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Résumé

Le démélange spectral est un des sujets majeurs de ’analyse d’images hyperspectrales. Ce probléme consiste &
identifier les composants macroscopiques présents dans une image hyperspectrale et & quantifier les proportions (ou
abondances) de ces matériaux dans tous les pixels de I'image. La plupart des algorithmes de démélange suppose un
modéle de mélange linéaire qui est souvent considéré comme une approximation au premier ordre du mélange réel.
Cependant, le modéle linéaire peut ne pas étre adapté pour certaines images associées par exemple a des scénes
engendrant des trajets multiples (foréts, zones urbaines) et des modéles non-linéaires plus complexes doivent alors
étre utilisés pour analyser de telles images.

Le but de cette thése est d’étudier de nouveaux modéles de mélange non-linéaires et de proposer des algorithmes
associés pour l'analyse d’images hyperspectrales. Dans un premier temps, un modéle paramétrique post-non-
linéaire est étudié et des algorithmes d’estimation basés sur ce modéle sont proposés. Les connaissances a priori
disponibles sur les signatures spectrales des composants purs, sur les abondances et les paramétres de la non-
linéarité sont exploitées a l'aide d’une approche bayesienne. Le second modéle étudié dans cette thése est basé
sur ’approximation de la variété non-linéaire contenant les données observées a l'aide de processus gaussiens.
L’algorithme de démélange associé permet d’estimer la relation non-linéaire entre les abondances des matériaux et
les pixels observés sans introduire explicitement les signatures spectrales des composants dans le modéle de mélange.
Ces signatures spectrales sont estimées dans un second temps par prédiction & base de processus gaussiens.

La prise en compte d’effets non-linéaires dans les images hyperspectrales nécessite souvent des stratégies de démélange
plus complexes que celles basées sur un modéle linéaire. Comme le modéle linéaire est souvent suffisant pour ap-
procher la plupart des mélanges réels, il est intéressant de pouvoir détecter les pixels ou les régions de ’image ou ce
modéle linéaire est approprié. On pourra alors, aprés cette détection, appliquer les algorithmes de démélange non-
linéaires aux pixels nécessitant réellement 'utilisation de modéles de mélange non-linéaires. La derniére partie de
ce manuscrit se concentre sur ’étude de détecteurs de non-linéarités basés sur des modéles linéaires et non-linéaires
pour 'analyse d’images hyperspectrales.

Les méthodes de démélange non-linéaires proposées permettent d’améliorer la caractérisation des images hyperspec-
trales par rapport au méthodes basées sur un modéle linéaire. Cette amélioration se traduit en particulier par une
meilleure erreur de reconstruction des données. De plus, ces méthodes permettent de meilleures estimations des
signatures spectrales et des abondances quand les pixels résultent de mélanges non-linéaires. Les résultats de simu-
lations effectuées sur des données synthétiques et réelles montrent 'intérét d’utiliser des méthodes de détection de
non-linéarités pour 'analyse d’images hyperspectrales. En particulier, ces détecteurs peuvent permettre d’identifier
des composants trés peu représentés et de localiser des régions ou les effets non-linéaires sont non-négligeables (om-
bres, reliefs,...). Enfin, la considération de corrélations spatiales dans les images hyperspectrales peut améliorer les

performances des algorithmes de démélange non-linéaires et des détecteurs de non-linéarités.






Abstract

Spectral unmixing is one the major issues arising when analyzing hyperspectral images. It consists of identifying
the macroscopic materials present in a hyperspectral image and quantifying the proportions of these materials in
the image pixels. Most unmixing techniques rely on a linear mixing model which is often considered as a first
approximation of the actual mixtures. However, the linear model can be inaccurate for some specific images (for
instance images of scenes involving multiple reflections) and more complex nonlinear models must then be considered
to analyze such images.

The aim of this thesis is to study new nonlinear mixing models and to propose associated algorithms to analyze
hyperspectral images. First, a post-nonlinear model is investigated and efficient unmixing algorithms based on this
model are proposed. The prior knowledge about the components present in the observed image, their proportions
and the nonlinearity parameters is considered using Bayesian inference. The second model considered in this work is
based on the approximation of the nonlinear manifold which contains the observed pixels using Gaussian processes.
The proposed algorithm estimates the relation between the observations and the unknown material proportions
without explicit dependency on the material spectral signatures, which are estimated subsequentially.

Considering nonlinear effects in hyperspectral images usually requires more complex unmixing strategies than those
assuming linear mixtures. Since the linear mixing model is often sufficient to approximate accurately most actual
mixtures, it is interesting to detect pixels or regions where the linear model is accurate. This nonlinearity detection
can be applied as a pre-processing step and nonlinear unmixing strategies can then be applied only to pixels requiring
the use of nonlinear models. The last part of this thesis focuses on new nonlinearity detectors based on linear and
nonlinear models to identify pixels or regions where nonlinear effects occur in hyperspectral images.

The proposed nonlinear unmixing algorithms improve the characterization of hyperspectral images compared to
methods based on a linear model. These methods allow the reconstruction errors to be reduced. Moreover, these
methods provide better spectral signature and abundance estimates when the observed pixels result from nonlinear
mixtures. The simulation results conducted on synthetic and real images illustrate the advantage of using nonlin-
earity detectors for hyperspectral image analysis. In particular, the proposed detectors can identify components
which are present in few pixels (and hardly distinguishable) and locate areas where significant nonlinear effects
occur (shadow, relief, ...). Moreover, it is shown that considering spatial correlation in hyperspectral images can

improve the performance of nonlinear unmixing and nonlinearity detection algorithms.
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Spectral unmixing notations

R number of endmembers

r endmember index

N number of pixels

n pixel index

L number of spectral bands
14 band index

y pixel spectrum

a abundance vector

m, rth endmember spectrum

M  endmember matrix

Sampling notations
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k . k
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Usual distributions
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N (m,0?) Gaussian distribution with mean m and variance o2
Ne(m,0?) truncated Gaussian distribution, whose support is E
and with hidden mean m and hidden variance o
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Introduction (in French)

Contexte et problématique de la thése

Le travail de thése présenté dans ce manuscrit a été effectué a I'Institut de Recherche en Informatique de Toulouse
(IRIT), dans I’équipe “Signal et Communication”. Cette équipe posséde une forte expertise dans le développement
de méthodes de traitement d’images hyperspectrales et le travail de recherche réalisé pendant cette thése s’inscrit
naturellement dans la continuité des travaux effectué par Nicolas Dobigeon et Olivier Eches sur le démélange spectral
linéaire. Cette thése a été financée pour une durée de trois ans par la Direction Générale de I’Armement (DGA). Ce
manuscrit présente de nouveaux modéles non-linéaires et algorithmes associés pour le démélange spectral d’images
hyperspectrales. Le démélange spectral (SU pour spectral unmizing) est un probléme de séparation de sources
qui suscite un fort intérét depuis les derniéres décennies dans les domaines du traitement du signal et des images.
Il consiste & extraire de données hyperspectrales (ici d’une image), les composantes spectrales des composants
macroscopiques purs contenus dans les données et appelées endmembers et & identifier leurs interactions appelés
mélanges. Le démélange spectral, comme la plupart des problémes de séparation de sources, est un probléme
difficile et mal-posé. Pour réduire la complexité du probléme, la plupart des travaux de la litérature sont basés
sur un modéle de mélange linéaire (LMM pour linear mizing model), considéré comme une premiére approximation
du modéle de mélange réel. Ce modéle est dit linéaire dans le sens ou le spectre observé d’un pixel mélangé
résulte d’une combinaison linéaire des endmembers. Cependant, cette approximation peut étre trop éloignée du
modéle réel pour certaines images et des modéles plus complexes doivent étre utilisés pour dépasser les limitations
intrinséques du LMM. Plusieurs modéles de mélanges non-linéaires (NLMMSs pour nonlinear mizing models) pour le
démélange spectral ont été proposés pour caractériser les effets non-linéaires qui peuvent apparaitre dans les images
hyperspectrales. A cause de la grande diversité de ces effets, la conception et/ou le choix d’un modéle approprié au
probléme de démélange est difficile. Les récents travaux de la litérature se concentrent sur de nouveaux modéles
non-linéaires et algorithmes de démélange associés.

Structure du manuscrit

Le premier chapitre de ce manuscrit présente un modéle post-non-linéaire pour le démélange spectral non-linéaire.
Le modeéle post-non-linéaire polynomial (PPNMM) étudié permet de modéliser des non-linéarités qui peuvent dif-
férer d’un pixel a 'autre. Une propriété importante de ce modéle est que la non-linéarité de chaque pixel est
caractérisée par un seul paramétre. De plus, ce paramétre est nul si le modéle de mélange sous-jacent est linéaire.
La premiére partie de ce chapitre se concentre sur le probléme de démélange dans le cas ou les signatures spectrales
des composants purs de I'image sont connues. Le premier algorithme développé est constitué d’un modéle bayésien
hiérarchique couplé & des méthodes de simulation MCMC (Markov chain Monte Carlo). Deux autres algorithmes
d’optimisation sont également proposés pour résoudre le probléme avec un colt calculatoire réduit par rapport a

I’algorithme bayésien. La flexibilité du modéle PPNMM et les performances des trois méthodes sont analysées a
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I’aide de simulations réalisées sur des données synthétiques et réelles. La seconde partie du premier chapitre étudie
un nouveau modéle bayésien pour résoudre le probléme de démélange a ’aide du modéle PPNMM dans le cas ou les
signatures spectrales sont inconnues et doivent étre estimées. Des lois a priori sont associées a tous les parameétres
inconnus du modéle. L’estimation conjointe des signatures spectrales et des coefficients de mélange induit un grand
nombre de paramétres & simuler. Pour améliorer l'efficacité de 1’échantillonneur, des méthodes de Monte Carlo &

base de dynamiques hamiltoniennes contraintes sont utilisées.

Le second chapitre de ce manuscrit étudie une nouvelle méthode & base de noyaux pour le démélange spectral
non-linéaire. Cette méthode est étroitement liée & une récente méthode de réduction de dimension non-linéaire util-
isant un modéle & variables latentes et des processus gaussiens (Gaussian process latent variable model (GPLVM))
(Lawrence, 2003). Les GPLVMs, qui succitent de plus en plus d’intérét dans le domaine de 'apprentissage automa-
tique, ont la propriété intéressante de pouvoir approcher de nombreuses relations non-linéaires entre un espace dit
“latent” (de dimension faible) et I’espace des observations (de dimension plus importante). Les relations non-linéaires
et souvent complexes peuvent étre approchées par des fonctions & base de noyaux (Perez-Cruz et al., 2013). Par
conséquent, ces modéles sont particuliérement adaptés pour analyser des images hyperspectrales et potentiellement
pour résoudre le probléme de démélange. Dans ce chapitre, nous proposons d’utiliser une forme particuliére de noyau
basé sur les modéles bilinéaires existants, ce qui permet a l'algorithme de démélange proposé d’étre bien adapté
lorsque le modéle de mélange sous-jacent est bilinéaire. La premiére étape de ’algorithme bayésien proposé consiste
a estimer les abondances des pixels de 'image. Des lois a priori choisies avec soin sont affectées aux paramétres
inconnus du modéle GPLVM (y compris les variables latentes liées aux abondances) a estimer. La distribution a pos-
teriori de ces paramétres est obtenue en utilisant l'inférence bayésienne. Les estimateurs du maximum a posteriori
(MAP) des paramétres sont obtenus en utilisant une méthode de gradient et les abondances sont estimées & partir
des variables latentes estimées. Une fois les abondances estimées, les signatures spectrales des composants purs de
I’image sont estimées & ’aide de la capacité de prédiction des processus gaussiens. L’algorithme de démélange pro-
posé brise le paradigme habituel du démélange spectral en estimant d’abord les abondances et en prédisant ensuite
les signatures spectrales. Les simulations réalisées sur des images synthétiques et réelles illustrent la flexibilité du
modéle proposé pour le démélange spectral linéaire et non linéaire et donnent des résultats prometteurs concernant

Iestimation des abondances et des spectres d’intérét, méme en ’absence de pixels purs dans l’image.

Le troisiéme chapitre de ce manuscrit est dédié & la détection de non-linéarités dans les images hyperspectrales.
Ce chapitre se concentre sur des procédures de détection supervisées, c’est-a-dire quand les signatures spectrales
des composants purs de l'image sont a priori connues. Le premier détecteur supervisé est basé sur le modéle
PPNMM étudié dans le premier chapitre. Plus précisément, le test associé est basé sur les propriétés statistiques
des paramétres de ce modéle et permet de décider si un pixel donné résulte d’un mélange linéaire ou non linéaire.
Inversement, le deuxiéme détecteur supervisé ne suppose aucun modéle non-linéaire particulier et repose uniquement
sur le modéle de mélange linéaire. Les deux détecteurs sont comparés en utilisant des simulations effectuées sur des

données synthétiques et réelles.

Le détecteur de non-linéarités basé sur le modéle PPNMM et étudié dans le troisiéme chapitre est utilisé aprés
une procédure de délémange basée sur ce méme modéle. D’un autre coté, le détecteur de non-linéarité basé sur le
modéle LMM ne nécessite pas explicitement une étape de démélage. Cependant, il serait intéressant de proposer des
algorithmes qui permettent d’effectuer simultanément le démélange spectral (linéaire/non-linéaire) et la détection

de non-linéarités. Le dernier chapitre de ce manuscrit présente un modéle de mélange non-linéaire pour effectuer
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conjointement le démélange et la détection de non-linéarités. Le modéle non-linéaire proposé suppose que les
réflectances des pixels sont des combinaisons linéaires des composantes spectrales pures connus, affectées par un
terme additive qui dépend de ces signatures spectrales et contaminées par un bruit additif. Un champ de Markov est
considéré pour la détection de non-linéarités afin de prendre en compte la structure spatiale des termes non-linéaires.
L’image observée est alors segmentée en régions oul ces termes non-linéaires, s’ils sont présents, partagent les mémes
propriétés statistiques. Un algorithme bayésien est proposé pour estimer les paramétres du modéle, ce qui permet
d’effectuer simultanément le démélange spectral et la détection de non-linéarités. Les performances de I’algorithme
sont d’abord évaluées sur des données synthétiques et les simulations effectuées avec des données réelles donnent

des résultats intéressants et prometteurs.
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Contributions majeures

e Premier chapitre. Un nouveau modéle non-linéaire & base de mélanges post-non-linéaires est proposé
pour le démélange linéaire /non-linéaire. La non-linéarité de chaque pixel est caractérisée par un paramétre
d’amplitude unique, ce qui permettra de proposer des détecteurs de non-linéarités simples dans le troisiéme
chapitre de cette thése. Des méthodes efficaces sont proposées pour résoudre les problémes de démélange
supervisé et non-supervisé. Des algorithmes d’échantillonnage basés sur des méthodes MCMC & dynamiques
hamiltoniennes sont également utilisés pour améliorer les propriétés de mélange de I’échantillonneur lorsque

les composantes spectrales pures de 'image sont inconnues (et doivent étre estimées).

e Deuxiéme chapitre. Un nouveau modéle de mélange non-linéaire et non-paramétrique est proposé. L’algorithme
de démélange associé brise le paradigme habituel du démélange spectral en estimant d’abord les abondances
et en prédisant ensuite les signatures spectrales, ce qui se révéle efficace en cas d’absence de pixels purs dans

I'image.

e Troisiéme chapitre. Des tests statistiques sont proposés pour la détection de non-linéarités affectant les
pixels d’'une image hyperspectrale, lorsque les composants de cette image sont connus. Les tests proposés
sont simples & mettre en oeuvre, avec un cott calculatoire faible pour pouvoir étre appliqués en pratique.
Les résultats de détection peuvent alors étre utilisés comme une étape de pré-traitement pour sélectionner
des pixels ou des régions ou des modéles plus complexes doivent étre utilisés & la place du modéle linéaire

classique pour le démélange spectral.

e Quatriéme chapitre. Un nouveau modéle de mélange non-linéaire pour effectuer conjointement le démélange
d’image hyperspectrale et la détection de non-linéarités est proposé. L’image observée est segmentée en ré-
gions oul les termes non-linéaires, s’ils sont présents, partagent les mémes propriétés statistiques. L’ algo-
rithme proposé permet d’estimer convenablement les abondances lorsque les mélanges réels sont linéaires et
non-linéaires et il généralise les détecteurs de non-linéarité binaires proposées dans le troisiéme chapitre en

considérant différents niveaux (classes) de non-linéarités.



Introduction

Context and objectives of the thesis

This thesis has been achieved in the Institut de Recherche en Informatique de Toulouse (IRIT), within the “Signal
and Communication group”. This group has a strong experience in developing hyperspectral image processing
methods. The work presented herein follows naturally previous works conducted by Nicolas Dobigeon and Olivier
Eches on linear spectral unmixing. This thesis has been funded by Direction Générale de I’Armement (DGA),
French Ministry of defence, for a three-year period. This manuscript presents new nonlinear models and associated
algorithms for spectral unmixing of hyperspectral images. Spectral unmixing (SU) is a source separation problem
that has received intensive interest over the few last decades in signal and image processing (Bioucas-Dias et al.,
2012; Craig, 1994; Keshava and Mustard, 2002). It consists of extracting from a hyperspectral image, the spectra
of the pure macroscopic components present in the image, referred to as endmembers, and of identifying their
interactions or mixtures. SU of hyperspectral images, as most of the source separation tasks, is a challenging
ill-posed problem. To reduce the problem complexity, most works of the literature rely on a linear mixing model
(LMM), often considered as a first approximation of the actual mixture. This model is referred to as linear in the
sense that the reflectance spectrum of a mixed pixel is assumed to be a linear combination of the endmembers.
However, this approximation can be inaccurate to describe some scenes, requiring more complex mixing models to be
considered (to overcome the inherent limitations of the LMM). Few studies have addressed the problem of nonlinear
SU to characterize nonlinear effects affecting hyperspectral images. Designing and/or choosing an appropriate
nonlinear mixing model (NLMM) for SU is a challenging problem because of the diversity of nonlinear effects.
Second, introducing nonlinear terms in the observation model complicates the derivation of efficient nonlinear SU
procedures relying on NLMMs. The aim of this work is to propose efficient image analysis and nonlinear SU methods

based on flexible NLMMs.

Linear spectral unmixing of hyperspectral images

Hyperspectral images are 3-dimensional data cubes. These cubes consist of two spatial and one spectral dimensions.
The spectral dimension corresponds to the different wavelengths at which the scene is observed. Each pixel of a
multidimensional image corresponds to an elementary surface of the observed scene and is represented by a vector
of values, whose length is given by the number of spectral bands considered. Classical colored images can be
seen as particular multiband images where the number of spectral bands reduces to three (red, green and blue).

When the number of spectral bands increases, the images are called multispectral (up to about 10 bands) and
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hyperspectral images composed of several hundreds of bands. Multispectral and thus hyperspectral images offer
a better spectral resolution when compared to classical RGB images. These images allow elements in a scene to
be easily distinguished using more spectral information available, which could be difficult or even impossible when
using other kinds of images. The hyperspectral images analyzed in this manuscript are reflectance images, i.e., the
vector of values associated with each pixel is the reflectance vector (or spectrum) of the corresponding surface in
the scene. Consequently, the spectrum of a pixel composed of a sole material (such as soil vegetation or water)
is characteristic of this endmember (see Fig. 1). Based on this observation, many works have been conducted to
segment hyperspectral images and to classify the image pixels into groups sharing similar spectral properties. This
classification problem has received intensive interest and provided interesting results in terms of scene understanding
(Fauvel et al., 2013; Tarabalka et al., 2010).

400 800 1200 1600 2000 2400
Wavelength (nm)

400 800 1200 1600 2000 2400
Wavelength (nm)

400 800 1200 1600 2000 2400
Wavelength (nm)

Figure 1: Example of hyperspectral imaging concept.

Current spectrometers used to acquire remote sensing hyperspectral images generally have a spatial resolution of
20m to 0.5m. Due to the spatial resolution of the hyperspectral imaging systems, several components can lye
within the same pixel. The resulting spectrum is thus a mixture of the spectra of each component, which makes
the classification less obvious. To alleviate the limitations of a hard classification, unmixing techniques have been
proposed for a more precise scene characterization which can be considered as a soft classification (Kent and Mardia,
1988). The next section recalls the classical linear mixing model used to address the problem of hyperspectral image
SU.

Linear mixing model

As mentioned above, hyperspectral images have two spatial dimensions and thus the pixel positions are characterized
by two spatial coordinates, i.e., a row and a column index. However, a single position index is preferred in this
manuscript for ease of reading. Let Nyoy (resp. Neo and L) denote the number of rows (resp. columns and spectral
bands) of the observed image. The image contains N = Nyow X Neo) pixels y,,(n = 1,..., N) observed at L different

wavelengths. When each photon reaching the sensor has interacted with a sole macroscopic component of the
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Figure 2: Linear mixing model: the area of interest is flat and is composed of components sitting side-by-

side.

observed scene, the nth measured reflectance spectrum y,, € R¥ can be accurately described by the following LMM

R
Yn = Z Qr My + €y (1)
r=1
where R is the number of endmembers in the image, m, = [m,.1, ..., m, |7 is the spectrum of the rth endmember,

ar.n 18 its corresponding proportion (or abundance) in the nth pixel and e, is an additive noise sequence associated
with the noise measurement and the model error. This photon behavior typically occurs when the observed scene
is flat and when the macroscopic elements sit side-by-side in the scene, as a checker board structure (see example
in Fig. 2). In this case, the abundances can be seen as relative surfaces occupied by each component in each pixel.

Thus, it is reasonable to consider the following constraints

aryn > 0,Vr, Vn

(2)
Zf’zl arn =1, Vn

for the abundances. These constraints are referred to as positivity and sum-to-one constraints. Most dimensionality
reduction techniques and SU algorithms rely on these constraints for the abundances. However, the sum-to-one

constraint is sometimes neglected. In this manuscript, both constraints are used when considering the LMM.

Unmixing strategies

SU (even when assuming the LMM) is a challenging blind source separation problem often split into two steps.

¢ Endmember estimation:
Endmember estimation is a crucial step which is the first step for the analysis of a hyperspectral image. Many
geometrical LMM-based endmember extraction algorithms (EEA) have been proposed in the literature and
can be classified into two groups. The first group consists of methods looking for purest pixels in the data set.

This group includes the pixel purity index (PPI) (Chaudhry et al., 2006), vertex component analysis (VCA)
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(Nascimento and Bioucas-Dias, 2005) and N-FINDR, (Winter, 1999) algorithms. The second group estimates
sets of smallest volumes embedding the data, such as the minimum volume simplex analysis (MVSA) (Li and

Bioucas-Dias, 2008) algorithm.

e Inversion:
Once the endmembers have been extracted from the data or from a spectral library, the second step, referred
to as inversion, estimates the abundance vectors of the image pixels. The most popular inversion algorithm
is probably the fully constrained least squares (FCLS) algorithm (Heinz and C.-I Chang, 2001) which has
shown excellent performance in many practical applications. Bayesian methods have also be proposed to
achieve the inversion step (Dobigeon et al., 2008). The Bayesian framework is particularly well adapted to
include uncertainties about the endmembers estimated during the previous step (Eches et al., 2010) and

spatial correlations (Eches et al., 2011) within the abundance estimation step.
More recently, methods have been proposed for jointly estimating the pure spectral signatures and the abundances.

e Joint endmember and abundance estimation approaches:

These methods generally overcome the methods decomposed into two successive steps in terms of endmember
and abundance estimation. Thus, they can be more robust when they are too few pure pixels in the image
(absence of endmembers) and in the presence of outliers (measurement errors,...). Joint endmember and
abundance estimation can be expressed as a nonnegative matrix factorization (NMF) problem. The main
works studying joint endmember and abundance estimation include the iterative constrained endmembers
(ICE) (Berman et al., 2004) algorithm, the minimum volume constrained NMF (MVC-NMF) (Miao and Qji,
2007) and Bayesian algorithms (Dobigeon et al., 2009a,b)

A more detailed review on LMM-based SU procedures has been recently proposed by Bioucas-Dias et al. (2012). It
is important to distinguish two kinds of unmixing strategies depending on the prior knowledge about the observed
image. Supervised methods assume that the endmembers present in the image are a priori known. In this case,
the SU procedures reduce to the inversion step. Conversely, unsupervised methods first estimate the endmembers
(number and spectra) and then consider the inversion step. When the endmembers are partially known (number
of components known for instance), the associated methods are sometimes called semi-supervised. However, these

methods are considered as unsupervised in this manuscript, for clarity.

Nonlinear unmixing procedures

Due to their relative simplicity, SU procedures assuming the LMM have been widely used for the analysis of
hyperspectral image. However, it has been pointed out that the LMM can be inaccurate in particular situations
(Bioucas-Dias et al., 2012; Keshava, and Mustard, 2002). For these cases, more complex models must be used.
Several approximations based on the radiative transfer theory have been proposed such as the bidirectional model
proposed by Hapke (1981). However, these approximations require highly nonlinear formulations which complicate
the derivation of unmixing strategies. Alternative approximations have been proposed for handling nonlinear effects

leading to exploitable physics-based nonlinear mixing models.
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Bilinear mixing models

Figure 3: Nonlinear mixtures: example of multiple reflections occurring in forested areas.

Bilinear models have received growing interest over the last few years for their ability to capture multiple scattering
effects in hyperspectral images. Such phenomena may occur when the light scattered by a given material reflects
off other surfaces before reaching the sensor. This is typically the case when the observed scene contains forested
or urban areas, where interactions occur between the ground and the canopy or buildings as illustrated in Fig. 3.

Most bilinear models proposed in the literature (to address the multiple reflection problem) can be expressed as

R R—-1 R
Yn = Zar,nmr + Z Z Big,nmi Om; +e, (3)
r=1

i=1 j=i+1
where © denotes the Hadamard (termwise) product. The first term in the right-hand side of (3) contains the
linear part of the mixture while the double sum models the nonlinear effects. The additional parameter f3; ; ,, is an
amplitude coefficient that tunes the contribution of the nonlinear interactions between the endmembers m; and m;.
The proposed bilinear models assuming (3) differ by constraints satisfied by the model parameters. Nascimento

and Bioucas-Dias (2009) proposed to enforce the following constraints
arpn >0, Vr,Vn
arpn 20, Vr,Vn (4)
R R-1 R
Doret G+ iy D jmin Bin = 1
The resulting model, referred to as Nascimento model (NM) can be seen as a linear model with additional virtual

endmembers. Precisely, by considering the spectrum m; ©® m; as an endmember with associated abundance 3; ;»

instead of a nonlinear mixture component, the model (3) subject to (4) can be reexpressed as

R
Yn = Z af,nﬁlf + ey (5)
=1
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where

Grn 2 a m; 2 m,, 7=
r.n — Yrn T U - (6)

1,...,R
S A N -
ain = Bijn, Mp=m;Om;, 7F=R+1,...,R

and R = R(R + 1)/2. Thus the inversion step can be achieved using classical LMM-based techniques. Note that
this model reduces to the LMM for az,, = 0,¥7 € {R+1,..., R}.
A second bilinear model has been proposed by Fan et al. (2009). This model referred to as Fan model (FM) assumes

51”'7“ = ai,naj,n yleldlng

R R—1 R
Yn = Zar,nmr + Z Z i nQjpm; © mj + e, (7)
r=1 i=1 j=i+1

subject to the constraints (2). This model is mainly motivated by the observation that if the ith component is
absent in a given pixel, i.e., a;,, = 0, there should not be nonlinear effects involving this component in the pixel, i.e.,
Bijn = 0,Yj # 4. Moreover, if the ith component is present, the amplitudes of the nonlinear terms involving m;
are proportional to its abundance a; . It is important to note that the FM does not generalize the LMM, contrary
to the NM. More recently, Halimi et al. (2011a) proposed an FM-based bilinear model that generalizes the LMM

by assuming f3; j n = Vi,jnGi,n0jn, leading to

R R—1 R
Yn = E Gy 1My + § E Yi,j,nQinGjnIM; O) m; + ey (8)
r=1 i=1 j=it1

where the nonlinearity coefficients v; ;,, € (0,1) allow each nonlinear effect to be quantified independently. The
resulting generalized bilinear model (GBM) (8) generalizes both the LMM and the FM.

Other physics-based nonlinear mixing models

Bilinear models have been introduced to model multiple reflections between different materials. However, these
models do not consider potential multiple reflections involving a single component (such as reflections occurring in
tree canopy for instance). Based on a thorough physical analysis of a canyon-like situation, Meganem et al. (2013)

proposed the following linear-quadratic mixing model (LQMM)

R R R
Yn = Z Qp My + Z Z /Bi,j,nmi Om; +e, (9)
r=1

i=1 j=1
subject to the constraints (2) and 5, ;. € (0,1). The main difference between the LQMM and the bilinear models
presented above is the consideration of the quadratic terms m, @ m,,r =1,..., R.

To address the modeling problem of macroscopic and microscopic mixtures, the following model has been proposed
by Close et al. (2012)

R R
Yo =S+ a1 R (z fm,w,) ver 10)

r=1 r=1

where the first term of the right-hand side of (10) is LMM-based while the second is an additional endmember
weighted by the abundance a,1,,. This additional endmember models intimate mixtures using the average single-

scattering albedo expressed in the reflectance domain through the mapping R(:). It is worth noting that all models

10
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presented here to model nonlinear effects do not consider dependencies between neighbor pixel, i.e, nonlinearities
induced by materials in closed pixels are neglected. This assumption can seem rough but leads to simpler SU
problems since the inversion step can be performed pixelwise. Recently, adjacency effects have been considered by

Burazerovic et al. (2013) to address the problem of nonlinear SU assuming a bilinear model.

Model-based parametric nonlinear SU algorithms

Once a parametric model has been chosen, SU can be seen as a constrained nonlinear regression problem in the

supervised case (endmembers known) or as a nonlinear blind source separation problem in the unsupervised case.

Supervised nonlinear unmixing

When the endmembers are known, most parametric model-based SU methods consist of a nonlinear regression

problem that can be expressed as

i — b (00)]° 11
Join f[yn — ¥ (0]l (11)
for the nth observed pixel y,, where M = [my, ..., mpg] is the L x R endmember matrix, 6,, is the parameter vector

of interest of the nth pixel to be estimated and 1n(+) is a nonlinear function associated with the underlying NLMM
and parameterized by M. Moreover © is the admissible set for 8,, defined to satisfy the parameter constraints
(additivity and/or positivity). The problem (11) is often tricky because it consists of a constrained nonlinear
optimization problem. For the NM, it has been shown that LMM-based methods can be used to estimate the
parameters of interest. For the FM and the GBM, linearization methods based on Taylor-series expansions have
been proposed by Fan et al. (2009) and Halimi et al. (2011b). The GBM has received a deeper analysis since
an alternative gradient-based method has also been investigated to recover the abundances and the nonlinearity
parameters (Halimi et al., 2011b). To tackle convergence issues (convergence toward local optima), Halimi et al.
(2011a) proposed a Bayesian algorithm based on Markov chain Monte Carlo (MCMC) methods. The Bayesian
framework has the advantage of easily handling the constraints within the estimation procedure using appropriate

prior distributions.

Unsupervised nonlinear unmixing

The supervised SU methods presented in the previous section assume that the endmembers are known. Geometric
LMM-based EEAs have first been used to extract the endmember spectra from the nonlinearly mixed pixels. Such
EEAs look for extreme points of the data clusters which often are endmembers even when nonlinear mixtures occur.
However, these EEAs can suffer from the absence of pure pixels and nonlinear EEAs based on bilinear models
have been studied. Gader et al. (2012) generalize the iterative SPICE algorithm (Zare and Gader, 2007) proposed
for linear SU to the NM (BISPICE algorithm). Based on nonnegative matrix factorization (NMF) methods, fully
unsupervised SU algorithms have also been proposed for the GBM (Yokoya et al., 2012) and the LQMM (Meganem
et al., 2013). Conversely, Heylen and Scheunders (2012) derive a GBM-based EEA using geodesic distances. This
recent algorithm computes distances on the manifold described by the GBM to find endmembers as extreme points

of that manifold.

11
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Model-free nonlinear SU algorithms

Nonlinear SU becomes even more challenging when the nonlinearities are unknown. Several methods have been
proposed to address this problem, including approximation of geodesic distances (Heylen et al., 2011) and manifold
leaning techniques (Licciardi et al., 2012; Nguyen et al., 2012). Kernel-based methods have also received growing
interest over the last few years for their ability to approximate complex nonlinearities. However, if these nonpara-
metric methods have been widely used for classification problems, their use in the unmixing context is still limited.
Broadwater and Banerjee (2009); Broadwater et al. (2007) proposed methods that mainly consist of replacing the
classical inner products by kernel functions. The resulting methods rely on the projection of the observed spectra
onto a higher dimensional space in which the mixtures are assumed to be linear. Even if such data transformation
can be very accurate for nonlinear dimensionality reduction, classification and detection, their physical interpreta-
tion is limited to address SU. More recently, nonlinear supervised algorithms based on reproducing kernel Hilbert
spaces (RKHSs) have been studied to model nonlinearities resulting from interactions between endmember spectra
(Chen et al., 2013b). In this scenario, the observed pixels are described by basis vectors nonlinearly related to the
endmember matrix. Finally, the RKHSs have shown interesting properties for modeling various nonlinearities for

supervised nonlinear unmixing, which is encouraging to move to unsupervised scenarios.

Toward nonlinearity detection in hyperspectral images

The recent contributions addressing the problem of nonlinear SU have provided interesting results in terms of
mixture characterization. However, the price to pay for considering possible nonlinear effects is 1) the computational
complexity that generally increases with the model complexity and 2) the degradation of the endmember and
abundance estimation when assuming NLMMs in the case where the LMM is sufficient to accurately describe the
mixtures. Since the LMM is often sufficient to describe most observed pixels, one possible solution consists of
detecting nonlinearly from linearly mixed pixels in a pre-processing step. The pixels detected as linearly mixed
could be handled subsequentially using fast and effective LMM-based methods while nonlinearly mixed pixels could
be subjected to a deeper analysis. Nonlinearity detection in hyperspectral images has already been addressed by
Han and Goodenough (2008) and the detection-oriented unmixing algorithm recently proposed by Dobigeon and
Févotte (2013) has provided encouraging results.

On the endmember definition

As mentioned above, an endmember is assumed to be a pure spectral component to be identified in the observed
image. Of course, the concept of component purity depends on the observation scale as well as the application
itself. More generally, an endmember is assumed to be a component of interest. As an example, a tree can be seen
either as a single endmember or as a mixture of endmembers (namely leaves and wood). Consequently, the number
of endmembers and their characterization in a given scene may vary depending on the application. One of the
main problems that follows from the endmember definition is the endmember variability. More precisely, two pixels
composed of the same single endmember of interest can have different spectra when they do not contain the same
“version” of this component. For the simple example mentioned above, the tree spectrum depends on the amount
of wood and leaves contained in this component. In many applications, the endmember variability can be neglected

and included in the noise modeling the model error. This assumption has been widely used in linear unmixing, which
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has motivated the consideration of unique endmembers in this work. However, taking endmember variability into
consideration is also an important problem, depending on the observation conditions and the observed scene (Eches
et al., 2010; Somers et al., 2011; Zare et al., 2012). Even if this endmember variability has not been considered in

this thesis, we think that it would deserve to be studied in future work related to nonlinear unmixing.

Structure of the manuscript

The first chapter studies a post-nonlinear mixing model (PNMM) for nonlinear SU. The proposed polynomial PNMM
(PPNMM) investigated in this chapter allows nonlinearities to differ for each pixel, leading to a flexible mixture
characterization. It is important to note that the nonlinearity of each pixel is characterized by a single parameter
which is zero when the pixel is linearly mixed. First, supervised SU methods based on the PPNMM are considered.
The first proposed algorithm is a hierarchical Bayesian algorithm coupled with MCMC methods. Two alternative
optimization methods are also introduced to reduce the computational complexity of the sampling algorithm. The
flexibility of the PPNMM and the performance of the three methods are then evaluated using simulations conducted
on synthetic and real data. The second part of this chapter presents a new Bayesian model for unsupervised SU
based on the PPNMM. In the unsupervised case, appropriate priors are assigned to the unknown endmembers to
be sampled. The joint estimation of the abundances and endmembers requires a large number of parameters to
be sampled. To improve the mixing properties of the sampler, constrained Hamiltonian Monte Carlo methods are
investigated.

The second chapter of this manuscript considers a kernel-based approach for nonlinear SU based on a nonlinear
dimensionality reduction using a Gaussian process latent variable model (GPLVM) (Lawrence, 2003). GPLVMs
have received growing interest in the machine learning community. They have the ability to approximate various
nonlinear mappings from a low-dimensional space (latent space) to a higher dimensional observation space through
the use of kernel functions (Perez-Cruz et al., 2013), which makes them particularly well adapted for hyperspectral
analysis and thus for SU. In this chapter, we propose to use a particular form of kernels based on the existing
bilinear models, which allows the proposed unmixing strategy to be accurate when the underlying mixing model
is bilinear. The first step of the proposed Bayesian algorithm performs abundance estimation. Appropriate prior
distributions are assigned to the GPLVM parameters (including the latent variables related to the abundances) to
be estimated and the joint posterior distribution is derived using the Bayesian inference. The maximum a posteriori
(MAP) estimator of the resulting posterior is obtained using a gradient-based method and the abundance estimates
are then computed. Once the abundances have been estimated, the endmembers are predicted subsequently using
Gaussian process regression. The proposed unmixing algorithm breaks the usual paradigm of spectral unmixing
by first estimating the abundances and then predicting the endmembers using the properties of Gaussian process
(GP). Simulations conducted on synthetic and real images illustrate the flexibility of the proposed model for linear
and nonlinear spectral unmixing and provide promising results for abundance and endmember estimations in spite
of the absence of pure pixels in the image.

The third chapter of this manuscript is dedicated to the detection of nonlinearities in hyperspectral images. This
chapter focuses on supervised detection procedures, i.e., the endmembers are assumed to be a priori known. The
first supervised detector is based on the PPNMM studied in the first chapter. More precisely, the associated test

is based on the statistical properties of the PPNMM parameters to decide whether a given pixel is linearly or
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nonlinearly mixed. Conversely, the second supervised test does not assume any particular NLMM and relies on the
LMM properties only. The two detectors are compared using simulations conducted on synthetic and real data.

The PPNMM-based nonlinearity detector studied in the third chapter is performed after a PPNMM-based unmixing
procedure and the LMM-based nonlinearity detector does not explicitly rely on an unmixing step. However, it would
be interesting to derive algorithms which achieve simultaneously spectral unmixing and nonlinearity detection. The
last chapter of this manuscript presents a nonlinear mixing model for joint hyperspectral image unmixing and
nonlinearity detection. The proposed model assumes that the pixel reflectances are linear combinations of known
pure spectral components corrupted by an additional nonlinear term, affecting the endmembers and contaminated
by an additive noise. A Markov random field is considered for nonlinearity detection based on the spatial structure
of the nonlinear terms. The observed image is segmented into regions where nonlinear terms, if present, share similar
statistical properties. A Bayesian algorithm is proposed to estimate the parameters involved in the model yielding
a joint nonlinear unmixing and nonlinearity detection algorithm. The performance of the proposed strategy is first
evaluated on synthetic data. Simulations conducted with real data show the accuracy of the proposed unmixing

and nonlinearity detection strategy for the analysis of hyperspectral images.

