
HAL Id: tel-01015735
https://theses.hal.science/tel-01015735v2

Submitted on 27 Jun 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Optimization of resource allocation in small cells
networks : A green networking approach

Cengis Hasan

To cite this version:
Cengis Hasan. Optimization of resource allocation in small cells networks : A green networking
approach. Signal and Image processing. INSA de Lyon, 2013. English. �NNT : 2013ISAL0082�.
�tel-01015735v2�

https://theses.hal.science/tel-01015735v2
https://hal.archives-ouvertes.fr


Numéro d’ordre :
Année 2013

Thèse

O P T I M I Z AT I O N O F R E S O U R C E A L L O C AT I O N I N S M A L L C E L L S
N E T W O R K S

À presenter devant

L’ I N S T I T U T N AT I O N A L D E S S C I E N C E S A P P L I Q U É E S D E LY O N

pour l’obtention du

G A R D E D E D O C T E U R

École doctorale : Électronique, Électrotechnique et Automatique

Spécialité : STIC Santé

par

H A S A N C E N G I S

(Ingénieur)

Soutenue le 29 Août 2013 devant la Commission d’examen

Jury
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A B S T R A C T

The term “green networking” refers to energy-efficient networking technolo-
gies and products, while minimizing resource usage as possible. This thesis
targets the problem of resource allocation in small cells networks in a green
networking context. We develop algorithms for different paradigms. We ex-
ploit the framework of coalitional games theory and some stochastic geometric
tools as well as the crowding game model.

We first study the mobile assignment problem in broadcast transmission
where minimal total power consumption is sought. A green-aware approach
is followed in our algorithms. We examine the coalitional game aspects of the
mobile assignment problem. This game has an incentive to form grand coali-
tion where all players join to the game. By using Bondareva-Shapley theorem,
we prove that this coalitional game has a non-empty core which means that
the grand coalition is stable. Then, we examine the cost allocation policy for
different methods.

In a second part, we analyze a significant problem in green networking
called switching off base stations in case of cooperating service providers by
means of stochastic geometric and coalitional game tools. The coalitional game
herein considered is played by service providers who cooperate in switching
off base stations.

We observed the Nash stability which is a concept in hedonic coalition for-
mation games. We ask the following question: Is there any utility allocation
method which could result in a Nash-stable partition? We address this issue in
the thesis. We propose the definition of the Nash-stable core which is the set
of all possible utility allocation methods resulting in stable partitions obtained
according to Nash stability.

We finally consider games related to the association of mobiles to an access
point. The player is the mobile which has to decide to which access point to
connect. We consider the choice between two access points or more, where
the access decisions may depend on the number of mobiles connected to each
access points. We obtained new results using elementary tools from congestion
and crowding games.

Last but not least, we extend our work to cooperative transmissions. We
formulate the partner selection problem in cooperative relaying based on a
matching theoretic approach. Partner selection is described as a special stable
roommate problem where each player ranks its partners by some criterion.
We adapted Irving’s algorithm for determining the partner of each player. We
introduced a decentralized version of the Irving’s algorithm.
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R É S U M É

Le terme “réseau vert” ou pour éviter une traduction directe, “réseau propre”
repose sur la sélection de technologies et de produits réseaux économes en
énergie, et grantissant un usage minimal des ressources (radio, bande pas-
sante,...) quand cela est possible. Cette thèse vise à étudier les problèmes
d’allocation des ressources dans les petits réseaux de cellules dans un con-
texte de réseau propre. Nous développons des algorithmes pour différents
paradigmes. Nos travaux reposent principalement sur le contexte de la théorie
des jeux de coalition, mais également sur des outils de géométrie stochastique
ainsi que d’un modèle de jeu de surpeuplement.

Nous étudions tout d’abord le problème d’association de mobiles à des sta-
tions de base dans les applications de diffusion d’un flux commun, sous con-
trainte de minimisation de la consommation d’énergie totale: nos algorithmes
suivent une approche préservant l’énergie. Nous examinons le problème d’asso-
ciation des mobiles sous le prisme des jeux de coalition. Ce jeu tend à former la
grande coalition, qui se caractérise par le fait que tous les joueurs forment une
coalition unique. En utilisant le théorème de Bondareva-Shapley, nous prou-
vons que ce jeu de coalition a un noyau non vide ce qui signifie que la grande
coalition est stable. Ensuite, nous examinons la politique de répartition des
coûts pour différentes méthodes.

Dans une deuxième partie, nous analysons un problème important dans les
réseaux propres qui consiste à étteindre les stations de base qui ne sont pas
indispensables. Nous abordons ce problème de facon statistique, dans le cas de
fournisseurs de services coopérant au moyen d’outils de jeux de coalition vus
sous un angle de la géométrie stochastique. Le jeu coalitionnel considéré est
joué par les fournisseurs de services qui collaborent à éteindre leurs stations
de base.

Nous avons analysé la stabilité de Nash qui est un concept utilisé pour les
jeux de coalition hédoniques. Nous posons la question suivante: Existe-t-il une
méthode de répartition de la fonction d’utilitè qui se traduit par un partition-
nement Nash-stable? Nous répondons à cette question dans la thèse. Nous dé-
montrons que le noyau Nash-stable, défini comme l’ensemble des méthodes
de répartition des couts conduisant à un partitionnement stable au sens de la
stabilité de Nash.

Nous considérons finalement les jeux liés à l’association des mobiles à un
point d’accès non plus dans le cas d’un broadcast, mais dans le cas général.
Le jeu consiste à décider à quel point d’accès un mobile doit se connecter.
Nous considérons le choix entre deux points d’accès ou plus. Les décisions
d’association dépendent du nombre de mobiles connectés à chacun des points
d’accès. Nous obtenons de nouveaux résultats en utilisant des outils élémen-
taires de jeux de congestion et déviction.

Enfin, nous nous intéressons aux transmissions coopératives. Nous étudions
le problème de la sélection de partenaires dans le cas de constitution de bi-
nomes gagnant-gagnant, ou chacun des partenaire s’appuie sur l’autre pour sa
propre transmission. Nous proposons d’assimiler la sélection des partenaires
au problème classique en théorie des jeux de recherche stable de colocataire
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où chaque joueur établi une liste de préférence parmi les partenaires possi-
bles; Nous adaptons l’algorithme de Irving pour déterminer le partenaire de
chaque joueur et nous introduisons une version décentralisée de l’algorithme
de Irving.
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1
I N T R O D U C T I O N

1.1 G R E E N N E T W O R K I N G

Cellular networks market has been growing tremendously last two decades.
The demand for cellular communication as well as the number of subscribers
imposes the mobile operators for better link quality. The introduction of smart
devices, such as tablets, smartphones, hybrid tablet-laptops, and the success
of social networking actors, boost the demand for cellular data traffic. The
following key indicators present some striking information where the cellular
trends go [1]:

• Global mobile data traffic grew 70 percent in 2012. Global mobile
data traffic reached 885 petabytes per month at the end of 2012, up
from 520 petabytes per month at the end of 2011.

• Last year’s mobile data traffic was nearly twelve times the size of
the entire global Internet in 2000. Global mobile data traffic in 2012
(885 petabytes per month) was nearly twelve times greater than the total
global Internet traffic in 2000 (75 petabytes per month).

• Mobile video traffic exceeded 50 percent for the first time in 2012.
Mobile video traffic was 51 percent of traffic by the end of 2012.

Predictions about 2017 are interesting, as well

• Monthly global mobile data traffic will surpass 10 exabytes in 2017.

• The number of mobile-connected devices will exceed the world’s popu-
lation in 2013.

• The average mobile connection speed will surpass 1 Mbps in 2014.

• Due to increased usage on smartphones, handsets will exceed 50 percent
of mobile data traffic in 2013.

• Monthly mobile tablet traffic will surpass 1 exabyte per month in 2017.

• Tablets will exceed 10 percent of global mobile data traffic in 2015.

All these observations imply that the energy expenditure due to the wireless
devices is also expected to grow significantly. There are currently more than 4
million base stations (BSs) serving mobile users, each consuming an average
of 25 MWh per year [3].

The term “green networking” is described in [2] as

the practice of selecting energy-efficient networking technologies and
products, and minimizing resource use whenever possible.

1
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2 I N T R O D U C T I O N

It covers all dimensions of the network such as personal computers, peripher-
als, switches, routers, etc. Having a green network may allow to reduce CO2

emissions and thus will help mitigating the global warming [4]. However, hav-
ing a significant impact on the overall energy consumption call for improving
the energy efficiency of all network components.

With a growing awareness to the dangers related to large scale energy con-
sumption and drafting of many international agreements as well as legislation
have reduced energy consumption in several sectors [5]. There is also a grow-
ing willingness to reduce energy consumption in wireless networks. On the
one hand, wireless communication infrastructures, like the ones managed by
mobile network operators, are a major contributor to the ever-increasing en-
ergy consumption of the ICT industry, which calls for the adoption of energy-
efficient solutions in their design and operation. Moreover, the recent explo-
sive growth of smartphones market adoption and the consequent mobile inter-
net traffic requirements have prompted waves of research and standard devel-
opment activities to meet the expected future demands in an energy-efficient
manner. On the other hand, wireless networks will also be a major component
of the communication infrastructure required by other “green” solutions for
the efficient management of energy, since they enable practices like telecom-
muting (e.g., traffic reduction) and remote administration (e.g., the Smart En-
ergy Grid), which are expected to significantly help reduce the environmental
footprint of many human activities.

1.2 S M A L L C E L L S N E T W O R K S

A heterogeneous cellular network includes a hierarchy of the following base
station types [7]:

• Tower-mounted traditional macro base stations: Expensive (over $100K,
plus high OpEx), 40W Tx Power plus high gain antenna, medium to long-
range (1-10 km), fast dedicated backhaul, crucial for universal basic cov-
erage and mobility support.

• Picocells: Small, short-range (nearly 100m), 1-2W, low-cost ($5-40K
CapEx, small OpEx), deployed, maintained and backhauled (X2 inter-
face, usually fiber or wireless) by service provider; typically targeting
traffic “hotspots” or dense areas.

• Femtocells: Wi-Fi-esque range, power (100-200mW), cost ($100), and
backhaul (IP, e.g. DSL, coax). Licensed spectrum, cellular protocols, must
interoperate with cellular network with minimal coordination.

That is the reality in today’s deployment of cellular networks. In dense urban
centers, the rise of bandwidth demand per surface unit yields a shrink of the
cell’s coverage area and therefore increases the number of cells sites, with
straight consequences on the complexity of distributed collaboration and on
network scalability issues.

Energy consumption and electromagnetic pollution are main societal and
economical challenges that developed countries have to tackle. The evolution
of future communication infrastructures will be very concerned about these
aspects. The energetic crisis has modified the trade-off between economical
variables of the networks for telecommunication operators, public institutions
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1.2 S M A L L C E L L S N E T W O R K S 3

or corporate companies, which include the energetic consumption in the re-
current exploitation cost (weighted by the local cost of electricity KWh). The
importance of the concept of small cells networks (in short SCN) arise in that
context.

A typical small cell’s (femto, pico, or micro cell environment) coverage area
is possible to range from a few meters to hundreds of meters. Small cells have
an important role in orchestrating a cellular network that can overcome the
mobile traffic. The cell size reduction offers theoretically higher capacity and
energy efficiency, but this reduction increases the complexity of all the opera-
tor tasks: cell planning, site acquisition, parameters configuration and tuning.

1.2.1 Benefits of Small Cell Networks

As density of mini bases stations increases, classical off-line planning tech-
niques based on frequency, space reuse, power control and antenna tilting are
not able to cope with interference due the increasing number of equipments.
The SCN concept gets rid of this 3D propagation model planning. Instead of
this planning, SCN takes benefit of the high number of interacting devices to
increase the spectral efficiency frontier. In fact, a higher number of devices of-
fer more opportunities to schedule information transmission efficiently with a
consequent enhancement of the global throughput or equivalently, a reduction
of the necessary resources (power, frequency band, etc.).

Existing cellular networks like GSM and WiMAX are designed to cater to
large coverage areas, which do not achieve the expected throughput to ensure
seamless mobile broadband in the up-link, as one moves farther away from the
BS. This is due to an increase in the Inter-cell interference (ICI) as well as con-
straints on the transmit power of the mobiles. Another limitation of the macro
cell approach is the poor indoor penetration. But, for a given radio architec-
ture, efficient frequency reuse by dividing a large (macro) cell into number of
small (pico) cells is one of the most effective ways to increase system capacity
[8]. While improving the overall throughput achievable in the macro cell, this
also brings down deployment costs. In addition, the capability of macro cell is
intrinsically limited in an urban environment:

• Path loss in distance attenuation in cities will not change: this will cost
energy and lead to high power RF emission (for long range);

• Each 3dB saving means to double the number of antenna;

• Real estate new BTS sites renting and building will be more and more
difficult. The today cellular operators assets is mainly made of these sites
themselves (and not the installed equipment).

The conventional frequency reuse schemes are not efficient in terms of power
and frequency band consumption to deal with the increased level of interfer-
ence from adjacent cells when their size and density increase. In addition, SCN
are characterized by an advanced level of distributed control functions which
enhance their self-organizing and self-healing capabilities. In this context, a
paradigm shift is required: the new cellular networks need to allocate dynam-
ically resources from a common pool while maintaining decentralized control
functions, high level of efficiency in the use of the resources, and an acceptable
level of signalling (refer [8, 9, 10, 11] for more details).
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4 I N T R O D U C T I O N

1.3 T H E S I S O V E RV I E W

Chapter 4: We study the mobile assignment problem in broadcast transmis-
sion where minimal total power consumption is sought. A green-aware ap-
proach is followed in our algorithms. A centralized recursive algorithm called
the hold minimum is suggested to find optimal assignments. Knowing the NP-
hard complexity of the mobile assignment problem, we propose a centralized
polynomial-time heuristic algorithm called the column control which is very
efficient, and produces near-optimal solutions when the operational power
costs of base stations are taken into account. We also develop the distributed
column control algorithm. For the fast-moving users, we propose the nearest
base station algorithm which is distributed, gives near-optimal solutions, and
has polynomial-time complexity. Based on our achievements in Section 2.3.4
and as a novel group formation game, we develop hedonic decision algorithm.
Simulation results were used to verify the performance of the algorithms. Fur-
thermore, we simulate the proposed algorithms in the Poisson point process
deployment model of nodes over an area.

Chapter 5: We examine the coalitional game aspects of the mobile assign-
ment problem. This game has an incentive to form grand coalition where all
players join to the game. By using Bondareva-Shapley theorem, we prove that
this coalitional game has a non-empty core which means that grand coalition
is stable. Then, we examine the cost allocation policy for different methods
such as egalitarian allocation, proportional repartition of total cost, the Shap-
ley value and the nucleolus. We also conclude that if the nucleolus is used as
the cost allocation algorithm, the players maintain the grand coalition satisfy-
ing the minimization of total cost for broadcast transmission.

Chapter 6 and ??: We analyze a significant problem in green networking
called switching off base stations in case of cooperating service providers by
means of stochastic geometric and coalitional game tools. The coalitional game
herein considered is played by service providers who cooperate in switching
off base stations. When they cooperate, any mobile is associated to the nearest
BS of any service provider. Given a Poisson point process deployment model of
nodes over an area and switching off base stations with some probability, it is
proved that the distribution of signal to interference plus noise ratio remains
unchanged while the transmission power is increased up to preserving the
quality of service. The coalitional game behavior of a typical player is called
to be hedonic if the gain of any player depends solely on the members of the
coalition to which the player belongs, thus, the coalitions form as a result of
the preferences of the players over their possible coalitions’ set.

Chapter ??: We consider games related to the association of mobiles to an
access point. It consists of deciding to which access point to connect. We con-
sider the choice between two access points or more, where the access decisions
may depend on the number of mobiles connected to each one of the access
points. We obtain new results using elementary tools in congestion and in
crowding games.

Chapter 9: A matching theoretic approach to study the partner selection in
cooperative relaying is followed. Partner selection is considered as a special sta-
ble roommate problem where each player ranks its partners by some criterion.
Each agent aims here at finding a “good” partner in order to exploit efficiently
the spatial diversity achieved with cooperation. We adapt Irving’s algorithm for
determining the partners of each player. The ranking criterion here is chosen
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1.3 T H E S I S O V E RV I E W 5

to be outage probability such that each player comprises its own preference list
according to outage probability from the lowest to the highest. The first player
in the preference list provides the lowest outage probability. We introduce a
decentralized version of Irving’s algorithm. Then, we compare the results ob-
tained by stable-matching with the global optimum and random selection re-
sults. From the computational results, we observe that stable-matching results
are near to global optimum as well as superior than random selection in terms
of average outage probability.
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2
G A M E T H E O R E T I C T O O L S

2.1 C O A L I T I O N A L G A M E S

We represent a coalitional game in utility function form as

Definition 2.1.1 〈N , u〉 where N = (1,2, . . . n) is a non-empty finite set of play-
ers who consider different cooperation possibilities, and u : 2N →ℜ is the utility
function. Each subset S ⊂ N is referred to as a crisp coalition. The set N is called
the grand coalition and ; is called the empty coalition where u(;) = 0. We denote
the collection of coalitions, i.e. the set of all subsets of N by 2N .

These games are usually called coalitional games with transferable utility (TU
games, for short) where its members can jointly guarantee themselves and
which can be transferred without loss between them [22].

In TU games, it is supposed that the utility is freely transferable from one
player to another. This is, in particular, possible in the presence of “ideal money”,
i.e. commodity whose utility is directly proportional to quantity, and indepen-
dent of any other assets, which a player may have. In general, unfortunately,
the situation is not so simple–players’ utility for money may be not linear, it
may depend on other assets of players, or, in some cases, side payments may
even be forbidden. In such situations it is better to represent each coalition’s
possibilities not by a single number, but rather by a set of all payoff vectors,
which the coalition can obtain for its members. We then speak about coalition
games with nontransferable utility (NTU games, for short) which is also called
as games without side payments. [22]. An NTU game is defined as

Definition 2.1.2 Given the set of players N and V which is a mapping of a set
of feasible utility vectors, a subset V (S) of ℜS to each coalition of players, S ⊆ N,
such that V (;) = ;, and ∀S ⊆ N, S 6= ;, the following must hold in order that
(N , V ) to be an NTU-game:

1. V (S) is a closed subset of ℜS

2. V (S) is comprehensive, i.e. if uS ∈ V (S) and ũS ≤ uS then ũS ∈ V (S)

3. The set of vectors in V (S) in which each player in S receives no less than
the maximum that he can obtain by himself is a nonempty, bounded set.

Further discussion about NTU games can be found in [23, 98].
In the following, we concentrate on TU games.

2.1.1 Properties of Utility Function

Let us now explain the properties of utility function.

9
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10 G A M E T H E O R E T I C T O O L S

Definition 2.1.3 Monotonicity: A utility function is said to be monotonic if it
satisfies

u(S)≥ u(T ), if T ⊆ S. (2.1)

It means that the utility increases or remains unchanged while a coalition ex-
pands.

Definition 2.1.4 Superadditivity: A utility function is said to be superadditive
if it satisfies

u(S ∪ T )≥ u(S) + u(T ), if T ∩ S = ;, ∀S, T ⊆ N . (2.2)

From the superadditivity, we infer that whenever two separate coalitions combine,
the utility is higher or equal compared to the sum while coalitions are separated.
The superadditivity property determines if the grand coalition can be reached. In
other words, all players have incentive to join the game provided that the utility
increases by combining separate coalitions in a unique coalition.

2.1.2 Utility Allocation

In this section, we mention about the sharing the total gain u to the players.
The utility of player i ∈ S is denoted by φS

i . The meaning is that what
player i gains being in coalition S. The sum of utilities in a coalition S must
be equal to the total utility which is called efficiency:

∑

i∈Sφ
S
i = u(S). The

gain vector of player i for all possible coalitions is denoted by φi ∈ ℜ2n−1
.

For example, let N = (1, 2) then φ1 =
¦

φ
(1)
1 ,φ(1,2)

1

©

. Moreover, we call as

allocation method φ ∈ ℜn2n−1
the gains of all possible coalitions of all players,

i.e., φ = {φ1,φ2, . . . ,φn}.

2.1.3 The Core

The core is the set of allocation methods that guarantee the grand coalition.
Therefore, no coalition has incentive to leave the grand coalition and receive
a larger payoff. Formally, the core is defined as following:

core=

(

φ ∈ ℜn

�

�

�

�

�

∑

i∈N

φi = u(N),
∑

i∈S

φi ≥ u(S),∀S ⊂ N

)

. (2.3)

In general, the core can be found by the following linear program:

min
φ

∑

i∈N

φi , subject to
∑

i∈N

φi = u(N) and
∑

i∈S

φi ≥ u(S),∀S ⊂ N . (2.4)

Provided that the above linear program is feasible, then the core is said to be
non-empty [20].

2.1.4 Coalition Formation Games

In some cases acting together may be difficult, costly or illegal, or the players
may for various personal reasons not wish to do so [21]. Then, the question
arises: how the coalitions does have to be formed in order that the players do
not deviate from?
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2.1 C O A L I T I O N A L G A M E S 11

A coalition formation game is given by a pair 〈N ,�〉, where �= (�1,�2

, . . . ,�n) denotes the preference profile, specifying for each player i ∈ N his
preference relation �i , i.e. a reflexive, complete and transitive binary relation.

Definition 2.1.5 A coalition structure or a coalition partition is defined as the
set Π = {S1, . . . , Sl} which partitions the players set N, i.e., ∀k, Sk ∈ N are
disjoint coalitions such that

⋃l
k=1 Sk = N. Given Π and i, let SΠ(i) denote the set

Sk ∈ Π such that i ∈ Sk [18].

We may think of situations where a player evaluates a coalition partition as
a whole, but generally it is more realistic when a player only formulates its
preferences according to its own utilities. Such coalition formation games are
called hedonic. In [21], Drèze and Greenberg introduced the hedonic aspect
in players’ preferences in a context concerning local public goods. Moreover,
purely hedonic games and stability of hedonic coalition partitions were studied
by Bogomolnaia and Jackson in [18].

2.1.5 Hedonic Coalition Formation

A coalition formation game is classified as hedonic if [18]

1. The gain of any player depends solely on the members of the coalition to
which the player belongs.

2. The coalitions form as a result of the preferences of the players over their
possible coalitions’ set.

Definition 2.1.6 Nash Stability: A partition Π is said to be Nash stable if no
player can benefit from moving from his coalition SΠ(i) to another existing coali-
tion Sk, i.e., ∀i, SΠ(i)�i Sk ∪ {i} for all Sk ∈ Π∪ {;} [18].

Nash-stable partitions are immune even to those movements of individuals
when a player who wants to change does not need permission to join an exist-
ing coalition [18].

Remark 2.1.1 In the literature ([18, 22]), the stability concepts being immune
to individual deviation are Nash stability, individual stability, contractual in-
dividual stability. Nash stability is the strongest within above. We concentrate
our analysis on the partitions that are Nash-stable. Also, core stability is used
in models where immunity to coalition deviation is required [22]. Accordingly,
the stability concepts aiming hedonic conditions can be summarized as follow-
ing [25]: a partition could be individually stable, Nash stable, core stable, strict
core stable, Pareto optimal, strong Nash stable, strict strong Nash stable. We re-
fer to [25] for further discussions concerning the stability concepts in the context
of hedonic coalition formation games.

2.1.6 Properties of Preferences

The preference relation of a player can be defined over a preference function.
Let us denote by πi : 2N →ℜ the preference function of player i. Thus, player
i prefers the coalition S to T iff,

πi(S)≥ πi(T )⇔ S �i T. (2.5)
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12 G A M E T H E O R E T I C T O O L S

If the preference relation is chosen to be the utility allocated to the player in a
coalition, then πi(S) = φS

i . Furthermore, we are able to define the preference
relation by means of a function which characterizes how a player prefers an-
other player when they share the same coalition. In the following, we define
this function. The preferences of player i is said to be additively separable if
there exists a function vi : N →ℜ such that ∀S, T ⊆ N

∑

j∈S

vi( j)≥
∑

j∈T

vi( j)⇔ S �i T, (2.6)

where we normalize by setting vi(i) = 0 [18].
A profile of additively separable preferences, represented by (vi , . . . , vn), sat-

isfies symmetry if vi( j) = v j(i),∀i, j.

2.1.7 The Existence of Nash-stable Preferences

In [18], it is proved that if players’ preferences are additively separable and
symmetric, then a Nash stable coalition partition exists. For further discussion
on additively separable and symmetric preferences, we refer to [19].

2.2 H E D O N I C C O A L I T I O N F O R M AT I O N A S A N O N -C O O P E R AT I V E G A M E

In this section, we develop a decentralized algorithm to find a Nash-stable
partition whenever one exists in a hedonic coalition formation game.

We model the problem of finding Nash stability as a non-cooperative game.
Let us denote as Σ the set of strategies. We assume that the number of strate-
gies is equal to the number of players. We choose this way because the players
that select the same strategy is interpreted as a coalition. Therefore, the to-
tal gain of the players that share the same coalition S is the utility u(S) of
the corresponding coalition. If the game possesses a Nash equilibrium, it is an
indicator of the Nash stability, as well.

We consider a random round-robin fashion where each player determines
its strategy in its turn according to a scheduler which is randomly generated
for each round. A scheduler in round ` is denoted as t(`) =

�

t(`)1 , t(`)2 , . . . , t(`)n

�

where t(`)k is the player in kth turn. Clearly, first player in t(`) takes first turn and
the remaining players follow the preceding player according to the scheduler.
Note that a scheduler is a random permutation of the set of players N .

A strategy tuple in step s is denoted asσ(s) =
¦

σ
(s)
1 ,σ(s)2 , . . . ,σ(s)n

©

, whereσ(s)i
is the strategy of player i in step s. The relation between a step and a round can
be given by s = n(`−1)+k which means that in step s, player t(`)k takes its turn.
In each step, only one dimension is changed in σ(s). We further denote as Π(`)s

the partition in step s and round `. Define as S(s)i =
¦

j : σ(s)i = σ
(s)
j ,∀ j ∈ N

©

the set of players that share the same strategy with player i. Thus, note that
∪i∈N S(s)i = N for each step. The preference function of player i can be shown
as πi

�

σ(s)
�

which implies the following:

πi

�

σ(s)
�

≥ πi

�

σ(s−1)
�

⇔ S(s)i �i S(s−1)
i , (2.7)

where note that player i takes its turn in step s. Any sequence of strategy-
tuple in which each strategy-tuple differs from the preceding one in only one
coordinate is called a path [80], and a unique deviator in each step strictly in-
creases the utility he receives is an improvement path. Obviously, any maximal
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improvement path which is an improvement path that can not be extended is
terminated by stability. Therefore,

if a hedonic coalition formation game admits a maximal improve-
ment path, it always possesses a Nash-stable partition.

If there exists an infinite improvement path, then a cycle is found, which leads to
an infinite loop. Such an improvement path indicates that the game considered
does not possess a Nash-stable partition.

An algorithm for hedonic coalition formation can be given as in Algorithm
1.

Algorithm 1 Nash stability establisher

set stability flag to zero
while stability flag is zero do

generate a scheduler
according to the scheduler, each player chooses its strategy
check improvement path
if there exists an infinite imporevement path then

there is no stability
break while

else
check stability

end if
end while

Lemma 2.2.1 The proposed Algorithm 1 (Nash stability establisher) always con-
verges to a stable partition whenever there exists one.

Proof 2.2.1 A non-cooperative game is classified as weakly acyclic if every strategy-
tuple is connected to some pure-strategy Nash equilibrium by a best-reply path.
Weakly acyclic games have the property that if the order of deviators is decided
more-or-less randomly, and if players do not deviate simultaneously, then a best-
reply path almost surely reaches an equilibrium [80]. Therefore, a hedonic coali-
tion formation game can be directly considered as a weakly acyclic game whenever
a random round-robin scheduler is used.

