at the same time.

So in parallel with one of them either NAS Parallel Benchmarks, POP X1, or Gene-

Hunter are executed. As for previous experiments, we compare our management

policy with Linux’s on-demand system management policy.

Figure 7.11 compares our management policy to the “baseline” execution, in
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Figure 7.11: Comparison of MREEF (execution time and energy consumption) with

the baseline on-demand configuration.

which all nodes are managed by the Linux on-demand governor. As expected,

performance degradation depends on the workload at hand, but remains bellow 7%.

We notice an energy improvement of up to 15% in comparison with the baseline

execution.

Still from Figure 7.11, we can notice that the energy savings for WRF-ARW

and MDS are slightly smaller than those in Section 7.4.1.2, that make sense because

processor’s operating frequencies are not the same in the two experiments. For ex-

periments presented in this section, workloads belonging to the memory-intensive

and mixed classes (they are labelled respectively as memory-intensive and mixed)

are executed at 2.13GHz and 1.87GHz respectively. While compute-intensive and all

other classes are always executed at the highest and lowest available processor fre-

quencies respectively. The rationale behind using multiple and different frequencies

is to show that although there might be opportunities for reducing the processor’s

frequency to save energy, one should not forget that we are in high performance com-

puting environments. Roughly speaking some frequencies might not be appropriate

for certain type of workloads.

Figure 7.11 also confirms our assumption that memory-intensive code offers much

more energy savings opportunities than compute-intensive or mixed code (MG, POP

X1 and GeneHunter). Note in passing that POP’s performance also relies on the

network5. Table 7.1 where rsd. stands for Relative Standard Deviation reveals

negligible variabilities in achieved results (execution time and energy consumption),

which demonstrates the consistency of our multi-resource energy efficient framework

(MREEF).

5Further details can be found in its documentation at http://climate.lanl.gov/Models/POP
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Table 7.1: Relative standard deviation (rsd.) of the energy consumption and exe-

cution time of each workload under our two system configurations.

Workloads Baseline configuration MREEF configuration

rsd. execution rsd. energy rsd. execution rsd. energy

time (%) consumption (%) time (%) consumption (%)

CG 3 2 0.51 4

MG 0.2 12 2 13

POP 2 2 0.53 2

GeneHunter 0.1 0.1 0.12 1

WRF 0.88 0.80 1 1

MDS 0.19 0.52 0.63 0.56

7.5 Extension to cloud environments

HPC were historically known to suffer from performance degradation in cloud de-

ployments, especially those that use virtualisation technologies. However, improve-

ments in virtualisation technologies have significantly reduced the performance gab

between physical and virtual deployments. It is therefore not surprising that HPC

users are shifting some workloads to cloud in order to benefit from flexibility, cost

efficiencies and improved resource sharing that cloud provides. For example, the

XLcloud project objective is to propose tools that facilitates HPC in cloud deploy-

ments6. Despite its cost efficiency, cloud computing suffers from multiple challenging

issues including security and power consumption just to name a few. Previous sec-

tions demonstrate the effectiveness of our MREEF in “standard” HPC deployments

(physical deployments). This section investigates its performance in cloud environ-

ment including HPC in cloud deployments.

7.5.1 Context description and results

Dynamic resource allocation in virtualised systems can be combined with Dynamic

Voltage Scaling (DVS) or more generally DVFS for energy reduction purposes

[Kim et al. 2009, von Laszewski et al. 2009, Rodero et al. 2010]. At its creation, a

Virtual Machine (VM) is provided with a certain processing capacity. However, as

the workload may vary in time, VM reconfiguration based on monitoring and work-

load prediction can reduce the power wasted due to workload variability. Workload

prediction often follows basic models (request arrival model for web based services

for example) and also requires thorough understanding of the service being offered

by the virtual machine i.e., requires knowledge of the application being executed in

the VM. This rarely reflects the reality, in fact, datacenter operators are often not

given the right to look into the actual content of VMs deployed on their infrastruc-

ture. The system’s load can be used as an indicator for DVFS adaptation, but VMs

demands within the same physical node may often be contradictory, requiring more

complex analysis before using the processor’s load.

6http://xlcloud.org
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In this section, we address the energy consumption issue in a cloud environment

where physical nodes may host VMs with contradictory demands (in terms of pro-

cessing capabilities). And within which the cloud infrastructure holder is not given

the right to look into the content of deployed VMs for energy efficient decision mak-

ing. Roughly speaking, he/she does not have any information about VMs actual

contents. In summary, our scenario boils down to investigating DVFS use in cloud

environment when the platform holder lacks information about deployed VMs. To

accomplish this, we deploy 8 virtual machines on a single compute node with 8 CPU

cores. Each virtual machine as well as the physical host operates under the Linux

kernel 2.6.35.

