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Abstract

Resumé

Dans le cadre de cette thèse, on se proposait de développer de nouveaux mécan-

ismes de radiolocalisation, permettant de positionner les noeuds de réseaux cor-

porels sans-�l (WBAN) mobiles, en exploitant de manière opportuniste des liens

radio coopératifs bas débit à l'échelle d'un même corps (i.e. coopération intra-

WBAN), entre réseaux distincts (i.e. coopération inter-WBAN), et/ou vis-à-vis

de l'infrastructure environnante. Ces nouvelles fonctions coopératives présentent

un intérêt pour des applications telles que la navigation de groupe ou la capture de

mouvement à large échelle. Ce sujet d'étude, par essence multidisciplinaire, a permis

d'aborder des questions de recherche variées, ayant trait à la modélisation physique

(e.g. modélisation spatio-temporelle des métriques de radiolocalisation en situation

de mobilité, modélisation de la mobilité groupe...), au développement d'algorithmes

adaptés aux observables disponibles (e.g. algorithmes de positionnement coopérat-

ifs et distribués, sélection et ordonnancement des liens/mesures entre les noeuds...),

aux mécanismes d'accès et de mise en réseau (i.e. en support aux mesures coopéra-

tives et au positionnement itératif). Les béné�ces et les limites de certaines de ces

fonctions ont été en partie éprouvés expérimentalement, au moyen de plateformes

radio réelles. Les di�érents développements réalisés tenaient compte, autant que

possible, des contraintes liées aux standards de communication WBAN émergeants

(e.g. Impulse Radio - Ultra Wideband (IR-UWB) IEEE 802.15.6), par exemple en

termes de bande fréquentielle ou de taux d'erreur.

Abstract

Wireless Body Area Networks (WBAN), which have been subject to growing research

interests for the last past years, start covering unprecedented needs in application

�elds such as healthcare, security, sports or entertainment. Even more recently,

such networks have been considered for new opportunistic and stand-alone radiolo-

cation functionalities. Under mesh or quasi-mesh topologies, mobile on-body nodes

can indeed be located within a cooperative fashion, considering peer-to-peer range

measurements based on e.g., Impulse Radio - Ultra Wideband (IR-UWB) Time of

Arrival (TOA) estimates or Narrow-Band (N-B) Received Signal Strength Indicators

(RSSI) at 2.4GHz. This radiolocation add-on is viewed as an important enabling

feature for coarse but opportunistic and large-scale humanMotion Capture (MoCap)

(e.g. as an alternative to costly and geographically restricted acquisition systems)

and/or for robust group navigation applications in practical environments (i.e. un-

der severe non-line of sight conditions).

In this context, the PhD investigations accounted herein aim at exploring new
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WBAN cooperative localization mechanisms, which could bene�t jointly from on-

body links at the body scale (i.e. intra-WBAN cooperation), body-to-body links

between distinct mobile users (i.e. inter-WBAN cooperation), or o�-body links with

respect to the infrastructure. Following a multidisciplinary approach, we have thus

addressed theoretical questions related to physical modeling (e.g. space-time corre-

lation of radiolocation metrics, human mobility...) or to algorithmic and cross-layer

design (e.g. cooperative localization and tracking algorithms under realistic pro-

tocol constraints, links selection and scheduling...). A few more practical aspects

have also been dealt with (e.g. post-processing of past measurement campaigns,

development of adapted cross-layer simulation tools and �eld experiments).

More speci�cally, based on WBAN channel measurements, single-link ranging error

models are �rst discussed for more realistic performance assessment. Then a Con-

strained Distributed Weighted Multi-Dimensional Scaling (CDWMDS) positioning

algorithm is put forward for relative MoCap purposes at the body scale, coping with

on-body nodes' asynchronism to reduce system latency and exploiting the presence

of constant-length radio links for better accuracy. Scheduling and censoring rules

are also proposed to limit the in�uence of harmful peripheral nodes. Subsequently

we consider extending this algorithm for larger-scale asbolute MoCap applications

within a 2-step localization approach that incorporates additional o�-body links in

a heterogeneous WBAN framework. Then, both individual and collective kinds of

navigation are addressed, comparing a Non Linear Least Squares (NLLS) position-

ing algorithm with a centralized Extended Kalman Filter (EKF) tracking �lter. In

both MoCap and navigation scenarios, low-complexity solutions exploiting on-body

deployment diversity enable to combat error propagation and strong range biases

due to body shadowing, relying on on-body nodes' dispersion or graph neighbour-

hood to approximate the corrupted distances. Finally, experiments based on real

IR-UWB radio platforms validate in part the previous proposals, while showing their

practical limitations.

Keywords

Cooperative Networks, Impulse Radio (IR), IEEE 802.15.6, Localization, Low Data

Rate (LDR), Decentralized Algorithms, Medium Access Control (MAC), Narrow-

Band Communications, Positioning, Ranging, Ultra-Wide Band (UWB), Wireless

Body Area Network (WBAN).
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1.1 Location-Based Body-Centric Applications and

Needs

The recent development of sensing and short-range communication integrated tech-

nologies has been disclosing interesting perspectives for mobile, personal and body-

centric applications or services. More particularly, theWireless Body Area Networks

(WBANs), which consist of small and low-power wearable wireless devices, are on

the verge of ful�lling new market needs in a variety of application �elds such as emer-

gency and rescue (e.g. remote posture detection for institutional rescuers or victims),

healthcare (e.g. physiological or activity monitoring, wireless medical actuators and

implants, assistance to medical diagnosis, lab-on-chip chemical analysis), entertain-

ment (e.g. motion capture for gaming or sports analysis), personal communications

and multimedia (e.g. distributed terminals, personal consumer electronics), clothing

applications (e.g. garments with electronic components, smart shoes) [14], [15] (See

Figure 1.1). On the one hand, WBANs rely on emerging radio technologies that

claim Ultra Low Power (ULP) consumption, low complexity, and low cost, such as

Narrow-Band (N-B) solutions at 2.4 GHz based on e.g., Bluetooth - Low Energy

(BT-LE), or Impulse Radio - Ultra Wideband (IR-UWB) solutions, as put forward

in the recent IEEE 802.15.6 standard dedicated to WBAN applications [4], [11].

On the other hand, WBAN nodes usually embed extremely low-power sensors and

actuators based on e.g., Micro Electro-Mechanical Systems (MEMS) or even further
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energy scavenging systems for power autonomy. In the near future, such wearable

systems could drastically change our daily life, by participating as local (but core)

building components and key contributors into the Internet of Things (IoT). People

disseminated in the crowd with their own personal WBAN could play a signi�-

cant role in cooperative and heterogeneous communication networks, by serving as

distributed pieces of the overall architecture skeleton [16] (See Figures 1.2 and 1.3).

Figure 1.1: Typical WBAN deployment for medical and healthcare applications [1].

Figure 1.2: WBAN integrated in cooperative and heterogeneous networks, as a core

building block of the future daily-life Internet of Things (IoT).
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Figure 1.3: Cooperative WBANs interacting within their local environment (in-

cluding other WBANs), enabling new site-/context-speci�c applications for smarter

cities/homes and augmented nomadic social networking.

Besides simple WBAN considerations, numerous location-dependent services

have also been appearing for the last past years, such as pedestrian navigation in

indoor environments or urban canyons, location-dependent commercial o�ers or con-

textual information broadcast, assisted mobility in dangerous and/or con�ned envi-

ronments. One common requirement is to bring high-precision location information

into unaddressed applicative environments where classical satellite-based solutions

can not operate properly. Many of those services are intrinsically user-centric, in

the sense the location information would be required on the end-user side, possibly

with decentralized resources and a limited access to the infrastructure. Among the

proposed technological solutions providing such location and tracking capabilities

on top of standard communication means at medium ranges, Low Data Rate (LDR)

ULP radio technologies, very similar to that considered in the WBAN context actu-

ally, are favoured today, such as IR-UWB (e.g. IEEE 802.15.4a standard) or, more

marginally, Zigbee (e.g. IEEE 802.15.4 standard).

Finally, there is also a growing interest today in acquiring the human motion and

gesture at variable degrees of precision, but with non-intrusive, very low-cost, low-

complexity and stand-alone technologies, as an alternative to the relatively cumber-

some, geographically restricted and speci�c means used so far (e.g. video solutions

used by professionals in the domain of motion capture). This may be particularly

useful either for mass-market or more con�dential applications including e.g., coarse

gesture-based remote control necessitating relaxed accuracy.

In this context, the CORMORAN project, which was recently funded by the

French National Research Agency (ANR 11-INFR-010) and started in 2012, aims at

studying and developing solutions that could bene�t from cooperation within groups

of mobile WBANs, with the twofold objectives of making available new localization

functions and enhancing globally the quality of the wireless communication service.

Overall, fusing cooperative short-range communications in and between WBANs

with radiolocation capabilities could indeed enable to cover unaddressed (or at least
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still hardly addressed) applications, such as:

� augmented group navigation (e.g. �re-�ghters progressing in a building on �re

with physiological monitoring and relative position information, coordinated

squads of soldiers on urban battle-�elds);

� low-cost and infrastructure-free tracking of collective systems (e.g. real-time

capture and/or sports analysis);

� nomadic social networking (e.g. sharing personal location-dependent informa-

tion in a decentralized way among authorized members of a given community);

� augmented reality for collective entertainment (e.g. in mobile and interactive

group gaming);

� context-dependent information di�usion (e.g. data broadcast to identi�ed

clusters of people with common interests, needs or locations);

� wireless network optimization (e.g. handover between di�erent radio access

technologies for clusters of people experiencing the same mobility patterns,

optimal data routing under users mobility);

� distant health care, monitoring and rescue systems (e.g. collective launching

or noti�cation of emergency alarms, routine medical treatments at home);

� smart homes and personal multimedia (e.g. house automation, smart HiFi or

eased screen browsing through coarse body capture).

As a preliminary step of the investigations carried out in the frame of COR-

MORAN, the project's partners disseminated a questionnaire to professional en-

tities, identi�ed as possible users and/or integrators of this technology in various

activity domains. The idea was to identify their actual needs and technical re-

quirements, as well as to draw preliminary system speci�cations in terms of e.g.,

sensors/body location precision and refreshment rates, number of sensors/users and

related deployment constraints, typical mobility, operating environments, calibra-

tion needs... The analysis of their feedback con�rms that the most representative

application scenarios could be classi�ed into two main categories, namely the Large

Scale Individual Motion Capture (LSIMC) and the Coordinated Group Navigation

(CGN), as summarized in Figure 1.4.

The �rst feature is somehow identical to traditional Motion Capture (MoCap),

which requires a rather high level of accuracy while locating the sensors at the body

scale (most likely at high refreshment rates), but the new aim here is to provide

stand-alone and larger-scale solutions (e.g. extending the service coverage in com-

parison with existing systems, which may be restricted into con�ned areas) with a

limited access to �xed and costly elements of infrastructure around (i.e. �xed access

points, base stations or wireless anchors). Note that depending on the underlying

applications, this motion capture functionality can be intended either as relative on-

body nodes localization (i.e. positioning on-body devices in a local body-strapped
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Figure 1.4: Technical needs and requirements for large-scale individual motion cap-

ture (in low and high precision modes) and group navigation applications, according

to the CORMORAN project (where An: Ankles, He: Head, Wr: Wrist, To: Torso,

Hi: Hips, Lg: Legs, Ba: Back, Sh: Shoulders, Kn: Knees, Bd: Bends stand for

possible sensors' locations).
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coordinates system) or absolute on-body localization (i.e. positioning on-body de-

vices in a more global system, external to the carrying body, typically at the building

or �oor scale). The second set of applications, which is not necessarily coupled with

the �rst motion capture functionalities, corresponds to classical pedestrian naviga-

tion applications (i.e. intended in a rather classical way) with relaxed positional

accuracy (most likely at moderate refreshment rates) but within groups of mobile

users, aiming at bene�ting from their collective behaviour.

In the next sub-section, we make a brief overview of enabling on-body localiza-

tion technologies and techniques (including radio solutions) that could �t into this

context, trying to summarize their respective advantages and limitations.

1.2 Enabling On-Body Localization Technologies and

Techniques

1.2.1 Optical Systems

Most optical systems are based on illuminated and re�ective markers placed on the

body [17], [10]. The localization of any on-body marker necessitates that the lat-

ter is viewed by at least two external cameras, which have known positions and

orientations [18]. Figure 1.5 shows an example of typical operating scenario and

deployment.

Such optical tracking systems are generally characterized by high localization accu-

racy (i.e. with an error of some millimeters) and they are able to support real-time

MoCap and/or navigation applications (i.e. with neglected latency). However, they

have limitations that may prevent from considering them in the very context, such

as cost, complexity or the necessity to operate in geographically restricted and closed

areas (i.e. with the test subject moving in this area). They also su�er from non-

visibility problems, when the markers cannot be viewed by the surrounding cameras

in cases of obstructions and/or obscurity conditions, and thus, the achieved accuracy

can be a�ected accordingly.

1.2.2 Inertial Systems

The most common sensors used within Inertial Measurement Units (IMUs) for the

localization of on-body devices are the accelerometers and the gyroscopes [19]. Those

systems can achieve localization errors of a few centimeters [20], [21], what can be

acceptable for MoCap purposes. They are usually characterized by their low cost

and their relatively low complexity. Besides the interest for those sensors in the

frame of MoCap applications, they have been also considered in Inertial Navigation

Systems (INSs), for instance for pedestrian tracking and dead reckoning, delivering

information related to the displacement amplitude, velocity, or heading [22], [23],

[24]. Unfortunately, the used sensors are usually a�ected by signi�cant drifts over

time [20], which necessitate frequent periodic calibrations.
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Figure 1.5: Example of typical scenario and system deployment for on-body optical

tracking (e.g. based on the Infra-Red technology) [2].

1.2.3 Magnetic Systems

Magnetic systems are based on the measurements of the earth-magnetic �elds mea-

sured by receivers, which can be also placed on the body [25]. Moreover, they can

be based on the magnetic �elds between on-body receivers and magnetic emitters

placed at known positions in the localization area [26]. Those systems, which are

also characterized by low cost and low complexity, could potentially enable real-time

and accurate MoCap and/or navigation. However, �eld sensing is traditionally sub-

ject to strong disturbances due to the presence of metallic pieces in the vicinity of

on-body sensors (e.g. embedded in clothes or in pieces of furniture). Finally, those

disturbances can signi�cantly degrade the localization accuracy in most of practi-

cal application environments, making this technology likely inadequate for standard

non-controlled MoCap and/or navigation purposes.

1.2.4 Mechanical Systems

These systems can be based on mechanical joints placed on the body articulations

in order to determine their respective rotations during the body movement. [27]

provides for instance the MoCap functionality based on the combination of such

mechanical and ultrasound systems. Unfortunately, those systems are not really

popular in the very context due to the limited proportion of people who would accept

to be equipped and potentially disturbed in their body movements. Moreover, they

could hardly be used as a standalone solution for MoCap applications at the body

scale (i.e. without performing data fusion with other systems).
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1.2.5 Ultrasound Systems

Ultrasound on-body localization systems involve emitters placed on the body and

microphones placed at known positions in the environment [27], [28], relying on the

signal Time of Flight(TOF). However, those systems can be rather strongly a�ected

by the interference caused by ultrasound waves transmitted from di�erent emitters,

in addition to echo e�ects in practical environments [29]. Those factors conduct to

damage dramatically the localization performances. Note that ultrasonic TOF and

inertial measurements can also be combined in the garment of wearable systems

for better robustness in MoCap applications, like in [30], but at the price of much

higher system and processing complexity.

1.2.6 Radio Systems

Rather similarly to ultrasound approaches, the wireless localization functionality in

radiolocation systems typically relies on the analysis of radio signals transmitted

with respect to multiple anchors and/or to other mobile devices (See Figure 1.6).

Location-dependent radio metrics can thus be estimated over these radio links, such

as the Time Of Arrival (TOA) of the transmitted signal or, one step ahead, the

Round Trip - Time of Flight (RT-TOF) through handshake protocols, the Time

Di�erence of Arrival (TDOA), which can be formed out of TOA estimates at syn-

chronized receivers, or more simply the Received Signal Strength Indicator (RSSI),

which is based on the distance-dependent average power loss. For instance, in case of

RT-TOF based on TOA estimation over IR-UWB links or Received Signal Strength

Indicators (RSSI) over N-B links, the measured metrics can directly re�ect peer-

to-peer ranges between radio devices. These measurements then subsequently feed

positioning or tracking algorithms to deliver the coordinates of mobile nodes in a

given reference system. Most of the radiolocation solutions so far have been con-

sidered for medium/large-range applications such as logistics based on asymetric

Real Time Location Systems (RTLS) or indoor personal navigation [31], but very

marginally in WBANs. However, Figure 1.6 shows an example of typical scenario

and system deployment for on-body radio tracking, which could be applied in a

WBAN-oriented context (e.g. with an external acquisition infrastructure).

The �nal positional precision is obviously related to the level of ranging precision

over unitary single links. Hence, as a preliminary step of our discussions, it is worth

assessing the very potential in terms of ranging capabilities (and more precisely, the

expected theoretical ranging precision) of di�erent radio technologies foreseen in our

WBAN context.

For radio signals propagating at celerity c, the distance between a transmitter

and a receiver is straightforwardly given by the product of the Time Of Flight (TOF)

and c. In an ideal synchronous case, the TOF, so de�ned as the elapsed time for

propagating the radio signal from the transmitter to the receiver, would be simply

given by:

TOFi = ti − t0 (1.1)
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Figure 1.6: Example of typical scenario and system deployment for on-body radio

tracking (e.g. with an external infrastructure).

where t0 is the time instant at which the transmitter starts transmitting and ti is

the TOA at the receiver, estimated locally in the observation window and de�ned

according to the local timeline (i.e. to the embedded clock).

If the transmitter and the receiver were perfectly synchronized (and thus, if t0
was known at the receiver), then the distance could theoretically be obtained from

the estimated TOA, what is however rarely the case in real systems, by nature asyn-

chronous. For such temporal radiolocation metrics, in addition to TOA estimation

accuracy, a few more challenges are indeed related to asynchronism e�ects among

the involved devices. Some ranging protocols have thus been proposed in order to

mitigate the harmful e�ects of synchronization errors and clock drifts, without neces-

sitating hardware modi�cations and without implementing clock tracking/tuning.