Let us denote as Π0 the initial partition where each player is alone. It corre-
sponds to the case where each player chooses different strategy; thus each player
is alone in its strategy: S(0)i = i,∀i ∈ N. Since in each round the algorithm gener-
ates different schedulers, there must be a scheduler in which a finite improvement
path exists whenever the game possesses a Nash-stable partition. The transforma-
tion of strategy tuple and partition in each step can be denoted as following,
respectively:

Π0→ Π
(1)
1 → Π

(1)
2 → . . .→ Π(1)n → Π

(2)
n+1→ . . .→ Π(`

∗)
s∗ , (2.8)

σ(0)→ σ(1)→ . . .→ σ(s
∗), (2.9)

where `∗ and s∗ represent the round and the step, respectively in which the stable
partition occurs. Note that during the steps s∗+1, s∗+2, . . . , s∗+n−1 the strategy
tuple and the partition do not change.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0082/these.pdf 
© [C. Hasan], [2013], INSA de Lyon, tous droits réservés



14 G A M E T H E O R E T I C T O O L S

2.3 T H E N A S H -S TA B L E C O R E

This section presents a new approach to obtain preference profiles that give
Nash-stable partitions. We develop a rule ensuring that such utility allocation
method always produces a Nash-stable partition.

We denote as 〈N , u,�〉 the hedonic TU game (since u is transferable to the
players, we consider hedonic coalition formation games based on transferable
utility). Let us assume that the preference function of player i is the gain ob-
tained in the corresponding coalition, i.e., πi(S) = φS

i . Define the operator
F : S � 7→ P ∪;, whereS� andP are the set of all possible preference profiles
and partitions, respectively. Clearly, for any preference profile �, the operator
F finds the Nash-stable partition Π, i.e. F(�) := Π. If a Nash-stable partition
can not be found, the operator maps to empty set. Moreover, the inverse of
the operator is denoted as F−1(Π ∈ P ) which finds the set of all possible pref-
erences S Π� that gives the Nash-stable partition Π. Thus, the Nash-stable core
includes all those efficient allocation methods that build the following set:

N -core=
�

φ ∈ ℜ|φ|
�

�

�F−1
�

Πφ ∈ P
�

:= S Πφ�
©

, (2.10)

where Πφ is the preference profile occurring due to φ.

2.3.1 Non-emptiness of the Nash-stable Core

We consider the preference relation which evaluates the possible coalitions of
a player according to its utility gained in the corresponding coalition. We ask
the question: Is there any utility allocation method which results in a Nash-stable
partition?

Theorem 2.3.1 The Nash-stable core can be non-empty.

Proof 2.3.1 Algorithmically, for any partition Π ∈ P , if the following linear
program is feasible, then the Nash-stable core is non-empty.

min
φ∈ℜ|φ|

¨

∑

∀S∈2N

∑

∀i∈S

φS
i

�

�

�

�

�

φ
SΠ(i)
i ≥ φT

i ,∀T ∈ Π∪ ;,∀i ∈ N and

∑

j∈S

φS
j = u(S),∀S ∈ 2N

«

, (2.11)

where |φ| = n(2n−1 − 1) as well as we denote as CΠ := {φSΠ(i)
i ≥ φT

i ,∀T ∈
Π ∪ ;,∀i ∈ N} the set of constraints arising due to partition Π. Combining all
possible constraint sets provides the sufficient condition of the non-emptiness of
Nash-stable core:

N -core= min
φ∈ℜ|φ|

¨

∑

∀S∈2N

∑

∀i∈S

φS
i

�

�

�

�

�

⋃

Π∈P
CΠ and

∑

j∈S

φS
j = u(S),∀S ∈ 2N

«

, (2.12)

where
⋃

Π∈P CΠ is the union of all possible constraint sets. Note that it is a non-
trivial problem as well as the union could result in a non-convex set.
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2.3.2 Special Case: Grand Coalition as a Nash-stable Partition

We ask the following question: what is the condition of existence of the grand
coalition as a Nash-stable partition? Let Π = {N}, then the following must
hold

φN
i ≤ u(i),∀i ∈ N , (2.13)
∑

i∈N

φN
i = u(N). (2.14)

These two conditions result in the following:

u(N)≥
∑

i∈N

u(i). (2.15)

Those cooperative TU games that satisfy this condition is said to be essential.

2.3.3 Symmetric Relative Gain

Let us consider the case where the gain of player i in coalition S is denoted as
φS

i = u(i)+δS
i in which δS

i is called as the relative gain. Note that when player
i is alone, then δi

i = 0. Thus, the preference relation can be determined over
the relative gain:

δS
i ≥ δ

T
i ⇔ S �i T. (2.16)

The total allocated utilities in coalition S is
∑

i∈Sφ
S
i =

∑

i∈S u(i) +
∑

i∈S δ
S
i =

u(S). Therefore,
∑

i∈S δ
S
i = u(S)−

∑

i∈S u(i) = ∆(S), where ∆(S) is the clus-
tering profit due to coalition S. Let us assume that the relative gain is equal to
the equally divided clustering profit in a coalition, i.e.

δS
i =
∆(S)
|S|

, ∀i ∈ S. (2.17)

This choice means that each player in coalition S has the same gain; thus the
effect of coalition S is identical to the players within it.

Corollary 2.3.1 Equivalent Evaluation: Assume that S ∩ T 6= ;. Due to eq.
(2.17), the following must hold

∆(S)
|S|

≥
∆(T )
|T |

⇔ S �i T ∀i ∈ S ∩ T. (2.18)

It means that all players in S ∩ T prefer coalition S to T whenever the relative
gain in S is higher than T.

Lemma 2.3.1 There is always a Nash-stable partition when N = {1,2} in case
of symmetric relative gain.

Proof 2.3.2 Let us enumerate all possible partitions and corresponding condi-
tions of Nash-stability:

1. Π= {(1), (2)}:

0≥ δ12
1

0≥ δ12
2

δ12
1 +δ

12
2 =∆(1,2) (2.19)
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16 G A M E T H E O R E T I C T O O L S

2. Π= {1, 2}:

0≤ δ12
1

0≤ δ12
2

δ12
1 +δ

12
2 =∆(1,2) (2.20)

According to Corollary 2.3.1, δ12
1 = δ

12
2 = δ =

∆(1,2)
2

. Thus, combining all con-
straint sets of all possible partitions, we have the following result constraint set:
CΠ := {0 ≤ δ} ∪ {0 ≥ δ} ⇔ δ ∈ [−∞,∞]. It means that for any value of
∆(1, 2), symmetric relative gain always results in a Nash-stable partition for two
players case.

Lemma 2.3.2 There is always a Nash-stable partition when N = {1, 2,3} in
case of symmetric relative gain.

Proof 2.3.3 Note that there are 5 possible partitions in case of N = {1, 2,3}.
Thus, according to equally divided clustering profit, the following variables occur:
δ12

1 = δ
12
2 = δ1, δ13

1 = δ
13
3 = δ2, δ23

2 = δ
23
3 = δ3, δ123

1 = δ123
2 = δ123

3 = δ4.
Enumerating all possible partitions results in the following conditions:

1. Π= {(1), (2), (3)}:

δ1 ≤ 0,δ2 ≤ 0,δ3 ≤ 0, (2.21)

2. Π= {(1, 2), (3)}:

δ1 ≥ 0,δ1 ≥ δ2,δ1 ≥ δ3,δ4 ≤ 0, (2.22)

3. Π= {(1, 3), (2)}:

δ2 ≥ 0,δ2 ≥ δ1,δ2 ≥ δ3,δ4 ≤ 0, (2.23)

4. Π= {(2, 3), (1)}:

δ3 ≥ 0,δ3 ≥ δ1,δ3 ≥ δ2,δ4 ≤ 0, (2.24)

5. Π= {1,2, 3}:

δ4 ≥ 0. (2.25)
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Note that the constraint set CΠ covers all values in δ1,δ2,δ3 in case of δ4 ≥ 0.
Further, it also covers all values when δ4 ≤ 0. We are able to draw it since there
are three dimensions:

δ1

δ2
δ3

-∞

-∞∞

∞

δ4 ≤ 0

Thus, we can conclude that symmetric relative gain always results in a Nash-
stable partition when n ≤ 3. However, there could not be a Nash-stable parti-
tion when n> 3. We can find many counter examples that justify it.

2.3.4 Additively Separable and Symmetric Utility Case

Consider eq. (2.6) meaning that player i gains vi( j) from player j in any coali-
tion. In case of symmetry, vi( j) = v j(i) = v(i, j) such that v(i, i) = 0. Further,
we denote as φS

i = u(i)+
∑

j∈S v(i, j) the utility that player i gains in coalition
S. Then, the sum of allocated utilities in coalition S is given by

∑

i∈S

φS
i =

∑

i, j∈S

v(i, j) +
∑

i∈S

u(i) = u(S). (2.26)

Observe that
∑

i, j∈S v(i, j) = 2
∑

i, j∈S: j>i v(i, j) (for example, S = (1,2, 3),
∑

i, j∈S v(i, j) = 2[v(1,2) + v(1, 3) + v(2, 3)] ). Therefore, the following deter-
mines the existence of additively separable and symmetric preferences when
the utility function u is allocated to the players:

∑

i, j∈S: j>i

v(i, j) =
1

2

�

u(S)−
∑

i∈S

u(i)

�

, (2.27)
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where ∆(S) = 1
2

�

u(S)−
∑

i∈S u(i)
�

is the clustering profit due to coalition S.
Actually, the existence of v is too limited in such a setting. Even for example
N = (1, 2,3), the following is very restrictive

v(1,2) =
1

2
[u(1, 2)− u(1)− u(2)],

v(1,3) =
1

2
[u(1, 3)− u(1)− u(3)],

v(2,3) =
1

2
[u(2, 3)− u(2)− u(3)],

v(1,2) + v(1, 3) + v(2,3) =
1

2
[u(1, 2,3)− u(1)− u(2)− u(3)]. (2.28)

2.3.5 Balancedness of Utility Function

In this section, we find the Nash-stable core based on additively separable
and symmetric preferences. Further, we analyze the balancedness of utility
function according to Bondareva-Shapley theorem.

In the following, we derive the balancedness condition of utility function u
utilizing Bondareva-Shapley theorem’s proof [63, 64].

Let us denote as

• V the all possible bipartite coalitions such that V := {(i, j) ∈ 2N : j > i}.
Note that |V |= n(n− 1)/2.

• I the index set of all possible bipartite coalitions. So, V (k ∈ I ) is the
kth bipartite coalition.

• v= (v(i, j))(i, j)∈V ∈ ℜ|V | which is the vector demonstration of all v(i, j).

• c= (1, . . . , 1) ∈ ℜ|V |.

• b= (bS)S∈2N ∈ ℜ2n
such that bS =

1
2
∆(S)where∆(S) = u(S)−

∑

i∈S u(i).

• A= (aS,k)S∈2N ,k∈I ∈ ℜ2n×|V | is a matrix such that aS,k = 1{S : V (k) ∈ S}.

By using these definitions, the Nash-stable core is non-empty whenever the
following linear program is feasible

(L) mincv subject to

Av= b,b ∈ [−∞,∞]. (2.29)

The linear program that is dual to (L) is given by

(L̂) maxwb subject to

wA= c,w ∈ [−∞,∞], (2.30)

where w = (wS)S∈2N ∈ ℜ2n
denote the vector of dual variables. Let Ak denote

the kth column of A. Then wA implies

wAk =
∑

S∈2N

wSaS,k =
∑

S∈2N :V (k)∈S

wS = 1, ∀k ∈ I . (2.31)

This result means that the feasible solutions of (L̂) exactly correspond to the
vectors containing balancing weights for balanced families. More precisely,
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2.3 T H E N A S H -S TA B L E C O R E 19

when w is feasible in (L̂), Bw := {S ∈ 2N |wS > 0} is a balanced family with
balancing weights (wS)S∈Bw

.
According to the weak duality theorem the objective function value of the

primal (L) at any feasible solution is always greater than or equal to the objec-
tive function value of the dual (L̂) at any feasible solution, i.e. cv≥wb which
implies

cv=
∑

k∈I

vk =
∑

∀S∈2N

∑

i, j∈S: j>i

v(i, j) =
1

2
∆(N), (2.32)

and

wb=
1

2

∑

S∈2N

wS∆(S)≤
1

2
∆(N). (2.33)

Combining these results, we have the following balancedness conditions of u:
∑

S∈2N

wS∆(S)≤∆(N),

∑

S∈2N :V (k)∈S

wS = 1, ∀k ∈ I ,

wS ∈ [−∞,∞] ∀S ∈ 2N . (2.34)

2.3.6 Relaxed Efficiency

By relaxed efficiency, we mean that the sum of allocated utilities in a coalition
is not strictly equal to the utility of the coalition, i.e.

∑

i∈Sφ
S
i ≤ u(S) which

results in
∑

i, j∈S: j>i

v(i, j)≤
1

2
∆(S). (2.35)

The motivation behind relaxed efficiency is the following: in case of the
individual deviations, the efficiency principle is not important since there is no
group interest; therefore, we can relax this condition (thus, we call it relaxed
efficiency).

Lemma 2.3.3 The Nash-stable core is always non-empty in case of relaxed effi-
ciency.

Proof 2.3.4 A feasible solution of the following linear program guarantees the
non-emptiness of the Nash-stable core:

max
∑

∀S∈2N

∑

i, j∈S: j>i

v(i, j) subject to

∑

i, j∈S: j>i

v(i, j)≤
1

2
∆(S),∀S ∈ 2N , (2.36)

which is equivalent to

(LRE) maxcv subject to

Av≤ b,b ∈ [−∞,∞]. (2.37)

Note that (LRE) is always feasible since
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20 G A M E T H E O R E T I C T O O L S

• there are no any inconsistent constraints, i.e. there are no at least two rows
in A that are equivalent,

• the polytope is bounded in the direction of the gradient of the objective
function cv.

2.4 S TA B L E M AT C H I N G G A M E S

A matching game can be considered as a special NTU-game where the cardi-
nality of each basic coalition is at most 2 so that S = (i, j), i, j ∈ N . Note that
i can be equal to j which means a player is possible to be alone in coalition
S. The stable marriage problem is primal problem formalised in the context of
two-sided market [85].

Specifically, a matchingM is a partition of the set of players N , which we
denote asM (N) such that

⋃

S∈M (N)
= N . (2.38)

The utility of player i ∈ S is represented as uS
i . Player i is said to prefer to or

is indifferent between coalition S and T showed by S �i T whenever uS
i ≥ uT

i .
The preference relation� is a reflexive, complete and transitive binary relation.
If S �i T ⇔ uS

i > uT
i which means that player i strictly prefers coalition S to

T .

Definition 2.4.1 A coalition B is said to block a matching M whenever both
i ∈ S and j ∈ T prefers coalition B to S and T, respectively, i.e. B �i S and
B � j T.

Definition 2.4.2 A matching M is said to be stable whenever there does not
exist a blocking coalition.

Definition 2.4.3 A set of players X are matched to another set of players Y
whenever a stable matchingM exists such that X ∪ Y = N.

2.4.1 Stable Roommates Problem

The stable roommates problem (SRP) corresponds to a one-sided market. Each
person aims to find his best roommate. Therefore, the preference list of a spe-
cific person is composed of a descending order all possible partners. Note that
a player can also rank himself in the list. In this case, the player remains alone.
Incomplete lists in a SRP mean that a person does not include all the roommates
in his preference list.

The problem of finding stable bipartite coalitions of mobiles where a mobile
is let to order his possible partners according to some preference relation can
be seen a SRP as described in Section 9.2.

2.4.2 An Efficient Algorithm for Solving SRP

The stable roommates problem had been a nontrivial open problem, until Irv-
ing [86] constructed the first polynomial time algorithm which determines
whether a given instance of the stable roommates problem admits a stable

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0082/these.pdf 
© [C. Hasan], [2013], INSA de Lyon, tous droits réservés



2.4 S TA B L E M AT C H I N G G A M E S 21

matching, and if so, finds one [98]. Irving, in his paper [86], proves that the
proposed algorithm has O(n2) complexity.

We name the algorithm here as alg-IRVING consisting of two phases:

First Phase
Each player in his turn do a bid to his partners. This sequence of bids
proceeds with each individual pursuing the following strategies:

1. If i receives a bid from j, then

a) he rejects it if he already holds1 a better bid from someone higher
than j in his preference list;

b) he holds it for consideration simultaneously rejecting his current
bid being poorer than j.

2. If i is rejected by someone in his preference list, he continues propos-
ing until accepted by a partner.

This phase of algorithm will terminate

(i) with every person holding a bid, or

(ii) with one person rejected by everyone

In case of (ii), the algorithm will terminate with no matching meaning
that the problem is not stable.

If the first phase of the algorithm terminates with every person holding a
bid, then the preference list of possible partners for j, who holds a bid from i,
can be “reduced” by deleting from it

Reductions

• all those to whom j prefers i;

• all those who hold a bid from a person whom they prefer to j.

We denote as Reductions the procedure that performs these operations. If
the reduced preference list of player i and j contains only j and i, respectively,
then it is said that they are matched; therefore, in the second phase of algo-
rithm, they are out of consideration.

We denote by S the ordered pairs of the form (x , y), where y holds a bid
from x . It is said that y is x ’s current favorite which is the first in his reduced
preference list.

Second Phase
The second phase of alg-IRVING deals with finding a rotation ρ in S . In
case of a rotation, the set S is repeatedly changed by the application of
rotations. After applying rotation, if two players are matched, then they
are removed from S .

A rotation relative to S is a sequence

ρ(S ) = {(x1, y1), (x2, y2), . . . , (xk, yk), (x1, y1)}
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such that ∀(x l , yl) ∈ ρ(S ), yl+1 is x l ’s current second favorite in his re-
duced preference list.

If an even length rotation is found such that x l+1 = yl forall l, this
is the case referred to even party which is also an indicator of no stable
matching.

In case of no an even party, the application of rotation involves replacing
the pairs (x l , yl) in S by the pairs (x l , yl+1) and performing again the
procedure Reductions on the preference lists of corresponding players.
The second phase continues until not finding a rotation which indicates
that a stable matching is found.

In the following we give an example to show how the algorithm works.

Example 2.4.1 Consider the following preference lists of players:

1 : (3,4, 2,5, 6)

2 : (1,6, 5,3, 4)

3 : (6,4, 1,5, 2)

4 : (1,2, 6,3, 5)

5 : (2,1, 3,4, 6)

6 : (5,2, 4,3, 1) (2.39)

We would like to find a stable matching if there exists one. The procedure con-
cerning first phase is performed as following:

1 proposes to 3; 3 holds 1

2 proposes to 1; 1 holds 2

3 proposes to 6; 6 holds 3

4 proposes to 1; 1 holds 4 and rejects 2

Since 1 rejects 2, they remove each other in their preference lists:

1 : (3,4, 5,6)

2 : (6,5, 3,4)

3 : (6,4, 1,5, 2)

4 : (1,2, 6,3, 5)

5 : (2,1, 3,4, 6)

6 : (5,2, 4,3, 1) (2.40)

Then,

2 proposes to 6; 6 holds 2 and rejects 3

which results in the following preference lists:

1 : (3,4, 5,6)

2 : (6,5, 3,4)

3 : (4,1, 5,2)

4 : (1,2, 6,3, 5)

5 : (2,1, 3,4, 6)

6 : (5,2, 4,1) (2.41)
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The algorithm continues as following:

3 proposes to 4; 4 holds 3

5 proposes to 2; 2 holds 5

6 proposes to 5; 5 holds 6

Then, the reductions() is run, which produces the following preference lists:

1 : (3,4)

2 : (6,5)

3 : (4,1)

4 : (1,3)

5 : (2,6)

6 : (5,2) (2.42)

Thus, the first phase ends with the set

S [0] = {(6, 5)(5,2)(3, 4)(2,6)(4, 1)(1,3)}. (2.43)

In second phase, the algorithm seeks a rotation in S [0] which is found to be

ρ(S [0]) = (1,3), (3,4), (4,1), (1, 3).

This is a rotation because the second player in the preference list of player 1 is 4,
the second player in the preference list of player 3 is 1, and the second player in
the preference list of player 4 is 3. Moreover, note that this is also an even party
where x l+1 = yl forall x l ∈ ρ(S [0]).

Therefore, we conclude that there is no a stable matching in the considered
example.

2.5 C R O W D I N G G A M E S

A crowding game is represented by triple Γ = 〈M ,Σm, (ui)i∈M 〉 where M =
{1,2, . . . , m} is the set of players, Σ is the set of strategies shared by all the
players and ui : σ → ℜ is the utility function of player i ∈ M . Each player
i ∈ M chooses exactly one element from the r alternatives in Σ. The choices
of players are represented by σ = {σ1,σ2 . . . ,σm} ⊆ Σm which is called the
strategy-tuple (σi shows the strategy chosen by player i).

The utility that player i receives for playing the jth strategy is monotonically
non-increasing function ui of the total number of n j of players playing the jth
strategy [80]. The number of players playing each strategy corresponding to
σ can be presented by a congestion vector n = (n1, n2, . . . , nr), where n j ≥ 0
is the number of players who have chosen a j ∈ Σ. The strategy-tuple σ is a
Nash equilibrium iff each σi is a best-reply strategy [80]:

ui(nσi
)≥ ui(n j + 1) ∀i ∈ M and ∀ j ∈ Σ. (2.44)

A crowding game becomes a congestion game (symmetric crowding game)
if all players share the same set of utility functions. Clearly, the crowding
games arise if there exist player-specific utility functions. Nonsymmetric crowd-
ing games, however, generally do not admit a potential function (for further
information about potential function, refer to [79]).
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Table 2.1: Utility Matrix

Mobile 2

BS 1 BS 2 BS 3

BS 1 (2,1.3) (4∗, 8∗) (4, 6.3)

Mobile 1 BS 2 (5.2, 2.6) (2.7, 4) (5.2∗, 6.3∗)

BS 3 (2,2.6) (2,8) (1,3.15)

2.5.1 An Algorithm for Finding Nash Equilibrium

Milchteich establishes the following [80]:

Theorem 2.5.1 Consider a crowding game. Assume that the utility of player i
for choosing resource j is

• a function of i, j and the number of players that choose resource j,

• decreasing in this number

Then

• (i) There exists a pure Nash equilibrium,

• (ii) There exists a sequence of best responses of players that converges to an
equilibrium within finitely many steps.

• (iii) Assume that the number of resources is 2. Consider any sequence of
best responses in which each player has infinitely many opportunities to
change its decision. Then already after a finite number of steps, the sequence
reaches an equilibrium.

In view of this Theorem, we can use a best response algorithm to compute an
equilibrium. We are guaranteed that it will converge within a finite time if the
number of resources is two, or if there is a unique best response decision at
every step. Under these conditions it can be used as an algorithm that yields
convergence to an equilibrium within a finite number of steps. The Algorithm
is summarized below (see Algorithm 2).

Proof 2.5.1 The proof of Theorem 2.5.1 is given in the proof of Theorem 2 of
[80].

Example 2.5.1 In this section, we show by an example scenario how the intro-
duced algorithm converges to an equilibrium in the context of throughput com-
petition.

In Figure 2.1, it is depicted the utilities for each BS-mobile pair when one
mobile uses one BS. For example, the utility is u1(1) = 4 if mobile 1 is served
by BS1. In case of multiple usage, the utility decreases, for example: u1(2) = 2,
u2(2) = 1.3 if both mobile 1 and mobile 2 use BS1 which results in the strategy
tuple σ = {σ1,σ2}= {BS1, BS1}.

Let us then find the Nash equilibrium of this scenario. We have two players and
three strategies. First, we show the utility matrix of this game (Table 1). From
the utility matrix, we find easily the equilibria (4, 8) and (5.2,6.3).
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Algorithm 2 Utility and Strategy-tuple in Nash Equilibrium

σ(0)← {0, 0, . . . 0} Set the initial strategy-tuple
ui(σ(0))← 0,∀i ∈ M
c← 0 Set the convergence variable to zero
p← 1 Set the player variable to 1
l ← 1 Set the step variable of strategy-tuple to 1
while c == 0 do

Find the best-reply strategy of player p: σ∗p(l)
Calculate ui(σ(l)),∀i ∈ M
if up(σ∗p(l))≥ up(σ∗p(l − 1)) then

l ← l + 1
if p < m then

p← p+ 1
else

p← 1
end if

else
up(σ∗p(l))← up(σ∗p(l − 1))
σp(l)← σp(l − 1)
l ← l + 1
if p < m then

p← p+ 1
else

p← 1
end if

end if
if l > m+ 1 then

if σp(l − 1) == σp(l − 2)∀p ∈ M then
c← 1

end if
end if

end while

end
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e utilities are shown for each 
BS-mobile pair when one 

mobile uses one BS

Example scenario 
demonstrating how the 

algorithm converges to a Nash 
equilibrium
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Figure 2.1: Example scenario.

Secondly, we run the algorithm for this example scenario that is introduced in
Algorithm 1. Let us assume that in the step l = 0, the initial strategy-tuple be as
σ(0) = {BS1, BS1}. Then the utilities become

u1(σ(0)) = 2, u2(σ(0)) = 1.3, (2.45)

in which ui(σ(l)) represents the utility of player i in case of strategy-tuple σ(l).
We set player 1 as the first player which looks for the best-reply strategy. Player

1 finds out that the best-reply strategyσ1(1) = BS2 in the step l = 1. The utilities
are calculated as

u1(σ(1)) = 5.2, u2(σ(1)) = 2.6, (2.46)

where σ(1) = {BS2, BS1}. In the next step, l = 2, player 2 searches the best-
reply strategy which turns out to be σ2(2) = BS3. The strategy-tuple then is as
σ(2) = {BS2, BS3} which results in the following utilities

u1(σ(2)) = 5.2, u2(σ(2)) = 6.3. (2.47)

In the next step, player 1 can not find a best-reply strategy. Consequently, the
algorithm converges to the Nash equilibrium which coheres with the one of utility
matrix that we found as (5.2,6.3).
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P O I N T P R O C E S S E S

Stochastic geometry is a rich branch of applied probability which allows the
study of random phenomena on the plane or in higher dimensions. It is in-
trinsically related to the theory of point processes [27]. A point process (p.p.)
Φ can be depicted as a random collection of points in space. More formally, Φ
is a random, finite or countably-infinite collection of points in the space Rd ,
without accumulation points [26]. A point measure is a measure which is lo-
cally finite and which takes only integer values on some space E. Each such
measure can be represented as a discrete sum of Dirac measures on E

Φ=
∑

i

δX i
. (3.1)

The random variables
�

X i

	

taking values in E are the points of Φ. The intensity
measureΛ ofΦ on B is defined asΛ(B) = EΦ(B) denoting the expected number
of points in Φ∩ B where B is assumed to be a Borel set.

3.1 P O I S S O N P O I N T P R O C E S S E S

A p.p. on some metric space E with intensity measure Λ is Poisson if for all
disjoint subsets A1, . . . , An on E, the random variables Φ(Ai) are independent
and Poisson. For some dx , if Λ(dx) = λdx is multiple of Lebesgue measure,
we call Φ a homogeneous Poisson p.p. and λ is its intensity parameter [26].

Definition 3.1.1 Superposition: The superposition of Poisson point processes
Φk with intensities Λk is the sum Φ=

∑

k Φk with intensity measure
∑

kΛk [26].

Definition 3.1.2 Thinning: The thinning of Poisson p.p. Φ with a retention
function q : Rd → [0,1] is a p.p. given by

Φq =
∑

i

εiδX i
(3.2)

where the random variables {εi}i are independent given Φ, and P{εi = 1|Φ} =
1− P{εi = 0|Φ} = q(X i). Thus, the retention probability q yields a Poisson p.p.
of intensity measure qΛ [26].