We next randomly run each and every one of the following workloads 20 times

in different system configurations (nearly 72 hours for each system configuration):

(1) a transactional database system emulated through sysbench benchmark7 and

MySQL8; (2) a web application emulated through siege benchmark tool9 and Apache

HTTP server 10, (3) Conjugate Gradient (CG) from NAS Parallel Benchmark suite;

and (4) an application that performs intensive IO operations (read and write) us-

ing IOzone11. Among these workloads, CG reflects high performance computing

workloads, while the others are representative of cloud workloads.

Initially, to ensure that the workload of a VM does not change during the exper-

iments, we draw a random execution order of these applications in each VM. The

draw is performed in such a way that each and every application is exactly executed

20 times in each VM. By randomly selecting workloads, we simulate the behaviour

of a production system in the sense that at a given point in time, services offered

by VMs hosted on the same node may be of different types.

We further consider three system configurations: (i) on-demand, the configu-

ration wherein the operating frequency of the processor is set to the maximum

available; (ii) powersave, the configuration wherein the operating frequency of the

processor is set to the minimum available; and (iii) MREEF, the configuration where

it is used to detect phases of execution of the system, characterize them and adapt

the processor’s operating frequency accordingly. During these experiments, MREEF

uses the majority-rule-based phase characterization algorithm for phase characteri-

zation and on-line EVs classification for workload prediction.

Figure 7.12, where we compare performance of MREEF with on-demand and

powersave system configurations, offers an outline of our most recent results.

The comparison of MREEF with powersave in this case is motivated by the fact

that cloud workloads are traditionally not processor hungry. Figure 7.12 indicates

that the energy consumption of MREEF is nearly 8% less than that of on-demand
with nearly no performance degradation. We can also observe that MREEF out-

performs the powersave system configuration since it does not only improve the

7Sysbench: http://sysbench.sourceforge.net
8MySQL: http://www.mysql.com
9Siege: http://www.joedog.org/siege-home

10Apache: http://httpd.apache.org
11IOzone: http://www.iozone.org



94
Chapter 7. Framework-based Implementation and Experimentation:

Analysis and Discussion

-1 %

0 %

1 %

2 %

3 %

4 %

5 %

6 %

7 %

8 %

Energy consumption Execution time

C
o
m

p
ar

is
o
n
 w

it
h
 M

R
E

E
F

 c
o
n
fi

g
u
ra

ti
o
n on-demand

powersave

Figure 7.12: MREEF versus powersave and on-demand in a cloud environment.

execution time, but it also consumes less energy. These recent results show that

MREEF is a potential solution to the energy consumption problem that cloud HPC

systems (cloud systems accommodating HPC workloads) are likely to face. In fact,

when provided with MREEF, cloud systems that are over provisioned to accom-

modate HPC applications will experience less energy inefficiency when the type of

workload changes from HPC to cloud and vice versa.

7.6 Conclusions

In this chapter, we presented Multi-Resource Energy Efficient Framework (MREEF),

an implementation of our methodology for reducing the energy consumption of HPC

systems. We demonstrate how our methodology can be used to effectively reduce

the power consumption of real life HPC systems. We considered implementations

of MREEF that use different architectures (centralised and decentralised) and im-

plemented stages of the energy reduction methodology differently. The point in

implementing stages of the methodology differently is not limited to providing a

simple, effective, and user friendly (no specific knowledge needed) implementation.

However, it implicitly emphasises that the methodology only provides guidelines for

reducing the energy consumption. We also show that in addressing the energy con-

sumption problem in HPC one can go beyond processor frequency scaling to fully

take advantage of power saving opportunities offered by other HPC subsystem (disk,

network interconnects). Note that in Chapter 6 we showed that provided the right

technology, one can equally relies upon the memory subsystem to reduce energy

consumption of the overall system.

We conducted experiments considering workloads representative of HPC systems

and HPC clusters of varied sizes. Comparison of MREEF’s performance with base-

line unmanaged execution shows that MREEF can reduce the energy consumption

of up to 24% with less than 7% performance degradation with real life workloads.
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More interestingly, this is achieved without a priori information about workloads

being executed. Results analysis show that MREEF is consistent over time and

has little overhead on system’s performance (Figure 7.10 and Table 7.1). They

also indicate that compute intensive and mixed workloads may not offer as much

energy reduction opportunities as memory intensive, IO, and communication inten-
sive workloads. MREEF offers better energy performance when the infrastructure

is executing applications which can be broken into execution phases of different

types. Experiments on HPC clusters of varied sizes show that, in addition of being

completely automated, MREEF can easily be extended to power-aware clusters of

larger size for optimizing their energy consumption; given that it does not require

any a priori knowledge of applications sharing the infrastructure.