Those protocols consist in computing the RT-TOF, relying on e.g., 2-Way Ranging

(2-WR) or 3-Way Ranging (3-WR) cooperative protocol transactions (i.e. exchang-

ing packets) and unitary TOA estimates associated with the transmitted packets

[32]. Only two transmissions are involved in 2-WR to remove possible clock o�-

sets and provide peer-to-peer range measurements between two devices. One device

sends a request packet �rst. While receiving this packet, the second node estimates

its TOA and sends a response packet back to the requesting node after a known de-

lay. The �rst node will receive this response after a while and will estimate its TOA

as well. Finally, based on the initial transmission time, on both TOA estimates and

on the known response delay, the �rst node can easily compute the RT-TOF. But

the latter measurement can still be biased by relative clock drifts, depending on the

response delay and on the respective clock precisions. Then one gradual enhance-

ment to the 2-WR protocols leading to the 3-WR protocol consists in asking the

responder device to transmit one additional packet a certain amount of time (also

known in advance) after the response, so that the �rst requesting node estimates
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and compensates for relative clock drifts out of row RT-TOF measurements. All in

all, it is however also demonstrated in [33] that, as a result of such compensations,

the high-level statistics (typically, the conditional bias and standard deviation) of

the �nal error committed on corrected RT-TOF measurements is a predictable func-

tion of (and also on the same order of) the error statistics a�ecting unitary TOA

estimates, which mostly depend on time resolution (i.e. the capability to identify

and detect the �rst observable path in case of dense multipath, and more partic-

ularly at low SNR) and time precision (i.e. the capability to account precisely on

a local timescale for a particular detection or transmission event). As an example,

a simple timing error of 1 ns can lead to a distance error of 30 cm. Thus in �rst

approximation, while illustrating the trends in terms of expected ranging precision,

we will focus hereafter on TOA estimation performance only (instead of considering

the full RT-TOF scheme).

In an IR-UWB context, we assume for simplicity that the transmitted waveform

corresponds to a mono-pulse a�ected by Additive White Gaussian Noise (AWGN).

Hence, [3] shows that the best standard deviation achieved by any unbiased TOA

estimator, for instance based on Maximum Likelihood (ML) estimation through

Matched Filtering (MF) and peak detection, is inversely proportional to the occupied

bandwidth and bounded by√
var( ˆTOA) =

1

2
√

2π
√
SNRβ

(1.2)

where SNR is the Signal to Noise Ratio and β is the e�ective signal bandwidth,

de�ned as follows:

β =

√√√√[∫ +∞
−∞ f2|S(f)|2df∫ +∞
−∞ |S(f)|2df

]
(1.3)

where S is the Fourier transform of the transmitted signal.

Accordingly, as shown in Figure 1.7, in the absence of further precision regarding the

available processing gains (e.g. through the coherent integration of repeated pulses

sequences), and considering the standard SNR levels expected for typical on-body

links (i.e. at SNR<0dB), a bandwidth on the order of 1GHz (resp. 500MHz) would

be for instance required for ranging precisions on the order of 5 cm (resp. 10 cm)

at -5 dB. But of course, in more practical cases, one can expect that the accuracy is

even more degraded due to the conjunction of multipath e�ects, body obstructions

and receiver hardware capabilities. Note that other temporal radiolocation metrics

inheriting from preliminary TOA estimation (i.e. RT-TOF or TDOA) will be in�u-

enced similarly by the occupied bandwidth. Hence, the IR-UWB technology, which

relies on the transmission of short pulses whose durations are on the order of a few

nanoseconds (i.e. occupying bandwidths larger than 500 MHz), is characterized by

�ne temporal resolution capabilities [3], [34], providing �ne accuracy for TOA es-

timation. Thus, it is clearly encouraged for accurate range measurements between

on-body devices in the general WBAN context (i.e. belonging to the same WBAN

or even to neighboring WBANs), especially when considering the "WBAN scaling
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factor" in comparison with more classical medium-range localization applications, in

terms of both the required transmission ranges and relative levels of precision. Fur-

thermore, it is worth recalling that the recent IEEE 802.15.6 radio standard issued

for WBAN applications also promotes IR-UWB as a relevant low power physical

layer for communication purposes [11]. As for RSSI-based ranging in N-B radio

Figure 1.7: Best achievable single-link TOA-based ranging standard deviation, as

a function of the e�ective signal bandwidth and signal to noise ratio, assuming a

mono-pulse AWGN scenario [3].

systems, one simply uses the fact that the average received power decreases with

the distance separating the transmitting and receiving devices, by a predictable

and deterministic amount. A measure of the received power can be easily obtained

without additional hardware complexity at most of existing communication radio

devices. However, a Path Loss (PL) model is needed, along with its parameters.

Assuming for simplicity that the WBAN's RSSI model is somehow similar to the

most frequently cited model from [35] for indoor scenarios, one can write:

Pr(d) = P0 − 10nplog10d+ ε (1.4)

where Pr(d) (in dB) is the RSSI value at a distance d, P0 is the average RSSI value

at a reference distance 1 m, np is the PL exponent, and ε is considered as a centered

Gaussian random variable of variance σ2sh that represents the large scale fading or

shadowing.

Hence, relying on equation (1.4), and similarly to TOA, a theoretical lower bound

for the standard deviation of unbiased RSSI-based range estimators can be derived

as follows [3]: √
var(d̂) =

log(10)

10

σsh
np

d (1.5)

First of all, the occupied bandwidth will obviously play a role with respect to small-

scale fading. However, it is common to assume within RSSI-based localization that
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those e�ects are somehow averaged (e.g. based on consecutive RSSI measurements

within the channel coherence time over one link). Furthermore, in the classical mod-

eling presented above, the best achievable ranging performance would theoretically

depend on both the channel power parameters (i.e. path loss exponent and shad-

owing deviation) and the distance between the two nodes. But it is adversely well

known in the on-body WBAN context that: (i) the received power is less dependent

on the actual distance than in any other wireless context, (ii) body shadowing is

rather strong (in comparison with the nominal average received power levels), far

dominating (in comparison with other e�ects due to e.g. small-scale fading or dis-

tance) and hardly predictable with no a priori information (e.g. highly variable as

a function of the actual nodes places on the body). Overall, the achievable level

of ranging precision is not only hard to predict or specify a priori over on-body

links, but it is likely insu�cient in comparison with the actual nominal Euclidean

distances to be measured (say, on the order of one meter). Figure 1.8 shows the

variations of this best achievable single-link RSSI-based ranging standard deviation,

as a function of both the actual distance and the shadowing standard deviation,

while assuming a path loss exponent equal to np = 2 for simpli�cation. Hence,

for a given σsh = 2, the lower standard deviation is about 23.03 cm at d = 1 m.

This range of inaccuracy can strongly damage the on-body ranging functionality,

making it hardly compliant (not to say, most likely irrelevant) with MoCap appli-

cations. However, note that RSSI shall still be useful in this on-body context, as

an indirect source of information (e.g. for mitigating ambiguities), but it would be

mostly meaningful over larger-range o�-body and body-to-body links and in case of

relatively low shadowing standard deviation (i.e. in comparison with the path loss

exponent).

The previous trends have also been con�rmed in [36] with joint UWB and N-B ex-

perimentations conducted in a realistic indoor environment (i.e. including typically

radio obstructions and dense multipath) and in a health monitoring context based

on medical WBAN. On this occasion, the ranging performances of both the IEEE

802.15.4 and the IEEE 802.15.4a standards are benchmarked, based respectively on

RT-TOF measurements using integrated UWB prototypes and RSSI measurements

using commercially available standard-compliant components at 2.4GHz.

One way to improve signi�cantly the performance of wireless localization systems

(especially in case of generalized radio obstructions and/or poor geometric dilution

of precision) is to rely on hybrid solutions. For instance, in MoCap applications

or less marginally for navigation applications, inertial measurements have already

been considered on top of IR-UWB TOA in [37], [38], speci�c optimization-based

combinations of TOA in [39], IR-UWB TDOA and AOA in [40] and [41], or even

N-B RSSI �ngerprints in [42]. Nevertheless, those solutions impose the use of too

speci�c settings, system architectures, and fusion strategies. They can not either

comply with a generic and opportunistic WBAN usage, since such wearable networks

do not necessarily include IMUs as on-body sensors depending on the underlying

application. Finally, they are expected to be more expensive and to su�er from

much higher complexity and higher energy consumption.
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Figure 1.8: Best achievable single link RSSI-based ranging standard deviation, as

a function of the actual distance and shadowing parameter (assuming a path loss

exponent equal to 2).

1.3 Problem Statement, Open Issues and Personal Con-

tributions

One major disruptive concept in modern short-range wireless communications con-

cerns Mobile to Mobile (M2M) cooperation, allowing moving nodes or terminals to

exchange data through peer-to-peer links. So at the origin of this PhD work one

motivating intuition was that fusing cooperative short-range communications and

radiolocation capabilities could be bene�cial within mobile groups of interacting

WBANs. First of all, at the body scale, the intrinsic cooperation possibilities of-

fered by mesh network topologies are most often underexploited in WBANs but star

or tree topologies are preferred, for being adapted to low-consumption data-oriented

applications. Then, WBANs are expected to be massively present in public areas

in the near future (e.g. streets, shopping malls, train stations), where direct Body

to Body (B2B) interactions and heterogeneous network access are likely to o�er the

highest and most promising potential in terms of cooperation. Typically locational

a�nity awareness would be helpful to various WBAN-based applications. In addi-

tion, the predicted massive deployment of personal wearable networks could o�er

intrinsic cooperation availability in most practical environments. As already pointed

out, a growing attention is also paid today to user-centric and context-aware ap-

plications, which could be explicitly covered and bene�t from cooperative location-

enabled WBANs. Moreover, very similar short-range LDR ULP radio technologies

(i.e. IR-UWB or Zigbee) have been considered in WBANs and location-enabled

WSNs so far, o�ering common ground for �ne synergies to be exploited in the near

future. Finally, from a general localization-oriented perspective, cooperation is ex-

pected to provide information redundancy and spatial diversity to enable better

service coverage, as well as higher precision and robustness [43].
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In the restrictive WBAN context of interest, M2M cooperative schemes can be

intended and applied in various forms: either within one single wearable network

(i.e. providing intra-WBAN/on-body cooperation in the case of mesh networking),

between distinct wearable networks at reasonably short transmission range (i.e. pro-

viding inter-WBAN/body-to-body cooperation), or even with respect to elements

of infrastructure (i.e. providing so-called o�-body cooperation). Figure 1.9 shows

the di�erent kinds of cooperative links that could be involved in the very WBAN

context for location-based body-centric purposes. Trivially, over each physical link,

the measurement of location-dependent radio metrics for localization purposes (e.g.

TOF, RSSI, TDOA, etc.) necessitates underlying communication capabilities (i.e.

wireless transmissions of data packets). Nevertheless, note that some of the involved

links may be exploited just for communication purposes, without performing any

measurement but to transit information related to the localization functionality,

such as intermediary estimated positions (or estimated accuracies) in a decentral-

ized embodiment. Assuming heterogeneous network embodiments, the intra-WBAN

communication and localization functions could be ensured either through IR-UWB

(e.g. extended IEEE 802.15.6) or N-B communications at 2.4GHz (e.g. BT-LE) (re-

spectively with RT-TOF estimation or on RSSI measurements for the latter func-

tion). As for inter-WBAN (body-to-body) and o�-body links, one could rely on

IR-UWB (e.g. extended from IEEE 802.15.4a) or N-B communications at 2.4GHz

(e.g. Zigbee).

Figure 1.9: Generic cooperative WBAN deployment, with ultra short-range intra-

WBAN links (blue), medium-range inter-WBAN links (magenta), and large-range

o�-body links (orange) for motion capture and navigation purposes.

Thus the main initial goal of these PhD investigations was to determine if and

to which extent it could be relevant to exploit the three possible levels of WBAN

cooperation so as to localize:

• on-body nodes at the body scale and/or at the building scale (i.e. for coarse
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individual MoCap applications);

• carrying bodies belonging to a group at the building scale (i.e. for coordinated

group navigation applications).

Regarding large-scale individual motion capture (LSIMC) needs, both relative or

absolute on-body nodes positioning can be performed, depending on the targeted

use cases.

For relative positioning, we consider a set of wireless devices placed on a body, which

can be classi�ed into two categories. Simple mobile (or blind) nodes with unknown

positions (under arbitrary deployment) must be located relatively to reference an-

chor nodes, which are attached onto the body at known and reproducible positions,

independently of the body attitude and/or direction (e.g. on the chest or on the

back). A set of such anchors can thus de�ne a Cartesian Local Coordinates System

(LCS), which remains time-invariant (i.e. when expressed in the LCS) under body

mobility. The estimated coordinates of the mobile nodes are then expressed into

this LCS. This functionality is also occasionally depicted as Nodes positioning at the

body scale. Possible use cases concern e.g., WBAN optimization through distance-

based packet routing, WBAN self-calibration, raw gesture or posture detection for

animation (e.g. gaming, augmented reality, video post-production), emergency and

rescue alerts (e.g. elderly people or �re�ghters falling down on the �oor), coarse

attitude/body-based remote sensing (e.g. house automation, remote multimedia

browsing and control).

As for absolute on-body nodes positioning, the considered scenario is the same as

the relative one, but the coordinates system used to express the estimated on-body

mobile nodes locations is no more body-strapped but external to the body. In

this framework, one may thus consider as anchor nodes, some �xed elements of

infrastructure (e.g. beacons/landmarks, base stations, access points or gateways)

disseminated at known locations in the environment. Accordingly, the coordinates

of the nodes placed on the body chest or back, which used to be time-invariant in

their LCS, shall now vary in a Global Coordinates System (GCS) under pedestrian

mobility. They directly depend on the body attitude, as well as on the motion di-

rection and/or speed. This sub-scenario may be viewed as a combination of relative

motion capture (i.e. at the body scale) and classical single-user navigation capabili-

ties. Finally, de�ning the on-body nodes locations into a LCS may be still required

here, as an intermediary step of the calculations. Possible use cases concern on-�eld

sports gesture live capture and analysis, physical activity monitoring at home for

non-intrusive and long-term physical rehabilitation or diet assistance.

Like in the LSIMC case, concerning Coordinated Group Navigation (CGN), both

absolute and relative positioning are theoretically possible, although the latter is

seen as less relevant.

For relative positioning, people wearing several on-body wireless sensors and form-

ing a group of mobile users must uniquely localize themselves with respect to their

mates. The inter-body range information is required, that is to say, only the rela-

tive group topology, independently of the actual locations (and orientations) in the
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room or in a building. Accordingly, no external anchor nodes would be required

in this embodiment. Possible use cases concern the relative deployment of soldiers

or �re-�ghters, people �nding in nomadic social networks, proximity detection or

collision avoidance in con�ned, blind or dangerous environments (e.g. for security,

collective gaming).

Finally, the absolute positioning of moving bodies forming a group is intended in

a more classical pedestrian navigation sense, where one must retrieve the absolute

coordinates of several users belonging to the same mobile collective entity, with re-

spect to an external GCS. This shall imply the use of �xed and known elements

of infrastructure around. In comparison with other State-of-the-Art navigation so-

lutions, the presence of multiple wearable on-body nodes (i.e. in the WBAN con-

text) is expected to enhance navigation performance by providing spatial diversity

and measurements redundancy (i.e. over o�-body links with respect to the infras-

tructure and/or over inter-WBAN/body-to-body links with respect to other mobile

neighbours), and possibly, further cooperative on-body information exchanges (i.e.

through intra-WBAN links). Without loss of generality, this navigation-oriented

scenario will aim at retrieving mostly the macroscopic positions of the bodies, but

not the on-body nodes' locations in details. Hence, a reference point on the body

shall be chosen to account for this average position (e.g. the geometric center of the

body torso or the barycenter of all the on-body nodes). Possible use cases concern

the absolute deployment of soldiers or �re-�ghters in a given building, the analy-

sis of social mobility patterns and habits in commercial centers, enhanced and/or

augmented personal pedestrian navigation capabilities.

One a priori constraint imposed deliberately to our study is to rely uniquely on

transmitted radio signals that would be anyway present in data-oriented WBAN

contexts, that is to say, with no additional embedded sensors. One more originality

of this work lies in the de�nition of positioning and tracking algorithms that could

be operating:

• in an opportunistic, stand-alone and energy-friendly mode for daily-life and

perennial usage;

• with no or limited geographic restrictions for a truly seamless and large-scale

service coverage (i.e. contrarily to video systems in MoCap and/or GPS in

navigation);

• with limited access to costly elements of infrastructure;

• with reasonably degraded precision in comparison with more accurate tech-

nologies (i.e. as a tolerated drawback).

The block diagram represented in Figure 1.10 shows a generic wireless localiza-

tion scheme adapted to our WBAN context, where one can easily see the critical

impact of both the dynamic propagation channel (i.e. under body mobility) and the

protocol strategy (e.g. in terms of scheduling, response delays...) on the quality and

availability of single-link measurements and in turn, on localization performance.
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Figure 1.10: Typical localization scheme in WBAN context.

The proposed PhD topic, as stated below, is by nature multidisciplinary. It

imposes to deal with various research domains, related to modeling aspects (e.g.

physical layer abstraction including spatio-temporal variations of the propagation

channel and radiolocation metrics under mobility, biomechanical and social human

mobility, etc.), to algorithmic developments (e.g. cooperative positioning and track-

ing algorithms, links selection and scheduling, etc.), as well as to medium access

and networking mechanisms (e.g. as a support to cooperative measurements and

location updates). More precisely, several research issues, involving key building

blocks of Figure 1.10, are still open or hardly explored today, such as:

• Assessing the actual impact of the physical layer on single-link ranging and

�nal localization performances, including the evaluation of harmful propaga-

tion channel variations between on-body devices (conditioned on biomechan-

ical and macroscopic body mobility);

• Evaluating the e�ects of latency introduced by communication protocols on

localization performance, emphasizing the needs for cross-layer design ap-

proaches;

• Designing new positioning and tracking algorithms that can take into ac-

count the main WBAN constraints and characteristics, in terms of e.g., low

complexity, reduced transmission ranges, body shadowing, and highly speci�c

mobility pattern;

At this point, the main personal contributions issued in the frame of our PhD

investigations can be summarized as follows:

• Modeling: The dynamic behaviour of IR-UWB TOA-based ranging error pro-

cesses has been assessed and a realistic model has been proposed, relying on
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time-variant channel measurements in representative frequency bands. This

model can take into account the dynamic variations of the Signal to Noise Ra-

tio (SNR) and the channel obstruction conditions, i.e. Line Of Sight (LOS)

and Non LOS (NLOS), experienced over representative on-body links while

walking. This contribution has led to the publication of one conference paper

[44] and one journal paper [45].