3.2 M A R K E D P O I N T P R O C E S S E S

In a marked point process (m.p.p.), a mark belonging to some measurable
space and carrying some information is attached to each point. In our context,
the points are the BSs and the marks are considered to be the transmitted
power by each BS.

27
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Consider a d ≥ 1 dimensional Euclidean space Rd as the state space and a
` ≥ 1 dimensional space of marks R`. A marked p.p. Φ̃ can be represented as
a discrete sum of Dirac measures

Φ̃=
∑

i

δ(X i ,Mi) (3.3)

where δ(X ,M) is the Dirac measure on the Cartesian product Rd ×R` with an
atom at (X , M).

Definition 3.2.1 (from [26]) Independent marking: A marked p.p. is said to
be independently marked (i.m.) if, given the locations of the points Φ= {X i}, the
marks are mutually independent random vectors in R`, and if the conditional
distribution of the mark M of a point X ∈ Φ depends only on the location of this
point X it is attached to; i.e., P{M ∈ ·|Φ} = P{M ∈ ·|X } = FX (dM) for some
probability kernel or marks F·(·) from Rd to R`.

Definition 3.2.2 (from [26]) An independently marked Poisson p.p. Φ̃ with in-
tensity measure Λ onRd and marks with distributions FX (dM) onR` is a Poisson
p.p. on Rd ×R` with intensity measure

Λ̃(A× K) =

∫

A

p̃(X , K)Λ(dx), A⊂ Rd , K ⊂ R`. (3.4)

where p̃(X , K) =
∫

K FX (dM). The independently marked Poisson p.p. can be
seen as a transformation of the (non-marked) Poisson p.p. of intensity measure
Λ on Rd by a probability kernel p(X , A× K) [26].
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4
T H E M O B I L E A S S I G N M E N T P R O B L E M I N B R O A D C A S T
T R A N S M I S S I O N : O P T I M I Z AT I O N A S P E C T S

4.1 I N T R O D U C T I O N

It is a requirement of the Long-term Evolution (LTE) specifications to support
the delivery of broadcast/multicast data under the name of the Multimedia
Broadcast/Multicast Service (MBMS) [30]. There is no difference between
broadcast and multicast downlink data transmissions at the physical layer.
While broadcast services are available to all users without the need for sub-
scriptions to particular services, multicasting can thus be seen as “broadcast
via subscription”, with the possibility of charging for the subscription [30].

Broadcast is in particular well adapted to wireless channels, where one may
use resources (in frequency and/or time) that are common to all destinations.
We assume that the cost for a base station (BS) to transmit to a multicast group
is proportional to the power needed to reach the most remote mobile among
the group, and that the latter is a function of the distance to that mobile and
the effect of shadowing. A BS may broadcast the same information to several
multicast groups. In that case each multicast group is charged the cost to reach
the most remote mobile in that group. In our setting, the most remote mobile
should be understood as the one for which is needed the highest transmission
power, rather than a remoteness due to a geographical measure.

We consider the situation where there is one common information that ev-
ery one of m mobiles is interested to receive, and which can be obtained from
any one of n BSs. The broadcast information could be some content, such
as streaming transmission of a sport or cultural event, or it could be some
signalling such as a beacon for time synchronization or for power control pur-
poses. We seek such assignments of mobiles to BSs so that the total power
is minimized. Further, we take into account the operational power costs (e.g.
power amplifiers, cooler, etc.) of a typical BS. Indeed, the mobile assignment
problem (MAP) in the context of broadcast transmission that we study in this
work is built upon min-size k-clustering problem suggested and examined in
[31]. In min-size k-clustering problem, the objective is to assign the points to
at most k clusters so that the sum of all distances between points in the same
cluster (k-clustering) is minimized. In [31], the typical cost for a BS-mobile
pair is assumed to be only a function of distance between the BS and the mo-
bile, which is formulated as

∑

N j∈C
maxi∈N j

dαi j + P j
0 . Here, N j is a cluster of

mobiles assigned to BS j, C is the set of clusters called as clustering, di j is the

distance between mobile i and BS j, α is the path loss exponent, P j
0 is the oper-

ational power cost loaded to BS j. However, here, we add the effect of shadow-
ing to such a cost producing the following total cost

∑

N j∈C
maxi∈N j

dαi j/Ψi j+P j
0

where Ψi j denotes the shadowing effect between mobile i and BS j.

31
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4.1.1 Related Work

The computational geometric approaches to the MAP can be found in [31,
32, 33, 34]. In [32], the authors examine the 1-dimensional version of the
MAP, where the effects of shadowing and operational power cost are not taken
into account. Polynomial time solutions via dynamic programming are pro-
posed. The paper [33] suggests approximation algorithms (and an algebraic
intractability result) for selecting an optimal line on which to place BSs to
cover mobiles, and a proof of NP-hardness for any path loss exponent α > 1.

The papers [36, 37, 38, 39] focus on source-initiated broadcasting of data
in static all-wireless networks. Data are distributed from a source node to
each node in a network. The main objective is to construct a minimum-energy
broadcast tree rooted at the source node.

In [35], we study the combined problem of (i) deciding what subset of the
mobiles would be assigned to each BS, and then (ii) sharing the BSs’ cost of
multicast among the mobiles. The subset that we wish to assign to a given
BS is said to be its target set of mobiles. This problem can be conceived as a
coalition game played by mobiles which we call as association game of mobiles.
This game has an incentive to form grand coalition where all players join to
the game. We also conclude that if the nucleolus is used as the cost allocation
algorithm, the players maintain the grand coalition satisfying the minimization
of the total cost for broadcast transmission. However, we do not study how to
reach to a minimal cost in [35].

4.1.2 Our Contribution

The referred papers concentrate on the geometry aspect of the MAP where
basically, the coverage area of a BS is assumed to be a disc which issues from
omnidirectional antenna pattern. However, the effect of shadowing, special de-
signed antenna patterns as well as the operational power costs could change the
BS-mobile assignments. Here, we take into account these effects. To this end,
we represent by power cost matrix each BS-mobile pairing power cost. Then,
we propose dynamic programming based algorithms performing operations
on power cost matrix.

Besides, “green-aware” approaches [44] which aim to reduce the energy
consumption in wireless environments has to be taken into account in de-
signing the relevant algorithms. In this context, switching off some fraction
of BSs is considered to be a way of decreasing dramatically the total energy
consumption. Heterogeneous networks include macro and small cells with co-
ordination. In this work, we assume that small cells are subject to switching
off operation while macro cells are always turned on, which serve moving mo-
biles in order to decrease the number of hand-offs. The small cells are deployed
intensively, therefore the transmission power is lower than macro cells’.

Comparing the transmission power being in milliwatt levels with the opera-
tional power costs which is nearly tens of Watts, it is very efficient to turn off
some fraction of BSs for reducing the total energy consumption. This method
could be abundant when the users do not move. However, the fast-moving
users are considered to be served by macro BSs which are not switched off
generally [11].

Subsequently, we propose a recursive algorithm called the hold minimum
algorithm which solves the considered problem optimally. The hold minimum
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Downlink broadcast 
transmission in cellular 

e most remote mobile among 
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Power level is a function of the 
distance and the shadowing

EEven though a mobile might be 
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worse power level compared to 
one which is farther the BS

Power levels

Figure 4.1: Broadcast transmission in cellular networks.

algorithm operates in a centralized way, which requires the whole knowledge
for each BS-mobile pairing power cost. We also suggest another centralized
polynomial-time heuristic algorithm called the the column control which pro-
duces optimal assignments when taking into account the operational power
cost. Moreover, we develop a distributed approach to the column control,
where each mobile gathers the local information from the BSs that can trans-
mit to it. We On the other hand, the nearest base station algorithm, a distributed
heuristic algorithm which runs in polynomial-time is offered. This algorithm
is efficient for the fast-moving users served by macro BSs. We also introduce
a new algorithm based on group formation games, which we call as the he-
donic decision algorithm. This formalism is constructive: a new class of group
formation games is introduced where the utility of players within a group
is separable and symmetric being a generalized version of parity affiliation
games. Furthermore, the hedonic decision algorithm can be suitable for any
set covering problem.

4.2 T H E P R O B L E M

We consider the coverage problem in case of broadcast transmission in cel-
lular networks. We assume each BS transmits simultaneously to the mobiles.
The distance between the mobile i and BS j is represented as di j . The power
needed to receive the transmission is given by Pr . We consider basic signal
propagation model capturing path loss as well as shadowing effect formulated
as

Pi j = Pr

dαi j

Ψi j
, (4.1)
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where Pi j and α denote transmitted power from BS j to mobile i and path
loss exponent, respectively. The random variable Ψ is used to model slow fad-
ing effects and commonly follows a log-normal distribution, i.e., the variable
10 log10Ψ follows a normal distribution.

The required transmission power is related to the mobile having the worst
signal level from the BS (Figure 4.1). At this power level, we are guaranteed
that all mobiles receive at a sufficient power. We also consider the operational
power cost denoted as P j

0 which captures the energy expenditure of a typical
BS j for operational costs (power amplifiers, cooler, etc.). So, the total power
cost (transmission power + operational power cost) of a typical transmission
between BS j and mobile i is denoted as

pi j = Pi j + P j
0 . (4.2)

Let M = (1, . . . , m) and N = (1, . . . , n) be the sets of mobiles and BSs, re-
spectively. Representing the power cost matrix P = (pi j) ∈ ℜm×n, we assume
pi j ∈ [0,∞]where if Pi j > Pmax , then pi j =∞ (Pmax denotes a maximal power,
for instance, in WiFi, it is 100 mW).

4.2.1 The MAP as a Clustering Problem

The clustering is a rich branch of combinatorial problems which have been
extensively studied in many fields including database systems, image process-
ing, data mining, molecular biology, etc. [31]. Consider the set of mobiles M ;
a cluster is any non-empty subset of M . A clustering is a partition of M . Many
different clustering problems can be defined. The mostly studied problems are
as following and their objectives are to assign the points to at most k clusters
so that

• k-centre: the maximum distance from any point to its cluster centre is
minimized,

• k-median: the sum of distances from each point to its closest cluster cen-
tre is minimized,

• k-clustering: the sum of all distances between points in the same cluster
is minimized.

The problem of clustering a set of points into a specific number of clusters
so as to minimize the sum of cluster sizes is called as min-size k-clustering
problem. In [31], the typical cost for a BS-mobile pair is assumed to be only
a function of distance between the BS and the mobile, which is formulated as
∑

N j∈C
maxi∈N j

dαi j + P j
0 . Here, N j is a cluster of mobiles assigned to BS j, C is

the set of clusters called as clustering, di j is the distance between mobile i and

BS j, α is the path loss exponent, P j
0 is the operational power cost loaded to

BS j. In this work, we add the effect of shadowing to such a cost producing the
following total cost

∑

N j∈C
maxi∈N j

dαi j/Ψi j+P j
0 . Thus, note that the shadowing

effect breaks the monotonicity due to the distance (see Figure 4.1). Moreover,
in the MAP, the objective is not to place BSs in order to minimize the total
power.

Cette thèse est accessible à l'adresse : http://theses.insa-lyon.fr/publication/2013ISAL0082/these.pdf 
© [C. Hasan], [2013], INSA de Lyon, tous droits réservés



4.2 T H E P R O B L E M 35

4.2.2 Brute-force Search Solution

The enumerating all possible solutions and choosing the one which produces
the lowest cost is known as brute-force search or generate and test.

We represent by A = (ai j) ∈ ℜm×n the assignment matrix where ai j ∈ (0, 1).
If mobile i is assigned to BS j, then ai j = 1, otherwise ai j = 0. Notice that each
row of assignment matrix includes only unique “1” which means that a mobile
is served by only one BS, i.e.

∑

j ai j = 1. Denoting the collection of assignment
matricesA , actually, we would formalize our problem as following:

p =min
A∈A

�

∑

i∈M

max
j∈N

A⊗ P

�

, (4.3)

where ⊗ is the element-wise product. Note that the total number of possibili-
ties of assignment matrices can be calculated as |A |= nm.

4.2.3 The MAP as a Set-partitioning Problem

In this section, we formalize the MAP as a binary integer program.
Let the power set of M be℘(M). Then, the power set of M contains |℘(M)|=

2m elements. Thus, the total number of elements corresponding to the sum of
combinations of each power set of n BSs is given by κ= n(2m−1). We represent
by S the collection of total possibilities. The index set of S is denoted by
L = (1, . . . ,κ). Let U = (uil) ∈ ℜm×κ be a 0-1 matrix, and q = (ql) ∈ ℜκ be a
κ-dimensional vector. The value ql represents the optimal power of (Sl ; j) ∈ S
by which we denote a pair which consists of a set of mobiles Sl assigned to BS
j. Clearly

ql = max
i∈(Sl ; j)

pi j . (4.4)

We let uil = 1 if mobile i belongs to the set Sl . The formulation of this problem
is given by

(P) p =min
∑

l∈L

ql x l

s.t.
∑

l∈L

uil x l = 1, i ∈ M ,

x l ∈ {0, 1}, l ∈ L

(4.5)

where the term
∑

l∈L uil x l = 1 follows only one BS is associated with a mobile.
By this way, we do not let a mobile to be assigned to several BSs. As result, the
optimal clustering is denoted as C ∗ ⊂ S such that C ∗ = {(S∗; j∗) ∈ S ,∀ j ∈
N} where (S∗; j∗) is the pairing in case of optimal solution.

We can consider the MAP as a version of the set partitioning problem. In the
MAP the set M is associated with another set N . Therefore, the collection S
contains those subsets of M each of which is associated with every element of
the set N . Consider the following example.

Example 4.2.1 Let us have a power cost matrix given by

P=





3 6

5 1



 . (4.6)
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The collection of total possibilities:

S = {(1; 1), (2;1), (1,2; 1), (1;2), (2; 2), (1, 2;2)}. (4.7)

Recall that (Sl ; j) denotes the cluster of mobiles Sl assigned to BS j. The optimal
values for each possibility is given by q = (ql) = (3,5, 5,6, 1,6). Then, we define
the following matrix:

U=





1 0 1 1 0 1

0 1 1 0 1 1



 . (4.8)

The optimal total power thus is calculated by the following binary integer pro-
gram:

p =min(3x1 + 5x2 + 5x3 + 6x4 + x5 + 6x6)

s.t. x1 + x3 + x4 + x6 = 1, x2 + x3 + x5 + x6 = 1,

x l ∈ {0,1}, l ∈ (1, . . . , 6).

(4.9)

The values x1 = 1 and x5 = 1 result in the optimal total power of the example
scenario, i.e., p = 3+ 1= 4 with the optimal clustering C ∗ = {(1;1), (2; 2)}.

Set partitioning problem is well known to be NP-hard [40]. Consequently,
the MAP being a special set partitioning problem is also NP-hard. The col-
lection set of the MAP possesses a large scale nature. For example, even for
m= 30, n= 10, the size of collection set is κ= 10(230 − 1)≈ 1.074× 1010.

4.2.4 Set Cover Relaxation: A Solution of Binary Integer Program

We relax the condition of associating only one BS to a cluster of mobiles in
(P) such that it is possible a cluster of mobiles to be served by more than one
BS:

∑

l∈L uil x l ≥ 1. Thus, this arrangement turns the MAP into so called set
covering problem.

Moreover, consider a set of mobiles S assigned to BS j which we have been
denoting as (S; j). When a group of mobiles T ⊂ S deviates to another BS k
then the cost due to S becomes additively. Let the cost of (S; j) and (T ; k) be
qS = maxi∈(S; j) pi j and qT = maxi∈(T ;k) pik, respectively. We denote the total
cost before deviation of T as p and after deviation of T as p′, respectively 1,
which can be given by

p = pr + qS , (4.10)

p′ = p′r + qS\T + qT , (4.11)

where pr and p′r are the remaining costs before and after deviation, respec-
tively. There is always a potential (probability) increasing the total cost when
a deviation occurs, i.e. p′ > p. For better observation, let us consider the fol-
lowing power cost matrix:

P=







10 15 25

27 20 33

32 31 30






. (4.12)

1 Note that these costs are not optimal. We only would like to show what is the effect of deviation
of a group of mobiles from theirs current BS.
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Let (S; j) = (1,2, 3;1) and (T ; k) = (1,2; 3), respectively. Then, qS =max(10, 27,32) =
32, qT =max(25,33) = 33, and qS\T =max(32) = 32 resulting in the follow-
ing total costs:

p = 32 (4.13)

p′ = 32+ 33= 65, (4.14)

where pr = p′r = 0.
Utilizing this property,

we delete from the collection S all those assignments (S\T ; j) when-
ever the cost of (S; j) is equal to the cost of (S\T ; j) such that T ⊂ S.

For example, let us consider the last example where M = (1, 2,3) and N =
(1,2, 3). For j = 1, all possible assignments are

(1;1), (2;1), (3; 1), (1,2; 1), (1, 3;1), (2, 3;1), (1, 2,3; 1)

corresponding to the cost vector q = (10,27, 32,27, 32,32, 32). Note that the
cost of (3;1), (1, 3;1), (2, 3;1), (1, 2,3; 1) are equal each other. Therefore, we
remove (3;1), (1, 3;1), (2, 3;1) from the collection. The reduced collection of
assignments becomes as following:

S ′ = {(1;1),(1, 2;1), (1, 2,3; 1), (1;2), (1, 2;2),

(1, 2,3; 2), (1;3), (1, 3;3), (1,2, 3;3)}. (4.15)

Thus, the binary integer program of finding the solution of the problem is
given by

p =min(10x1 + 27x2 + 32x3 + 15x4 + 20x5 + 31x6 + 25x7 + 30x8 + 33x9)

s.t. x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 ≥ 1,

x2 + x3 + x5 + x6 + x9 ≥ 1,

x3 + x6 + x8 + x9 ≥ 1,

x l ∈ {0,1}, l ∈ (1, . . . , 9). (4.16)

The solution of this problem is found to be x6 = 1 and x l = 0,∀l ∈ (1, . . . , 9)
which fits to the optimal one.

By such an elimination, the size of collection of assignments reduces from
n(2m − 1) to nm.

4.3 T H E A L G O R I T H M S

In this section, we propose our algorithms used for calculation the MAP. We
first introduce dynamic programming based two new algorithms which are
centralized: the hold minimum algorithm and the column control algorithm.
Also, a distributed approach to the column control as well as another dis-
tributed algorithm which we call as the hedonic decision derived from hedonic
coalition formation are proposed. A greedy solution of the problem is intro-
duced as the nearest base station approach.

Because of the large scale nature of the collection set S , we develop the
algorithms by making operations on the power cost matrix. This approach
facilitates to remove elements of the collection set, and thus, converge quickly
to a solution.
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4.3.1 Optimal Solution: The Hold Minimum (HM) Algorithm

The HM algorithm solves the problem optimally. We explain the algorithm by
an example. Consider the power cost matrix which is given by

P=







9 3

1 4

2 8






. (4.17)

The power cost matrix can also be shown as P = (p1, p2, . . . , pn), where p j =
(p1 j , p2 j , . . . , pmj)T . In each step, the algorithm removes a group of values pi j

of the power cost matrix. Removing pi j means that we eliminate those clus-
ters that include the mobile i and BS j from the collection set. The algorithm
compares maximum n clusters and holds only the cluster minimizing the to-
tal cost. Thus, it terminates in a step Q where each mobile is assigned to
only one BS. In step s, the power cost matrix and collection set is denoted
as P[s] = (p1[s], p2[s], . . . , pn[s]) and S [s], respectively.

Let us now turn to the example. In the initial step s = 0, we assume that
P[0] = P and S [0] = S given by

S [0] = {(1; 1), (2;1), (3;1), (1, 2;1), (1, 3;1), (2, 3;1),

(1, 2,3; 1), (1;2), (2; 2), (3; 2), (1,2; 2), (1,3; 2),

(2, 3;2), (1, 2,3; 2)}. (4.18)

Recall that assigning a cluster of mobiles Sl to BS j has a cost maxi∈Sl
pi j .

Therefore, if we find the maximum value of p j , we obtain the total cost in
case of all mobiles in column j are assigned to BS j. For example, max p1 =
max(9, 1,2) = 9. This means that if all mobiles are assigned to BS 1, then the
total cost is 9.

The algorithm runs as following: in step s = 1, we find the maximum value
of each column of power cost matrix, then eliminate all values in power cost
matrix except minimum of the calculated maximum values. Namely, max(9, 1,2) =
9 and max(3, 4,8) = 8, then 9 is eliminated by putting an∞

P[1] =







∞ 3

1 4

2 8






. (4.19)

Thus, the collection set reduces to the following

S [1] = {(2; 1), (3; 1), (2,3; 1), (1;2), (2;2), (3; 2), (1,2; 2),

(1, 3;2), (2, 3;2), (1,2, 3;2)}. (4.20)

First column contains an ∞ which means that mobile 1 must be assigned to
another BS (here, there is only one BS, it is BS 2). In fact, this represents the
recursiveness of the algorithm where we run the algorithm for a sub power
cost matrix. In this simple example, the sub power cost matrix is 3. In general
case, the algorithm does the following

Pj[s] =

(

max p j[s] + h(Psub
j [s]), if sub power cost matrix;

max p j[s], otherwise.
(4.21)
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where Pj[s] represents the total cost if we assign all mobiles to BS j except
those that can not be assigned to, and the optimal cost occurring due to sub
power cost matrix Psub

j [s] in step s. Here, h : ℜm×n → {ℜ,A} is the func-
tion which gives the optimal value and assignments obtained by running HM
algorithm.

For s = 2, we calculate P1[2] = max(1,2) + h(3) = 2 + 3 = 5, where
Psub

1 [2] = (3). On the other hand, we do not need to calculate P2[2] since
it is kept in the memory. Therefore, P2[2] = P2[1]. Then, the algorithm holds
minimum value of min(P1[2], P2[2]) = P1[2] = 5 meaning that we remove 8
resulting in the following

P[2] =







∞ 3

1 4

2 ∞






, (4.22)

and

S [2] = {(2; 1), (3;1), (2,3; 1), (1;2), (2; 2), (1,2; 2)}. (4.23)

Then, for s = 3, P2[3] = max(3, 4) + h(2) = 4+ 2 = 6, where Psub
2 [3] = (2),

and P1[3] = P1[2]. We remove 4, since min(P1[3], P2[3]) = P1[3]. This gives
the following matrix, collection set, assignments, and optimal total power,

P[3] =







∞ 3

1 ∞
2 ∞






, (4.24)

S [3] = {(2; 1), (3;1), (2,3; 1), (1;2)}= {(2, 3;1), (1; 2)}, (4.25)

h(P) :=











p = 5,A=







0 1

1 0

1 0

















, (4.26)

respectively. The pseudo-code of this algorithm is given in Algorithm 3.

Theorem 4.3.1 The HM algorithm terminates in finite step. At this step, the
total power cost is minimum.

Proof 4.3.1 The power cost matrix is transformed in each step by

P[0]→ P[1]→ . . .→ P[Q]. (4.27)

In each step, at least n− 1 values are removed from the power cost matrix. Re-
moved values are those that increase the total cost. The value that is held is the
minimum one in the corresponding step. So, in the terminal step s =Q, it arrives
to such a cost that is the lowest. Each mobile is assigned to exactly one BS in the
terminal step.
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Algorithm 3 The Hold Minimum
function (p,A) = h(P)

while each row includes several “1”s in A do
k← 1
for j = indices of columns of P not including all∞ do

Vk← maximum of column j except∞
if any row in column j includes∞ then

Psub← rows including∞ of P
psub← h(Psub)
Vk← Vk + psub

end if
k← k+ 1

end for
(imin, jmin, Vmin)←min V
Hold Vmin using (imin, jmin) and put ∞ and 0 in all indices causing Pi j ≥
Vmin in P and A
Put 0 in all indices causing Pi j ≥ Vmin in A

end while
p←

∑

maxA
⊗

P

end

4.3.2 Greedy Solution: The Column Control (CC) Algorithm

Let us denote the CC algorithm by c : ℜm×n→ {ℜ,A}. Take into account the
operational power cost P0 which is fairly higher than the transmitted power, i.e.
P0� Pi j , which dominates the energy consumption of a typical BS. We could
use this advantage of the broadcast transmission. The aim here is to assign
many mobiles to only one BS. Recall that cluster N j (set of mobiles that can
be assigned to BS j) has the transmission cost maxi∈N j

Pi j and the operational

cost P j
0 . For better understanding, consider the following power cost matrix in

which the operational power cost is assumed to be 12 W :

P=

















12.50 12.40 12.32 ∞
12.30 12.30 12.43 ∞
12.20 12.45 12.15 12.23

∞ 12.43 12.25 12.35

∞ ∞ ∞ 12.29

















. (4.28)

In such a scenario, we can assign |N1| = 3 mobiles to BS 1 with cost 12.50,
|N2| = 4 mobiles to BS 2 with cost 12.45, |N3| = 4 mobiles to BS 3 with cost
12.43, and |N4|= 3 mobiles to BS 3 with cost 12.35.

The logic behind the CC algorithm is the following:

1. Find how many mobiles can be assigned to each BS

2. Choose the BS to which can be assigned the most mobiles

3. If there are multiple BSs in the state of 2), then choose the BS which can
serve the mobiles with minimal cost

Applying these rules to the last example, it turns out that BS 3 can cover the
most mobiles |N3| = 4 which are N3 = (1, 2,3, 4) with the lowest cost 12.43.
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Then, the algorithm assigns only a cluster of mobiles. In the following step, the
CC algorithm performs the same rules to the remained mobiles which produces
the sub power cost matrix Psub. In the last example, it is given by

Psub =
�

∞ ∞ ∞ 12.29
�

. (4.29)

This results in the assignment of mobile 5 to BS 4, because mobile 5 can not
be assigned to other BSs. This shows the recursiveness of the CC algorithm. A
pseudo-code is given in Algorithm 4.

Formally, in step s, we denote as following the set of mobiles assigned to BS
j:

R[s] =
�

Assigned mobiles in step s
	

. (4.30)

Thus, the collection set is reduced as following in step s:

S [s] =
�

S [s− 1] \ (S; k) : i ∈ S,∀i ∈ R[s] and ∀k ∈ N \ j
	

. (4.31)

Considering the last example, in step s = 1, R[1] = (1, 2,3, 4). By assigning
these mobiles to BS 3, the CC algorithm removes those assignments which in-
clude mobiles (1,2, 3,4) except (S; k) = {(1,2, 3,4), 3}. Thus, the total power
and assignments are given by

c(P) :=































p = 24.72,A=

















0 0 1 0

0 0 1 0

0 0 1 0

0 0 1 0

0 0 0 1















































. (4.32)

Moreover, for any power cost matrix, we conclude that in a final step Q, the
CC algorithm converges to the case where each mobile is assigned to merely
one BS.

4.3.3 Distributed Column Control (DCC) Algorithm

Assume that each BS broadcasts its own power vector and identities of mobiles
that it can serve. Recall that we denote the power vector of BS j as p j . The
power vector of BS 1 given in the power cost matrix of eq. (4.28) is p1 =
(12.50,12.30, 12.20,∞,∞)T . In fact, the infinite power costs in p1 are not
produced by BS 1, rather these values are used in a central unit being aware
of all mobiles and BSs. Therefore, we have to show the power vector as p1 =
(12.50,12.30, 12.20)T . Also, the identity vector of mobiles that can be served
by BS j is represented as h j = (h jk) ∈ N|p j |. For example, h1 = (1,2, 3)T .