Main contributions

e First chapter. A new nonlinear model based on post-nonlinear mixtures is proposed for linear/nonlinear
SU. The nonlinearity in each pixel is characterized by a single amplitude parameter which will allow simple
nonlinearity detectors to be derived in the third chapter. SU methods are proposed to address the problems of
supervised and unsupervised unmixing. Efficient sampling algorithms based on Hamiltonian MCMC methods
are also used to improve the mixing properties of the sampler when the endmembers are unknown (and have

to be estimated).

e Second chapter. A new nonparametric nonlinear SU algorithm is proposed for unsupervised SU. The pro-
posed unmixing algorithm breaks the usual paradigm of spectral unmixing by first estimating the abundances

and then predicting the endmembers in spite of the absence of pure pixel in the image.

e Third chapter. Statistical tests are derived for pixel-by-pixel nonlinearity detection when the endmembers
are known. The proposed tests are computationally efficient and thus can be implemented in practical
applications. The detection results can then be used as a pre-processing step to select pixels or regions where

more complex models should be used instead of the classical LMM for SU.

e Fourth chapter. A new nonlinear mixing model for joint hyperspectral image unmixing and nonlinearity
detection is proposed. The observed image is segmented into regions where nonlinear terms, if present, share
similar statistical properties. The resulting algorithm provides accurate abundance estimates when the actual
mixtures are linear and nonlinear and it thus generalizes the binary nonlinearity detectors proposed in the

third chapter by considering different levels (classes) of nonlinearities.
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Chapter 1

Polynomial post-nonlinear mixing model

for spectral unmixing

This chapter has been adapted from the journal papers Altmann et al. (2012) (published) and Altmann et al.
(2013¢) (submitted).
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1.1 Introduction (in French)

Dans ce chapitre, nous étudions un premier modéle de mélange non-linéaire particulier, dit “post-non-linéaire poly-
nomial” (PPNMM pour polynomial post-nonlinear mizing model), pour le démélange spectral. Tout d’abord, nous
introduisons le modéle PPNMM et le comparons & d’autres modéles non-linéaires existants. En particulier, nous
montrons que ce modéle montre de fortes similitudes avec les modéles polynomiaux de la littérature qui ont été
étudiés pour modéliser les multi-trajets apparaissant en présence de relief. Un des avantages du PPNMM est sa
simplicité puisqu’il met en jeu un seul paramétre supplémentaire par pixel par rapport au modeéle de mélange

linéaire.
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Dans une deuxiéme étape, nous proposons trois procédures de démélange supervisé basées sur le PPNMM, c’est-
a-dire lorsque les signatures spectrales des composants de 'image sont connues. La premiére approche se compose
d’un modéle bayésien couplé avec des méthodes de simulations de Monte Carlo par chaines de Markov (MCMC).
Deux méthodes d’optimisation basées sur le PPNMM sont ensuite proposées. Ces méthodes permettent d’obtenir
des résultats similaires & ceux obtenus & I’aide de 1’algorithme bayésien (avec un cott de calcul réduit), ce qui les rend
trés avantageuses pour le démélange d’images hyperspectrales de grandes tailles. Les trois méthodes de démélange
supervisé sont ensuite comparées & des algorithmes de démeélange linéaires et non-linéaires de la littérature par des
simulations sur données synthétiques et réelles. Ces simulations permettent également d’évaluer la pertinence du
PPNMM pour le démélange d’images hyperspectrales.

Dans de nombreuses applications pratiques, les signatures spectrales des composants purs présents dans l'image
observée ne sont pas connues. La derniére partie de ce chapitre présente une procédure de démélange spectral
bayésien totalement non-supervisée basée sur le PPNMM. Seul le nombre de composants purs de I'image est supposé
connu. En raison du grand nombre de paramétres intervenant dans le probléme de démélange non-supervisé, une
méthode d’échantillonnage efficace basée sur des méthodes de Monte Carlo & dynamiques hamiltoniennes (HMC
pour Hamiltonian Monte Carlo) est proposée pour estimer conjointement les signatures spectrales et les abondances
de chaque pixel. Les performances de ce dernier algorithme de démélange sont évaluées sur données synthétiques
et réelles, de maniére similaire & I’étude menée dans le cas supervisé. En particulier, ces simulations montrent les

avantages de l'estimation conjointe des signatures spectrales et des abondances de chaque pixel.
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1.2 Introduction

In this chapter, we study a particular nonlinear mixing model for SU referred to as polynomial post-nonlinear mizing
model (PPNMM). First, we introduce the PPNMM and compare it to other existing nonlinear models. In a second
step, we derive three PPNMM-based unmixing procedures for supervised unmixing, i.e., when the endmembers
are known. The first approach consists of a Bayesian model coupled with Markov Chain Monte Carlo (MCMC)
methods. Two PPNMM-based optimization methods are then proposed to reduce the computation complexity of
the sampling procedure associated with the Bayesian algorithm. These optimization methods provide results similar
to the Bayesian algorithm with a reduced computational cost, making them very attractive for hyperspectral image
unmixing. In many practical applications, the endmembers present in the observed image are unknown. The last
part of this chapter presents a fully unsupervised Bayesian unmixing procedure based on the PPNMM. Due to
the large number of parameters involved in the unsupervised SU problem, an efficient sampling procedure based
on Hamiltonian dynamics is proposed, leading to a Hamiltonian Monte Carlo (HMC) simulation method. Results
obtained on synthetic and real images illustrate the flexibility and accuracy of the PPNMM for supervised and

unsupervised SU and the performance of the corresponding estimation algorithms.

1.3 Polynomial Post-Nonlinear Mixing Model

This section defines the PPNMM used for hyperspectral image SU. Consider a set of N pixels observed at L different
spectral bands. The spectrum of the nth mixed pixel y,, = [y1.n,...,yL.n]’ is defined as a nonlinear transformation

g, of a linear mixture of R spectra m, contaminated by additive noise

R
Yn = 8n <Z ar,nmr> +e, =g, (Ma,) + e, (1.1)

r=1

where m, = [m,1,... ,an]T is the spectrum of the rth material present in the scene, a,, is its corresponding
proportion in the nth pixel of the image, R is the number of endmembers contained in the image, g,(-) is an
appropriate nonlinear function depending on the nth pixel and e, is an additive noise sequence. Note that the
usual matrix and vector notations M = [my, ..., mg] and a,, = [a1.4,...,arn,|’ have been used in the right hand
side of (1.1).

The choice of the nonlinearity g, deserves a specific attention. Polynomials, sigmoidal functions and combinations
of polynomial and sigmoidal nonlinearities have shown interesting properties for source separation (Babaie-Zadeh
et al., 2001; Jutten and Karhunen, 2003). This chapter focuses on second order polynomial nonlinearities defined
by

g, [0,1]F — R~

51 + bps?
s = ; (1.2)
st + bns%
with s = [s1,...,s2]7. An interesting property of the resulting nonlinear model referred to as PPNMM is that it

reduces to the classical LMM for b,, = 0. Thus, we can expect unmixing results at least as good as those presented
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by Dobigeon et al. (2008) and Heinz and C.-I Chang (2001) where Bayesian and least-squares (LS) methods were
investigated for SU assuming the LMM. Another motivation for using the PPNMM is the Weierstrass approximation
theorem which states that any continuous function defined on a bounded interval can be uniformly approximated
by a polynomial with any desired precision (Mathews and Sicuranza, 2000, p. 15). As explained by Nascimento and
Bioucas-Dias (2009), it is reasonable to consider polynomials with first and second order terms (since higher order
terms can generally be neglected) which leads to (1.2). Higher order terms could be considered in the presence
of more than two reflections (bilinear models also consider only at most two reflections). However, the resulting
interaction spectra are in practice of low amplitude and are hardly distinguishable from the noise. Straightforward

computations allow the PPNMM observation vector (for a given pixel of the image) to be expressed as follows
Vn = gn (Ma,) + e, = Ma,, + b,(Ma,,) ®© (Ma,,) + e, (1.3)

where ©® denotes the Hadamard (term-by-term) product. Note that the resulting PPNMM includes bilinear terms
such as those considered by Fan et al. (2009); Halimi et al. (2011a); Nascimento and Bioucas-Dias (2009); Somers
et al. (2009). However, the nonlinear terms are characterized by a single amplitude parameter b,,, leading to a less
complex model when compared with the models introduced by Nascimento and Bioucas-Dias (2009); Somers et al.
(2009) and Halimi et al. (2011a). Note that the endmember m, (contained in the matrix M) can be obtained from
(1.3) in the noise free case (e, = 0) by setting b, = 0 and a,, = [0,_1,1,05_,]T in (1.3).

Due to physical considerations, each abundance vector a,,n € {1,..., N} satisfies the following positivity and

sum-to-one constraints

arn, >0, Vre{l,...,R}

(1.4)
Zfil arpn = 1.

In this study we consider the sum-to-one constraints for the abundances. However they could be omitted as in
(Meganem et al., 2013). Moreover, each endmember m,. = [m,.1,...,m, ], 7 € {1,..., R} is a reflectance vector
satisfying the following constraints

0<mp,<1, Vle{l,...,L}. (1.5)

1.4 Supervised PPNMM-based unmixing

In this first scenario, we assume that the endmembers contained in the hyperspectral image are known. The
three PPNMM-based supervised SU algorithms presented in this manuscript allow the image pixels to be unmixed
independently. Thus, for ease of reading, all subscripts referring to pixel indexes will be omitted in this section. Let

y be the L x 1 observed pixel satisfying
y = Ma + b(Ma) ® (Ma) +e. (1.6)

The noise sequence e is an additive independent and identically distributed (i.i.d) zero-mean Gaussian noise sequence
with variance o2, denoted as e ~ N (OL, leL), where Iy, is the L x L identity matrix. Since the endmember matrix
M is assumed to be known, the only parameters to be estimated are the abundance vector a, the nonlinearity

parameter b and the noise variance 2.
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The supervised unmixing problem is identifiable since the application

g: RExXR —RE (1.7)
(a,b) +— Ma+bMa)© (Ma) (1.8)

is injective under specific conditions related to the pure component spectra. Note however that the function s — g(s)

in (1.2) (where the variable b is fixed) is non-injective (see Appendix A for details).

1.4.1 Bayesian estimation

The first proposed algorithm for supervised SU using the PPNMM consists of a Bayesian model coupled with MCMC
methods. This model generalizes the hierarchical Bayesian model introduced by Dobigeon et al. (2008) for linear
SU to the PPNMM. The unknown parameter vector associated with the PPNMM contains the pixel abundances
a, the nonlinearity parameter b and the additive noise variance 2. In the Bayesian framework, appropriate prior
distributions are chosen for the unknown parameters. The joint posterior distribution of these parameters is then
derived. However, the classical Bayesian estimators cannot be easily computed from this joint posterior. To alleviate
this problem, an MCMC method is used to generate samples according to the posterior of interest. The generated
samples are then used to approximate the Bayesian estimators. As in any Bayesian algorithm, the joint posterior

distribution can also be used to compute confidence intervals for the parameter estimates.

Likelihood

2

Equation (1.6) shows that y|a,b,c? is distributed according to a Gaussian distribution with mean g (Ma) and

covariance matrix 02Iy, denoted as y|a,b,0? ~ N (g (Ma) ,O’QIL). As a consequence, the likelihood function of

the observation vector y can be expressed as

f(y‘a7b7 02) = (27T10'2)

where ||x|| = vVxTx is the standard ¢ norm.

Nt

exp (Jy_g(M“)”) (1.9)

202

Parameter priors

In order to satisfy the sum-to-one constraint, the abundance vector can be rewritten! a = [c,ar]? where ¢ =
[ai,...,ar—1]T, ap = 1 — Zfz_ll a,. The positivity constraints in (1.4) impose that ¢ belongs to the following
simplex &
R—1
S_{c_[cl7"'7cR—1]T CT‘ZO;VT<RaZCT‘§1}- (1]‘0)
r=1

A uniform prior distribution on S is chosen for ¢ to reflect the absence of prior knowledge about the abundance vector.
Note that choosing this prior for ¢ is equivalent to choosing a Dirichlet prior distribution with all hyperparameters
set to 1.

A Jeffreys’ prior is chosen for o2

f(o?) %IR+(O’2) (1.11)

!Note that the proposed parametrization is chosen for notation simplicity. However, the component to be discarded can
be randomly chosen.
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which also reflects the absence of knowledge for this parameter (see (Punskaya et al., 2002) for details).

A conjugate Gaussian prior is finally chosen for the nonlinearity parameter b
blog ~ N (0,07) . (1.12)

The Gaussian prior is zero-mean since the value of b can be equally likely positive or negative. Moreover, it favors

small values of b and is a conjugate prior for the parameter b which will simplify the computations.

Hyperparameter prior

The performance of the proposed Bayesian model for spectral unmixing depends on the values of the hyperparameter
o2. When hyperparameters are difficult to adjust, it is classical to include them in the unknown parameter vector,
resulting in a hierarchical Bayesian model (Robert, 2007). This strategy requires to define a prior distribution for

the hyperparameter O'g. A conjugate inverse-gamma prior is assigned to O'g
07 ~ G (3,v) (1.13)

where (7, ) are real parameters fixed to obtain a flat prior, reflecting the absence of knowledge about the variance
o2 ((7y,v) will be set to (1,1072) in the simulation section). The resulting directed acyclic graph (DAG) is depicted
in Fig. 1.1.

L/
a gb o2
)

Figure 1.1: DAG for the parameter priors and hyperpriors (the fixed parameters appear in dashed boxes).

Joint posterior distribution

The joint posterior distribution of the unknown parameter/hyperparameter vector {607}, where 6 = {c,b,0?}

can be computed using the following hierarchical structure

£(8,03ly) o f(y0)f(8lo) f(o7) (1.14)

where o« means “proportional to” and f(y|@) is defined in (1.9). By assuming the parameters o2, b and a\g are a

priori independent, the joint prior distribution of the unknown parameter vector can be expressed as

fOloy) = fle)f(a®)f(bloy). (1.15)
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The joint posterior distribution f(6,cZ|y) can then be computed up to a multiplicative constant

[

2ty b2 v
ro.t) x % () e (<55 fivle. ot s (1.16)
b b

Unfortunately, it is difficult to obtain closed form expressions of the standard Bayesian estimators (including the
maximum a posteriori (MAP) and the minimum mean square error (MMSE) estimators) associated with (1.16).
The last part of this section studies a Markov chain Monte Carlo (MCMC) method which can be used to generate
samples asymptotically distributed according to (1.16). These generated samples are then used to compute the

MAP or MMSE estimators of the unknown parameters {6, 07}

Metropolis-within-Gibbs sampler

The principle of the Gibbs sampler is to sample according to the conditional distributions of the posterior of interest
(Robert and Casella, 2004, Chap. 10). The conditional distributions associated with the posterior (1.16) are studied

below.

Sampling from f(c/|y, 6\, , 02) Straightforward computations lead to

—g(Ma)|?
f(c,.|y,0\c7,,ag) X exp (—W) 15(c) (1.17)
where 7 = 1,..., R — 1 and where the notation 6\, _ indicates that c, has been removed from the vector 6. Mainly

because of the indicator function 1s(c) and the nonlinear function g(-), it is not easy to sample according to (1.17).
Thus, we propose to update the coefficient ¢, thanks to a Metropolis-Hasting move. More precisely, a new abundance
coefficient is proposed following a truncated Gaussian random walk procedure to satisfy the constraints (1.4) (the
variance of the proposal distribution has been adjusted to obtain an acceptance rate close to 0.5, as recommended
in (Robert and Cellier, 1998, p. 8)). The generated sampler is accepted or rejected with an appropriate probability
p provided in Algo. 1.1.

Sampling from f(b|y,9\b,ag) Using (1.16), it can be easily shown that b is distributed according to the

following Gaussian distribution

bly,6\p, 05 ~ N (1, s7) (1.18)
where .
2 - M h 2 2
my = 22 (v a) h(a) §2 = 99

o?h(a)Th(a) + o2’ o?h(a)Th(a) + o2

and h(a) = (Ma) ® (Ma). As a consequence, sampling according to (1.18) is straightforward.

Sampling from f(02|y,9\02,02) By considering the posterior distribution (1.16), it can be shown that

a2y, 0\,2, o? is distributed according to the following inverse-gamma distribution

L |y - gMa)|?
o1y, 012, 0% ~ I (2, 'yg;“)”> (1.19)

from which it is easy to sample.
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2: Iterations (¢ > 1)
3: Set &€ = [¢1,...,¢ép1]T =D
4: forr=1: R—1do
5: e Sample a candidate (. using a Gaussian proposal distribution N[O 1—T 1, ] (ET, 0'7%).
) _C\T -2
N fGlybeyaotiop) [2 (0 - ne = G)/or) @ (-G /o]
e Compute p = min — — 53 ,1
f@Ely. b, &, 02, 02) [cp ((1 ~ &l gy - 5r)/gr) — (—Er/ar)}
N (r with probability p
e Set ¢ =
¢, with probability 1—p
6: end for
7. Set ¢ = [61, RN 5R,1]T
8: Set ag) =1- Zf:_ll aﬁt)

9: Sample b(® from the pdf in (1.18)
10: Sample ¢2(*) from the pdf in (1.19)
11: Sample O'z(t) from the pdf in (1.20)
12: Set t =¢+ 1.

ALGO. 1.1: Gibbs Sampling Algorithm

Sampling from f(Ug\y, 0) Finally, by looking at the posterior distribution (1.16), it can be seen that o7|y, 0

is distributed according to the following inverse-gamma distribution

1 b2
otly,0 ~IG (2 —|—’y,§ +V> . (1.20)

The resulting Metropolis-within-Gibbs sampler used to sample according to the posterior (1.16) is summarized in

Algo. 1.1.

After generating samples using the procedures detailed above, the MMSE estimator of the unknown parameters
can be approximated by computing the empirical averages of these samples, after an appropriate burn-in period?.
Even if the sampling strategy has been observed to converge very fast, its computational complexity can be heavy
for some practical applications. The next section studies least squares estimators which allow this computational

complexity to be significantly reduced.

2The length of the burn-in period has been determined using appropriate convergence diagnoses (Robert and Cellier,
1998).
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1.4.2 Least squares methods

Least squares (LS) methods have been used successfully for linear unmixing (Heinz and C.-I Chang, 2001). The LS

methods associated with the observation equation (1.6) consist of minimizing the following criterion

Jab) = Jly-eMa)’

%HY*Mafb(Ma)Q(Ma)HZ (1.21)

under the positivity and sum-to-one constraints (1.4) for the abundance vector. This optimization problem is
not easy to handle mainly because of the constraints (1.4). However, the cost function J(a,b) is quadratic with
respect to the parameter b. As a consequence, by differentiating J(a,b) with respect to b, the following closed-form

expression for b can be obtained
(y —Ma)"h(a)

b= h(@Th(a) b(a). (1.22)
After replacing (1.22) in J(a,b), we obtain®
Ja) = I [0, @)] = 5 ]ly - 3(a)|? (1.23
where
y(a) = Ma + b(a)(Ma) © (Ma). (1.24)

We introduce below two strategies to compute the optimal abundance vector
a = argmin J(a)
a

under the constraints (1.4). Note that once a has been computed, the nonlinearity parameter b can be estimated
as follows

b=b(a), (1.25)

and the noise variance can be subsequently estimated using

(1.26)

~ 2
52 = % Hy ~ Ma - b(Ma) © (Ma) \

Taylor approximation

Motivated by the method introduced by Fan et al. (2009), we propose to approximate the function y(-) defined in
(1.24) using a Taylor series expansion where only first-order terms are considered. Let a® denotes the estimated
abundance vector estimate at the tth step of the proposed iterative algorithm, and its corresponding estimated

spectrum y(a'?)) following (1.24). The Taylor approximation of ¥(-) at a® can be written

y(a)=y (a(t)> +Vy (a(t)> (a - a(t)) (1.27)
where Vy(a®) is the gradient matrix of y(a®)) of size L x R and a is the unknown parameter vector to be

estimated. The rth column of the gradient matrix Vy(a")) can be derived from (1.24)

oy(a) db(a) - Oh(a)
0o = W + 0 h(a) + b(a) B0 (1.28)

3For brevity, the same notation J is chosen for the criteria depending on a and (a, b).
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where 7 = 1,..., R and the partial derivatives of b(-) and h(-) are available in Appendix B. Approximating y(-) in
(1.23) using (1.27), the vector a**1) can then be estimated by solving the following constrained LS problem

y 2
a“tV) = arg min Hs(t) — M(t)aH , (1.29)

under the constraints (1.4), where
s =y—y (a(t)) +Vy (a(t)> a® (1.30)

and M() = Vy (a(t)) is the L x R gradient matrix. Problem (1.29) can finally be solved by the FCLS algorithm
(Heinz and C.-I Chang, 2001). More precisely, the sum-to-one constraint of the abundances is considered by

penalizing (1.29), leading to
N 2
a™Y = arg min [Hs(t) - M(t)aH +n(1 - 1£a)2} (1.31)

subject to the non-negativity constraints for the parameter vector a, where € RT controls the impact of the
sum-to-one constraint. The procedure (1.31) is repeated until convergence and is summarized in Algo. 1.2. The
convergence of this iterative procedure to the global minimum of the objective function (1.25) is difficult to prove
because of the constraints (1.4) in (1.29). The next section introduces an alternative subgradient-based algorithm

whose convergence (to a local minimum of the associated objective function) is ensured.

1: Initialization (¢t = 0)

e Set a®

2: Iterations (¢ > 0)

Compute the gradient matrix of y at a*) using (1.28)

Compute a® using (1.29)
5: Compute b(*) using (1.25)
6: Set t =+t + 1.

A1LGO. 1.2: Taylor Approximation Algorithm

Subgradient-based optimization

A classical gradient approach could be used to solve the cost function defined in (1.23) in absence of constraints.
However, the problem is more complicated when the constraints (1.4) have to be considered. The estimation method
studied in this section is based on a subgradient optimization (SO) algorithm (Bazaraa et al., 1993, p. 339) that

is appropriate for constrained problems. More precisely, subgradient-based optimization allows each abundance

ai,...,a, to be updated independently. Thanks to the sum-to-one constraint of the abundance vector, the cost
function (1.23) can be expressed as a function of ¢ = [ay,...,agr_1]T by setting ar = 1 — Zf;ll a,. In that case,

the cost function (1.23) can be rewritten

2

7(©) = 5 lly ~ 7" (as)]| (1:32)
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where

R—1
J*(c)J(al,...,aR_l,lzar> (1.33)
r=1

R—-1
y*(c)y<a1a"'7a’R—lal ZaT> . (134)
r=1

1: Initialization (¢ = 0)

e Set a©

Iterations (t > 1)
Set &€ = [¢1,...,6_1]7 =clt7D) = [agt_l), NN agj)]T
forr=1:R—-1do

8J* (&)

e Compute d, = — 5,

e Compute A, js from (1.36)
e Compute A, from (1.35)

o Seté =& — \dy
end for
Set ¢®) = ¢
q (t) R—-1 (t)
etagy =1->"" ¢
Compute b®) using (1.25)
10: Set t =t + 1.

ALGO. 1.3: Constrained Subgradient Algorithm

At a given point ¢, the SO algorithm performs sequential line searches along the directions d,. defined by the partial

derivatives with respect to ¢, (for r =1,..., R —1), i.e.,
9J*(c) . T 0y*(c)
d’l“ = — = — *
e, -yl 5

where the partial derivatives of y*(a\g) are provided in Appendix B. Finally, the line search procedure solves the
following problem

Ar = argn)l\in J*(c = \u,) (1.35)

T

where u, = [0,...,sign(d,),0,...,0]T is a direction vector of size (R — 1) x 1, 0 < A, < X\, ps and .y € RF (for
r=1,...,R—1) are upper bounds for the line search parameters. More precisely, upper bounding A, according to

the following rule

0, if d,=0
Aot =9 ey if dp >0
o= e, it do <0
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ensures the constraints (1.4) are satisfied. The problem (1.35) can be solved using the golden section method
(Bazaraa et al., 1993, p. 270). The abundances are then updated component by component. Here again, the
procedure is repeated until convergence. The final algorithm is summarized in Algo. 1.3. The next section presents

the performance of the proposed algorithms on synthetic and real hyperspectral images.

1.4.3 Simulations
Synthetic data

The performance of the proposed nonlinear SU algorithms is first evaluated by unmixing 4 synthetic images of size
50 x 50 pixels. The R = 3 endmembers contained in these images have been extracted from the spectral libraries
provided with the ENVI software (RSI (Research Systems Inc.), 2003) (i.e., green grass, olive green paint and
galvanized steel metal). The first synthetic image I; has been generated using the standard linear mixing model
(LMM). A second image I has been generated according to the bilinear mixing model introduced by Fan et al.
(2009), referred to as “Fan model” (FM). A third image I5 has been generated according to the generalized bilinear
mixing model (GBM) presented by Halimi et al. (2011a), whereas a fourth image I4 has been generated according to
the PPNMM. For each image, the abundance vectors a,,p = 1,...,2500 have been randomly generated according
to a uniform distribution over the admissible set defined by the positivity and sum-to-one constraints. All images
have been corrupted by an additive white Gaussian noise of variance 02 = 2.8 x 1073, corresponding to a signal-
to-noise ratio SNR = L~'o2||g (a)||* ~ 15dB. The nonlinearity coefficients are uniformly drawn in the set (0,1)
for the GBM and the parameter b has been generated uniformly in the set (—0.3,0.3) for the PPNMM. Different

estimation procedures have been considered for the four mixing models. More precisely,

e for the LMM, we have considered the standard FCLS algorithm (Heinz and C.-I Chang, 2001) and the
Bayesian algorithm by Dobigeon et al. (2008),

e the FM has been unmixed using the LS method introduced by Fan et al. (2009) and a Bayesian algorithm
similar to the one derived by Halimi et al. (2011a) but assuming all the nonlinearity coefficients are equal to
1

)

e the unmixing strategies used for the GBM are the three algorithms presented in (Halimi et al., 2011b), i.e.,

a Bayesian algorithm and two LS methods,

e the Bayesian and LS algorithms presented in this chapter have been used for unmixing the proposed PPNMM.
Note that all results presented in this study have been obtained using the Bayesian MMSE estimator.

The quality of the unmixing procedures can be measured by comparing the estimated and actual abundance vector

using the root normalized mean square error (RNMSE) defined by

N
1 . 2
RNMSE = , | +— ; @ — @y (1.36)
where a,, is the nth actual abundance vector and a,, its estimate. Table 1.1 shows the RNMSEs associated with

the images Iy, ..., 14 for the different estimation procedures. Note that the best results (in term of RNMSE) for

each image have been represented in bold and blue whereas the second best results have been depicted in bold.
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Table 1.1: Abundance RNMSEs (x1072): synthetic images .

L I I3 Iy
(LMM) | (FM) | (GBM) | (PPNMM)
LAIM Bayesian (Dobigeon et al., 2008) 0.91 15.90 8.75 10.90
FCLS (Heinz and C.-I Chang, 2001) 0.91 14.27 5.48 9.73
- Bayesian (Halimi et al., 2011b) 13.09 0.87 7.87 9.72
Taylor (Fan et al., 2009) 13.09 0.86 7.28 15.20
Bayesian (Halimi et al., 2011b) 1.87 10.10 5.25 9.34
GBM Taylor (Halimi et al., 2011b) 3.65 8.47 4.08 9.01
Gradient (Halimi et al., 2011Db) 2.47 2.45 1.73 8.69
Bayesian 1.58 1.98 1.86 1.69
PPNMM Taylor 1.56 2.21 1.88 1.92
Gradient 1.69 1.98 1.98 1.69

Table 1.1 shows that the abundances estimated by the Bayesian algorithm and the LS methods are similar for the
PPNMM. Moreover, for these 4 images, the PPNMM seems to be more robust than the other mixing models to
deviations from the actual model.

The unmixing quality can also be evaluated by the average reconstruction error (ARE) defined by

N
1 . 2
ARE =, | — g — 1.

where y,, is the nth observed pixel and y,, its estimate. Table 1.2 compares the AREs obtained for the different
synthetic images. These results show that the AREs are close for the different unmixing algorithms even if the
estimated abundances can vary more significantly. Again, the proposed PPNMM seems to be more robust than the

other mixing models to deviations from the actual model in term of ARE.
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Table 1.2: AREs (x1072): synthetic images .

I I I3 14
(LMM) | (FM) | (GBM) | (PPNMM)
LMM Bayesian (Dobigeon et al., 2008) 5.28 6.54 5.65 5.89
FCLS (Heinz and C.-I Chang, 2001) 5.28 5.74 5.42 5.48
A Bayesian 5.61 5.29 5.38 5.76
Taylor (Fan et al., 2009) 5.61 5.28 5.38 5.75
Bayesian (Halimi et al., 2011b) 5.29 5.49 5.33 5.44
GBM Taylor (Halimi et al., 2011b) 5.31 5.40 5.30 5.42
Gradient (Halimi et al., 2011b) 5.29 5.30 5.28 5.41
Bayesian 5.28 5.29 5.28 5.28
PPNMM Taylor 5.29 5.29 5.28 5.28
Gradient 5.29 5.29 5.28 5.28

Fig. 1.2 shows the estimated distributions of b for the images I, ..., I; using the three presented algorithms (i.e.,

Bayesian, linearization and subgradient). This figure shows that the three algorithms perform similarly for the

estimation of the nonlinearity parameter b.
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Figure 1.2: Histograms of the estimated nonlinearity parameter b for the four synthetic images estimated

by the Bayesian (black), linearization-based (red) and subgradient-based (blue) algorithms.
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Table 1.3 shows the execution times of MATLAB implementations on a 1.66GHz Dual-Core of the proposed al-
gorithms for unmixing the proposed images (2500 pixels for each image). The linearization-based algorithm has
the lowest computational cost and also provides accurate estimations. Note that the computational cost of the
Bayesian algorithm (which allows prior knowledge to be included in the unmixing procedure) can be prohibitive
for larger images and a high number of endmembers. However, the computational cost of the two proposed opti-
mization methods (linearization and gradient-based) is very reasonable which make them very useful for practical

applications.

Table 1.3: Computational times of the unmixing algorithms for 2500 pixels (in second).
_[1 12 Ig .[4

Bayesian 5960 | 6200 | 6600 | 5970

Taylor 5 10 8 7

Subgradient 84 102 96 101

The next set of simulations analyzes the performance of the proposed nonlinear SU algorithms for different numbers
of endmembers (R € {3,6,9,12}) by unmixing 4 synthetic images of 500 pixels. The endmembers contained in these
images have been randomly selected from the fourteen endmembers extracted by VCA from the full Cuprite scene
described by Clark et al. (2003). For each image, the abundance vectors a,, (n = 1,...,500) have been randomly
generated according to a uniform distribution over the admissible set defined by the positivity and sum-to-one
constraints. All images have been corrupted by an additive white Gaussian noise corresponding to a signal-to-noise
ratio SNR = 20dB. The nonlinearity coeflicients b are uniformly drawn in the set (—0.3,0.3). Table 1.4 compares
the performance of the three proposed methods in term of abundance estimation and reconstruction error. These
results show that the three methods perform similarly in term of reconstruction error. The Bayesian estimators
tend to provide more accurate abundance estimations (i.e., smaller RNMSEs) for large values of R. Indeed, the

Taylor and gradient algorithms may be trapped in local minima of the LS criterion (1.21) for large values of R.

Table 1.4: Unmixing performance of the supervised PPNMM-based algorithms for different R.

Average RNMSEs(x1072) AREs(x1072)
Bayesian . Bayesian .
Taylor | Gradient Taylor | Gradient
MMSE | MAP MMSE | MAP
R=3 7.50 10.42 | 9.43 9.41 4.18 4.22 4.17 4.17
R=6 7.53 11.37 | 12.65 12.16 4.22 4.24 4.20 4.20
R=9 5.69 9.56 | 11.90 11.41 4.27 4.29 4.24 4.24
R=12 4.72 8.08 11.16 10.58 4.18 4.19 4.13 4.13
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Real data

The first real image considered in this section is composed of L = 189 spectral bands and was acquired in 1997 by
the airborne visible infrared imaging spectrometer (AVIRIS) over the Cuprite mining site in Nevada. A sub-image
of size 50 x 50 pixels has been chosen here to evaluate the proposed unmixing procedures. The scene is mainly
composed of muscovite, alunite and kaolinite, as explained by Dobigeon et al. (2009a). The endmembers extracted
by VCA (Nascimento and Bioucas-Dias, 2005) and the nonlinear EEA proposed by Heylen et al. (2011) (referred
to as “Heylen"), with R = 3 are depicted in Fig. 1.3. The endmembers obtained by the two methods have similar
shapes. This result confirms the fact that the geometric EEAs (such as VCA) can be used as a first approximation

for endmember estimation (Keshava and Mustard, 2002).

Kaolinite Alunite Muscovite
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Figure 1.3: The R = 3 endmembers estimated by VCA (blue lines) and Heylen (red lines) for the Cuprite

scene.

The three estimation algorithms presented above have been applied independently to each pixel of the scene using
the endmembers extracted by the two EEAs. Examples of abundance maps obtained by the Heylen’s method are
presented in Fig. 1.4. They are similar to the abundance maps obtained with the FCLS algorithm which relies on
the LMM.

However, the advantage of the PPNMM is that it allows the nonlinearities between the observations and the
abundance vectors to be analyzed. For instance, Fig. 1.5 shows the estimated maps of b for the Cuprite image.
These results show that the observations are nonlinearly related to the endmembers (since b # 0). However, the

nonlinearity is weak since the estimated values of b are close to 0.
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Figure 1.4: Abundance maps estimated by the Bayesian, linearization and subgradient methods for the

Cuprite scene.

N
Bayesian Linearization Subgradient

Figure 1.5: Maps of the nonlinearity parameter b estimated by the Bayesian, linearization and subgradient

methods for the Cuprite scene.

The second real image considered in this section is composed of L = 189 spectral bands and was acquired in 1997
by the satellite AVIRIS over the Moffett Field, CA. A sub-image of size 50 x 50 pixels has also been chosen here
to evaluate the proposed unmixing procedures. The scene is mainly composed of water, vegetation and soil. The

endmembers extracted by VCA and Heylen’s method with R = 3 are depicted in Fig. 1.6. Again, the endmembers
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obtained by the two methods are similar. Examples of abundance maps estimated by the proposed algorithms
with Heylen’s method are presented in Fig. 1.7. They are similar to the abundance maps obtained with the FCLS
algorithm which relies on the LMM. Fig. 1.8 shows the estimated maps of b for the Moffett image. In the water
area, the observations are nonlinearly related to the endmembers (since b # 0). These nonlinearities can be due to

the low amplitude of the water spectrum and nonlinear bathymetric effects.

Water Vegetation Soil
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Figure 1.6: The R = 3 endmembers estimated by VCA (blue lines) and Heylen (red lines) for the Moffett

scene.

The quality of unmixing is finally evaluated using the AREs for both real images. These AREs are compared in
Table 1.5 with those obtained by assuming other mixing models. The proposed PPNMM provides smaller AREs

when compared to other models which is a very encouraging result.

Table 1.5: AREs (x1072): Cuprite and Moffett images

VCA Heylen

Cuprite | Moffett | Cuprite | Moffett
MM Bayesian (Dobigeon et al., 2008) 2.14 2.70 2.35 2.02
FCLS (Heinz and C.-I Chang, 2001) | 2.11 2.62 2.10 2.00
M Bayesian 7.36 2.31 2.30 1.92
Taylor (Fan et al., 2009) 3.05 2.29 2.29 1.92
Bayesian (Halimi et al., 2011b) 2.24 2.57 2.11 1.99
GBM Taylor (Halimi et al., 2011b) 2.34 2.41 2.03 2.01
Gradient (Halimi et al., 2011b) 2.02 2.30 2.04 1.93

Bayesian 1.19 1.59 1.91 1.85

PPNMM Taylor 1.19 1.54 1.90 1.84
Gradient 1.19 1.55 1.90 1.87
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Water Vegetation Soll

Subgradient Bayesian

Linearization

FCLS

Figure 1.7: Abundance maps estimated by the Bayesian, linearization and subgradient methods for the

Moffett scene.

Bayesian Linearization Subgradient

Figure 1.8: Maps of the nonlinearity parameter b estimated by the Bayesian, linearization and subgradient

methods for the Moffett scene.
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1.4.4 Intermediate conclusion

A Bayesian and two least squares algorithms were presented for supervised nonlinear SU of hyperspectral images.
These algorithms assumed that the hyperspectral image pixels are related to the endmembers by a polynomial
post-nonlinear mixing model. In the Bayesian framework, the constraints related to the unknown parameters were
ensured by using appropriate prior distributions. The posterior distribution of the unknown parameter vector
was then derived. The corresponding minimum mean square error estimator was approximated from samples
generated using Markov chain Monte Carlo methods. Least squares methods were also investigated for unmixing
the polynomial post-nonlinear model. These methods provided results similar to the Bayesian algorithm with a
reduced computational cost, making them very attractive for hyperspectral image unmixing. Results obtained on
synthetic and real images illustrated the accuracy of the polynomial post-nonlinear model and the performance of
the corresponding estimation algorithms for supervised unmixing. In this study, we assumed that the endmembers
were known (either coming from a priori or extracted from the data using a EEA). However, as it has been shown
for linear SU, a joint estimation of the endmembers and mixing coefficients can provide more accurate mixture
characterization, especially when there is not enough pure pixels in the observed image. This joint estimation is
the aim of the last part of this chapter which addresses the problem of unsupervised SU using the PPNMM. The
next section generalizes the Bayesian model proposed for supervised nonlinear unmixing to the case where the
endmembers are unknown and to be estimated. Least-squares methods could also have been investigated. However,
their convergence is difficult to prove and the proposed Bayesian algorithm provides accurate results in practice.
Including the endmembers in the estimation procedure complicates the unmixing procedure and estimating more
parameters usually requires a higher computational cost. To improve the mixing properties and the complexity of

the sampler, Hamiltonian Monte Carlo methods are investigated.
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1.5 Unsupervised PPNMM-based unmixing

In this second scenario, the spectral signatures of the endmembers contained in the hyperspectral image are unknown
and thus to be estimated. Only the number of endmembers is assumed to be known. Consider a hyperspectral image

consisting of N pixels distributed according to (1.3). The PPNMM defined in (1.3) allows the L x N observation

matrix Y = [y1,...,¥n] to be expressed as follows

Y = MA + [[MA) © (MA)] diag (b) + E (1.38)
where A = [ay,...,ay] is an R x N matrix, E = [e;,...,ex] is an L x N matrix, b = [by,...,by]|T isan N x 1
vector containing the nonlinearity parameters. In this scenario, the noise sequences e,,Vn € {1,..., N} are additive

independently distributed zero-mean Gaussian vectors with diagonal covariance matrix ¥ = diag (0'2), denoted as
e, ~ N (0.,%), where 02 = [0f,...,0%7]" is the vector of the L noise variances and diag (¢%) is an L x L diagonal

2. Note that this noise characterization is more general than the

matrix containing the elements of the vector o
one considered in the supervised SU scenario presented above. Precisely, the N noise vectors associated with
the N pixels have noise variances differing from one spectral band to another, which is in agreement with real
noise measurements. The abundance vectors in A satisfy the positivity and sum-to-one constraints (1.4) and the

endmembers to be estimated are subject to the constraints (1.5).

1.5.1 Bayesian estimation

This section generalizes the hierarchical Bayesian model introduced in Section 1.4 in order to jointly estimate
the abundances and endmembers, leading to a fully unsupervised hyperspectral unmixing algorithm. To handle

abundance constraints, we propose to reparameterize the abundance vectors using the following transformation

r—1 .

1-— 2z, ifr<R

Uy = | | Zim | X " . (1.39)
Pt} 1 ifr=R

This transformation has been recently suggested by Betancourt (2010). One motivation for using the latent variables

zrn instead of a, , is the fact that the constraints (1.4) for the nth abundance vector a,, express as
0<zn,<l1l Vre{l,...,R—1} (1.40)

for the nth coefficient vector z,, = [21n,...,2r-1.1]7. As a consequence, the constraints (1.40) are much easier to
handle for the sampling procedure than (1.4) (as will be shown in the next sections). The next section presents the

Bayesian model associated with the unsupervised PPNMM (1.38) for SU.

Bayesian model

The unknown parameter vector associated with the PPNMM contains the reparameterized abundances Z =
[z1,...,2nN] (satistying the constraints (1.40)), the endmember matrix M, the nonlinearity parameter vector b
and the additive noise variance vector o2, This section summarizes the likelihood and the parameter priors (associ-
ated with the proposed hierarchical Bayesian PPNMM) introduced to perform nonlinear unsupervised hyperspectral

unmixing.
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Likelihood Equation (1.38) shows that y,|M, z,,b,,0? is distributed according to a Gaussian distribution
with mean g, (Ma,,) and covariance matrix X, denoted as y,|M, z,, b,,0% ~ N (g, (Ma,),X). Note that the
abundance vector a, should be denoted as a,(z,). However, the argument z, has been omitted for brevity.
Assuming independence between the observed pixels, the joint likelihood of the observation matrix Y can be

expressed as
(Y -X)T=" 1Y - X)

F(YIM,Z,b,0?) ||~V 2etr |- 5 (1.41)
where o« means “proportional to”, etr(-) denotes the exponential trace and
X =MA + [(MA) ® (MA)] diag (b) (1.42)

is an L x N matrix.

Parameter priors To reflect the lack of prior knowledge about the abundances, we propose to assign prior
distributions for the coefficient vector z, that correspond to noninformative prior distributions for a,. More

precisely, assigning the following beta priors
Zne ~Be(R—r1) re{l,...,R—1} (1.43)

and assuming prior independence between the elements of z,, yield an abundance vector a\ g, uniformly distributed
in the set defined in (1.10) (see (Betancourt, 2010) for details). Assuming prior independence between the coefficient

vectors {z,},_; y leads to

R—1 N
f@=11 {B(R—ll)N UR} (1.44)

where B(-,-) is the Beta function.