• Design of localization algorithms:

• Relative on-body positioning: We have considered adapting and en-

hancing a distributed localization algorithm into the new WBAN con-

text. The nodes locations are asynchronously updated with respect

to their 1-hop neighbors into a body-strapped LCS, providing better

immunity against the latency e�ects observed within classical central-

ized schemes and better adaptability to local nodes velocities (e.g. in

terms of refreshment rate). Among all the radio links available in a

mesh topology, those that experience �xed lengths despite body mobil-

ity (e.g. between the hand's wrist and the elbow) are set as self-learnt

(or a priori) geometrical constraints, limiting the number of required

on-line measurements and hence, reducing the amount of over-the-air

tra�c and power consumption. This contribution has led to the publi-

cation of one conference paper [46]. New scheduling and censoring rules

have also been proposed to prevent from error propagation among co-

operative nodes, by limiting the impact of the most penalizing nodes at

the body periphery. This contribution has led to the publication of one

more conference paper [47]. Assuming realistic UWB TOA-based rang-

ing error magnitudes derived from the �rst cited contribution, as well as

realistic medium access constraints, the performance of this algorithm

has been evaluated and compared with state-of-the-art solutions and

theoretical bounds through simulations. This contribution has led to

the publication of one journal paper [48].

• Absolute on-body positioning: The previous algorithm has been ex-

tended within a global 2-step localization approach adapted to hetero-

geneous WBAN networks (i.e. considering multiple radio access tech-

nologies), incorporating also o�-body links with respect to �xed in-

frastructure anchors. Further graph completion techniques have been

applied to combat packet losses and/or body shadowing e�ects. One

outcome is to enable absolute on-body nodes positioning at the build-

ing scale but with similar precision levels as that of relative on-body

positioning at the body scale (i.e. reconciling motion capture and per-

sonal navigation). This contribution has led to the publication of one

conference paper [49].

• Absolute body positioning in groups of mobile users: New algorithms

have been proposed to take bene�ts from body-to-body links and on-
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body devices diversity under realistic collective mobility conditions.

These solutions have also been evaluated through realistic simulations;

• Experiments: Field experiments based on real on-body IR-UWB devices have

been carried out to partly validate the previous contributions (though focusing

mostly on the LSIMC application).

The remainder of this thesis is organized as follows.

Chapter 2 provides a survey of existing works and studies in the speci�c WBAN

context regarding the key building blocks of Figure 1.10. Firstly, aspects related to

the signal waveform and to the WBAN propagation channel will be discussed. Then

State-of-the-Art localization algorithms, from both general WSN and particular

WBAN perspectives will be described.

Chapter 3 deals with the modeling of single-link ranging errors for the di�erent

kinds of cooperative WBAN links and radio technologies. Theoretical models based

on the Cramer-Rao Lower Bound (CRLB), fed with realistic empirical parameters

issued from WBAN channel measurement campaigns, will be considered to illustrate

the best achievable bounds of ranging error over on-body, inter-body and o�-body

links. Furthermore, we present our novel model for dynamic intra-WBAN ranging

errors based on IR-UWB TOA estimation.

In the MoCap context, Chapter 4 introduces several variants of the new Con-

strained Distributed Weighted Multi-Dimensional Scaling (CDWMDS) algorithm for

relative on-body nodes positioning, relying on �xed-length links and asynchronous

updates of estimated nodes locations. On this occasion, we also describe scheduling

and censoring mechanisms, as well as possible extensions into heterogeneous wire-

less contexts, while incorporating o�-body links with respect to �xed infrastructure

anchors to enable large-scale absolute on-body nodes positioning.

Chapter 5 investigates navigation applications, from both personal and collec-

tive perspectives. Di�erent algorithms will be compared, including a centralized Ex-

tended Kalman Filter (EKF) and a distributed Non Linear Least Squares (NLLS)

positioning algorithm. One goal is to take bene�ts from the spatial diversity of

deployed on-body devices to combat e�ciently link losses and obstructions through

intra- and inter-WBAN joint cooperation, while reducing complexity and consump-

tion.

Chapter 6 accounts for experiments based on real IR-UWB radio platforms to

validate in part some of the previous proposals, while showing their practical limi-

tations.

Finally, Chapter 7 provides general conclusions and discloses a few research

perspectives for future work.
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2.1 Introduction

In this chapter, we provide a survey of State-of-the-Art contributions directly re-

lated (or at least relevant) to the radio-based localization problem in the WBAN

context. We will account for these works and studies according to the block dia-

gram already presented in the previous chapter, developing each key building block.

Section 2.2 deals with transmitted waveforms and allocated frequency bandplans.

In Section 2.3, aspects related to the WBAN propagation channel will be discussed

from the radiolocation perspective. Then, Section 2.4 will address positioning and

tracking algorithms i) in a general radiolocation context �rst, hence reminding the

main di�erences between centralized/decentralized, cooperative/non-cooperative,

probabilistic/non-probabilistic approaches, and then ii) focusing on existing algo-

rithmic contributions applied into the speci�c frame of WBAN localization. Finally,

Section 2.5 summarizes the chapter.

2.2 Transmitted Waveforms and Bandplans

In November 2007, the IEEE 802.15 Task Group 6, also known as IEEE 802.15.6,

was formed to standardize WBAN, which were not covered by any existing com-

munication standard yet. The work of this group resulted in February 2012 in



22

Chapter 2. State of the Art in Wireless Body Area Networks

Localization

Figure 2.1: WBAN frequency bands allocation de�ned by the IEEE 802.15.6 stan-

dard in di�erent countries [4].

the publication of a reference document [11], which de�nes PHY sical (PHY) and

Medium Access Control (MAC) layers speci�cally optimized for short-range trans-

missions in, on or around the body, while supporting low complexity, low cost and

low energy consumption.

According to the wide range of WBAN-based applications, the IEEE 802.15.6

has proposed three di�erent PHY layers, which can be based on N-B (centered at

di�erent frequencies, including in ISM bands), IR-UWB or Human Body Commu-

nications (HBC). Note that the latter does not really comply with the classical

de�nition of a radio technology in the common sense, for exploiting the propagation

of waves directly on the subject's skin. As such, this physical layer will not be

considered to cover our radiolocation needs in the following. Figure 2.1 shows the

allocated spectrum frequencies depending on the country [4].

The standardized UWB PHY supports two groups of sub-channels with a band-

width of 499.2 MHz [4], [11], de�ned as low and high bands, as shown in Table 2.1.

The sub-channels are classi�ed as optional or mandatory. As for the transmitted

unitary waveforms, no strict pulse shape is really imposed but a Square-root Raised

Cosine (SRRC) is considered as a reference shaping �lter in all the bands, except in

the 420 to 450 MHz bands [11], [50]. In addition to respecting the regulatory spec-

tral mask (where applicable), a standard-compliant pulse shape p(t) is constrained

by the absolute value of its cross-correlation with the reference pulse respecting the

SRRC spectrum. The correlation must be equal to 0.8 at least. Finally, the pulse

waveform duration, the Pulse Repetition Frequency (PRF), and the peak PRF must

be compliant with the speci�ed timing parameters [11].

2.3 Standardized Channel Models

In the very WBAN context, many research e�orts have been focusing on the char-

acterization of the propagation channel, which plays a crucial role in the localiza-

tion process and is expected to strongly impact the achievable accuracy, as already

pointed out. A signi�cant part of this work is however restricted to communication-

oriented on-body scenarios so far, whereas body-to-body or o�-body con�gurations
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Band Channel number Central Bandwidth Channel

group number frequency (MHz) (MHz) attribute

Low band

1 3494.4 499.2 Optional

2 3993.6 499.2 Mandatory

3 4492.8 499.2 Optional

High band

4 6489.6 499.2 Optional

5 6988.8 499.2 Optional

6 7488.0 499.2 Optional

7 7987.2 499.2 Mandatory

8 8486.4 499.2 Optional

9 8985.6 499.2 Optional

11 9984.0 499.2 Optional

Table 2.1: UWB PHY allocation de�ned by the IEEE 802.15.6 standard.

on the one hand, and localization-oriented scenarios on the other hand, have been

more marginally treated. In this section, we will only discuss the standardized chan-

nel models, which are dedicated for WBAN communications (i.e. IEEE 802.15.6)

or could be adapted to WBAN context (e.g. IEEE 802.15.4a).

2.3.1 IEEE 802.15.6 Models

WBAN channels can experience fading due to di�erent reasons, such as energy

absorption, re�ection, di�raction, body posture and body shadowing. The other

possible reason for fading is multipath due to scatterers disseminated in the envi-

ronment around the body. Fading can be classi�ed into two categories, namely fast

fading and shadowing. Fast fading refers to the rapid changes in the amplitude of

the received signal in a given short period of time. Thus, in localization context, fast

fading e�ects can usually be removed by averaging the received signal (e.g. using a

sliding window). The second type of fading is depicted as slow fading or shadow-

ing, and is basically due to the shadowing by human body. Hence, the shadowing

phenomenon re�ects the slowest variations of the Path Loss (PL) around its mean.

IEEE 802.15.6 generally describes the WBAN channels by characterizing the

total PL, including the mean PL and shadowing e�ects due to the human body

and/or indoor obstacles [51]. Table 2.2 summarizes the di�erent considered scenarios

[4], which are grouped into classes. Each class is represented by a common Channel

Model (CM). In the WBAN localization context, the radio devices are expected to be

placed on the body but not implanted in the body. The latter con�guration is indeed

more indicated for medical applications (e.g. ECG, blood pressure measurements...).

It is thus worth focusing on CM3 and CM4 channel models in scenarios S4 to S7.

The most common channel model for on-body links (i.e. CM3), which has been

retained by the IEEE 802.15.6 proposal, is called Power Law Model. This approach is

used for modeling the total PL [52]. Nevertheless, the described model is generalized

for both N-B links in the ISM band [2.4, 2.5] GHz and IR-UWB links in the band
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Scenario Description Frequency Band Channel

Model

S1 Implant to Implant 402-405 MHz CM1

S2 Implant to Body Surface 402-405 MHz CM2

S3 Implant to External 402-405 MHz CM2

S4
Body Surface to body Surface 13.5, 50, 400, 600, 900 MHz

CM3
(LOS) 2.4, 3.1-10.6 GHz

S5
Body Surface to body Surface 13.5, 50, 400, 600, 900 MHz

CM3
(NLOS) 2.4, 3.1-10.6 GHz

S6
Body Surface to External 900 MHz

CM4
(LOS) 2.4, 3.1-10.6 GHz

S7
Body Surface to External 900 MHz

CM4
(NLOS) 2.4, 3.1-10.6 GHz

Table 2.2: List of the IEEE 802.15.6 scenarios and their description [11].

[3.1, 10.6] GHz. Thus, the power law model given in [52] is simply described by

equation (2.1), where P (d) is the total PL at distance d between two on-body

devices. a and b are the model parameters (usually depicted as path loss exponent

and reference path loss at a reference distance, respectively) and N is a normally

distributed variable, zero-mean with a standard deviation σN .

P (d[mm])[dB] = alog10(d[mm]) + b+N (2.1)

Besides the described power law models, IEEE 802.15.6 retains for CM3 sce-

narios a Channel Impulse Response (CIR) model, which was also described in [52]

in the band [3.1, 10.6] GHz. This model is based on a single cluster of multipath

components, as shown in the equation (2.2) below:

h(τ) =

L−1∑
l=0

alexp(jφl)δ(τ − τl) (2.2)

where h(τ) is the CIR, L is the total number of signi�cant paths, al, τl and φl
are respectively the amplitude, the arrival time and the phase of the l − th path.

The phase φl is modeled as a uniformly distributed random variable over [0, 2π].

The path amplitude al is modeled by an exponential decay Γ with a Ricean factor

γ. The arrival time τl is modeled by a Poisson distribution.

Note that other on-body channel models have been retained by the IEEE

802.15.6 for CM3 scenarios at 2.4 GHz, such as the saturation model, which was

described in [53] as a hybrid model merging a local propagation model (on-on) and

environmental e�ects (i.e. due to multipath components). But the latter remains

more con�dential.

IEEE 802.15.6 has also considered channel models characterizing o�-body ra-

dio links between on-body devices and external points, known as the CM4 model.
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The normalized received power (i.e. normalized over the maximum value) is rather

modeled by a gamma distribution for standing scenarios, and with a log-normal

distribution for walking scenarios at 2.36 GHz [54]. The described o�-body channel

model also considers characterizing the CIR in the band [3.1, 10.6]GHz. The model

is rather similar to the model described in equation (2.2), but additional ground

e�ects have been considered. Further details on the related measurement set-up

and data analysis can be found in [55].

So far, no model characterizing the body-to-body channels has been standardized

yet. However, various proprietary models have been extracted out of real measure-

ments in some recent works, such as [56], [57], [58] or [13]. All of them have been

focusing on N-B links only.

2.3.2 IEEE 802.15.4a Models

Besides the IEEE 802.15.6 standard, other existing radio standards can ful�ll in

part the new needs of WBANs and localization, though non-explicitly focusing on

WBAN applications and hence, requiring several adaptations at di�erent levels (e.g.

in terms of power consumption, form factor, reliability). Among those standards, the

IEEE 802.15.4a standard can be viewed as an IR-UWB extension of the N-B IEEE

802.15.4 standard [59]. This standard is well known for Wireless Sensor Network

(WSN), and supports peer-to-peer ranging capabilities up to MAC layer. In this

context, some IEEE 802.15.4a channel models could be adapted for characterizing

some WBAN channels, such as o�-body and body-to-body channels. Moreover, the

IEEE 802.15.4a provides a complete description of an on-body channel, which will

be described hereafter.

In [5] an IR-UWB channel model has been characterized for on-body communi-

cations in the band [3, 5]GHz. This model has �nally been extended by the IEEE

802.15.4a standard [60], and declined according to three scenarios depending on the

receiver position (i.e. on the front, the side or the back of the body). Figure 2.2

recalls the three corresponding scenarios. In addition, the mean PL is modeled by

a distance-dependent exponential decay, as shown in equation (2.3) below:

PLdB = γ(d− d0) + PL0,dB (2.3)

where γ = 107dB/m, d is the distance between the transmitter and the receiver

around the perimeter of the body and PL0,dB is the measured PL at the reference

distance d0. Moreover, this model assumes the presence of two clusters of Multi

Path Components (MPC) due to the waves' di�raction around the body and the

re�ection on the ground. The MPC over each cluster are correlated following a

log-normal distribution.

Despite the large number and the variety of the contributions recently issued in

the �eld of WBAN channel characterization and modeling, the available standard-

ized models do not seem totally adapted to our problem, nor uni�ed for a convenient

usage. In our evaluation framework, while assuming single-link radiolocation met-

rics, we will thus either propose brand new localization-oriented models or adapt
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Figure 2.2: IEEE 802.15.4a on-body scenarios based on the receiver positions [5].

existing communication-oriented models derived from experimental parameters in-

stead, which appear more adapted to our requirements (in terms of e.g., dynamic

measurements, antennas placement, environment and scenarios). For instance, our

intra-WBAN channel model will be mainly based on the dynamic channel measure-

ment campaign of [6]. The o�-body and body-to-body channel models will be based

respectively on the experimental models of [12] and [13]. Further details about those

models will be given in Chapter 3.

2.4 Localization Algorithms and Systems

As mentioned before, the localization algorithms aim at retrieving the locations of

on-body devices and/or carrying bodies in our context. Those algorithms are fed

directly by range measurements (i.e. through RT-TOF and/or RSSI estimation) or

similarity measurements such as the connectivity information. From a pure local-

ization perspective, we assume hereafter that a WBAN can contain two kinds of

on-body wireless devices, regardless of their status in terms of networking (i.e. end-

device, router, coordinator...) and/or data utility (i.e. collector, gateway, sensor

node). The �rst category is de�ned by simple mobile nodes with unknown posi-

tions, which must be located relatively to reference anchor nodes, which belong to

the second category. Anchor nodes have known positions in the reference coordinate

system, which can be a body-strapped LCS (for relative MoCap applications) or a

GCS (for LSIMC and navigation applications). In this section, we make an overview

of frequently cited localization algorithms (including positioning and tracking solu-

tions), making a distinction between centralized and decentralized, cooperative and

non-cooperative, probabilistic and non-probabilistic estimation approaches, along

with examples of localization systems applied into the WBAN context.
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2.4.1 Taxonomy of Cooperative Localization Algorithms

2.4.1.1 Centralized vs. Distributed

Centralized localization approaches consist in collecting all the radiolocation mea-

surements in one single computation center and to proceed with the estimation of

all the blind nodes' coordinates simultaneously. From that perspective, central-

ized approaches are most often seen as fully centralized. Blind nodes can be both

mobile or static nodes with unknown locations. Advantageously, in a body-centric

approach, this computation center could be the WBAN coordinator or on-body

gateway, which is usually endowed with more powerful embedded resources (i.e. in

terms of energy/battery, memory and computational skills) than simple devices.

But the calculi can also be externalized (e.g. hosted in a server) after relaying the

measurement data to the centralized infrastructure through o�-body links. There,

the measurements are jointly processed and the positions for all nodes in the WBAN

are simultaneously determined. Afterwards, the information can be exploited in the

WBAN or sent back to any mobile node. In this approach, accuracy is expected

to be optimal. However, one major drawback is the need for such on-body central

nodes with computational skills and better energy autonomy, what is rather unlikely

and demanding in the WBAN context. Another problem within such centralized

approaches is the latency e�ect (i.e. the time elapsed between the collection of the

required distance measurements and the �nal delivery of all the positions estimates,

possibly while experiencing packet losses), whereas the body gesture and location

can change rapidly during the collection step. Hence, to overcome the previous prob-

lems, decentralized approaches can be favored instead, although their convergence

time may be also problematic.

Such distributed solutions allow each mobile node to localize itself by receiving

information from its neighbors (i.e. anchors and/or mobile nodes). Hence, complex-

ity is also distributed among the mobile nodes in comparison with the centralized

approach, and the latency e�ect described above (i.e. mostly due to the collection

of measurements) can be reduced, provided that the decentralized algorithms does

not necessitate too many iterations to converge properly. In fact, distributed ap-

proaches can bene�t from intrinsic asynchronism (i.e. updating the nodes positions

with di�erent refreshment rates) while localizing the mobile nodes. Accordingly the

positions of the most demanding nodes (e.g. with higher velocity) can be updated

at higher refreshment rates.