Moreover, each mobile receives power vectors from all BSs that can transmit
to it. Then, each mobile generates the power cost matrix from received power
vectors. For example, mobile 1 receives from BS 1, BS 2, and BS 3 the power
vectors

p1 = (12.50, 12.30,12.20)T ,

p2 = (12.40, 12.30,12.45, 12.43)T ,

and

p3 = (12.32, 12.43,12.15, 12.25)T
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Algorithm 4 The Column Control
function (p,A) = c(P)

v′ = Find how many∞ has each column of P
vmin←min v′

v′′ = Find which row of v′ is equal to vmin

for l = columns of P determined by |v′′| do
Vl ← maximum value of column l of P

end for
Find Vmin =min Vl and the corresponding column lmin

if |v′|== 0 then
Put 1s to the column lmin in A

else
A′← Put 1s to the column lmin in A
Find sub power cost matrix Psub which is composed by those mobiles that
are not assigned
Asub← Find assignments by running c(Psub)

end if
A← Combine Asub and A′

p←
∑

maxA
⊗

P

end

with identity vectors h1 = (1, 2,3)T , h2 = (1, 2,3, 4)T , and h3 = (1, 2,3, 4)T ,
respectively. Mobile 1 decides that the power cost matrix is as following:













12.50 12.40 12.32

12.30 12.30 12.43

12.20 12.45 12.15

∞ 12.43 12.25













. (4.33)

Note that mobile 1 realizes from h2 and h3 that BS 1 can not transmit to mobile
4. Therefore, it puts an infinite cost corresponding to mobile 4 and BS 1 in the
power cost matrix.

By this rule each mobile determines its own power cost matrix. Thus, each
mobile finds the assignments according to CC algorithm, and selects the BS
from which it will receive data. For example, mobile 1 obtains the following
assignment matrix by running CC algorithm













0 0 1

0 0 1

0 0 1

0 0 1













. (4.34)

It turns out that mobile 1 chooses BS 3 for reception the broadcast data.

Remark 4.3.1 Through the advantage of the decentralization, the DCC algo-
rithm makes possible the following: if the mobiles do not send any assignment
information to a BS, then the corresponding BS is considered to be switched
off. On the other hand, the CC algorithm is centralized, therefore, the network
determines according to the assignments which BS is switched off.
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4.3.4 Greedy Solution: The Nearest BS (NBS) Algorithm

To solve the problem heuristically, the easiest way is to assign each mobile
to the nearest BS. By “nearness”, we do not mean a geographical measure, in-
stead, it is the lowest power cost that the corresponding mobile needs from the
corresponding BS. So, the mobile selects the BS transmitting with the lowest
power. We assume that a mobile is capable to know the power costs corre-
sponding to those BSs that can transmit to it.

Clearly, mobile i knows the vector pi = (pi1, pi2, . . . , pini
) where ni denotes

the number of BSs that mobile i can be served. Then, mobile i only calculates
the minimal value of pi , and chooses the corresponding BS,

ai, j = 1 : j = argmin
j

pi , (4.35)

where ai, j ∈ A is the BS that mobile i selects. Actually, this corresponds to
remove from collection set S all assignments related to mobile i and the BSs
being out BS j.

The NBS algorithm is very efficient and quick, and in most cases, it gives
optimal assignments when the operational power cost P0 = 0 (See Section
4.6).

4.3.5 Group Formation Game Solution: The Hedonic Decision (HD) Algorithm

Recall that the required power for serving the group of mobiles S j by BS j is de-
noted as maxx∈S px j . Consider this as a transferable virtual cost among the mo-
biles sharing the same BS. Here, we assume that a BS is passive which does not
make any strategic decision. Thus, let us represent as u(S j; j) = −maxx∈S pi j ≤
0, the transferable virtual utility. Note that u(S j; j) ≤ 0,∀S j ⊆ M ,∀ j ∈ N
is a monotonically decreasing function [45]. The marginal utility is given by
∆(S; j) = u(S; j)−

∑

i∈S u(i; j). Note that u(i; j) = −pi j . Therefore, ∆(S; j) =
∑

i∈S pi j−maxi∈S pi j ≥ 0. Moreover, since u(S; j) is always superadditive [45],
the following is obtained:

∆(S; j) +
∑

i∈S

u(i; j) +∆(T ; j) +
∑

i∈T

u(i; j)≤∆(S ∪ T ; j) +
∑

i∈S∪T

u(i; j),

∆(S; j) +∆(T ; j)≤∆(S ∪ T ; j), ∀S, T ⊆ N , S ∩ T = ;. (4.36)

Assume that the mobiles are strategic decision makers. The strategic decision
is performed in the following way:

mobile x prefers BS j to BS k whenever φ
(S j ; j)
x > φ(Sk;k)

x .

In the following, we prove that the last condition is sufficient to formalize
the MAP as a group formation game (see [48], [47], [49]). We also adopt the
additively separable and symmetric utility allocation within a group where
for any couple of mobiles x , y ∈ M receive the symmetric utility v(x , y; j)
whenever they share the same BS j. Note that v(x , x; j) = 0 which means that
a mobile does not gain from itself. Therefore, the allocated utility to player x
in coalition S j can be given by

φ
(S j ; j)
x =

∑

y∈S j

v(x , y; j) + u(x; j). (4.37)
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Let us represent as σ = {σ1,σ2, . . . ,σm} the strategy tuple of mobiles where
σx denotes the BS that mobile x chooses. The partition of mobiles that is a
result of strategy tuple σ is denoted as Πσ = {S j} j∈N . Thus, we denote as
GHD =




M , N ,Πσ
�

the group formation game of mobiles.

Theorem 4.3.2 GHD is a potential game.

Proof 4.3.2 A non-cooperative game is a potential game [78] whenever there
exist a function Ψ

Ψ( j,σ−x)−Ψ(k,σ−x) = φ
(S j ; j)
x −φ(Sk;k)

x , (4.38)

meaning that when a mobile switches from BS j to k the difference of its utility
can be given by the difference of a function Ψ. This function is called as potential
function. Let us choose as following the potential function Ψ:

Ψ(σ) =
∑

j∈N





∑

a∈S j(σ)

u(x; j) +
∑

a∈S j(σ)

∑

b∈S j(σ)

v(a, b; j)





=
∑

j∈N

∑

a∈S j(σ)

u(a; j) +
∑

j∈N

∑

a∈S j(σ)

∑

b∈S j(σ)

v(a, b; j), (4.39)

where S j(σ) is the group of mobiles served by BS j in case of strategy tuple σ. Let
us rewrite the potential function as following:

Ψ(σx ,σ−x) =u(x;σx) +
∑

y∈Sσx

v(x , y;σx)

+
∑

j∈N

∑

a\x∈S j(σ)

u(a; j) +
∑

j∈N

∑

a\x∈S j(σ)

∑

b\x∈S j(σ)

v(a, b; j)

︸ ︷︷ ︸

I

.

(4.40)

When mobile x switches from σx to σ′x (the other mobiles do not change their
strategies), then the strategy tuple is transformed from σ to σ′, and the potential
becomes

Ψ(σ′x ,σ−x) =u(x;σ′x) +
∑

y∈Sσ′x

v(x , y;σ′x)

+
∑

j∈N

∑

a\x∈S j(σ′)

u(a; j) +
∑

j∈N

∑

a\x∈S j(σ′)

∑

b\x∈S j(σ′)

v(a, b; j)

︸ ︷︷ ︸

I ′

.

(4.41)

Note that I = I ′ since the total utility due to the other mobiles is equal in σ and
σ′. Thus, the difference of potentials is given by

Ψ(σx ,σ−x)−Ψ(σ′x ,σ−x) =u(x;σx) +
∑

y∈Sσx

v(x , y;σx)

− u(x;σ′x)−
∑

y∈Sσ′x

v(x , y;σ′x). (4.42)
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On the other hand, the difference of the utility of player x is calculated as

φ
(Sσx ;σx )
x −φ

(Sσ′x ;σ′x )
x =u(x;σx) +

∑

y∈Sσx

v(x , y;σx)

− u(x;σ′x)−
∑

y∈Sσ′x

v(x , y;σ′x). (4.43)

By this result we conclude that

Ψ(σx ,σ−x)−Ψ(σ′x ,σ−x) = φ
(Sσx ;σx )
x −φ

(Sσ′x ;σ′x )
x

which proves that GHD is a potential game.

Corollary 4.3.1 The proof 4.3.2 is constructive: any group formation game
possessing additively separable and symmetric utility gain of players within a
group always converges to a pure Nash equilibrium. Actually, the game GHD is a
straightforward generalization of party affiliation game [46].

4.3.5.1 What should be the additively separable and symmetric gain allocation?

To guarantee the stability, the allocation of utilities among in a group S served
by BS j must be additively separable and symmetric which is studied in Section
2.3.4. To this end, we would choose as following the condition in order that
the allocated utilities become additively separability and symmetric:

v(x , y; j) = θ∆(x , y; j) = θ (px j + py j −max(px j , py j)), if x 6= y

= 0, if x = y. (4.44)

where v(x , y; j) is the symmetric utility gain of mobile x and y when served
by BS j. θ is a parameter that must be adjusted according to the environ-
ment. It is affected by the intensity of mobiles and BSs as well as the area over
which the algorithm is run. Note that we are able to represent as v(x , y; j) =
θ min(px j , py j) if x 6= y . Thus, the preference function of any player x ∈ M
can be given by

φ(S; j)
x =θ

∑

y∈S

∆(x , y; j) + u(x; j) then,

φ(S; j)
x =θ

∑

y∈S

min(px j , py j)− px j , if S 6= ;

− px j if S = ;. (4.45)

Remark 4.3.2 The interpretation of θ : Consider the term min(px j , py j) of the
last preference function in eq. 4.45. Note that a mobile will prefer a BS where
its neighbour mobiles are intensified near to itself since the sum becomes higher.
Observe that this property is advantageous for decreasing the total power cost.
The importance of θ reveals here. Because, calibrating θ impacts the total power
cost in the following way:

When the operational power costs dominate the transmission power
cost,2 the value of θ is relatively small compared to the case where

2 It can be imagined as small cells deployment since we add the switching on/off or sleep mode
attributes; thus, when the small cell is switched off or in sleep mode, then the operational power
cost is zero.
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there is no operational power cost (it corresponds to the macro cell
deployment model since macro cells are always switched on). In other
words, to increase the impact of

∑

y∈S min(px j , py j), we have to choose
a higher θ when there is no operational power cost.

In the computational results section, we find the optimal θ ∗ which minimizes the
total power cost for different scenarios.

Assuming that each mobile is capable to discover those BSs that can transmit
to it, we can adapt the Algorithm 1 (Nash stability establisher) to determine
the assignments. Recall the scheduler that we discuss in Section 2.1.7. We
can produce a scheduler in the following way: each BS generates a random
clock-time for all those mobiles that it can transmit; then each mobile selects
randomly a clock-time from those BSs that it can discover. We need to produce
the clock-times by such a way that the collision of the turns of mobiles is
minimal. In case of a collision, the clock-times of the corresponding mobiles
are regenerated by corresponding BSs.

In Algorithm 5, the pseudo-code of the HD is given. Note that this is an algo-
rithm preformed in both BS and mobile side by an exchange of the information
in a separated channel.

Algorithm 5 The Hedonic Decision

Base Station:
Check stability
if there is no stability then

Send information to each mobile about the current partition
Generate clock-times for each mobile

else
Stop the procedure and inform each mobile that the stability is found

end if
Mobile:
Select randomly a clock-time and inform each BS
Determine the preferred BS according to eq. 4.45
Send the preferred BS to each BS

Corollary 4.3.2 In the literature, the use of game models for set covering prob-
lems is called as set covering games [50], [51], [52]. The HD algorithm is a
novel approach for set covering games. It is suitable for any set covering and also
facility location problem where the agents are allowed to make strategic decisions.

4.4 T I M E C O M P L E X I T Y A N A LY S I S

In this section, we calculate time complexities of the proposed algorithms.
Let us assume that m= kn. The input size is supposed to be the total number

of elements of the power cost matrix, denoted as x = nm. This choice provides
us to calculate the time complexity T (x) in terms of x . It is straightforward to
obtain that n=

q

x
k

and m=
p

kx .

Theorem 4.4.1 The time complexity of the HM algorithm is O
�

x
1
2
(1−logq x)

�

.

Proof 4.4.1 Note that there are at most n − 1 =
q

x
k
− 1 operations finding

the maximum value of a column of the power cost matrix in a step, and a single
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operation for finding minimum of a vector which could have n values, at most
m=

p
kx steps until a convergence to the optimal case. The selection algorithms

(finding maximum or minimum) have the time complexity O(x) [43]. Moreover,
in each step a sub power cost matrix occurs with time complexity T (qx) where
0 < q < 1. qx is the number of values of sub power cost matrix. q is a random
variable which is affected by the shadowing and the position of mobiles and BSs.
Then, we are able to express the time complexity as

T (x) =
p

kx

��
s

x

k
− 1

�

�

O
�p

kx
�

+ T (qx)
�

+O

�
s

x

k

��

≤
p

kx

�
s

x

k

�

c
p

kx + T (qx)
�

+ c
s

x

k

�

= cx
p

kx + x T (qx) + cx . (4.46)

Solving this difference equation, we obtain the following complexity:

T (x) = O
�

x
1
2 (1−logq x)

�

. (4.47)

Note that q determines significantly the complexity of the HM algorithm. In-
creasing values of q means that the algorithm has to be run for further sub
power matrices.

Theorem 4.4.2 The time complexity of the CC algorithm is O
�

x
1−q

�

.

Proof 4.4.2 The CC algorithm performs m =
p

kx operations for finding how
many mobiles can be assigned to each BS. We assume that this operation has
O(
p

kx) complexity. Choosing the BS to which can be assigned the most mobiles
has the same complexity as finding maximum given by O(

q

x
k
) operations, and

there is also a minimization operation. Then, the time complexity can be calcu-
lated by

T (x) =
s

x

k
O
�p

kx
�

+ 2O

�
s

x

k

�

+ T (qx)

≤ c1 x + 2c2

s

x

k
+ T (qx). (4.48)

Thus, the time complexity is found to be

T (x) = O

�

x

1− q

�

+
2c2

�p
x − 1

�

p
k
�

1−pq
� −

c1

1− q
+ 1. (4.49)

Theorem 4.4.3 The time complexity of the NBS algorithm is O
�
q

x
k

�

.

Proof 4.4.3 It is straightforward because the only operation that is performed in
the NBS algorithm is to find the minimum value of a vector of power cost matrix
having a dimension at most n=

q

x
k
. Therefore, the time complexity is O

�
q

x
k

�

.

4.5 D O W N L I N K S Y S T E M M O D E L

The cellular network model consists of BSs arranged according to some ho-
mogeneous Poisson point process Φ of intensity λb (points/m2) in the Eu-
clidean plane [26]. Also, we consider an independent collection of mobile
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users, located according to some independent homogeneous Poisson point pro-
cess with intensity λm (points/m2). The main weakness of the Poisson model
is that because of the independence of the Poisson point process, BSs will in
some cases be located very close together but with a significant coverage area.
This weakness is balanced by two strengths: the natural inclusion of different
cell sizes and shapes and the lack of edge effects, i.e. the network extends in-
definitely in all directions [13]. The expected value of a homogeneous Poisson
point process is E[Φ] = λA, where A ⊂ ℜ2 denotes some area. The snapshot
depicted in Figure 4.2 shows the distribution of BSs and mobiles with intensity
λb = 44.4× 10−5 points

m2 and λm = 2.5× 10−5 points
m2 where A= 9 km2.

Moreover, the deployment scenario in the figures 4.3, 4.4, 4.5, 4.6, 4.8 is
considered to be in the small cell network context. Clearly, the general term
“small cell networks” covers a range of radio network design concepts which
are all based on the idea of deploying BSs much smaller than typical macro
cell devices to offer public or open access to mobile terminals [10]. We assume
Pr = −10 dBm, being the typical received signal power of a wireless network
as well as we set the transmission power Pi j =∞ if Pi j ≥ 20 dBm which is the
upper bound in WiFi.

We assume to be the equal operational power cost for each BS, P0 = 12 W .
Furthermore, we enumerate the BSs and mobiles according to the distance
between the corresponding node (BS, mobile) and the origin assumed to be
(0,0) (Figure 4.2).

4.6 C O M P U TAT I O N A L R E S U LT S

We compare the proposed algorithms for different values of λm and λb. We
also aimed to obtain the results in a range milliseconds of running time in
order to calculate the average total power when comparing the algorithms
with the HM algorithm. Moreover, we set the path loss exponent α= 3.

The average total power was calculated by Monte Carlo simulations by run-
ning the algorithms for different generated power cost matrices for some iter-
ation number t and taking the mean of the result, which can be given by

P(0) = 0,

P(i + 1) = P(i) + p, i = 0, . . . , t

p̄ =
P(t + 1)

t
. (4.50)

In Table 4.1, the comparison of the SC and the developed algorithms is
given for different example power cost matrices in case of the operational
power cost P0 = 0 for all BSs. We consider the hexagonal-type deployment
of macro cells The transmission power Pi j =∞ if Pi j ≥ 48 dBm. It turns out
that the HD algorithm is very efficient to converging to optimal assignments
when we do not take into account P0. This result is meaningful since we do
not lose switching on any BS in order to decrease the total power. The NBS
algorithm also produces near optimal results in many examples. Generally, the
fast-moving users are considered to be served by macro BSs [11]. Basically, in
the green networking approach, the switching off operation is not performed
for macro cells In this context, it is reasonable, the fast-moving users assumed to
be served by macro BSs to use the NBS algorithm for choosing the BS to receive
the broadcast data.
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Table 4.3 compares the SC algorithm with all developed algorithms intro-
duced in this work in case of the operational power cost P0 = 12 W . The
deployment is considered to be in the small-cell context. The CC algorithm pro-
duces optimal assignments nearly all examples as well as the DCC algorithm is
very efficient for the considered examples. However, the DCC algorithm natu-
rally performs worse when the number of BSs increases (we mention detailed
in the sequel about that result). Moreover, the NBS algorithm does not give any
optimal result in the comparison. This is due to the fact that the operational
power cost which is relatively higher than the transmission power privilege
large cells. On the other hand, the HD algorithm is also efficient when the
parameter θ is calibrated properly. In many scenarios, it gives optimal or near-
optimal results. In the sequel, we explain the advantages of the HD algorithm
compared to the others.

Figure 4.3 plots the average total power p̄ with respect to intensity of BSs
λb when increasing the intensity of mobiles

λm = (0.016, 0.025,0.044, 0.1)× 10−3 points

m2

in an area A= 4 km2. The figure implies that p̄ increases exponentially when
the intensity of mobiles goes up in case of P0 = 12 W . Although the average
total power decreases while the intensity of BSs increases in case of P0 = 0,
the effect of operational power costs arises dramatically. The reason is that
the cell size diminishes when increasing the intensity of BSs, resulting in more
switched on BSs, and consequently, too high average total costs emerge.

Looking into Figure 4.4, the advantage of the CC algorithm is obvious. It
copes very efficiently with increasing intensity of BSs, where the average total
power decreases significantly. We have this performance since the CC algo-
rithm privileges larger cells which provide less switched on BSs.

Furthermore, in Figure 4.5, we depict the performance of the DCC algo-
rithm under the same conditions. It is an expected result that the average
total power increases when the intensity of BSs is getting high. Because, while
each mobile develops its own power cost matrix, the probability of activation
of a cell increases when intensifying the number of BSs. Thus, the mobiles
might choose different BSs resulting in smaller cells. On the other hand, com-
paring the DCC algorithm with NBS algorithm, we observe from Table 4.4, the
advantage of the DCC algorithm. The ratio of the average total power of the
NBS and the DCC is given in Table 4.4. When the intensity of BSs increases to
λb = 10×10−5 points

m2 , the average total power of the NBS is 7.83 times higher
than the average total power of the DCC.

4.6.1 Comparison of Proposed Algorithms with respect to the Intensity of Mo-
biles

We adopt the greedy set cover algorithm (greedy-SC) which is developed in
[42] for comparison with proposed algorithms.

Figure 4.6 plots the change of the average total power with respect to the
intensity of mobiles for small cells scenario. The assumptions are as following:
λb = 1.11 × 10−5 points

m2 , θ = 0.002 (in Figure 4.8, the optimal θ is found),
and area A= 6.25km2. Note that the HD algorithm performs efficiently even
though it is decentralized. For example, in case of λm = 8×10−8, the average
number of mobiles is given by 8 × 10−8 · 6.25 × 106 = 50; thus, the aver-
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age power used per mobile is calculated as following: a) the HD algorithm:
63/50 = 1.26W , b) the CC algorithm: 55/50 = 1.1W , c) the greedy-SC algo-
rithm: 50/50= 1W , d) the SC algorithm: 43.83/50= 0.88W .

Figure 4.9 depicts the change of the average total power with respect to the
intensity of mobiles for macro cell deployment. λb =

80points
3600km2 , A = 3600km2

(60km × 60km area), and θ = 0.21 (in Figure 4.9, we plot the change of
average total power with respect to θ , and choose the optimal value). Here,
we observe that the HD algorithm produces remarkable results. Calibrating θ
properly is significant, otherwise the HD algorithm may not converge to the
near optimal results. On the other hand, the NBS algorithm is also efficient
in the macro cell deployment. The drawback of greedy-SC algorithm reveals
here since it works with a mechanism where the larger cells are privileged.

In Figures 4.8 and 4.9, the normalized average total power is plotted with
respect to θ . From the figures and our observations in experiments performed
in MATLAB, it might be considered that θ is mainly affected by the area over
which the algorithm is run. For example, in Figure 4.9, the normalized average
total power has a minimum in the same value of intensity of BSs, but it moves
to a higher value when the area is enlarged from 2500km2 to 3600km2.

Figure 4.10 shows the change of the average number of rounds (see Section
2.2) of the HD algorithm for converging to a Nash equilibrium with respect to
the area. The figure implies that the average number of rounds has a logarith-
mic characteristic. Moreover, when the operational power costs are zero, the
average number of rounds increases since smaller cells are formed; therefore,
the HD algorithm needs more rounds to converge to a Nash equilibrium.

4.7 C O N C L U S I O N

We considered the MAP in broadcast transmission in the “green” context. We
proposed a centralized optimal recursive algorithm (the HM) as well as a cen-
tralized polynomial-time heuristic algorithm (the CC). Further, we developed
a distributed approach to the CC algorithm (the DCC), and another distributed
one called the NBS algorithm. We also introduced a new algorithm based on
group formation games, which we call as the hedonic decision (HD) algorithm.
This formalism is constructive: a new class of group formation games is intro-
duced where the utility of players within a group is additively separable and
symmetric being a concept in hedonic coalition formation games. Simulation
results were used to verify the performance of the algorithms. We realized that
the HD algorithm produces near-optimal solutions.
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Table 4.1: A= 2500km2, λb =
6points

2500km2 , λm =
1point
25km2 , P0 = 0 W , θ = 0.11.

Example i m n HM SC CC DCC NBS HD

1 54 6 294.0360 294.0360 294.0360 295.5705 294.0360 294.0360

2 43 6 299.8159 299.8159 323.6194 352.1657 299.8159 299.8159

3 46 6 250.4830 250.4830 271.4828 271.4828 250.4830 250.4830

4 41 6 270.4417 270.4417 302.8145 287.9684 284.5738 283.0740

5 51 6 307.7226 307.7226 361.7673 361.7673 320.2662 307.7226

6 45 6 278.5206 278.5206 317.5086 317.5086 278.5206 278.5206

7 41 6 305.1243 305.1243 345.3096 345.3096 306.8924 312.2107

8 34 6 221.5681 221.5681 236.7168 236.7168 256.0736 221.5681

9 58 6 360.3562 360.3562 363.1885 363.1885 360.3562 360.3562

10 52 6 310.0721 310.0721 310.0721 310.0721 332.0735 332.0735

11 44 6 283.9244 283.9244 313.8116 339.6551 283.9244 283.9244

12 49 6 312.9718 312.9718 312.9718 312.9718 325.5796 337.9936

13 53 6 229.9336 229.9336 255.3125 255.3125 229.9336 232.6530

14 60 6 308.6002 308.6002 308.6002 308.6002 320.2059 320.2059

15 57 6 329.2667 329.2667 342.8460 354.0650 329.2667 335.9528

Table 4.2: A= 4 km2, λb =
6points
4km2 , λm =

18points
4km2 , P0 = 12 W , θ = 0.003.

Example i m n HM SC CC DCC NBS HD

1 14 4 24.153 24.153 24.153 24.153 48.183 24.153

2 14 7 24.140 24.140 36.226 36.226 72.139 24.152

3 23 7 36.138 36.138 48.177 48.275 84.042 48.185

4 16 7 36.195 36.195 36.195 36.257 72.208 48.204

5 19 4 24.109 24.109 24.109 36.174 48.126 36.184

6 7 3 12.070 12.070 12.070 12.070 24.073 12.070

7 15 8 36.178 36.178 36.178 36.222 84.241 36.222

8 15 7 24.110 24.110 24.110 24.144 72.101 24.154

9 18 9 36.099 36.099 36.148 36.253 84.042 36.148

10 24 6 36.111 36.111 36.191 36.191 60.134 36.191

11 21 3 24.149 24.149 24.149 24.149 36.162 24.149

12 18 10 36.111 36.111 36.111 48.141 84.053 48.152

13 23 5 36.105 36.105 36.105 48.143 60.218 36.105

14 13 4 24.082 24.082 24.104 24.104 48.123 24.110

15 17 8 36.190 36.190 36.190 36.217 60.217 36.190
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Table 4.3: λb = 0.10× 10−3 points
m2 , λm = 1.11× 10−3 points

m2 , P0 = 12 W , θ = 0.008.

Number of rounds

Example A= 0.98km2 A= 1.28km2 A= 1.62km2 A= 2.00km2

1 3 2 3 3

2 3 3 3 3

3 3 3 2 3

4 2 3 3 3

5 3 2 3 3

6 3 3 3 3

7 3 3 3 4

8 3 3 3 4

9 3 3 3 3

10 3 3 3 4

Table 4.4: A= 4 km2, λm = 0.16× 10−4 points
m2 , P0 = 12 W .

λb 1.6× 10−5 2.5× 10−5 4.4× 10−5 10× 10−5

p̄NBS

p̄DCC
5.91 6.54 7.15 7.83

x(m)

y(m)

 

 

0 500 1000 1500 2000 2500 3000
0
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1000

1500

2000

2500

3000
Base station
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Figure 4.2: Distribution of BSs and mobiles in Euclidean plane. λb = 44.4×10−5 points
m2 ,

λm = 2.5× 10−5 points
m2 .
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Figure 4.3: The NBS Algorithm: Change of the average total power p̄ with respect
to intensity of BSs λb for increasing values of intensity of mobiles λm =
(0.16, 0.25,0.44,1.00)× 10−4 points

m2 , A= 4 km2.
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Figure 4.4: The CC Algorithm: Change of the average total power p̄ with respect to
intensity of BSs λb for increasing values of intensity of mobiles λm =
(0.16, 0.25,0.44,1.00)× 10−4 points

m2 , A= 4 km2, P0 = 12 W .
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Figure 4.5: The DCC Algorithm: Change of the average total power p̄ with respect
to intensity of BSs λb for increasing values of intensity of mobiles λm =
(0.16, 0.25,0.44,1.00)× 10−4 points

m2 , A= 4 km2, P0 = 12 W .
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Figure 4.6: Small cells: Change of the average total power p̄ with respect to the inten-
sity of mobiles.
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Figure 4.7: Macro cells: Change of the average total power p̄ with respect to the inten-
sity of mobiles.
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Figure 4.8: Small cells: Change of the normalized average total power with respect to
θ .
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T H E M O B I L E A S S I G N M E N T P R O B L E M I N B R O A D C A S T
T R A N S M I S S I O N : C O A L I T I O N A L G A M E A S P E C T S

5.1 I N T R O D U C T I O N

We study the combined problem of (i) deciding what subset of the mobiles
would be assigned to each BS, and then (ii) sharing the BSs’ cost of multicast
among the mobiles. The subset that we wish to assign to a given BS is said to
be its target set of mobiles. A cost sharing rule consists of a pricing policy that
determines the share that each mobile within the target set would pay. We are
interested in the sharing policies that are stable in the sense that no subset of
the M mobiles could pay strictly less than their cost share by forming a new
separate multicast group.