For each endmember m,, we propose to use a Gaussian prior
m, N./\/-[O,l]L(ﬂlr,SQIL), (145)

truncated on [0,1]" to satisfy the constraints (1.5). In this study, we propose to select the mean vectors m, as
the pure components previously identified by the nonlinear EEA studied in (Heylen et al., 2011) and referred to
as “Heylen”. The variance s2 reflects the degree of confidence given to this prior information. When no additional

knowledge is available, this variance is fixed to a large value (s2

= 50 in our simulations). Note that any EEA
could be used to define the vectors myj, ..., mgr. Without additional information, the unmixing problem assuming
the PPNMM (1.38) may have an infinite set of solutions. However, considering the constraints (1.4) and (1.5) and
enforcing m, to be close to m,, Vr removes this ambiguity.

It is interesting to note that the PPNMM reduces to the LMM for b, = 0. Since the LMM is relevant for most
observed pixels, it makes sense to assign prior distributions to the nonlinearity parameters that enforce sparsity for

the vector b. To detect linear and nonlinear mixtures of the pure spectral signatures in the image, the following

conjugate Bernoulli-Gaussian prior is assigned to the nonlinearity parameter b,

b2
fbplw,08) = (1 —w)d(b,) +w \/21772 exp (—é) (1.46)
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where 4(-) denotes the Dirac delta function. Note that the prior distributions for the nonlinearity parameters
{bn}, =1 N share the same hyperparameters w € [0,1] and o2 € RT. More precisely, the weight w is the prior
probability of having a nonlinearly mixed pixel in the image. Assuming prior independence between the nonlinearity

parameters {b,} _, 5 , the joint prior distribution of the nonlinearity parameter vector b can be expressed as

.....

follows
N
f(blw,o?) = Hf(bn|w7ag). (1.47)
n=1

A Jeffreys’ prior is chosen for the noise variance of each spectral band o7

flof) o %Lw (7) (1.48)
4

which reflects the absence of knowledge for this parameter (see (Bernardo and Smith, 1994) for motivations).

Assuming prior independence between the noise variances, we obtain
L
fe®)=T] f(od). (1.49)
=1

Hyperparameter priors The performance of the proposed Bayesian model for spectral unmixing depends on
the values of the hyperparameters o7 and w. When the hyperparameters are difficult to adjust, it is classical to
include them in the unknown parameter vector, resulting in a hierarchical Bayesian model (Altmann et al., 2012;
Dobigeon et al., 2009a; Robert, 2007). This strategy requires to define prior distributions for the hyperparameters.

A conjugate inverse-Gamma prior is assigned to o7
oy ~IG (v,v) (1.50)

where (v, ) are real parameters fixed to obtain a flat prior, reflecting the absence of knowledge about the variance
o2 ((,v) will be set to (107%,107!) in the simulation section). A uniform prior distribution is assigned to the

hyperparameter w

since there is no a priori information regarding the proportions of linearly and nonlinearly mixed pixels in the image.

The resulting directed acyclic graph (DAG) associated with the proposed Bayesian model is depicted in Fig. 1.9.

Joint posterior distribution The joint posterior distribution of the unknown parameters {6, ®} where 6 =

{Z,M,b,0?} and ® = {07, w} can be computed using the following hierarchical structure
f(0,2]Y) o< f(Y|0,2)f(6, D) (1.52)

where f(Y]0) has been defined in (4.3). By assuming a priori independence between the parameters Z, M, b and
o? and between the hyperparameters of and w, the joint prior distribution of the unknown parameter vector can

be expressed as

[(6,2) = [f(0]®)f(®)
HZ) M) f(a?) f(bloy,w) f(o7) f (w). (1.53)

39



Chapter 1. Polynomial post-nonlinear mixing model for spectral unmixing

)/

N7

Figure 1.9: DAG for the parameter and hyperparameter priors (the fixed parameters appear in boxes).

The joint posterior distribution f(8, ®|Y) can then be computed up to a multiplicative constant after replacing
(1.53) and (4.3) in (4.17). Unfortunately, it is difficult to obtain closed form expressions for the standard Bayesian
estimators (including the maximum a posteriori (MAP) and the minimum mean square error (MMSE) estimators)
associated with (4.17). In this study, we propose to use efficient Markov Chain Monte Carlo (MCMC) methods
to generate samples asymptotically distributed according to (4.17). Due to the large number of parameters to be
sampled, we use an HMC algorithm which allows the number of sampling steps to be reduced and which improves
the mixing properties of the sampler. The generated samples are then used to compute the MMSE estimator of the
unknown parameter vector (6, ®). The next section summarizes the basic principles of the HMC methods that will

be used to sample asymptotically from (4.17).

Constrained Hamiltonian Monte Carlo method

HMCs are powerful methods for sampling continuous distributions by introducing fictitious momentum variables.
Let q € RP be the parameter of interest and 7(q) its corresponding distribution to be sampled from. From
statistical mechanics, the distribution 7(q) can be related to a potential energy function U(q) = —log[r(q)] + ¢
where c is a positive constant such that [exp(—U(q)+ ¢)dq = 1. The Hamiltonian of 7(q) is a function of the

energy U(q) and of an additional momentum vector p € R” defined as

H(q,p) =U(q) + K(p) (1.54)

where K (p) is an arbitrary kinetic energy function. Usually, a quadratic kinetic energy is chosen and we propose
to use K(p) = p’p/2 in this study (for reasons explained later). The Hamiltonian (1.54) defines the following
distribution for (q, p)

f(a,p) o exp[-H(q,p)]

o 7(q)exp (—;pr> (1.55)

which shows that q and p are independent and that the marginal distribution of p is the N (0p,Ip) distribution.
The HMC algorithm allows samples to be asymptotically generated according to (1.55). The ith HMC iteration
uses the pair of vectors (q(i)7p(i)) and consists of two steps. The first step resamples the initial momentum p(*

according to the standard multivariate Gaussian distribution. The second step uses Hamiltonian dynamics to
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propose a candidate (q*, p*) which is accepted with the following probability
p=min {exp |~H(a",p*) + H(a",p)] ,1}. (1.56)

Generation of the candidate (q*, p*): Hamiltonian dynamics are usually simulated by discretization meth-
ods such as Euler or leapfrog methods. The classical leapfrog method is a discretization scheme composed of Ny p

steps with a discretization stepsize €. The nth leapfrog step can be expressed as

(i;nete/2) _ o (ime) _ € OU ( (i,ne)) 1.57
P P 5 9T \4 (1.57a)
q(i,(n+1)e) — q(i,ne) + ep(i,ne-‘re/Z) (157b)

(i,(n+1)e) _ . (i,nete/2) Eal |: (i,(n+1)e)} 1
P p 59T |4 : (1.57c)

The leapfrog method starts with (q(*%,p®) = (¢, p?) and the candidate is set after Ny g steps to (q*,p*) =
(q(i,ENLF),I‘:‘)(i,ENLF)).
However, if q is subject to constraints, more sophisticated discretization methods must be used. Assume that the

vector of interest q = [qy,...,qp|” satisfies the following constraints
@ <qi<qu, de{l,...,D} (1.58)

where ¢; (resp. q.) is the lower (resp. upper) bound for g4 (such kind of constraints need to be satisfied by the
elements of Z and the endmembers in M). In this study we propose to use the constrained leapfrog scheme studied in
(Brooks, 2011, Chap. 5), consisting of Ny steps, with a discretization stepsize €,. Each constrained HMC (CHMCQ)
iteration starts in a similar way to the classical leapfrog method, with the sequential sampling of the momentum p
(1.57a) and the vector q (1.57b). However, if the generated vector q violates the constraints (1.58), it is modified
depending on the violated constraints and the momentum is negated (see (Brooks, 2011, Chap. 5) for more details).
This step is repeated until each component of the generated q satisfies the constraints. The CHMC ends with
the update of the momentum p (1.57c). One iteration of the resulting constrained HMC algorithm (CHMC) is
summarized in Algo. 1.4. As mentioned above, one might think of using a more sophisticated kinetic energy for
p to improve the performance of the HMC algorithm. However, the kinetic energy K(p) = p’p/2 allows the
discretization method handling the constraints to be simple and will provide good performance for our application
(as will be shown in Section 4.7). The performance of the HMC mainly relies on the values of the parameters Ny
and ¢,. Fortunately, the choice of ¢, is almost independent of Ny such that these two parameters can be tuned

sequentially. The procedures used in this study to adjust Npr and €, are detailed in the next paragraphs.
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1: %Initialization of the ith iteration(n = 0)
e q"9 = g satisfying the constraints (1.58)
e Sample p*9) = p)) ~ N (0p,Ip)
2: %Modified leapfrog steps
3: forn=0: Nygp —1do
4:  %Standard leapfrog steps
e  Compute plinete/2) = pline) _ %;TUT (q(i,ne))
e Compute qU-(n+De) — glime) 4 eplimete/2)
5. %Steps required to ensure q(»("*t1€) satisfies (1.58)
6:  while q*("*t1) does not satisfy (1.58) do
7 ford=1:D do
8 if qy’("+1)6) < q; then
9 Set q((iiv(nJrl)e) — 2 — qéi7(n+1)€)
(replace q((;’(nﬂ)s) by its symmetric with respect to ¢;)
10: Set pg,ne—i-e/Q) = —pfii’"EJrE/Q)
11: end if
12: if quH_E) > q, then
13 Set (D9 — gg _ i+
(replace qff’("H)E) by its symmetric with respect to g,,)
14: Set pfii,neJre/Q) _ _p&i,ne+6/2)
15: end if
16: end for

17:  end while
18:  %Standard leapfrog step

€U

19: t (i,(n+1)e) — (i,ne+e/2)
9 Compute p P 5 9T

20: end for

[q(i,(n+1)e)]

21: % Accept-reject procedure
22: Set p* = p(»<Ner) and q* = q(H<Ner)

23: Compute p using (1.56)
24: Set (qUtD, ptth) = (q*, p*) with probability p
25: Else set (1), plith)) = (q® p®).

ALGO. 1.4: Constrained Hamiltonian Monte Carlo iteration

Tuning the stepsize ¢;,: The step size ¢, is related to the accuracy of the leapfrog method to approximate
the Hamiltonian dynamics. When ¢, is “small”, the approximation of the Hamiltonian dynamic is accurate and the
acceptance rate (1.56) is high. However, the exploration of the distribution support is slow (for a given Ny g). In
this study, we propose to tune the stepsize during the burn-in period of the sampler. More precisely, the stepsize
is decreased (resp. increased) by 25% if the average acceptance rate over the last 50 iterations is smaller than 0.5

(resp. higher than 0.8). Note that the stepsize update only happens during the burn-in period to ensure the Markov
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chain is homogeneous after the burn-in period.

Tuning the number of leapfrog steps Npp: Assume ¢, has been correctly adjusted. Too small values of
Nir lead to a slow exploration of the distribution (random walk behavior) whereas too high values of Nyr require
high computational time. Similarly to the stepsize ¢4, the optimal choice of Ny depends on the distribution to
be sampled. The sampling procedure proposed in this study consists of several HMC updates included in a Gibbs
sampler (as will be shown in the next section). The number of leapfrog steps required for each of these CHMC
updates has been adjusted by cross-validation. From preliminary runs, we have observed that setting the number of
leapfrog steps for each HMC update close to Npp = 50 provides a reasonable tradeoff ensuring a good exploration
of the target distribution and a reasonable computational complexity. To avoid possible periodic trajectories, it is
recommended to let Npr random (Brooks, 2011, Chap. 5). In this study, we have assumed that Npg is uniformly
drawn in the interval [45,55] at each iteration of the Gibbs sampler. The next section presents the Gibbs sampler

(including CHMC steps) which is proposed to sample according to (4.17).

Gibbs Sampler

The principle of the Gibbs sampler is to sample according to the conditional distributions of the posterior of interest
(Robert and Casella, 2004, Chap. 10). Due to the large number of parameters to be estimated, it makes sense to
use a block Gibbs sampler to improve the convergence of the sampling procedure. More precisely, we propose to

sample sequentially M, Z, b, 0%, 07 and w using six moves that are detailed in the next sections.

Sampling the coefficient matrix Z Sampling from f(Z|Y,M, b, 02,02, w) is difficult due to the complexity
of this distribution. In this case, it is classical to use an accept/reject procedure to update the coefficient matrix Z
(hybrid Metropolis-Within-Gibbs sampler). Since the elements of Z satisfy the constraints (1.40), the CHMC studied
in Section 1.5.1 could be used to sample according to the conditional distribution f(Z|Y,M,b,a?, 0, w). However,
as for Metropolis-Hastings updates, the convergence of HMCs generally slows down when the dimensionality of the
vector to be sampled increases. Consequently, sampling an N (R — 1)-dimensional vector using the proposed CHMC

can be inefficient when the number of pixels is very large. It can be shown that
N
F(ZIY M, b, 0, w) = [ f(znlyn, M, bn, 0?), (1.59)
n=1

i.e., the N coefficients vectors {z,},_, 5 are a posteriori independent and can be sampled independently in a

.....

parallel manner. Moreover, straightforward computations lead to

— Iyt —
f(zn‘yn7M7bnao-2) X €exp <_ (yn Xn) 2 (yn Xn)) 1(0 1)1? 1 Zn (H ZR " 1) (160)

where x,, = g, (May,), 1(,1)r-1 (-) denotes the indicator function over (0,1)#~!. The distribution (1.60) is related

to the following potential energy

n — Xn TE n — X n r—
Uz = & ) . ¥ Zlog (=771 (1.61)

where we note that f(2,|yn, M, by, 0?) o< exp [~U(2,)]. N momentum vectors associated with a canonical kinetic

energy are introduced. The CHMC of Section 1.5.1 is then applied independently to the N vectors z, whose
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dimension (R — 1) is relatively small. The partial derivatives of the potential function (1.61) required in Algo. 1.4

are derived in Appendix C.
Sampling the endmember matrix M From (4.17) and (1.53), it can be seen that
. L
fMIY,Z,b,0% s> M) = [[ f(my.ly.., Z,b,07, 5% my.)
=1

where my . (resp. my,. and y,.) is the ¢th row of M (resp. of M and Y) and
_ ye: — tel]? my . —my|?
f(me.lye.,Z,b, o2, 5%, my ;) X exp (—Héggll> exp <—||232H> 1(o,1)r (my,) (1.62)
with t, = ATmy, ; + diag (b) [(ATm,.) © (ATm,.)]|. Consequently, the rows of the endmember matrix M can be
sampled independently similarly to the procedure described in the previous section (to sample Z). More precisely,

we introduce a potential energy V(my,.) associated with m, . defined by

ye: —te]® | [lmg. —my [
V(m&:) = 252 + 242 (163)
L

and a momentum vector associated with a canonical kinetic energy. The partial derivatives of the potential function

(1.63) required in Algo. 1.4 are derived in Appendix C.

Sampling the nonlinearity parameter vector b Using (4.17) and (1.53), it can be easily shown that the

conditional distribution of b, |y,, Mz,, 0% w,o? is the following Bernoulli-Gaussian distribution

bu|yn, M, 2,02, w, 0% ~ (1 —w?)d(by) + wiN (un, si) (1.64)
where -
_ % (yn—May) by, o}
e s T, 11 " o2hI® Thy, 41

and h,, = (Ma,) ® (Ma,,). Moreover,

wr = e
" Bn + w(l - ﬂn)
2
Ob Ky

For each b,, the conditional distribution (1.64) does not depend on {by}, 4n- Consequently, the nonlinearity

parameters {b,},_, , can be sampled independently in a parallel manner.

.....

Sampling the noise variance vector o> By considering the posterior distribution (4.17), it can be shown
that
L
F(@* Y, M, Z,b) = [[ f(o7lye., m.r, Z,b) (1.66)
=1

and that ag|y¢,:, m. ¢, Z, b is distributed according to the following inverse-gamma distribution

(yf,: - X@,:)T(W,: - xé,:)
)

N
U?|yf,l7mi,éaz7b'\/zg (27 (167)

where X = [x3.,...,xr.]7. Thus the noise variances can be sampled easily and independently.
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1: Initialization £t =0

2: Iterations

3: fort=1: Nyc do

4:  Parameter update

Sample Z*) from the pdfs (1.60) using a CHMC procedure.
Sample M®) from the pdfs (1.62) using a CHMC procedure.
Sample b® from the pdfs (1.64).

Sample o>(*) from the pdfs (1.67).

Hyperparameter update

10:  Sample az(t) from the pdf (1.68).

11:  Sample w® from the pdf (1.69).

12: end for

© o0 N O O«

ALGO. 1.5: Gibbs Sampling Algorithm

Sampling the hyperparameters ag and w Looking carefully at the posterior distribution (4.17), it can be

seen that o7|b,, v is distributed according to the following inverse-gamma distribution

2 ni b%
ailb,y, v ~IG (2 +7 ) 2+u> (1.68)
nel;
with I; = {n|b, # 0}, no = ||bl|, (where [-||, is the ¢y norm, i.e., the number of elements of b that are different

from zero) and n; = N — ng, from which it is easy to sample. Similarly, we obtain
wlb ~ Be(ny + 1,n9 + 1). (1.69)

Finally, the Gibbs sampler (including HMC procedures) used to sample according to the posterior (4.17) consists
of the six steps summarized in Algo. 1.5. The small number of sampling steps is due to the high parallelization

properties of the proposed sampling procedure, i.e., the generation of the N coefficient vectors {z,},,_; 5, the N

nonlinearity parameters {b,},_; 5 and the L reflectance vectors {my.}, , . After generating Nyc samples
using the procedures detailed above, the MMSE estimator of the unknown parameters can be approximated by
computing the empirical averages of these samples, after an appropriate burn-in period*. The next section studies

the performance of the proposed algorithm for synthetic hyperspectral images.
1.5.2 Simulations

Simulations on synthetic data

The performance of the proposed nonlinear SU algorithm is first evaluated by unmixing 3 synthetic images of size

50 x 50 pixels. The R = 3 endmembers observed at L = 207 different spectral bands and contained in these

“The length of the burn-in period has been determined using appropriate convergence diagnoses (Robert and Cellier,
1998).
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images have been extracted from the spectral libraries provided with the ENVI software (RSI (Research Systems
Inc.), 2003) (i.e., green grass, olive green paint and galvanized steel metal). The first synthetic image I; has been
generated using the standard linear mixing model (LMM). A second image I has been generated according to
the PPNMM and a third image I3 has been generated according to the generalized bilinear mixing model (GBM)
presented in (Halimi et al., 2011a). For each image, the abundance vectors a,,,n = 1,...,2500 have been randomly

generated according to a uniform distribution in the admissible set defined by

St:{a

Note that the conditions a, < 0.9 ensure that there is no pure pixel in the images, which makes the unmixing

R
0<ar<0.9,ZaT=1}. (1.70)

r=1

problem more challenging. All images have been corrupted by an additive independent and identically distributed
(i.i.d) Gaussian noise of variance o2 = 107%, corresponding to an average signal-to-noise ratio SNR ~ 21dB for
the three images. The noise is assumed to be i.i.d. to fairly compare unmixing performance with SU algorithms
assuming i.i.d. Gaussian noise. The nonlinearity coefficients are uniformly drawn in the set [0, 1] for the GBM. The

parameters b,,n = 1,..., N have been generated uniformly in the set [—0.3,0.3] for the PPNMM.

Table 1.6: Abundance RNMSEs (x1072): synthetic images.

I I I3
(LMM) | (PPNMM) | (GBM)
SLMM 3.78 13.21 6.83
LMM

ULMM 0.66 10.87 4.21

SPPNMM 4.18 6.04 4.13

PPNMM

UPPNMM 0.37 0.81 1.38

GBM 4.18 11.15 5.02

Different estimation procedures have been considered for the three mixing models. More precisely,

e Two unmixing algorithms have been considered for the LMM. The first strategy extracts the endmembers
from the whole image using the N-FINDR algorithm (Winter, 1999) and estimates the abundances using
the FCLS algorithm (Heinz and C.-I Chang, 2001) (it is referred to as “SLMM?” for supervised LMM). The
second strategy is a Bayesian algorithm which jointly estimates the endmembers and the abundance matrix
(Dobigeon et al., 2009a) (it is referred to as “ULMM?” for unsupervised LMM).

e Two approaches have been considered for the PPNMM. The first strategy uses the nonlinear EEA studied
by Heylen et al. (2011) and the gradient-based approach based on the PPNMM studied in Section 1.4 for
estimating the abundances and the nonlinearity parameter. This strategy is referred to as “SPPNMM”
(supervised PPNMM). The second strategy is the proposed unmixing procedure referred to as “UPPNMM”
(unsupervised PPNMM).

e The unmixing strategy used for the GBM is the nonlinear EEA studied in (Heylen et al., 2011) and the

gradient-based algorithm presented in (Halimi et al., 2011b) for abundance estimation.

Table 1.6 shows the RNMSEs associated with the images I3, ..., I3 for the different estimation procedures. These
results show that the proposed UPPNMM performs better (in term of RNMSE) than the other considered unmixing
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methods for the three images. Moreover, the proposed method provides similar results when compared with the

ULMM for the linearly mixed image ;.

Figure 1.10: Visualization of the N = 2500 pixels (blue dots) of I;, Iy and I3 using the first principal
components provided by the standard PCA. The green stars correspond to the actual endmembers and
the triangles are the simplexes defined by the endmembers estimated by the Heylen’s method (black) and
the proposed method (red).

Fig. 1.10 compares the endmember simplexes estimated by Heylen’s method (Heylen et al., 2011) (black) (used
to build the endmember prior) and by the proposed method (red) to the actual endmembers (green stars). For
visualization, the observed pixels and the actual and estimated endmembers have been projected onto the three
first axes provided by the principal component analysis. These figures show that the proposed unmixing procedure
provides accurate estimated endmembers for the three images I; to I3. Due to the absence of pure pixels in
the image, the manifold generated by the observed pixels Y is difficult to estimate. This explains the limited
performance obtained with Heylen’s method. Conversely, the use of the prior (1.45) allows the endmembers m,. to

depart from the prior estimations m, leading to improved performance.

The quality of endmember estimation is also evaluated by the spectral angle mapper (SAM) defined as

SAM = arccos (<mm>) (1.71)

[ [} o |
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where m,. is the rth actual endmember and m, its estimate. The smaller [SAM], the closer the estimated endmem-
bers to their actual values. Table 1.7 compares the performance of the different endmember estimation algorithms.
This table shows that the proposed UPPNMM generally provides more accurate endmember estimates than the
other methods. Moreover, these results illustrate the robustness of the PPNMM regarding model mis-specification.
Note that the ULMM and the UPPNMM provide similar results (in term of SAMs) for the image I; generated
according to the LMM.

Table 1.7: SAMs (x1072): synthetic images.

N-Findr | ULMM | Heylen | UPPNMM

m; 5.68 0.95 6.42 0.27
L | my 5.85 0.32 7.46 0.36
ms3 3.31 0.30 5.26 0.27
m; 9.27 9.68 6.71 0.59
I> | mg 8.58 8.67 11.80 0.38
m3 4.47 6.34 4.98 0.26
m; 7.35 3.42 6.48 1.50
I3 | mo 10.68 3.13 11.88 3.22
m3 4.34 7.44 3.20 0.85

Table 1.8 compares the AREs obtained for the different synthetic images. These results show that the AREs are
close for the different unmixing algorithms even if the estimated abundances can vary more significantly (see Table
1.6). Again, the proposed PPNMM seems to be more robust than the other mixing models to deviations from the

actual model in term of ARE.

Table 1.8: AREs (x1072): synthetic images.

L I Is
(LMM) | (PPNMM) | (GBM)

SLMM 1.04 1.74 15.16

LMM
ULMM 0.99 1.43 1.07
SPPNMM | 1.26 1.27 1.31
PPNMM
UPPNMM | 0.99 0.99 0.99
GBM 1.27 1.64 1.33

As mentioned above, one of the major properties of the PPNMM is its ability to characterize the linearity /nonlinearity
of the underlying mixing model for each pixel of the image via the nonlinearity parameter b,,. Fig. 1.11 shows the
nonlinearity parameter distribution estimated for the three images I; to I3 using the UPPNMM. This figure shows
that the UPPNMM clearly identifies the linear mixtures of the image I; whereas more nonlinearly mixed pixels
can be identified in the images I5 and I3. The analysis of Fig. 1.11 also shows that the nonlinearities contained
in the image I3 (GBM) are generally less significant than the nonlinearities affecting I (PPNMM) for a same
signal-to-noise ratio (SNR =~ 21dB).

The next set of simulations analyzes the performance of the proposed UPPNMM algorithm for different numbers
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Figure 1.11: Distributions of the nonlinearity parameters b,, for the images I (left), I3 (middle) and I3

(right).

of endmembers (R € {4,5,6}) by unmixing three synthetic images of N = 2500 pixels distributed according to the

PPNMM. The endmembers contained in these images have been extracted from the spectral libraries provided with
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Figure 1.12: Actual endmembers (blue dots) and the endmembers estimated by Heylen’s method (black

lines) and the UPPNMM (red lines) for the synthetic image containing R = 6 endmembers.

the ENVI software (RSI (Research Systems Inc.), 2003). For each image, the abundance vectors a,,n =1,..., N

have been randomly generated according to a uniform distribution over the admissible set (1.70). All images have

been corrupted by an additive white Gaussian noise corresponding to 02 = 10~%. The nonlinearity coefficients b,,

are uniformly drawn in the set [—0.3,0.3]. Tables 1.9 compares the performance of the proposed method in term
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of endmember estimation (average SAMs of the R endmembers), abundance estimation and reconstruction error.
These results show a general degradation of the abundance and endmember estimations when R is increasing (this
is intuitive since the estimator variances usually increase with the number of parameters to be estimated). However,
this degradation is reasonable when compared to the Heylen’s method coupled with the PPNMM-based inversion
algorithm introduced in Section 1.4. The proposed algorithm still provides accurate estimates, as illustrated in
Fig. 1.12 which compares the actual and estimated endmembers associated with the image containing R = 6

endmembers.

Table 1.9: Unmixing performance:synthetic images.

SPPNMM 7.76 10.78 18.53
Average SAMs (x1072)

UPPNMM | 0.47 0.81 1.09

SPPNMM 7.58 10.95 | 16.52

RNMSEs (x1072%)
UPPNMM | 0.78 | 1.23 | 1.47

SPPNMM 1.36 1.46 1.64
UPPNMM | 0.99 0.99 0.99

AREs (x1072)

Simulations on real data

Figure 1.13: Top: real hyperspectral Madonna data acquired by the Hyspex hyperspectral scanner over
Villelongue, France. Bottom: Scene #1 (left) and Scene #2 (right) shown in true colors.

The real image considered in this section was acquired in 2010 by the Hyspex hyperspectral scanner over Villelongue,
France (00°03’'W and 42°57’'N). L = 160 spectral bands were recorded from the visible to near infrared with a spatial

resolution of 0.5m. This dataset has already been studied in (Sheeren et al., 2011) and is mainly composed of forested
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and urban areas. More details about the data acquisition and pre-processing steps are available in (Sheeren et al.,
2011). Two sub-images denoted as scene #1 and scene #2 (of size 31 x 30 and 50 x 50 pixels) are chosen here to
evaluate the proposed unmixing procedure and are depicted in Fig. 1.13 (bottom images). The scene #1 is mainly
composed of road, ditch and grass pixels. The scene #2 is more complex since it includes shadowed pixels. For this
image, shadow is considered as an additional endmember, resulting in R = 4 endmembers, i.e., tree, grass, soil and
shadow.

The endmembers extracted by N-FINDR, the ULMM algorithm (Dobigeon et al., 2009a) and Heylen’s method
(Heylen et al., 2011) with R = 3 (resp. R = 4) for the scene #1 (resp. scene #2) are compared with the
endmembers estimated by the UPPNMM in Fig. 1.14 (resp. Fig. 1.15). For the scene #1, the four algorithms
provide similar endmember estimates whereas the estimated shadow spectra are different for the scene #2. The
N-FINDR algorithm and Heylen’s method estimate endmembers as the purest pixels of the observed image, which
can be problematic when there is no pure pixel in the image (as it occurs with shadowed pixels in the scene #2).
Conversely, the ULMM and UPPNMM methods, which jointly estimate the endmembers and the abundances seem

to provide more relevant shadow spectra (of lower amplitude).

Ditch Road Grass
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Figure 1.14: The R = 3 endmembers estimated by N-Findr (blue lines), ULMM (green lines), Heylen’s
method (black lines) and the UPPNMM (red lines) for the scene #1.

Examples of abundance maps for the scene #1 (resp. scene #2), estimated by the ULMM and the UPPNMM
algorithms are presented in Fig. 1.16 (resp. Fig. 1.17). The abundance maps obtained by the UPPNMM are
similar to the abundance maps obtained with ULMM.
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Figure 1.15: The R = 4 endmembers estimated by N-Findr (blue lines), ULMM (green lines), Heylen’s
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method (black lines) and the UPPNMM (red lines) for the scene #2.

Figure 1.16: Abundance maps estimated by the SLMM, the GBM and the UPPNMM algorithms for the

scene #1.
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Figure 1.17: Abundance maps estimated by the SLMM, the GBM and the UPPNMM algorithms for the
scene #2.

Fig. 1.18 shows the estimated maps of b,, for the two considered images. Different nonlinear regions can be identified
in the scene #1, mainly in the grass-planted region (probably due to endmember variability) and near the ditch
(presence of relief). For the scene #2, nonlinear effects are mainly detected in shadowed pixels.

Fig. 1.19 compares the noise variances estimated by the UPPNMM for the two real images with the noise variances
estimated by the HySime algorithm (Bioucas-Dias and Nascimento, 2008). The HySime algorithm assumes additive
noise and estimates the noise covariance matrix of the image using multiple regression. Fig. 1.19 first shows that
the two algorithms provides similar noise variance estimates. Moreover, these results motivate the consideration of
non i.i.d. noise for hyperspectral image analysis since the noise variances increase for the higher wavelengths for

the two images.

(a) Scene #1 (b) Scene #2

Figure 1.18: Maps of the nonlinearity parameter b, estimated by the UPPNMM for the real images.
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Figure 1.19: Noise variances estimated by the UPPNMM (red) and the Hysime algorithm (blue) for the
scene #1 (top) and the scene #2 (bottom).

The performance of the proposed algorithm is finally evaluated by computing the AREs associated with the two
real images. These AREs are compared in Table 4.6 with those obtained by assuming other mixing models. The
two unsupervised algorithms (ULMM and UPPNMM) provide smaller AREs than the SU procedures decomposed

into two steps. This observation motivates the use of joint abundance and endmember estimation algorithms.

Table 1.10: AREs (x1072): Real image.

Scene #1 | Scene #2
SLMM 1.53 1.04
LMM

ULMM 1.11 0.88

SPPNMM 1.50 1.17

PPNMM

UPPNMM 1.08 0.89

GBM 1.72 1.25
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1.5.3 Intermediate conclusion

We proposed a new hierarchical Bayesian algorithm for unsupervised nonlinear spectral unmixing of hyperspectral
images. This algorithm assumed that each pixel of the image is a post-nonlinear mixture of the endmembers
contaminated by additive Gaussian noise. The physical constraints for the abundances and endmembers were
included in the Bayesian framework through appropriate prior distributions. Due to the complexity of the resulting
joint posterior distribution, a Markov chain Monte Carlo method was used to approximate the MMSE estimator of
the unknown model parameters. Because of the large number of parameters to be estimated, Hamiltonian Monte
Carlo methods were used to reduce the sampling procedure complexity and to improve the mixing properties of the
proposed sampler. Simulations conducted on synthetic data illustrated the performance of the proposed algorithm
for linear and nonlinear spectral unmixing. Finally, we would like to mention an important advantage of the

proposed algorithm, i.e., its flexibility regarding the absence of pure pixels in the image.
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1.6 Conclusion

In this chapter, we derived a polynomial post-nonlinear mixing model for nonlinear SU of hyperspectral images. Two
scenarios have been presented, depending on the prior knowledge about the endmembers. When the endmembers are
known, we proposed three unmixing algorithms for the inversion step. The proposed Bayesian model coupled with
MCMC methods allowed samples to be generated according to the posterior of interest. These samples were then
used to compute the classical Bayesian estimators, while providing measures of uncertainty about the parameter
estimates. To overcome the computational complexity induced by the sampling procedure, two LS methods were
also proposed, providing unmixing performance similar to those obtained with the Bayesian algorithm.
Estimating the endmembers associated with nonlinear mixtures is a challenging issue. In this chapter, we finally
proposed a fully unsupervised unmixing strategy based on the proposed PPNMM model. This Bayesian algorithm
estimated jointly the endmembers and the mixing coefficients even when there is no pure pixel in the observed image.
The joint endmember and abundance estimation increases the number of parameters to be estimated which can be
problematic when using standard MCMC methods such as the Gibbs sampler. To improve mixing properties of the
Markov chains, efficient constrained Hamiltonian Monte Carlo methods were investigated. Simulations conducted
on real data showed the accuracy of the proposed model to quantify possible nonlinear effects in each image pixel
using a single parameter.

It was shown that the proposed model reduces to the classical LMM when the nonlinearity parameter equals zero.
Consequently, it makes sense to use this nonlinear model for nonlinearity detection. Identifying nonlinearly from
linearly mixed pixel is an interesting issue for a deeper scene understanding. This problem, in particular using the
PPNMM, will be addressed in the last chapter of this manuscript.

The nonlinear SU algorithms presented in this chapter were based on a parametric model involving explicitly the
abundances and the endmember matrix. This model assumes that the observations are post-nonlinear mixtures of
endmembers and that the nonlinear transformation can be approximated using a second order polynomial function.
For applications where the observed pixels cannot be modeled by post-nonlinear mixtures, other nonlinear models
should be used. Nonparametric models have the interesting property of being highly flexible to model different
nonlinearities and have already provided interesting results for SU (Broadwater and Banerjee, 2009; Broadwater
et al., 2007; Chen et al., 2013b). The next chapter studies a new kernel-based model for unsupervised nonlinear
SU. This model approximates the nonlinear relation between the abundances and the observations without explicit
dependency on the unknown endmembers, leading to a more flexible mixing model.

Main contributions. A new nonlinear model based on post-nonlinear mixtures was proposed for linear /nonlinear
SU. The nonlinearity in each pixel was characterized by a single amplitude parameter which will allow simple
nonlinearity detectors to be derived in the third chapter. SU methods were proposed to address the problems of
supervised and unsupervised unmixing. Efficient sampling algorithms based on Hamiltonian MCMC methods were
also used to improve the mixing properties of the sampler when the endmembers are unknown (and have to be

estimated).
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1.7 Conclusion (in French)

Dans ce chapitre, nous avons étudié un premier modéle de mélange post-non-linéaire polynomial pour le démélange
d’images hyperspectrales. Deux scénarios ont été présentés en fonction de la connaissance a priori sur les signa-
tures des composants purs de 'image. Lorsque ces signatures sont connues, nous avons proposé trois algorithmes de
démélange pour ’étape d’inversion (’estimation des abondances et des paramétres des non-linéarités). Le modéle
bayésien proposé, couplé avec des méthodes MCMC, permet de générer des échantillons suivant la loi a posteriori
d’intérét. Ces échantillons sont ensuite utilisés pour calculer les estimateurs bayésiens classiques, tout en offrant
des mesures d’incertitude sur les estimations des paramétres. Pour pallier le cott calculatoire induit par la procé-
dure d’échantillonnage, deux méthodes d’optimisation sous contraintes ont également été proposées, offrant des
performances de démélange similaires a celles obtenues avec ’algorithme bayésien.

L’estimation des signatures spectrales des composants purs associées a des mélanges non-linéaires est une question
difficile. Dans ce chapitre, nous avons proposé une stratégie de démélange non-supervisée basée sur le modéle
PPNMM. Cet algorithme bayésien estime conjointement les spectres des composants purs et les coefficients de
mélange, méme lorsqu’il n’y a pas de pixel pur dans 'image observée. Une telle estimation augmente le nombre
de paramétres & générer ce qui peut étre problématique lors de l'utilisation des méthodes MCMC standards tels
que ’échantillonneur de Gibbs. Pour améliorer les propriétés de mélange des chaines de Markov, des méthodes
de Monte Carlo & dynamiques hamiltoniennes contraintes efficaces ont été étudiées. Les simulations effectuées sur
données réelles ont montré la pertinence du modéle proposé pour quantifier les effets non-linéaires possibles dans
chaque pixel de 'image & ’aide d’un seul paramétre.

Il a été montré que le modéle proposé se réduit au modeéle de mélange linéaire classique lorsque le paramétre de
non-linéarité est égal a zéro. Par conséquent, il parait logique d’utiliser ce modéle non-linéaire pour la détection de
non-linéarités, sujet qui sera abordé dans les derniers chapitres de ce manuscrit. En effet, 'identification de pixels
résultant de mélanges linéaires et non-linéaires est une question intéressante pour une caractérisation plus fine de
I’image observée.

Les algorithmes de démélange non-linéaires présentés dans ce chapitre sont fondés sur un modéle paramétrique
impliquant explicitement les abondances et la matrice des signatures spectrales des composants de 'image. Ce
modéle suppose que les observations sont des mélanges post-non-linéaires des spectres des composants de 'image et
que la transformation non-linéaire peut étre estimée & l’aide d’un polynéme du second ordre. Pour les applications
ou les pixels observés ne peuvent pas étre modélisés par des mélanges post-non-linéaires, d’autres modéles non-
linéaires devraient étre utilisés. Les modéles non-paramétriques ont la propriété intéressante d’étre trés flexible
pour modéliser différentes non-linéarités et ont déja donné des résultats intéressants pour le démélange spectral
(Broadwater and Banerjee, 2009; Broadwater et al., 2007; Chen et al., 2013b). Le chapitre suivant étudie un nouveau
modéle non-linéaire & base de noyaux pour le démélange non-linéaire non-supervisé. Ce modéle approche la relation
non-linéaire entre les abondances et les observations sans dépendre explicitement des spectres des composants purs
de I'image, conduisant & un modéle de mélange plus souple.

Contributions majeures. Un nouveau modéle non-linéaire & base de mélanges post-non-linéaires a été proposé
pour le démélange spectral linéaire et non-linéaire. Les non-linéarités dans chaque pixel sont caractérisées par un
paramétre d’amplitude unique, ce qui permet de proposer un détecteur de non-linéarités simple qui sera étudié
dans le troisiéme chapitre de ce manuscrit. Des méthodes de démélange spectral ont été proposées pour résoudre

les problémes de démélange supervisé et non-supervisé. Des algorithmes d’échantillonnage efficaces basés sur des
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méthodes de Monte Carlo & dynamiques hamiltoniennes ont également été utilisés pour améliorer les propriétés de
mélange de I’échantillonneur lorsque les signatures spectrales des composants purs ne sont pas connues (et doivent

étre estimées).
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Chapter 2

Unsupervised nonlinear unmixing using

(Gaussian processes

This chapter has been adapted from the journal paper Altmann et al. (2013a) (published).
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2.1 Introduction (in French)

Dans ce chapitre, nous proposons une nouvelle méthode & noyau pour le démélange non-linéaire non-supervisée
basée sur un modéle & variables latentes. Dans le chapitre 1, nous avons proposé un modéle post-non-linéaire pour

approcher la fonction non-linéaire reliant les signatures spectrales des composants purs et leurs abondances associées
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aux pixels observés. Il a également été montré que le probléme de démélange non-supervisé est un probléme difficile
en raison du grand nombre de paramétres inconnus & estimer. Comme il est présenté dans ce chapitre, un des
principaux avantages du modéle de variable latente proposé est qu’il ne repose pas explicitement sur la matrice des
signatures spectrales, mais sur un nombre réduit de parameétres & estimer. De plus, la relation non-linéaire entre les
abondances et les observations est estimée & 1’aide d’un noyau, contrairement au modéle PPNMM. Les méthodes
A noyaux ont été intensivement étudiées dans la communauté de ’apprentissage automatique pour leur capacité a
modéliser des non-linéarités complexes. Broadwater et al. (2007) et Broadwater and Banerjee (2009) remplacent
les produits scalaires utilisés pour le démélange linéaire par des noyaux afin de généraliser I’algorithme classique
FCLS (Heinz and C.-I Chang, 2001) en Kernel-FCLS (K-FCLS). L’algorithme K-FCLS suppose que les spectres
des composants purs sont connus et résout le probléme de démélange non-linéaire en projetant les données dans
un espace de grande dimension (généralement supérieure a la dimension des données) et en résolvant le probléme
de démélange linéaire dans ce nouvel espace. L’algorithme K-FCLS appartient & la méme famille de méthode que
Panalyse en composantes principales non-linéaire (K-PCA) dans le sens ot ces deux méthodes sont basées sur des
modeéles discriminants. Physiquement, modeliser les effets non-linéaires qui rentrent en jeu dans les processus de
mélanges par un modéle discriminant n’est pas intuitif. Au contraire, il parait plus naturel de considérer des modéles
génératifs qui relient la composition physique de chaque pixel & leur spectre associé. De tels modéles peuvent s’écrire

de la fagon suivante

Yn ~ @M(any 077,)

ot pnm(+) est une transformation (non-linéaire) paramétrée par la matrice M des signatures spectrales des com-
posants de I'image, a,, est le vecteur d’abondance du niéme pixel et 6, est un vecteur qui contient de possibles
paramétres supplémentaires associés au niéme pixel. Il est important de noter que les modéles génératifs présentés
dans l'introduction de ce manuscrit (comme les modéles bilinéaires) peuvent s’écrire sous cette forme.