In the WBAN context, some centralized algorithms have been considered in

[2], [8], [61], [62], [63]. For both MoCap and navigation purposes, [8] has used

the Non Linear Least Squares (NLLS) algorithm, which consists in minimizing a

global quadratic cost function using the Gradient descent method incorporating

both on-body and o�-body range measurements. [2] and [61] adapt a centralized

classical Multidimensional Scaling (MDS) for on-body MoCap applications and pose

estimation. In [61], the authors introduce additional constraints relying on the prior

knowledge of minimal and maximal feasible distances related to the body dimensions

(and thus some kinds of geographical limitations). In [62] the centralized Maximum
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Likelihood estimator has been considered, introducing other constraints relying on

the actual positions of on-body mobile nodes. However, [8] has also used a variant

of the Linear Least Square (LLS) algorithm, which is somehow decentralized (even

if the term may be debatable) in the sense that blind nodes compute their own

location locally, based primarily on available external anchors or in case of limited

connectivity to external points, based on already positioned on-body devices.

2.4.1.2 Cooperative vs. Non Cooperative

Localization schemes can also be classi�ed into cooperative and non-cooperative cat-

egories. Non-cooperative approaches aim at localizing on-body nodes based on peer-

to-peer range measurements with respect to anchors only [62], [63], [64]. But the

number of anchors (either on-body for the relative Mocap applications, or belonging

to the external infrastructure for the LSIMC and the navigation applications) in the

WBAN context is likely small. One solution to compensate too frequent disconnec-

tion and/or erroneous measurements with respect to those anchors then consists in

allowing peer-to-peer cooperation among mobile nodes. In our WBAN terminology

herein, the term cooperative can refer to two concrete embodiments (possibly im-

plemented simultaneously). On the one hand, intra-WBAN cooperation consists in

exploiting not only radiolocation measurements between blind on-body devices to

be located (either static or mobile) and anchors (either on-body or belonging to the

external infrastructure), but also communication links and/or radiolocation mea-

surements between blind devices. In this case, the latter belong necessarily to the

same WBAN [8], [61]. On the other hand, inter-WBAN cooperation consists in ex-

ploiting radiolocation measurements and/or communication links between on-body

devices that belong to distinct WBAN and bodies, thus exploiting body-to-body

links.

Cooperative approaches can take bene�ts from mesh topologies. But one draw-

back lies in the extra over-the-air tra�c and most often, in their higher complex-

ity, e.g., in terms of synchronization requirements, coordination and/or scheduling

needs, neighborhood discovery and maintenance under mobility. Hence, those two

factors (i.e. complexity and tra�c) represent two research topics that are worth be-

ing investigated to enhance the performance of cooperative localization in WBAN.

A very preliminary comparison between cooperative and and non-cooperative local-

ization schemes in the speci�c context of WBAN has been proposed in [8], showing

that the achieved localization accuracy is better, but the energy consumption and

the over-the-air tra�c (e.g. in terms of the average number of requested superframes

for localizing all the blind nodes in the WBAN) is higher in cooperative schemes

than in non-cooperative schemes.

2.4.1.3 Location Estimators

Consider a WBAN of size m + n nodes, where n is the number of mobile nodes to

be located, and m is the number of anchors with known positions. In the following,



2.4. Localization Algorithms and Systems 29

θt = [X1(t), ... , Xn(t)] is the vector of unknown d-Dimensional (d-D) (i.e. d=2 or

3) coordinates at time t and [Xn+1(t) = Xn+1, ... , Xn+m(t) = Xn+m] is a vector

of known and time-invariant positions of anchors. In our context, note that the

nodes positions can be de�ned either in the body-strapped LCS (e.g. for relative

MoCap) or in a GCS (e.g. for LSIMC and navigation). The pair-wise radiolocation

measurement performed at time t between two devices i and j is depicted by yij(t),

which can be either a scalar value (i.e. TOA, TDOA, TOF, RSSI) or a vector

such as the CIR in rarer localization approaches. Moreover, we consider that the

corresponding observed (erroneous) distance d̃ij(t) can be obtained according to

d̃ij(t) = f(yij(t)), whereas the true and estimated distances between the two devices

at time t are respectively given by dij(t) =
√

((Xi(t)−Xj(t))T (Xi(t)−Xj(t)) and

d̂ij(t) =
√

((X̂i(t)− X̂j(t))T (X̂i(t)− X̂j(t)). Finally d(t) is the vector containing

all the available distances dij(t) at time t

Weighted Least Squares Positioning TheWeighted Least Squares (WLS) algo-

rithm is a non-probabilistic estimator, which does not necessitate prior information

about the distribution of estimated positions. In a cooperative localization context,

the idea is to �nd the latter positions by minimizing a global cost function that incor-

porates quadratic errors between all the pair-wise measurements and their estimates

(conditioned on the current value of the estimated coordinates, set as optimization

variables). In a symetric and/or unidirectional case (i.e. assuming uniquely one

available measurement per pair-wise link), the cost function is as follows:

θ̂t = argmin
θt

S(θt) (2.4)

where

S(θt) = [
∑

1≤i≤n
[
∑

i≤j≤n+m
wij(t)(d̃ij(t)− dij(t))2 + ri(t)||Xi(t)−Xi(t)||2]] (2.5)

where dij(t) denotes the Euclidean distance between nodes i and j, wij(t) is a weight

value, which re�ects the connectivity and the accuracy of the range measurement

between nodes i and j at time t, Xi(t) is a vector with prior information about the

position occupied by node i at time t, while ri(t) quanti�es the reliability of this

prior information. If there is no prior information, then ri(t) = 0, and the WLS cost

function is similar to that of a blind classical NLLS cost function.

The choice of the weights should re�ect the accuracy of the involved observations

and unreliable measurements shall be down-weighted in the cost function. Several

strategies have been adopted for the selection of wij(t) such as exponential decreas-

ing with the measured distance in [65], when the measurement noise variance is

not available. Whenever a model is available, assuming for instance that measure-

ment noise is a Gaussian distributed random process with known standard deviation

σij(t) (e.g. increasing linearly with the true distances in a parametric description

σij(t) = c1dij(t)+c2), then wij(t) can be simply chosen as
1

σij(t)
(and thus 1

c1d̃ij(t)+c2

or even 1

c1d̂ij(t−1)+c2
based on the current measurements or latest estimates) [66].
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This WLS estimator is not (or at least only partly) parametric and thus it is

still very popular in a wide range of localization problems, including in the WBAN

context. One notorious limitation however is that the optimization problem in (2.5)

is non-convex for practical cooperative con�gurations. Accordingly, the solution

can get stuck in a local minimum depending on the starting point and hence, a

relevant global solution may never be reached. A minimum of S(θt) can be computed

using iterative numerical methods initialized at a starting position. Among these

methods, one can cite the Gradient Descent, the Levenberg-Marquardt algorithm

and Scaling by MAjorizing a COnvex Function (SMACOF) [65], [67]. Furthermore,

the partial derivatives of S(θt) with respect to Xi(t) depends only on the neighbors

coordinates and thus, a local cost function can be de�ned at each node, where a local

minimization can be performed. Hence, distributed iterative optimization solutions

have been adopted such as the Distributed Weighted Least-Squares (DWLS) in [68]

or the Distributed Weighted Multi-Dimensional Scaling (DWMDS) in [65], which

implements a more advanced distributed version of SMACOF preventing from the

increase of the cost function at each iteration. The idea still consists for each node

in localizing itself, by minimizing the following cost function:

X̂i(t) = argmin
Xi(t)

Si(t) (2.6)

where

Si(t) =
n∑

j=1,j 6=i
wij(t)(d̃ij(t)− d̂ij(Xi(t), X̂j(t)))

2

+

n+m∑
j=n+1

2wij(t)(d̃ij(t)− d̂ij(Xi(t), X̂j(t)))
2 (2.7)

+ri(t)||Xi(t)−Xi(t)||2

In our work, we will adapt this DWMDS algorithm for WBAN localization

purposes. More details will be given in Chapter 4.

Probabilistic Estimators In the localization context, a probabilistic estimator

consists in locating the mobile nodes based on probabilistic assumptions. The latter

can be based on a priori statistical models for the observed measurements condi-

tioned on the mobile positions, like in likelihood functions. These functions can be

not only conditioned on positions but also e.g., on the radio obstruction conditions

over each link (i.e. LOS/NLOS), like in [69] or [70]. But other approaches can be

based also on prior statistical information regarding the occupied positions by the

mobile nodes them-selves. Accordingly, these algorithms are usually more accurate

than simple non-probabilistic estimators like WLS. The probabilistic estimators can

be classi�ed into two categories, namely Bayesian and Non-Bayesian approaches.

Non-Bayesian estimators assume that the mobile positions are treated as unknown

deterministic parameters whereas mobile positions are de�ned as random variables

with known prior distributions in Bayesian estimators.
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Non-Bayesian Positioning In the Non-Bayesian context, positions are

treated as unknown deterministic parameters. One common Non-Bayesian esti-

mator is the Maximum Likelihood (ML) estimator, which operates by maximizing

the likelihood function:

θ̂ML
t = argmax

θt

p(y(t)|θt) (2.8)

where the likelihood function p(y(t)|θt) denotes the probability density function (pdf)

of the observation y(t) conditioned upon the variable of interest θt.

It is known from estimation theory [71] that the ML estimator is unbiased and

consistent, i.e. converges asymptotically to the Cramer Rao Lower Bound (CRLB)

at low measurement error variances.

If we assume that the distance observations given by d̃ij(t) = f(yij(t)) provide

su�cient statistics for the estimation of θ and that d̃ij are independent, then the

ML estimator is given by:

θ̂ML
t = argmax

θt

p(d̃(t)|θt) = argmax
θt

∏
i

∏
j

p(d̃ij(t)|θt) (2.9)

The distance observations are obviously a�ected by ranging errors, which are

most often represented as additive random variables d̃ij(t) = dij(t) + eij(t). In

special cases when the ranging errors are considered as Gaussian identically inde-

pendent distributed (i.i.d.) random variables, the ML estimator simply leads to the

WLS estimator, which equivalently Maximizes the Log-Likelihood (MLL) function,

as follows:

θ̂MLL
t = argmax log

θt

(p(d̃(t)|θt)) = argmax
θt

∑
i

∑
j

log(p(d̃ij(t)|θt)) (2.10)

One advantage usually put forward with M(L)L is that it can stick with arbi-

trarily complex measurement error behaviours, including multimodal regimes, or

highly speci�c distributions. The counterpart is that the estimator is strongly para-

metric (i.e. with model parameters that necessitate prior calibration) and the un-

derlying optimization problem is even more complex to solve out and sensitive to

initial guesses than in the WLS case, thus making its application rather challenging

in generic WBAN contexts (i.e. regardless of the environment) and under strin-

gent low complexity constraints. Nevertheless, the ML algorithm has already been

considered for on-body localization in a non-cooperative context in [62], but with

rather simpli�ed assumptions regarding the range measurements and with further

constraints on network deployment.

Bayesian Positioning and Tracking In the Bayesian context, the positions

occupied by the mobile nodes are considered as random variables. A Bayesian

estimator thus considers estimating the a posteriori probability distribution from a
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known a priori distribution of the occupied positions. The general Bayes' formula

is given as follows:

p(θt|yt) =
p(yt|θt)p(θt)

p(yt)
=
Likelihood×A priori

Evidence
(2.11)

Once the a posteriori distribution is known, the Maximum a posteriori (MAP)

estimator θ̂t maximizes the a posteriori probability distribution [71], as follows:

θ̂MAP
t = argmax

θt

p(θt|yt) (2.12)

Another known estimator is the Minimum Mean Squared Error (MMSE) esti-

mator θ̂t, which is calculated as the mean of the a posteriori distribution [71], as

follows:

θ̂MMSE
t =

∫
θtp(θt|yt)dθt (2.13)

In the dynamic localization context, the nodes positions are somehow correlated

over time. Hence, one can consider tracking �lters, which help to improve localiza-

tion accuracy by exploiting the measurements made at multiple time instants y1:t+1

where the time variable is indexed for simpli�ed notations (i.e. from the past till

the current time step), and thus, by bene�ting also from the spatial consistency

of mobile trajectories. The Bayesian formulation of the tracking �lter conducts to

calculate the a posteriori distribution p(θt+1|y1:t+1) as follows:

p(θt+1|y1:t+1) =
p(yt+1|θt+1, y1:t)p(θt+1|y1:t)

p(yt+1|y1:t)
(2.14)

Furthermore, the a priori distribution at time t + 1 is calculated from the a

posteriori at time t, using the Chapman-Kolmogorov equation [71]:

p(θt+1|y1:t) =

∫
p(θt+1|θt, y1:t)p(θt|y1:t)dθt (2.15)

Thus, the dynamic extensions of the MAP and MMSE estimators are respectively

given by the following equations:

θ̂MAP
t+1 = argmax

θt+1

p(θt+1|y1:t+1) (2.16)

θ̂MMSE
t+1 =

∫
θt+1p(θt+1|y1:t+1)dθt+1 (2.17)

For practicability ans tractability reasons, it is usually assumed that the state

space vector θt to be estimated is issued from a known Markov chain of transi-

tion probability p(θt|θt−1), with a known initial a priori distribution p(θ0). The

observation model is given by:

yt = h(θt) + et (2.18)
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where h is a function relating the observation to the state space vector and et denotes

the observation noise vector, indexing also the time variable to simplify notations.

Assume that the observations are i.i.d. variables at di�erent time instants. Then,

the Chapman-Kolmogorov equation becomes as follows:

p(θt+1|y1:t) =

∫
p(θt+1|θt)p(θt|y1:t)dθt (2.19)

If the observations are conditionally independent, then p(yt+1|θt+1, y1:t) =

p(yt+1|θt+1) and the Bayes �lter equation is simpli�ed as follows:

p(θt+1|y1:t+1) =
p(yt+1|θt+1)p(θt+1|y1:t)

p(yt+1|y1:t)
(2.20)

p(yt+1|y1:t) does not depend on θt+1. Hence, p(yt+1|y1:t) is obtained according to

the following marginalization:

p(yt+1|y1:t) =

∫
p(yt+1|θt+1)p(θt+1|y1:t) (2.21)

Once the initial distribution p(θ0) and the transition probability are known (i.e.

in our case, the mobility model), the Bayes �lter computes the a posteriori distri-

bution of θt recursively at any time t. However, due to the non-linearity between

the observation and θt in equation (2.18), equations (2.19) and (2.20) are usually

analytically intractable.

Thus, the particle �lter may be used, which is based on sequential Monte Carlo

methods for approximating numerically the a posteriori densities [72]. In the WSN

localization context, it has been mainly adopted for tracking applications [73], [74],

for instance in vehicular or personal navigation applications. It has been also consid-

ered in the very WBAN context, but still for navigation purposes in indoor environ-

ments [63]. One advantage with the particle �lter is that is can handle non-linear

transitions and arbitrarily complex error densities (on both mobile state and ob-

servation processes). However, for being based on numerical approximations, it is

usually too computationally demanding for low-complexity and real-time applica-

tions like in our WBAN context. It is also highly dependent on the number of used

particles, as well as on speci�c issues like particles cloud degeneracy or impoverish-

ment, which necessitate even more complex mechanisms such as particles resampling

and regularization.

Besides, assuming Gaussian noises and linearized models (i.e. linear state-space

equation and a linear observation model) conducts to the Kalman Filter (KF),

which yields to an tractable solution of the initial Bayesian �lter formulation. But

in typical wireless tracking problems, due to the non-linearity of the function h, the

Extended Kalman Filter (EKF) may be adopted instead, which consists in preserving

the full KF formalism after linearizing locally the incriminated function around the

predicted state. Both KF and EKF are well known and popular in the general

WSN localization context [75], [76], [77], due to their simplicity and practicability

for implementation.
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Overall, as a summary, the particle �lter is a robust Bayesian solution to the

wireless tracking problem in non-linear and non-Gaussian scenarios. But the price

to pay for this �exibility in terms of computational load and energy consumption

tends to prevent from using it in a generic WBAN context. Besides, the complicated

and disparate nature of the body limbs movement during the human motion (i.e.

depending on the on-body node's placement) makes it rather di�cult to maintain

one single state space equation to relay θt+1 and θt, whatever the node. Thus, the

EKF are not really expected to be fully robust and convenient for MoCap applica-

tions. However, they can be more relevant for navigation purposes, where reasonable

assumptions about the macroscopic body movement can be made more easily. More

details about the EKF will be given in Chapter 5, where the individual and group

navigation modes will be investigated.

Graph Inference and Message-Passing Recent research e�orts have been

focusing on iterative, cooperative and decentralized solutions relying on message-

passing, such as Belief propagation (BP) [78], which is one of the well-known graphi-

cal models for inference in statistical physics, arti�cial intelligence, computer vision,

etc. This kind of approaches organizes the global computation of nodes location

beliefs into smaller local computations implying the exchange of packets between

neighbouring mobile nodes. An implicit mapping is thus usually intended between

the physical network topology and a factor-graph representation. Gradual enhance-

ments have been proposed for the last past years in the speci�c WSN cooperative

localization context.

For instance, the Non Parametric Belief Propagation approach (NBP), which

is one famous particle-based approximation of the standard BP has been put for-

ward for non-linear and non-gaussian cases [79]. But one problem with NBP is that

it su�ers from loopy e�ects and error propagation in highly connected networks.

Thus some improved variants have also been proposed, considering e.g., simpli�ca-

tions leading to Non Parametric Generalized Belief Propagation (NGBP) (though

usually still too complex in large-scale networks), ii) NGBP algorithms with pseudo-

junction trees to reduce complexity and improve convergence (e.g. via triangulated

graphs and virtual edges) and iii) Non Parametric Belief Propagation over Spanning

Trees (NBP-ST), where the results of several independent NBP on di�erent span-

ning (loop-free) trees are merged. One step ahead, the over-con�dence of beliefs in

loopy graphs can also be solved out by using Tree-Reweighted Belief Propagation

(TRW-BP), for which the optimal edge appearance probability has been derived

[80]. Another proposal, depicted as the Two Phase - Non Parametric Belief Propa-

gation (TP-NBP) algorithm [81], [82], aims at reducing the amount of transmitted

data while improving the localization error under sparser connectivity. It considers

applying �rst the standard NBP only with respect to 1-hop neighbors for simpli�ca-

tion and then, based on the results of this �rst phase, new countable sets of points

are redrawn to represent each blind node, taking those points as the centers of iden-

ti�ed modes in the beliefs plus a few more points judiciously chosen around. Finally,
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the exact discrete BP is tractable over these points and packets are broadcasted up

to the k-th neighbors.

Alternative but rather similar distributed net-factor approaches rely on net-

message passing. The latter have been tested in the context of UWB cooperative

positioning based on real ranging measurements [43], [83]. One more recent solution

inspired by Mean Field theory is described as the Variational Message Passing

algorithm [84]. It aims at reducing the amount of exchanged information, requiring

only three scalars to account for nodes' locations and beliefs in the transmitted

packets.