This work builds on [45] who studied the case of a single BS. They studied
(i) the cost sharing problem as well as (ii) the combined association and cost
sharing problem. In the latter, each mobile was able to decide whether to join
a dedicated unicast channel or to join the multicast session, in which case it
was a part of the coalition game at the BS. The analysis strongly depended
on the submodularity property which held in the case of a single BS. We here
prove that submodularity doesn’t hold in the case of multiple BSs.

5.1.1 Our Contribution

The starting point here has been our attempt to extend the submodularity
property to the case of two BSs. Instead, however, we provide a counter exam-
ple that shows that indeed already in the case of two BSs, submodularity does
not hold.

We appreciate it as a coalitional game played by mobiles and prove that
this game has an incentive to form grand coalition where all players join to
the game. Furthermore, using Bondareva-Shapley theorem [62], we show that
this coalition game has a non-empty core which means that grand coalition is
stable. Then, we examine the cost allocation policy for different methods such
as egalitarian allocation, proportional repartition of total cost, the Shapley
value [29] and the nucleolus [65].
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5.2 T H E C O A L I T I O N A L G A M E

The players are the mobiles, and they are subject to optimal assignments exe-
cuted by the cellular network. Consider a subset S ⊆ M representing a coali-
tion. The total cost arising due to S is given by

C(S) = f













min
S∈AS

∑

i∈S

max
j∈N

S⊗ PS

︸ ︷︷ ︸

optimal power cost pS













, (5.1)

where AS is the all possible assignment matrices, S is the assignment matrix,
and PS is the power cost matrix due to the coalition S. The cost f (pS) can be
some amount of money for subscription a multicast/broadcast service, which
is a function of the optimal power cost pS arising due to coalition S.

5.2.1 Properties of the Coalitional Game

In the sequel, we order the properties of the considered coalitional game.

Lemma 5.2.1 Monotonically Increasing: Let A⊆ B ⊆ M. Then C(A)≤ C(B).

Lemma 5.2.2 Subadditivity: Let A, B ⊆ M, and A∩ B = ;. This property means
that

C(A) + C(B)≥ C(A∪ B). (5.2)

Grand coalition meaning that each player demands to join the coalition, is
guaranteed due to subadditivity. This arises from the fact that all players have
incentive to minimize the cost.

Lemma 5.2.3 The problem is not submodular.

Proof 5.2.1 Let A, B ⊆ M. Submodularity is defined by the following property

C(A) + C(B)≥ C(A∪ B) + C(A∩ B). (5.3)

Submodularity is known to possess some important properties in coalitional game
theory. If a coalitional game owns the submodularity property, it is called as
convex game. Convex games have many nice properties such as the core of a
submodular game is nonempty, it is a unique von Neumann-Morgenstern solution,
and the Shapley value is the barycenter of the core [69].

The following equivalent characterization of submodularity can be used to
prove Lemma 5.2.3 [66]

C(A∪ i)− C(A)≥ C(B ∪ i)− C(B),∀A⊆ B ⊆ M \ i, (5.4)

for all i ∈ N. In many cases it is easy to prove that submodularity holds. However,
different counter examples can be obtained, especially when a new mobile arriving
induces an association change for another mobile, as illustrated in the counter
example in Figure 5.1 (m3 is not associated with the same BS when considering
subset A or B).
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Counter example where the 
submodularity does not hold

m3 is not associated with the 
same BS when considering 
subset A or B

m1 m2 m3 m4

8 1
10 12 11

A

B

Figure 5.1: A counter example scenario of submodularity.

C(A) = 10,

C(A∪ i) = 10,

C(B) = 12+ 1= 13,

C(B ∪ i) = 12+ 8= 20

These values do not provide submodularity,

C(A∪ i)− C(A)< C(B ∪ i)− C(B) (5.5)

Lemma 5.2.4 This game is totally balanced. Therefore, its core is non-empty.
The core is defined in the sequel.

Proof 5.2.2 According to the Bondareva-Shapley theorem if a coalitional game
is balanced, it has a non-empty core. Balancedness is satisfied if and only if the
inequality [62]

C(M)≥
∑

S⊆M

λSC(S) (5.6)

holds for all S ⊆ M where balanced weights (λS)S⊆M ≥ 0 and
∑

S⊆M :i∈S λS = 1,
∀i ∈ M. Let us consider the following linear program

max
∑

S⊆M

λSC(S) subject to

(λS)S⊆M ≥ 0 and
∑

S⊆M :i∈M

λS = 1,∀i ∈ M (5.7)

which can be written in matrix form as following:

maxλC subject to

λA= 1, λ≥ 0. (5.8)
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Clearly, if the solution of this problem is C(M), then we are able to conclude that
there does not exist balanced weights (λS)S⊆M that does not satisfy the balanced-
ness conditions.

For solution, we examine the dual program of this problem given by

minν subject to

Aν≥ C, ν unbounded. (5.9)

where and bolds ymbolν represents the dual variables. Thanks to the subaddi-
tivity property of the cost function C, the result of the dual program is C(M). All
possible combinations in Aν will surpass C(M).

Furthermore, the association game is totally balanced. By definition, if each
subgame of a coalitional game is balanced, it is called as totally balanced game
[66]. Since each subgame of considered problem is an association game, we can
conclude that the association game of mobiles is totally balanced.

5.3 C O S T A L L O C AT I O N M E T H O D S

In this section, the solution concepts of this coalitional game are studied. Min-
imized total cost is distributed to the players using some methods as described
in the following.

We represent as φ ∈ RM the cost allocation method where pi is the cost of
player i. The question here is: What is the most desirable allocation method for
distribution of total cost? Cost allocation methods should own some properties
in order to make convinced the players. We order them as following. However,
there is no method which possesses all these properties [67]:

• φ is said to be an efficient cost allocation method if
∑

i∈M φi = C(M).

• φ is said to be an individually rational cost allocation method if φi ≤
C(i).

• φ is said to be a stable cost allocation method if it lies in the core. Pro-
vided that the core is non-empty, no coalition has incentive to leave the
grand coalition and receive a smaller cost.

• φ is said to have the dummy player property if C(S ∪ i) − C(S) = C(i)
then φi = C(i) for all i ∈ M and S ⊂ M \ i.

• φ is said to have the symmetry property if C(S ∪ i) = C(S ∪ j) then
φi = φ j for all S ⊂ M \ i ∩ j.

• φ is said to have the additivity property if φ(C1 + C2) = φ(C1) +φ(C2)
where C1 and C2 are cost functions.

5.3.1 Egalitarian Allocation

The simplest distribution of the total cost is egalitarian allocation. It divides
equally the total cost to the players [67], i.e.

φi =
C(M)

M
. (5.10)

This method is not individually rational and does not possess the dummy, sym-
metry player, and additivity property. It does not lie in the core, as well [67].
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5.3.2 Proportional Repartition of Total Cost

A fairer allocation is proportional repartition of total cost [68]:

φi =
C(i)

∑

j∈M C( j)
C(M). (5.11)

However, it is not stable as well as does not satisfy the dummy, symmetry
player, and additivity property.

5.3.3 The Shapley Value

Shapley [29] has proved that there exists one and only one allocation that
satisfies all the properties except stability, which is given by

φi =
∑

S⊆M\i

|S|! (M − |S| − 1)!
M !

(C(S ∪ i)− C(S)) . (5.12)

This captures the “average marginal contribution” of player i, averaging over
all the different sequences according to which the grand coalition could be
built up from the empty coalition.

5.3.4 The Nucleolus

Define the excess

e(φ, S) = C(S)−
∑

i∈S

φi (5.13)

which measures the “happiness degree” of each coalition S. The nucleolus is
the imputation that lexicographically maximizes the minimal excess. In other
words, the nucleolus minimizes maximum unhappiness. The solution of the
following linear program gives the nucleolus [68]

maxδ subject to (5.14)
∑

i∈S

φi +δ ≤ C(S),∀S ⊂ M \ ; (5.15)

∑

i∈M

pi = C(M),∀i,φi ≥ 0. (5.16)

If the core is non-empty, the nucleolus is in the core.
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Table 5.1: Allocation of costs for different methods

EA PR SV N

φ1 5.00 5.33 6.25 8.00

φ2 5.00 0.67 0.42 0.00

φ3 5.00 6.67 4.08 2.00

φ4 5.00 7.33 9.25 10.00

5.4 P O S S I B L E S C E N A R I O

We calculate the allocations for the scenario considered in Figure 5.1 with
respect to explained allocation methods. First, let us obtain the core of this
scenario. It can be found by the following linear program

max(φ1 +φ2 +φ3 +φ4) subject to

φ1 ≤ 8,φ2 ≤ 1,φ3 ≤ 10,φ4 ≤ 11,

φ1 +φ2 ≤ 8,φ1 +φ3 ≤ 10,φ1 +φ4 ≤ 19,

φ2 +φ3 ≤ 10,φ2 +φ4 ≤ 12,φ3 +φ4 ≤ 12,

φ1 +φ2 +φ3 ≤ 10,φ1 +φ2 +φ4 ≤ 19,

φ2 +φ3 +φ4 ≤ 13,φ1 +φ3 +φ4 ≤ 20,

φ1 +φ2 +φ3 +φ4 ≤ 20.

A solution of this linear program is the cost allocation vector given by (φ1,φ2,φ3,φ4) =
(8,0, 2,10) which lies in the core. The nucleolus (N) in Table 5.1 overlaps
with this solution from the core. This shows the stability property of the nu-
cleolus which means that minimization of total cost for broadcast transmis-
sion is provided. But it does not satisfy dummy player, symmetry, and addi-
tivity property. As for the Shapley value (SV), it fails in stability. For example,
φ1+φ3 = 6.25+4.08= 10.33> 10. Since considered scenario is not submod-
ular that we proved above, the Shapley value does not lie in the core. However,
in submodular case, the game becomes convex and the Shapley value is the
center of gravity of convex game’s core [69]. Egalitarian allocation (EA) di-
vides equally the total cost which is the least complex algorithm compared to
the others. However, it is not fair and stable. Proportional repartition of total
cost (PR) is fairer than egalitarian allocation, but it fails in stability, dummy
player, symmetry, and additivity properties.

In summary, if the nucleolus is used as a cost allocation algorithm, the play-
ers maintain the grand coalition. Therefore, the nucleolus satisfies the objec-
tive of an optimal total cost. In the case of the other methods, players have
incentive to break the grand coalition and look for other smaller coalitions
which could result in non-optimal results.

5.5 C O N C L U S I O N

We considered the association problem of mobiles using a coalitional game ap-
proach. It is an optimal assignment problem between BSs and mobiles in order
to minimize the total cost which is determined by the transmission power. We
proved that the players of the game form grand coalition and the core of this
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game is non-empty. Moreover, we also studied the game for some cost sharing
methods and showed that in case of the nucleolus the grand coalition is stable,
and it minimizes the total cost in broadcast transmission.
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6
S W I T C H I N G O F F B A S E S TAT I O N S : D O W N L I N K
C O N S I D E R AT I O N S

6.1 I N T R O D U C T I O N

Energy consumption can be reduced by dynamically switching off/on cells,
base stations (BSs) and other radio resources (e.g. transmit antennas), accord-
ing to observed traffic load, resource utilization, quality and coverage.

We consider downlink transmission in cellular networks where we target to
reduce the energy consumption by switching off some BSs by such a way that
the distribution of SINR remains unchanged. We assume full frequency reuse.
Each mobile is associated with the BS being nearest to it. All BSs being out
the nearest one cause interference to the mobile. The question that we ask is
“How many BSs can be switched off in order that the distribution of the SINR
remains unchanged?”. We model the problem as a homogenous independently
marked Poisson point process.

We analyze for line and plane cases, the gain in power consumption ob-
tained after switching off BSs. It turns out from calculations that the more the
operational cost the less the gain in power consumption, and similarly, the
higher the dimension (distribution of BSs in line and plane means one and
two dimensions, respectively) the less the gain in power consumption.

6.2 T H E M O D E L

We assume full frequency reuse. Each mobile is associated with the BS being
nearest to it. All BSs being out the nearest one cause interference to the mobile.

We consider a homogenous independently marked Poisson p.p. of BSs repre-
sented by Φ̃=

∑

i δ(X i ,Mi) where X i shows the location of BS i, and Mi denotes
the mark corresponding to the BS i. Indeed, a mark shows the energy profile
of related SP. Consider a tagged mobile at an arbitrary point on the Euclidean
plane, say the origin (Figure 6.1).

Let p0 denote the point in Φ̃ which is the closest to it, and represents the BS
to which it is connected. Let di be the distance of pi to the origin. Moreover,
suppose that average transmission power of a typical BS is Pt . This power
should be understood as resulting from a long-term observation the SP per-
forms. We consider an attenuation due to a path-loss with exponent α as well
as the effect of fading denoted by the random variable h. The transmission
power received at the tagged mobile from p0 is thus given by Pth0d−α0 . Thus,
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Nearest base station

x

y

e deployment of base 
stations of a service provider 

is assumed to follow a 
homogenous Poisson point 

process

Example deployment as 
Poisson point process

Figure 6.1: Example deployment.

the total average interference from other BSs is Pt

∑

i∈Φ\p0
hid

−α
i . Hence, the

SINR at the mobile is [12]

SINR=
Pth0d−α0

Pt

∑

i∈Φ\p0
hid

−α
i +σ2

=
Pthr−α

I +σ2 , (6.1)

where σ2 stands for additive noise variance.

6.2.1 Base Station Energy Profile

The energy consumption model is mandatory to predict the power consump-
tion of a typical BS as a function of the traffic load. In this work, we adopt a
linear energy profile model for a typical BS formulated as

P = P0 + βPtot , (6.2)

where P0 denotes the power consumption for operational tasks, β is the slope
of the traffic-dependant part, and Ptot is the total transmitted power by the cor-
responding BS. Further, we assume that the average total transmission power
is a function of the traffic intensity, given by

Ptot(T ) = p+w f
� T

λ

�

, (6.3)

where p is the minimum average total transmission power, e.g. signaling over-
head in common pilot or control signal, w represents the power used per
throughput (W/bps) as well as T is the traffic intensity (bps/m2) and λ is
the intensity of BSs (points/m2) of the corresponding SP. In this work, we
suppose that p and w are equal of each SP. Note that T/λ is the traffic per
BS (bps/point). The function f (T/λ) represents the power consumption as
a function of the traffic.
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Actually, different energy profiles could be proposed [71, 15, 16]. Here,
since we focus to work on the coalitional game, we consider without loss of
generality a simple linear model.

6.2.2 SINR Distribution

By considering only the SINR, it means that we do not take into account any
power control at the transmission. Here, the transmission power is constant
for all mobiles.

First, we give the definition of coverage probability [13]:

pC = P{SINR> ρ}, (6.4)

where ρ is the target SINR that ensures the coverage. The distribution of the
SINR is thus the complementary probability of the coverage probability, i.e.
pSINR = 1− pC .

The distance between the origin and the nearest BS has the following prob-
ability density function [13]:

f (r) = e−λπr2
2πλr. (6.5)

Conditioning on the nearest BS being at a distance r from the mobile, the
probability of coverage is

pC(λ) =

∫ ∞

0

P

(

h>
ρ(σ2 + I)

Pt r−α

�

�

�

�

�

r

)

exp(−πλr2)2πλrdr. (6.6)

If we consider the case of Rayleigh fading, the random variable h ∼ exp(µ)
follows an exponential distribution with mean 1/µ, and therefore [13]

pC(λ) =

∫ ∞

0

exp

�

−
µρσ2

Pt r−α

�

LI

�

µρ

Pt r−α

�

exp(−πλr2)2πλrdr, (6.7)

where LI(s) is the Laplace transform of random variable I given as

LI(s)¬ E{exp(−sI)}= EΦ,hi







exp



−sPt

∑

i∈Φ\p0

hid
−α
i











= EΦ







∏

i∈Φ\p0

Eh

�

exp
�

−sPthd−αi

�	







= exp

�

−
∫ ∞

r

�

1− Eh

�

exp
�

−sPthx−α
�	�

2πλd x

�

= exp

 

−2πλ

∫ ∞

r

x

1+ µ

sPt x−α
d x

!

(6.8)

where s = µρ

Pt r−α
and the expectation over the fading and the p.p. are indepen-

dent. Since the all hi have the same distribution, we are able to calculate the
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expectation over only one variable denoted as h. Hence, the distribution of
SINR can be calculated by

pSINR(λ) = 1− pC(λ) (6.9)

= 1− 2πλ

∫ ∞

0

exp

�

−πr2λ

�

1+

2ρ 2F1

�

1, 1− 2
α

; 2− 2
α

;−ρ
�

α− 2



−
µρσ2

Pt r−α



 rdr,

in which hypergeometric function 2F1(a, b; c; z) is a special function repre-
sented by the hypergeometric series defined for |z| < 1 by the power series

2F1(a, b; c; z) =
∞
∑

n=0

(a)n(b)n
(c)n

zn

n!
(6.10)

provided that c 6= 0,−1,−2, . . .. Here ( f )n is the Pochhammer symbol defined
by

( f )n =

(

1, if n= 0,

f ( f + 1) · · · ( f + n− 1), if n> 0.
(6.11)

For α= 4, the coverage probability can be found to be as following:

pC(λ,α= 4) =
λ

2σ

√

√

√π3Pt

µρ
erfc

�

πλ

2σ

√

√ Pt

µρ

�

1+
p
ρ tan−1

�p
ρ
��

�

×

exp

 

�

πλ

2σ

√

√ Pt

µρ

�

1+
p
ρ tan−1

�p
ρ
��

�2!

. (6.12)

6.3 S W I T C H I N G O F F B A S E S TAT I O N S

In this section, we introduce the underlying approach to the problem in which
the BSs are turned off. We assume that a SP has an observation that a typical BS
is activated with some probability q. According to data traffic the SP turns on
or off a BS. It gathers the information of this operation and set the activation
probability q during that long enough period observations. However, we look
for such an optimum value of q by which the SP maximizes its own energy
saving introduced in Section 6.4.4.

6.3.1 Scaling

In this section, we adopt the technic of thinning a p.p which is performed
through scaling. We put forward in [12] this approach. Also, here, we give a
proof which does not exist in [12].

Consider Figure 6.2 in which we depict the scaling effect on a p.p. (if no
otherwise stated we assume that p.p. is always homogenous Poisson one). We
scale up the p.p. from the origin. The dark red points correspond to the p.p.
which is obtained after scaling of the initial one (showed by shiny red points).
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Mobile is in the origin

Scaling the homogenous 
Poisson point process by a 
factor

is figure shows that scaling is figure shows that scaling 
is equivlanet to thinning of a 
homogenous Poisson point 
process

inning through scaling

Before scaling
After scaling

Scaling

Figure 6.2: Scaling.

Recall that we model the network as an independently marked Poisson p.p.
Φ̃. In the following, we derive the intensity measure of points of Φ̃q being a
thinned version of the initial one.

Lemma 6.3.1 Thinning through scaling: Choose some 0 ≤ q ≤ 1. Scaling
each coordinate by

p
q in R2 results in a p.p. Φq of intensity measure qΛ if the

initial p.p. Φ has some intensity measure Λ.

Proof 6.3.1 Let the coordinates of a typical point on some E ⊂ R2 be x and y,
respectively. Scaling up each coordinate by q gives the new coordinates x ′ = x/q
and y ′ = y/q, respectively. We know that the distance from the origin before
scaling is d =

p

x2 + y2. After scaling the distance becomes d ′ = 1
q

p

x2 + y2

which means that each point moves away from the origin by

d ′ =
d

q
. (6.13)

It is straightforward to understand that when scaling up only one coordinate by
q results in a new p.p. with intensity measure qΛ. Then, we are able to state that
scaling up each coordinate by q brings out a new p.p. with intensity measure q2Λ.

Eventually, a new p.p Φq is obtained by scaling each coordinate by
p

q of the
original one Φ which corresponds to the deleting independently points with prob-
ability 1− q. Deleted points should be imagined as the BSs that are switched off.
Consequently, the new intensity measure is Λq = qΛ.

6.3.2 SINR Distribution of the Scaled Network

Let us now calculate the new SINR distribution while the initial p.p. is scaled
by
p

q. If we replace all di in (6.1) by d ′i and replace Pt by P̄t then we can
interpret the SINR distribution of the original p.p. as the one corresponding
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to a network where BSs are located according to a new p.p. with intensity
parameter λq = qλ where P̄ = P0 + β P̄tot .

Using the relation of transmission power given in eq. (6.3), the coverage
probability given in eq. (6.9) can be expressed as

pC(λ) = 2πλ

∫ ∞

0

exp

�

−πr2λ(1+ 2 f (α,ρ))−
µρσ2

Pt r−α

�

rdr. (6.14)

The scaling of initial process requires λ→ qλ then r → r/
p

q, dr → dr/
p

q
which gives the following coverage probability

pC(qλ) = 2πqλ

∫ ∞

0

exp

�

−π
�

r
p

q

�2

qλ(1+ 2 f (α,ρ))−
µρσ2

Ptqα/2r−α

�

rdr

q
.

(6.15)

It is straightforward that if we choose Pt → Ptq
−α/2, then pC(qλ) = pC(λ).

Moreover, the average total transmission power of a BS of the thinned network
is obtained by Ptot → Ptotq

−α/2. This result indicates that the SINR distribution
remains unchanged while the average total transmission power is increased
by q−α/2 of a typical BS.

6.4 M U LT I P L E S E RV I C E P R O V I D E R S

In this section, we extend the analysis to the multiple SPs case. We derive the
formulation for two SPs but the results can be immediately obtained for more
than two SPs case.

6.4.1 Non-cooperation of SPs

Assume that there are two SPs. We denote by Φ1 and Φ2 the location of the
BSs of the SP 1 and SP 2 with intensity parameters λ1 and λ2, respectively
where the energy profiles of SP 1 and SP 2 are given as P1 and P2, respectively.
Furthermore, let the scaling factors of two SPs be

p
q1 and

p
q2. Hence, the p.p.

after scaling of SP 1 and SP 2 is represented as Φq1
1 and Φq2

2 , respectively. The
points of network which is a result of the sum of thinned version of SP 1 and
SP 2 can thus be represented as Φq1

1 +Φ
q2
2 with intensity measure q1Λ1+q2Λ2.

Consider the Figure 6.3. We assume that the mobile is a customer of SP
1. Provided that SPs do not cooperate, we suppose that the thinning is per-
formed independently by each SP. The SINR of the mobile before scaling can
be calculated as following:

SINR=
Pt,1h0d−α0

Pt,1

∑

i∈Φ1\p0
hid

−α
i + Pt,2

∑

j∈Φ2
h jd

−α
j +σ

2
, (6.16)

where d0 denotes the distance of the mobile to the nearest BS of SP 1 as well
as Pt,i is the transmission power of SP i.

6.4.2 SINR Distribution in case of Non-cooperation

In order to derive the distribution of SINR when SPs do not cooperate, we first
represent the SINR as following:

SINR=
Pt,1hr−α

I1 + I2 +σ2 . (6.17)
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Different scaling of two SPs

SP 1 switches off its own BSs 
with probability q1 as well as 
SP 2 switches off with 
probability q2. Mobile is a 
subscriber of SP 1.

Scaling

SP 1
SP 2

Nearest BS before and 
after scaling

Figure 6.3: Scaling in case of non-cooperation of two SPs.

The coverage probability conditioning to the nearest BS of SP 1 is formulated
as

pC(λ1,λ2) =

∫ ∞

0

P

(

h>
ρ(σ2 + I1 + I2)

Pt,1r−α

�

�

�

�

�

r

)

exp(−πλ1r2)2πλ1rdr, (6.18)

where r is the distance between mobile and the nearest BS of SP 1. Then, the
coverage probability can be expressed as

pC(λ1,λ2) =

∫ ∞

0

exp

�

−
µρσ2

Pt,1r−α

�

LI1

�

µρ

Pt,1r−α

�

LI2

�

µρ

Pt,1r−α

�

× exp(−πλ1r2)2πλ1rdr. (6.19)

The Laplace transform of the interferences arising due to SP 1 and SP 2 are
given as

LI1
(s) = exp



−2πλ1

∫ ∞

r

x

1+ µ

sPt,1 x−α
d x



 , (6.20)

LI2
(s) = exp



−2πλ2

∫ ∞

0

x

1+ µ

sPt,2 x−α
d x



 , (6.21)

respectively, where s = µρ

Pt,1 r−α
. Note that the lower limit of the Laplace trans-

form integral of I2 is zero which takes into account the interference that occurs
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from the points of SP 2 being nearer than the nearest BS of SP 1. Thus, the
following integral gives the coverage probability of non-cooperation case

pC(λ1,λ2) = 2πλ1

∫ ∞

0

exp



−πr2λ1



1+
2ρ 2F1

�

1, α−2
α

; 2− 2
α

;−ρ
�

α− 2
+

2πλ2

λ1

�

Pt,1

ρPt,2

�−2/α

α sin
�

2π
α

�






−
µρσ2

Pt,1r−α






rdr. (6.22)

For specific values of α, closed form coverage probability expressions can be
found. For example, let α= 4. The coverage probability can be given by

pC

�

λ1,λ2,α= 4
�

=
λ1

2σ

√

√

√π3Pt,1

µρ
×

erfc

�

π2λ2
p

ρPt,2 + 2πλ1
p

Pt,1

�p
ρ tan−1

�p
ρ
�

− 1
��

4σ
p
µρ

�

×

exp

 

�

π2λ2
p

ρPt,2 + 2πλ1
p

Pt,1

�p
ρ tan−1

�p
ρ
�

− 1
�

4σ
p
µρ

�2!

. (6.23)

The coverage probability of the networks of SP 1 and SP 2 scaled by
p

q1 and
p

q2, respectively can be calculated by the following integral,

pC(q1λ1, q2λ2) = 2πq1λ1

∫ ∞

0

exp

�

−π
�

r
p

q1

�2

q1λ1

�

1+

2ρ 2F1

�

1, α−2
α

; 2− 2
α

;−ρ
�

α− 2
+

2π q2λ2

q1λ1

�

Pt,1

ρPt,2

�−2/α

α sin
�

2π
α

�

�

−

µρσ2

Pt,1

�

r
p

q1

�−α

�

rdr

q1
. (6.24)

By increasing the transmission power of SP 1 and SP 2 as Pt,1 → Pt,1q−α/21 ,

Pt,2→ Pt,2q−α/22 , respectively, the SINR distributions of two SPs do not change
in the non-cooperation case.

6.4.3 Cooperation of SPs

In the case of cooperation among the SPs, any mobile is associated to the
nearest BS of any SP. Thus, SPs share their resources in order to obtain a better
SINR level for each customer. By this way, the power consumption can be
lowered providing a “green” approach to the BS deployment.

Let S = (1, 2) show the coalition of SP 1 and SP 2. We assume that in case
of a cooperation the operators control jointly the network such that the acti-
vation probability qS of a BS is determined in order to maximize the energy
saving density. Formally, the traffic and the network intensity that reveals by
cooperation are supposed to be additive, i.e.

∑

i∈S Ti and
∑

i∈S λi , respectively.
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It is also considered that the network formed by cooperation has the equal
average total transmission power per BS given by

PS
tot = p+w f

�
∑

i∈S Ti
∑

i∈S λi

�

. (6.25)

Thus, the SINR can be expressed as following:

SINR=
PS

t h0d−α0

PS
t

∑

i∈ΦS
hid

−α
i +σ2

, (6.26)

where ΦS = Φ1+Φ2 denotes the p.p. which is a result of sum of the p.p. of SP 1
and SP 2 having the intensity λ1+λ2 which is a direct result of superposition
property stated in Definition 3.1.1, and PS

t is the transmission power between
mobile and the tagged BS in case of cooperation.