Pour de nombreuses images réelles, on observe que les données vivent souvent sur une variété dont la dimension est
étroitement liée au nombre de composants présents dans 'image. Plus précisement, due & la contrainte d’égalité
(somme-a-un) des abondances, la dimension de cette variété est souvent (R— 1), ot R est le nombre de composants
de I'image. Dauns le cas de mélanges linéaires, cette variété est incluse dans un sous-espace de dimension (R — 1),
ce qui peut étre utilisé pour identifier le nombre de composants de la scéne. Dans le cas de mélanges non-linéaires,
cette variété est incluse dans un sous-espace de dimension supérieure. Dans ce chapitre, on suppose donc que les
données (dans le cas sans bruit) vivent sur une variété (caractérisée par les composants de I'image) et que la position
des observations sur cette variété dépend seulement des abondances de ces matériaux.

L’algorithme de démélange proposé se décompose en trois étapes. La premiére étape, dite de réduction de dimension,
consiste & identifier la variété sur laquelle vivent les données et & estimer les coordonnées des pixels observés sur cette
variété par l'intermédiaire de variables latentes. La deuxiéme étape permet d’identifier les abondances associées a
chaque pixel et reliées aux variables latentes. Enfin, la derniére étape consiste & prédire les signatures spectrales
des composants de I'image & l’aide de processus gaussiens. L’algorithme de démélange non-supervisé proposé est
comparé & des algorithmes de démélange linéaires et non-linéaires de la littérature par des simulations sur données
synthétiques et réelles. Ces simulations permettent également de mettre en évidence la flexibilité du modéle considéré
pour résoudre le probléme de démélange non-linéaire quand seul le nombre de composants est connu, méme s’il n’y

a pas de pixel pur dans I’image.
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Chapter 2. Unsupervised nonlinear unmixing using Gaussian processes

2.2 Introduction

In this chapter we propose a new kernel-based method for unsupervised nonlinear SU based on a latent variable
model. In Chapter 1, we proposed a post-nonlinear model to approximate the nonlinear function relating the
endmembers and the abundances to the observed pixels. It has been shown that the unsupervised unmixing
problem is difficult because of the large number of unknown parameters to be estimated. As it will be shown later
in this chapter, one of the main advantages of the proposed latent variable model is that it does not rely explicitly
on the endmember matrix, but on a reduced number of unknown parameters instead. Moreover, conversely to
the PPNMM,, the nonlinear relation between the abundances and the observations is approximated using a kernel
function. Kernel-based methods have been intensively studied in the machine learning community for their ability
to model complex nonlinearities. Broadwater and Banerjee (2009); Broadwater et al. (2007) propose to replace inner
products used for linear SU by kernel functions to generalize the classical FCLS algorithm (Heinz and C.-I Chang,
2001), yielding the Kernel-FCLS (K-FCLS) algorithm. The K-FCLS algorithm assumes that the endmembers are

known and solves the following constrained problem

R T R
HIELH (‘z’(yn) - Z ar,n¢(m7’)> <¢(yn) - Z ar,n¢(mr)> (2.1)

subject to the positivity and sum-to-one constraints for the abundance vectors a,, for n = 1,..., N. The non-
linear transformation ¢(-) is applied to the L-dimensional observations y, such that the set (¢(yn)),—; n lies
into a subspace whose dimension is (much) larger than L (potentially of infinite dimension). Solving (2.1) con-
sists of projecting the transformed observations onto the simplex whose vertices are the transformed endmembers

o(my),...,o(mg).

) Transformed observation
Q (mg) space

02 04 06 08

(g

Observation space Abundance space

Figure 2.1: K-FCLS algorithm principle. The K-FCLS approximates the nonlinear mapping relating the

observations to the abundances.

Fig. 2.1 illustrates the K-FCLS method principle for R = 3 endmembers. The K-FCLS algorithm can be interpreted
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Chapter 2. Unsupervised nonlinear unmixing using Gaussian processes

as a nonlinear dimensionality reduction technique, similar to the Kernel principal component analysis (KPCA), in

the sense that a nonlinear transformation in applied to the observations to recover the abundances using

where op () is a nonlinear transformation parameterized by the endmember matrix M that is approximated using
kernel functions. Physically, modeling nonlinearities by setting a nonlinear mapping from the observations to the
abundances is not intuitive. Conversely, it seems more natural to assume a nonlinear mapping from the pixel

compositions (i.e., the abundances and endmembers) to the observations. Such mappings can be expressed as

yn = <)0M(a’na 0n) (22)

where 6,, contains possible additional parameters associated with the nth pixel. It is important to note that the
generative models presented in the introduction of this manuscript (such as the bilinear models) can be expressed

as (2.2) where 0,, contains nonlinearity parameters.

Figure 2.2: Representation of mixtures composed of R = 3 components distributed according to the LMM

(left) and the FM (right), using the first three principal components provided by the standard PCA.

For linearly mixed pixels composed of R materials (in the noise-free case), the observed pixels belong to an (R —1)-
dimensional subspace that can be identified using principal subspace methods (such as principal component analysis
(PCA)) (see Fig. 2.2 (left)). Conversely, when nonlinear mixtures occur, the dimension of the principal subspace
containing the data increases with the nonlinearity complexity. In this chapter, we assume however that mixed
pixels still belong to an (R — 1)-dimensional manifold when R endmembers are involved in the mixtures. This
manifold is characterized by the mixture compositions (abundances) and can be either linear (for linearly mixed
pixels) or nonlinear and included within a higher dimensional subspace. This is typically the case for intimate
mixtures models and the bilinear FM (Fan et al., 2009) (see Fig. 2.2 (right)). Based on this assumption, the
mapping (2.2) reduces to

Yn ~ g(an). (2.3)

where g(-) is a linear/nonlinear transformation that implicitly relies on the endmember matrix M. The resulting

latent variable model (LVM) approximates the observed data using a nonlinear transformation of the abundance,
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Chapter 2. Unsupervised nonlinear unmixing using Gaussian processes

contrary to KPCA-based methods which approximate the abundances using nonlinear transformations of the ob-
servations (Fig. 2.3). Conversely to the K-FCLS algorithm, this chapter addresses the problem of unsupervised
unmixing, i.e., the endmembers are assumed to be unknown. Precisely, only the number of components is known.
Consequently, the nonlinear mapping g(-) and the abundances in (2.3) are unknown and have to be estimated. The

next paragraph presents a new nonlinear mixing model based on LVMs for unsupervised SU.

. Nonlinear mappings
Observation space DpIng Abundance space

KPCA-based models

I:>
i ~— ———

04
Latent variable models 1 %§s

0 08

(5

02 04

Figure 2.3: Modeling nonlinear relations between observed pixels and corresponding abundances.

2.3 Nonlinear mixing model

Consider a hyperspectral image of N pixels, composed of R endmembers observed in L spectral bands. For conve-
nience, the data are assumed to have been previously centered, i.e., the sample mean of the IV original pixels has been
subtracted from each observed pixel. The L-spectrum y,, = [y1,n,...,Yr.n]’ of the nth mixed pixel (n =1,...,N)

is defined as a transformation of its corresponding abundance vector a,, = [a1 p, . . ., aRm]T as follows
yon = glay,)+e,, n=1,...,N (2.4)

where g : R — R” is a linear or nonlinear unknown function. The noise vector e, is an i.i.d. white Gaussian
noise sequence with variance o2, i.e., e, ~ N (e,]0L,0%I),n =1,..., N. Without loss of generality, the nonlinear

mapping (2.4) from the abundance space to the observation space can be rewritten
yn - WOdJ [an]—’_en) n= 1""7N (2'5)

where 1 : RE — RP, Wy is an L x D matrix and the dimension D is the dimension of the subspace spanned by the
transformed abundance vectors v [a,],n = 1,..., N. Of course, the performance of the unmixing strategy relies

on the choice of the nonlinear function ). In this study, we will use the following nonlinearity
¥: RE - RP
a wpla]=lar,...,ap,a10z... >aR—1aR]Ta (2.6)

with D = R(R+1)/2. It is important to note from (2.5) and (2.6) that W contains the R spectra my, ..., mpg of the

pure components present in the image and R(R — 1)/2 interaction spectra tz11,...,tp between these components,
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ie, Wg=[mi,...,mpg,tgy1,...,tp]. The primary motivation for considering this particular kind of nonlinearity
is the fact that the resulting mixing model is a bilinear model with respect to each abundance a,,r = 1,..., R.

More precisely, this mixing model reduces to the generalized bilinear model proposed in (Halimi et al., 2011a) for
tirj = vigm ©my,  Vj> i, (2.7)

and thus the LMM. Note also that the analysis in this chapter could be applied to any other nonlinearity .

Due to physical constraints, the abundance vector a,, satisfies the following positivity and sum-to-one constraints

R
ZO‘T,H =1, arn=>0,Vre {1,7R} (28)

r=1
Since the nonlinearity ) is fixed, the problem of unsupervised spectral unmixing is to determine the L x D spectrum
matrix Wy, the R x N abundance matrix A = [a1, ..., an] satisfying (2.5) with the constraints (2.8), and the noise

variance o2.

(a) LMM (b) FM

Figure 2.4: Representation of pixels (blue dots) generated according to the LMM (a) and the FM (b) and

admissible endmembers solving the unmixing problem.

Unfortunately, it is well known that the unmixing problem is ill-posed and that the solution of this constrained
problem is not unique even when considering the constraints (2.8) for the abundances. In the noise-free linear case, it
is well known that the data are contained in a simplex whose vertices are the endmembers. Fig. 2.4 (left) shows two
admissible sets of endmembers (i.e., {m;, my, ms} and {mj, m}, m3}) which can generate the linearly mixed pixels
(blue dots). When estimating the endmembers in the linear case, a simplex of minimum volume embedding the data
is expected (i.e., the set {m;, ms, m3} is expected). Equivalently, the estimated abundance vectors are expected
to occupy the largest volume in the simplex defined by (2.8). Fig. 2.4 (right) shows a set of pixels distributed
according to the FM (Fan et al., 2009) for R = 3 endmembers. The sets {m;, my, m3} and {m}, m3}, m3} (and the
two sets of associated abundances) are admissible solutions for the nonlinear SU problem. Similarly to the linear
case, the estimated abundance matrix resulting from an unsupervised nonlinear SU strategy is expected to occupy
the largest volume in the simplex defined by (2.8) (corresponding to the endmembers m;, my andms). However,

assigning an appropriate prior distribution enforcing the abundances to occupy the largest volume for nonlinear
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unmixing is challenging. Note that it has been shown in (Dobigeon et al., 2009a) that for linear unmixing, assigning
a uniform distribution on the simplex defined by (2.8) for the abundances favors the abundances to occupy a large
volume in (2.8). However, such prior can be too uninformative for nonlinear unmixing.

To tackle this problem, we first propose to relax the positivity constraints for the elements of the matrix A and
to consider only the sum-to-one constraint. For ease of understanding, we introduce R x 1 vectors satisfying the

sum-to-one constraint

R
> #pm=1, n=1...,N (2.9)
r=1

referred to as latent variables and denoted as x,, = [T14,...,2rn]’,n = 1,...,N. Relaxing the positivity con-

straints allows the problem complexity to be reduced by 1) estimating the latent variables introduced artificially and
2) scaling subsequentially these variables to recover abundances occupying the largest volume in the domain defined
by (2.8). The scaling procedure will be discussed in paragraph 2.5. The next paragraph presents the Bayesian

model for latent variable estimation using GPLVMs.

2.4 Bayesian model

GPLVMs (Lawrence, 2003) are powerful tools for probabilistic nonlinear dimensionality reduction that rewrite the

nonlinear model (2.4) as a nonlinear mapping from a latent space to the observation space as follows
yn = W¢lz,]+e, n=1,...,N (2.10)

where 1 is defined in (2.6), W = [w1,...,wz]T is an L x D matrix with wy = [wy1,...,w,p]T, and D = R(R+1)/2.
Note that from (2.5) and (2.10) the columns of W span the same subspace as the columns of Wy. Consequently, the
columns of W are linear combinations of the spectra of interest, i.e., the columns of Wy. Note also that when W is
full rank, it can be shown that the latent variables are necessarily linear combinations of the abundance vectors of
interest (see Appendix D for details). Figs. 2.5 and 2.6 illustrate the mapping from the abundance vectors to the
observations that will be used in this study. Note that the linear mapping between the abundances and the latent
variables will be explained in details in paragraph 2.5. The D x 1 vectors ¥ [z,] will be denoted as v, (n) in the

sequel.

eﬂ,

an Linear Lp Nonlinear¢[m71] Linear Wlb [a"ﬂ]\ oo Vi
mapping mapping mapping N '

k4

g(an)

Z(-)

Figure 2.5: Nonlinear mapping from the abundances vectors to the observed mixed pixels.
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Figure 2.6: Example of mapping decomposition from the abundance vectors to the observed nonlinearly

mixed pixels through the latent variables (R = 3).

Assuming independence between the observations, the statistical properties of the noise lead to the following like-

lihood of the L x N observation matrix Y = [y1,...,yn]

N
YW, X, 0% ~ [N (ya W, (n),0°1,) (2.11)
n=1
where X = [x1,...,xy] is the R x N latent variable matrix. Note that the likelihood can be rewritten as a product

of Gaussian distributions over the spectral bands as follows

L
YW, X, 0% ~ H/\/‘ (ye: | ®owe, o°1L) (2.12)
=1
where Y = [y1.,...,yr.]7 (ye. denotes the ¢th row of Y) and ¥, = [¢,(1),...,%,(N)]T isan N x D matrix. The

idea of GPLVMs is to consider W as a nuisance parameter, to assign a Gaussian prior to W and to marginalize

the joint likelihood (2.11) over W, i.e.,
FOYIX.0%) = [ FOYIW.X,0)f(W)aW (213)

where f(W) is the prior distribution of W. The estimation of X and o2 can then be achieved by maximizing (2.13)
following the maximum likelihood estimator (MLE) principle. An alternative consists of using an appropriate prior
distribution f(X,0?), assuming prior independence between W and (X, 0?), and maximizing the joint posterior

distribution
fX. oY) o / FOY[W, X, 0%) (W) (X, 02)dW

x f(X,orQ)/f(Y\W,X,aQ)f(W)dW

o« fY|X, 0% f(X,0%) (2.14)

with respect to (w.r.t.) (X,0?), yielding the maximum a posteriori (MAP) estimator of (X, 0?). The next paragraph
discusses different possibilities for marginalizing the joint likelihood (2.12) w.r.t. W.

66



Chapter 2. Unsupervised nonlinear unmixing using Gaussian processes

2.4.1 Marginalizing W

It can be seen from (2.13) that the marginalized likelihood and thus the associated latent variables depend on the
choice of the prior f(W). More precisely, assigning a given prior for W favors particular representations of the data,
i.e., particular solutions for the latent variable matrix X maximizing the posterior (2.14). When using GPLVMs

for dimensionality reduction, a classical choice (Lawrence, 2003) consists of assigning independent Gaussian priors

row) = (5) ﬁexp[nwa} (2.15)

However, this choice can be inappropriate for SU. First, Eq. (2.15) can be incompatible with the admissible

for wq,...,wp, leading to

DL
2

latent space, constrained by (2.9). Second, the prior (2.15) assumes the columns of W (linear combinations of
the spectra of interest) are a priori Gaussian, which is not relevant for real spectra in most applications. A more
sophisticated choice consists of considering a priori correlation between the columns (inter-spectra correlation) and
rows (inter-bands correlation) of W using a structured covariance matrix to be fixed or estimated. In particular,
introducing correlation between close spectral bands is of particular interest in hyperspectral imagery. Structured
covariance matrices have already been considered in the GP literature for vector-valued kernels (Bonilla et al., 2007)
(see (Alvarez et al., 2012) for a recent review). However, computing the resulting marginalized likelihood usually
requires the estimation of the structured covariance matrix and the inversion of an NL x NL covariance matrix",
which is prohibitive for SU of hyperspectral images since several hundreds of spectral bands are usually considered
when analyzing real data. Sparse approximation techniques might be used to reduce this computational complexity
(see (Quinonero-candela et al., 2005) for a recent review). However, to our knowledge, these techniques rely on the
inversion of matrices bigger than N x N matrices. The next paragraph presents an alternative that only requires

the inversion of an D x D covariance matrix without any approximation.

2.4.2 Subspace identification

It can be seen from (2.10) that in the noise-free case, the data belong to a D-dimensional subspace that is spanned
by the columns of W. To reduce the computational complexity induced by the marginalization of the matrix W
while considering correlations between spectral bands, we propose to marginalize a basis of the subspace spanned

by W instead of W itself. More precisely, W can be decomposed as follows

W =PUT (2.16)
where P = [p1,...,pz]7 is an L x D matrix (pg is D x 1 vector) whose columns are arbitrary basis vectors of
the D-dimensional subspace that contains the subspace spanned by the columns of W and U = [uy,...,up]? is a

D x D matrix that scales the columns of P. Note that the subspaces spanned by P and W are the same when W

is full rank, resulting in a full rank matrix U. The joint likelihood (2.12) can be rewritten as

L
Y[P, U X,0” ~ [[ NV (ye.:/Cps, 0°11) (2.17)
(=1

where C = ¥, U is an N x D matrix. The proposed subspace estimation procedure consists of assigning an

appropriate prior distribution to P (denoted as f(P)) and to marginalize P from the joint posterior of interest.

'See Appendix E for further details.
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It is easier to choose an informative prior distribution f(P) that accounts for correlation between spectral bands
than choosing an informative prior f(W) since P is an arbitrary basis of the subspace spanned by W, which can

be easily estimated (as will be shown in the next paragraph).

2.4.3 Parameter priors

GPLVMs construct a smooth mapping from the latent space to the observation space that preserves dissimilarities
(Lawrence and Quinionero Candela, 2006). In the SU context, it means that pixels that are spectrally different
have different latent variables and thus different abundance vectors. However, preserving local distances is also
interesting: spectrally close pixels are expected to have similar abundance vectors and thus similar latent variables.
Several approaches have been proposed to preserve similarities, including back-constraints (Lawrence and Quinionero
Candela, 2006), dynamical models (Wang and C.-I Chang, 2006) and locally linear embedding (LLE) (Urtasun et al.,
2007). In this study, we use LLE to assign an appropriate prior to X. First, the K nearest neighbors {y;};c,, of
each observation vector y, are computed using the Euclidian distance (v; is the set of integers j such that y; is a
neighbor of y;). The weight matrix Arrg = [A; ;] of size N x N providing the best reconstruction of y; from its

neighbors is then estimated as

2
N

ApLLg = arg mAinZ yi— > igyil - (2.18)

i=1 JEV;
Note that the solution of (2.18) is easy to obtain in closed form since the criterion to optimize is a quadratic function

of A. Note also that the matrix A is sparse since each pixel is only described by its K nearest neighbors. The

locally linear patches obtained by the LLE can then be used to set the following prior for the latent variable matrix

2
N N
F(X|ALLE,7) o exp _% Sllz =Y digai| | I 1o (=] (2.19)
i=1 jevi n=1
where v is a fixed hyperparameter to be adjusted and 1p(+) is the indicator function over the set D defined by the
constraints (2.9).

In this study, we propose to assign a prior to P using the standard principal component analysis (PCA) (note
again that the data have been centered). Assuming prior independence between p1, ..., pr, the following prior is

considered for the matrix P

NL o[
— 1 2 1 _ 2
N A I (2.20)
{=1

where P = [p1,...,pr]? is an L x D projection matrix containing the first D eigenvectors of the sample covariance
matrix of the observations (provided by PCA) and s? is a dispersion parameter that controls the dispersion of the
prior. Note that the correlation between spectral bands is implicitly introduced through P. It is interesting to
mention that the use of principal subspace identification methods for SU has already been investigated by Dobigeon
et al. (2009a) where the projections of the endmembers onto the principal data subspace were estimated instead of
the endmembers themselves.

Non-informative priors are assigned to the noise variance o2 and the matrix U, i.e,

f(0?) o s, (0?)

(2.21)
fluig) oo L5y 60)(uiy)
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where the intervals (0,d,2) and (—dy,dy) cover the possible values of the parameters o2 and U. Similarly, the

following non-informative prior is assigned to the hyperparameter s

f(s?) o 1(0’552)(32) (2.22)

where the interval (0,d,2) covers the possible values of the hyperparameter s2. The resulting directed acyclic graph

(DAG) is depicted in Fig. 2.7.

i
\s

Figure 2.7: DAG for the parameter priors and hyperpriors (the fixed parameters appear in dashed boxes).

2.4.4 Marginalized posterior distribution

2

Assuming prior independence between P, X, U, s and o2, the marginalized posterior distribution of 8 =

(X, U, s% 0?) can be expressed as

FOY Aus.By) x  f(0]ALn.7) / F(Y[P.6)f (P[P, %) dP
x F(Y|0,P)f(6/Asis.7) (2.23)

where f(0|ALLE,7) = f(X|ALLr, ) f(U)f(s?)f(c?). Straightforward computations leads to

FY0.P) = [ F(XIP.0) (PIP.5%) aP
L
1 1 1o
x H E exp [—2}’@,;2 W,:}
=1
1 o
x |X|77 exp {—Qtr(E_lYTY)] (2.24)
where ¥ = s2CCT + 0?1y, ¥4. = yr. —Cprisan N x 1 vector, Y = [¥1.,...,¥1.] = Y —PCT is an L x N matrix

and tr(-) denotes the matrix trace.

Mainly due to the nonlinearity introduced through the nonlinear mapping, a closed form expression for the parame-
ters maximizing the joint posterior distribution (2.23) is impossible to obtain. We propose to use a scaled conjugate
gradient (SCG) method (Mpgller, 1993) to maximize the marginalized log-posterior. To ensure the sum-to-one

constraint for X, the following arbitrary reparametrization

R-1
xR’nzl—g Tpp, n=1,...,N
r=1
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is used and the marginalized posterior distribution is optimized w.r.t. the first (R—1) rows of X denoted X\ z. Note
that the sum-to-one constraints for the latent variables could be relaxed since we only expect the abundances of
interest to satisfy these constraints. However, these constraints ensure that the dimension of the estimated manifold
on which the data lie is R — 1. The partial derivatives of the log-posterior w.r.t. X\ g, U, s2 and o2 are obtained
using partial derivatives w.r.t. 3 and Y and the classical chain rules (see Appendix F for further details). The
resulting latent variable estimation procedure is referred to as locally linear GPLVM (LL-GPLVM).

Note that the marginalized likelihood reduces to the product of L independent Gaussian probability density functions

since
YZ,:|ﬁeaUaX7U2a32 NN(CﬁfaSQCCT +0-21N) (225)

and ¢ =1,..., L. Note also that the covariance matrix 3 = s>?CC7T + 021y is related to the covariance matrix of
the 2nd order polynomial kernel (Rasmussen and Williams, 2005, p. 89). More precisely, the proposed nonlinear
mapping corresponds to a particular polynomial kernel whose metric is induced by the matrix U. Finally, note that
the evaluation of the marginalized likelihood (2.24) only requires the inversion of the N x N covariance matrix X.

It can been seen from the following Woodbury matrix identity (Brookes, 2005)
=7 =072 Iy - C (% + C7C) 7] (2.26)

that the computation of £~! mainly relies on the inversion of a D x D matrix. Similarly, the computation of
|2| = 1/|=7!| mainly consists of computing the determinant of a D x D matrix, which reduces the computational

cost when compared to the structured covariance matrix based approach presented in paragraph 2.4.1.

2.4.5 Estimation of P

Let us denote as 6 = (X,IAJ, 32,6?) the maximum a posteriori (MAP) estimator of 8 = (X, U, s2,02) obtained by
maximizing (2.23). Using the likelihood (2.17), the prior distribution (2.20) and Bayes’ rule, we obtain the posterior

distribution of P conditioned upon 0, i.e.,

L
PIY,0,P ~ [N (pelpe S) (2.27)
=1

where S™' = ¢72CTC + s72Ip and p; = S(CTyg,: — Pr). Since the conditional posterior distribution of P is the

product of L independent Gaussian distributions, the MAP estimator of P conditioned upon 6 is given by
P= (Y@ - ﬁ) S (2.28)

where S—1 = &_26T6+§_21D, C= ‘ilxﬁ, U, = [:(1),...,9%;(N)]T and X = [Z1,...,2ZN]. The MAP estimator
P of P can be used to reconstruct the nth estimated observed pixels ¥, using the LL-GPLVM as follows

¥ = PUTy [&(n)] . (2.29)

The next paragraph studies a scaling procedure that estimates the abundance matrix using the estimated latent

variables resulting from the maximization of (2.23).
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2.5 Scaling procedure
The optimization procedure presented in paragraph 2.4.4 provides a set of latent variables that represent the data
but can differ from the abundance vectors of interest. Consider

_ X

X = VR (2.30)

1% =15 X\R

obtained after maximization of the posterior (2.23). The purpose of this paragraph is to estimate an R x N

abundance matrix A = [ay,...,ay] such that
X\r=Vg_1A+E (2.31)
where ay, ..., ay occupy the maximal volume in the simplex defined by (2.8), Vg_1 = [v1,...,Vvg]isan (R—1) xR

matrix and E is an (R — 1) x N standard i.i.d Gaussian noise matrix which models the scaling errors. Since X
satisfy the sum-to-one constraint (2.9), estimating the relation between )A(\R and A is equivalent to estimating
the relation between X and A. However, when considering the mapping between X and A, non-isotropic noise
has to be considered since the rows of X and A satisfy the sum-to-one constraint, i.e., they belong to the same
(R — 1)-dimensional subspace.

Eq. (2.31) corresponds to an LMM whose noisy observations are the columns of )A(\R. Since A is assumed to occupy
the largest volume in the simplex defined by (2.8), the columns of Vi_; are the vertices of the simplex of minimum
volume that contains }A(\ r- As a consequence, it seems reasonable to use a linear unmixing strategy for the set of
vectors Z\p 1, .., &\ g,N to estimate A and Vg_;. In this study, we propose to estimate jointly A and Vi_; using
the Bayesian algorithm presented in (Dobigeon et al., 2009a) for unsupervised SU assuming the LMM. Note that
the algorithm in (Dobigeon et al., 2009a) assumed positivity constraints for the estimated endmembers. Since these
constraints for Vi_; are unjustified, the original algorithm has slightly been modified by removing the truncations
in the projected endmember priors (see (Dobigeon et al., 2009a) for details). Once the estimator (A,VR,l) of
(A, Vi_1) has been obtained by the proposed scaling procedure, we introduce constrained latent variables denoted

as X© = [2{9, ... 2917 and defined as follows

< (©)
X©@ = . X;R o) (2.32)
1N - 1R—1X\R

with )Aiic; = \A/'R_lfk. These constrained latent variables will be used to compute the estimated observed pixels
resulting from the unmixing procedure. Using the sum-to-one constraint AT1 r = 1y, we obtain

- Vi A Vi SO

XO=| RTlA =1, j’f L A =VgzA (2.33)

15A —1% Vi 1A 15 -1% Vi,

where VR = [\A/'g_l, 1r — Vg_llR,l]T is an R x R matrix. The final abundance estimation procedure, including
the LL-GPLVM presented in paragraph 2.4 and the scaling procedure investigated in this paragraph is referred to
as fully constrained LL-GPVLM (FCLL-GPLVM). The detailed algorithm is summarized in Algo. 2.1. The MAP
estimator P in (2.28) and the estimated constrained latent variables are used to reconstruct the nth estimated

observed pixels y,, using the FCLL-GPLVM as follows

§, = PUTy [ﬁ:(c)(n)] — PUTy [VRan} . (2.34)
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Once the final abundance matrix A and the matrix V r have been estimated, we propose an endmember extraction

procedure based on GP regression. This method is discussed in the next paragraph.

1: Input parameters

e Number of endmembers R.
e Matrices Arrg and P.
e Number of neighbors for LLE K = R.
e Hyperparameter v = 10%.
2: Estimation

e Optimize the marginalized posterior in (2.23) using a scaled conjugate gradient algorithm to
form 6 = (ﬁ,ﬁ,§2,62).

3: Scaling

e Run a linear spectral unmixing algorithm on )A(\ gr to form the estimators A and \A/'( r—1) (and

compute the constrained latent variables according to (2.32)).

4: Endmember prediction

e Set @ =[0/_,,1,0% 17 and estimate the rth endmember using (2.39).

(4

: Output parameters

e Estimated abundance matrix A.

e Estimated endmembers.

ALGO. 2.1: FCLL-GPLVM algorithm.

2.6 Gaussian process regression

Endmember estimation is one of the main issues in SU. Most of the existing EEAs intend to estimate the endmembers
from the data, i.e., selecting the most pure pixels in the observed image (Chaudhry et al., 2006; Nascimento and
Bioucas-Dias, 2005; Winter, 1999). However, these approaches can be inefficient when the image does not contain
enough pure pixels. Some other EEAs based on the minimization of the volume containing the data (such as the
minimum volume simplex analysis (Li and Bioucas-Dias, 2008)) can mitigate the absence of pure pixels in the image.
This paragraph studies a new endmember estimation strategy based on GP regression for nonlinear mixtures. This
strategy can be used even when the scene does not contain pure pixels. It assumes that all the image abundances

have been estimated using the algorithm described in paragraph 2.5. Consider the set of pixels {Yn}nzl,“., N and
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corresponding estimated abundance vectors {a‘”}nzl,‘.., ~- GP regression first allows the nonlinear mapping g(-) in
(2.4) (from the abundance space to the observation space) to be estimated. The estimated mapping is denoted as
g(-). Then, it is possible to use the prediction capacity of GPs to predict the spectrum g(a) corresponding to any
new abundance vector a. In particular, the predicted spectra associated with pure pixels, i.e., the endmembers,
correspond to abundance vectors that are the vertices of the simplex defined by (2.8). This paragraph provides
more details about GP prediction for endmember estimation.

It can be seen from the marginalized likelihood (2.24) that f(Y|X,P,U,s?, 0?) is the product of L independent
GPs associated with each spectral band of the data space (2.25). Looking carefully at the covariance matrix of y, .

(i.e., ¥ = s2CCT + 0°Iy), we can write
Ve =Z¢+ €. (2.35)

where e, . is the N x 1 white Gaussian noise vector associated with the /th spectral band (having covariance matrix

o*Iy) and?
zp ~ N (Zg|‘I’sz)g, K) (2.36)

with K = squzUUT\Pf the N x N covariance matrix of z,. The N x 1 vector z; is referred to as hidden vector

associated with the observation y,.. Consider now an L x 1 test data with hidden vector z* = [z},...,2}]T,

abundance vector a* = [a},...,a%]” and ¥ = 1 [Vga*]. We assume that the test data share the same statistical

properties as the training data y; .,...,yr,. in the sense that [z}, z}] is a Gaussian vector such that
Zy Zy v, Upy K k(a*
~N i pet (a”) (2.37)
z} z) P Upy| |k(a®)T o2
where o2, = SQ’I,[);TUUT’Q[JZ is the variance of 2z} and x(a*) contains the covariances between the training inputs

and the test inputs, i.e.,

k(a*) = s>y ' UUTw,,. (2.38)
Straightforward computations leads to
2plye: ~ N (2 e, s7) (2.39)
with
pe = 5 U+ r(a*)T (K +0%In) (v — ¥, Upr)
st = 02. — k(a")T(K +o%Iy) " 'k(a*).

Since the posterior distribution (2.39) is Gaussian, the MAP and MMSE estimators of z* equal the posterior mean
H= (/J'17 "'7,uL)T'

In order to estimate the endmembers, we propose to replace the parameters X, U, s2

and o2 by their estimates

*

)A((C),[AJ,§2 and 62 and to compute the estimated hidden vectors associated with the abundance vectors a* =

07 ,,1,0%_,]7 for r = 1,..., R. For each value of 7, the rth estimated hidden vector will be the rth estimated

2Note that all known conditional parameters have been omitted for brevity.
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endmember®. Indeed, for the LMM and the bilinear models considered in this study, the endmembers are obtained
by setting @ = a* = [0_,,1,0%_ 17 in the model (2.5) relating the observations to the abundances. Note that the
proposed endmember estimation procedure provides the posterior distribution of each endmember via (2.39) which
can be used to derive confidence intervals for the estimates. The next paragraph presents some simulation results

obtained for synthetic and real data.

2.7 Simulations on synthetic data

2.7.1 Subspace identification

The performance of the proposed GPLVM for dimensionality reduction is first evaluated on three synthetic images
of N = 2500 pixels. The R = 3 endmembers contained in these images have been extracted from the spectral
libraries provided with the ENVT software (RSI (Research Systems Inc.), 2003) (i.e., green grass, olive green paint
and galvanized steel metal).The first image I; has been generated according to the linear mixing model (LMM).
The second image I5 is distributed according to the bilinear mixing model introduced in (Fan et al., 2009), referred
to as the “Fan model” (FM). The third image I3 has been generated according to the generalized bilinear model

(GBM) studied in (Halimi et al., 2011a) with the following nonlinearity parameters
’}/172 = 09, ’)/1,3 = 05, ’}/273 = 03

The abundance vectors a,,n = 1,..., N have been randomly generated according to a uniform distribution on
the admissible set defined by the positivity and sum-to-one constraints (2.8). The noise variance has been fixed
to 02 = 10~*, which corresponds to a signal-to-noise ratio SNR ~ 30dB which corresponds to the worst case for
current spectrometers. The hyperparameter ~y of the latent variable prior (2.19) has been fixed to v = 10® and the
number of neighbors for the LLE is K = R for all the results presented in this study. The quality of dimensionality
reduction of the GPLVM can be measured by the ARE defined in (4.31).

Table 2.1: AREs: synthetic images (x1072).
I 1> I3

PCA 0.99 | 1.08 | 1.04

LL-GPLVM | 0.99 | 0.99 | 1.00

Table 2.1 compares the AREs obtained by the proposed LL-GPLVM and the projection onto the first (R—1) principal
vectors provided by the principal component analysis (PCA). The proposed LL-GPLVM slightly outperforms PCA
for nonlinear mixtures in term of ARE. More precisely, the AREs of the LL-GPLVM mainly consist of the noise
errors (02 = 10~%), whereas model errors are added when applying PCA to nonlinear mixtures. Fig. 2.8 compares
the latent variables obtained after maximization of (2.24) for the three images I to I3 with the projections obtained
by projecting the data onto the R — 1 principal vectors provided by PCA. Note that only R — 1 dimensions are

needed to represent the latent variables (because of the sum-to-one constraint). From this figure, it can be seen that

3Note that the estimated endmembers are centered since the data have previously been centered. The actual endmembers
can be obtained by adding the empirical mean of the data to the estimated endmembers.
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the latent variables of the LL-GPLVM describe a noisy simplex for the three images. It is not the case when using
PCA for the nonlinear images. Fig. 2.9 shows the manifolds estimated by the LL-GPLVM for the three images I
to Is. This figure shows that the proposed LL-GPLVM can model the manifolds associated with the image pixels

with good accuracy.

Figure 2.8: Top: Representation of the N = 2500 pixels (dots) using the first two principal components
provided by the standard PCA for the three synthetic images I to I3. Bottom: Representation using the
latent variables estimated by the LL-GPLVM for the three synthetic images I to Is.

2.7.2 Abundance and endmember estimation

The quality of unmixing procedures can be measured by comparing the estimated and actual abundances using
the RNMSE defined in (1.36). Table 2.2 compares the RNMSEs obtained with different unmixing strategies. The
endmembers have been estimated by the VCA algorithm in all simulations. The algorithms used for abundance
estimation are the FCLS algorithm proposed in (Heinz and C.-I Chang, 2001) for I1, the LS method proposed in (Fan
et al., 2009) for I, and the gradient-based method proposed in (Halimi et al., 2011a) for Is. These procedures are
referred to as “SU” in the table. These strategies are compared with the proposed FCLL-GPLVM. As mentioned
above, the Bayesian algorithm for joint estimation of A and V under positivity and sum-to-one constraints for
A (introduced by Dobigeon et al. (2009a)) is used in this paragraph for the scaling step. It can be seen that
the proposed FCLL-GPLVM is general enough to accurately approximate the considered mixing models since it

provides the best results in term of abundance estimation.

Table 2.2: RNMSEs: synthetic images (x1073).
I I I3

SU 5.7 | 74 | 22.7

FCLL-GPLVM | 3.9 | 4.2 | 5.4

The quality of reconstruction of the unmixing procedure is also evaluated by the ARE. Table 2.3 shows the AREs
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Figure 2.9: Visualization of the N = 2500 pixels (black dots) of I, I and I3 using the 3 axis provided by
the PCA procedure. The colored surface is the manifold identified by the LL-GPLVM.

corresponding to the different unmixing strategies. The proposed FCLL-GPLVM outperforms the other strategies

in term of ARE for these images.

Table 2.3: AREs: synthetic images (x1072).
I 1> I3

SU 1.00 | 1.13 | 1.06

FCLL-GPLVM | 0.99 | 0.99 | 1.00

Finally, the performance of the FCLL-GPLVM for endmember estimation is evaluated by comparing the estimated
endmembers with the actual spectra. The quality of endmember estimation is evaluated by the SAM defined in
(1.71). Table 2.4 compares the SAMs obtained for each endmember using the VCA algorithm, the nonlinear EEA
presented in (Heylen et al., 2011) (referred to as “Heylen”) and the FCLL-GPLVM for the three images I; to I3.
These results show that the FCLL-GPLVM provides accurate endmember estimates for both linear and nonlinear

mixtures.

2.7.3 Performance in absence of pure pixels

The performance of the proposed unmixing algorithm is also tested in scenarios where pure pixels are not present

in the observed scene. More precisely, the simulation parameters remain the same for the three images I; to I3
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Table 2.4: SAMs (x1072): synthetic images.

I I I3
m; ms m3 m; ms mg m; my ms
VCA 0.43 | 0.22 | 0.22 | 1.62 | 2.08 | 1.15 | 1.91 | 1.36 | 0.88
Heylen 1.94 | 066 | 0.78 | 0.75 | 1.69 | 042 | 1.80 | 0.86 | 1.38
FCLL-GPLVM | 0.52 | 0.86 | 0.15 | 0.33 | 0.53 | 0.34 | 0.44 | 0.58 | 0.30

except for the N = 2500 abundance vectors, that are drawn from a uniform distribution in the following set

R
{ﬂ}:w:d,09>mﬁw>0Nreﬂw”Jﬂ}. (2.40)

r=1
The three resulting images are denoted as I}, I3 and I3. Table 2.5 shows that the absence of pure pixels does
not significantly change the AREs of the FCLL-GPLVM when they are compared with those obtained with the
images I; to I3 (see Tables 2.1 and 2.3). Moreover, FCLL-GPLVM is more robust to the absence of pure pixels
than the different SU methods. The good performance of FCLL-GPVLM is due in part to the scaling procedure.
Table 2.6 shows that the performance of the FCLL-GPLVM in term of RNMSE is not degraded significantly when
there is no pure pixel in the image (see Table 2.2 for comparison). Note that the situation is different when the
endmembers are estimated using VCA. Table 2.7 shows the performance of the FCLL-GPLVM for endmember
estimation when there is no pure pixel in the image. The results of the FCLL-GPLVM do not change significantly
when they are compared with those obtained with images I; to Is, which is not the case for the two other EEAs.
The accuracy of the endmember estimation is illustrated in Fig. 2.10 which compares the endmembers estimated
by the FCLL-GPLVM (blue lines) to the actual endmember (red dots) and the VCA estimates (black line) for the

image I3. Similar endmember estimates have been obtained for the images I7 and I (same components involved

in the mixtures).

Table 2.5: AREs: synthetic images (absence of pure pixels, x1072).