Despite promising recent results and a claimed simplicity, all the message-passing

approaches cited above have in common to be more adapted to static and rather

dense networks. Most of them also necessitate several iterations (i.e. packets' ex-

changes) before achieving convergence, what makes then not so relevant in our

WBAN localization context.

2.4.2 WBAN Localization Systems

As regards to precise range estimation based on single-link on-body radio transmis-

sions, preliminary IR-UWB TOA-based ranging results have been provided in [85],

focusing mostly on the e�ect of body-induced pulse distortions with respect to vari-

ous TOF-based ranging algorithms. Those results would have to be extended to cope

with dynamic scenarios (e.g. introducing space-time correlations for TOA estimates

under body mobility), more realistic bandwidths, waveforms and SNR in compli-

ance with upcoming WBAN standards. Other side research activities on single-link

body-to-infrastructure estimation were carried out in [36] in the context of medical

body sensors (e.g. senior health monitoring application), comparing di�erent LDR

radio standards and radiolocation metrics, such as TOA-based IEEE 802.15.4a and

RSSI-based IEEE 802.15.4 ranging. Finally, a �rst-order non-homogeneous Markov

model accounting for the path arrival times in UWBWBANs has been proposed out

of real measurements [86]. However, it is not exploited at all for location-dependent

applications, but uniquely intended for the purpose of simulating realistic WBAN

channels or assessing realistic WBAN communication performances (e.g. through

multipath-combining receiver structures).

Apart from single-link characterization, positioning and tracking schemes have

also been proposed in the WBAN context, enabling either navigation or motion cap-

ture functionalities. For instance, the goal in [87] is to position on-body electrodes

for biomedical applications such as Electro-Encephalography (EEG). The proposed

method relies on a radio transmission technique at low frequency bands to resist

to strong body attenuation and cantilever MEMS micro-antennas, coupled with a

Self Positioning Algorithm (SPA), feeding a LS procedure with relative RSSI-based

range measurements, to infer the coordinates of each electrode in a so-called virtual

coordinate system. However, cooperative measurements are exhaustively included

with no links selection strategies, what is hardly compatible with real-time mobile

WBAN scenarios. Then, only relative positioning is considered, i.e. retrieving only
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inter-nodes distances. Finally, only one-way ranging schemes are considered, making

impractical more precise ranging solutions based on signal RT-TOF estimation (e.g.

with IR-UWB transmissions), as well as cooperative communications (i.e. implying

bilateral data exchanges between mobile nodes). In [88], a technique to improve

indoor body positioning is experimentally evaluated. Starting with the remark that

antenna radiating patterns are not perfectly omni-directional, it is proposed to dis-

tribute several wireless objects on the same body to exploit spatial diversity and

enhance the global precision of the body location. One RSSI-based ranging mea-

surement is then obtained between each on-body object and each available external

anchor. Two subsequent positioning methods are proposed, either averaging all the

RSSI measurements into one single reading for the entire body per link with respect

to an external anchor, or averaging the positions estimated for each on-body object

with respect to external anchors. Even if the solution bene�ts from spatial diversity,

strictly speaking, no inter-WBAN/intra-WBAN cooperative scheme is considered.

In [63], the positioning technique concerns only one single wearable node per body.

In that sense, the invoked WBAN context sounds abusive and body-to-body coop-

eration shall be intended from a very classical and conservative WSN perspective

(i.e. excluding intra-WBAN cooperation and more complex inter-WBAN coopera-

tion involving several links between two bodies). This technique relies on a particle

�lter fed with RSSI measurements collected with respect to anchors or other mo-

bile wearable nodes. In [89], a LS positioning algorithm is put forward, based on

TDOA measurements and one-way transactions between one single wearable node

per body and a set of surrounding synchronized anchors. Like in the previous ref-

erenced work, the WBAN appellation is abusive here and no cooperative scheme is

considered. Moreover, the transmission with respect to surrounding anchors ques-

tions the limited transmission ranges (from on-body transmitters) usually intended

within standardized WBAN applications. In [90], a generic framework is put for-

ward for medical applications. Each WBAN comprises one Cluster Head (CH) node

and several on-body sensors. Only the CH is positioned with respect to a set of

surrounding sensors deployed in the immediate environment, using a particle �lter

fed with Directions Of Arrival (DOA) that are measured at the surrounding sensors.

Here, the radio links between simple nodes and the CH are unexploited for coopera-

tive location purposes and no communication is even possible between simple nodes

in this star network topology. Moreover, one single WBAN can just interact with

the �xed infrastructure, whereas no body-to-body links are supported.

Even more recently, new investigations have been initiated in the �eld of body

motion tracking through WBANs [62]. In the proposed system, mobile agent nodes

equipped with transmitters and placed on the limbs (e.g. on the arms) are tracked

with respect to a set of anchor nodes, which are mounted directly on a �xed part of

the body (e.g. the torso), assuming both synchronous and asynchronous scenarios

between agents and anchors. A geometrically constrained ML positioning algorithm

(i.e. constrained topology resulting from basic bio-mechanical rules) is then con-

sidered to accommodate IR-UWB TOA measurements (potentially with a timing

o�set in the asynchronous case) and retrieve the locations of agent nodes. However,
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in this solution, mobile-to-mobile links are not taken into account and inter-WBAN

cooperation is deliberately discarded. As a complementary approach in [8], very

preliminary results have been provided regarding intra-WBAN cooperative location

in a speci�c navigation scenario, integrating realistic protocol and synchronization

constraints. According to this proposal, assuming IR-UWB transmissions and tem-

poral radiolocation metrics, TDOA measurements are performed locally at mobile

wearable nodes with respect to �xed transmitters in the surrounding infrastructure

and peer-to-peer TOA-based range measurements are collected between wearable

mobile nodes to achieve intra-WBAN cooperation. Possible gains are claimed in

terms of service coverage under low tra�c (for several cooperation schemes), while

pointing out obvious needs for more realistic TOA error models (e.g. space-time

correlated and conditioned on body obstructions), more e�cient cooperative link

selection strategies (e.g. based on detected body obstructions), and �nally joint

inter-WBAN cooperation for enhanced group navigation.

None of the previous location algorithms can really handle joint inter/intra-

WBAN cooperation. In most cases, they do not either take into account WBAN

speci�cities, in terms of network topology, body/group mobility, space-time channel

variations and correlations, or standard-compliant protocol exchanges and wave-

forms. Finally, re�ned dynamic TOA-based ranging error models are still required

(e.g. conditioned on body obstructions) to assess more realistic location perfor-

mances.

2.5 Conclusion

In this chapter, we have provided an overview of existing works and recent studies

(explicitly or more indirectly) related to our cooperative WBAN localization prob-

lem. More precisely, we have dealt with key points of the localization system, such

as the transmitted waveforms, the standardized bandplans and the channel models,

the deployment topology and the localization algorithms. For the latter, while pre-

senting possible location estimators, the discussion has been generalized (i.e. not

only from a WBAN perspective, but also into a more classical WSN case).

Regarding the transmitted signal and the channel models �rst, the available

standardized models do not seem fully adapted, nor uni�ed. In the following,

while assuming single-link radiolocation metrics within our evaluation framework,

we will thus either develop a novel localization-oriented model or adapt existing

communication-oriented models derived from experimental parameters instead.

Then it appears that most localization algorithms considered in the WBAN

context so far favor centralized resources and synchronous calculi, which are however

hardly compliant with real-time constraints under realistic human mobility (i.e.

estimating all the unknown nodes' locations simultaneously, after relaying inter-

nodes measurements to a central coordinator). Moreover, they often under-exploit

the available potential of mesh topologies by sticking with non-cooperative links (i.e.

uniquely with respect to �xed anchors). Some of these solutions also necessitate a
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priori parametric models, which may be not really practical, given e.g., the unknown

location-dependent mobility patterns experienced by on-body nodes (i.e. under

non-calibrated and arbitrary deployments). On the contrary, considering that the

DWMDS algorithm is i) distributed and asynchronous, thus adequate for real-time

localization under mobility and adaptable to the local needs of on-body nodes, ii)

non-probabilistic and non-parametric, in the sense no prior statistical information

is absolutely required about the nodes' positions or measurements, we suggest to

adapt and extend this algorithm for the relative MoCap and LSIMC applications in

the following. In parallel, other classical tracking �lters such as the EKF, will be

also adapted for single and group navigation so as to cope with multiple on-body

nodes.

The following chapter will focus on single-link ranging performances and error

models in the cooperative WBAN context, considering the three possible levels of

cooperation and kinds of links (i.e. on-body, body-to-body, o�-body), as well as the

key foreseen technologies.
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3.1 Introduction

Generally speaking, the consideration of realistic ranging error statistics enables a

more solid and fairer assessment of the localization performance (e.g. through realis-

tic simulations) and in some cases, optimal algorithmic design (e.g. through outliers

detection, proper measurement weighting, probabilistic location estimators...). One

major problem in the WBAN context is that such localization-oriented models are

still extremely rare and/or incomplete in the literature but most of them are re-

stricted to on-body channel characterization from a pure communication-oriented

perspective. Besides, in the �eld of cooperative WBAN localization, most of the

algorithmic investigations carried out so far still consider unrealistic and synthetic

TOA-based ranging errors under pedestrian mobility [2], [8], [62], [91], hence biasing

somehow the performance evaluation in comparison with practical operating condi-

tions. In particular, as far as we know, there does not exist any ranging-oriented

parametric model that can really account for dynamic UWB on-body links. Apart

from classical indoor representations (i.e. regardless of the WBAN context), there

is no explicit ranging-oriented model either over o�-body and body-to-body links.
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Hence, this chapter analyzes possible models and parameters characterizing rang-

ing errors based on the two main foreseen WBAN radio technologies, namely IR-

UWB for on-body, body-to-body and o�-body links on the one hand, and N-B at

2.4 GHz for body-to-body and o�-body links on the other hand. In particular, Sec-

tion 3.2 describes an original on-body error model, along with the retained modeling

methodology, based on IR-UWB TOA estimation and exploiting real dynamic chan-

nel measurements over two representative on-body links and frequency bands [44],

[45]. Then Sections 3.3 and 3.4 discuss theoretical ranging error models over o�-body

and body-to-body links, respectively for N-B RSSI estimation and IR-UWB TOA

estimation in the presence of multipath. The latter error predictions are mainly

based on CRLB calculi, fed with realistic empirical parameters issued from di�erent

WBAN channel measurement campaigns. They allow us to illustrate and discuss

the best achievable ranging performance and to draw plausible bounds for further

studies on localization algorithms in the following Chapters. Finally, Section 3.5

summarizes the chapter conclusions.

3.2 Empirical Modeling of On-Body Ranging Errors

Based on IR-UWB TOA Estimation

In this section, we consider characterizing and modeling TOA-based ranging errors,

using UWB on-body channel measurements, which were carried out under typical

pedestrian walking [6].

3.2.1 Single-Link Multipath Channel Model

For the [3.1, 5.1]GHz and [3.75, 4.25]GHz bands considered hereafter, it was previ-

ously shown in [6] that on-body channels su�er from signi�cant human shadowing,

which is far dominating other distance-dependent e�ects. Accordingly, TOA esti-

mation and its related error regimes are both expected to be strongly a�ected (and

thus mostly conditioned) by dynamic body obstructions under mobility.

Over each on-body link, the received signal can be typically represented as a

function of the transmitted signal as follows:

r(τ) =

Lp∑
j=1

αjp(τ − τj) + n(τ) = h(τ)⊗ p(τ) + n(τ) (3.1)

where h(τ) =
∑Lp

j=1 αjδ(τ−τj) is the multipath CIR, δ(.) is the Dirac delta function,
Lp is the number of multipath components, αj and τj are respectively the amplitude

and delay of the j-th multipath component, p(τ) is the transmitted pulse and n(τ)

is an additive noise process.

Out of this observed signal, the TOA estimation step aims at determining the

arrival time of the direct multipath component that would be ideally received in

a free space propagation case. As previously pointed out and revealed by equa-

tion (3.1), the quality of TOA estimation depends on multiple factors such as the
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emitted pulse energy (and hence, the received pulse energy) in comparison with the

noise �oor, multipath fading e�ects (and hence, the occupied bandwidth), or signal

obstructions. It is thus possible to generate false alarms due to early noisy realiza-

tions or to miss the direct path due to poor SNR conditions and/or severe NLOS

blockages. The latter phenomena tend to increase the apparent length of the direct

path or they can even cause its absence, leading to overestimated ranges.

3.2.2 Path Detection Schemes Enabling TOA Estimation

3.2.2.1 Strongest Peak Detection

Matched Filtering (MF) usually claims low complexity and low consumption [2],

which are two features particularly suitable for WBAN applications. In our ranging

context, TOA estimates are �rst obtained through strongest peak detection, by look-

ing for the corresponding time shifts that maximizes the cross-correlation function

between the received signal that can be represented as equation (3.1), and a local

template, which theoretically corresponds to the unitary transmitted waveform, as

follows:

c(τ ′) =

∫ +∞

−∞
r(τ)p(τ − τ ′) dτ (3.2)

τ̂TOA = argmax
τ ′∈W

|c(τ ′)| (3.3)

where c(τ ′) is the cross correlation function, and τ̂TOA is the estimated TOA in the

temporal observation window W . The estimated distance is d̂ = τ̂TOAv, where v

is the speed of light, assuming that the transmitter and the receiver are somehow

synchronized, e.g. through 2-Way Ranging protocol exchanges (i.e. assuming in �rst

approximation that the TOF is equivalent here to the TOA reading and that the

errors a�ecting TOF measurements are restricted to that a�ecting TOA measure-

ments). It will be seen in the following how to cope in part with the actual timing

uncertainly when characterizing estimation errors out of real channel measurements.

3.2.2.2 First Path Detection

Getting back to the CIR expression in equation (3.1), the propagation delay τj ob-

viously reveals the physical length of the j-th corresponding path. Therefore, under

LOS conditions where a direct path is truly present between the transmitter and

the receiver, the shortest observable propagation delay can be reasonably associated

with the true Euclidean distance. This method, which is depicted hereafter as the

First Arrival Path (FAP) detection scheme, simply consists in preliminarily esti-

mating the CIR out of the received signal r(τ) in equation (3.1), and to associate

the �rst estimated multipath component (i.e. among all the resolved paths) with

the estimated distance between the transmitter and the receiver. Unfortunately,

in NLOS conditions, this FAP may su�er from signi�cant power attenuation that

makes it subject to missed/late detections or early false alarms, thus conducting to

large estimation errors and, more generally speaking, to a higher dispersion of the
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measurements. Many channel estimation algorithms have already been proposed to

retrieve the CIR out of the received signals, such as �nger selection (e.g. for RAKE

receivers) [92] or high-resolution algorithms (e.g. CLEAN), as it will be seen in the

next subsection.

In the sequel, the ranging error will be simply de�ned as the di�erence between

the estimated TOA-based distance described previously and the actual distance, as

follows:

e = d̂− d (3.4)

3.2.3 Modeling Methodology

This subsection describes the methodology adopted to draw our TOA-based ranging

error model out of real IR-UWB channel measurements.

3.2.3.1 Multipath Extraction from Channel Measurements

First of all, we consider the dynamic radio channels associated with the Hip-Chest

and Hip-Wrist links from a past measurement campaign described in [6], where the

total recording time was 4 sec and consecutive temporal channel responses were

collected every 20 ms in the band [3.1, 5.1]GHz. The measurements were performed

under moderate human walk mobility in a typical indoor environment, resulting in

a set of 200 time-stamped channel responses. For each response, multipath com-

ponents were extracted using a CLEAN-like high-resolution algorithm [93] in the

bands [3.1, 5.1]GHz and [3.75, 4.25]GHz. A snapshot of the extracted CIR at the

observation time-stamp tn can hence be expressed as:

ĥ(tn, τ) =

L̂p(tn)∑
j=1

α̂j(tn)δ(τ − τ̂j(tn)) (3.5)

where ĥ(tn, τ) is the CIR extracted at the observation time-stamp tn, L̂p(tn) is the

number of extracted multipath components, α̂j(tn) and τ̂j(tn) are respectively the

amplitude and delay of the j-th extracted multipath component at time-stamp tn.

Just like in [6], the dynamic power transfer function was also directly calculated

out of the corresponding time-stamped frequency-domain measurements H(t, f) in

the band B (anyway made available for RF calibration purposes), as follows:

P (tn) =
1

b

∫
B
|H(tn, f)|2 df (3.6)

where b is the bandwidth of B, and P (tn) is the time-variant power transfer function,

as illustrated on Figure 3.1 for the Hip-Wrist link.

As expected, this �gure shows the strong body obstruction e�ects on the received

signal attenuation. Typically NLOS channel conditions periodically lead to severe

fades due to body shadowing under mobility.
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Figure 3.1: Dynamic variations of the power transfer function between the hip and

the wrist under body mobility (standard walk), as a function of time t.

Figure 3.2: Energy-normalized templates w0(τ,B) used for the generation of syn-

thetic received signals and for correlation-based TOA estimation.

3.2.3.2 Generation of Synthetic Received Signals

In order to synthesize a realistic received signal out of the extracted CIRs, as a

function of a given initial SNR level and occupying a given bandwidth, a reference

template waveform is required. Gaussian-windowed sine waves have thus been gen-

erated in the [3.1, 5.1]GHz and [3.75, 4.25]GHz bands, the latter being in compliance

with one mandatory band speci�ed by the IEEE 802.15.6 bandplan. Figure 3.2 shows

the corresponding reference templates normalized in energy. According to equation

(3.1), those templates shall be convolved with the CIRs previously extracted out of

real measurements, and an AWGN process with a two-sided power spectral density

N0 (i.e. N0 = −154 dBm/Hz) is �ltered into the considered signal band. The

resulting synthetic received signal available at the observation time-stamp tn is thus
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given by:

Ws(tn, τ) = ĥ(tn, τ)⊗ w0(τ,B) + n(tn, τ, B)

=

L̂p(tn)∑
j=1

α̂j(tn)w0(τ − τ̂j(tn), B) + n(tn, τ, B) (3.7)

where w0(τ,B) is the reference template and n(tn, τ, B) is the band-limited noise

process at the observation time-stamp tn in the occupied band B.