Scaling each coordinate by
p

qS results in a network which corresponds to
a thinned one as a consequence of cooperation. The points of the network
resulting from the scaling is denoted as ΦqS which has the intensity measure
qS(λ1+λ2). Thus, we can adopt the same result obtained for the single opera-
tor where the transmission power is adjusted as PS

t → PS
t q−α/2S . Moreover, the

energy profile of a typical BS of SP i is given by

PS
i = P0,i + βi P

S
tot . (6.27)

We also denote by P̄S
i = P0,i+βi P

S
totq

−α/2
S the energy profile of SP i correspond-

ing to the thinned network.

6.4.4 Energy Saving

We are interested to see what is the energy saving by switching off BSs (inde-
pendently) with probability 1 − qS , given that at the same time we increase
the transmission energy to compensate for decreasing the resources in a way
that the probability distribution of the SINR is unchanged.

Now, we introduce the energy saving density when SPs form a coalition S.
The power consumption density of SP i can be calculated by λi P

S
i . We can

also calculate the power consumption density by qSλi P̄
S
i when considering

the thinned network. So, in case of coalition S, the energy saving density is
characterized as

∑

i∈S λi P
S
i − qS

∑

i∈S λi P̄
S
i resulting in following function

G(S) = (1− qS)
∑

i∈S

λi P0,i +
�

1− q1−α/2
S

�

PS
tot

∑

i∈S

λiβi . (6.28)

Let us represent by US =
∑

i∈S λi P0,i and VS = PS
tot

∑

i∈S λiβi . The meaning of
these variables can be interpreted as following: US corresponds to the energy
saving density of the operational power costs arising due to the BSs of coalition
S as well as VS is the energy saving density due to transmission power in case
of coalition S. Then, the energy saving density can be expressed as

G(S) = (1− qS)US +
�

1− q1−α/2
S

�

VS . (6.29)

6.5 O P T I M A L E N E R GY S AV I N G F O R U N I Q U E S E RV I C E P R O V I D E R

6.5.1 The line

We are interested to see what is the gain in energy by switching off BSs (inde-
pendently) with probability (1− q), given that at the same time we increase
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the transmission energy to compensate for decreasing the resources in a way
that the probability distribution of the SINR are unchanged.

After switching off base stations, the power consumption density of the net-
work is

λq(P0 + βP ′) = λq(P0 + βPq−α). (6.30)

So that the gain in power consumption density is

G(q) = λ(P0 + βP)−λq(P0 + βP ′)

= λ(P0(1− q) + βP[1− q1−α]).
(6.31)

The switching probabilities that maximize this gain are obtained by solving

dG(q)
dq

= −P0 − (1−α)βPq−α = 0 (6.32)

which gives

1− q∗ = 1−
�

βP(α− 1)
P0

�
1
α

. (6.33)

6.5.2 The plane

We calculate by the same way the power consumption density of the network
after switching off BSs

λq(P0 + βP ′) = λq(P0 + βPq−α/2). (6.34)

The gain in power consumption density is given by

G(q) = λ(P0 + βP)−λq(P0 + βP ′)

= λ(P0(1− q) + βP[1− q1−α/2]).
(6.35)

The switching probabilities that maximize this gain are obtained by solving

dG(q)
dq

= −P0 − βP(1−α/2)q−(α/2) = 0 (6.36)

which gives

1− q∗ = 1−
�

βP(α/2− 1)
P0

�
1
α/2

. (6.37)

6.5.3 Simulation Results

In this section, we compare the optimal switching off probabilities with respect
to path loss α for different operational costs P0, and we also match the optimal
switching off probabilities in terms of β for some α. Moreover, gain in power
consumption is compared with respect to α for different P0.

In Figure 1 and 2, we depict the change of switching off probabilities in
terms of path loss α. From figures, we observe that for higher path loss values,
the number of switched off BSs is decreased. In other words, we need to keep
more BSs switched on. Also, for the same path loss value optimum switching
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off probability is higher for higher P0. That means, the switching off strategy
tells us to remove base stations with a higher probability for higher P0. On the
other hand, if we compare the optimal switching off probabilities with respect
to the dimension (line or plane), we remark that it is necessary to switch on
more BSs.

We depict in Figure 3 and 4 the comparison of switching off probabilities
in terms of β for α = (2.5,4, 6). We interpret that for higher values of β the
number of switched on BSs is increased. Furthermore, in case of plane the
used switched on BSs is higher than that of line.

In Figure 5 and 6, the comparison of gain in power consumption G(q∗) with
respect to α is given. We calculate G(q∗) in terms of optimal switching off
probabilities. It is assumed to be unit intensity parameter λ. We observe that
as long as P0 increases, the obtained G(q∗) increases. This means that for high
operational costs the gain in power consumption by switching off BSs is also
high.

1 2 3 4 5 6 7 8 9 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
β = 1,P = 1

α

1 − q

 

 
P0 = 2
P0 = 5
P0 = 10

Figure 6.4: The change of optimal switching off probabilities with respect to path loss
in case of line
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Figure 6.5: The change of optimal switching off probabilities with respect to path loss
in case of plane
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Figure 6.6: The change of optimal switching off probabilities with respect to β in case
of line
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Figure 6.7: The change of optimal switching off probabilities with respect to β in case
of plane
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Figure 6.8: The gain in power consumption with respect to path loss in case of line
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Figure 6.9: The gain in power consumption with respect to path loss in case of plane
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7
T H E C O A L I T I O N A L S W I T C H O F F G A M E

In this chapter, we examine the cooperation of SPs in terms of hedonic coalition
formation games. We denote by 〈N ,�, u〉 the coalitional switch off game in
which N = (1,2, . . . , n) is the set of SPs, � is the preference profile of SPs, and
u is the utility function. First, we determine the utility function of cooperation,
then we study the properties of it.

7.1 T H E U T I L I T Y F U N C T I O N O F C O O P E R AT I O N

Above, we mentioned that it is necessary to define a gain or cost function that
characterizes the problem of cooperation. In our context, we need to analyze
such a characteristic that should explain the total switch off gain, denoted by
u, of a coalition. Precisely, we formalize this utility as in terms of maximization
of energy saving density given in eq. (6.29), i.e.,

u(S) = f
�

max
qS

G(S)
�

subject to 0≤ qS ≤ 1. (7.1)

The physical meaning of the utility function is to measure the total gain (it
could some amount of money) when the switching off probability gives the
global maximum of the energy saving density. For example, think of that two
SPs However, in the sequel we assume that f

�

maxqS
G(S)

�

= maxqS
G(S) Let

us find the optimal value of qS which can be calculated as

∂ G(S)
∂ qS

= −US +
�α

2
− 1
�

q−α/2S VS = 0. (7.2)

We know that the maximum of activation probability is qS ≤ 1, then the fol-
lowing gives the optimal value

q∗S =min















�

α

2
− 1
�

VS

US





2/α

, 1











(7.3)

by which the utility function can be expressed as

u(S) =







US + VS −
V 2/α

S

U2/α−1
S

�

α

α−2

��

α

2
− 1
�2/α

, if q∗S < 1,

0, if q∗S = 1.
(7.4)

Further, we could find the limit which guaranties that u(S)> 0,




�

α

2
− 1
�

VS

US





2/α

< 1 ⇒ US >
�α

2
− 1
�

VS . (7.5)
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What we infer from this result is that as long as energy saving density of oper-
ational power costs is higher than the total transmission energy saving multi-
plied by α

2
− 1, there exists a non-zero utility of a typical coalition S.

Furthermore, recall that the allocation of the utility u(S) to player i being
in coalition S is denoted as φi(S). This gain corresponds to the energy saving
allocated to player i. Thus, we say that player i obtains φi(S) gain when the
BSs are activated by qS of the joint network formed by coalition S.

7.1.1 Properties of the Utility Function

In the following, we enumerate the properties of the utility function of the
coalitional switch off game.

Lemma 7.1.1 Monotonicity: The coalitional switch off game is not always
monotonic.

Proof 7.1.1 Assume that there are two SPs, i.e. S = (1,2), and each SP has
equal λ, P0, and β as well as different traffics T1, T2. Also, suppose that α = 4,
p = 0 and w = 1. Then, we are able to find the following:

u(1) = λP0 + βT1 − 2
Æ

λP0βT1, (7.6)

u(1,2) = 2λP0 + β
�

T1 + T2

�

− 2
Ç

2λP0β
�

T1 + T2

�

. (7.7)

If we can prove that u(1,2)< u(1), then we could conclude that the monotonicity
does not hold. To this end, let us denote the difference of these utilities as

∆= u(1,2)−u(1) = λP0+βT2−2
Ç

2λP0β
�

T1 + T2

�

+2
Æ

λP0βT1, (7.8)

which means that if∆< 0, then the utility function has no monotonicity property.
Assuming that λP0 = 1 and β = 1, let us look at the limit of this difference by
converging the traffic of SP 1 to infinity,

lim
T1→∞

∆= lim
T1→∞

�

1+ T2 − 2
Æ

2(T1 + T2) + 2
p

T1

�

= −∞ (7.9)

Consequently, we are able to state that when traffic of SP 1 increases to high levels
then the monotonicity might not hold.

We can conclude that the SPs have an incentive to deviate from grand coali-
tion if they play the coalitional switch off game. Because, non-monotonicity
implies that sometimes the utility might not increase when a player joins the
game. Therefore, we come up with the coalition formation problem. We con-
sider the hedonic approach to the coalition formation of SPs in this work.

7.2 E X A M P L E S C E N A R I O

In this section, we study an example scenario in which the introduced con-
cepts are explained practically. We compare the results for different allocation
methods.
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Assume there are three SPs, N = (1, 2,3). Let the gain function yield the
following results for all possible coalitions

u(S1) = 7.52× 10−1, u(S2) = 125.24× 10−1,

u(S3) = 30.36× 10−1, u(S4) = 141.76× 10−1,

u(S5) = 39.61× 10−1, u(S6) = 159.71× 10−1,

u(S7) = 171.29× 10−1 (7.10)

where S1 = (1), S2 = (2), S3 = (3), S4 = (1, 2), S5 = (1,3), S6 = (2, 3),
S7 = (1,2, 3). These utilities denote the maximal energy saving density that
can be obtained with cooperation.

From these gains, we see that u(S7)< u(S4)+u(S3) meaning that the game
is not superadditive. However, the utility function is monotonic. Because of
non-superadditivity the grand coalition can not be set. Therefore, we state
that the core of this game is empty. To be sure, the reason that the grand
coalition is not possible is due to the fact that the players in S4 deviates from
the grand coalition because they can do better by leaving the grand coalition.
On the other hand, in case of the aim is to find a Nash-stable solution, the
grand coalition might occur. In the following, we have the results that players
form the grand coalition.

7.2.1 Finding the Nash-stable Core

Here, we would like to obtain an efficient allocation method that will result
in a Nash-stable partition. Clearly, we need a distribution method arranging
the gains by such a way that the players will form a coalition formation which
they will not deviate from.

Let us enumerate all possible partitions and check the conditions of Nash-
stable partition:

1. Π= {(1), (2), (3)}:

max
�

φ12
1 +φ

13
1 +φ

123
1 +φ12

2 +φ
23
2 +φ

123
2 +φ13

3 +φ
23
3 +φ

123
3

�

s.t.

7.52× 10−1 ≥ φ12
1 ,

7.52× 10−1 ≥ φ13
1 ,

125.24× 10−1 ≥ φ12
2 ,

125.24× 10−1 ≥ φ23
2 ,

30.36× 10−1 ≥ φ13
3 ,

30.36× 10−1 ≥ φ23
3 ,

φ12
1 +φ

12
2 = 141.76× 10−1,

φ13
1 +φ

13
3 = 39.61× 10−1,

φ23
2 +φ

23
3 = 159.71× 10−1,

φ123
1 +φ123

2 +φ123
3 = 171.29× 10−1 (7.11)

There is no a feasible solution for this linear program. Therefore {(1), (2), (3)}
is not a Nash-stable partition.
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2. Π= {(1, 2), (3)}:

max
�

φ12
1 +φ

13
1 +φ

123
1 +φ12

2 +φ
23
2 +φ

123
2 +φ13

3 +φ
23
3 +φ

123
3

�

s.t.

φ12
1 ≥ 7.52× 10−1,φ12

1 ≥ φ
13
1 ,

φ12
2 ≥ 125.24× 10−1,φ12

2 ≥ φ
23
2 ,

30.36× 10−1 ≥ φ123
3 ,

φ12
1 +φ

12
2 = 141.76× 10−1,

φ13
1 +φ

13
3 = 39.61× 10−1,

φ23
2 +φ

23
3 = 159.71× 10−1,

φ123
1 +φ123

2 +φ123
3 = 171.29× 10−1. (7.12)

Solution of this linear program results in φ12
1 = 13.51 × 10−1, φ13

1 =
−45.92 × 10−1, φ123

1 = 105.67 × 10−1, φ12
2 = 128.25 × 10−1, φ23

2 =
38.14×10−1,φ123

2 = 105.67×10−1,φ13
3 = 85.53×10−1,φ23

3 = 121.57×
10−1, φ123

3 = −40.06 × 10−1 which produces the following preference
profile

(1, 2,3)�1 (1, 2)�1 (1)�1 (1, 3)

(1, 2)�2 (2)�2 (1, 2,3)�2 (2, 3)

(2, 3)�3 (1,3)�3 (3)�3 (1, 2,3). (7.13)

This means that {(1, 2), (3)} is a Nash-stable partition. Thus, this result
indicates that the Nash-stable core is non-empty for that example sce-
nario.

3. Π= {(1,3), (2)}:

max
�

φ12
1 +φ

13
1 +φ

123
1 +φ12

2 +φ
23
2 +φ

123
2 +φ13

3 +φ
23
3 +φ

123
3

�

s.t.

φ13
1 ≥ 7.52× 10−1,φ13

1 ≥ φ
12
1 ,

125.24× 10−1 ≥ φ123
2 ,

φ13
3 ≥ 30.36× 10−1,φ13

3 ≥ φ
23
3 ,

φ12
1 +φ

12
2 = 141.76× 10−1,

φ13
1 +φ

13
3 = 39.61× 10−1,

φ23
2 +φ

23
3 = 159.71× 10−1,

φ123
1 +φ123

2 +φ123
3 = 171.29× 10−1. (7.14)

There is a solution of this linear program as well: φ12
1 = −52.88× 10−1,

φ13
1 = 9.24× 10−1, φ123

1 = 70.72× 10−1, φ12
2 = 194.64× 10−1, φ23

2 =
197.20×10−1,φ123

2 = 29.83×10−1,φ13
3 = 30.36×10−1,φ23

3 = −37.49×
10−1, φ123

3 = 70.72× 10−1. The resulted preference profile is as follow-
ing:

(1, 2,3)�1 (1, 3)�1 (1)�1 (1, 2)

(2, 3)�2 (1,2)�2 (2)�2 (1, 2,3)

(1, 2,3)�3 (1, 3)�3 (3)�3 (2, 3). (7.15)
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4. Π= {(2, 3), (1)}:

max
�

φ12
1 +φ

13
1 +φ

123
1 +φ12

2 +φ
23
2 +φ

123
2 +φ13

3 +φ
23
3 +φ

123
3

�

s.t.

7.52× 10−1 ≥ φ123
1 ,

φ23
2 ≥ 125.24× 10−1,φ23

2 ≥ φ
12
2 ,

φ23
3 ≥ 30.36× 10−1,φ23

3 ≥ φ
13
3 ,

φ12
1 +φ

12
2 = 141.76× 10−1,

φ13
1 +φ

13
3 = 39.61× 10−1,

φ23
2 +φ

23
3 = 159.71× 10−1,

φ123
1 +φ123

2 +φ123
3 = 171.29× 10−1. (7.16)

This partition is also Nash-stable with the following allocated utilities:
φ12

1 = 105.19 × 10−1, φ13
1 = 72.75 × 10−1, φ123

1 = −59.35 × 10−1,
φ12

2 = 36.56 × 10−1, φ23
2 = 127.06 × 10−1, φ123

2 = 115.32 × 10−1,
φ13

3 = −33.14× 10−1, φ23
3 = 32.64× 10−1, φ123

3 = 115.32× 10−1. The
following preference profile is obtained:

(1, 2)�1 (1,3)�1 (1)�1 (1, 2,3)

(2, 3)�2 (2)�2 (1, 2,3)�2 (1, 2)

(1, 2,3)�3 (2, 3)�3 (3)�3 (1, 3). (7.17)

5. Π= {1, 2,3}:

max
�

φ12
1 +φ

13
1 +φ

123
1 +φ12

2 +φ
23
2 +φ

123
2 +φ13

3 +φ
23
3 +φ

123
3

�

s.t.

φ123
1 ≥ 7.52× 10−1,

φ123
2 ≥ 125.24× 10−1,

φ123
3 ≥ 30.36× 10−1,

φ12
1 +φ

12
2 = 141.76× 10−1,

φ13
1 +φ

13
3 = 39.61× 10−1,

φ23
2 +φ

23
3 = 159.71× 10−1,

φ123
1 +φ123

2 +φ123
3 = 171.29× 10−1 (7.18)

Recall that the sufficient condition of grand coalition in a Nash-stable set-
ting is u(N) ≥

∑

i∈N u(i)→ u(1, 2,3) ≥ u(1) + u(2) + u(3). u(1, 2,3) =
171.29 × 10−1, u(1) + u(2) + u(3) = 163.12 × 10−1. Therefore, there
must exist a utility allocation method that result in the Nash-stable par-
tition Π= {1,2, 3}. The solution of tha last linear program results in the
following utility allocations: φ12

1 = 70.88 × 10−1, φ13
1 = 19.80 × 10−1,

φ123
1 = 7.53× 10−1, φ12

2 = 70.88× 10−1, φ23
2 = 79.85× 10−1, φ123

2 =
132.94×10−1, φ13

3 = 19.80×10−1, φ23
3 = 79.85×10−1, φ123

3 = 30.81×
10−1 which produce the following preference profile:

(1, 2)�1 (1,3)�1 (1,2, 3)�1 (1)

(1, 2,3)�2 (2)�2 (2,3)�2 (1, 2)

(2, 3)�3 (1,2, 3)�3 (3)�3 (1, 3). (7.19)
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7.2.2 A Solution Based on Relaxed Efficiency

Relaxed efficiency provides to calculate the symmetric gain of the players
which can be given by

max v(1,2) + v(1, 3) + v(2,3) subject to

v(1,2)≤ 4.5× 10−1,

v(1,3)≤ 0.865× 10−1,

v(2,3)≤ 2.055× 10−1,

v(1,2) + v(1, 3) + v(2,3)≤ 3.585× 10−1. (7.20)

The solution of this linear program results in v(1,2) = 1.0089×10−1, v(1, 3) =
0.5263× 10−1, and 2.0497× 10−1. According to that solution the utilities of
each player are φ12

1 = 8.5289× 10−1, φ13
1 = 8.0463× 10−1, φ123

1 = 9.0553×
10−1,φ12

2 = 126.2489×10−1,φ23
2 = 127.2897×10−1,φ123

2 = 128.2987×10−1,
φ13

3 = 30.8863× 10−1, φ23
3 = 32.4097× 10−1, φ123

3 = 32.9361× 10−1, which
produces the following preference profile:

(1,2, 3)�1 (1, 2)�1 (1,3)�1 (1)

(1,2, 3)�2 (2, 3)�2 (1,2)�2 (2)

(1,2, 3)�3 (2, 3)�3 (1,3)�3 (3). (7.21)

Thus, the Nash-stable partition is (1, 2,3).

Remark 7.2.1 Let us compare all obtained utilities of each player. Note that in
case of relaxed efficiency player 1 gains φ123

1 = 9.0553× 10−1, but it receives at
most φ12

1 = 13.51× 10−1 when efficiency is considered. Player 2 gains φ123
2 =

128.2987×10−1 in case of relaxed efficiency. It can do better in case of efficiency;
player 2 gains at most φ123

2 = 132.94× 10−1. Player 3 has φ123
3 = 32.9361×

10−1 utility in case of relaxed efficiency, while it gains φ23
3 = 32.32.64 × 10−1.

The results of all players except player 3 show that players have better gains in
case of efficiency compared to relaxed efficiency. But, it is not valid for player
3. Therefore, it is reasonable to implement relaxed efficiency when individual
deviations occur in a problem.

7.3 C O N C L U S I O N

We analyzed the cooperation of SPs on switch off operation of BSs in the con-
text of green networking. The homogeneous Poisson p.p. approach to the de-
ployment of BSs has been used in order to study the SINR distribution of SPs.
Furthermore, in the case of non-cooperating SPs, the SINR distribution is ob-
tained of the original and thinned network of SPs, respectively. We also found
the SINR distribution of cooperation case used in the context of coalition for-
mation of SPs. The operations on the network formed by cooperation are as-
sumed to be run jointly by SPs meaning that they share their resources such
that any mobile is tagged to the nearest BS of any SP. The maximal energy
saving density of a cooperation is supposed to be the utility of the coalition.
We derive the closed form results of the utility. We compared the utilities of
SPs in case of both the allocation based on efficiency and relaxed efficiency.
We showed that in case of individual deviations the importance of efficiency
is not significant in the side of SPs.
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8.1 I N T R O D U C T I O N

There has been a growing interest in last years in modelling access decisions
to networks as non-competitive games. Indeed, it is quite frequent that the
network leaves it to the user to decide to which access point to connect.The
association problem is in fact related in nature to the channel selection prob-
lem. This motivates the use of games with incomplete information, also known
as Bayesian games, where the partial information refers to the system load in
[72] or to the channel quality in [73].

The access point may differ from one another by their technology and by the
quality of radio channels between each of them and each mobile. Such state
dependent competitive decision making in networking have been modelled in
the past as stochastic games and structure of equilibrium policies has been de-
rived for one or two dimensional problems. By one dimensional problem we
mean problems in which each mobile has a choice between an access point in
which resources are shared and between a dedicated channel. In such problem
the information needed for taking the association decision is how many mo-
biles are connected to the shared resource (therefore the information is said to
be one-dimensional). An example for a problem that falls into this category is
[74]. The equilibrium policy there consists of a threshold policy with random-
ization at the threshold. In [75] the author study a two dimensional problem
in which the choice is between accessing a 3G wireless cellular network or a
wireless local area network. The information available is of two dimensions:
the number of mobiles in each one of the networks. In [76] equilibrium poli-
cies were shown to have a switching curve form with possible randomizations
at the boundary between regions corresponding to connecting to different ac-
cess point. A problem of association to one of several access points of a wireless
local area network was considered in [77]. In all the above problems, we as-
sumed that once a connection decision is made, the mobile stays connected to
the access point till the end of the call.

In contrast, in this work, we consider the problem where at any time period,
mobiles can update their association decision. We consider the choice between
two access points or more, where the access decisions may depend on the
number of mobiles connected to each one of the access points. We obtain new
results using elementary tools in congestion and in crowding games. We show
in particular that at equilibrium, mixed (randomized) actions are not required.
We moreover show the convergence of sequence of best response strategies.

Our results are based on congestion games [80] and on crowding games
[79]. We further study (i) multihoming in which a user can connect simulta-
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neously to more than one access point. (ii) the “elastic” case in which there is
also an option not to connect at all.

8.2 T H E G E N E R I C G A M E P R O B L E M

There is a setΣ containing r resources and a set M of m users (players). Player
i has access to a subset Σi ⊂ Σ of these and has to choose to which resource
it associates. We assume that the cost C ji for player i of associating with re-
source j only depends on the number n j (including himself) of players that use
this resource. Each one of the costs C ji is assumed to be monotonically non-
decreasing in n j . We wish to know whether an equilibrium exists, i.e. whether
each player can choose one resource such that no player can get a strictly
cheaper resource by deviating unilaterally. We further are interested to know
when do we have convergence to equilibrium. Before answering these ques-
tions, we first introduce applications to the association problem of mobiles to
base station.

We study below problems where each one of m mobiles has to decide to
which one of r base stations to associate. We assume that the association is
determined by the downlink conditions.

8.2.1 Association to a base station (BS): TDMA

Mobiles are served cyclically by the BS they associate to. Thus, if n j > 0 mo-
biles connect to BS j then the time dedicated to transmission to each mobile
is one frame in every n j consecutive frames.

The utility of a user is the difference between a payoff and some cost. Here
is an example of utilities and of costs.

8.2.1.1 The throughput as payoff

We assume that each BS has its own frequency so that there is no interference.
We further introduce the concept of effective bandwidth [84] which allows
us to associate an effective bandwidth to each mobile depending on its class
and location relative to a target cell. Assume that a maximum of L users are
allowed to be served by a BS. The utility that player i obtains can be expressed
as

ui( j, n j) =























Wji log
�

1+
|h ji |2 Pji d

−α
ji

ρ

�

n j
︸ ︷︷ ︸

throughput

−
δP̃j

n j
︸︷︷︸

cost

, if n j ≤ L;

−∞, otherwise.

, (8.1)

where Wji is the bandwidth that BS j allocates to the mobile i, h ji captures
the effects of fading between mobile i and BS j, d ji is the distance between
BS j and mobile i, α is the path loss exponent, ρ is the variance of additive
noise, Pji is transmitted power from BS j to mobile i and δ is called the price
of switching on a BS which bears P̃j power cost if the corresponding BS is the
jth one.

Remark 8.2.1 In the above formulation, L denotes the capacity constraints of a
BS (maximum number of mobiles that can be associated with a BS). We included
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implicitly capacity constraints, by assigning an infinite cost to joining a BS j if the
total number of mobiles that associate to this BS exceeds L. Instead of using −∞
one can use any other number sufficiently small. In both cases any equilibrium
solution will have the property that all capacity constraints are satisfied for all
players. Note that crowding games with capacity constraints and a special cost
structure have been studied already in [81]. By assigning sufficiently negative
utilities to association to BSs for the case that the number of mobiles exceeds some
threshold, we manage to include these constraints in the framework of [80].

We notice that the throughput that a player gains decreases when some
group of players are served by the same BS. However, the cost that the corre-
sponding player has to pay decreases as well. Note that the utility function is
player-specific.

Finally, we assume that a mobile has the option not to connect to any BS in
which case its utility is zero.

8.2.1.2 Monotonicity of utility

In order the considered game to be a crowding game, the utility must be a
monotonically decreasing function, i.e.

ui( j, k+ x)− ui( j, k)
x

≤ 0, ∀k ≥ 1 and x ≥ 1 (8.2)

Therefore,

ui( j, k+ x)− ui( j, k)
x

=

Wji log

�

1+
|h ji |

2 Pji d−αji
ρ

�

−δP̃j

k+x
−

Wji log

�

1+
|h ji |

2 Pji d−αji
ρ

�

−δP̃j

k

x
(8.3)

=

�

δP̃j −Wji log

�

1+
|h ji |2Pjid

−α
ji

ρ

��

� 1

k(k+ x)

�

≤ 0.