Although initially designed for HPC systems, we show through experiments that

MREEF or more generally our methodology for reducing the energy consumption of

HPC systems is actually not limited to HPC systems. Results in cloud environments

are both encouraging and convincing.
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This chapter concludes work presented in this document. The first section sum-

marises the main contributions of this thesis, while the second presents future di-

rections.

8.1 Conclusions

The main objective of this thesis was to propose a software approach that com-

bines system profiling and green capabilities for improving the energy efficiency of

large scale distributed systems. To achieve that objective, we focused on High Per-

formance Computing (HPC) systems that we modelled as a set of computing and

storage nodes/systems, excluding network equipments due to their usually constant

power consumption.

Firstly, we reviewed the state of the art on techniques for reducing the energy

consumption of HPC along with their limitations. Secondly, we proposed a method-

ology for reducing the energy consumption in the form of three complementary

modules or steps including (i) phase detection, (ii) phase characterization, and (iii)

phase identification and system adaptation/reconfiguration.

The proposed methodology offers, among other benefits, the advantage that it

is independent from any individual application as it examines runtime execution

patterns of a system, instead of considering the individual applications sharing the

platform. It then allows on-line reconfiguration of subsystems, including processor,

memory, storage and communication to meet users’ requirements while reducing the

overall energy consumption of the computing infrastructure. As the methodology

focuses on the system, it does not need any a priori information about applications

sharing the computing infrastructure, and can be used by non-experts without great

effort.

At phase detection level, we proposed and evaluated two phase-detection

methodologies. The first methodology, which we refer to as “power-based ”, detects

phase changes in the runtime behaviour of a system relying on its power consump-

tion. The power-based approach sometimes fails because of inaccuracy in power
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measurements, hence rendering it difficult to on-line use. The second approach

called “EV-based” is an on-line phase detection mechanism that works with the

concept of Execution Vector (EV). The EV-based phase detection approach suits

best our needs because it is on-line, accurate for both program and system phase

detection, and has a negligible overhead. As the concept of phases is relative, the

EV-based phase detection, similar to techniques presented in Section 2.3, uses a

detection threshold to determine phase changes.

For phase characterisation, we propose three workload/phase characterisation

schemes which are: “sensor-based”, last level cache references per instructions based

(“LLCRIR-based”), and principal component analysis based (“PCA-based”) phase

characterisation techniques. Relying on these phase characterisation schemes, we

propose two phase characterisation algorithms: the first basically applies the PCA-

based phase characterisation techniques and then the LLCRIR if the PCA-based

fails to characterise the phase. The second is a majority-rule-based algorithm; it is

majority-rule-based because to a given phase it applies three different phase char-

acterisation schemes and uses the majority rule to determine the appropriate. Al-

though those two phase characterization algorithms nearly have the same charac-

terization accuracy, we use the majority-rule-based algorithm because it can easily

take advantage of any improvements in one of our three characterization schemes.

Finally, at the phase identification and system reconfiguration stage, we proposed

two on-line phase identification and prediction techniques and an off-line phase iden-

tification. The proposed on-line phase identification techniques including “partial

phase recognition” and “on-line EV classification” also serve as alternative means to

phase prediction. They differ from existing phase prediction techniques in two ways:

(i) they do not require any knowledge from the workload being executed and (ii)

can predict the upcoming behaviour of a system running multiple workloads. The

main drawback of partial phase recognition lies on the fact that users must select the

partial recognition threshold. On-line EV classification mitigates user intervention

by taking the selection of the partial recognition threshold away from users hands.

The off-line phase identification permits to identify phases that have completed. It

is used for preventing unnecessary phase characterisation and redundancies among

stored phases. Nevertheless, it can also be used in a program simulation context.

We also proposed a set of non-conventional power saving schemes and investigated

their usefulness in real-life systems. Those include: (a) platform selection through

energy prediction, (b) memory size scaling, and (c) CPU core switch on/off.