For our simulation needs, in order to enable a dynamic variation of SNR(tn)

and to preserve the natural relative power �uctuations due to body obstructions (as

observed during the measurements campaign), we set and control the SNR values a

priori for an arbitrary reference time stamp (preferably in LOS). In our case, the ref-

erence time t0 is for instance chosen when the received channel exhibits a maximum

of the power transfer function P (t). Imposing a priori the reference value SNR(t0)

(as an input parameter) and given the actual P (tn) (and hence P (t0)) directly avail-

able from measurements at any time-stamp tn, the instantaneous SNR(tn) is then

forced and scaled arti�cially so as to vary realistically over the entire acquisition

duration, as follows:

SNR(t)|dB = SNR(t0)|dB + P (t)|dB − P (t0)|dB (3.8)

where SNR(t) is the re-scaled instantaneous signal energy to noise ratio, SNR(t0)

and P (t0) are respectively the controlled SNR value and power transfer function

at time-stamp t0, and P (t) is the power transfer function at time t. In our study,

SNR(t0) is viewed as an imposed input parameter, which remains constant and

valuable for the whole duration of one walk cycle, and over several noise process

realizations (i.e. over which TOA and ranging statistics will be drawn). Practically,

before applying (3.8) to account for the overall walk duration from the reference

time stamp t0, given the �xed �ltered noise power imposed by B and N0, we re-

scale the synthetic multipath impulse response ĥ(t0, τ) in (3.7) into ĥr(t0, τ) so

that Ws,r(t0, τ) = ĥr(t0, τ)⊗w0(τ,B) + n(t0, τ, B) can respect the input parameter

SNR(t0) (and thus, applying the same scaling factor to the useful signal for each

random noise process realization), as follows:

SNR(t0)|lin =

∫
[Ws,r(t0, τ

′)− n(t0, τ
′, B)]2dτ ′

N0
(3.9)

The rationale for parameterizing the error model with SNR(t0) are twofold: i)

we have noticed that the error regime is rather stable over LOS or NLOS portions of

a given walk (i.e. exhibiting approximately the same statistics under relatively small

variations of the instantaneous SNR) but mostly conditioned on body shadowing

and ii) SNR(t0) shall be easier to predict once for all at the beginning of the walk

cycle in localization-oriented simulations (e.g. with classical free-space propagation

models) for being advantageously associated with LOS conditions.



3.2. Empirical Modeling of On-Body Ranging Errors Based on

IR-UWB TOA Estimation 45

3.2.3.3 Emulated TOA Estimates and Conditional Error Regimes

At each observation time-stamp tn, TOA estimates are thus estimated from each

synthesized noisy received signal, using two kinds of estimators. The �rst one con-

sists of a matched �lter, as described in subsection 3.2.2.1, i.e. by looking for the time

shift that maximizes the cross-correlation function between the synthetic received

signal Ws,r(tn, τ) and the reference template w0(τ,B), within a given observation.

In our case, the window has a time length of 5 ns like in [85], [91]. This duration

is su�cient in WBAN applications to observe an arrival time corresponding to the

maximum distance between two synchronized nodes placed on the same body. Thus

we perform �ltering here in terms of excess delay.

The second TOA estimate is based on FAP detection using a CLEAN-like

approach, which can be shortly described for each time stamp tn as follows [94]:

1) Calculate the self-correlation rw0w0(tn, τ) of the template and the cross-

correlation rw0Ws(tn, τ) of the template with the synthesized received signal

Ws(tn, τ).

2) Find the largest correlation peak in rw0Ws(tn, τ), record the normalized amplitude

αk and the relative time delay τk of the correlation peak.

3) Substract rw0w0(tn, τ) scaled by αk from rw0Ws(tn, τ) at the time delay τk.

4) If a stopping criterion (e.g. a minimum threshold on the peak correlation) is not

met, go to step 2. Otherwise, stop.

5) The overall CIR ĥ(tn, τ) is extracted, and the FAP is recorded as the �rst intime

resolved multipath component τ̂1(tn).

The �rst Hip-Chest link to be considered is always assumed in LOS conditions,

whereas the Hip-Wrist link varies dynamically, leading periodically and alternatively

to LOS and NLOS conditions. In order to classify the obstruction conditions, the

retained method is based on the power transfer function. Relying on the initial

measurements, the channel is considered in LOS (resp. NLOS) conditions whenever

its power transfer function is larger (resp. lower) than -60 dB (resp. -65 dB). The

remaining unspeci�ed time area is considered as a transition zone, with a steep

power transition regime. Alternatively, the channel delay spread, which exhibits

smaller values in LOS and higher values in NLOS conditions, could have been used

to identify the channel obstruction con�gurations.

Finally, during the initial communication-oriented measurement campaign re-

ported in [6], the real distance between nodes was not collected, since measurements

were not carried out for localization purposes. However, in �rst approximation, one

can try to extract this distance out of the measured TOA in time-stamp regions

when the LOS conditions are clearly identi�ed and with SNR(t0) = +∞ for the

synthetic received signals in the largest bandwidth [3.1, 5.1]GHz. Practically, the

�rst Hip-Chest link is considered as �xed and the reference distance extraction was

directly realized by averaging all the TOA measurements issued from MF estima-

tion over the walk cycle to reduce TOA estimation errors appeared during the mul-
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Figure 3.3: Equivalent inter-node distance retrieved out of correlation-based TOA

estimation without noise (blue) and �tted reference distance after averaging with a

sliding window and splines interpolation over the detected NLOS time stamp region

(red), for both Hip-Chest (top) and Hip-Wrist links (bottom).

tipath extraction phase in the presence of overlapping components. Nevertheless,

for the second Hip-Wrist link, a smoothing process was performed in a sliding win-

dow whose length corresponds to 20 consecutive time-stamp samples (e.g. within

20x20ms=400ms). The true distance was subsequently interpolated over NLOS

areas, assuming continuity of the true distance at LOS/NLOS boundaries but dis-

continuity for the smoothed version of the measured distance (obtained with the

sliding window). The idea consists in relying on the known extracted LOS portions,

thus forming a time-stamp basis to infer the true distance in unknown NLOS time-

stamp areas through spline-based data extrapolation. Figure 3.3 intends to clarify

the method used to determine the reference distance, assuming the latter will cor-

respond to the so-called "expected real" distance while computing the ranging error

in the following.

3.2.4 Proposed Conditional Error Models

3.2.4.1 LOS Model

In this subsection we statistically characterize the obtained TOA-based ranging er-

rors carried out of matched �lter estimator, in the [3.1, 5.1]GHz and [3.75, 4.25]GHz

frequency bands, for the two kinds of radio links. As previously mentioned, these

models are conditioned on the channel obstruction status and on the reference

SNR(t0). While running simulations, for each SNR(t0) value, 100 independent noise

process realizations are drawn for the walk cycle duration. Over these realizations,

for each frequency band, up to 20000 range measurements are then collected in LOS

conditions for the Hip-Chest link, whereas 8600 and 3800 measurements are gener-



3.2. Empirical Modeling of On-Body Ranging Errors Based on

IR-UWB TOA Estimation 47

ated for the Hip-Wrist link, respectively in LOS and NLOS conditions. Moreover,

we draw the model of the TOA-based ranging errors carried out of FAP detection

using a CLEAN algorithm, in [3.1, 5.1]GHz frequency band, for the two kinds of

radio links, but only under LOS conditions, while the FAP is almost systematically

missed or falsely detected in NLOS conditions.

Strongest Path Detection Conditioned on the LOS case, a side basic Least

Square (LS) �t has been performed between the empirical Cumulative Density Func-

tion (CDF) and a variety of well-known heavy tailed models (e.g. Gaussian, Gen-

eralized Extreme Value, Exponential, Weibull, lognormal...), which have been fre-

quently cited in the literature in the �eld of ranging error modeling. Hence, it

appears that the step-wise empirical CDF of emulated range measurements enjoys

a rather satisfactory �t (in a least squares sense) to the CDF of a Gaussian random

variable, whose standard deviation σ is on the order of the time base period. Figure

3.4 shows examples for both simulation-based and model-based LOS CDFs with

SNR(t0) = 5dB in the band [3.1, 5.1]GHz.

Figures 3.5 and 3.6 show respectively the variations of the mean and standard

deviation of the corresponding Gaussian LOS model for both links and both bands,

as a function of SNR(t0). As seen in Figure 3.5, the mean varies around zero, with

very low values (in comparison with the nominal expected true range value), and

hence, it can be considered as null in �rst approximation over the explored range

of SNR(t0) values. Figure 3.6 shows that the behavior of the standard deviation is

asymptotically constant when SNR(t0) reaches a value of 10 dB. At high SNRs, the

strongest path detected through cross-correlation indeed coincides systematically

with the direct path. The asymptotic error �oor at high SNR thus depends mostly

on the occupied band and center frequency, as discussed in [34].

To summarize, considering the tested Hip-Chest and Hip-Wrist links, the dis-

tribution of the ranging error through correlation-based TOA estimation in LOS

conditions in the [3.1, 5.1]GHz and [3.75, 4.25]GHz bands can be simply modeled

as a centered Gaussian distribution, with a standard deviation depending on B and

SNR(t0) (See the legend of Figure 3.6 for detailed model parameters).

First Path Detection For TOA estimation through FAP detection, the result-

ing pdf can be better represented by a mixture involving Gaussian and Uniform

components. The Uniform distribution is weighted by the false alarm probability

PF , which represents the probability to detect a wrong peak instead of the true

FAP. PF is thus strongly a�ected by the threshold chosen within the FAP detec-

tion scheme (e.g. a smaller threshold obviously leads to higher PF ), and hence, by

the stopping rule in the underlying high-resolution channel estimation algorithm.

Figure 3.7 shows the variation of PF as a function of SNR(t0) for both links in the

[3.1, 5.1]GHz frequency band. At high SNR(t0), the behavior appears to be almost

Gaussian and PF is approximately null. Figures 3.8 and 3.9 show respectively the

variations of the mean and standard deviation of the corresponding Gaussian dis-
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Figure 3.4: Empirical and model-based CDFs of ranging errors with a matched �lter

TOA estimator (i.e. strongest path detection), in both LOS and NLOS conditions,

with SNR(t0) = 5dB, in the band [3.1, 5.1]GHz.

Figure 3.5: Mean of ranging errors with a matched �lter TOA estimator (i.e.

strongest path detection), in LOS conditions, as a function of SNR(t0).
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Figure 3.6: Standard deviations of ranging errors σ with a matched �lter TOA

estimator (i.e. strongest path detection), in LOS and NLOS conditions, as a function

of SNR(t0).

tribution, for both links in the band [3.1, 5.1]GHz. These variations are compliant

with the variations observed in the matched �lter case in case of strongest path de-

tection. This result shows that, in general LOS conditions, the FAP is rather in line

with correlation-based TOA estimation. Thus one would tend to apply systematic

strongest path detection for low complexity in such favorable conditions.

3.2.4.2 NLOS Model

As previously pointed out, in NLOS conditions (i.e. under body shadowing), the

�rst path detection scheme being subject to much higher deviations, we mainly

focus hereafter on the strongest path detection. The best �t has then been also

obtained to a mixture-based model involving Gaussian and Uniform components.

Figure 3.4 shows examples of both the empirical and model-based NLOS CDFs at

SNR(t0) = 5dB, in the [3.1, 5.1]GHz band.

The corresponding conditional pdf is then expressed as follows:

p(e) = ψU(Tw) + (1− ψ)G(µ, σ2) (3.10)

where p is the pdf of the ranging error e in NLOS conditions, U(Tw) is a uniform dis-

tribution, whose temporal support Tw depends on the receiver observation window

while performing TOA estimation through cross-correlation. Again, this window is

chosen to enable detection within any on-body link after synchronization (e.g con-

sidering typically a worst case distance of 1.5m), ψ is the weight of the uniform

distribution, and G(µ, σ2) is a Gaussian distribution with a mean µ and a variance

σ2.

The variation of those parameters in both bands of interest, as a function of

SNR(t0) is represented in Figure 3.6, 3.10 and 3.11. As shown on Figure 3.11, at
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Figure 3.7: Variation of the false alarm probability for FAP TOA estimation (i.e.

�rst path detection), using a threshold of 10 dB below the global absolute maximum

of the estimated CIR, in LOS conditions, in the band [3.1, 5.1]GHz, as a function

of SNR(t0).

low SNR(t0), the contribution of the uniform distribution component is high. This

e�ect accounts for the distribution of the so-called apparent path arrival determined

through cross-correlation over the entire observation window (e.g. between 0 and

5 ns), when the noise level is so high that it can cause frequent missed detections or

false alarms. The uniform weight in the mixture then directly re�ects the probability

of having either a false alarm or a missed detection. However, at higher SNR(t0), the

behavior is almost Gaussian, where the ranging error is centered around a positive

mean, which can be interpreted as a positive bias caused by the obstruction of the

direct path (and hence, its apparent length extension). As shown in Figure 3.6, at

high SNR(t0) (i.e. larger than 10dB), in each operating band, the behavior of the

error standard deviation in LOS is similar to the standard deviation of the Gaussian

part of the mixture-based NLOS model, as the uniform weight is becoming quasi-

null. Similar standard deviations means that the path detection performances are

thus equivalently good in terms of dispersion in LOS and NLOS conditions, given

the observed strongest path. However, it is worth keeping in mind that the apparent

time of �ight of the �rst observable path in NLOS cases is shifted independently of

the path power, hence leading to a non-neglected ranging bias (i.e. besides random

noise terms). The fact that the NLOS bias is approximately constant over SNR(t0)

for a given band is also in line with the previous remarks. This very bias value,

which seems to depend mostly on the occupied band, is rather hard to predict (as a

deterministic parameter) and characterize further in practice. Hence, we recommend

in our �nal ranging error model to assume this bias as a Uniformly distributed

random variable, drawn once for all within a plausible range of a few tens of cm (i.e.

approximately constant over all the NLOS portions of one given walk cycle).

Finally, it is worth recalling that the standard deviation parameter depends
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Figure 3.8: Mean of ranging errors for FAP TOA estimation (i.e. �rst path detec-

tion), in LOS conditions in the band [3.1, 5.1]GHz, as a function of SNR(t0).

Figure 3.9: Comparison between the variations of the standard deviations of ranging

errors σ using a FAP TOA estimator (i.e. �rst path detection using a threshold of

10 dB below the global absolute maximum of the estimated CIR) and strongest

correlation peak TOA estimator, in LOS conditions, in the band [3.1, 5.1]GHz, as a

function of SNR(t0).
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Figure 3.10: Mean value associated with the Gaussian part of the ranging error

mixture-based model in NLOS conditions, as a function of SNR(t0).

Figure 3.11: Weight of the Uniform part of the mixture-based ranging error model

in NLOS conditions, as a function of SNR(t0).
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mostly on B and SNR(t0). Table 3.1 shows the detailed variation of the standard

deviation parameter for both Hip-Chest and Hip-Wrist links, through correlation-

based TOA estimation in the [3.1, 5.1]GHz and [3.75, 4.25]GHz bands. For more

practicability, Table 3.2 shows semi-analytical models that represent analytically

the variation of the standard deviation parameter for both of the tested on-body

links, under LOS and NLOS conditions.

SNR(t0)|(dB) -5 0 5 10 15 20 25

LOS/Hip-Chest
3.66 3.10 2.93 2.86 2.85 2.85 2.85

in [3.1 5.1]GHz

LOS/Hip-Wrist
4.07 3.18 2.91 2.76 2.72 2.70 2.69

in [3.1 5.1]GHz

NLOS/Hip-Wrist
6.11 5.20 4.34 3.57 3.33 3.23 3.19

in [3.1 5.1]GHz

LOS/Hip-Chest
5.43 4.59 4.09 3.91 3.91 3.91 3.91

in [3.75 4.25]GHz

LOS/Hip-Wrist
7.19 4.23 4.09 4.08 4.08 4.08 4.08

in [3.75 4.25]GHz

NLOS/Hip-Wrist
13.13 6.63 5.09 4.47 4.36 4.28 4.24

in [3.75 4.25]GHz

Table 3.1: Detailed variation of the standard deviation parameter (in cm) of the

ranging error models, as a function of SNR and B, for both of the used on-body

links under LOS and NLOS conditions.

Identi�ed links Corresponding semi-analytical model

LOS/Hip-Chest & Hip-Wrist in [3.1 5.1]GHz 1.1 ∗ exp(−0.2(SNR|dB + 5)) + 2.8 (cm)

NLOS/Hip-Wrist in [3.1 5.1]GHz 3 ∗ exp(−0.1(SNR|dB + 5)) + 3.1 (cm)

LOS/Hip-Chest & Hip-Wrist in [3.75 4.25]GHz 2.2 ∗ exp(−0.3(SNR|dB + 5)) + 4 (cm)

NLOS/Hip-Wrist in [3.75 4.25]GHz 8.8 ∗ exp(−0.26(SNR|dB + 5)) + 4.3 (cm)

Table 3.2: Semi-analytical models that correspond to the variation of the standard

deviation parameter (in cm) of the ranging error, as a function of SNR and B, for

both of the used on-body links under LOS and NLOS conditions.

3.2.4.3 Possible Generalization to Other On-Body Links

Since our described model considers the dynamic channel variations and preserves

the natural relative power �uctuations due to body obstructions (i.e. for NLOS)

over two representative on-body links (i.e. Hip-Wrist and Hip-Chest), it is worth

illustrating the variation of the power transfer function over other on-body links.

Relying on the same channel measurements campaign from [6], which has been

brie�y introduced in subsection 3.2.3.1, we have calculated the time-stamped power
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transfer function P (t) over two additional dynamic on-body links for which the true

distance was unknown (i.e. Hip-Thigh and Hip-Foot), with the transmitters and the

receivers placed as on Figure 3.12. Figure 3.13 then shows the dynamic variations

of P (t)|dB over these four on-body links, for both [3.75, 4.25]GHz and [3.1, 5.1]GHz

frequency bands. As it can be seen, P (t)|dB spans approximately in the same range

for all the dynamic links (i.e. Hip-Wrist, Hip-Thigh and Hip-Foot). Moreover, the

static link (i.e Hip-Chest) is characterized by a relatively stable P (t)|dB value as a

function of the time stamp. The level is then approximately similar to that computed

for dynamic links but restricted into their LOS areas. The previous observations

indicate that the power transfer function relies mostly on the channel obstruction

conditions and the dynamic range of investigated values is approximately the same

though rather independent from the used dynamic links. Moreover, those results

are also compliant with a previous remark about the relative stability of the ranging

error over LOS and NLOS portions of a given walk. Finally, it is clear that P (t)|dB
plays a critical role (through SNR normalization) with respect to the ranging error

model parameters. Overall, it thus seems that the proposed error model, which

has been based so far on two representative on-body links only, could be reasonably

extended to other kinds of links experiencing similar power transfer conditions, being

uniquely based on the LOS/NLOS and static/dynamic channel classi�cations.

3.3 Theoretical Modeling of O�-body and Body-to-Body

Ranging Errors Based on N-B RSSI Estimation

As reminded in Chapter 1, the CRLB de�nes a lower bound on the variance of any

unbiased estimator, given the conditional statistics (i.e. likelihood) of observations.