PCA | LL-GPLVM | SU | FCLL-GPLVM
I | 1.00 1.00 1.14 1.00
I3 | 1.06 1.00 1.57 1.00
I3 | 1.03 0.99 1.12 0.99

Table 2.6: RNMSEs: synthetic images (absence of pure pixels, x1073).
|| i

SU 49.3 | 86.6 | 47.8

FCLL-GPLVM | 4.8 | 7.2 | 7.5

2.7.4 Performance with respect to endmember variability

The proposed method assumes that the spectrum characterizing a given material (i.e., an endmember) is unique for

all the image pixels. This assumption has been widely used in linear unmixing, which has motivated the consideration
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Figure 2.10: Actual endmembers (red dots) and endmembers estimated by the FCLL-GPLVM (blue lines)
and VCA (black line) for the image I3.

Table 2.7: SAMs (x1072): synthetic images.

I7 I3 I3
m; my ms m; my ms m; my ms3
VCA 2.87 | 215 | 210 | 5.22 | 8.02 | 7.10 | 6.89 | 6.03 | 3.73
Heylen 6.38 | 11.11 | 2.62 | 7.53 | 9.59 | 248 | 6.59 | 595 | 2.36
FCLL-GPLVM | 0.38 | 1.30 | 0.24 | 0.67 | 1.46 | 0.53 | 0.61 | 1.75 | 0.48

of unique endmembers. However, taking endmember variability into consideration is also an important problem,
depending on the observation conditions and the observed scene (Eches et al., 2010; Somers et al., 2011; Zare et al.,
2012). To evaluate the robustness of the proposed method to endmember variability, additional experiments have

been performed. More precisely, sets of N = 2500 synthetic pixels have been generated according to the following

nonlinear model

R
ai(n)a;j(n)m;(n) © m;(n) + e(n),
+1

R R—1
y(n) = m(n)a,(n) + )

r=1 i=1 j=
where a(n) = [a1(n),...,ar(n)]’ has been generated uniformly in the simplex defined by the positivity and sum-
to-one constraints and endmember variability has been considered by using random endmembers, i.e., m,(n) ~
N (m?,0%,I) where m%,» = 1,..., R are the actual endmembers extracted from the spectral library and o3 is
the endmember variance. Note that this model is similar to the Fan model studied by Fan et al. (2009) except
the fact that the endmembers are random. Table 2.8 compares the performance of the proposed method with the
performance of an unmixing strategy based on VCA (for endmember extraction) and the least squares method by
Fan et al. (2009) (for abundance estimation). This procedure is referred to as “SU” in the table. Four values of
o3 have been considered. The higher o3;, the higher the endmember variability. For each row, the best result has
been highlighted in blue. The spectral angle mappers (SAMs) presented in Table 2.8 represent the angles between
the estimated endmembers and the actual endmembers m?, 7 = 1,..., R. From this table, it can be seen that for

each value of 03, the proposed method provides more accurate abundance and endmember estimates (in term of
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RNMSE and SAM, respectively), when compared with the SU approach. In particular, the performance of the

proposed method is not significantly degraded for weak endmember variability.

Table 2.8: Endmember variability: synthetic images.

o =0 |04 =10"° | 63, =10"" | 63, =107
SuU 7.4 9.1 11.0 23.2
RNMSE (x107%)
FCLL-GPLVM 4.2 5.1 9.1 11.9
m; 1.62 2.06 2.09 2.55
SU m; 2.08 1.67 1.94 2.38
m; 1.15 1.27 1.06 1.23
SAM (x1072)
m; | 0.33 0.44 0.46 1.59
FCLL-GPLVM | m, | 0.53 0.71 2.01 1.62
m; | 0.34 0.47 0.42 0.99

The next paragraph presents simulation results obtained for real data.

2.8 Application to a real dataset

The real image considered in this paragraph is a part of the image acquired over Villelongue, France and introduced
in Chapter 1. This dataset has already been studied by Sheeren et al. (2011) and is composed of a forested area
containing 12 identified vegetation species (ash tree, oak tree, hazel tree, locust tree, chestnut tree, lime tree, maple
tree, beech tree, birch tree, willow tree, walnut tree and fern). The sub-image of size 50 x 50 pixels chosen here to
evaluate the proposed unmixing procedure is depicted in Fig. 4.6. A reasonably small image is considered here to
ease the explanation of the results and to keep the processing overhead quite low.

This image contains vegetation species of varying spatial density such that some pixels do not contain identified
tree species. More precisely, the scene is mainly composed of three components since the data belong to a two-
dimensional manifold (see black dots of Fig. 2.12 (a)). Consequently, we assume that the scene is composed of
R = 3 endmembers. We propose to use the set of 32224 label spectra used by Sheeren et al. (2011) for the learning
step of the classification method presented herein to identify the components present in the area of interest. More
precisely, Fig. 2.12 (a) shows the reference clusters corresponding to oak trees (red dots) and chestnut trees (blue
dots) projected in a 3-dimensional subspace (defined by the first three principal components of a PCA applied to the
image of Fig. 4.6). These two clusters are the two closest sets of pixels to vertices of the data cloud. Consequently,
oak and chestnut trees are identified as endmembers present in the image. Moreover, the new identified endmember
is associated with the non-vegetation area (the strategy conducted in (Sheeren et al., 2011) was restricted to
vegetation species). In the sequel, this endmember will be referred to as Endmember #3.

The simulation parameters have been fixed to v = 10*> and K = R. The latent variables obtained by maximizing
the marginalized posterior distribution (2.14) are depicted in Fig. 2.13 (blue dots).

It can be seen from this figure that the latent variables seem to describe a noisy simplex. Fig. 2.12 (b) shows
the manifold estimated by the proposed LL-GPLVM. This figure illustrates the capacity of the LL-GPLVM for
modeling the nonlinear manifold. Table 2.9 (left) compares the AREs obtained by the proposed LL-GPLVM and
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Figure 2.11: Top: real hyperspectral Madonna data acquired by the Hyspex hyperspectral scanner over
Villelongue, France. Bottom right: the region of interest shown in true colors (right). Bottom left:
classification map obtained in (Sheeren et al., 2011) for the region of interest. The labeled pixels are

classified as Oak tree (red), Chestnut tree (blue), Ash tree (green) and non-planted-tree pixels (white).

the projection onto the first R — 1 = 2 principal vectors provided by PCA. The proposed LL-GPLVM slightly
outperforms PCA for the real data of interest, which shows that the proposed nonlinear dimensionality reduction

method is more accurate than PCA (linear dimensionality reduction) in representing the data.

Table 2.9: AREs: real image (x1072).
PCA | LL-GPLVM || VCA+FCLS | FCLL-GPLVM
0.84 0.79 1.30 1.11

The scaling step presented in paragraph 2.5 is then applied to the estimated latent variables. The estimated simplex
defined by the latent variables is depicted in Fig. 2.13 (red lines). Fig. 2.12 (c¢) compares the boundaries of the
estimated transformed simplex with the image pixels. The abundance maps obtained after the scaling step are
shown in Fig. 2.14 (top). The results of the unmixing procedure using the FCLL-GPLVM are compared to an
unmixing strategy assuming the LMM. More precisely, we use VCA to extract the endmembers from the data
and use the FCLS algorithm for abundance estimation. The estimated abundance maps are depicted in Fig. 2.14
(bottom). The abundance maps obtained by the two methods are similar which shows the accuracy of the proposed
unmixing strategy when considering the LMM as a first order approximation of the mixing model. Moreover, Fig.
4.6 (bottom left) shows the classification map obtained by Sheeren et al. (2011) for the region of interest.

The white pixels correspond to areas where the classification method by Sheeren et al. (2011) has not been performed.

Since the aim of the work presented by Sheeren et al. (2011) was to locate tree species, a non-planted-tree reference
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Figure 2.12: (a): Representation of the N = 2500 pixels (black dots) of the Villelongue image and the
reference clusters corresponding to oak trees (red dots) and chestnut trees (blue dots) using the first three
principal components provided by the standard PCA. (b): Representation of the N = 2500 pixels (dots)
of the Villelongue data and manifold identified by the LL-GPLVM (colored surface). (c):Representation of
the N = 2500 pixels (dots) of the Villelongue data and boundaries of the estimated transformed simplex

(blue lines).
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Figure 2.13: Representation of the N = 2500 latent variables (dots) estimated by the LL-GPLVM and the
simplex identified by the scaling step (red lines) for the Villelongue data.
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Chestnut tree Qak tree Endmember #3

Figure 2.14: Top: Abundance maps estimated using the FCLL-GPLVM for the Villelongue image. Bottom:
Abundance maps estimated using the VCA algorithm for endmember extraction and the FCLS algorithm

for abundance estimation.

mask was used to classify only planted-tree pixels. Even if lots of pixels are not classified, the classified pixels can
be compared with the estimated abundance maps. First, we can note the presence of the same tree species in the
classification and abundance maps, i.e., oak and chestnut. We can also see that the pixels composed of chestnut
trees and Endmember #3 are mainly located in the unclassified regions, which explains why they do not appear
clearly in the classification map. Only one pixel is classified as being composed of ash trees in the region of interest.
If unclassified pixels also contain ash trees, they are either too few or too mixed to be considered as mixtures of an
additional endmember in the image. Finally, it can be seen from Figs. 2.14 and 4.6 (bottom left) that oak trees are
located within similar regions (left corners and top right corner) for the abundance and classification maps.
Evaluating the performance of endmember estimation on real data is an interesting problem. However, comparison
of the estimated endmembers with the ground truth is difficult here. First, since the nature of Endmember £3
is unknown, no ground truth is available for this endmember. Second, because of the variability of the ground
truth spectra associated with each tree species, it is difficult to show whether VCA or the proposed FCLL-GPLVM
provides the best endmember estimates. However, the AREs obtained for both methods (Table 2.9, right) show that
the FCLL-GPLVM fits the data better than the linear SU strategy, which confirms the importance of the proposed
algorithm for nonlinear spectral unmixing.

In this chapter, the number of pure spectral components is assumed to be known. When using linear mixing models,
algorithms such as the HySime algorithm (Bioucas-Dias and Nascimento, 2008) are able to identify the number of
endmembers in the scene, based on the estimation of the data subspace. However, there is no equivalent algorithm
developed for images defined by nonlinear mixtures. Of course, if we assume that the model nonlinearities are weak
(compared to the linear part), the HySime algorithm can be used to approximate the number of endmembers. For
the considered real image, the dimension of the subspace spanned by the data estimated by HySime is R = 6. This
value can be used to upperbound the number of endmembers since the estimated signal subspace possibly includes

nonlinearities.
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Table 2.10: Estimation of R: real image.
ARE (x1072)

R=2| R=3|R=4| R=5

LL-GPLVM 1.58 0.79 0.74 0.71

FCLL-GPLVM 1.58 1.11 1.08 0.86

Another possibility is to run the proposed algorithm for different values of R and compare the results. The proposed
unmixing procedure has been applied to the studied real image for different values of R (i.e., R = 2,3,4,5). Table
2.10 compares the AREs of the LL-GPLVM and the FCLL-GPLVM for this image. From this table, it can be seen
that the higher R, the lower the AREs for the dimensionality reduction method and the FCLL-GPLVM algorithm,
as expected. However, the decrease of ARE for the LL-GPLVM is less significant when the number of components
has been overestimated. Conversely, the value of ARE is increasing significantly when the number of endmembers
has been underestimated. This strategy can be used for estimating the value of R. Note that a similar method was
proposed by Quirion et al. (2008) for estimating the dimension of the latent variable subspace.

Finally, Fig. 2.15 shows the abundance maps estimated by the FCLL-GPLVM (on the real image) for different values
of R (i.e., R = 2,3,4,5). From this figure, it can be seen that the two vegetation species (i.e., chestnut tree and
oak tree) are merged when R is underestimated, mainly due to the high correlation between these two components.
When the number of endmembers is overestimated, the locations of oak trees and of the third endmember are
estimated similarly. However, the abundance maps of the chestnut tree are less structured for R = 4 and R =5
than for R = 3. It can also be observed that the abundances maps of the fourth and fifth endmembers do not
correspond to homogeneous regions. The analysis of the estimated endmembers for R = 5 shows that the estimated
endmembers 2,4 and 5 are similar (see Fig. 2.16). These considerations could be used to make sure the value of R

has been designed correctly.
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Figure 2.15: Abundance maps estimated using the FCLL-GPLVM for the Madonna image for R = 2
(bottom) to R =5 (top).

2.9 Conclusion

We proposed a new algorithm for nonlinear spectral unmixing based on a Gaussian process latent variable model.
The unmixing procedure assumed a nonlinear mapping from the abundance space to the observed pixels. It also
considered the physical constraints for the abundance vectors. The abundance estimation was decomposed into two
steps. Dimensionality reduction was first achieved using latent variables. A scaling procedure was then proposed
to estimate the abundances. After estimating the abundance vectors of the image, a new endmember estimator
based on Gaussian process regression was investigated. This decomposition of the unmixing procedure, consisting
of first estimating the abundance vectors and subsequently the endmembers, breaks the usual paradigm of spectral
unmixing. Simulations conducted on synthetic data illustrated the flexibility of the proposed model for linear
and nonlinear spectral unmixing and provided promising results for abundance and endmember estimations even
when there are few pure pixels in the image. It was shown in this chapter that the proposed unmixing procedure

provides better or comparable performance (in terms of abundance and endmember estimation) than state of the
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Figure 2.16: Endmembers of the real image estimated by the FCLL-GPLVM for R = 2 (light blue), R =3
(red), R =4 (blue) and R =5 (black).

art unmixing strategies assuming specific mixing models.

The proposed abundance estimation procedure presented in this chapter was split into two steps. Thus, the abun-
dance estimates (and consequently the predicted endmembers) mainly rely on the scaling step. It could be interesting
to assign more accurate priors for the latent variables to get rid of that scaling step. In that case, the latent variables
would be the abundances. Additional spectral information was included within the LL-GPLVM by assuming that
spectrally closed pixels should have closed latent variables. From a strict Bayesian point of view, such information
should be included in the observation model, i.e., in the likelihood, to set prior distributions independent of the
observations. The nonlinear dimensionality reduction presented in this chapter relies on the maximization of an
appropriate posterior distribution using a gradient-based method. To avoid possible convergence issues, such as
being trapped in local maxima and setting a stopping rule for the iterative process, it could be interesting to couple
the proposed Bayesian model with efficient simulation methods such as Markov chain Monte Carlo methods.
Finally, the choice of the nonlinear mapping used for the GP model is an important issue to ensure that the
LL-GPLVM is general enough to handle different nonlinearities. In particular, different mappings could be used
for intimate mixtures. However, the tradeoff between model flexibility and estimation performance is difficult to
find, especially when addressing the unsupervised unmixing problem. Fitting the data manifold can be accurately
achieved using different kernel functions. However, the associated latent variables may be not obviously related to
the abundances.

The proposed FCLL-GPVLM assumed the observed pixels resulting from mixtures of R materials to belong to an

(R — 1)-dimensional manifold. Of course this assumption holds only for a single mixing process fully parameterized
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0z

Figure 2.17: Representation of mixed pixels composed of R = 3 endmembers, distributed according to the
LMM (red) and the bilinear FM (blue).

by the abundance vectors. If different kinds of mixtures occur in the same image, the FCLL-GPVLM would try to
estimate a single manifold while several manifolds could be present, as depicted in Fig. 2.17. For such situations,
other unmixing methods should be used. To address the problem of multiple mixing processes in hyperspectral, it
seems natural to identify image regions where different kinds of mixtures are present. Unmixing strategies assuming
a single model could then be used in each region independently, depending on the nature of these regions. The next
chapter focuses on binary classifiers to identify linearly and nonlinearly mixed pixels in hyperspectral images.

Main contribution. A new nonparametric nonlinear SU algorithm was proposed for unsupervised SU. The
proposed unmixing algorithm breaks the usual paradigm of spectral unmixing by first estimating the abundances

and then predicting the endmembers even in the absence of pure pixel in the image.
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2.10 Conclusion (in French)

Dans ce chapitre, nous avons proposé un nouvel algorithme pour le démélange spectral non-linéaire & ’aide d’un
modéle & variables latentes et de processus gaussiens. La procédure de démélange suppose une relation non-linéaire
entre ’espace des abondances et celui des observations. Les contraintes physiques qui restreignent les abondances
ont également été prises en compte. L’estimation des abondances est décomposée en deux étapes. La premiére
consiste en une étape de réduction de dimension faisant intervenir des variables latentes. Une procédure de mise
a D’échelle est alors proposée pour estimer les abondances des composants de 'image pour chaque pixel. Suite a
I’estimation des abondances, les spectres des composants purs de 'image sont estimés par régression & base de
processus gaussiens. Cette décomposition de la méthode de démélange, constituée de ’estimation des abondances
avant ’estimation des signatures spectrales, casse le paradigme habituel du démélange spectral. Les simulations
effectuées sur données synthétiques ont illustré la flexibilité du modéle proposé pour le démélange linéaire et non-
linéaire. Des résultats prometteurs en termes d’estimation des signatures spectrales ont été obtenus, méme s’il y a
peu ou pas de pixels purs dans I'image. Il a été montré dans ce chapitre que cette méthode de démélange permet
d’obtenir de meilleures performances (en termes d’estimation des abondances et des signatures spectrales) qu’avec

des algorithmes récents supposant des modéles de mélange plus spécifiques.

La procédure d’estimation des abondances présentée dans ce chapitre a été divisée en deux étapes. Les abon-
dances estimées (et par conséquent les spectres estimés) reposent principalement sur 1’étape de mise a 1’échelle.
Il serait intéressant de considérer de 'information a priori plus discriminante pour les variables latentes afin de
s’affranchir de cette étape de mise & I’échelle. Dans ce cas, les variables latentes seraient directement les abon-
dances. De l'informations spectrale supplémentaire a été incluse dans le LL- GPLVM, en supposant que les pixels
spectralement proches ont des variables latentes proches. D’un point de vue strictement bayésien, cette information
devrait étre incluse dans le modéle d’observation, c’est-a-dire dans la vraisemblance, pour définir des lois a priori
indépendantes des observations. L’étape de réduction de dimension non-linéaire présentée dans ce chapitre repose
sur la maximisation d’une loi a posteriori d’intérét en utilisant une méthode de gradient. Pour éviter d’éventuels
problémes de convergence, il pourrait étre intéressant de coupler le modéle bayésien proposé & des méthodes de

simulation efficaces telles que des méthodes MCMC.

0z

Figure 2.18: Representation de pixels résultant de mélanges de R = 3 composants générés suivant le

modeéle de mélange linéaire (rouge) et le modeéle bilinéaire de Fan (bleu).
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Enfin, le choix de la relation non-linéaire utilisée pour le modéle proposé est un point important pour assurer un LL-
GPLVM assez général. En particulier, des noyaux différents pourraient étre utilisés pour des mélanges dits intimes.
Toutefois, le compromis entre la flexibilité du modéle et les performances en termes d’estimation des abondances et
des signatures spectrales est difficile a trouver, surtout lors de la résolution du probléme de démélange non-supervisé.
L’approximation de la variété sur laquelle vivent les données peut se faire a I'aide de noyaux différents. Cependant,
la relation entre les variables latentes et les abondances peut ne pas étre triviale selon le noyau utilisé.
L’algorithme FCLL-GPVLM proposé suppose que les pixels observés résultant de mélanges de R composants appar-
tiennent & une variété de dimension (R — 1). Bien sfr, cette hypothése ne vaut que pour un processus de mélange
unique entiérement paramétré par les vecteurs d’abondances. Si différents types de mélanges avaient lieu dans
une méme image, le FCLL-GPVLM essaierait, d’identifier une seule variété alors que plusieurs seraient présentes,
comme le montre la Fig. 2.18. Pour de telles situations, d’autres méthodes de démélange doivent étre utilisées.
Pour résoudre le probléme de plusieurs types de mélanges dans une méme image, il semble naturel d’identifier
les zones ou les differents types de mélanges sont présents. Des algorithmes de démélange (basés sur des modéles
uniques) pourraient ensuite étre utilisés dans chaque région de fagon indépendante, en fonction de la nature de ces
régions. Le chapitre suivant étudie deux classifieurs binaires pour identifier les pixels résultant de mélanges linéaires
et non-linéaires dans les images hyperspectrales.

Contributions majeures. Un nouvel algorithme non-paramétrique a été proposé pour le démélange non-linéaire
non-supervisé. Cet algorithme brise le paradigme habituel du démélange spectral en estimant d’abord les abondances
et en prédisant ensuite les signatures spectrales des composants purs, méme s’il n’y a pas de composants purs dans

I'image.
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Chapter 3

Nonlinearity detection in hyperspectral

images

The first part of this chapter has been adapted from the journal paper (Altmann et al., 2012) (published).
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3.1 Introduction (in French)

Ce chapitre aborde le probléme de détection de mélanges non-linéaires dans les images hyperspectrales. On cherche
donc & déterminer si un pixel observé résulte d’un mélange linéaire ou non-linéaire des signatures spectrales des
composants purs présents dans 'image. Dans ce chapitre, les composants de l'image (nombre et spectres) sont
supposés connus. Les problémes liés & l'estimation des composants de ’image précédant la détection de non-

linéarités seront discutés dans la conclusion de ce chapitre.
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Le premier détecteur de non-linéarités proposé dans ce chapitre est basé sur le modéle PPNMM étudié pour le
démélange non-linéaire dans le chapitre 1. Une des propriétés intéressantes du modéle PPNMM est qu’il généralise
le modéle de mélange linéaire grace & un paramétre de non-linéarité unique dont la valeur caractérise la non-linéarité
dans le pixel considéré. En particulier, lorsque le parameétre de non-linéarité est égal a zéro, le modéle de mélange
résultant est linéaire. Par conséquent, il semble naturel d’utiliser ce paramétre pour construire un détecteur de
non-linéarités.

Le second détecteur de non-linéarité étudié dans ce chapitre repose uniquement sur le modéle de mélange linéaire. Il
ne suppose donc aucune caractérisation particuliére de la non-linéarité, ce qui le rend plus robuste aux divers types
de non-linéarités. Le test statistique associé & ce détecteur consiste & calculer la distance de chaque pixel observé a
I’hyperplan défini par les spectres des composants purs de I'image et la contrainte de somme-a-un des abondances.
Cette distance est ensuite comparée a un seuil (liée au niveau de bruit) au dela duquel on décide que le modéle
linéaire classique n’est plus capable de modéliser précisement le mélange. Les performances des deux détecteurs

sont analysées et comparées & 1’aide de simulations menées sur données synthétiques et réelles.
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3.2 Introduction

This chapter addresses the problem of determining whether an observed pixel of a hyperspectral image results from
a linear or nonlinear mixture of endmembers. In this chapter, the endmembers (number and spectra) are assumed
to be known. Endmember estimation issues for nonlinearity detection will be discussed in the conclusion of this
chapter. The first proposed nonlinearity detector is based on the PPNMM studied for nonlinear SU in Chapter 1.
One of the most interesting properties of the PPNMM is that it generalizes the LMM thanks to a unique nonlinearity
parameter whose value characterizes the nonlinearity in the considered pixel. In particular, when the nonlinearity
parameter equals zero, the resulting mixing model is linear. Consequently, it seems natural to use this parameter
for deriving new nonlinearity detectors. The second nonlinearity detector studied in this chapter only relies on
the LMM, i.e., does not assume any particular nonlinearity characterization which makes it more robust to various

kinds of nonlinearities.

3.3 Supervised PPNMM-based nonlinearity detection

This paragraph recalls the polynomial post-nonlinear mixing model introduced in Chapter 1 for nonlinear unmixing
and used in this chapter for nonlinearity detection in hyperspectral images. The associated parameter estimation
algorithm is also briefly summarized. The statistical test for nonlinearity detection based on the parameter estima-
tors provided by the unmixing procedure is then derived. Constrained Cramér-Rao lower bounds (CCRLBs) of the
PPNMM parameter estimators are finally used to approximate the variance of the nonlinearity parameter estimator

yielding an approximated test statistics for nonlinearity detection.

3.3.1 PPNMM model and parameter estimation

According to the PPNMM introduced in Chapter 1 the L-spectrum y = [y1,...,yr]? of a mixed pixel is defined
as a polynomial post-nonlinear transformation of a linear mixture of R endmembers my, ..., mpg contaminated by
additive noise

y = Ma + b(Ma) ® (Ma) +e. (3.1)

The noise sequence e is an additive independent and identically distributed (i.i.d) zero-mean Gaussian noise sequence
with variance o2, denoted as e ~ N (OL, O'2IL). In this paragraph, the endmember matrix M is assumed to be
known. Consequently, the only unknown parameters are the abundance vector a, the nonlinearity parameter b and
the noise variance o2.

The abundance vector a satisfies the following positivity and sum-to-one constraints

R
> ar=1, a, >0,¥r€{l,...,R}. (3.2)

r=1
In Chapter 1, it has been shown that the PPNMM is general enough to handle a wide class of nonlinear models,
which is interesting for nonlinearity detection. Moreover, it has also been shown that the PPNMM parameters can

be estimated by minimizing the following LS criterion

Jab) = ly - s(Ma)|?

5 Iy~ Ma — b(Ma) © (Ma)* (3.3)
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subject to the constraints (3.2). After estimating a and b, the noise variance o2 can be estimated as follows
1 . 2
= Hnydfb(Md)Q(Md)H . (3.4)

Since the additive noise vector e is assumed to be an i.i.d zero-mean Gaussian noise, the resulting estimator
of @ = [a”,b,02|7 is the maximum likelihood estimator (MLE) of @, denoted as 6. Consequently, the estimator
0= [dT, l;, 52T is asymptotically efficient and asymptotically distributed according to a Gaussian distribution (Kay,
1993, Chap. 7) . Note that the asymptotic region corresponds here to L — oco. Since L is very large (some hundreds
of spectral bands) for hyperspectral images, the asymptotic region will be reached in most practical applications®.
The two LS algorithms considered in Chapter 1 (i.e., based on linearization and subgradient methods) for minimizing
(3.3) subject to the constraints (3.2) have provided very similar performance. As a consequence, this study will
concentrate on one estimator only, namely the subgradient-based estimator. The Bayesian algorithm introduced
in paragraph 1.4.1 could also be considered. However, it should be slightly modified by assigning uniform prior
distributions over suitable sets for all the unknown parameters, such that the MAP and MLE estimators coincide.

The next paragraph derives a nonlinearity detector based on the MLE of the nonlinearity parameter.

3.3.2 Nonlinearity detection

As shown in Chapter 1, the PPNMM allows the nonlinearity to be characterized by the parameter b for each pixel of
the scene. An arbitrary threshold could be used to decide if the observed pixel is better modeled by the LMM or by a
general nonlinear model defined by (3.1). However, it would be difficult to choose the appropriate threshold in order
to guarantee a given probability of false alarm (PFA) or a given probability of detection (PD). In this paragraph,
we propose a statistical test for pixel-by-pixel nonlinearity detection based on the distribution of b. Based on the
asymptotic properties of the MLE and on the large number of spectral bands available for a hyperspectral image,

it makes sense to approximate the distribution of b by the following Gaussian distribution?
b~ N (b,s?) (3.5)
where s2 £ s2(a, b, 0?) is the variance of the estimator b. It is important to note that the variance of b is a function
of the parameters a, b and 0. Obviously, when the observation vector y results from the LMM (i.e., b = 0), then
b~ N(0,3) (3.6)

where s = s%(a,0,0?). This interesting property can be used for testing the mixing model appropriate to the
observation vector. The resulting nonlinearity detection problem can be considered as a two hypothesis testing

problem, where the hypotheses are defined as

Hy : 1y is distributed according to the LMM

(3.7)
H, : Yy isdistributed according to the PPNMM.

Hypothesis Hy is characterized by b = 0 whereas nonlinear models (H;) correspond to b # 0. As a consequence,

the two hypotheses in (3.7) can be rewritten as

Hy BNN(O,Sg)

A 3.8
Hy : b~N(b,s3) 39

where s? = s%(a,b,0?) and b # 0. Estimating the variance s*(a, b, 0?) will be discussed in paragraph 3.3.3.

!The asymptotic behavior of the considered MLEs will be discussed in paragraph 3.3.4.
2This assumption will be validated in the simulation results.
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Known parameters a and o

For a given observation vector y and its corresponding estimated nonlinearity parameter l;, we propose to decide
between hypotheses Hy and H; using a classical generalized likelihood ratio test (GLRT) for (3.8). Using (3.5) and
(3.6), the probability density functions of the test statistic b under the two hypothesis can be written

1 ~2
p(b|Ho) = (27;3) exp (—2[)8(2)> (3.9)

() e (4527).

The corresponding GLRT consists of comparing the test statistic

SIS

p(b|H1)

Sup p(b|Hy)

p(6]Ho) (310

to an appropriate threshold. Obviously, p(5|H1) is maximized for b = b. Straightforward computations lead to the
following test strategy

T=-2n (3.12)

where 7 is a threshold that is related to the test PFA as follows

~2
b

Ppp = P [2 > n‘HO]
50

— 2P Lbo < —\/?]’HO] = 2¢(— /1) (3.13)

where ¢(-) is the cumulative distribution function of the normalized Gaussian distribution. It is interesting to note
that the test (3.12) does not depend on s? and only relies on the variance s under hypothesis Hy. For a given

value of b, the power of the test Pp(b) can be computed as follows

~2 ~2
PD(b):Plz%>n‘H11 :]P’lz%>n‘b7é0]. (3.14)

Straightforward computations lead to

Pp(b)

S1

. [b—b B _SOW_b‘Hll
S1

plo=b sox/ﬁ—b‘Hll
S1 S1
_ —So\/ﬁ—b _ 80\/77—1)
= 1+¢ <31 ) o (31 ) . (3.15)

It can be observed that for a given value of the threshold 7, the probability of detection Pp(b) is an increasing
function of |b|, which is an intuitive result. In order to apply the detection strategy (3.12) and to compute the
corresponding Pra and Pp(b), we need to know the parameters so and s; whose determination is the objective of

the next paragraph.
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Unknown parameters a and o?

The test (3.12) assumes known parameters a and o2 to compute s3 = s%(a,0,0?). However, these parameters are
unknown in practical applications. To alleviate this problem, we propose to approximate the variance of b under

Hy by an appropriate estimator 33 leading to

More precisely, in order to build 8%, we propose to use the constrained Cramér-Rao lower bound (CRLB) of
0 = [a”,b,0?]T under hypothesis Hy (i.e., b = 0) as explained in the next paragraph.
3.3.3 Constrained Cramér-Rao bound

This paragraph studies the constrained Cramér-Rao lower bound associated with any unbiased estimator 6 of the
parameter vector 8 involved in the PPNMM. Eq. (3.1) shows that y|a,b,0? ~ N (g (Ma),c?I.). As a consequence,
the likelihood function of y is defined as

1
f(y|avb702) = (2770’2>

The corresponding unconstrained CRLB for any unbiased estimator of 6 constructed from y is given by

L
2

exp (—”y_g(W) . (3.17)

202

CRLB(0) = J ! (3.18)

where Jp is the Fisher information matrix whose elements are®

2

[JF]i,j = —Eyp [315;3;(;;@} ,j=1,...,R+2.
However, the positivity and sum-to-one constraints (3.2) are not considered in this expression. Particularly, the
sum-to-one constraint in (3.2) enforces the R-dimensional abundance vector a to belong to an (R — 1)-dimensional
subspace. This constraint can be considered by computing a reduced-rank Fisher matrix yielding a constrained
Cramér-Rao lower bound (CCRLB). The CCRLB principles have been introduced by Gorman and Hero (1990) for
parameters satisfying equality and/or inequality constraints. The constraints for the abundance vector in (3.2) can

be rewritten

a
ug:[1g 0 0] b|-1=c'0-1=0 (3.19)
o2
and

a
Vg = |:_IR OR OR:| b = A0 j OR (320)

2

o

where 1 is an R x 1 vector of ones, ¢ = [1%,0,0]7 is an (R + 2) x 1 vector, A is an R x (R + 2) matrix, ug is
the equality constraint, vg is an R x 1 pure inequality vector (see (Gorman and Hero, 1990) for details) and =<

denotes the termwise inequality. Since the set of admissible @ is an (R+ 1)-dimensional subset, of R¥+2, the CCRLB

3The Fisher information matrix Jr is derived in Appendix G.
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associated with the covariance matrix of any constrained unbiased estimator of 0 is given by (Gorman and Hero,
1990)

CCRLB(9) = QJ.! (3.21)
with
Q = Ipi—Jz'Vue {VuiIn'Vue} Vug

where, from (3.19), Vug = c is the gradient of ug. It is interesting to note that the CCRLB can be easily computed
since this matrix results from simple operations applied on the unconstraint CRLB J ;1 and the vector c. Moreover,
no arbitrary reparametrization of the problem is needed. The CCRLB of b is then given by the (R + 1)th diagonal
element of CCRLB(6) denoted as CCRLB(b;a,0?). An estimator of the variance of b under hypothesis Hy is

required to compute the test statistic (3.16). In this study, we propose to estimate s3 as follows
32 = CCRLB(0; a,6%) (3.22)

where a and 62 are the MLEs of @ and 2. The next paragraphs study the performance of the nonlinearity detector

defined by (3.16), where 82 is defined in (3.22), for synthetic and real hyperspectral data.

3.3.4 Synthetic data
Estimation

The statistical test proposed in (3.16) assumes the efficiency and normality of the estimator b resulting from the
unmixing procedure. We first propose to show that the asymptotic region in term of MLE efficiency is usually
reached in the hyperspectral imagery context (i.e., for large L and high signal to-noise ratio (SNR)). Four different
mixtures are considered to illustrate the estimator efficiency. These mixtures are composed of R = 3 materials (i.e.,
green grass, olive green paint and galvanized steel metal) whose endmember spectra, composed of L = 826 bands,
have been extracted from the spectral libraries provided with the ENVI software (RSI (Research Systems Inc.),

2003). The synthetic mixtures have been obtained using the following parameters?

Mixture Mgy — a = [0.3,0.6,0.1]7,b =0,0%> =3 x 1073
Mixture M; — a = [0.5,0.1,0.4]7,b = 0,02 =3 x 1073
Mixture My — a =[0.3,0.6,0.1]7,6=0.2,6> =3 x 1073
Mixture Mz — a = [0.3,0.6,0.1]7,b =0,0% =1 x 1075,

The efficiency of the proposed unmixing algorithm is evaluated by comparing the CCRLB with the mean square
errors (MSEs)
. 1 Xor 2
MSE(b):anl[bn—bn] . i=1,...,R+2 (3.23)
associated with the nonlinearity parameter b, where N is the number of pixels to be unmixed and l;n is the estimated

value of the nth actual parameter b,, .

“Note that My, Ma and M3 have been obtained by changing a, b and o2 in My, respectively.
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Figure 3.1: MSEs of the MLE (blue crosses) for the
CCRLBs (black lines).
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Figure 3.2: MSEs of the MLE (blue crosses) for the
CCRLBs (black lines).

Fig. 3.1 compares the MSEs of the subgradient-based

2

nonlinearity parameter b versus o° compared with the

estimator®, estimated with N = 20000 noise realizations,

®Similar results have been obtained using the linearization-based estimator and are reported in (Altmann et al., 2011).
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with the CCRLB versus the number of spectral bands (the number of spectral bands has been adjusted by a regular
subsampling of the initial L = 826 bands). These results confirm the efficiency of the MLE for these four mixtures
since the MSEs (crosses) are very close to the corresponding CCRLBs (continuous lines).

Similarly, Fig. 3.2 compares the MSEs of the MLE (estimated with N = 20000 noise realizations and L = 826) with
the CCRLB versus the noise variance o2 for the mixed pixels My to My. These results show that the efficiency

property is valid for any value of o2.
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Figure 3.3: MSEs of the MLE (blue crosses) for the nonlinearity parameter b and R = 3,4, 5,6 versus o>

compared with the CCRLBs (black lines).

Fig. 3.3 compares the MSEs of the MLE (estimated with N = 20000 noise realizations and L = 826) with the
CCRLB versus the noise variance o2 for R = 3,4, 5,6. The considered endmembers are the three materials presented
above and construction concrete, micaceous loam and bare red brick. The synthetic mixtures have been obtained

using the following parameters

R=3:a = [0.3,06,0.1]7, =02

R=4:a = [0.2,0.3,0.3,0.2]7, b=0.1

R=5:a = 10.1,0.15,0.15,0.2,04]", b= -0.2
R=6:a = 10.15,0.20,0.25,0.1,0.1,0.2]7, b= —0.1

These results show that the efficiency assumption of the MLE of b is valid for different values of R. The asymptotic
normality for the MLE of b is then investigated by considering the distributions of b for the four mixtures Mg to Ms.
The histograms of b estimated from N = 20000 Monte Carlo runs are depicted in Fig. 3.4. Moreover, single sample
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Kolmogorov-Smirnov goodness-of-fit tests Kay (1998) with significance level set to 0.05 have been applied to the
four sets of Monte Carlo runs (corresponding to My to M3). The four tests have accepted the null hypothesis (i.e.,
the distributions of b coincide with their asymptotic distributions) with large p—values (0.93;0.79;0.58 and 0.72 for
My to M3). These results confirm that the distributions of the subgradient-based algorithm can be approximated

by a Gaussian distribution whose mean is the actual parameter b and whose variance is given by the CCRLB.
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Figure 3.4: Histograms of b (black lines) and associated Gaussian distributions (red lines) for the four

mixtures Mg to Ms.

Detection performance The performance of the proposed nonlinearity detection procedure can be measured

by comparing the actual PFA (given by (3.13)) with the empirical PFA defined as

N
e1m 1
Peat(n) = N Z dn () (3.24)
n=1
with
0,if T, <n
dn(n) = , (3.25)
1,if T, >n

where N is the number of noisy realizations of a given mixture under Hy, 7 is the theoretical test threshold, T, is
the value of the test statistic for the nth noise realization and d,(-) is its corresponding decision (d,,(-) = ¢ means

hypothesis H; has been accepted with ¢ € {0,1}). The actual PFA is also compared to its approximation obtained
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by approximating the CCRLB

1L
PXP(n) = 7 ) dn(n) (3.26)
n=1
where
. 0,if T, <n
dn(n) = o (3.27)
1,if T, >n.

Fig. 3.5 compares Ppa, Pay’ and Pgr’" as a function of the threshold n for N = 20000 noisy realizations of the
mixture Mg. These results first show that the theoretical and empirical PFAs coincide. Moreover, the CCRLB
approximation proposed for the final test does not modify the performance in term of PFA. Fig. 3.6 shows the test
performance in term of receiver operating characteristics (ROCs) (Kay, 1998, p. 74-75) for a = [0.3,0.6,0.1]7 and
02 =3x10"3 (SNR = L1672 ||g, (a)||* ~ 15dB). Four different values of b have been assumed under hypothesis
Hy, ie., b=502b=1002 b = 1502 and b = 2002. The theoretical ROCs are compared with the empirical and

approximated ROCs, where the probabilities of detection are defined as

1 N
PSP () = 5 D_ dn(0) (3.28)
n=1

15
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0.7}

0.6

0.4f i .
0.3}
0.2}

0.1}

Figure 3.5: Actual (red lines), empirical (blue plus) and approximated (blue circles) PFAs.

and
1L
PR = 5 S dali) (3:29)
n=1

and where the data have been generated according to hypothesis H;. These results show that the proposed test
provides similar performance when compared to the original likelihood ratio test (assuming the actual parameters

a, b and o2 are known).
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PFA

Figure 3.6: Actual (lines), empirical (plus) and approximated (circles) receiver operating characteristics
(ROCs) for b = 50?2 (blue), b = 1002 (red), b = 1502 (green) and b = 2002 (black).

The performance of the proposed nonlinearity detector is also investigated by testing independently each pixel of
a 100 x 100 synthetic image generated according to the PPNMM. The abundance vectors a,,n = 1,...,10000,
have been randomly drawn from a uniform distribution in the simplex defined by the positivity and sum-to-one
constraints. All pixels have been corrupted by an additive Gaussian noise of variance 02 = 3 x 1072, corresponding
to SNR ~ 15dB. The nonlinearity parameters have been chosen in the set {502, 1002,2002,3002}, defining four
different nonlinearity levels. Fig. 3.7 presents the actual nonlinearity parameters and the detection maps using
the subgradient-based estimation procedure for Pra = 0.01 and Pra = 0.05. The white (resp. black) pixels are
detected as nonlinearly (resp. linearly) distributed pixels. Note that similar results would be obtained when using

the Taylor-based estimation procedure.

0.08
0.07
0.08
0.0

PFA=0.01

0.04
0.03
0.02

Figure 3.7: Actual values of b (left) and detection maps for Ppa = 0.01 (middle) and Ppa = 0.05 (right)
using the subgradient-based algorithm. Black (resp. white) pixels correspond to pixels detected as linearly

(resp. nonlinearly) mixed.