We proposed a software framework called Multi-Resource Energy Efficient

Framework (MREEF) as an implementation of our methodology for reducing the

energy consumption of large-scale and distributed systems. It is completely au-

tomated, coordinated, fully scalable, and user friendly (easy to use and does not

require any a priori knowledge from the users) as suggested by the energy reduction

methodology. We demonstrated the effectiveness of MREEF through real life experi-

ments on the French large-scale experimental platform Grid’5000 using real life HPC

applications and benchmarks generally accepted by the HPC community. Compari-

son with baseline execution reveals that MREEF reduces the energy consumption of
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the overall infrastructure to up to 24% with less than 7% performance degradation

for real life applications. We also conducted experiments through which we showed

that MREEF is consistent over time. This means that it accurately identifies vari-

abilities in HPC workloads and takes management decisions accordingly. We also

demonstrated that MREEF fully takes advantage of all power aware technologies

available to HPC subsystems from the processor to the memory to storage and com-

munication subsystems. Cloud HPC environments are gaining space, MREEF also

responds to energy consumption challenges they face; results of its evaluation in

cloud HPC environments showed that it fully takes advantage of workloads variabil-

ity in cloud environments as well as HPC systems.

8.2 Future directions

While in this thesis we focused on proposing a general purpose methodology for re-

ducing the energy consumption of HPC systems, future work is needed to extend the

methodology towards a performance-oriented management framework. The added

value of such a framework would be the fact that instead of reconfiguring the system

through power saving schemes, one will make performance optimisation decisions.

Proposed algorithms and techniques can potentially be applied to other type of envi-

ronments. For example, the last contribution of Chapter 7 investigated their use in

cloud HPC environments or more generally cloud environments. Nevertheless, more

experiments and developments still need to be conducted in cloud environments.

In fact, the extension to cloud environments opens the way to new power saving

schemes such as Virtual Machine (VM) migration and/or consolidation.

A venue of future research concerns the introduction of a feedback mechanism. A

feedback mechanism along with the energy prediction methodology can help deter-

mine whether a power saving scheme will be effective before actually applying that

power saving scheme to the system. For example, one may be interested in know-

ing whether scaling the processor down will actually reduce the systems’ energy

consumption. Speaking of power saving schemes, a future research direction can in-

vestigate how power saving schemes such as memory size scaling can be supported in

today’s systems. That would require addressing the following points among others:

• Appropriate selection of RAM (Random Access Memory) blocks where the

data gets stored such that unused RAM can be turned off without compro-

mising on the timing performance;

• Load prediction and time taken to turn on and use the RAM.

Phase detection often serves as a start point for program simulation since it can

be used to identify simulation points. We propose the EV-based phase detection

methodology in Chapter 4 and show how it can be used for selecting program sim-

ulation points. Further research efforts can be directed toward program simulation

to investigate the use of EV for program simulation. One of the basic questions will
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consist of finding out how accurate is the estimated result from selected simulation

points relative to the full simulation result.
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System Profiling and Green Capabilities for Large Scale

and Distributed Systems

Nowadays, reducing the energy consumption of large scale and distributed infras-

tructures has truly become a challenge for both industry and academia. This is

corroborated by the many efforts aiming to reduce the energy consumption of those

systems. Initiatives for reducing the energy consumption of large scale and dis-

tributed infrastructures can without loss of generality be broken into hardware and

software initiatives.

Unlike their hardware counterpart, software solutions to the energy reduction

problem in large scale and distributed infrastructures hardly result in real deploy-

ments. At the one hand, this can be justified by the fact that they are application

oriented. At the other hand, their failure can be attributed to their complex na-

ture which often requires vast technical knowledge behind proposed solutions and/or

thorough understanding of applications at hand. This restricts their use to a lim-

ited number of experts, because users usually lack adequate skills. In addition,

although subsystems including the memory are becoming more and more power

hungry, current software energy reduction techniques fail to take them into account.

This thesis proposes a methodology for reducing the energy consumption of large

scale and distributed infrastructures. Broken into three steps known as (i) phase

identification, (ii) phase characterization, and (iii) phase identification and system

reconfiguration; our methodology abstracts away from any individual applications

as it focuses on the infrastructure, which it analyses the runtime behaviour and

takes reconfiguration decisions accordingly.

The proposed methodology is implemented and evaluated in high performance

computing (HPC) clusters of varied sizes through a Multi-Resource Energy Effi-

cient Framework (MREEF). MREEF implements the proposed energy reduction

methodology so as to leave users with the choice of implementing their own system

reconfiguration decisions depending on their needs. Experimental results show that

our methodology reduces the energy consumption of the overall infrastructure of up

to 24% with less than 7% performance degradation. By taking into account all sub-

systems, our experiments demonstrate that the energy reduction problem in large

scale and distributed infrastructures can benefit from more than “the traditional”

processor frequency scaling. Experiments in clusters of varied sizes demonstrate that

MREEF and therefore our methodology can easily be extended to a large number

of energy aware clusters. The extension of MREEF to virtualized environments like

cloud shows that the proposed methodology goes beyond HPC systems and can be

used in many other computing environments.
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