More particularly, it has been shown that the CRLB of RSSI-based range estimates

is given by equation (1.5) in the most generic case, where the RSSI has been modeled

with equation (1.4), assuming that the transmit power, the reference path loss (at

the reference distance) and the antenna gains are known, and that the shadowing

(expressed in dB) is a Gaussian centered random variable with a known variance.

Accordingly, the best ranging standard deviation is thus proportional to the ratio

between the shadowing standard deviation and the path loss exponent σsh/np. Intu-

itively, a high ratio indeed implies that the dependency of the decrease of the average

received power as a function of the log-distance separating the transmitter and the

receiver is no longer signi�cant nor dominating in comparison with the shadowing

dispersion (i.e. around this mean power). This would make the interpretation of

RSSI readings more challenging from a ranging perspective. Herein, we consider

applying a similar CRLB expression for discussions, but using recent experimental

channel model parameters (i.e. path loss and shadowing parameters) obtained over

o�-body and body-to-body links, which have been speci�ed in the ISM band at 2.45

GHz.

O�-body links involve two kinds of wireless devices. The �rst one is placed on the

body and the second one belongs to the surrounding infrastructure, most likely set
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Figure 3.12: Scenario of the on-body measurements campaign carried out in [6],

including four star links.

Figure 3.13: Dynamic variation of the power transfer function for 4 on-body links,

in both frequency bands [3.75, 4.25]GHz (top) and [3.75, 4.25]GHz (bottom).
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LOS NLOS

np PL0 np PL0

Rx heart 2 -38.92 dB 0.4 -62.62 dB

Rx left hip 2 -51.94 dB 0.1 -68.78 dB

Table 3.3: Path loss model parameters over indoor o�-body N-B links at 2.45 GHz,

according to [12].

as an anchor in our localization problem. These links are thus likely asymetric since

on-body devices are subject to more drastic constraints in terms of transmission

ranges and consumption, contrarily to elements of infrastructure.

Inspired from the o�-body channel model in [12], which has been speci�ed at

2.45 GHz according to the IEEE 802.15.4 standard, the used RSSI model can be

simpli�ed by eliminating the fast fading components (i.e. considering that one would

average over a su�cient number of consecutive RSSI readings for each pair-wise link

in a real system). The RSSI model is thus similar to equation (1.4), all except

but the body shadowing, which mainly (and somehow deterministically) depends

on the body orientation with respect to the external node. In a few scenarios how-

ever, frank LOS and NLOS con�gurations have been tested, with the subject body

respectively facing or giving his back to the external node. Table 3.3 summarizes

the corresponding parameters in an indoor environment for WBAN planar monopole

antennas over two speci�c links, namely with on-body nodes positioned on the heart

or on the left hip of the subject body.

On �rst remark is that the reference path loss is no longer unique but it rather

strongly and adversely depends on both the on-body node's location and the antenna

kind (depending on the antenna pattern). This is one more challenging point for

o�-body RSSI-based ranging. In other words, if this disparity can not be treated

a priori as a nuisance and additional source of randomness (e.g. as part of an

extended "shadowing" modeling), this practically implies that the reference path

loss (again, assumed known by RSSI-based ranging algorithms) would have to be

preliminarily calibrated out, not only once for all with one single reference on-

body node in a given environment, but for each of the possibly occupied on-body

locations, what is particularly time consuming. Another remark is that the path

loss exponent np < 1 is very low in frank NLOS cases, whereas the measured power

dispersion is large (on the order of 10 to 12 dB) showing that the randomness

of the multipath contributions globally removes the distance dependency. But in

practical cases, LOS/NLOS con�gurations cannot be classi�ed so easily into binary

cases over o�-body (or even over body-to-body) links but there is a continuum of

body shadowing con�gurations, as a function of the subject orientation, depending

if the body partially or totally obstructs the propagation of direct radio waves. In

[12] for instance, it has been shown that the power �uctuations observed over a

full body rotation of 360 could be as large as 25 dB overall for a given on-body

node's location (e.g. the hearth) and a given antenna (e.g. the planar monopole),
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Relative Angle () 0 45 90 135 180 225 270 315

Body Shad. (dB) 0 -2.77 -9.5 -27.34 -24.99 -17.03 -22.77 -12.4

Table 3.4: Mean body shadowing as a function of the body-to-external relative

angle, over o�-body N-B links at 2.45 GHz for a planar monopole antenna and an

on-body device placed on the heart, according to [12].

regardless of the actual distance from the external node. In other words, from the

RSSI-based ranging perspective, if the body shadowing term is still modeled as a

Gaussian random variable after averaging over all the possible body orientations,

with non-conditional statistics (i.e. regardless of LOS/NLOS), one could assume

a standard deviation σsh on the order of 4 dB or more. For illustration purposes,

Table 3.4 reports the mean body shadowing values observed as a function of the

body-to-external relative angle, over o�-body N-B links at 2.45 GHz for a planar

monopole antenna and an on-body device placed on the heart. Considering similar

results for the on-body device placed on the hip and for the same antenna, if one still

wants to di�erentiate between LOS and NLOS cases, after partitioning respectively

the results from [12] into the LOS and NLOS angular domains and considering the

respective shadowing dispersions over each domain, it is thus reasonable to state that

the standard deviation of the body shadowing term is around 1.5 to 2 dB in LOS and

3 dB in NLOS. Note that this representation would arti�cially lead to extra biases

on the received power, accounting for the assumed centered regime around the mean

of the body shadowing, which can be calibrated out (and likely incorporated in the

original reference path loss parameter, conditioned on the LOS/NLOS obstruction

con�guration). As such, these extra mean terms would however not play a role in

the CRLB prediction of equation (1.5).

So as to extend the discussion, still assuming that the body shadowing term εsh
is a zero-mean Gaussian random variable for the evaluation of (1.5), we now carry

out a parametric investigation of the conditional theoretical error model (i.e. the

CRLB behaviour conditioned on LOS/NLOS and on-body device's location) as a

function of the shadowing standard deviation σsh, which varies from 1 dB to 3 dB,

and the real distance d separating on-body and external devices, which varies from

1 to 50 m, while relying on the np parameters from [12].

Figure 3.14 then shows the best achievable RSSI-based ranging error standard

deviation under LOS conditions, for an on-body device placed on the heart or on

the hip indi�erently. This standard deviation seems to be rather penalizing, even

for favorable σsh values on the order of 1.5 dB, as extracted from [12], but mostly

at large transmission ranges in comparison with the actual distance (e.g. more than

5 m at 50 m). Figures 3.15 and 3.16 illustrate even more harmful e�ects due to

NLOS conditions on o�-body ranging performance at shorter ranges, especially for

typical σsh values on the order of 3 dB, as extracted from [12]. Again, as shown

in Table 3.3, the PL exponent np appears to be much smaller in NLOS than LOS

conditions, meaning that the deterministic dependency of the received power on
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Figure 3.14: Best achievable RSSI-based ranging error standard deviation over o�-

body N-B links at 2.45 GHz, as a function of the actual distance and shadowing

parameter, under LOS conditions, where the on-body device is either placed on

heart or hip.

Figure 3.15: Best achievable RSSI-based ranging error standard deviation over o�-

body N-B links at 2.45 GHz, as a function of the actual distance and shadowing

parameter, under NLOS conditions, where the on-body device is placed on heart.
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LOS NLOS

np PL0 np PL0

Rx Heart 1.14 -54.02 dB 0.67 -70.77 dB

Rx Right Hip 3.33 -37.88 dB 1.15 -66.63 dB

Table 3.5: Path loss parameters over indoor body-to-body N-B links at 2.45 GHz

for a Tx on the Right Hip (�rst carrying body) and a Rx on the Heart or the Right

Hip (second carrying body), according to [13].

the true distance is no more signi�cant but start being dominated by shadowing

randomness (i.e. all the more dominated since the standard deviation is large).

Accordingly, it is hard to interpret the received power for ranging purposes and the

corresponding single-link errors are expected to be even larger. These results seem

to con�rm that RSSI cannot be reasonably considered as a meaningful location-

dependent metric in NLOS cases due to hard body shadowing. Hence, RSSI shall

be mainly recommended as an indirect source of ranging information over o�-body

links.

In [13], the authors have also proposed a new RSSI model for body-to-body

links, inspired by the same underlying formalism as in equation (1.4). Table 3.5

summarizes the path loss parameters for a planar monopole antenna over two dif-

ferent speci�c body-to-body links in LOS and NLOS con�gurations, under the same

relative angular de�nition as for o�-body links (i.e. with one body experiencing a

relative angle of 0 for LOS and 180 for NLOS, with respect to the second body).

In �rst approximation, [13] has also considered the body shadowing as a zero-mean

Gaussian variable, characterizing the corresponding standard deviation at around

6 dB over di�erent body-to-body links and regardless of the LOS/NLOS regime.

However, the behavior of the body shadowing clearly looks bi-modal instead in our

own interpretation and understanding. Each of the modes actually corresponds ei-

ther to the LOS case or to the NLOS case, respectively centered around +5 or -5 dB,

and with a standard deviation on the order of that previously extracted for o�-body

links, that is to say, around 2 dB in LOS and slightly larger that 3 dB in NLOS.

In other words, and in �rst approximation, the same kind of error regimes could

be reasonably applied for both o�-body and body-to-body links. Thus, similarly to

the o�-body discussion, we now carry out a parametric CRLB-based study of the

best ranging standard deviation achievable over body-to-body links, still assuming

that the body shadowing is a Gaussian variable with a standard deviation σsh that

varies from 1 dB to 3 dB. Figures 3.17, 3.18, 3.19 and 3.20 show respectively the

corresponding performance bounds over the two previous body-to-body links under

LOS and NLOS conditions. The same observations and conclusions as in the o�-

body case can thus be drawn for o�-body links, preventing from exploiting RSSI

readings for direct ranging purposes over single links in NLOS con�gurations due to

body shadowing.
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Figure 3.16: Best achievable RSSI-based ranging error standard deviation over o�-

body N-B links at 2.45 GHz, as a function of the actual distance and shadowing

parameter, under NLOS conditions, where the on-body device is placed on hip.

Figure 3.17: Best achievable RSSI-based ranging error standard deviation over body-

to-body N-B links at 2.45 GHz, as a function of the actual distance and shadowing

parameter, under LOS conditions, where the on-body devices are placed respectively

on heart and hip of the two bodies.



3.3. Theoretical Modeling of O�-body and Body-to-Body Ranging

Errors Based on N-B RSSI Estimation 61

Figure 3.18: Best achievable RSSI-based ranging error standard deviation over body-

to-body N-B links at 2.45 GHz, as a function of the actual distance and shadowing

parameter, under NLOS conditions, where the on-body devices are placed respec-

tively on heart and hip of the two bodies.

Figure 3.19: Best achievable RSSI-based ranging error standard deviation over body-

to-body N-B links at 2.45 GHz, as a function of the actual distance and shadowing

parameter, under LOS conditions, where the on-body devices are placed on the hips

of the two bodies.
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Figure 3.20: Best achievable RSSI-based ranging error standard deviation over body-

to-body N-B links at 2.45 GHz, as a function of the actual distance and shadowing

parameter, under NLOS conditions, where the on-body devices are placed on the

hips of two bodies.

3.4 Theoretical Modeling of O�-body and Body-to-Body

Ranging Errors Based on IR-UWB TOA Estimation

In Section 1.2.6, for simpli�cation purposes and as a starting point for general dis-

cussions, we have conceptually illustrated the variation of the CRLB of unbiased

TOA-based range estimators for a single pulse in a general AWGN case, as a func-

tion of the SNR and signal bandwidth. However, WBAN channels in typical indoor

environments of interest are obviously considered as multipath channels, thus im-

pacting the performance of TOA estimators. In [95], the authors have speci�cally

characterized the CRLB of TOA estimators in UWB multipath signals. In this sub-

section, we thus consider computing such CRLB predictions over multipath o�-body

links, incorporating realistic CIR extracted after the processing of IR-UWB chan-

nel measurements. This CRLB evaluation will be performed in the [3.1, 5.1]GHz

and [3.75, 4.25]GHz frequency bands. Note that the latter is compliant with one

mandatory band imposed by the IEEE 802.15.6 standardization group.

We consider an experimental o�-body measurement campaign described in [7],

where the receiver was placed on the chest of a phantom representing the human

body (with representative dielectric constants) and the transmitter was placed in

the surrounding indoor environment in LOS. Figure 3.21 shows the o�-body mea-

surements scenario in [7], where the CIR is recorded in the band [3.1, 5.1]GHz at

di�erent distances separating the transmitter and receiver, spanning from 1 m to

8 m by a step of 1 m. For each response, the frequency-domain measurements was

made available as an intermediary result for RF calibration purposes, and multipath

components were extracted using a CLEAN-like high-resolution algorithm similar
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to [93]. Each extracted CIR can hence be expressed as:

ĥ(d, τ) =

L̂p(d)∑
j=1

α̂j(d)δ(τ − τ̂j(d)) (3.11)

where ĥ(d, τ) is the CIR extracted at distance d as a function of the excess delay

τ , L̂p(d) is the number of extracted multipath components, α̂j(d) and τ̂j(d) are

respectively the amplitude and delay of the j-th extracted multipath component at

d.

Besides, rather similarly to the on-body modeling methodology presented in Sec-

tion 3.2, Gaussian-windowed sine waves have been generated in the [3.1, 5.1]GHz and

[3.75, 4.25]GHz bands and convolved with the extracted CIR. The latter frequency

band is compliant with the channel 2 of the IEEE 802.15.4a standard [60], [96], as

well as with one mandatory band imposed by the IEEE 802.15.6 standardization

group. The corresponding reference templates normalized in energy have already

been presented on Figure 3.2. The noise process in (3.1) is considered as an AWGN

process with a two-sided power spectral density N0 (i.e. N0 = −154 dBm/Hz)

�ltered in the transmitted signal band. Hence, the CRLB of any unbiased TOA es-

timator, as described in [95], has been computed, while assuming that the strongest

path corresponds to the direct path between the transmitter and the receiver. For

more mathematical details, readers are invited to look at Appendix A and [95].

Figures 3.22 and 3.23 show the best achievable TOA-based ranging error standard

deviation as a function of SNR at di�erent distances d, respectively in the [3.1,

5.1]GHz and [3.75, 4.25]GHz bands. It is noticeable that the theoretical bounds

of ranging error is still inversely proportional to the bandwidth. Moreover, at a

given SNR, it appears that the best ranging standard deviation is also proportional

to the distance d separating the transmitter from the receiver. This phenomenon

is mostly due to the fact that the number of multipath components increases at

larger distances d (i.e. regardless of any imposed SNR value) and thus, for a given

bandwidth, the resolution capability is altered, leading to the largest TOA-based

ranging errors.

Based on the previous theoretical bounds, IR-UWB TOA estimation over o�-

body links in LOS conditions appears fully compliant with the requirements of

both LSIMC and group navigation applications, at least from a strict resolution

capability point of view and regardless of the hardware capabilities of real devices

(e.g. sampling rate, antenna patterns...). For instance, with an e�ective bandwidth

of 500 MHz, one could theoretically achieve an accuracy level of a few centimeters at

SNR = 0 dB and d = 8 m, as shown in Figure 3.23. Note that in the lack of NLOS

channel measurements in this context however, a priori assumptions will have to

be made in the following, regarding the biases introduced by body shadowing over

o�-body and body-to-body TOA-based range measurements.

Finally, considering the same transmitted impulse waveforms, and assuming that

body-to-body links would experience similar multipath CIR conditions in compari-

son with o�-body links, then the theoretical bounds for TOA-based ranging errors
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over body-to-body links are expected to be approximately on the same order of

magnitude.

Figure 3.21: UWB o�-body measurement scenario in a typical indoor environment

[7].

Figure 3.22: Best achievable IR-UWB TOA-based ranging error standard deviation

as a function of SNR (dB), at di�erent distances between the transmitter and the

receiver in the band [3.1, 5.1]GHz.
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Figure 3.23: Best achievable IR-UWB TOA-based ranging error standard deviation

as a function of SNR (dB), at di�erent distances between the transmitter and the

receiver in the band [3.75, 4.25]GHz.

3.5 Conclusion

In this Chapter, we have characterized and discussed possible single-link ranging

error representations, exploiting recent WBAN IR-UWB and N-B channel mea-

surements. These models rely on empirical modeling or theoretical CRLB-based

predictions, fed with realistic channel parameters.

First of all, a dynamic on-body model has been proposed for IR-UWB TOA-

based ranging in two key frequency bands and for two representative links. This

personal contribution has led to the publication of one conference paper [44] and one

journal paper [45]. The drawn model, which relies on UWB channel measurements,

takes into account dynamic channel obstruction con�gurations (i.e. LOS/NLOS)

and SNR variations under body mobility. Then the related model parameters have

been studied as a function of a controlled SNR within synthetic received multipath

signals. On this occasion, false and missed detection phenomena have been illus-

trated under low SNR and NLOS conditions, as well as asymptotically ideal detec-

tion behaviour under more favourable SNR and LOS conditions. The performances

of �rst peak and strongest peak detection schemes have also been compared. We

have shown that the ranging error distribution could be fairly well modeled as a cen-

tered Gaussian distribution in LOS conditions in case of systematic strongest path

detection, and as a weighted mixture between uniform and Gaussian distributions in

the case of �rst path detection. In NLOS conditions, ranging errors are also shown

to follow a weighted mixture between uniform and Gaussian distributions in case

of strongest path detection. Finally, based on the variations of the channel power

transfer function observed over various on-body links and nodes' placements, a few

insights have been provided for a possible extension of the previous error model to
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any on-body link, depending on its instantaneous LOS/NLOS and static/dynamic

status. This overall on-body model could be used for both absolute and relative

nodes positioning at the body scale for individual motion capture applications. In

the following however, in the lack of adequate simulation tool to generate exact

time-stamped SNR(t) values under mobility, the model will be simpli�ed by using

a Gaussian model, with a constant standard deviation independently of the SNR,

but still in the range of the values observed over the walk cycle within the previous

re�ned representation. Moreover, it will be assumed that the range measurements

in NLOS are a�ected by one more positive bias that follows a uniform distribution,

which is also partly compliant with the previous NLOS representation. The resulting

simpli�ed model will be used in Chapter 4 to evaluate the performance of on-body

localization algorithms for relative and absolute individual MoCap purposes. Note

that further comparisons will be made with the single-link statistics of on-body

range measurements issued at real IR-UWB integrated platforms in Chapter 6.