(8.4)

Note that 1
k(k+x)

≥ 0 ∀k ≥ 1 and ∀x ≥ 1. Therefore, the following must hold
in order to guarantee the monotonicity of utility function

δ ≤
Wji log

�

1+
|h ji |2 Pji d

−α
ji

ρ

�

P̃j
, ∀ j, i. (8.5)

Let us assume that the bandwidth Wji allocated to a player be a component
of a set W (the set of different bandwidth classes), i.e. Wji ∈W , and the SNR

takes a value from the set G , i.e. SNR ji =
|h ji |2 Pji d

−α
ji

ρ
∈ G . Also, the operational

power cost P̃j ∈ P . In order to determine the upper bound of pricing δ, we
need to calculate the following

min
j,i

Wji log
�

1+ SNR ji

�

P̃j
. (8.6)

8.2.2 Association to a base station (BS): HSDPA

We adopt the model of S. Borst [82] for opportunistic scheduling according
to the proportional fairness criterion. Time is divided into slots, and each BS
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schedules at each slot transmission to one mobile among those connected to it.
A weakly symmetric channel model is used in which the channel statistics from
BS j to mobile i are such that the throughput available to that mobile, if the
channel is assigned to it is a random variable of the form R ji =Q jiYji Z j where
for each given j, {Yji} are independent and identically distributed random
variables, Z j is some random variable (that may be used to bring correlation)
with a unit mean, and Q ji is representing the time-average rate of user i [82].
Thus, the probability distribution of the normalized available throughput of all
the mobiles connected to BS j are the same. The proportional fair allocation
at BS j schedules transmission to the connected mobile for which the normal-
ized rate (i.e. ratio R ji/Q ji) is the largest. The expected average throughput
of mobile i when connecting to BS j is then given by G(n j)/n j times its rate
R ji , where G(k) := maxi=1,...,k Yji is the opportunistic gain. Hence, the utility
of player i is given by

ui( j, n j) =







R ji
G(n j)

n j
− δP̃j

n j
, if n j ≤ L;

−∞, otherwise.
(8.7)

By the law of iterated logarithm we know that G(k)/k converges to 0.
In particular,

• for the Gilbert channel [83] in which Yji can take two values, say a and
b with b ≥ a and with corresponding probabilities p and 1− p, we have
G(k) = b(1− pk) + apk. Let us analyze in which condition the utility is
always monotonically decreasing:

∂ ui( j, k)
∂ k

=
−bR ji + P̃jδ+ (a− b)pkR ji(k ln p− 1)

k2 ≤ 0 (8.8)

We would like to know the value of pricing δ in which the monotonically
decreasing property maintains. Hence,

δ ≤min
j,i

R ji

�

b+ pk(b− a)(k ln p− 1)
�

P̃j
, (8.9)

• choose the distribution of the mean SNR as a bi-modal distribution either
SNR1 or SNR2 with equal probability. If the instantaneous rate R is linear
in the instantaneous SNR, i.e. R = W × SNR, then the relative fluctua-
tions {Yji} have an exponential distribution, and the gain factor can be
derived in closed form as G(n j) = maxi=1,...,n j

Yji =
∑n j

i=1 1/i [82]. The

harmonic numbers are given by H l(k) =
∑k

i=1 1/i l with H(k) = H1(k).
It is suitable for both symbolic and numerical manipulation. The mono-
tonically decreasing property requires the following

δ ≤min
j,i

R ji(H(n j)− n jψ(n j + 1))

P̃j
(8.10)

where ψ(k) is the logarithmic derivative of the gamma function, given
by ψ(k) = Γ ′(k)/Γ (k). Denote ∆(k) = H(k) − kψ(k + 1). Figure 8.1
plots how ∆(k) changes with respect to k. k = 1 minimizes ∆(k) which
is ∆(1) = 2− π2

6
= 0.355.
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8.3 T H E A S S O C I AT I O N P R O B L E M A S A C R O W D I N G G A M E

Theorem 8.3.1 Consider the association problem described in Section 8.2.1. Then
the conclusions of Theorem 2.5.1 hold.

Proof 8.3.1 The game described in Section 8.2.1 satisfies the conditions of The-
orem 2.5.1 except possibly two condition.

1. If for some mobile i and BS j, we have

Wji log

�

1+
|h ji |2Pjid

−α
ji

ρ

�

< δP̃j

then the utility of player i to associate with BS j increases with the number
n j that associate to that BS. Let H1 be the set of pairs (i, j) that have this
property.

2. In the [80], if a resource is available to one player then it is available to all
players. Let H2 be the set of pairs (i, j) for which j is not available for i.

Let H = H1 ∪ H2. Consider a new game in which all BSs are accessible to all
players. We set ui( j, n j) = −1 for all (i, j) ∈ H. This is a crowding game that
satisfies the conditions of Theorem 2.5.1. Moreover, any best response sequence
in the original game is also a best response in this game since any player i will
never chooses a BS j with (i, j) ∈ H as a best response since choosing not to
connect at all gives a strictly better utility (of zero). This establishes the proof.

8.4 C O M P U TAT I O N A L R E S U LT S

In this section, we show the computational results that are performed in the
context of crowding games for non-cooperative association of mobiles to ac-
cess points.

20 40 60 80 100
k

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Δ(k)

Figure 8.1: The change of ∆ with respect to number of mobiles that share the same
BS.
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The mean of any variable x was calculated by Monte Carlo simulations by
running the algorithm for different generated values x for some iteration num-
ber t and taking the mean of the result, which can be given by

xs(i + 1) = xs(i) + x , i = 1, . . . , t

x̄ =
xs

t
.

(8.11)

8.4.1 Scenario 1: The Rayleigh Fading and Path Loss Model

The deployment scenario in the Figure 8.3 and 8.4 is considered to be a small
cell network context instead of macro or micro cells. Clearly, the general term
“small cell networks” covers a range of radio network design concepts which
are all based on the idea of deploying BSs much smaller than typical macro
cell devices to offer public or open access to mobile terminals [10]. Therefore,
we consider the deployment of BSs as random rather than a hexagon-type.
The cellular network model consists of BSs arranged according to uniform dis-
tribution of r points over an area A in the Euclidean plane. Also, we consider
an independent collection of mobile users, located according to uniform dis-
tribution of m points over the same area A. In MATLAB, we used the following
code to produce the collection of BSs and mobiles:

pointsOfBSs = sqrt(A)*rand(r,2);

xOfBSs = pointsOfBSs(:,1); % x axis

yOfBSs = pointsOfBSs(:,2); % y axis

pointsOfMobiles = sqrt(area)*rand(m,2);

xOfMobiles = pointsOfMobiles(:,1); % x axis

yOfMobiles = pointsOfMobiles(:,2); % y axis �
We also assume that within 200 meters a BS is deployed. The area over which
the BSs and mobiles are distributed is supposed to increase as A= (200r)2 m2.
Furthermore, we enumerate the BSs and mobiles according to the distance
between the corresponding node (BS, mobile) and the origin assumed to be
(0,0) (Figure 8.2).

The path loss model is supposed to be in the form Pr = Pt(1+ d)−α where
Pr is the received power while the transmission power is Pt .

In Figure 8.3 and 8.4, we set Wji = 1Mhz, Pji = 32mW,∀ j ∈ Σ,∀i ∈ M ,
and ρ = 10−12, P̃j = 12W,∀ j ∈ Σ. All channels were assumed to be subject
to slow varying Rayleigh fading which is a result of a circularly symmetric
complex Gaussian random variable with zero mean and unit variance. More-
over, we adjust the simulations such that the minimum SNR cannot be lower
than −4dB, i.e. SNRmin(dB) = −4dB. Moreover, the multiple access model is
assumed to be TDMA. Consequently, the upper bound of pricing δ is given by

δ ≤
W log(1+ SNRmin)

P̃
=

106 log
�

1+ 10−4/10
�

12
, (8.12)

δ ≤ 40289.6 (8.13)

In Figure 8.3 and 8.4 the change of mean utility, throughput and number of
mobiles that share the same BS of player 11 (ū1, θ̄1 and n̄ respectively) with
regards to pricing and number of mobiles, respectively are plotted. It is an

1 Without lose of generality, in all simulations, we plot the functions according to player 1. The
same characteristics are valid for each player.
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inevitable result that mean utility in equilibrium decreases while the pricing
goes up. But mean throughput, conversely, increases.

In equilibrium, mean throughput depends on δ. Let us consider the follow-
ing representation of the utility of player 1,

u1(δ, m, r) =
c1(m, r)−δP̃

n(m, r)
(8.14)

where n represents the mean number of mobiles that are served by the same
BS with player 1 and c1 is the capacity of player 1. Notice that the throughput
of player 1 is θ1(m, r) = c1(m, r)/n(m, r)which depends on m and r but not on
δ. However, in equilibrium the throughput is a function of δ. Mean throughput
in equilibrium of player 1 is given by

θ̄1(δ, m, r) = ū1(δ, m, r) +
δP̃

n̄(m, r)
(8.15)

in which mean number of mobiles that share the same BS with player 1 n̄ does
not depend on δ (we observe this result from Figure 8.3).

Let us now answer the question why does mean throughput increase while
mean utility decreases? (recall Figure 8.3). In fact, consider the issue reversely.
The payoff (throughput) of the player can not compensate the cost δP̃/n̄ while
the pricing is augmented. Thus, the profit (utility) of the player diminishes.

From Figure 8.4 we conclude that for a specific value of pricing δ = 3×104

while m increases ū1 and θ̄1 diminishes as well as n̄ increases. Since r = 5, n̄
remains constant for m ≤ 5. This means that there are more resources than
players. Consequently, the players tend to be alone in one resource resulting in
one player per resource: n̄= 1. On the other hand, since the capacity depends
on m mean throughput and consequently mean utility decreases while m is
increased.

8.4.2 Scenario 2: The Bi-modal Distribution of Mean SNR

We suppose that mean SNR possesses a bi-modal distribution. Hence, the SNR
takes a component from G = {SNR1, SNR2} = {−4dB, 2dB} which occurs
with probability 0.5. Moreover, we set Wji = W,∀ j, i and P̃j = 12,∀ j. Let us
calculate the upper bound of pricing from (4) and (8) for TDMA and HSDPA
cases, respectively

δT DMA ≤
W log(1+ 10−4/10)

12
= 0.0403W, (8.16)

δHSDPA ≤
W × 10−4/10∆(1)

12
= 0.0118W (8.17)

8.4.2.1 TDMA Case

Figure 8.5 plots the curve of ū1 and θ̄1 with respect to δ for different values of
r = {3, 4,5}. Furthermore, we set m= 7, W = 1 and L = 8. The figure demon-
strates the same characteristic of mean utility and throughput in equilibrium
like in Figure 8.3. In addition, we observe that while the number of resources
increases, mean utility and throughput in equilibrium also go up.
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Figure 8.6 depicts the change of ū1 and n̄ with respect to L for δ = {0,2×
104, 4×104}where r = 3, m= 12 and W = 106. In the figure, the region L < 4
implies that some players can not join to the game. For example, let L = 2. If
each BS serves to 3 mobiles, there will be 6 mobiles receiving transmission.
Within the region L ≤ 4, we observe from the figure that n̄ = L. For L > 4,
n̄ remains constant which is due to the fact that the ratio dm/re gives mean
number of mobiles served by the same BS.

8.4.2.2 HSDPA Case

The interpretations of Figure 8.7 and 8.8 are the same like for Figure 8.5 and
8.6, respectively.

However, if compare ū1 and θ̄1 of TDMA and HSDPA, we conclude that in
case of HSDPA, mean utility and throughput in equilibrium is always better
than that of TDMA. For example, in case of TDMA (Figure 8.5) for δ = 0.005
and r = 3, player 1 has ū1 = 0.4463 and θ̄1 = 0.5512 while in HSDPA (Figure
8.7) the same player gains ū1 = 0.9697 and θ̄1 = 0.9960.
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Figure 8.2: Distribution of BSs and mobiles in 2D plane. r = 20, m= 40

8.5 C O N C L U S I O N

We studied the association problem of mobiles in wireless networks in the
downlink transmission. We considered the problem as a crowding game in
which the utility of a player is specific to player and a function of the number
of the players that share the same resource. The utility considered to be a
difference of a payoff and cost. Using the tools of crowding game we analyzed
the problem for the TDMA and HSDPA cases. The throughput was taken as
payoff. The cost has considered to be a function of operational power cost of
a BS. From the computational results, we observed for several metrics that
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Figure 8.3: Mean utility, throughput and number of mobiles sharing the same BS with
respect to pricing in case of Rayleigh and path loss model.
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Figure 8.4: Mean utility, throughput and number of mobiles sharing the same BS with
respect to m in case of Rayleigh and path loss model.
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ū 1

an
d
θ̄ 1

TDMA, m = 7, W = 1, L = 8

 

 

Throughput r = 5
Utility r = 5
Throughput r = 4
Utility r = 4
Throughput r = 3
Utility r = 3

Figure 8.5: The effect of pricing in case of TDMA for Scenario 2: Mean utility and
throughput for different values of r.
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Figure 8.6: Mean utility, throughput and number of mobiles sharing the same BS with
respect to L in case of TDMA for Scenario 2.
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Figure 8.7: The effect of pricing in case of HSDPA for Scenario 2: Mean utility and
throughput for different values of r.
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Figure 8.8: Mean utility, throughput and number of mobiles sharing the same BS with
respect to L in case of HSDPA for Scenario 2.
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mean utility and throughput in equilibrium that a player gains are always
better when the used multiple access method is HSDPA.
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9.1 I N T R O D U C T I O N

Let be considered a scenario where a set of users, or agents, aim at transmit-
ting their own data to a common destination. This scenario may correspond
for instance either to mobiles in a single cell in uplink mode or to a wireless
sensor network with a single sink. The reference protocol used to transmit
the whole information to the common destination relies on a layer 2 MAC
approach which divides the resources and schedule the allocation of each re-
source to each agent. Even if the agents are all in the range of the destination,
cooperative transmissions can significantly improve the efficiency of the sys-
tem. The efficiency can be measured by the total capacity, the total energy
or by any criteria related to the QoS such as the packet error rate. Here, we
focus on the outage probability. Transmission powers and capacity needs for
each node are constant and cooperative transmission is used to reduce the
outage probability. The formulation of the problem is based on the relay chan-
nel model as described in the early work of Laneman [89]. In the simplest
approach, each source agent requires the help of another agent to improve its
transmission by forming togeter an equivalent relay channel. We consider the
special case where the agents associate by pairs such that each agent relays
the data of the other. In the framework of network information theory, these
nodes form a cooperative multiple access channel (CMAC).

Albeit the whole network can be considered as a large size CMAC, we rather
propose to form several small coalitions. In this work, these small coalitions
are even limited to pairs. In order to optimize the overall performance of the
network, the partner selection process is therefore crucial. Each agent aims
here at finding a “good” partner in order to exploit efficiently the spatial diver-
sity achieved with cooperation. This process can be identified as a matching
problem. In the game theoretic sense where the players are “strategic decision
makers”, the partner selection process appears to be an example of the stable
roommates problem. Stable matching theory was established by Shapley and
Gale by their seminal work [85]. Gale and Shapley analyzed matching at an
abstract, general level. They used marriage as one of their illustrative exam-
ples. How should ten women and ten men be matched, while respecting their
individual preferences? The main challenge involved designing a simple mech-
anism that would lead to a stable matching, where no couples would break up
and form new matches which would make them better off. The solution–the
Gale-Shapley “deferred acceptance” algorithm–was a set of simple rules that
always led straight to a stable matching.

The stable marriage problem is an example of a so called two-sided market
due to the gender issue. However, this kind of problem can be broaden to
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matching problems with no gender issue and are referred to as one-sided mar-
ket. This is the case of the stable roommates problem. In this problem, each
person targets matching with the best partner to share a room. We shall show
that the partner selection problem in the context of cooperative relaying can
be studied as a one-sided market. By determining the ranking rule of partners,
we seek a stable matching. Although a stable matching is always possible in
stable marriage problems, this is not the case in stable roommates problem.
Further, even if a stable matching exists, there was no polynomial-time algo-
rithm to find it until the recent work of Irving [86].

9.1.1 Related Work

The partner selection problem in cooperative communications has been al-
ready studied in the literature in [90] and [88]. More recently, Lee and Lee
[91] extended the problem to relay assignment for multi-user DF-AF cooper-
ative wireless networks while in [92] the authors proposed a new selection
method which requires neither error detection methods at relay nodes nor
feedback information at the source. The thesis in [93] includes many new
approaches for matching the cooperating agents. In [94] the authors study
the relay selection in heterogeneous relay networks, i.e. where relays with dif-
ferent protocols can co-exist. While varying algorithms are proposed in these
papers, none of them uses the coalition formation principle. Cooperative game
theoretic approaches exist in the literature for wireless problems, where “coali-
tions formation” problems are studied. A coalition can be of any size, from a
single player to all players. For instance, [95] studies coalition formation of
mobiles and destinations. Another coalitional game approach is formulated
in [96] to examine how coalitions can form in a distributed manner, as well
as possible resource allocation methods within groups. Moreover, in [97], a
Markov chain model is proposed to investigate the stability of the coalitional
structures.

9.1.2 Our Contribution

We propose the use of matching theory and more specifically the stable room-
mates problem, to solve the partner selection problem in cooperative transmis-
sions. This work shows that this formalism is perfectly convenient and further
a natural tool for this problem. The reason is that it provides a fair and stable
sectioning process if we consider the source nodes (agents) as strategic deci-
sion makers. Here, we use this tool to analyse the partner selection problem.

9.2 P R O B L E M F O R M U L AT I O N A N D S E T T I N G S

The system model is depicted in Fig.9.1. Let N = (1, . . . , n) be the set of players
and d the destination node, or base station (BS). In this work, we rather target
the case where the players are in a common area, sufficiently far from the
BS such that the inter-mobile channels are statistically better than the mobile-
destination channels. This is a favourable situation for mobile cooperation.
This assumption is not always necessary and most of our results apply for any
scenario. However, especially in the CMAC case, this assumption may drive
our settings.
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System model of the problem

Each mobile determines its 
partner according to the 
decentralized algorithm

e inter-mobile channels are 
assumed to be relatively much 
better than the 
mobile-destination channels

Coalition

Coalition

Destination
Bad channels
Good channels

Figure 9.1: The problem.

In the default setting a resource unit (RU) is allocated to each player. These
blocks may be time slots, frequency channels or time/frequency RU in LTE. We
assume a perfect orthogonality between the blocks. Without loss of generality
and for the sake of simplicity, we consider that each player receives a unique
RU, and all have the same capacity.

9.2.1 Cooperative Relaying

Albeit it cannot achieve the upper bound capacity, the decode-and-forward
strategy is nearly capacity achieving when the source-relay channel is much
better than the others which is the case in our scenario here. We assume that
each node is equipped only with one antenna. Interference-free uplink is con-
sidered where the transmissions of bipartite coalitions (in the sequel, we in-
troduce these coalitions) do not interfere each other. Half-duplex transmission
mode is applied in the communication between mobiles. There are adequate
reasons for limiting the communication in half-duplex mode; because of insuf-
ficient electrical isolation between the transmit and receive circuitry, a termi-
nal’s transmitted signal drowns out the signals of other terminals at its receiver
input [89]. All channels are assumed to be subject to slow varying block fad-
ing.

The physical channel between node i and j has the following instantaneous
signal to noise ratio (SNR): γi, j = Γi, j |hi, j |2, where |hi, j | is the Rayleigh dis-
tributed fading coefficient with varianceσ2

i, j . Moreover, we assume that ∀i, j ∈
N ,σi, j = 1. The term Γi, j is the average SNR and is modelled as following:

Γi, j =

�

P

N0

�

Si, jd
−β
i, j , (9.1)

where
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• P is transmission power which is equal for all mobiles.

• Si, j is a zero-mean log-normal shadowing component with standard de-
viation σS .

• di, j is the distance between nodes i and j as well as β is the path loss
exponent.

The SNR in the transmitter part is P/N0. Both the fading and shadowing com-
ponents are i.i.d for each {i, j} pair. The shadowing components are constant
for a given network realization and are assumed to be reciprocal, Si, j = S j,i .

9.2.2 The Protocol

We consider the following decode-and-forward protocol:

S1: Source sends its data to relay and destination.

S2: Relay tries to decode. If relay succeeds, then source and relay resend the
packet. If relay fails, source resends alone.

S3: Destination combines all copies of data.

We assume here that the source and relay transmit simultaneously with-
out phase synchronization during S2, and these transmissions do not interfere
each other.

In case of repetition coding at the relay, the mutual information (bps/Hz)
can be readily shown to be

Ii =







1
2

log
�

1+ γ′i,d + γ
′′
i,d + γ j,d

�

if 1
2

log
�

1+ γi, j

�

> Ri

1
2

log
�

1+ γ′i,d + γ
′′
i,d

�

otherwise.
(9.2)

Here, source is i, and relay is j. Relay can retransmit the data of source with
rate Ri . γ

′
i,d and γ′′i,d are the instantaneous SNRs of source-destination trans-

missions in S1 and S2 defined in the protocol as well as γ j,d is the instanta-
neous SNR of relay-destination transmission in S2. γ′i,d and γ′′i,d are assumed
independent.

Remark 9.2.1 Here, we focus only on the “selective” decode-and-forward trans-
mission where the relay station only decodes the data and retransmits it to the
destination. One can improve the context of this work by applying the compress-
and-forward transmission as well as MIMO attributes to the nodes.

9.2.3 Outage Probability Calculation

9.2.3.1 Direct Transmission–No Cooperation

When a player i stays alone the outage probability is given by [89]: pO = 1−
exp

�

− 2Ri−1
σ2

dΓi,d

�

. This is a result when the player utilizes all degrees of freedom.

9.2.3.2 Cooperation

The outage probability can be calculated as following: pO = pC pO |C + (1 −
pC )pO |N C , where
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• pC is the probability of successfully reception of source’s data at the relay
given by

pC = Pr
�1

2
log(1+ γi, j)> Ri

�

= Pr

�

|hi, j |2 >
22Ri − 1

Γi, j

�

= exp

�

−
22Ri − 1

σ2
mΓi, j

�

(9.3)

Note that |h|2 follows an exponential distribution.

• pO |C is the conditional probability of outage in destination when the
relay decodes correctly the source’s data:

pO |C = Pr
�1

2
log
�

1+ γ′i,d + γ
′′
i,d + γ j,d

�

< Ri

�

= Pr
�

γ′i,d + γ
′′
i,d + γ j,d < 22Ri − 1

�

, (9.4)

where γ′i,d and γ′′i,d are independent. The sum of k exponential random

variables X =
∑k

i=1 X i where each X i has different mean λi , follows
hypo-exponential distribution of which the probability density function
is given by

fX (x) =
k
∑

i=1

λi

 

k
∏

j=1, j 6=i

λ j

λ j −λi

!

exp(−λi x). (9.5)

The sum γ′i,d+γ
′′
i,d+γ j,d follows a 3rd order hypo-exponential distribution

with means λ1 = λ2 = (Γi,dσ
2
d)
−1 and λ3 = (Γ j,dσ

2
d)
−1. Therefore,

pO |C = 1−
e
− 22R−1
σ2

d Γi,d Γi,d

�

σ2
dΓi,d + 22R − 1

�

σ2
d

�

Γi,d − Γ j,d

�2

+
e
− 22R−1
σ2

d Γi,d Γ j,d

�

2σ2
dΓi,d + 22R − 1

�

σ2
d

�

Γi,d − Γ j,d

�2 −
Γ 2

j,d e
− 22R−1
σ2

d Γ j,d

�

Γi,d − Γ j,d

�2 . (9.6)

• pO |N C is the conditional outage probability when relay fails and source
repeats its own data:

pO |N C = Pr
�1

2
log
�

1+ γ′i,d + γ
′′
i,d

�

< Ri

�

= Pr
�

γ′i,d + γ
′′
i,d < 22Ri − 1

�

= 1−

�

22R − 1

σ2
dΓi,d

+ 1

�

e
− 22R−1
σ2

d Γi,d (9.7)

9.2.4 Preference Functions

Here, we intend to show how a mobile designs its preference list which is the
ranking of possible partners (including itself) from the most preferable to the
least.

Long Term–Outage Probability Ranking: The motivation here is to deter-
mine a long-term partnership. The channel state information has statistical
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characterization, for example, the type of fading distribution. We can utilize
this characterization in determining the partnership. By knowing the variance
of the fading each mobile is able to calculate the outage probability. Thus, a
mobile evaluates its partners by means of that metric. The preference list of
each mobile is composed of ranking the possible partners according to the
outage probability in a way that

the first ranked provides the lowest outage probability

In that setting, each mobile also ranks itself in the preference list.

9.2.5 Decentralized Approach to the alg-IRVING

We consider that each mobile is able to communicate in a separated control
channel to look for partners.

Algorithm 6 Decentralized alg-IRVING

Learn:

• Each mobile listens to the other partners continuously or randomly when
each of them broadcast his averaged path loss and shadowing.

• Each mobile maintains a preference list from the messages sent by the
other mobiles.

Phase 1:

• Randomly, each mobile does a bid until accepted by a partner in his
preference list.

• Each mobile deletes some partners from his preference list according to
Reductions procedure.

Phase 2:

• Each mobile broadcasts his second player of preference list to the other
mobiles

• Each mobile performs rotation according to the received message. In
case of an even party, then each mobile transmits alone without cooper-
ation.

• Each mobile runs Reductions procedure according to the rotation, and
continues Phase 2 until having only one partner in the preference list.

9.3 G L O B A L O P T I M U M

In this section, we analyse the problem in terms of global optimum and fairness
criterion. The aim is to measure how much the stable matching is far from the
global optimum.
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9.3.1 Minimum Total Outage Probability

In terms of global outage minimization, the problem can be considered as a
special case of the classical set-partitioning problem, which aims at finding
the best partition of the N players which minimizes the total outage probabil-
ity. In the considered problem, the partitioning is made only of singleton and
bipartite coalitions:

min
M

∑

S∈M

∑

i∈S

pi
O . (9.8)

In the computational results, we find the optimal solution with a brute-force
search which enumerates all possible solutions and chooses the one which
produces the lowest total outage probability.

9.4 C O M P U TAT I O N A L R E S U LT S

This section includes the comparison of partner selection for different paradigms:
stable matching, global optimum, and random selection. In case of random
selection, the matching of mobiles is performed randomly. The locations of
mobiles are denoted as Φ = (x i , yi)i∈N and the destination (xd , yd) such that
the distance between node i and j is given by di, j =

q

(x i − x j)2 + (yi − y j)2.
Also, we assume that x i and yi follow uniform distribution on some area.

We generate randomly a rate R according to uniform distribution for each
mobile; the shadowing component S follows log-normal distribution. In the
calculations, the results are obtained per mobile. We utilize the law of total
probability which is formulated as p̄O (Θ) = ER,S,Φ[Pr[O |R, S,Φ]], where p̄O (Θ)
is called as “average outage probability” for any case

Θ = {Matching, Global Optimum,Random Selection}

which can be calculated as the ergodic mean over (R, S,Φ), i.e.

p̄O (Θ) =
1

T

T
∑

t=1

Pr[O |R, S,Φ],

where T is the number of iterations, Rt is the rate, St is the shadowing com-
ponent, and Φt denotes the locations of mobiles in iteration t.

9.4.1 Test-bed

In all simulations, we consider the block fading channels with Rayleigh dis-
tribution. The variance of the fading is assumed to be 1. The shadowing vari-
ance σS = 8 dB for all links, the path loss exponent β = 3. The locations
Φ = (x i , yi)i∈N of mobiles follow uniform distribution within x ∈ [85, 100],
y ∈ [85,100] like a bagel where the location of destination is chosen as
(xd , yd) = (50, 50) which could be seen as the center of the bagel. Moreover,
additive white Gaussian noise channel is considered in all simulations.

9.4.2 Comments and Corollaries

Figure 9.2 – Average outage probability with respect to average received
SNR: The rate of the mobiles is assumed to be uniformly distributed within
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R ∈ [1,2]. Also, the number of mobiles is fixed to n= 6. First, we observe that
the cooperation is beneficial to the mobiles for the considered conditions. Note
that the result obtained by stable-matching is near to global optimum, and it is
better than random selection; for example, there is 3.25 dB gain when average
outage probability is equal to 10−4.

Figure 9.3 – Average outage probability with respect to the number of
mobiles: Average received SNR is equal to 30 dB, and the distribution of the
rate is chosen as R = [1, 3]. This figure shows that the cooperation is always
beneficial on average. Increasing number of mobiles has a positive effect since
the probability of finding a good partner increases. Actually, increasing the
number of mobiles in some area corresponds with the increasing the inten-
sity of mobiles homogeneously. Observe that there exists a critical value of
n that can be seen as a saturation after which the average outage probabil-
ity becomes constant. For different scenarios, the saturation point changes.
We observe here the fact that random selection is not useful compared to the
stable-matching result. For example, when n = 10, the average outage proba-
bility is equal to 6.50× 10−3 and 4.36× 10−3 in case of random selection and
stable-matching, respectively.