The capacity of the PPNMM to detect various nonlinearities is then investigated by unmixing a 100 x 100 synthetic
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image generated according to four different mixing models. The R = 3 endmembers contained in this image
have been extracted from the spectral libraries provided with the ENVI software (RSI (Research Systems Inc.),
2003) (i.e., green grass, olive green paint and galvanized steel metal). The considered image is divided into four
50 x 50 sub-images as follows. The first synthetic sub-image S; has been generated using the standard linear mixing
model (LMM). A second sub-image S» has been generated according to the bilinear mixing model introduced in
(Fan et al., 2009), referred to as “Fan model” (FM). A third sub-image S3 has been generated according to the
generalized bilinear mixing model (GBM) introduced in (Halimi et al., 2011a,b), whereas a fourth sub-image S4 has
been generated according to the proposed PPNMM. For each sub-image, the abundance vectors a,,,n =1,...,2500,
have been randomly generated according to a uniform distribution in the admissible set defined by the positivity
and sum-to-one constraints. All sub-images have been corrupted by an additive white Gaussian noise corresponding
to SNR = 15dB. The nonlinearity coefficients are uniformly drawn in the set (0,1) for the GBM and the parameter
b has been generated uniformly in the set (—0.3,0.3) for the PPNMM.
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Figure 3.8: Left: Actual location of the four sub-images S; (LMM), So (FM), S3 (GBM) and Sy (PPNMM).
Right: Associated detection map using the subgradient-based algorithm. Black (resp. white) pixels

correspond to pixels detected as linearly (resp. nonlinearly) mixed.

Fig. 3.8 (right) shows the detection maps obtained with the GLRT for Pra = 0.05. From this figure, it can be seen
that the location of the nonlinear mixtures on the detection maps is straightforward. Note that for the GBM and
the PPNMM, mixed pixels can be close to the simplex corresponding to the noise-free LMM and can be detected
as linearly distributed pixels. Conversely, for the FM, only almost pure pixels are close to that simplex, leading to
a larger number of pixels detected as nonlinear. This remark is illustrated in Fig. 3.9 which shows the location of
the pixels detected as nonlinear in the 3-dimensional subspace spanned by the three dominant axes resulting from

a principal component analysis.

3.3.5 Analysis of real data

The performance of the proposed nonlinearity detector has been evaluated on a real hyperspectral image composed

of L = 189 spectral bands. The selected scene has been extracted from the AVIRIS Cuprite image, acquired over
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Figure 3.9: Pixels detected as linear (red crosses) and nonlinear (blue dots) for the four sub-images S;
(LMM), S2 (FM), S3 (GBM) and S; (PPNMM). The simplex corresponding to the noise-free case LMM

is depicted in black lines.

a mining site in Nevada, in 1997. The geologic characteristics of the complete data have been described in (Clark
et al., 2003). The area of interest of size 190 x 250 is represented in Fig. 3.10 and has been previously studied
by Nascimento and Bioucas-Dias (2005) to test the VCA algorithm with R = 14 endmembers. Therefore, in this

experiment, the same number of endmembers has been extracted by VCA. The subgradient-based estimator has

Figure 3.10: AVIRIS image of 190 x 250 pixels extracted from Cuprite scene observed in composite natural

colors.

been used to estimate the parameters of the PPNMM related to the analyzed image, i.e., the abundance vectors,
the nonlinearity parameters and the noise variances associated with all image pixels. Fig. 3.11 shows the abundance
maps corresponding to the R = 14 components. The proportions of pure materials obtained with the PPNMM are
in good agreement with those obtained with the FCLS algorithm and depicted in Fig. 3.12.

However, the PPNMM has the advantage of providing additional information regarding the linearity or nonlinearity
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Figure 3.12: Fourteen abundance maps estimated with the FCLS algorithm for the Cuprite scene.

of endmember mixtures via the nonlinearity parameter b. Fig. 3.13 shows the estimated nonlinearity parameter

map for the Cuprite scene of Fig. 3.10. Examples of decision maps associated with the subgradient-based estimator
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are also depicted in this figure. These decision maps have been obtained by applying the test (3.16) for all pixels
of the image for two PFAs. Fig. 3.13 highlights some structures, e.g., the road is clearly identified at the top right
corner, especially for Ppy = 1072, A spread nonlinear area is also detected (at the bottom left corner of the image).
It can be noted from the classification map of (Clark et al., 1993) that this area is mainly composed of several kinds
of Kaolinite. The proposed nonlinearity detector shows that nonlinear effects occur between the different kinds of

Kaolinite in this area.

Figure 3.13: Left: map of b for the Cuprite scene. Associated detection map for Ppy = 102 (middle)
and for Pra = 1079 (right). Black (resp. white) pixels correspond to pixels detected as linearly (resp.

nonlinearly) mixed.

3.3.6 Intermediate conclusion

A first nonlinearity detector was presented for hyperspectral image analysis. This detector decided if a pixel of a
hyperspectral image is a linear combination of endmembers or results from a general nonlinear mixture. It assumed
that the hyperspectral image pixels are related to the endmembers by a polynomial post-nonlinear mixing model
generalizing the widely used linear mixing model. A subgradient-based algorithm was used to estimate the model
parameters. Constrained Cramér-Rao lower bounds were also derived for the PPNMM parameters. These bounds
provide a reference in term of estimation variance for estimators satisfying the positivity and sum-to-one constraints
of the abundances. The bound for the nonlinearity parameter was also used to approximate the variance of the its
maximum likelihood estimator and to build a nonlinearity detector for hyperspectral images. Results obtained on
synthetic and real images illustrated the accuracy of the polynomial post-nonlinear model for detecting nonlinearities
in hyperspectral images. When a material is too rarely represented or too mixed in the image, it becomes difficult
or even impossible to identify its spectrum using an EEA. Simulations conducted on a real image have shown that

the proposed nonlinearity detector allows such materials to be identified (such as the road in the Cuprite image).

As mentioned above, the proposed nonlinearity detector relies on an explicit characterization of the nonlinearities,
through the consideration of a post-nonlinear model. Even if this algorithm can detect unidentified endmembers, it
is not dedicated to this purpose. The next part of this chapter studies a nonlinearity detector for hyperspectral image

analysis which does not enforce any particular form of nonlinearities in order to detect more general nonlinearities.
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3.4 Supervised LMM-based nonlinearity detection

Similarly to the nonlinearity detector studied in the previous paragraph, this paragraph addresses the problem
of determining whether an observed pixel of a hyperspectral image is a linear function of endmembers or results
from a generic nonlinear mixing. Differently from paragraph 3.3, the proposed nonlinearity detector is based only
on the LMM associated with the null hypothesis. This makes the detector more robust to the nonlinearity that
defines the alternative hypothesis. Under the null hypothesis, the linear mixture of the endmembers belongs to
a low-dimensional hyperplane. Hence, we propose to design a statistical test based on the distance between the
observed pixel and that hyperplane for deciding between the null and alternative hypotheses. As in paragraph 3.3,

we assume that the endmembers contained in the image are known.

3.4.1 Mixing models
Let y be the L x 1 pixel observed in L different spectral bands. The LMM assumes that y results from a mixture

of R known endmembers my,...,mg as follows
y=Ma +e (3.30)

where M = [my, ..., mg] is the L x R endmember matrix, the elements a, of @ = [a1,...,ag]” are the proportions
of each endmember in the mixture and e is an L x 1 independent white Gaussian vector such that e ~ N (OL, 0’2IL).

The elements of the abundance vector a satisfy the physical positivity and sum-to-one constraints

R
a =1, a,>0,¥re{l,...,R}. (3.31)
r=1

Consider now the hyperplane H defined by

In the noise-free case, H lies in an (R — 1)-dimensional subspace embedding all observations distributed according
to the LMM.

R
z=Ma,» a, = 1} : (3.32)

r=1

As in Dobigeon and Févotte (2013), we also consider a general nonlinear mixing model as follows
y=Ma+pu+e (3.33)

where p is an L x 1 deterministic vector that does not belong to H, i.e., u ¢ H and a satisfies the constraints (4.2).
Note that p can be a nonlinear function of the endmember matrix M and/or the abundance vector a and should
be denoted as (M, a). However, the arguments M and a are omitted in this study for brevity.

Given an observation vector y, we formulate the detection of nonlinear mixtures as the following binary hypothesis

testing problem:

Hy : 'y is distributed according to (3.30)

(3.34)
Hy : Yy is distributed according to (3.33).

Using the statistical properties of the noise e, we obtain E[y|Hy] = Ma € H whereas E[y|H1] = Ma + p ¢ H. As

a consequence, it makes sense to consider the squared Euclidean distance
8%(y) =min|ly — z 2 3.35
(y) oy | [ ( )

between the observed pixel y and the hyperplane H to decide which hypothesis (Hy or Hi) is true. The next
paragraph studies the distribution of 6?(y) under the two hypotheses Hy and Hj.

105



Chapter 3. Nonlinearity detection in hyperspectral images

3.4.2 Distributions of §?(y) under hypotheses H, and H,
We now design a statistical test for hypotheses Hy and H; by studying the distribution of §?(y) under each

hypothesis. Given the sum-to-one constraint on the abundance vector, the mixing model (3.33) can be rewritten as

y=y-mgp=Kc+pu+te (3.36)

where ¢ = [a,...,ar_1]T is (R—1)x 1 and K = [m; —mg,...,mgr_1 —mg] is L x (R —1). Hence, §%(y) can be

computed by solving the unconstrained least squares (LS) problem
2 o . - 2

6(y) = i |y — Kel”. (3.37)

It is well known that the solution to this problem is given by
érs = (K'K) 'K’y (3.38)

yielding the following L x 1 residual vector €

e = y—Kes

- [L-KK'K) K|y

= H(p+e) (3.39)
where H=1;, - K (KTK)_1 K7 is an L x L projection matrix of rank K = L — R+ 1. Using 62(y) = é7é and
é~N (Hu, O'QH), straightforward computations lead to (Papoulis, 1991)

1, 9 pTHp
Sy~ vk (P (3.40)

where Y% (\) denotes the noncentral x? distribution with K degrees of freedom and noncentrality parameter \.
The distribution of §%(y) under Hy can be obtained by setting = 0 in (3.40), yielding

1
—50°(¥)[Ho ~ Xi (0) = Xk (3.41)
where Y% is the x? distribution with K degrees of freedom. Notice that the distributions of 62(y) under Hy and
H, depend on the known matrix M but also on the usually unknown noise variance o and nonlinearity vector .

In the following we study nonlinearity detectors constructed for known and unknown noise variance o2.

3.4.3 Nonlinearity detection
As mentioned above, the distributions of §?(y) under hypotheses Hy and H; depend on o2 and on p, which are
usually unknown. We address first the scenario in which the noise variance is known but the nonlinearity g (under

H,) is unknown.

2

Known ¢, unknown p

For known o2, the distribution of §2(y) is perfectly known under Hy and partially known under H;. Thus, we use a
statistical test that does not depend on the unknown nonlinearity p to decide between Hy and H;. Here we propose

to use the following statistical test

§*(y)
7= 5 n (3.42)
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where 7 is a threshold related to the probability of false alarm (PFA) of the test

Pepn = P {T > U‘Ho} (3.43)
or equivalently,
n= F;; (1 — Pra) (3.44)
K
where F;zl is the inverse cumulative distribution function of the y7-distribution. For a given p, the power Pp(p)
K

of the test is

Pp(p) =1="Fz2 n(n) (3.45)

where F. - (), is the cumulative distribution function of the x% (\)-distribution and A = o~ 2u”Hpu. Note that the
X7 (A) K

probability of detection (PD) Pp(u) is an increasing function of A for a fixed threshold 7. This makes sense, as

the higher the power u” Hpu of the nonlinearity orthogonal to H, the better the detection performance. Moreover,

the lower the noise variance, the better the nonlinearity detection. Unfortunately, the noise variance is unknown

in most practical applications. In these cases, the test (3.42) cannot be used. We study a nonlinearity detector for

unknown o2 in the next paragraph.

2

Unknown ¢“, unknown pu

When o2 is unknown, a simple solution is to replace the actual noise variance in (3.42) by its estimate 62. This

yields the following test

2(y) H
T = A(;y )2, (3.46)
ag H,

where 7 is the threshold defined in (3.44). The PFA and PD of the test (3.46) are then given by

Pia P [T* >

5_2
H0:| =P |:T > 27]‘H0:|
g

Pr(p)

IP’[T*>7]

~2
Hl} =P [T > ;n‘Hl] . (3.47)

The better the estimation of 02, the closer the distributions of T and T* and thus the closer the performances
of the tests (3.42) and (3.46). Unfortunately, considering the maximum likelihood estimator of o? under H,
(621 = 6%(y)/L) lead to a constant test in (3.46) (i.e., T* = L). Here we propose to estimate o2 through an
eigenanalysis of the sample covariance matrix of a set of N pixels assumed to share the same noise variance. The
estimate 62 is then determined as the average of the p < L smallest eigenvalues of the sample covariance matrix.
The accuracy of the estimator will depend on the choice of p, which will be discussed in the simulation paragraph.
For a given Pra and associated threshold n given by (3.43), the distribution of T* is shifted to the left if o2 is
overestimated, i.e., if 62 > o2. This will lead to a Pg, of the test (3.46) that is lower than the Ppa of the test
(3.42). Conversely, if 62 < o2, the distribution of T* is shifted to the right leading to Pgy > Pra. Thus, it seems
reasonable to overestimate o2 to ensure Pj, is upper bounded by a Ppa fixed by the user. This observation will
be used in paragraph 3.4.4 to adjust the value of p. It is interesting to mention that, similarly to the detector

2

studied in paragraph 3.3, one might think of assuming the efficiency of the MLE of ¢° and of approximating its
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variance using the corresponding CRLB to derive a nonlinearity detector (similarly to the MLE of b in paragraph

3.3). Straightforward computations would lead to

orLE NN( 2 2; > (3.48)

2

However, since o is unknown, it should be replaced by its estimator in the CRLB expression and in the mean of

the asymptotic Gaussian distribution (3.48), leading to a constant (null) test statistic.

3.4.4 Simulations

2

Synthetic data: known ¢, unknown pu

We first investigate the performance of the test (3.42), which assumes 0 known. We consider a mixture of R = 3
materials (green grass, olive green paint and galvanized steel metal) whose spectral signatures m, composed of
L = 826 bands have been extracted from the spectral libraries provided with the ENVI software (RSI (Research
Systems Inc.), 2003). The abundance vector is fixed to @ = [0.3,0.6,0.1]7 and the noise variance to o2 = 1073.

The nonlinearity p is set as follows

M:u

;@510 O] m; (349)

S0

where v is a scaling factor selected from the set {0.4,0.5,0.6,0.7}. This nonlinearity corresponds to the generalized
bilinear model (GBM) studied in (Halimi et al., 2011a) with ~; ; = v for all (4, j). The specific form in (3.49) was

chosen so that the impact of the nonlinearity is governed by a single parameter v. Fig. 3.14 shows the theoretical

+

and empirical (N = 20000 noise realizations) receiver operating characteristics (ROCs) (Kay, 1998, p. 74-75) for the
test (3.42). Each value of v corresponds to a different noncentrality parameter A\ = o~ 2u” Hyu for the noncentral 2
distribution, ranging from A ~ 49 to A ~ 150. These results confirm that the performance of test (3.42) improves

for larger values of A (or v).

2

Synthetic data: unknown ¢, unknown p

We now study the performance of the nonlinearity detector when o2 is replaced by its estimate 2. Fig. 3.15 shows
the ROCs of test (3.46) for A = 70 and for three values of 62: 0.9502, 62 and 1.0502. Note that all ROCs coincide.
However, different estimates 62 correspond to different points on the curve for a fixed PFA. For instance, if the PFA
is fixed to Ppa = 0.1 and the noise variance is correctly estimated, the corresponding Pp is around Pp = 0.65 (see
Fig. 3.15 (middle)). If 6% = 0.9502, the PFA of test (3.46) rises to Pj, ~ 0.41, leading to P}, ~ 0.92. Conversely,
if 62 = 1.0502, the PFA of test (3.46) falls to Pz, = 0.01, leading to Pj ~ 0.27.

To investigate the ability of the proposed nonlinearity detector to detect different types of nonlinearities, we unmixed
a synthetic image composed of N = 10* pixels generated according to four different mixing models. The R = 3
endmembers contained in this image are the same as in paragraph 3.4.4. We considered the following nonlinear

mixing model

y(n) = Ma(n) + cos(8)p,(n) + sin(@) puy(n) + €, (3.50)
forn=1,...,N, where e, is a Gaussian noise vector such that e, ~ N (07,0°1I) and
pi(n) = b[(Ma(n)) © (Ma(n))] (3.51)
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Figure 3.14: Actual (solid lines) and empirical (diamonds) receiver operating characteristics (ROCs) of

the first test (known noise variance) for v = 0.4 (blue), v = 0.5 (red), v = 0.6 (green) and v = 0.7 (black).

Figure 3.15: Theoretical ROCs of the test (3.46) (unknown noise variance) for 62 = 0.9502 (left), 6% = o2
(middle) and 62 = 1.0502 (right). The point corresponding with Pr4 = 0.1 is the intersection of the black

lines.

where © denotes the Hadamard product and b is a fixed real parameter. The nonlinearity p, corresponds to

the nonlinear mixing model studied in paragraph 3.3 for nonlinearity detection. The L x 1 nonlinearity vector
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po(n) is built to ensure that p,(n) is orthogonal to the columns of M and to pq(n) with ||, (n)]] = ||e(n)] (|||l
denoting the ¢ norm). The angle 6 € [0, 7/2] is chosen to tune the contributions of g, (n) and p,(n) while ensuring
lcos(8) 1 (n) + sin(6) s (n) |

into two terms relies on the fact that the PPNMM-based nonlinearity detector cannot identify nonlinearities that

= |1 (n)||* for any value of #. The main motivation for splitting the nonlinearities

are orthogonal to p, since this detector estimates the projection of the each nonlinearity onto p;.

The considered set of pixels was divided into four 50 x 50 sub-images as follows. The first synthetic sub-image S;
was generated using the standard linear mixing model (LMM) whereas the sub-images S, S3 and S, were generated
according to the nonlinear mixing model (3.50) with b = 0.1 and 0 € {n/4,3n/8,7/2}. For each sub-image, the
abundance vectors a,,n = 1,...,2500, were generated uniformly in the admissible set defined by the positivity and
sum-to-one constraints. All sub-images were corrupted by an additive white Gaussian noise of variance 02 = 1073
corresponding to an average SNR =~ 21dB. Table 3.1 shows the means and standard deviations of the noise variance
estimates obtained for different values of p (for 50 Monte Carlo runs). This table shows that fixing p =L — (R—1)
provides accurate estimates of o2 for these examples. These results can be explained by the fact that the dimension
of the subspace spanned by pixels resulting from linear mixtures of R endmembers is (R — 1). Fig. 3.16 compares
the empirical ROCs constructed from the number of pixels detected as linear and nonlinear for the different tests
(known and unknown noise variance). The empirical ROCs for the test studied in paragraph 3.3 are also displayed
in these figures. Fig. 3.16 (top left) shows that the three detectors are able to respect the PFA constraint. The
three other subfigures of Fig. 3.16 display the ROCs for the three different values of #. For small values of 6,
the norm of the nonlinearity projection onto the vector p, is large. Hence, the nonlinearity detector based on the
PPNMM studied in paragraph 3.3 outperforms the tests studied in this paragraph (top right subfigure). However,
the performance of test in paragraph 3.3 degrades as the portion of the nonlinearity that is orthogonal to p; becomes
predominant (bottom subfigures). The two proposed tests (known and unknown noise variance) perform similarly.
Moreover, these two tests seem to be more robust to the type of nonlinearity. Finally, the proposed tests (3.42)
and (3.46) only require one projection (3.39) of each pixel (and eventually the noise variance estimation procedure)
while the test studied in paragraph 3.3 requires the minimization of a more complex cost function and the derivation

of Cramér-Rao bounds, leading to higher computation costs when compared to the proposed method.

S So S3 Sy
19.94 21.32 20.69 19.96
L—-p=1
(£0.27) | (£0.35) | (£0.30) | (£0.27)
9.99 9.98 9.99 9.99
L—p=2
(£0.01) | (£0.01) | (£0.01) | (£0.01)
9.97 9.97 9.98 9.97
L—p=3
(£0.01) | (£0.01) | (£0.01) | (£0.01)
9.95 9.95 9.96 9.96
L—p=4
(£0.01) | (£0.01) | (£0.01) | (£0.01)
9.94 9.94 9.94 9.94
L—p=5
(£0.01) | (£0.01) | (£0.01) | (£0.01)

Table 3.1: Means and standard deviations (in brackets) of the estimated noise variance (x10~%) for

different values of p (02 = 1073).
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Figure 3.16: Empirical ROCs of the tests (3.42) (red lines), (3.46) (blue crosses) and the test studied in
paragraph 3.3 (black lines) for S; to Sy.

Real data

The performance of the proposed LMM-based nonlinearity detector has been compared to the PPNMM-based
detector studied in paragraph 3.3 using simulations conducted on the 190 x 250 pixels Cuprite image introduced
in paragraph 3.3. The R = 14 endmembers have been extracted by VCA. Fig. 3.17 compares the detection maps
obtained with the two nonlinearity detectors for Pra = 1072 (left) and Pra4 = 107 (right). This figures first
shows that the two detectors provide different detection results. The nonlinearly mixed regions identified by the
LMM-based detection differs from those obtained with the PPNMM-based detector. Moreover, for a given PFA,
the LMM-based detection detects more nonlinearly mixed pixels. Because of the lack of ground truth information
about the linear/nonlinear properties of the actual mixtures, it is difficult to decide if one test outperforms the
others. However, the two proposed test can be complementary. The LMM-based detector is a general test which
does not assume any particular form of nonlinearities while the PPNMM-based detector is more specific and is

mainly dedicated to the identification of post-nonlinear mixtures.

3.4.5 Intermediate conclusion

The second nonlinearity detector studied in this chapter was based on the distance between each observed pixel
and the low dimensional subspace spanned by the endmembers when the noise variance is known. For an unknown
noise variance, a similar detector was proposed by replacing the actual noise variance by an accurate estimator
resulting from the eigenanalysis of the sample covariance matrix of a set of image pixels. The main advantages of
this method are the absence of prior knowledge about the type of the nonlinearity and its low computational cost.

Simulations on synthetic data illustrated the robustness of this method to detect various nonlinearities.
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PPNMM

LMM

PFA=10"

Figure 3.17: Cuprite detection maps obtained with the PPNMM-based (top) and LMM-based (bottom)
nonlinearity detectors for Ppa = 1072 (left) and Pra = 107 (right). Black (resp. white) pixels correspond

to pixels detected as linearly (resp. nonlinearly) mixed.

3.5 Conclusion

In this chapter, we proposed nonlinearity detectors for applications where the endmembers are known. The first
detector was based on the estimated nonlinearity parameter of a polynomial post-nonlinear model. A subgradient-
based algorithm was used to estimate the nonlinearity parameter as well as the other model parameters. The
variances of these parameter estimators were approximated by the corresponding constrained Cramér-Rao lower
bounds allowing to adjust the test threshold as a function of the probability of false alarm, and to compute the
probability of detection of the detector.

The second detector was based on the distance between each observed pixel and the subspace spanned by the linear
combinations of the endmembers. This detector required to known the noise variance. When this variance was
unknown, we proposed to estimate it from the eigenanalysis of the sample covariance matrix of a set of image pixels.
The main advantages of the second nonlinearity detector are the absence of prior knowledge about the type of the
nonlinearity and its low computational cost. Simulations on synthetic data illustrated the robustness of this method
to detect various nonlinearities.

The two proposed detectors have provided promising results in term of detection performance. However, it has been
shown that the two detectors can provide different detection results depending on the underlying nonlinearities. It
would be interesting to study more complex tests depending on the prior knowledge about the nonlinear effects
to be detected. Deviations from the LMM can be explained for instance by colored noise (the noise vectors were

assumed to be i.i.d. in this study), endmember estimation errors (when extracted from the data), nonlinear effects
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resulting from interactions between the materials of the scene and unidentified endmembers (rarely represented
materials). The consideration of such model mis-specifications could provide more specific tests as those developed
by Ramsey (1969). To improve the robustness of the detection procedure, several detectors could also be fused.
The two proposed nonlinearity detectors (i.e., the PPNMM-based and the LMM-based) assume the endmembers
are known in order to derive a test statistic. However, in practice the spectral signatures are often unknown and
must be estimated from the data. When pure pixels are present in the image, EEA can be used before applying the
proposed nonlinearity detectors. If the image pixels are too highly mixed (no pure pixel in the image), unsupervised
nonlinearity detectors (assuming that the endmembers are unknown) should be used. Precisely, it would interesting
to propose joint unmixing and nonlinearity detection algorithms.

Finally, the two proposed nonlinearity detectors were based on pixel-by-pixel spectral analysis. However, it makes
sense to consider that nonlinearities occurring in a given pixel can be related to the nonlinearities in neighboring
pixels. Consideration of spatial correlation for nonlinearity detection could provide smoother detection results by
removing isolated pixels detected as linearly (resp. nonlinearly) mixed, surrounded by pixels detected as nonlinearly
(resp. linearly) mixed. The next Chapter introduces a new nonlinear mixing model for joint supervised unmixing
and nonlinearity detection based on spatial structures consideration.

Main contributions. Statistical tests were derived for pixel-by-pixel nonlinearity detection when the endmembers
are known. The proposed tests were computationally efficient and thus can be implemented in practical applications.
The detection results can be used as a pre-processing step to select pixels or regions where more complex models

should be used instead of the classical LMM for SU.
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3.6 Conclusion (in French)

Dans ce chapitre, nous avons proposé des détecteurs de non-linéarité pixel par pixel pour des applications ou les
composants sont connus (nombre et spectres). Le premier détecteur est basé sur le parameétre de non-linéarité estimé
du modéle PPNMM. Une méthode de gradient a été utilisée pour estimer le paramétre de non-linéarité ainsi que les
autres paramétres du modele (estimation au sens du maximum de vraisemblance). Les variances de ces estimateurs
ont été approchées par des bornes de Cramér-Rao contraintes (associées au modéle PPNMM) permettant d’ajuster
le seuil du test en fonction de la probabilité de fausse alarme et de calculer la probabilité de détection du détecteur.
Le deuxiéme détecteur est basé sur la distance de chaque pixel observé & I’hyperplan défini par les spectres des
composants purs de I'image et la contrainte de somme-a-un des abondances. Ce détecteur suppose que la variance
du bruit est connue. Lorsque cette variance est inconnue, nous avons proposé de ’estimer & partir de I’ analyse des
valeurs propres de la matrice de covariance d’un ensemble de pixels de I'image. Les principaux avantages du second
détecteur de non-linéarités sont ’absence de connaissance a priori sur le type de non-linéarités & détecter et son
faible cott calculatoire. Les simulations sur données synthétiques ont illustré la robustesse de cette méthode pour
détecter diverses non-linéarités.

Les deux détecteurs proposés ont donné des résultats prometteurs en termes de performance de détection. Cepen-
dant, ils peuvent fournir des résultats de détection différents en fonction des non-linéarités sous-jacentes. Il serait
intéressant d’étudier des tests plus complexes en fonction de la connaissance disponible sur les effets non-linéaires a
détecter. Les écarts au modéle linéaire classique peuvent étre expliquées par exemple par un bruit coloré (les niveaux
de bruit dans les différentes bandes spectrales ont été supposés étre indépendants et identiquement distribués dans
cette étude), les erreurs d’estimation des signatures spectrales (si extraites des données), les effets non-linéaires
résultant des interactions entre les matériaux de la scéne ou par des composants non-identifiés (matériaux rarement
représentés). L’examen de ces types de deviation au modele linéaire pourrait fournir des tests plus spécifiques,
comme ceux développés par Ramsey (1969). Afin d’améliorer la robustesse du procédé de détection, plusieurs
détecteurs pourraient également étre utilisés en paralléle.

Les deux détecteurs de non-linéarités proposés (basés sur le modéle PPNMM et le modéle linéaire) supposent que
les signatures spectrales des composants sont connues pour en déduire une statistique de test. Cependant, dans la
pratique, les signatures spectrales sont souvent inconnues et doivent étre estimées & partir des données. Lorsque
des pixels purs sont présents dans l'image, un algorithme d’extraction de signatures spectrales peut étre utilisé
avant ’application des détecteurs de non-linéarités proposés. Si les pixels de I'image sont trop fortement mélangés
(aucun pixel pur dans I'image), des détecteurs de non-linéarités non-supervisés (qui ne nécessitent pas de connaitre
parfaitement les signatures spectrales des composants) doivent étre utilisés. En particulier, il serait intéressant de
proposer des algorithmes permettant d’estimer les signatures spectrales et d’effectuer la détection de non-linéarités
conjointement.

Enfin, les deux détecteurs de non-linéarité proposés sont basés sur une analyse pixel par pixel. Cependant, il
est raisonnable de considérer que les non-linéarités qui se produisent dans un pixel donné peuvent étre liées aux
non-linéarités dans les pixels voisins. Prendre en compte la corrélation spatiale pour la détection de non-linéarités
pourrait fournir des résultats de détection plus “lisses” en enlevant les pixels isolés et détectés comme linéairement
(resp. non-linéairement) mélangés, entourés par des pixels détectés comme non-linéairement (resp. linéairement)
mélangés. Le chapitre suivant présente un nouveau modéle de mélange non-linéaire pour effectuer conjointement

la détection de non-linéarités et le démélange supervisé tout en prenant en compte des corrélations spatiales pour
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caractériser les non-linéarités.

Contributions majeures. Deux tests statistiques ont été proposés pour la détection non-linéarités pixel par
pixel lorsque les signatures spectrales des composants purs présents sont connues. Les tests proposés sont rapides a
mettre en place et peuvent donc étre utilisés facilement pour des applications pratiques. Les résultats de détection
peuvent étre utilisés comme une étape de pré-traitement pour sélectionner des pixels ou des régions ot des modéles
plus complexes doivent étre utilisés & la place du modéle de mélange linéaire classique pour résoudre le probléme

de démélange spectral.
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Chapter 4

Joint supervised unmixing and nonlinearity

detection using residual component analysis

The first part of this chapter has been adapted from the journal paper (Altmann et al., 2013b) (submitted).
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4.1 Introduction (in French)

Dans le chapitre précédent, un détecteur de non-linéarités pixel par pixel basé sur le modéle PPNMM a été proposé
et a donné des résultats intéressants en terme de localisation de régions ou des effets non-linéaires apparaissent.
Ce détecteur a été construit en utilisant une étape préalable de démélange basée sur le PPNMM. Les propriétés
statistiques de ’estimateur du paramétre de non-linéarité de ce modéle ont ensuite été utilisées pour calculer une
statistique de test. Dans ce chapitre, nous proposons d’effectuer simultanément le démélange spectral supervisé et
la détection de non-linéarités. Nous avons noté dans le chapitre précédent que la prise en compte de structures spa-
tiales dans les images hyperspectrales, déja considérée par Eches et al. (2011) pour le démélange linéaire, pourrait
également étre utilisée pour déduire les régions ou se produisent des effets non-linéaires. Cette étude présente un
nouvel algorithme bayésien supervisé pour effectuer conjointement le démélange (estimation des abondances) et la
détection de non-linéarités. Cet algorithme est supervisé dans le sens ot les signatures spectrales des composants
de 'image sont supposés connues (choisies parmi une bibliothéque spectrale ou extraites a partir des données par
un algorithme d’extraction de signatures spectrales). Cet algorithme est basé sur un modéle de mélange non-
linéaire inspiré de I’analyse en composantes résiduelles (RCA) (Kalaitzis and Lawrence, 2012). Dans le contexte du
démélange d’images hyperspectrales, les effets non-linéaires sont modélisés par des termes de perturbation additifs,
caractérisés par des processus gaussiens. Cela permet aux termes non-linéaires d’étre marginalisés, ce qui donne
un modele flexible dépendant uniquement des énergies des non-linéarités. Contrairement aux détecteurs de non-
linéarités étudiés dans le chapitre 3, les non-linéarités sont supposées aléatoires. L’image hyperspectrale & analyser
est partitionnée en régions homogeénes dans lesquelles les non-linéarités sont issues d’'un méme processus gaussien.
Cet algorithme repose sur une classification explicite des pixels de I'image, modélisée par des étiquettes dont les
dépendances spatiales sont modélisées & ’aide d’un champ aléatoire de Potts-Markov. Si deux classes (ou niveaux)
étaient utilisées (mélanges linéaires vs non linéaires), la carte de détection serait binaire. Cependant, cette méthode
permet d’identifier différentes régions o des effets non-linéaires apparaissent, a partir des niveaux d’énergie des
effets non-linéaires. Plus précisément, ’algorithme proposé permet d’identifier des régions avec différents niveaux
de non-linéarités et caractérisées par différents processus gaussiens. Les détecteurs de non-linéarités étudiés dans
le chapitre 3 et la plupart des algorithmes de démélange spectral supposent un bruit additif gaussien, indépen-
damment et identiquement distribués (i.i.d.) spectralement. Cependant, les récents travaux menés sur des images
hyperspectrales réelles ont montré que la variance du bruit peut varier significativement d’une bande spectrale &
Pautre. Par conséquent, le fait que la puissance du bruit peut changer avec les longueurs d’ondes est pris en compte
dans ce chapitre pour améliorer les performances du démélange et de la détection de la non-linéarités.

Dans le cadre bayésien, des lois a priori appropriées sont choisies pour les paramétres inconnus du modéle RCA
proposé, & savoir, les abondances, les hyperparamétres des processus gaussiens, les étiquettes des différentes classes
et la matrice de covariance du bruit. La loi a posteriori jointe de ces paramétres est ensuite calculée. Toutefois, les
estimateurs bayésiens classiques ne peuvent étre facilement calculés & partir de cette loi a posteriori (principalement
a cause des contraintes sur les paramétres a estimer et la non-linéarité du modéle). Pour résoudre ce probléme, une
méthode de simulation de type MCMC est utilisée pour générer des échantillons distribués suivant la loi a posteriori
d’intérét. Enfin, les échantillons générés sont utilisés pour calculer les estimateurs bayésiens ainsi que des mesures

d’incertitudes telles que des intervalles de confiance.
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4.2 Introduction

In the previous chapter, a pixel-by-pixel nonlinearity detector based on the PPNMM has been proposed and has
provided interesting results. This detector has been constructed using a PPNMM-based SU procedure. The statis-
tical properties of the nonlinearity parameter estimator of this model were used to subsequently derive an accurate
test statistic. Conversely, in this chapter we propose to simultaneously achieve the SU and nonlinearity detection.
We have noted that the consideration of spatial structures in the image, already used by Eches et al. (2011) for linear
SU, could also be used to infer the locations where nonlinear effects occur. This study presents a new supervised
Bayesian algorithm for joint nonlinear SU and nonlinearity detection. This algorithm is supervised in the sense
that the endmembers contained in the image are assumed to be known (chosen from a spectral library or extracted
from the data by an endmember extraction algorithm (EEA)). This algorithm is based on a nonlinear mixing
model inspired from residual component analysis (RCA) (Kalaitzis and Lawrence, 2012). In the context of SU of
hyperspectral images, the nonlinear effects are modeled by additive perturbation terms characterized by Gaussian
processes (GPs). This allows the nonlinear terms to be marginalized, yielding a flexible model depending only on
the nonlinearity energies. Contrary to the PPNMM-based and LMM-based nonlinearity detectors introduced in
Chapter 3, the nonlinearities are assumed to be random. The hyperspectral image to be analyzed is partitioned
into homogeneous regions in which the nonlinearities share the same GP. This algorithm relies on an explicit image
classification, modeled by labels whose spatial dependencies are modeled using a Potts-Markov random field. Con-
sideration of two classes (linear vs. nonlinear mixtures) would lead to binary detection maps. However, this study
allows for different nonlinearly mixed regions to be also identified, based on the energy of the nonlinear effects.
More precisely, the proposed algorithm can identify regions with different levels of nonlinearity and characterized
by different GPs. The nonlinearity detectors studied in Chapter 3 and most SU algorithms assume additive, inde-
pendent and identically distributed (i.i.d.) noise sequences. However, based on previous work conducted on real
hyperspectral images, non i.i.d. noise vectors are considered in this study to improve the unmixing and nonlinearity
detection performances.

In the Bayesian framework, appropriate prior distributions are chosen for the unknown parameters of the proposed
RCA model, i.e., the mixing coefficients, the GP hyperparameters, the class labels and the noise covariance matrix.
The joint posterior distribution of these parameters is then derived. However, the classical Bayesian estimators
cannot be easily computed from this joint posterior. To alleviate this problem, a Markov chain Monte Carlo
(MCMC) method is used to generate samples according to the posterior of interest. Finally, the generated samples

are used to compute Bayesian estimators as well as measures of uncertainties such as confidence intervals.

4.3 Problem formulation

We consider a set of N observed pixel spectra y,, = [Yn1,---,¥n.z]T,n € {1,..., N} where L is the number of
spectral bands. Each of these spectra is defined as a linear combination of R known endmembers m,., contaminated

by an additional spectrum ¢,, and additive noise

R
Z Ay 1MLy + ¢n +ep

r=1

Ma, + ¢, +e€,, n=1,....N (4.1)

Yn
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where m, = [m,1,...,m, r]T is the spectrum of the rth material present in the scene, ay is its correspond-
ing proportion in the nth pixel and e, is an additive independently and non identically distributed zero-mean
Gaussian noise sequence with diagonal covariance matrix ¥y = diag (0'2), denoted as e, ~ N (0r,%), where

0% = [0?,...,0%]T is the vector of the L noise variances and diag (0'2) is an L x L diagonal matrix containing

the elements of the vector o2

. Moreover, the term ¢,, = [¢1.n,...,¢r,]T in (4.1) is an unknown L x 1 additive
perturbation vector modeling nonlinear effects occurring in the nth pixel. Note that the usual matrix and vector
notations M = [my,...,mg] and a,, = [a1,,...,ar .7 have been used in the second row of Eq. (4.1). There
are several motivations for considering the mixing model (4.1): 1) this model reduces to the classical linear mixing
model (LMM) for ¢,, = 01, 2) the model (4.1) is general enough to handle different of kinds of nonlinearities such as
the bilinear model studied by Fan et al. (2009) (FM), the generalized bilinear model (GBM) (Halimi et al., 2011a),
and the PPNMM studied for nonlinear spectral unmixing in Chapter 1 and nonlinearity detection in Chapter 3.
These models assume that the mixing model consists of a linear contribution of the endmembers, corrupted by at
least one additive term characterizing the nonlinear effects. In the proposed model (4.1), all additive terms are
gathered in the vector ¢,,. Note that this model is similar to the one introduced by Dobigeon and Févotte (2013)
and called robust LMM, and to the nonlinear mixing model proposed by Chen et al. (2013b).

The abundance vectors a,, satisfy the following positivity and sum-to-one constraints

R
Zar,n =1, arn>0,Vr€ {17 e 7R} (4.2)

r=1

The problem addressed in this chapter consists of the joint estimation of the abundance vectors and the detection
of nonlinearly mixed pixels (characterized by ¢, # 01). The two next paragraphs present the proposed Bayesian

model for joint unmixing and nonlinearity detection.

4.4 Bayesian model

The unknown parameter vector associated with the proposed model (4.1) contains the abundances A = [a1,...,ay]

2

(satisfying the constraints (4.2)), the nonlinear terms of each pixel {¢,},_; ,, and the noise variance vector o=.

This section summarizes the likelihood and the parameter priors associated with the parameters of the linear part
of the model, i.e., A = [a1,...,ay] and 0. The prior model for the nonlinearities {¢n}n=1... n will be introduced

in paragraph 4.5.

4.4.1 Likelihood

Equation (4.1) shows that y,,|M, a,, ¢,,, o2 is distributed according to a Gaussian distribution with mean Ma,, +¢,,
and covariance matrix g, denoted as y,|M, a,,®,,,0% ~ N (Ma,, + ¢,,,3¢). Assuming independence between
the observed pixels, the joint likelihood of the observation matrix Y can be expressed as

(Y -X)"S0 (Y - X)
2

FOYIM, A, ®,0%) o< [Zo|V2etr |- (4.3)

where ® = [¢,..., 5|7 is an L x N nonlinearity matrix, etr(-) denotes the exponential trace and X = MA + @

is an L x N matrix.
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4.4.2 Prior for the abundance matrix A

Using the LMM constraints (4.2), each abundance vector can be written as a,, = [c], ag ,]T with ¢, = @1, -, aR_Ln]T

and ap, =1— Zf;ll arn. Moreover, these constraints impose that c,, belongs to the simplex

sz{c

To reflect the lack of prior knowledge about the abundances, we propose to assign noninformative prior distributions

R—1
cr>0,Vr€1,...,R—1,Zcr<1} (4.4)
r=1

to the N vectors ¢,. More precisely, the following uniform prior
flen) x1s(cn), nef{l,...,N} (4.5)

is assigned to each vector c,. Assuming prior independence between the N abundance vectors {a,},_; , leads

to the following joint prior distribution

where C = [cy,...,cn] is an (R — 1) x N matrix.