Figure 9.4 – Probability of cooperation with respect to the number of
mobiles: Here, we depict the probability of cooperation of a mobile with an-
other one. The transmitted SNR is P

N0
= (70, 75,80, 85,90) dB. We set the rate

to be distributed within R = [1,3]. Observe that with increasing transmitted
SNR, the probability of cooperation is getting one. However, it is not so while
the number of mobiles decreases. This is due to the fact that the probability of
finding good partner is low when the intensity of mobiles decreases on some
area.

Remark 9.4.1 As a concluding remark about the usage of stable matching al-
gorithm as a partner selection method, we can state that the results related to
average outage probability and probability of cooperation show the advantage
of Irving’s algorithm. It is also fair in terms of the dynamics of matching games
where there does not exist a pair that would deviate. Therefore, the decentralized
version of this algorithm introduced in Section 9.2.5 is very practical for real
implementations.

9.5 C O N C L U S I O N

We formalized the partner selection problem in decode-and-forward relaying
favoured to stable roommates problem. The outage probability for a special
protocol has been calculated and chosen as the ranking strategy in the pref-
erence lists of players. We proposed a decentralized version of Irving’s algo-
rithm for partner selection. Further, we compared the coupling of players with
global optimum. In computational results, we showed that stable-matching
gives near global optimum results. We also depicted the superior advantage
of the stable-matching compared to random selection.
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C O N C L U S I O N S

In Chapter 2, we suggested a decentralized algorithm for finding the Nash sta-
bility in a game whenever there exists always at least one. The problem of find-
ing the Nash stability is considered as a non-cooperative game. We consider
a random round-robin fashion where each player determines its strategy in its
turn according to a scheduler which is randomly generated for each round. Un-
der this condition, we proved that the algorithm converges to an equilibrium
which is the indicator of the Nash stability. Moreover, we answer the follow-
ing question: Is there any utility allocation method which could result in a
Nash-stable partition? We proposed the definition of the Nash-stable core. We
analyzed the cases in which the Nash-stable core is non-empty, and prove that
in case of the relaxed efficiency condition there exists always a Nash-stable
partition.

In Chapter 4, the mobile assignment problem in broadcast transmission in
the “green” context is studied. We proposed a centralized optimal recursive
algorithm (the HM) as well as a centralized polynomial-time heuristic algo-
rithm (the CC). Further, we developed a distributed approach to the CC algo-
rithm (the DCC), and another distributed one called the NBS algorithm. We
also introduced a new algorithm based on group formation games, which we
call as the hedonic decision (HD) algorithm. This formalism is constructive:
a new class of group formation games is introduced where the utility of play-
ers within a group is additively separable and symmetric being a concept in
hedonic coalition formation games. Simulation results were used to verify the
performance of the algorithms. We realized that the HD algorithm produces
near-optimal solutions. On the other hand, we analyzed the mobile assignment
problem using a coalitional game approach. We proved that the players of the
game form grand coalition and the core of this game is non-empty. Moreover,
we also studied the game for some cost sharing methods and showed that in
case of the nucleolus the grand coalition is stable, and it minimizes the total
cost in broadcast transmission in Chapter 5.

In Chapter 6, we analyzed the cooperation of SPs on switch off operation
of BSs in the context of green networking. The homogeneous Poisson p.p. ap-
proach to the deployment of BSs has been used in order to study the SINR
distribution of SPs. It was proven that scaling the coordinates of ℜ2 by

p
q

from the origin of a homogeneous Poisson point process result in a thinned
homogeneous Poisson point process with intensity modified by q. The SINR
distribution of the original network was derived and by increasing the trans-
mission power by some factor of q, it was proven that the SINR distribution
of the thinned network (obtained by scaling the locations of BSs) remains
unchanged. Furthermore, in the case of non-cooperating SPs, the SINR dis-
tribution is obtained of the original and thinned network of SPs, respectively.
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We also found the SINR distribution of cooperation case used in the context
of coalition formation of SPs. The operations on the network formed by co-
operation are assumed to be run jointly by SPs meaning that they share their
resources such that any mobile is tagged to the nearest BS of any SP. The max-
imal energy saving density of a cooperation is supposed to be the utility of the
coalition. We derive the closed form results of the utility.

The cooperation of SPs on switch off operation of BSs in the context of green
networking is studied in Chapter 7. The homogeneous Poisson p.p. approach
to the deployment of BSs has been used in order to study the SINR distribution
of SPs. Furthermore, in the case of non-cooperating SPs, the SINR distribution
is obtained of the original and thinned network of SPs, respectively. We also
found the SINR distribution of cooperation case used in the context of coalition
formation of SPs. The operations on the network formed by cooperation are
assumed to be run jointly by SPs meaning that they share their resources such
that any mobile is tagged to the nearest BS of any SP. The maximal energy
saving density of a cooperation is supposed to be the utility of the coalition.
We derive the closed form results of the utility. We compared the utilities of
SPs in case of both the allocation based on efficiency and relaxed efficiency.
We showed that in case of individual deviations the importance of efficiency
is not significant in the side of SPs.

In Chapter 8, we considered the association problem of mobiles as a crowd-
ing game in which the utility of a player is specific to player and a function of
the number of the players that share the same resource. The utility considered
to be a difference of a payoff and cost. Using the tools of crowding game we
analyzed the problem for the TDMA and HSDPA cases. The throughput was
taken as payoff. The cost has considered to be a function of operational power
cost of a BS. From the computational results, we observed for several metrics
that mean utility and throughput in equilibrium that a player gains are always
better when the used multiple access method is HSDPA.

In Chapter 9, we formalized the partner selection problem in decode-and-
forward relaying favoured to stable roommates problem. The outage proba-
bility for a special protocol has been calculated and chosen as the ranking
strategy in the preference lists of players. We proposed a decentralized ver-
sion of Irving’s algorithm for partner selection. Further, we compared the cou-
pling of players with global optimum. In computational results, we showed
that stable-matching gives near global optimum results. We also depicted the
superior advantage of the stable-matching compared to random selection.
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11
S O M M A I R E D E S C O N T R I B U T I O N S

11.1 S U R L A S TA B I L I T É N A S H D A N S L E S H É D O N I S T E S C O A L I T I O N J E U X

F O R M AT I O N

La coopération entre les agents (les joueurs) être en mesure de prendre des
décisions stratégiques devient un coalition jeu de formation quand les joueurs
peuvent, pour diverses raisons personnelles souhaitent appartenir un petite
coalition relative plutôt “grande coalition”. Partitionnement des joueurs est
donc cruciale dans le contexte du jeu puisque la stabilité de la partition des
joueurs résultats de l’équilibre. Dans [24], les auteurs proposent une approche
abstraite de la formation de la coalition qui se concentre sur une simple fu-
sion et des règles de stabilité fendus transformation partitions d’un groupe de
joueurs. L’outil conceptuel principal est une notion spécifique d’une partition
stable. Les résultats sont paramétrées par une relation de préférence entre les
partitions d’un groupe de joueurs. D’autre part, un jeu de formation de coali-
tion est appelée à être hédonique, si

• le gain d’un joueur ne dépend que des membres de la coalition à laquelle le
joueur appartient, et

• les coalitions se forment en raison des préférences des joueurs sur l’ensemble
de leurs éventuelles coalitions.

La définition de la stabilité Nash est assez simple :

une partition de joueurs est stable Nash quand il n’ya pas de joueur
déviant de son / sa coalition à l’autre coalition dans la partition.

Nous nous référons à [25] pour de plus amples discussions sur les concepts
de stabilité dans le contexte des jeux hédoniques de formation de la coalition.

11.1.1 Nos Contributions

Tout d’abord, nous développons un algorithme décentralisé trouver la stabilité
Nash dans un jeu quand il existe toujours au moins un. L’algorithme est basé
sur la meilleure stratégie de réponse dans lequel chaque joueur décide série
son/sa coalition. Ainsi, le problème est considéré comme un jeu non coopératif.
Nous considérons un random round-robin mode où chaque joueur détermine
sa stratégie à son tour selon un programmateur qui est généré de façon aléa-
toire pour chaque tour. Sous cette condition, nous montrons que l’algorithme
converge vers un équilibre qui est l’indicateur de la stabilité Nash.

Deuxièmement, nous posons la question suivante: Y at-il affectation d’utilité
méthode qui pourrait aboutir à une partition Nash-stable? Nous abordons cette
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question dans la suite. Nous proposons la définition de le noyau Nash-stable qui
est l’ensemble de toutes les méthodes de répartition des services publics possi-
bles résultant de partitions Nash-stables. Nous analysons les cas dans lesquels
le noyau Nash-stable est non vide, et de prouver que sous la détendue efficacité
condition (le gain attribué total de joueurs au sein d’une coalition pourrait être
inférieure ou égale à l’utilité de cette coalition) il existe toujours une partition
Nash-stable.

11.2 L E P R O B L È M E D E L’A S S I G N AT I O N M O B I L E E N B R O A D C A S T T R A N S -
M I S S I O N : A S P E C T S D ’O P T I M I S AT I O N

C’est une exigence de l’évolution à long terme (LTE) spécifications pour ap-
puyer la prestation de données de diffusion/multidiffusion sous le nom de
l’Multimedia Broadcast/Multicast service (MBMS) [30]. Il n’y a pas de dif-
férence entre la diffusion et de multidiffusion des transmissions de données
en liaison descendante à la couche physique. Alors que les services de diffu-
sion sont disponibles à tous les utilisateurs sans avoir besoin d’abonnements
à des services particuliers, la multidiffusion peut donc être considérée comme
“diffusion via abonnement”, avec la possibilité de faire payer l’abonnement
[30].

Broadcast est particulièrement bien adapté aux canaux sans fil, où l’on peut
utiliser les ressources (en fréquence et/ou de temps) qui sont communs à
toutes les destinations. Nous supposons que le coût d’une station de base (BS)
de transmettre à une multidiffusion groupe est proportionnel à la puissance
nécessaire pour atteindre le mobile le plus éloigné au sein du groupe, et que
celui-ci est une fonction de la distance par rapport à ce que mobile et l’effet
de l’ombrage. A BS peut diffuser la même information à plusieurs groupes
de multidiffusion. Dans ce cas, chaque groupe multicast est chargé de la coût
pour atteindre le mobile la plus éloignée de ce groupe. Dans notre contexte, le
plus mobile à distance doit être comprise comme celui pour lequel on a besoin
le plus haut la puissance de transmission, et non un éloignement grâce à une
mesure géographique.

Nous considérons la situation où il ya une information commune que cha-
cun de M mobiles est intéressé à recevoir, et qui peut être obtenu à partir de
l’une des stations de base n. Les informations de diffusion pourrait être un
peu de contenu, tels que la transmission en continu d’un événement culturel
ou sportif, ou il pourrait y avoir une signalisation comme un phare pour la syn-
chronisation horaire ou à des fins de contrôle de puissance. Nous recherchons
ces affectations de mobiles au SRS pour que la puissance totale est minimisée.
De plus, nous prenons en compte le coûts de l’énergie opérationnelles (par exem-
ple, les amplificateurs de puissance, radiateur, etc) d’un BS typique. En effet,
le problème d’affectation mobile (MAP) dans le contexte de la transmission
de diffusion que nous étudions dans ce travail est construit sur min-size k-
clustering problem proposée et examinée dans [31]. En min-taille k-clustering
problème, l’objectif est d’attribuer des points au plus k grappes de sorte que
la somme de toutes les distances entre les points dans le même cluster (k-
clustering) est minimisé. Dans [31], le coût typique pour une paire BS-mobile
est supposé être uniquement fonction de la distance entre la BS et le mobile,
qui est formulée comme

∑

n j∈C
maxi∈n j

dαi j+P j
0 . Ici, n j est un groupe de mobiles

affectées à BS j, C est l’ensemble des groupes appelés comme regroupement,
di j est la distance entre le mobile i et BS j, α est l’exposant de perte de tra-
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jet, P j
0 est le coût de l’énergie opérationnel chargé de BS j. Cependant, ici,

nous ajoutons l’effet d’ombre à un tel coût produisant le coût total suivante
∑

N j∈C
maxi∈N j

dαi j/Ψi j + P j
0 où Ψi j désigne l’effet d’ombrage entre mobile i et

BS j.

11.2.1 Nos Contributions

Les documents visés concentrer sur l’aspect de la géométrie de la carte où fon-
damentalement, la zone de couverture d’une BS est supposé être un disque
qui délivre du diagramme d’antenne omnidirectionnel. Cependant, l’effet de
observation, spécialement conçu diagrammes d’antenne ainsi que la coûts de
l’énergie opérationnelles pourraient modifier les affectations BS-mobiles. Ici,
nous prenons en compte ces effets. À cette fin, nous représentons par matrice
de coût d’énergie chacun de coût d’appariement alimentation BS-mobile. En-
suite, nous proposons Des algorithmes de programmation dynamique effectu-
ant des opérations sur le coût d’alimentation matrice.

Par ailleurs, “approches sensibles au vert” [44] qui visent pour réduire la
consommation d’énergie dans des environnements sans fil doit être pris en
compte dans la conception des algorithmes pertinents. Dans ce contexte, la
coupure une fraction de BSS est considéré comme un moyen de réduire con-
sidérablement le La consommation totale d’énergie. Réseaux hétérogènes com-
prennent des cellules macro et petite avec coordination. Dans ce travail, nous
supposons que les petites cellules sont soumises à éteignant opération tan-
dis que les cellules de macros sont toujours activées, qui servent déplacement
mobiles afin de diminuer le nombre de la main-offs. Les petites cellules sont
déployés de manière intensive, par conséquent, la puissance d’émission est
inférieure à macro cellules.

En comparant la puissance d’émission étant en niveaux milliwatts avec l’
coûts de l’énergie opérationnelle, près de dizaines de Watts, il est très efficace
pour éteindre une certaine fraction de stations de base pour réduire la con-
sommation totale d’énergie. Cette méthode pourrait être abondante lorsque
les utilisateurs ne bougent pas. Cependant, l’évolution rapide les utilisateurs
sont considérées être servi par macro stations de base qui ne sont pas éteinte
généralement [11].

Par la suite, nous proposons un algorithme récursif appelé the hold minimum
algorithm qui résout le problème considéré de manière optimale. L’attente min-
imum algorithme opère d’une manière centralisée, ce qui nécessite toute con-
naissance pour chaque coût de l’énergie appariement BS-mobile. Nous pro-
posons également un autre centralisé algorithme heuristique en temps poly-
nomial appelé the column control algorithm qui produit des affectations opti-
males en tenant compte de la puissance opérationnelle coûts. En outre, nous
développons une approche distribuée à la commande de colonne, où chaque
mobile recueille les informations locales de la stations de base qui peut trans-
mettre à elle. Nous D’autre part, the nearest base station algorithm, un algo-
rithme heuristique distribué qui fonctionne en temps polynomial est offert.
Cette algorithme est efficace pour les utilisateurs qui se déplacent rapidement
desservis par les stations de base macro. Nous introduisons également un nou-
vel algorithme basé sur les jeux de formation de groupe, que nous appelons
aussi le the hedonic decision algorithm. Ce formalisme est constructif: une nou-
velle classe de jeux de formation de groupe est introduit où l’utilité de joueurs
au sein d’un groupe est séparable et symétrique est une version généralisée
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de la parité jeux affiliation. En outre, l’algorithme de décision hédonique peut
être adapté à un ensemble couvrant problème.

11.3 L E P R O B L È M E D E L’A S S I G N AT I O N M O B I L E E N B R O A D C A S T T R A N S -
M I S S I O N : A S P E C T S D E J E U D E C O A L I T I O N

Nous étudions le problème combiné de (i) de décider ce sous-ensemble des
mobiles serait attribué à chaque BS, puis (ii) le partage du coût de la multidif-
fusion BSS parmi les mobiles. Le sous-ensemble que nous souhaitons attribuer
à un BS donnée est dit être son objectif fixé de mobiles. Une règle de partage
des coûts se compose d’une politique de prix qui détermine la part que chaque
mobile dans l’objectif fixé paierait. Nous sommes intéressés par les politiques
de partage qui sont stables en ce sens qu’aucun sous-ensemble de M mobiles
pourrait payer strictement inférieure à leur part des coûts de la formation d’un
nouveau groupe de multidiffusion séparé.

Ce travail s’appuie sur [45] qui a étudié le cas d’une seule station de base.
Ils ont étudié (i) le problème de partage des coûts ainsi que (ii) l’association
combiné et problème de partage des coûts. Dans ce dernier, chaque mobile a
été en mesure de décider de rejoindre un canal de diffusion unique dédié ou
à se joindre à la session de multidiffusion, dans ce cas, c’était une partie de la
partie de la coalition au BS. L’analyse fortement dépendu de la propriété sous-
modularité qui a tenu dans le cas d’une seule station de base. Nous montrons
ici que sous-modularité ne tient pas dans le cas de plusieurs stations de base.

11.3.1 Nos Contributions

Le point de départ a été notre tentative d’étendre la propriété de sous-modularité
pour le cas de deux stations de base. Au lieu de cela, nous fournissons un
contre-exemple qui montre qu’en effet, déjà dans le cas de deux stations de
base, sous-modularité ne tient pas.

Nous apprécions cela comme un jeu coalitionnelle joué par les mobiles et
prouver que ce jeu a tout intérêt à former la grande coalition où tous les
joueurs se joignent à la partie. En outre, en utilisant Bondareva-Shapley théorème
[62], nous montrons que ce jeu de coalition a un noyau non vide ce qui sig-
nifie que la grande coalition est stable. Ensuite, nous examinons la politique
de répartition des coûts pour différentes méthodes telles que l’allocation égal-
itaire, la répartition proportionnelle du coût total, la valeur de Shapley [29]
et le nucléole [65].

11.4 E T E I N D R E L E S S TAT I O N S D E B A S E : C O N S I D É R AT I O N S L I A I S O N D E -
S C E N D A N T E

La consommation d’énergie peut être réduite en tournant et éteignant dy-
namiquement les cellules, les stations de base et les autres ressources radio
(par exemple antennes d’émission), selon observé charge de trafic, l’utilisation
des ressources, la qualité et la couverture.

Nous considérons transmission en liaison descendante dans les réseaux cel-
lulaires où nous pour objectif de réduire la consommation d’énergie en éteignant
certaines stations de base d’une telle manière que la distribution de SINR reste
inchangé. Nous supposons que la réutilisation des fréquences. Chaque mobile
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est associée à la station de base étant la plus proche de lui. Toutes les stations
de base étant la principale cause l’interférence la plus proche du mobile. La
question que nous posons est “Combien de stations de base peut être désac-
tivé afin que la distribution du SINR reste inchangé?”. Nous modélisons le
problème comme un processus ponctuel de Poisson marqué indépendamment
homogène.

Nous analysons les affaires en ligne et le plan, le gain en consommation
d’énergie obtenue après la coupure BS. Il s’avère de calculs que plus le coût
d’exploitation moins le gain en consommation d’énergie, et même, plus la di-
mension (distribution des stations de base dans la ligne et le plan signifie
une et deux dimensions, respectivement), moins le gain en consommation
d’énergie.

Nous analysons également la coopération des fournisseurs de services sur
désactiver le fonctionnement de stations de base dans le contexte de la mise en
réseau vert. L’approche processus de Poisson homogène pour le déploiement
de stations de base a été utilisée pour étudier la distribution SINR des prestataires
de services. En outre, dans le cas des prestataires de services n’ayant pas
coopéré, la distribution SINR est obtenue du réseau d’origine et amincie de
prestataires de services, respectivement. Nous avons également constaté la
distribution SINR de cas de coopération utilisé dans le cadre de la forma-
tion d’une coalition de fournisseurs de services. Les opérations sur le réseau
formé par la coopération sont supposés être géré conjointement par les four-
nisseurs de services qui signifie qu’ils partagent leurs ressources de telle sorte
que n’importe quel mobile est marqué à la station de base la plus proche de
n’importe quel fournisseur de services. La densité d’économie d’énergie maxi-
male d’une coopération est censé être l’utilité de la coalition. Nous obtenons les
résultats du formulaire fermés de l’utilitaire. Nous comparons les services de
prestataires de services dans les deux cas de l’allocation basée sur l’efficacité et
l’efficience détendue. Nous avons montré que dans le cas d’écarts individuels
de l’importance de l’efficacité n’est pas significative sur le côté de fournisseurs
de services.

11.5 A S S O C I AT I O N N O N -C O O P É R AT I V E D E M O B I L E S

Il ya eu un intérêt croissant pour les dernières années de modéliser les déci-
sions d’accès aux réseaux que des jeux non compétitifs. En effet, il est assez
fréquent que le réseau laisse à l’utilisateur de décider à quel point d’accès à
connect.The problème d’association est en fait lié à la nature du problème de
sélection de canal. Ce qui motive l’utilisation des jeux avec des informations in-
complètes, également connu sous le nom des jeux bayésiens, où l’information
partielle se réfère à la charge du système dans [72] ou à la qualité de canal
dans [73].

Le point d’accès peut être différent de l’autre par leur technologie et par
la qualité des canaux radio entre chacun d’entre eux et chaque mobile. État
cette mise en réseau décision compétitif dépendants ont été modélisés dans
le passé que des jeux stochastiques et la structure des politiques d’équilibre
a été obtenue pour un ou deux problèmes dimensionnels. Par un problème
tridimensionnel, nous entendons problèmes dans lesquels chaque mobile a le
choix entre un point d’accès dont les ressources sont partagées et entre un
canal dédié. Dans un tel problème les informations nécessaires pour prendre
la décision d’association est combien de mobiles sont connectés à la ressource
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partagée (donc l’information est dite unidimensionnelle). Un exemple pour
un problème qui tombe dans cette catégorie est [74]. La politique d’équilibre,
il se compose d’une politique de seuil avec randomisation sur le seuil. Dans
[75] l’étude d’auteur un problème à deux dimensions dans lequel le choix
est entre l’accès à un réseau cellulaire sans fil 3G ou un réseau local sans
fil. L’information disponible est de deux dimensions: le nombre de stations
mobiles dans chacun des réseaux. Dans [76] politiques d’équilibre ont été
montré pour avoir une forme de la courbe de commutation avec randomisa-
tions possibles à la frontière entre les régions correspondant à la connexion au
point d’accès différent. Un problème d’association à l’un des nombreux points
d’accès d’un réseau local sans fil a été examinée dans [77]. Dans tous les prob-
lèmes ci-dessus, nous avons supposé que, une fois une décision de la connexion
est établie, le mobile reste connecté au point d’accès jusqu’à la fin de l’appel.

En revanche, dans ce travail, nous considérons le problème où à n’importe
quelle période de temps, les portables peuvent mettre à jour leur décision
d’association. Nous considérons le choix entre deux points d’accès ou plus, où
les décisions d’accès peut dépendre du nombre de mobiles connectés à cha-
cun des points d’accès. Nous obtenons de nouveaux résultats en utilisant des
outils élémentaires de la congestion et des jeux éviction. Nous montrons en
particulier que, à l’équilibre, les actions mixtes (aléatoire) ne sont pas néces-
saires. Nous montrons par ailleurs la convergence de la séquence de meilleures
stratégies d’intervention.

Nos résultats sont basés sur la congestion games [80] et sur l’éviction games
[79]. Nous étudions en outre (i) Multihoming dans lequel un utilisateur peut
se connecter simultanément à plus d’un point d’accès. (ii) le cas “ élastique”
dans laquelle il ya aussi une possibilité de ne pas se connecter à tous.

11.5.1 Sélection des Partenaires pour Relayer Cooperative

Soit être considéré comme un scénario où un ensemble d’utilisateurs ou agents,
visent à transmettre leurs données vers une destination commune. Ce scénario
peut correspondre, par exemple, soit vers les mobiles dans une seule cellule en
mode de liaison montante ou à un réseau de capteurs sans fil avec un évier. Le
protocole de référence utilisée pour transmettre l’ensemble des informations
à la destination commune repose sur une approche MAC de couche 2 qui di-
vise les ressources et programmer l’allocation de chaque ressource à chaque
agent. Même si les agents sont tous dans la gamme de la destination, les trans-
missions coopératives peuvent améliorer considérablement l’efficacité du sys-
tème. L’efficacité peut être mesurée par la capacité totale, l’énergie totale ou
par des critères liés à la qualité de service tels que le taux d’erreur de paquet.
Ici, nous nous concentrons sur la probabilité de panne. puissances d’émission
et des besoins de capacité pour chaque nœud sont constants et transmission
coopérative est utilisé pour réduire la probabilité de panne. La formulation du
problème est basée sur le modèle de canal relais comme décrit dans les pre-
miers travaux de Laneman [89]. Dans l’approche la plus simple, chaque agent
source nécessite l’aide d’un autre agent pour améliorer sa transmission en for-
mant togeter un canal de relais équivalent. Nous considérons le cas particulier
où les agents associés par paires tels que les relais chaque agent les données
de l’autre. Dans le cadre de la théorie de l’information du réseau, ces nœuds
forment un canal d’accès multiple coopérative (CMAC).
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Mais l’ensemble du réseau peut être considéré comme un grand CMAC de
taille, nous proposons plutôt de former plusieurs petites coalitions. Dans ce
travail, ces petites coalitions sont encore limités à deux. Afin d’optimiser la
performance globale du réseau, le processus sélection des partenaires est donc
cruciale. Chaque agent vise ici à trouver un bon partenaire pour exploiter ef-
ficacement la diversité spatiale réalisé avec la coopération. Ce processus peut
être identifié comme un problème d’appariement . Dans le sens théorique de
jeu où les joueurs sont “décideurs stratégiques”, le processus de sélection du
partenaire semble être un exemple de la problème de colocataires stable. Théorie
d’appariement stable a été créé par Shapley et Gale par leur travail séminal
[85]. Gale et Shapley analysés correspondant à, un niveau général abstrait.
Ils ont utilisé le mariage comme l’un de leurs exemples illustratifs. Comment
dix femmes et dix hommes doivent être adaptées, tout en respectant leurs
préférences individuelles? Le principal défi consistait à concevoir un mécan-
isme simple qui mènerait à un appariement stable, où aucun couples se briser
et former de nouveaux matchs qui les rendrait mieux. La solution – la Gale-
Shapley “acceptation différée” algorithme – est un ensemble de règles simples
qui toujours conduit tout droit à un appariement stable.

Le problème du mariage stable est un exemple de ce qu’on appelle recto-
verso marché en raison de la question du genre. Toutefois, ce genre de prob-
lème peut être d’élargir à l’appariement des problèmes avec aucun problème
du genre et sont considérés comme des unilatérale marché. C’est le cas du
problème des colocataires stable. Dans ce problème, chaque personne cible
correspondant à la meilleure partenaire pour partager une chambre. Nous al-
lons montrer que le problème de la sélection des partenaires dans le cadre de
relayer coopérative peut être étudié comme un marché à sens unique. En déter-
minant la règle classement des partenaires, nous recherchons un appariement
stable. Même si un appariement stable est toujours possible dans les problèmes
de mariage stable, ce n’est pas le cas dans le problème des colocataires stable.
En outre, même si un appariement stable existe, il n’y avait pas d’algorithme
polynomial pour trouver jusqu’à ce que les travaux récents de Irving [86].

11.5.2 Nos Contributions

Nous vous proposons l’utilisation de la théorie de l’appariement et plus spé-
cifiquement le problème des colocataires stable, pour résoudre le problème
de la sélection des partenaires dans les transmissions de coopération. Ce tra-
vail montre que ce formalisme est parfaitement pratique et en outre un outil
naturel pour ce problème. La raison en est qu’il fournit une procédure de dé-
coupe stable et équitable si l’on considère les nœuds sources (agents) que les
décideurs stratégiques. Ici, nous utilisons cet outil pour analyser le problème
de la sélection des partenaires.
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