4.4.3 Prior for the noise variances

A Jeffreys’ prior is chosen for the noise variance of each spectral band o7

f(o?) ;1 (02) (47)

which reflects the absence of knowledge for this parameter (see (Bernardo and Smith, 1994) for motivation). As-

suming prior independence between the noise variances, we obtain

L
f(e®) =1 fod)- (4.8)

=1

4.5 Modeling the nonlinearities

We propose in this study to exploit spatial correlations between the pixels of the hyperspectral image to be analyzed.
It seems reasonable to assume that nonlinear effects occurring in a given pixel are related to the nonlinear effects
present in neighboring pixels. Formally, the hyperspectral image is assumed to be partitioned into K classes denoted
as Co,...,Cx_1. Let I, C 1,..., N denote the subset of pixel indexes belonging to the kth class (k=0,..., K —1).
An N x 1 label vector z = [21,...,2y]T with z, € {0,..., K — 1} is introduced to identify the class of each image
pixel, i.e.,

Yyn€Cronel, &z, =k (4.9)

In each class, nonlinearity vectors to be estimated are assumed to share the same statistical properties, as will be

shown in the sequel.
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4.5.1 Prior distribution for the nonlinearity matrix ¢

As mentioned above, the mixing model (4.1) reduces to the LMM for ¢,, = 0. For nonlinearity detection, it makes
sense to consider a pixel class (referred to as class Cp) corresponding to linearly mixed pixels. The resulting prior

distribution for ¢,, conditioned upon z, = 0 is given by

L
(=1

It can be seen that bilinear models and more generally polynomial models (i.e., model involving polynomials
nonlinearities with respect to the endmembers) are particularly well adapted to model scattering effects, mainly
observed in vegetation and urban areas. Consequently, it makes sense to assume that the nonlinearities ¢,, depend
on the endmember matrix M. Nonlinear effects can vary, depending on the relief of the scene, the underlying
components involved in the mixtures and the observation conditions to name a few factors. This makes the choice
of a single informative prior distribution challenging. From a classification point of view, it is interesting to identify
regions or classes where similar nonlinearities occur. For these reasons, we propose to divide nonlinearly mixed
pixels into K — 1 classes and to assign different priors for the nonlinearity vectors belonging to the different classes.
The nonlinearities (of nonlinearly mixed pixels) are assumed to be random. Assume y,, belongs to the kth class.

The prior distribution of the corresponding nonlinear term ¢,, is given by the following GP (k=1,..., K — 1)
¢nIM, 2, =k, 57 ~ N (01,57 Km) , (4.11)

where Kp is an L X L covariance matrix parameterized by the endmember matrix M and s% is a scaling hyperpa-
rameter that tunes the energy of the nonlinearities in the kth class. Note that all nonlinearity vectors within the
same class share the same prior. The performance of the unmixing procedure depends on the choice of Kyg, more
precisely on the similarity measure associated with the covariance matrix. In this work, we consider the symmet-
ric second order polynomial kernel, which has received considerable interest in the machine learning community

Scholkopf and Smola (2001). This kernel is defined as follows
2 .o
[KM]i,j - (mZ:mJ,) ) %] S {17"'aL}7 (412)

where © denotes the Hadamard (termwise) product and m,. denotes the ith row of M. Polynomial kernels
are particularly well adapted to characterize multiple scattering effects (modeled by polynomial functions of the
endmembers). Note that the parametrization of the matrix Ky in (4.12) only involves bilinear and quadratic terms

with respect to the endmembers m,,r =1,..., R. More, precisely, the matrix Ky can be rewritten as
Kum = QQ"

where Q = [m; ® my,...,mr © mg,v2m; ©my,...,vV2mgr_; ® mp]is an L x R(R + 1)/2 matrix. It can be
shown that (4.11) and (4.12) can be obtained by defining ¢,, as a linear combination of terms m; ® m; (as in
(Halimi et al., 2011a)) and by marginalizing the corresponding coefficients using a Gaussian prior parameterized by
s3. Marginalizing these coefficients allows the number of unknown parameters to be significantly reduced, leading
to the nonlinearities being characterized by a single parameter s% (see Appendix H for details). Note also that a
polynomial kernel similar to (4.12) has been recently considered by Chen et al. (2013b) and that other kernels such

as the Gaussian kernel could be investigated to model other nonlinearities (Kalaitzis and Lawrence, 2012).
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4.5.2 Prior distribution for the label vector z

In the context of hyperspectral image analysis, the labels z1,...,zy indicate the pixel classes and take values in

{0,..., K — 1} where K is the number of classes and the set {z,},=1,. n forms a random field. To exploit the

veey

correlation between pixels, a Markov random field is introduced as a prior distribution for z, given its neighbors
Zy(n) 5 1€,

f(znlzan) = f(znl2v(n)) (4.13)
where V(n) is the neighborhood of the nth pixel and z\,, = {2 }n'%n. More precisely, this study focuses on the
Potts-Markov model since it is very appropriate for hyperspectral image segmentation (Eches et al., 2011). Given

a discrete random field z attached to an image with IV pixels, the Hammersley-Clifford theorem yields

N
f(Z) = % €xp ﬁ Z Z 5(Zn - Zn’) (414)

n=1n'cV(n)
where 8 > 0 is the granularity coefficient, G(3) is a normalizing (or partition) constant and §(-) is the Dirac
delta function. Several neighborhood structures can be employed to define V(n). Fig. 4.1 shows two examples of
neighborhood structures. The eight pixel structure (or 2-order neighborhood) will be considered in the rest of the

chapter.

Figure 4.1: 4-pixel (left) and 8-pixel (right) neighborhood structures. The considered pixel appear as a

black circle whereas its neighbors are depicted in white.

The hyperparameter § tunes the degree of homogeneity of each region in the image. More precisely, small values
of B yield an image with a large number of regions, whereas large values of 5 lead to fewer and larger homogeneous
regions. In this study, the granularity coefficient is assumed to be known. Note however that it could be also

included within the Bayesian model and estimated using the strategy described by Pereyra et al. (2013).

4.5.3 Hyperparameter priors

The performance of the proposed Bayesian model for spectral unmixing mainly depends on the values of the

hyperparameters {si}kzl - When the hyperparameters are difficult to adjust, it is the norm to include them in

K
the unknown parameter vector, resulting in a hierarchical Bayesian model (Robert, 2007). This strategy requires

the definition of prior distributions for the hyperparameters.
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The following inverse-gamma prior distribution
sily,v ~ZIG(v,v), Vke{l,...,K} (4.15)

is assigned to the nonlinearity hyperparameters, where (-, v) are additional parameters that will be fixed to ensure
a noninformative prior for s3 ((y,v) = (1,1/4) in all simulations presented in this chapter). Assuming prior

independence between the hyperparameters, we obtain

2|77 H f Sk:h/u . (416)

where s? = [s%,...,5%

4.6 Bayesian inference using a Metropolis-within-Gibbs sampler

4.6.1 Marginalized joint posterior distribution

The resulting directed acyclic graph (DAG) associated with the proposed Bayesian model introduced in Sections
4.4 and 4.5 is depicted in Fig. 4.2.

N\

7
A

Figure 4.2: DAG for the parameter and hyperparameter priors (the fixed parameters appear in boxes).

0.2

Assuming prior independence between A, (®,z) and o2, the posterior distribution of (®, ) where 8 = (C,z, 02, s?)

can be expressed as
f(6,@]Y,M) o< f(Y|M,6,®)f(®|M,z,5%)f(6),
where f(0) = f(C)f(o?)f(z)f(s?). This distribution can be marginalized with respect to ® as follows

fOY,M) f(0)/f(Y|M,0,<I>)f(<I>|M7z,SQ)d<I>

x f(6)f(Y|M.6) (4.17)
where
f(YM.6) = / F(YM, 8, 8) /(2[M,z,5%)d (4.18)
X 17T2717 ]
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with 3y = diag (0?), & = s;Km+ 3o (k = 1,...,K — 1) and y, = y, — Ma,. The advantage of this
marginalization is to avoid sampling the nonlinearity matrix ®. Thus, the nonlinearities are fully characterized by
the known endmember matrix, the class labels and the values of the hyperparameters in s? = [s2,...,5%]T. Note
that the alternative interpretation of the proposed RCA-based model provided in Appendix H also leads to the
likelihood marginalized over @ in (4.18).

Unfortunately, it is difficult to obtain closed form expressions for standard Bayesian estimators associated with
(4.17). In this study, we propose to use efficient Markov Chain Monte Carlo (MCMC) methods to generate samples
asymptotically distributed according to (4.17). The next part of this section presents the Gibbs sampler which
is proposed to sample according to (4.17). The principle of the Gibbs sampler is to sample according to the
conditional distributions of the posterior of interest (Robert and Casella, 2004, Chap. 10). Due to the large number
of parameters to be estimated, it makes sense to use a block Gibbs sampler to improve the convergence of the

sampling procedure. More precisely, we propose to sample sequentially the NV labels in z, the abundance matrix A,

the noise variances o2 and s? using moves that are detailed in the next paragraphs.

4.6.2 Sampling the labels

For the nth pixel (n € {1,..., N}), the label z, is a discrete random variable whose conditional distribution is fully

characterized by the probabilities

P(z, = klyn, M, 0\, ) f(ynM,s?%, 2, = k,an)f(znlz\n), (4.19)
where 6\, denotes 8 without z,, K =0,..., K — 1 (for K classes). These posterior probabilities are
1
P(zn = klyn, M, 0:.,) X —— exp BZ > 6(zp — zy) | exp [ 5¥ yIs yn} . (4.20)
| p=1p’eV(p)

Consequently, sampling z,, from its conditional distribution can be achieved by drawing a discrete value in the finite
set {0,..., K — 1} with the probabilities defined in (4.20).

4.6.3 Sampling the abundance matrix A

Sampling from f(C|Y,M,z,0?,s?) seems difficult due to the complexity of this distribution. However, it can be
shown that

N
f(C|Y, M, z,0% %) = H f(enlyn, M, 2, 02,8, (4.21)
n=1

i.e., the N abundance vectors {an}n=17‘__,N are a posteriori independent and can be sampled independently in a

parallel manner. Straightforward computations lead to

Culyn, M, 2z, = k, 0% 8% ~ Ns(,, ¥,,) (4.22)
where
v, = (MTE,;lM)_l
¢, = w,M's; 'y,
M = [m; —mpg,...,mr_1 —mpg (4.23)
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and y,, = y, —mpg. Moreover, Ns(€,, ¥,) denotes the truncated multivariate Gaussian distribution defined on the
simplex S with hidden mean ¢,, and hidden covariance matrix ¥,,. Sampling from (4.22) can be achieved efficiently

using the method recently proposed by Pakman and Paninski (2012).

4.6.4 Sampling the noise variance o>

It can be shown from (4.17) that

L

f(@?[Y, M, A, z,8%) = [[ f(671Y, M, A, z,5?), (4.24)
=1
where
155 1
f(J?‘Y,M,A,Z,S 7 H H ‘Ek|2 €xp |:_yn2k Yn:| 1R+ (0’3) (425)
k=0 neZy

Sampling from (4.25) is not straightforward. In this case, an accept/reject procedure can be used to update o7,
leading to a hybrid Metropolis-within-Gibbs sampler. In this study, we introduce the standard change of variables
by = 1og(a€) 0¢ € R. A Gaussian random walk for &, is used to update the variance Ue This change of variables
allows the proposals to be symmetric, conversely to the truncated Gaussian distribution. Note that the noise
variances O’% are a posteriori independent. Thus they can be updated in a parallel manner. The variances of the L
parallel Gaussian random walk procedures have been adjusted during the burn-in period of the sampler to obtain

an acceptance rate close to 0.5, as recommended in (Robert and Cellier, 1998, p. 8).

4.6.5 Sampling the vector s?

It can be shown from (4.17) that

=
|

F(S°IY, M, A, z,6% 7,v) = [] f(si]Y. M, A, 0%,7,v),
k=1

where

1y
—— exp [—ﬁﬁk lyn} : (4.26)

FSEIY, M, A, 0%, 7,v) o f(silv,v) [] 1 5
k

ne, |
Due to the complexity of the conditional distribution (4.26), Gaussian random walk procedures are used in the log-
space to update the hyperparameters {s7 }x—1 . x—1 in a parallel manner (similarly to the noise variance updates).
Again, the proposal variances are adjusted during the burn-in period of the sampler.
After generating Ny samples using the procedures detailed above and removing NVy,; iterations associated with
the burn-in period of the sampler (Ny; has been set from preliminary runs), the marginal maximum a posteriori
(MAP) estimator of the label vector, denoted as Zyap, can be computed. The label vector estimator is then
used to compute the minimum mean square error (MMSE) of A conditioned upon z = Zyap. Finally, the noise
variances and the hyperparameters {si}kzlwq k-1 are estimated using the empirical averages of the generated
samples (MMSE estimates). The next section studies the performance of the proposed algorithm for synthetic

hyperspectral images.
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4.7 Simulations for synthetic data

4.7.1 First scenario: RCA vs. linear unmixing

The performance of the proposed joint nonlinear SU and nonlinearity detection algorithm is first evaluated by
unmixing a synthetic image of 60 x 60 pixels generated according to the model (4.1). The R = 3 endmembers
contained in these images (i.e., green grass, olive green paint and galvanized steel metal) have L = 207 different
spectral bands and have been extracted from the spectral libraries provided with the ENVI software (RSI (Research
Systems Inc.), 2003) . The number of classes has been set to K = 4, i.e, K — 1 = 3 classes of nonlinearly mixed
pixels. The hyperparameters {si} k1.3 have been fixed as shown in Table 4.2, which represents three possible
levels of nonlinearity. For each class, the nonlinear terms have been generated according to (4.11). The label map
generated with § = 1.2 is shown in Fig. 4.3 (left). The abundance vectors a,,,n = 1,...,3600 have been randomly
generated according to a uniform distribution over the admissible set defined by the positivity and sum-to-one
constraints. The noise variance (depicted in Fig. 4.4 as a function of the spectral bands) have been arbitrarily fixed

using

o =10"* [2 — sin (wa 1)] : (4.27)

to model a non-i.i.d. (colored) noise. The joint nonlinear SU and nonlinearity detection algorithm, denoted as
“RCA-SU”, has been applied to this data set with Ny = 3000 and Np; = 1000. Fig. 4.3 (right) shows that the
estimated label map (marginal MAP estimates) is in agreement with the actual label map. Moreover, the confusion
matrix depicted in Table 4.1 illustrate the performance of the RCA-SU in term of pixel classification. Table 4.2
shows that the RCA-SU provides accurate hyperparameter estimates and thus can be used to obtain information
about the importance of nonlinearities in the different regions. Note that the estimation error is computed using
|s7 — 53|/s%, where s2 and §7 are the actual and estimated dispersion parameters for the kth class. The estimated

noise variances, depicted in Fig. 4.4 are also in good agreement with the actual values of the variances. The

Actual map Estimated map

2R

Figure 4.3: Actual (left) and estimated (right) classification maps of the synthetic image associated with

the first scenario.
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Figure 4.4: Actual noise variances (red) and variances estimated by the RCA-SU algorithm (blue) for the

synthetic image associated with the first scenario.

quality of abundance estimation can be evaluated by comparing the estimated and actual abundance vectors using

the root normalized mean square error (RNMSE) defined in each class by

1 R
RNMSE), = R >, — anl? (4.28)
nely

with Ny = card(Z) and where a,, and a,, are the actual and estimated abundance vectors for the nth pixel of the
image. For this scenario, the proposed algorithm is compared with the classical FCLS algorithm (Heinz and C.-1
Chang, 2001) assuming the LMM. Comparisons to nonlinear SU methods will be addressed in the next paragraph
(scenario 2). Table 4.3 shows the RNMSEs obtained with the proposed and the FLCS algorithms for this first data
set. These results show that the two algorithms provide similar abundance estimates for the first class, corresponding
to linearly mixed pixels. For the three nonlinear classes, the proposed algorithm provides better results than the

FCLS algorithm that does not handle nonlinear effects.

Table 4.1: First scenario: Confusion matrix (N = 3600 pixels).

Estimated classes
Co C1 Ca Cs
Co | 659 0 0 0
Ci 1 1274 2 0

Actual classes
Cs 0 4 787 2

Cs 0 0 0 871
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Table 4.2: First scenario: Hyperparameter estimation.

s s5 53
Actual value 0.01 0.1 1

Estimation error | 2.76% | 1.12% | 0.28%

Table 4.3: RNMSEs (x1072): synthetic images .
Class #0 | Class #1 | Class #2 | Class #3
FCLS 0.38 15.23 29.95 42.79

RCA-SU 0.38 2.83 3.99 4.23

4.7.2 Second scenario: RCA vs. nonlinear unmixing
Data set

The performance of the proposed joint nonlinear SU and nonlinearity detection algorithm is then evaluated on a
second synthetic image of 60 x 60 pixels containing the R = 3 spectral components presented in the previous section.
In this scenario, the image consists of pixels generated according to four different mixing models associated with
four classes (K = 4). The label map generated using S = 1.2 is shown in Fig. 4.5 (a). The class Cy is associated
with the LMM. The pixels of class C; have been generated according to the GBM (Halimi et al., 2011a)

R R—-1 R
Yn = Z Ay 1My + Z Z Vi, jGi,nAj nI; ® m; + e, (429)
r=1 i=1 j=i+1

where n € Z; and the nonlinearity parameters {v; ;} have been uniformly drawn in [0.5,1]. The class C, is composed

of pixels generated according to the PPNMM introduced in Chapter 1 as follows

R R R
Vi = Z arpmy + b (Z ar,nm,«> o) <Z a,mmr) +e, (4.30)
r=1 r=1 r=1

where n € Z, and b = 0.5 for all pixels in class C5. Finally, the class C3 has been generated according to (4.1)
with s2 = 0.1. For the four classes, the abundance vectors have been randomly generated according to a uniform
distribution over the admissible set defined by the positivity and sum-to-one constraints. All pixels have been
corrupted by an additive i.i.d Gaussian noise of variance o2 = 10~%, corresponding to an average signal-to-noise
ratio SNR ~ 30dB. The noise is assumed to be i.i.d. for a fair comparison with SU algorithms assuming i.i.d.
Gaussian noise. Fig. 4.5 (b) shows the log-energy of the nonlinearity parameters for each pixel of the image, i.e.,

log (\|¢n\|2> for n =1,...,3600. This figure shows that each class corresponds to a different level of nonlinearity.
Unmixing
Different estimation procedures have been considered for the four different mixing models:

e The FCLS algorithm (Heinz and C.-I Chang, 2001) which is known to have good performance for linear

mixtures.

e The GBM-based approach (Halimi et al., 2011b) which is particularly adapted for bilinear nonlinearities.
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2
(a) Actual label map. (b) 1og (l6%).

(c) Detection map (PPNMM). (d) Detection map (RCA-SU).

Figure 4.5: Nonlinearity detection for the scenario #2.

e The gradient-based approach introduced in Chapter 1 which is based on a PPNMM.

e The proposed RCA-SU algorithm which has been designed for the model in (4.1). It has been applied to this
data set with Ny = 3000, NV, = 2000, K =4 and 8 = 1.2.

e Finally, we consider the K-Hype method studied by Chen et al. (2013b) to compare our algorithm with
state-of-the art kernel based unmixing methods. The kernel used in this study is the polynomial, second
order symmetric kernel whose Gram matrix is defined by (4.12). This kernel provides better performance
on this data set than the kernels studied by Chen et al. (2013b) (namely the Gaussian and the polynomial,

second order asymmetric kernels). All hyperparameters of the K-Hype algorithm have been optimized using

preliminary runs.

Table 4.4 compares the RNMSEs obtained with the SU algorithms for each class of the second scenario. These
results show that the proposed algorithm provides abundance estimates similar to those obtained with the LMM-

based algorithm (FCLS) for linearly mixed pixels. Moreover, the RCA-SU also provides accurate estimates for
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the three mixing models considered, which illustrates the robustness of the RCA-based model regarding model

mis-specification.

Table 4.4: Abundance RNMSEs (x1072): Scenario #2 .

Class #0 | Class #1 Class #2 Class #3
Unmixing algo.
(LMM) | (GBM) | (PPNMM) | (RCA)
FCLS 0.35 9.20 19.74 30.73
GBM 0.36 3.05 15.24 29.53
PPNMM 0.65 1.37 0.48 23.77
K-HYPE 3.24 3.28 3.14 3.42
RCA-SU 0.35 1.58 2.14 3.41

The unmixing quality is also evaluated by the reconstruction error (RE) defined as

1 . 2
RE, = |—— E — 4.31
k NoL = ||Yn Yn” ( )

where y,, is the nth observation vector and y,, its estimate. Table 4.5 compares the REs obtained for the different
classes. This table shows the accuracy of the proposed model for fitting the observations. The REs obtained with
the RCA-SU are similar for the four pixel classes. Moreover, the performance in terms of RE of the proposed

algorithm are similar to the performance of the K-Hype algorithm.

Table 4.5: REs (x1072): Scenario #2.

Class #0 | Class #1 Class #2 Class #3
Unmixing algo.
(LMM) | (GBM) | (PPNMM) | (RCA)
FCLS 0.99 2.17 1.33 3.10
GBM 1.00 1.12 4.41 10.98
PPNMM 0.99 1.01 0.99 3.80
K-HYPE 0.98 0.98 0.98 0.98
RCA-SU 1.00 0.98 0.98 0.98

From a reconstruction point of view, the K-Hype and RCA-SU algorithms provides similar results. However, the
proposed algorithm also provides nonlinearity detection maps. The PPNMM and RCA-SU algorithms perform
similarly in term of abundance estimation and allow both nonlinearities to be detected in each pixel. However, the

nonlinearities can be analyzed more deeply using the RCA-SU, as will be shown in the next part.

Nonlinearity detection

The performance of the proposed algorithm for nonlinearity detection is compared to the detector studied in
Chapter 3, which is coupled with the PPNMM-based SU procedure mentioned above. The probability of false
alarm of the PPNMM-based detection has been set to PFA = 0.05. Figs. 4.5 (c) and (d) show the detection
maps obtained with the two detectors. Both detectors are able to locate the nonlinearly mixed regions. However,

the RCA-SU provides more homogeneous regions, due to the consideration of spatial structure through the MRF.
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Moreover, the proposed algorithm provides information about the different levels of nonlinearity in the image
thanks to the estimation of the hyperparameters si associated with the different classes. In this simulation, we
obtain [§2, 382 52] = [0.2,1.4,10] x 1072, showing that nonlinearities of class C; are less severe than those of class
Cy that are themselves weaker than those of class C3. The next section studies the performance of the proposed

algorithm for a real hyperspectral image.

4.8 Simulations for a real hyperspectral image

4.8.1 Data set

The real image considered in this section is the Villelongue image considered in Chapters 1 and 2. A sub-image (of
size 41 x 29 pixels) is chosen here to evaluate the proposed unmixing procedure and is depicted in Fig. 4.6. The
scene is composed mainly of roof, road and grass pixels, resulting in R = 3 endmembers. The spectral signatures of
these components have been extracted from the data using the N-FINDR algorithm (Winter, 1999) and are depicted
in Fig. 4.7.

Figure 4.6: Real hyperspectral Madonna data acquired by the Hyspex hyperspectral scanner over Ville-
longue, France (left) and sub-image of interest (right).

4.8.2 Spectral unmixing

The proposed algorithm has been applied to this data set with Ny = 3000 and Np; = 1000. The number of
classes has been set to K = 4 (one linear class and three nonlinear classes). The granularity parameter of the prior
(4.14) has been fixed to f = 0.7. Fig. 4.8 shows examples of abundance maps estimated by the FCLS algorithm,
the gradient-based method assuming the GBM, the PPNMM and the K-Hype (Chen et al., 2013b) algorithms and
the proposed method. The abundance maps estimated by the RCA-SU algorithm are in good agreement with the
state-of-the art algorithms. However, Table 4.6 shows that K-Hype and the proposed algorithm provide a lower
reconstruction error. Fig. 4.9 compares the noise variances estimated by the RCA-SU for the real image with the

noise variances estimated by the HySime algorithm (Bioucas-Dias and Nascimento, 2008). The HySime algorithm
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Figure 4.7: The R = 3 endmembers estimated by N-Findr for the real Madonna sub-image.

assumes additive noise and estimates the noise covariance matrix of the image using multiple regression. Fig. 4.9
shows that the two algorithms provide similar noise variance estimates. These results motivate the consideration
of non i.i.d. noise for hyperspectral image analysis since the noise variances increase for the highest wavelengths.
The simulations conducted on this real dataset show the accuracy of the proposed RCA-SU in terms of abundance
estimation and reconstruction error, especially for applications where the noise variances vary depending on the

wavelength. Moreover, it also provides information about the nonlinearities of the scene.

Table 4.6: Reconstruction errors: Real image.

Unmixing algo. | RE (x1072)
FCLS 0.65
GBM 0.65

PPNMM 0.54
K-HYPE 0.48
RCA-SU 0.48

4.8.3 Nonlinearity detection

Fig. 4.10 (b) shows the detection map (map of z, for n = 1,..., N) provided by the proposed RCA-SU detector
for the real image considered. Due to the consideration of spatial structures, the proposed detector provides
homogeneous regions. Similar structures can be identified in this detection map and the true color image of the
scene (Fig. 4.10 (a)). The estimated class Cy (black pixels) associated with linearly mixed pixels is mainly located in
the roof region. The class C; (dark grey pixels) can be related to regions where the main component in the pixels are
grass or road. Mixed pixels composed of grass and road are gathered in class Cs (light grey pixels). Finally, shadowed
pixels located between the roof and the road are associated with the last class C3 (white pixels). Moreover, the
RCA-SU can identify three levels of nonlinearity, corresponding to [$%, 83, 43] = [0.03,0.50,29.5]. The most influent
nonlinearity class is class Cs, where shadowing effects occurs. Mixed pixels of class Cy contain weaker nonlinearities.

Finally, the remaining pixels of class C; are associated with the weakest nonlinearities. The nonlinearities of this class
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Figure 4.8: The R = 3 abundance maps estimated by the FCLS, PPNMM-based, K-Hype, and RCA-SU
algorithms for the Madonna real image (white pixels correspond to large abundances, contrary to black

pixels).
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Figure 4.9: Noise variances estimated by the RCA-SU (red) and the Hysime algorithm (blue) for the real

Madonna image.

can probably be explained by the endmember variability and/or the endmember estimation error. It is interesting
to note that the RCA-SU identifies two rather linear classes associated with homogeneous regions mainly composed
of a single parameter (classes Cyp and C1). The two latter classes (classes C and Cs) correspond to rather nonlinear

regions where the pixels are mixed and shadowing effects occur.

4.9 Conclusion

We have proposed a new hierarchical Bayesian algorithm for joint linear/nonlinear spectral unmixing of hyperspec-
tral images and nonlinearity detection. This algorithm assumed that each pixel of the image is a linear or nonlinear
mixture of endmembers contaminated by additive Gaussian noise. The nonlinear mixtures are decomposed into a
linear combination of the endmembers and an additive term representing the nonlinear effects. A Markov random
field was introduced to promote spatial structures in the image. The image was decomposed into regions or classes
where the nonlinearities share the same statistical properties, each class being associated with a level of nonlinearity.
Nonlinearities within a same class were modeled using a Gaussian process parameterized by the endmembers and
the nonlinearity level. Note finally that the physical constraints for the abundances were included in the Bayesian
framework through appropriate prior distributions. Due to the complexity of the resulting joint posterior distribu-
tion, a Markov chain Monte Carlo method was investigated to compute Bayesian estimators of the unknown model
parameters.

Simulations conducted on synthetic data illustrated the performance of the proposed algorithm for linear and
nonlinear spectral unmixing. An important advantage of the proposed algorithm is its robustness regarding the
actual underlying mixing model. Another interesting property resulting from the nonlinear mixing model considered
is the possibility of detecting several kinds of linearly and nonlinearly mixed pixels. This detection can be used
to identify the image regions affected by nonlinearities in order to characterize the nonlinear effects more deeply.

Finally, simulations conducted with real data showed the accuracy of the proposed unmixing and nonlinearity
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(a) (b)

Figure 4.10: (a) True color image of the scene of interest. (b) Nonlinearity detection map obtained with

the RCA-SU detector for the Madonna image.

detection strategy for the analysis of real hyperspectral images.

As in Chapter 3, the endmembers contained in the hyperspectral image were assumed to be known in this work. Of
course, the performance of the algorithm relies on this endmember knowledge. We think that estimating the pure
component spectra present in the image, jointly with the abundance estimation and the nonlinearity detection is
an important issue that should be considered in future work. Finally, the number of classes and the granularity of
the scene were assumed to be known in this study. Estimating these parameters is clearly a challenging issue that
should be investigated.

Main contributions. A new nonlinear mixing model for joint hyperspectral image unmixing and nonlinearity
detection was proposed. The observed image was segmented into regions where nonlinear terms, if present, shared
similar statistical properties. The resulting algorithm provided accurate abundance estimates when the actual
mixtures are linear and nonlinear and it thus generalized the binary nonlinearity detectors proposed in the third

chapter by considering different levels (classes) of nonlinearities.
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4.10 Conclusion (in French)

Nous avons proposé un nouvel algorithme bayésien hiérarchique pour effectuer conjointement I’étape d’inversion
et la détection de non-linéarités. Cet algorithme suppose que chaque pixel de I'image est un mélange linéaire ou
non-linéaire des signatures spectrales des composants purs de I'image, contaminé par un bruit additif gaussien. Les
mélanges non-linéaires sont décomposés en une combinaison linéaire des signatures spectrales des composants purs et
d’un terme additif représentant les effets non-linéaires. Un champ de Potts-Markov a été introduit afin de promouvoir
les structures spatiales dans I'image. L’image a été décomposée en régions (ou classes) ou les non-linéarités ont les
mémes propriétés statistiques, chaque classe étant associée & un niveau de non-linéarité. Les non-linéarités dans
une méme classe ont été modélisés en utilisant un processus gaussien paramétré par les composants de 'image et
un niveau de non-linéarité. Les contraintes physiques sur les abondances ont également été incluses dans le cadre
bayésien a I’aide de lois a priori appropriées. En raison de la complexité de la loi a posteriori jointe résultante, une
méthode MCMC a été utilisée pour calculer les estimateurs bayésiens des parameétres inconnus du modéle.

Les simulations effectuées sur des données synthétiques ont illustré les performances de 1’algorithme proposé pour
résoudre le probléme de démélange spectral linéaire et non linéaire. Un avantage important de ’algorithme proposé
est sa robustesse vis-a-vis du modéle de mélange réel sous-jacent. Une autre propriété intéressante résultant du
modéle de mélange non-linéaire considéré est la possibilité de détecter plusieurs types de pixels résultant de mélanges
non-linéaires. Cette détection peut étre utilisée pour identifier les régions d’image affectées par des non-linéarités
différentes dans le but de caractériser plus finement les effets non-linéaires. Enfin, les simulations effectuées avec
des données réelles ont montré la pertinence des méthodes permettant d’effectuer conjointement 1’étape d’inversion
et la détection de non-linéarités pour I’analyse d’images réelles.

Comme dans le chapitre 3, les composantes spectrales pures contenues dans l'image hyperspectrale ont été supposées
connues dans ce chapitre. Bien siir, les performances de ’algorithme sont liées & la connaissance de ces spectres.
Dans le futur, il serait important de proposer des méthodes permettant de résoudre conjointement le probléme de
démélange non-supervisé et la détection de non-linéarités. Enfin, le nombre de classes et la granularité de la scéne
ont également été supposés connus dans ce travail. L’estimation de ces paramétres est clairement une question
difficile qui devrait étre étudiée.

Contributions majeures. Un nouveau modéle de mélange non-linéaire pour effectuer conjointement l’étape
d’inversion et la détection de non-linéarités a été proposée. L’image observée a été segmentée en régions ou les
termes non-linéaires, le cas échéant, partagent des propriétés statistiques similaires. L’algorithme résultant a fourni
des abondances estimées satisfaisantes quand les mélanges réels sont linéaires et non linéaires et permet également
de généraliser les détecteurs de non-linéarités binaires proposés dans le troisiéme chapitre de ce manuscrit en

considérant différents niveaux (classes) de non-linéarités.
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Conclusion and future work

The aim of this thesis was to study new nonlinear mixing models and to propose associated unmixing algorithms
for hyperspectral image analysis. Spectral unmixing consists of extracting from a hyperspectral image, the spectra
of the pure macroscopic components present in the image, referred to as endmembers, and of identifying their
interactions referred to as mixtures. To reduce the problem complexity, most works of the literature rely on a
linear mixing model, often considered as a first approximation of the actual mixture. However, this approximation
can be inaccurate to describe some scenes, requiring more complex mixing models to be considered (to overcome
the inherent limitations of the linear model). Designing and/or choosing an appropriate nonlinear mixing model
for spectral unmixing is a challenging problem because of the diversity of nonlinear effects. Moreover, introducing
nonlinear terms in the observation model complicates the derivation of efficient nonlinear unmixing procedures
relying on nonlinear models. Considering nonlinear effects in hyperspectral images usually require more complex
unmixing strategies than those assuming linear mixtures. Since the linear mixing model is often sufficient to
approximate accurately most actual mixtures, it is also interesting to detect pixels or regions where the linear

model is accurate.

4.11 Conclusion

The first chapter studied a post-nonlinear mixing model (PNMM) for nonlinear SU. The proposed polynomial
PNMM (PPNMM) investigated in this chapter allowed nonlinearities to differ for each pixel, leading to a flexible
mixture characterization. The nonlinearity of each pixel was characterized by a single parameter which is zero
when the pixel is linearly mixed. First, supervised SU methods based on the PPNMM were considered. The
first proposed algorithm was a hierarchical Bayesian algorithm coupled with MCMC methods. Two alternative
optimization methods were also introduced to reduce the computational complexity of the sampling algorithm. The
flexibility of the PPNMM and the performance of the three methods were evaluated using simulations conducted
on synthetic and real data. The second part of this chapter presented a new Bayesian model for unsupervised SU
based on the PPNMM. Appropriate priors were also assigned to the unknown endmembers to be sampled. The joint
estimation of the abundances and endmembers required a large number of parameters to be sampled. To improve
the mixing properties of the sampler, constrained Hamiltonian Monte Carlo methods were investigated.

The second chapter of this manuscript considered a kernel-based approach for nonlinear SU based on a nonlinear
dimensionality reduction using a GPLVM. GPLVMs, which have received growing interest in the machine learning
community, have the ability to approximate various nonlinear mappings from a low-dimensional space (latent space)

to a higher dimensional observation space through the use of kernel functions, which makes them particularly well
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adapted for hyperspectral image analysis and thus unmixing. In this chapter, we proposed to use a particular
form of kernel based on existing bilinear models, which allowed the proposed unmixing strategy to be accurate
when the underlying mixing model is bilinear. The proposed unmixing algorithm breaks the usual paradigm of
spectral unmixing by first estimating the abundances and then predicting the endmembers using GPs. Simulations
conducted on synthetic and real images illustrated the flexibility of the proposed model for linear and nonlinear
spectral unmixing and provided promising results for abundance and endmember estimations even in the absence
of pure pixels in the image.

The third chapter of this manuscript was dedicated to the detection of nonlinearities in hyperspectral images. This
chapter focused on supervised detection procedures, i.e., the endmembers were assumed to be a priori known. The
first detector was based on the PPNMM studied in the first chapter. More precisely, the associated test was based
on the statistical properties of the PPNMM parameters to decide whether a given pixel is linearly or nonlinearly
mixed. Conversely, the second test proposed did not assume any particular NLMM, i.e., only relied on the LMM.
The two detectors were compared using simulations conducted on synthetic and real data.

In the last chapter of this manuscript, a new nonlinear mixing model for joint hyperspectral image unmixing and
nonlinearity detection was proposed. The observed image was segmented into regions where nonlinear terms, if
present, shared similar statistical properties. The resulting algorithm provided accurate abundance estimates for
linear and nonlinear mixtures. Thus, it generalized the binary nonlinearity detectors proposed in the third chapter
by considering different classes (levels) of nonlinearities.

In this manuscript, it was shown that nonlinear unmixing algorithms can improve the characterization of hyperspec-
tral images compared to methods based on a linear model. These methods allowed the reconstruction errors to be
reduced. Moreover, these methods provided better spectral signature and abundance estimates when the observed
pixels result from nonlinear mixtures. The simulation results conducted on synthetic and real images illustrated the
advantage of using nonlinearity detectors for hyperspectral image analysis. In particular, the proposed detectors
can identify components which are present in few pixels (and hardly distinguishable) and can locate areas where

significant nonlinear effects occur (shadow, relief, ...).

4.12 Future work

In this manuscript, we proposed nonlinear unmixing and nonlinearity detection algorithms using a polynomial
post-nonlinear model. The flexibility of the Bayesian framework allowed the model complexity to be handled and
prior information about the model parameters to be easily included within the estimation procedure. It would be
interesting to extend this work to physics-based nonlinear models of the literature such as polynomial (bilinear)
(Halimi et al., 2011a; Meganem et al., 2013) and intimate mixture models (Hapke, 1981).

Consider the following bilinear model
R R-1 R
Yn = Zar,nmr + Z Z /Bi,j7nmi ® mj + (S7% (432)
r=1 i=1 j=it1

defined in (3). As mentioned in Chapter 4, the interaction spectra m; ® m; are highly correlated which complicates
the estimation of the nonlinearity parameters 3; ; ., especially for large numbers of endmembers R. In Chapter 4,

we considered such parameters as nuisance parameters which were marginalized. However, if one is particularly
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interested in these parameters (to quantify the influence of each interaction), additional information should be
included in the estimation procedure. As mentioned by Gader et al. (2012), most of the f; ;, parameters are
expected to be small (or even null). Consequently, it is interesting to enforce small values and/or sparsity for
these unknown parameters. In the Bayesian framework, sparsity promoting prior distributions (such as Laplace,

Bernoulli-Gaussian or Bernoulli-Laplace distributions) could be used to infer the nonlinearity parameters.

Even if the consideration of nonlinear terms increases the unmixing complexity, the recent advances in efficient
simulation methods (including Hamiltonian Monte Carlo methods) for high dimensional problems are promising

and their application to hyperspectral analysis is an interesting prospect.

The second chapter of this manuscript focused on a kernel-based nonlinear dimensionality reduction technique
initially studied in the machine learning community. A particular nonlinear mapping adapted for modeling bilinear
nonlinearities was used and provided encouraging results. Moreover, the fourth chapter of this manuscript focused
on a kernel-based model for joint unmixing and nonlinearity detection. Kernel-based methods for hyperspectral
unmixing have recently received growing interest (Broadwater and Banerjee, 2009; Chen et al., 2013b) for their
flexibility. However, further efforts should be achieved for proposing more general but accurate kernel functions. In
the fourth chapter of this manuscript, the nonlinearity of each pixel was characterized by a kernel function which
only depends on the endmember matrix. However, it makes sense to assume that the nonlinearity may also depend
on the pixel composition, i.e., on its abundances. Kernels depending on the endmembers and the abundances, such

as in the kernel-based method recently proposed by Chen et al. (2013a), should be investigated.

In the two last chapters of the manuscript, the endmembers were assumed to be known to perform the nonlinearity
detection and the joint unmixing and nonlinearity detection. However, if the endmembers are unknown, they
have to be extracted from the data, which can be difficult when nonlinearly mixed pixels are present in the scene.
It would be interesting to apply nonlinearity detectors before the endmember extraction (and then using linear
EEAs to identify the pure spectral signatures) or to propose joint nonlinearity detection and endmember estimation
methods. Thus, it would be interesting to extend the RCA-based Bayesian model proposed in Chapter 4 to the

case where the endmembers are included in the estimation procedure.

In this manuscript, we considered linear and nonlinear mixing models whose parameters were estimated using
Bayesian inference. Thus, the dimension of the unknown parameter vectors was known and thus their admissible
sets were assumed to be unique. In particular, the number of endmembers R was fixed from a priori knowledge.
In the RCA-based model, the number of classes was also fixed. If the dimension of the unknown parameter vector
is unknown, a simple solution consists of running the proposed algorithms with different numbers of endmembers
and/or classes. However, the computational complexity of this approach can be prohibitive when the number of
parameters to be tuned is large. A more elegant approach consists of including the dimension of the unknown
parameter vector within the parameter estimation using the Bayesian framework. Sampling from the resulting
posterior distribution can be achieved using reversible jump MCMC (RJ-MCMC) methods Green (1995). RJ-
MCMC methods can be used for model order selection but also to sample variables that can live in disjoint sets,
which is particularly interesting for hyperspectral image analysis. For instance, prior distributions defined on a set
of (disjoint) domains could be assigned to unknown endmembers and/or abundances. As a toy example, consider
the problem of semi-supervised unmixing of a hyperspectral image that consists of urban and forested areas. The
problem is semi-supervised in the sense that the endmembers present in the image belong to a spectral library which

contains spectra of both urban and forested areas. Instead of searching the active endmembers in the whole library,
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it would be interesting to identify the urban and forested areas in the scene and to estimate the endmembers out
of subsets of the library. For this problem, prior distributions for the unknown endmembers could be defined on
different subsets of the library and RJ-MCMCs could be used to sample for the resulting posterior.

This example is highly related to the sparse linear unmixing problem that have received intensive interest over the
last few years in the hyperspectral community ((Bioucas-Dias et al., 2012) and references therein). This sparse
linear regression problem has strong relations with compressed sensing and basis pursuit. It consists of solving the
inversion step given a large spectral library by enforcing the abundances to be sparse. Optimization algorithms
are mainly used to solve this problem and the ¢; norm penalization is often preferred (¢; relaxation) rather than
the ¢y norm, which is more challenging to handle. Conversely, the Bayesian framework is flexible enough to handle
penalizations based on the £y norm, using RJ-MCMCs for instance. Moreover, this framework allows also for
structured sparsity to be considered, such as in (Dobigeon and Févotte, 2013; Iordache et al., 2013). Proposing
Bayesian sparse unmixing procedures is a very interesting prospect. However, efficient sampling procedures must
be proposed to handle the complexity induced by the consideration of prior sparsity information.

Finally, consideration of endmember variability for spectral unmixing is also interesting. In this manuscript, the
spectral signatures of the materials of the scene were assumed to be unique. However, the spectral variability of
these signatures cannot be neglected in some images. Solving the unmixing problem in such cases is challenging

and should deserve deeper attention in future work.
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Conclusion et perspectives (in French)

L’objectif de cette thése était d’étudier de nouveaux modeéles de mélange non-linéaires et de proposer des algorithmes
de démélange associés pour l'analyse d’images hyperspectrales. Le probléme de démélange spectral consiste &
extraire d’une image hyperspectrale, les spectres des composants macroscopiques purs présents dans 'image, et
a idenfifier leurs interactions ou mélanges. Pour réduire la complexité du probléme, la plupart des travaux de la
littérature s’appuient sur un modéle de mélange linéaire, souvent considéré comme une premiére approximation
des mélanges réels. Cependant, cette approximation peut ne pas étre appropriée pour décrire certaines scénes
qui nécessitent d’utiliser des modéles de mélange plus complexes. Définir et/ou choisir un modeéle de mélange
non-linéaire approprié pour le démélange spectral est un probléme difficile en raison de la diversité des effets non-
linéaires. De plus, 'introduction de termes non-linéaires dans le modéle d’observation complique la mise en place de
procédures de démélange efficaces reposant sur des modéles non-linéaires. Considérer des effets non-linéaires dans
les images hyperspectrales exige habituellement des algorithmes de démélange plus complexes que ceux basés sur un
modéle linéaire. Etant donné que le modéle de mélange linéaire est souvent suffisant pour modéliser avec précision
la plupart des mélanges réels, il est aussi intéressant de détecter les pixels ou les régions ou le modéle linéaire peut

suffire.

4.13 Conclusion

Dans le premier chapitre, nous avons étudié un modéle de mélange post-non-linéaire (PNMM) pour résoudre le
probléme de démélange non-linéaire. Le modéle proposé (PPNMM) étudié dans ce chapitre permet de considérer
des non-linéarités différentes pour les différents pixels de I'image. La non-linéarité de chaque pixel est caractérisée
par un paramétre unique qui est égal & zéro lorsque le pixel résulte d’un mélange linéaire. Tout d’abord, des
méthodes de démélange supervisé basées sur le PPNMM ont été présentées. Le premier algorithme proposé est un
algorithme bayésien hiérarchique couplée avec des méthodes MCMC. Deux méthodes d’optimisation alternatives ont
également été introduites afin de réduire le coit calculatoire de ’échantillonneur de Gibbs. La souplesse du PPNMM
et les performances des trois méthodes ont été évaluées a ’aide de simulations effectuées sur données synthétiques
et réelles. La deuxiéme partie de ce chapitre a présenté un nouveau modéle bayésien pour résoudre le probléme
de démélange non-supervisé. Des lois a priori appropriées ont été également attribuées aux signatures spectrales
inconnues et & échantillonner. L’estimation conjointe des abondances et de ces signatures spectrales implique un
grand nombre de paramétres & échantillonner. Pour améliorer les propriétés de mélange de 1’échantillonneur, des
méthodes de Monte Carlo & dynamiques hamiltoniennes contraintes ont été étudiées.

Le second chapitre de ce manuscrit s’est focalisé sur une méthode & noyaux basée sur une réduction de dimension
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non-linéaire utilisant un modele & variables latentes et des processus gaussiens (GPLVM). Les GPLVMs, qui ont
suscité un intérét croissant dans la communauté de 'apprentissage automatique ont la capacité d’approcher & grand
nombre d’applications non-linéaires d’un espace de faible dimension (espace latent) & un espace d’observation de
dimension supérieure grace & l'utilisation de noyaux, ce qui les rend particuliérement bien adaptés pour ’analyse
d’images hyperspectrales et donc pour le démélange spectral. Dans ce chapitre, nous avons proposé d’utiliser une
forme particuliére de noyau basé sur des modéles bilinéaires existants, ce qui a permis d’obtenir un algorithme de
démélange bien adapté lorsque le modéle de mélange sous-jacent est bilinéaire. L’algorithme de démélange proposée
rompt le paradigme habituel du démélange spectral en estimant tout d’abord les abondances puis en prédisant les
spectres de composants purs a ’aide de processus gaussiens. Les simulations effectuées sur des images synthétiques
et réelles ont illustré la flexibilité du modéle proposé pour le démélange linéaire et non-linéaire et ont donné des
résultats prometteurs, méme en ’absence de pixels purs dans I’image observée.

Le troisiéme chapitre de ce manuscrit a été consacrée a la détection de non-linéarités dans les images hyperspectrales.
Ce chapitre s’est concentré sur des procédures de détection supervisées dans le sens ou les spectres des composants
présents dans 'image étaient supposés connus. Le premier détecteur était fondé sur le modéle PPNMM étudié dans
le premier chapitre. Plus précisément, le test proposé était basé sur les propriétés statistiques de ’estimateur du
maximum de vraisemblance des paramétres du modéle PPNMM afin de décider si un pixel résulte d’'un mélange
linéaire ot non-linéaire. A contrario, le deuxiéme détecteur proposé ne supposait pas de formes de non-linéarités
particuliére, c’est-a-dire, ne reposait que sur le modéle de mélange linéaire. Les deux détecteurs ont été comparés
a ’aide de simulations effectuées sur données synthétiques et réelles.

Dans le dernier chapitre de ce manuscrit, un nouveau modéle de mélange non-linéaire pour effectuer conjointement
le démélange supervisé et la détection de non-linéarités a été proposé. L'image observée a été segmentée en régions
ot les termes non-linéaires (lorsqu’ils sont présents) partagent des propriétés statistiques similaires. L’algorithme
résultant a montré de bonnes performances en terme d’estimation des abondances lorsque les pixels de 'image
résultent de mélange linéaires et non-linéaires. De plus, il généralise les détecteurs de non-linéarités binaires proposés
dans le troisiéme chapitre en considérant différentes classes (niveaux) de non-linéarités.

Dans ce manuscrit, il a été montré que les algorithmes de démélange non-linéaires peuvent permettre d’améliorer la
caractérisation des images hyperspectrales par rapport aux méthodes basées sur un modéle linéaire. Ces méthodes
non-linéaires ont montré de bonnes performances en termes d’estimation des abondances lorsque les pixels de
I'image résultent de mélange non-linéaires. Les résultats de simulations effectuées sur des images synthétiques et
réelles ont illustré 'avantage de 1'utilisation de détecteurs de non-linéarités pour ’analyse d’images hyperspectrales.
En particulier, les détecteurs proposés permettent d’identifier des composants trés peu représentés (et difficile a

détecter) et peuvent localiser des régions ou se produisent des effets non-linéaires importants (ombre, relief, .. .).

4.14 Perspectives

Dans ce manuscrit, nous avons proposé des algorithmes de détection de non-linéarités et de démélange non-linéaires
en utilisant un modéle post-non-linéaire polynomial. La flexibilité du cadre bayésien a permis de gérer la complexité
du modéle a traiter et a également permis d’inclure facilement I'information disponible sur les paramétres du modéle
dans la procédure d’estimation. Il serait intéressant d’étendre ce travail & d’autres modéles non-linéaires de la

littérature, en particulier ceux motivés par les phénoménes physiques en jeu dans les processus de mélange (tels que
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les modéles polynomiaux (Halimi et al., 2011a; Meganem et al., 2013) et les modéles de mélanges intimes (Hapke,
1981)).

Considérons le modéle bilinéaire suivant

R R—-1 R
Y = Zar,nmr + Z Z Bijnm; ©m; + e, (4.33)
r=1 i=1 j=i+1

défini par 'Eq. (3). Comme noté dans le chapitre 4, les spectres d’interactions m; ©m; sont fortement corrélés, ce qui
complique I’estimation des paramétres de non-linéarité 3; ; ,,, en particulier pour un grand nombre de composants R.
Dans le chapitre 4, nous avons considéré ces parameétres comme des parameétres de nuisance qui ont été marginalisés.
Toutefois, si ’on est particuliérement intéressé par les valeurs de ces parameétres (si l’on veut quantifier 'influence
de chaque interaction), de I'information supplémentaire doit étre incluse dans la procédure d’estimation. Comme
noté par Gader et al. (2012), on peut s’attendre & ce que les paramétres 3; ;, soient faibles (ou méme nuls). Par
conséquent , il serait intéressant de promouvoir les faibles valeurs (voire la parcimonie) pour ces paramétres. Dans
le cadre bayésien, des lois a priori favorisant la parcimonie (par exemple, des lois Laplace, Bernoulli-gaussienne ou
Bernoulli-Laplace) pourraient étre utilisées pour estimer les paramétres de non-linéarité.

Meéme si la considération de termes non-linéaires augmente la complexité du probléme de démélange, les récents
progrés dans le domaine des méthodes de simulation (y compris les méthodes de Monte Carlo & dynamiques hamil-
toniennes) pour des problémes de grande dimension sont prometteurs. Leur application a l’analyse d’images hyper-
spectrales est une perspective intéressante.

Le deuxiéme chapitre de ce manuscrit a porté sur une technique de réduction de dimension & base de noyau étudiée
a Dorigine par la communauté de I'apprentissage automatique. Un noyau particulier et adapté aux non-linéarités
bilinéaires a été utilisé et a fourni des résultats encourageants. De plus, le quatriéme chapitre de ce manuscrit
s’est focalisé sur un modéle & noyau pour effectuer conjointement le démélange et la détection de non-linéarités.
Les méthodes & noyaux pour le démélange spectral ont récemment regu un intérét croissant, (Broadwater and
Banerjee, 2009; Chen et al., 2013b) motivé par leur grande flexibilité. Toutefois, des efforts supplémentaires doivent
étre réalisés pour proposer des noyaux plus généraux mais toujours adaptés a I'imagerie hyperspectrale. Dans le
quatriéme chapitre de ce manuscrit, la non-linéarité de chaque pixel était caractérisée par une fonction de noyau
qui ne dépendait que de la matrice des signatures spectrales. Toutefois, il est raisonnable de penser que la non-
linéarité peut également dépendre de la composition de pixel, c’est-a-dire, de ses abondances. La modélisation des
non-linéarités en utilisant les signatures spectrales pures et les abondances, comme dans la méthode récemment
proposé par Chen et al. (2013a), est une perspective intéressante.

Dans les deux derniers chapitres du manuscrit, les signatures spectrales des composants de 'image étaient supposées
connues pour pourvoir effectuer la détection de non-linéarités et le démélange non-linéaire. Toutefois, si ces spectres
sont inconnus, ils doivent étre extraits des données, ce qui peut étre difficile lorsque des pixels résultant de mélanges
non-linéaires sont présents dans la scéne. Il serait intéressant d’appliquer des détecteurs de non-linéarités avant
I’extraction de ces signatures ou de proposer des méthodes réalisant conjointement ’estimation de ces spectres et la
détection de non-linéarités. Par exemple, il serait intéressant d’étendre le modéle bayésien basé sur RCA proposé
au chapitre 4 pour le cas ot les signatures spectrales pures sont incluses dans la procédure d’estimation.

Dans ce manuscrit, nous avons examiné des modéles de mélange linéaires et non-linéaires dont les parameétres
étaient estimés par inférence bayésienne. De plus, la dimension des vecteurs de parameétres inconnus était connue et

leurs ensembles de définition étaient uniques. En particulier, le nombre de composants R était fixé a priori. Dans
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le modéle inspiré de RCA, le nombre de classes était également fixé. Si la dimension du vecteur de paramétres
inconnu est inconnue, une solution simple consiste & exécuter les algorithmes proposés avec différents nombres
de composants et/ou de classes. Cependant, le cott calculatoire de cette approche peut étre prohibitif lorsque
le nombre de paramétres a tester est important. Une approche plus élégante consiste & inclure la dimension du
vecteur de paramétres inconnu dans la procédure d’estimation en utilisant le cadre bayésien. L’échantillonnage de
la loi a posteriori qui en résulte peut étre réalisé en utilisant des MCMC a sauts réversibles (RJ-MCMC) Green
(1995). Les méthodes de type RJ-MCMC peuvent étre utilisées pour sélectionner ’ordre d’un modéle, mais aussi
pour échantillonner des paramétres qui peuvent vivre dans des ensembles disjoints, ce qui est particuliérement
intéressant pour l'analyse d’images hyperspectrales. Par exemple, des lois a priori définies sur un ensemble de
domaines (disjoints) peuvent étre utilisées pour les signatures spectrales et/ou les abondances a estimer. Un
exemple d’application pourrait étre le probléme de démélange semi-supervisé d’une image hyperspectrale qui se
compose de zones urbaines et boisées. Le probléme est semi-supervisé dans le sens ot les composants présents dans
I’image appartiennent & une bibliothéque spectrale qui contient les spectres des deux zones (urbaines et boisées). Au
lieu de chercher les signatures spectrales actives dans ’ensemble de la bibliothéque, il serait intéressant d’identifier
les zones urbaines et boisées de la scéne et de rechercher les signatures spectrales dans des sous-ensembles de la
bibliothéque. Pour ce probléme, des lois a priori pour les signatures spectrales inconnues pourraient étre définies
sur différents sous-ensembles de la bibliothéque et des méthodes de type RJ-MCMC pourraient étre utilisées pour
échantillonner la loi a posteriori associée au modéle bayésien.

Cet exemple est fortement liée au probléme de démélange linéaire parcimonieux qui a suscité un fort intérét au
cours des derniéres années dans la communauté hyperspectrale (Bioucas-Dias et al., 2012). Ce probléme consiste &
résoudre ’étape d’inversion (estimation des abondances) a partir d’une large bibliothéque spectrale en forgant les
abondances & étre parcimonieuses. Des algorithmes d’optimisation sont souvent utilisés pour résoudre ce probléme
et la pénalisation par la norme /7 est souvent préférée (relaxation par norme ¢;1) a la norme ¢y qui est plus difficile a
manipuler. Inversement, le cadre bayésien est suffisamment souple pour gérer des pénalisations utilisant la norme £,
en utilisant des méthodes de type RJ- MCMC par exemple. De plus, ce cadre permet également de considérer des
parcimonies structurées, comme dans (Dobigeon and Févotte, 2013; Iordache et al., 2013). Proposer les algorithmes
bayésien de démélange parcimonieux est une perspective trés intéressante. Toutefois, des échantillonneurs efficaces
doivent étre proposés pour gérer la complexité induite par la prise en compte de parcimonies.

Enfin, I’étude de la variabilité de signatures spectrales pour le démélange est également intéressante. Dans ce
manuscrit, les signatures spectrales des matériaux de la scéne étaient supposées étre uniques. Cependant, la variabil-
ité spectrale de ces signatures ne peut pas étre négligée dans certaines images. Résoudre le probléme de démélange

dans de telles situations est difficile et ce cas devrait étre approfondi dans le futur.
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Appendix A

Identifiability of the supervised
PPNMM-based SU problem

A.1 Non-injectivity of s — g(s)
The application
g: [0,1]F — RF
S '—)[Sl—FbS%,...,SL—‘rbSQL]T

with s = [s1,...,sz]? is not injective. Indeed, if g(s;) = g(s2) then

Vlil a S2,4 € {5127 }

which leads to 2L solutions for the problem g(s;) = g(s2)

A.2 Injectivity of (a,b) — g(a,b) = Ma + b(Ma) ® (Ma)

Let a and a* be two abundance vectors satisfying the positivity and sum-to-one constraints, M the matrix containing

the endmembers and (b,b*) € R%. Consider the nonlinear functional g(a,b) defined as follows
g(a,b) = Ma+ b(Ma)® (Ma)

= Zarmr+b2a mr®mr+2bz Z ara;m, © m;

r=1 j=r+1

where ® denotes the term by term product operation. If g(a,b) = g(a*, b*), then
M(a — a3) + b(Ma) ©® (Ma) — b*(Ma*) © (Ma*) =0

and

R
Z( —al mT+Z a? — b*a’?) mr®mr—|—2z Z (bara; —b*ayaj)m, © m; = 0.

r=1 r=1 j=r+1
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Appendix A. Identifiability of the supervised PPNMM-based SU problem

If the columns of the L x R(RTJF?’) matrix
M={mi,...,mg,m; ®my,...,mr ®@mg,m; O Mmy,...,Mr_; © Mg}

are linearly independent, then

*

a=a*, and b=10". (A.1)

Consequently, the identifiability of the unmixing problem assuming the proposed PPNMM is ensured when rank(M) =
R(RT'H)’), which is usually satisfied when using real pure spectral components. Note that the identifiability of
the unmixing problem associated with the LMM requires a similar condition, i.e., rank(M) = R, where M =

[my,...,mg|T.
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Appendix B

Partial derivatives for the LS

PPNMDM-based algorithms

B.1 Partial derivatives of b(-) and h(.)

The partial derivative of h(-) with respect to a,, (r =1,..., R) is given by

agc(:) = 2(Ma)®m,.
Using the following partial derivatives
d(y — Ma) - m
oar "
Ny _Ma) b(a) _ _Thia) +2(y ~ Ma)” ((Ma) & m,)
@h) gy g2

and the usual differentiation rules, we obtain

oh(a)"h(a)

h(a)"h(a) — (v ~ Ma)"h(a) =% -

ob(a) 1 {8(}’ —Ma)Th(a)

da,  ||h(a)|* da,

B.2 Partial derivatives of y*(-)

Thanks to the sum-to-one constraint of the abundance vector, the cost function (1.23) can be expressed as a function

of c = [ay,...,ag_1]" by setting agr = 1 — Zf’;ll a,. Straightforward computations lead to

Ma = Mc + mp

where M £ [m; — mg,...,mr_; —mg| = [My,..., Mp_1] is a matrix of size L x (R — 1). The spectrum y(c) can

then be expressed as

y(c) = Mc+ mpg + b (c)h(c)
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Appendix B. Partial derivatives for the LS PPNMM-based algorithms

where
R—1
(C) = b(”’la"'aaR—lal_Za’P)
r=1
and
h(c) = (Mc+mpg)® (Mc+ mpg).

Using the following partial derivatives with respect to c,

dh(c) _ —
de. = 2m, ® (Mc + mR)
d(y — Mc — mg) -
dc, "
— Mc — Th _ .
Iy 1\/,[ca mp)" h(c) — —m’h(c) +2(y — Ma) (M, ® (Mc + mp))
Cp
oh(c)’h(c) -~  p0h(c)
dc, = 2h(c) dc,
and the usual differentiation rules, we obtain
-k Y - B
al(;c(c) _ _ 1 . {a(y Mcac mR) h(C) W(C)Th(c)]
" R(e)] "
— — . 0h(c)"h(c
-y Mo mp)Thie)

Finally, the partial derivative of the estimated spectrum y*(c) with respect to ¢, is
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Appendix C

Derivation of the potential functions
assoclated the UPPNMM algorithm

C.1 Derivation of the potential function associated with z,

The potential energy (1.61) can be rewritten

U(zn) = Ul (an) + U2(zn) (Cl)
where
Ul (an) = % [YH — 8n (Man)]T 271 [y’n — 8n (Man)] 9
R—-1
Us(z,) = - Z log (zf;“l) .

Partial derivatives of U(z,,) with respect to z,, is obtained using the classical chain rule

0U(z,) 0Ui(ay) Oa, n Uy (zy,)

0z, da, 0Oz, 0z,

Straightforward computations lead to

oUuy(a,)
da,

30— (Ma, [ £ [M 420, (Ma, 15) © M]

0 if i>r
Oary _ ] frm_ip =y
9z Zim — 1
fak Qrn .
: if i<r
Zin
8U2(zn) R—i1-1
= - . C.2
azi,n Zin ( )
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Appendix C. Derivation of the potential functions associated the UPPNMM algorithm

C.2 Derivation of the potential functions associated with the endmem-

ber matrix
Similarly, the potential energy (1.63) can be rewritten
V(img.) = Vi(te) + Va(zn) (C.3)

with t, = Ang,; + diag (b) [(ATm&:) ® (ATm&:)] and

ye. — tel?
Vl(tg) = /0
203
[y . — my,|?
Vo(myg,) = ol

The partial derivatives of the potential energy (1.63) can be obtained using the chain rule

aV(mg’;) _ 8V1(t4) Oty 8V2(mg,:)

Oomy,. Oty Omy,. omy
and
Vilte) _ (ye.—td)"
atg J?
ot .
amZ = AT 4+ 2diag(b) [(ATm,.1%) © AT]
aVQ(mZ,:) _ (ml,: - Iﬁé,:)T
omy,. 52
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Appendix D

On the linear mapping between latent

variables and abundances

Consider a hyperspectral data set composed of R nonlinearly mixed endmembers. In the noise-free case, we assume

that each observed pixel y,, can be expressed as
y = Wola], (D.1)
where Wy an L x D matrix such that rank(Wy) = D, D = R(R+ 1)/2 and 4 [-] is defined by
P: RE 5 RP
a »—H/}[a]:[al,...,aR7a1a2...7aR,1aR]T, (D.2)

as in (2.6). The R x 1 vector a contains the abundances of the R components and satisfies the following positivity

and sum-to one constraints
R

Y a,=1, a, >0,¥r€{l,...,R}. (D.3)

r=1

In particular, the abundance vectors belong to the following set

R
P{a’Zarl} (D.4)

We want to show the following statement
(FW e My p(R),Va e P,3x € P, Wotp [a] = We [z]) = (FV e Mrr(R),YVa € P,z =Va). (D.5)

In other words, if we can a matrix W such that y = Wb [z] for all the pixels of the observed image, there is
necessarily a linear relation between the variables & and the abundances a of interest. This demonstration is

decomposed into three main steps
1. First, we will show that dim(span(y)) = D, where Fy = span(y).
2. Second, we will show that rank(W) = rank(Wy) = D.

3. Third, we will conclude that 3V € Mg g (R),Va € P,x = Va
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Appendix D. On the linear mapping between latent variables and abundances

D.1 Dimension of the subspace spanned by y

Consider the set of monomials

R-1 orR rR_1 R
fo = (1—ZaT> [Haﬁr] vre{1,...R},6, €{0,1},1<> 4§, <2 (D.6)
r=1 r=1 r=1

which consists of the elements of 1 [a] when a € P and F, the space spanned by the elements of f,, i.e.,
Fo =span (fa) . (D.7)

We first want to show that dim(F,) = D, i.e., that f, is a basis of F,. Note that it is straightforward to see that
dim(Fy,) < card(fq) = D.

Consider the set

R-1
* Or
g=91Ia
r=1

which is a basis of the (R — 1)-variate polynomials (in a\g) such that Zf;ll 0, < 4. In other words, the elements

R—1
Vre{l,...R—l},éT6{0,1,2,3,4},0§Z(STSZL} (D.8)
r=1

of g% are linearly independent. In particular, the elements of

R—-1

67‘

g9a=14 11
r=1

are linearly independent, and thus form a basis of the subspace G, = span (g,) which consists of the (R — 1)-variate

R—1
Vre{1,...R—1},6re{071,2},0§26T§2} (D.9)
r=1

polynomials such that Zf:_f dr < 2. It can be easily shown that dim(G,) = D. To prove that f, is a basis of Fy,
we will show that F, = G,. We first prove that each basis element of g, belongs to Fj.

R—1
1 = H al € Gq
r=1
R—1 0 rr-1
= (1 -> ar> [H | € F,. (D.10)
r=1 r=1
R—1
a, = a;,,l, a? S Ga
i=1,i#r
R-1 0 R—1
= <1— ar> ar | [] | € Fa, Vre{l,...,R—-1}. (D.11)
r=1 i=1,i%#r
R—1
a;a; = a}a} H a. € Gq
r=1,r#i,r#j
R—1 0 R-1
- (1—Za,.> ala} Il | €Fa, Vije{l,...R-1},i#j. (D.12)
r=1 r=1,r#i,r#j
R—1
az = a? H a,? (S Ga
i=1,ir
R—1 R—1
= a, —a, <1— Zai> — Z ara; € Fg, Vre{l,...,R—1}. (D.13)
i=1 i=1,ir
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Appendix D. On the linear mapping between latent variables and abundances

Finally, we obtain g, C Fg, i.e., G4 C F, and
D =dim(G,) < dim(F,) < D (D.14)

which leads to dim(F,) = D and shows that f, is a basis of Fy,. Since rank(Wy) = D and dim(Fy,) = D, we obtain
dim(Fy) = D where Fy, = span (y)

D.2 Existence and rank of W

The existence of the matrix W in (D.5) is straightforward. For W = Wy, = Ira is a solution of Wy [a] =
W1 [z]. In the previous paragraph, we have shown that dim(Fy) = D if rank(Wy) = D since dim(Fg) = D. Let
W be an L x D matrix such that

Va € P,3x € P, Wy [a] = W [z]. (D.15)

Using the results of the previous paragraph, we obtain dim(F,) = D, where F, = span (f) and

R-1 Or FR—1 R
fz= (1—2;1:1") [Hxﬁr] |VrE{l,...R},(STG{O,l},lSZ&«§2 . (D.16)
r=1 r=1 r=1

Thus, since dim(Fy) = D, we obtain rank(W) = rank(Wy) = D and F, = span(W) = span(Wy).

D.3 Relation between a and x

The columns of Wy and W span the same subspace (Fy). Consequently, there exists an D x D invertible matrix
T € GLp(R) such that Wy = WT, i.e.,

IT € GLp(R)Wa € P,3x € P,y [a] = T o) [x], (D.17)

which means that F, = F,. The aim of this paragraph is to find all the basis of F, that can be expressed as
R-1 or rR_1 R
fo= (1—Zxr> [Ha;é] vre{1,...R},6, € {0,1},1<> 4§, <2 (D.18)
r=1 r=1 r=1

where x € P.
Consider @ € P and « = [z1,...,2r] € P such that span(vy,) = F,. Forr = 1,... (R —1), &, € Fg = Ga.

Consequently, z,. can be decomposed onto the basis g4 as follows

D [R—l 5

Haﬁ], r=1,...,(R—1) (D.19)

where

Vd=1,....D,0< Y 48" <2 (D.20)
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and {v.4},_; p are the coefficients of the decomposition of x, onto gq. Moreover, for r,7/(r # 1)

D R-1 ) D Rl ()
TpLpr = Z%"d H a;"" Z%-',d H a;" € span(g)). (D.21)
d=1 i=1

d=1 i=1

However, if fyqtents 18 @ basis of F,, then z,x,. € Fy, i.e.,

LplLys = ZW(M d [H a; o ] (D.22)

where {y(.r).a}t,_, , are the coefficients of the decomposition of .z, onto ga-

Assume there exists 79 € 1,...,(R—1) and dy € 1,..., D such that
D —
6(T0)
x’r() :ZPY’I‘U,CI [Ha ‘|
d=1

Z o) = 2. (D.23)

Then, for r # ro, x, must be a constant to ensure that x,,z, € Fy, which is impossible since 1 already belongs to

F,. Consequently,

Tr = 0 + Z Yr,iGi
R R—1
= o0 Z ar + Z Vr,i Qi
R-1
= Z%rF’Yro az""YrOaR
=1
= via r=1,...,(R-1) (D.24)
where v, = [Vr1 + Y05« - s Y. R—1 + Vr0, V0]~ is an (R — 1) x 1 vector. Straightforward computations lead to
x = Va, (D.25)
where
V-
V = (D.26)
1E —1p V™
and V™ = [vy,...,vg_1]T is an (R — 1) x R matrix.

D.4 Scenario where rank(W;) < D

In the previous paragraphs, we have shown that if rank(Wy) = D, then Fy = span(W) = span(W)). Conversely,
if rank(Wy) < D, then Fy = span(Wy) C span(W), i.e., there still exists a matrix T such that Wy = W'T but the

matrix T is not necessarily invertible. In that case, the latent variables are not necessarily linear transformations
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of the abundances of interest. For instance, consider the scenario of R = 3 linear mixed pixels, i.e., Wy =

[my, my, mg, 0y, 3] (D =6). If we set

2
a = x1+x7
ay = T2 — x%
as = X3, (D27)

we obtain

3
y = E mga,
r=1

= mz + mezy + mzxz + (M —my) z%
= myz +mors + mgxs + (Mg —mg) (1 — ToT3 — T123)
= (2m; —my)z; + mexy + m3x3 — (M — my) 2or3 — (N — M) 123

= Wu¢z]. (D.28)

where W = [2m; — my, my, m3, 0, my — m;my — m,] Finally, (W, &) where « is defined in (D.27) is a solution
of Wy [a] = W1 [x] but the latent variables in @ are not linear combinations of the abundances of interest.
In practice, we want to apply nonlinear unmixing procedure to hyperspectral images where nonlinearities occur.
Consequently the rank of the matrix Wy will often be close to D. However, if Wy is ill-conditioned, the prior
distribution for the latent variables, which enforces spectrally close pixels to have close latent variables in (2.19),

will also enforce linear relations between abundances and latent variables.
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Appendix E

Structured covariance matrices of (Gaussian

prior for correlated Gaussian processes

Eq. (2.10) can be rewritten
ye, = ¥Yowete, (=1,...,L (E.1)

where ¥, = [tp,(1),..., 2, (N)]" is an N x D matrix and e, is an N x 1 noise vector such that e, ~ N (On,0?Iy)

yielding

y = (Ib®%,)w+eé (E.2)

where w = [wi,..., wl|T T nr

isan LD x 1 vector, y = [y{:7 e 7yg:]T andé=ley. ,...,ep, are NL x 1 vectors,
e~N (ONL, leNL) and ® denotes the Kronecker product. For ease of marginalization of (2.13), a Gaussian prior
is usually assigned for w (Lawrence, 2003). Using centered data, it makes sense to assign a zero-mean prior for w.

Introducing correlation through structured covariance matrix yields the following Gaussian prior for w
VVNN(OLD,(I’(X)F) (E.3)

where ® (resp. I') is an L x L (resp. a D x D) covariance matrix that reflects the correlation between the rows
(resp. the columns) of W. More precisely, the covariance matrix I' reflects the prior correlations between the
spectra whereas ® reflects prior correlations between the L spectral bands. It makes sense to consider correlations
between spectra since the interaction spectrum between the components ¢ and j is likely to be related to the spectra
of the components i and j. Consequently, I' is assumed to be a non-diagonal matrix. Similarly, since the reflectances
observed at spectrally close bands are highly related, it seems reasonable to assume that W is not diagonal. Let
assume that I' and ® are symmetric matrices with no particular block structure. Marginalizing out w leads to the

following marginalized likelihood
FG19..T.2.0%) = [ F(F1%. .. T @.0%)] (%) dw
1
x |X| 2 exp {—QyTr—ly} (E.4)

where ¥ = ® @ (¥,I'®T) + 021y, is an NL x NL covariance matrix.
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Appendix F

Partial derivatives of the log-posterior
distribution of the LL-GPLVM

The joint log-posterior distribution is given by (up to an additive constant)
T
L,(U,X\g,0%,s%) = L - %tf [((IN - ALLE)X\TRB) (((IN - ALLE)X\TRB) }

on the admissible set for U, X\ g, 0%, 5% where B = [Ig_1,1_1] is an (R — 1) x R matrix and the log-likelihood £
is

NL L 1 ST
L=——"In(2m) - 5 In(|Z]) - Strace(X YY)

with Y =Y — PCT and ¥ = s2CCT + ¢%Iy. The partial derivatives of £ with respect to the covariance matrix
Y is given by

oL Lot 1o iorgpt

— = —=X “XTYYX T

s 2 T3
The partial derivative of £ with respect to the covariance matrix Y is given by

% — 7271YT
oY '
Using the classical chain rules, we obtain

Y oL
@ trace (82}00 >

8—£ = trace a—ﬁ
do2 ox

% = 2¢? (gg) c+x'y’p
which leads to
8‘?1% = 247 (gg) cu? + zlyTpu”
% = 2507 <g§) C+olx'yTp
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The partial derivatives of the log-likelihood w.r.t. to X\ are obtained using

oL ( oL )T o (n)
8$7',n N 61#;5(”) axr,n

Finally, the partial derivatives of the log-posterior w.r.t. to X\ are given by

, r=1,...,R—1,n=1,...,N.

oL oc
P = X7 (v - Afie) (v = Avee)" XT;BB.
\R R
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Appendix G

Fisher information matrix associated with

the supervised unmixing problem using the
PPNMM

The likelihood function of y can be expressed as

1 3 — o (Ma) |2
st = (i) o (-P3E)

where g (Ma) = Ma + b(Ma) ® (Ma). The corresponding log-likelihood P can be written

L —g(Ma)|?
P =1n f(y|a,b,o?) = —iln(Qwaz) — w.

The partial derivatives of P with respect to the model parameters are

oP 1 B r 0g (Ma)
87a,n = 952 [y — g (Ma)] da,

or 1 r 9g (Ma)

or L | |ly-g(Ma)|?

o2 202 204

Straightforward computations lead to

2 2
g P _ g 0P
aa,ﬁaj aajaai
_ 1 (0g(Ma)\" dg(Ma)
- 202 aai 8aj
02P P
- [8@1-(%} = F {81)8(11}
_ 1 (9g(Ma)\" dg(Ma)
202 da; ob
g [®P] _ 1 (9g(Ma)\" 0g(Ma)
»?b| — 20? b ab
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where
% =m, + 20(Ma) © m,
a
0g (Ma
ey (8b )~ (Ma)® (Ma)
It can be easily shown that
0?P %P
= [8ai5‘02_ = F [8028(12-] =0
g|PP] _ _g[OP]_
obda?| 0c20b|
%P ] L
B {azgz_ = 9t
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Appendix H

Alternative interpretation of the proposed

RCA model

We consider a set of N observed pixel spectra y, = [yn1,--.,ynz]T,n € {1,..., N} where L is the number of
spectral bands. Each of these spectra is defined as a linear combination of R known endmembers m,., contaminated

by additional polynomials of the endmember spectra and additive noise

R R R—-1 R
Yn = Z QrnMy + Z'Yr,r,nmr Om, + Z Z ’Yi,j,n\/imi Om; +e,
r=1 r=1 i=1 j=i+1
= Ma,+Qvy,+e,, n=1...,N (H.1)

where m, is the spectrum of the rth material present in the scene, a,, is its corresponding proportion in the
nth pixel and e, is an additive independently and non identically distributed zero-mean Gaussian noise sequence
with diagonal covariance matrix ¥y = diag (0?), denoted as e, ~ N (01, %), where 0 = [0f,...,07]7. The
parameters 7, , control the amplitude of the nonlinear terms m, ©® m, that model the double reflections involving
only one material and the parameters v; ;,, tune the amplitudes of the interactions between different endmembers.
These parameters are gathered in the vector v,, = [Y1,1,n, s YR.Rons V1,2.ms - - - s YR—1,R,n) . Of size R(R +1)/2 x 1.
Moreover, Q = [m; ®my, ..., mr ©®mg,v2m; ®my,...,v/2mp_; ©mg| is an L x R(R+ 1)/2 matrix (as defined
below (4.5.1)). The model (H.1) reduces to the bilinear models (Fan et al., 2009; Halimi et al., 2011a; Nascimento
and Bioucas-Dias, 2009) when the coefficients ~, ,.,, are all null. Moreover, it is similar to the model introduced
by Meganem et al. (2013). Assume that the endmembers are known. The nonlinear SU problem consists then of
estimating the abundance vectors {an}nzl,...,N when the nonlinearity parameters vectors {'yn}n:h_?N are unknown.
Note that the number of unknown parameters can be very large, especially when the number of endmembers R is
large. It has been previously mentioned that the LMM is sufficient to model accurately most of the observed pixels.
Consequently, most of the nonlinearity parameters are expected to be small (or even null). It is also interesting to
mention that the columns of Q are highly correlated which complicates the estimation of the nonlinearity parameters
{¥n}n=1.. n (large estimation variance). To avoid estimating the large set of nonlinearity parameters, a simple
solution consists of assigning a prior distribution to these nuisance parameters and of marginalizing them from the
likelihood defined by the observation equation (H.1). Based on the physical considerations mentioned above, it

makes sense to assign the following zero-mean Gaussian prior

Yol2n =k, 57 ~ N (OD,siID) (H.2)
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to the nonlinearity parameter vector associated with the nth pixel, where z, € 1,..., K is a label associated with
the nth pixel (K is a given number of classes) and D = R(R +1)/2. The hyperparameter si,k = 1,..., K controls
the variance of the nonlinearity parameters associated with the pixels that belong to the kth class. The K classes
are characterized by different levels of nonlinearity. The main motivation for assigning Gaussian priors for the
nonlinearity parameter vectors is that it allows these nuisance to be marginalized, as will be shown in the sequel.
Using (H.1) and the noise statistical properties, the likelihood of the nth observed pixel y,, can be expressed as
follows

(yn —Ma, — Q7n)Tzal(Y7L — Ma,, — Q7n)
2

F(9nIM, @y 0®) o [~ 2 exp [— (11.3)

Assume now that the nth pixel belongs to the kth class (k =1,..., K). Marginalizing -,, consists of computing
f(ynlM, a'mo'Q» zn =k, 5%) = /f(yn‘Mv ana7n702)f(7n|zn =k, Si)d’Ym (H.4)

where f(v,|2n = k,s3) is defined in (H.2). In our case, the closed-form expression of this can be computed (Bishop,

1995, App. B), leading to
YoM, an, 02,2, = k, 57 ~ N (Ma,, s;QQ" + =) . (H.5)

Consider an additional class (k = 0) associated with linearly mixed pixels. If the nth pixels is linearly mixed (i.e.,

zn, = 0), Eq. (H.1) reduces to the classical LMM yielding
YH|Maa'n7‘72yzn =0~N(Ma,,3). (H.6)

Assuming independence between the observed pixels, the joint likelihood of the observation matrix Y can be

expressed as

f(YIM,A,z,5,0°%) = II_V[ f(ynIM, an, 02, 2,,8) (H.7)
o »
~ UL o s
with 3, = st Km+ 3o (k=1,...,K —1),s* = [s},...,s%]T, z = [z1,...,2n]|T and §,, = y, — Ma,,. Moreover,

T denotes the subset of pixel indexes belonging to the kth class and Kyy = QQ?. The marginalized likelihood
n (H.7) is identical to (4.18). Consequently, the proposed RCA-based model can be considered using (4.1) where
the nonlinearity vectors ¢,, have been marginalized or using (H.1) where the nonlinearity parameters {’Yn}n:1,...7 N
have been marginalized. If the first interpretation has been preferred in the main body of Chapter 4 for its ease of
understanding, the second interpretation provided in this Appendix is more rigorous in the sense that the densities
involved in the derivation of the marginalized likelihood (H.7) are well defined. Conversely, the prior distributions
in (4.11) can be degenerated since the rank of Ky is equal to the rank of Q (i.e., rank(Kng) = R(R 4 1)/2) which

is often smaller than the number of spectral bands L.
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