Secondly, representative lower bounds have been derived for the standard devia-

tion of N-B RSSI-based and IR-UWB TOA-based range measurements over o�-body

and body-to-body links. One �rst conclusion, as expected, is that RSSI readings

in NLOS conditions due to body shadowing are hardly exploitable for ranging pur-

poses on both kinds of links, whereas LOS conditions may provide more acceptable

ranging performance, but most likely at short ranges (typically below 20 m). One

second remark is that o�-body and body-to-body links exhibit approximately the

same behaviours in terms of ranging error statistics, in �rst approximation. The

underlying path loss and body shadowing parameters will be reused for the simula-

tions presented in Chapter 4 and 5, while evaluating the performance of localization

algorithms for MoCap and group navigation applications.

Finally, after extracting realistic CIR out of recent UWB multipath channel

measurements over o�-body links in a LOS con�guration, theoretical bounds for

the IR-UWB TOA-based ranging standard deviation have also be calculated in two

representative frequency bands at various distances, showing �ne accuracy over a

large range of practical SNR values. These results have been generalized to body-to-

body links in �rst approximation. In the lack of NLOS measurement data however,

in the following Chapters, additional assumptions will be made regarding the NLOS

bias experienced under body shadowing in the very IR-UWB TOA-based ranging

case (by nature, even more sensitive than RSSI to the specular nature of multipath

components).
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4.1 Introduction

Under mesh or quasi-mesh WBAN topologies (possibly coupled with o�-body links

with respect to the infrastructure), mobile on-body nodes can be localized in a

cooperative fashion out of peer-to-peer range measurements. As seen in Chapter 1,

the enabled individual MoCap applications can be classi�ed according to the two

following categories.

• "Relative On-Body Nodes Positioning" (i.e. relative MoCap): On-body mo-

bile (or blind) nodes are located relatively to reference anchor nodes, which

are attached onto the body at known and reproducible positions (i.e. inde-

pendently of the body attitude and/or direction), forming a Local Coordinate

System (LCS);

• "Absolute On-Body Nodes Positioning" (i.e. LSIMC): The Global Coordi-

nates System (GCS) used to express the estimated on-body nodes' locations

is no longer body-strapped but external to the body. Anchor nodes are �xed

elements of infrastructure disseminated at known locations in the environ-

ment.
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In this new Chapter, we describe and evaluate (through simulations) some local-

ization algorithms adapted to the relative and/or absolute positioning of on-body

nodes.

Section 4.2 deals with relative positioning �rst. A decentralized DWMDS local-

ization algorithm [65], [97] is adapted into the new body sensor network context.

Accordingly, on-body nodes are asynchronously updated with respect to their 1-hop

neighbors in a body-strapped LCS. This approach is expected to provide better

immunity against the latency observed within classical centralized and synchronous

schemes, while enabling adaptability to local nodes velocity (e.g. in terms of re-

freshment rate). The nominal algorithm is fed with all the cooperative peer-to-peer

distance measurements available in our mesh topology. According to one �rst en-

hancement, one incorporates the links that experience �xed lengths despite body

mobility (e.g. between the hand's wrist and the elbow) as geometrical constraints in

the positioning problem, thus leading to a Constrained algorithm (CDWMDS). This

solution tends to limit the number of required on-line measurements and hence, to

reduce over-the-air tra�c and power consumption. Furthermore, while updating the

locations of on-body nodes, the history of the latest estimates is used as prior in-

formation, so as to ease convergence and bene�t from space-time correlation e�ects

under continuous body movements. We also describe additional improvements of

the nominal CDWMDS formulation in this section. One of them consists in applying

unilateral censoring and/or scheduling of the most demanding nodes when updat-

ing estimated positions. Another point is to force the measurements symmetry for

each pair of on-body nodes. The idea is to mitigate the e�ect of outliers or packet

losses, but also to avoid error propagation and divergence issues in the retained

decentralized positioning approach. Then, we apply an existing beacon-aided Time

Division Multiple Access (TDMA) scheme that supports both peer-to-peer rang-

ing and decentralized positioning transactions under real-time constraints. On this

occasion, we make possible a more realistic performance assessment of the algo-

rithm, while accounting for underlying latency issues and investigating the impact

of network connectivity or measurements quality. Finally, we compare our solution

with a more conventional Multidimensional Scaling (MDS) algorithm, which has

been recently considered for MoCap applications in a similar WBAN context [61].

Note that the latter requires that the matrix of measured distances is completed

under partial network connectivity, contrarily to our proposed asynchronous and

decentralized approach.

Secondly, Section 4.3 concerns absolute positioning for LSIMC applications. We

consider combining relative motion capture (i.e. at the body scale) and absolute

single-user navigation (i.e. at the building scale) capabilities within an heteroge-

neous WBAN context. One goal is that o�-body localization procedures could

mutually bene�t from each other, while preserving the �nest precision of relative

localization over large-scale trajectories, contrarily to the �rst cooperative localiza-

tion attempt in [8], where the precision of relative localization at the body scale

was degraded by the introduction of o�-body links. Di�erent options and scenarios

are then compared in terms of location-dependent radio metrics (i.e. TOA, TDOA,
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RSSI), synchronization constraints and transmission ranges. We also describe a spe-

ci�c 2-step algorithm, which �rst performs the relative localization of on-body nodes

in the body-strapped LCS according to the previous CDWMDS algorithm, before

applying transformations to express the estimated coordinates into an absolute GCS.

We also take advantage of the presence of multiple on-body nodes to mitigate body

obstructions and packet losses with respect to external anchors through distance

approximations based on graph neighborhood information and distance completion

methods.

Finally, Section 4.4 summarizes the chapter.

4.2 Relative On-Body Localization at the Body Scale

First we remind that the wireless devices placed on the body are classi�ed into two

categories. Simple mobile nodes with unknown positions (under arbitrary deploy-

ment) must be located relatively to reference anchors nodes, which are attached onto

the body at known and reproducible positions, independently of the body attitude

and/or mobility (e.g. on the chest or on the back). A set of such anchors de�nes a

stable Cartesian LCS, which remains unchanged under body mobility. Mobile nodes

are then located in the LCS, using peer-to-peer range measurements between pairs

of devices (i.e. between mobile nodes or between nodes and �xed anchors).

Figure 4.1 shows a typical deployment scenario. In the following, {Xi(t)}i=1...m

represents the 3D known positions of the m anchors at time t de�ned into the LCS,

where m should be equal or larger than 3. {Xi(t)}i=m+1...m+n represents the set

of the true 3D unknown positions of the n mobile nodes deployed on the body, at

time t. Let d̃ij(t) be a range measurement available at time t between nodes i and j

and let lij be one constant distance (i.e. constant over time under body mobility),

which will be considered hereafter as a constraint.

Given all the available range measurements, e.g. based on IR-UWB TOA es-

timation [34], [44], on existing constraints related to the body geometry and on

the known anchors' locations, the problem that we want to solve is to estimate the

positions of the mobile nodes into the LCS.

4.2.1 Relative Localization Algorithms

4.2.1.1 Conventional Multi-Dimensional Scaling (MDS)

Applied into our localization problem, the goal of MDS is to �nd the positions of

on-body nodes so that the distances between the estimated positions �t as much as

possible to a set of cooperative range measurements between the nodes. Classical

MDS formulations are characterized by three basic steps, as follows. The �rst step

consists in constructing a squared distances matrix. The second step consists in

locating the nodes into a reference system, which is de�ned by a geometrical trans-

formation of the LCS (i.e. rotation and translation). The third step is the restoration

of the coordinates system by changing the basis of the positions estimated at the
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Figure 4.1: Typical deployment scenario for the relative localization of on-body wire-

less nodes (grey circles) with respect to a body-strapped Local Coordinate System

(LCS) de�ned by �xed anchors (red circles).

second stage [67], [98].

First we form the overall network-level collection of on-body nodes' positions

X(t) = [X1(t), ..., Xm(t), Xm+1(t)..., Xm+n(t)] at time t, including the n on-body

mobile nodes and the m anchors. Assuming full network connectivity (i.e. all pair-

wise distance measurements are available) and that the observed distance δij(t)

between each pair of nodes i and j at time t is equal to the true corresponding

distance, it comes:

δ2ij(t) = d2ij(t) = (Xi(t)−Xj(t))T (Xi(t)−Xj(t)) (4.1)

Writing the squared distance as d2ij(t) = Xi(t)
TXi(t)−2Xi(t)

TXj(t)+Xj(t)
TXj(t),

and placing the centroid of the con�guration at the origin, the matrix of inner

products between the nodes can be expressed as follows:

B = X(t)X(t)T = −1

2
HDH (4.2)

H = I − 1

n+m
eTe (4.3)

where D = [d2ij(t)]i,j and e is a 1 × (n + m) vector of ones. Since B is symmetric,

positive semi-de�nite and of rank dimensionality, it can now be written in terms

of singular value decomposition as B = UV UT , where V is a diagonal matrix

containing the n+m eigen values of B and U is the corresponding matrix of eigen

vectors. Thus as X(t)X(t)T , X(t) is now given as:

X(t) = UV
1
2 (4.4)
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On major problem with this classical MDS algorithm is the need for complete and

noise-free distances matrices, with a full knowledge of all the pairwise distances,

what is highly unlikely in realistic wireless cases (e.g. due to connectivity losses

or deliberate topology restrictions). Nevertheless, such classical MDS formulation

has already been considered for WBAN localization in [61], where coarse geometric

constraints, relying on the prior knowledge of minimal and maximal feasible dis-

tances under radio connectivity, have been introduced to complete empty entries of

the input range measurements matrix. Another problem more generally inherent

within centralized approaches is the latency e�ect (i.e. the time elapsed between

the collection of the distance measurements and the delivery of location estimates),

whereas the body gesture can change rapidly during the measurements collection

step, hence degrading signi�cantly localization performances.

Motivated by the possibility to operate under partial connectivity and possibly

large measurement errors, by latency reduction gains and by the natural asynchro-

nism potential enabled for node's localization, we thus seek to estimate the nodes'

positions using a distributed version of the MDS instead, as seen hereafter. A com-

parison between the classical MDS algorithm used in [61] and our distributed version

will be presented in terms of localization accuracy in Section 4.2.3.

4.2.1.2 Proposed Constrained Distributed Weighted Multidimensional

Scaling Algorithm (CDWMDS)

As seen in Chapter 2, the Distributed Weighted Multi-Dimensional (DWMDS) al-

gorithm is a solution to the minimization problem of the following global stress

function [67]:

S(t) =
∑

1≤i≤n
[
∑

i<j≤n+m
wij(t)(δij(t)− dij(X(t))2 + ri(t)||Xi(t)−Xi(t)||2] (4.5)

where Xi(t) is still a vector containing the 3D coordinates of node i, n and m are

respectively the number of blind nodes with unknown locations and the number of

anchors placed on the body, X(t) is the matrix whose columns contain the positions

for all the nodes at time t, δij(t) is a so-called observed distance between node i

and j at t, dij(X(t)) denotes the true Euclidean distance between i and j, which is

equal to
√

(Xi(t)−Xj(t))T (Xi(t)−Xj(t)), wij(t) is a weight value, which re�ects

the connectivity and the accuracy of the range measurements between nodes i and j

at time t, so that inaccurate measurements are down-weighted in the cost function,

Xi(t) is a vector re�ecting prior information about the position occupied by node i

at time t, while ri(t) quanti�es the reliability of such prior information. Equation

(4.5) di�ers from a standard formulation of an MDS stress function, by the penalty

term that accounts for the prior knowledge on the occupied positions.

After simple manipulations, S can be rewritten as a sum of local contributions

as follows:

S(t) =

n∑
i=1

Si(t) + c, (4.6)
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where Si(t) is a local cost function de�ned for each node i (1 ≤ i ≤ n)

Si(t) =
n∑
j=1

wij(t)(δij(t)− dij(X(t)))2 +
n+m∑
j=n+1

2wij(t)(δij(t)− dij(X(t)))2

+ ri(t)||Xi(t)−Xi(t)||2 (4.7)

As described in [65] and [99], the DWMDS thus allows each node i with unknown

coordinates to localize itself by minimizing the de�ned local cost function Si(t)

(i.e. X̂i(t) = argmin
Xi(t)

Si(t), where X̂i(t) is a vector containing the 3D estimated

position of node i). Unfortunately, no closed form exists for the minimum of Si(t).

However, based on the neighbors information, Si(t) can be minimized iteratively

using quadratic majorizing functions as in SMACOFF (Scaling by Majorizing a

complicated function [100]). More details about the minimization process are given

in [99]. As described in [65], at each time t, the dynamic equation (4.7) is iteratively

resolved to estimate the nodes' positions. If X̂(k)(t) is the matrix of the estimated

positions at iteration k, node i derives its current coordinates update X̂i
(k)

(t) as

follows:

X̂i
(k)

(t) = ai(t)(ri(t)Xi(t) + X̂(k−1)(t)b
(k−1)
i (t)) (4.8)

where

ai(t) =
n∑
j=1

wij(t) +
n+m∑
j=n+1

wij(t) + ri(t) (4.9)

and b
(k)
i (t) = [b1(t), ..., bn+m(t)] is a vector whose entries are given by

bj(t) = wij(t)[1−
δij(t)

dij(X(k)(t))
] j ≤ n, j 6= i

bi(t) =

n∑
j=1

wij(t)δij(t)

dij(X(k)(t))
+

n+m∑
j=n+1

wij(t)δij(t)

dij(X(k)(t))

bj(t) = 2wij(t)[1−
δij(t)

dij(X(k)(t))
] j ≥ n

(4.10)

We point out that unlike the centralized SMACOF algorithm described in [100],

the computation of (4.8) does not need to evaluate of an n×nMoore-Penrose matrix

inverse.

So as to adapt this initial DWMDS formulation into the WBAN relative local-

ization context, we propose �rst to take bene�ts from trivial geometric speci�cities

of the human body, but without necessitating prior knowledge such as parametric

models (e.g. techniques requiring articulated chains) or speci�c deployment pat-

terns. Fixed-length links identi�ed on the body are introduced as constraints while

positioning (e.g. the link between the wrist and elbow on Figure 4.1), thus lead-

ing to the Constrained DWMDS solution (CDWMDS). More particularly, the basic

idea is to substitute the distance δij(t) = d̃ij(t) that would be measured between
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DWMDS CDWMDS

Fixed links δij(t) = d̃ij(t) δij(t) = lij

Mobile links δij(t) = d̃ij(t) δij(t) = d̃ij(t)

Table 4.1: Comparison of the range observations used by DWMDS and CDWMDS

algorithms.

nodes i and j at time t by an approximated version δij(t) = lij over the same �xed

length link, which is considered as time invariant, that is to say, independent of the

body gesture, moving direction and velocity. Advantageously, during a �rst pre-

calibration phase (already under body mobility), such �xed links can be detected

and approximated distances can be learnt once for all by averaging repeated instan-

taneous measurements over a few time stamps, e.g. lij = 1
NCal

∑−1
t=−NCal

d̃ij(t). In

this case, calibration data is collected for t = −NCal, ...,−1 if the localization is

expected to start at t = 0. One claimed advantage with this proposal is that no

more ranging measurements are required for these links in the steady-state localiza-

tion regime. Besides localization accuracy considerations, CDWMDS hence leads

to a reduction of the number of exchanged packets, and accordingly, an expected

reduction of both latency and energy consumption. Note that alternatively, in case

of suspected distance variability during the localization steady-state phase, the av-

erage approximation could be periodically recomputed on the wing within a sliding

window, i.e. at time stamp t, lij(t) = 1
NCal

∑t−1
t′=t−NCal

d̃ij(t
′
). As an example, in

Appendix B, we propose a method to adaptively detect these on-body �xed-length

links, out of the observed distance measurements. A binary decision is made (i.e.

between �xed-length or mobile-length links) based on the empirical variance of the

distances observed over a speci�ed link. Table 4.1 summarizes the main di�erences

between DWMDS and CDWMDS algorithms.

Another straightforward improvement consists in taking the latest estimated

position available for node i at time t− 1, as a priori information for initialization

purposes in its local current cost function, i.e. assuming Xi(t) = X̂i(t− 1) at t. The

choice accounts for the bounded motion amplitudes of on-body nodes under human

mobility. Hence, one can bene�t from the space-time correlation of the true mobile

location under body mobility, while speeding up convergence over k at each time

stamp t.

In the following, the two previous proposals will be depicted as the nominal

CDWMDS. In the next subsection we will describe a set of additional enhancements

to avoid error propagation in the retained asynchronous and decentralized approach,

as well as to reduce the e�ects of measurement outliers and packet losses.

4.2.1.3 Further Improvements

Unidirectional Censoring of Peripheral Nodes' Transmissions One �rst

goal is to mitigate error propagation while updating nodes locations. It has been

illustrated in [46] that the locations estimated for the peripheral nodes are a�ected
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by signi�cantly higher errors. It indeed appears that those nodes, typically located

at the network edges (e.g. on the ankle) are the most rapid ones -or at least,

those subject to the highest accelerations-, less connected -even if the transmission

range ensures that they have more than three connected neighbours, so that their

estimated locations are not ambiguous- and experiencing poor Geometric Dilution

Of Precision (GDOP) -for being peripheral and located outside the convex hull

de�ned by on-body anchors-.

Hence, one proposal is to allow only the update of such fast nodes with respect

to their 1-hop neighbors but no updates of these neighbors with respect to the fast

nodes in return, i.e. performing some kind of unidirectional censoring. The expected

gains are two-fold: keep on bene�ting at rapid nodes from the reliability of their slow

neighbors' estimates, but also improve the average location accuracy in the entire

network by avoiding error propagation from less reliable rapid nodes. In equation

(4.7), the unidirectional censoring of any rapid node j would be practically applied

by forcing the weight function wij(t) to be null with respect to any neighboring

on-body node i (i.e. wij(t) = 0, ∀ j ≤ n whereas wji(t) 6= 0).

In the following, this proposal will be depicted as "Enhancement 1".

Scheduling of Location Updates The objective here is still to avoid error prop-

agation, by forcing the algorithm to converge properly �rst after updating in priority

the most reliable (and thus the slowest) nodes. Hence, rapid nodes bene�t from the

consolidated reliability of their slow neighbors' estimates and error propagation is

minimized accordingly. Practically, considering a coordinated medium access of the

multiple on-body nodes, as it will be seen hereafter, where all the protocol trans-

actions shall be scheduled anyway (i.e. for both range measurements and position

updates), one can keep track of the approximated nodes' speeds on the coordinator

side, based on the latest available position estimates. Hence, at each new time stamp

(and hence, at each superframe), one can draw an ordered list, setting the nodes to

be updated in priority. Finally, one more degree of freedom concerns the number

of updates per node per localization cycle (i.e. per superframe) or equivalently, the

refreshment rate, which can be also dynamically increased for the most demanding

nodes.

In the following, this proposal will be depicted as "Enhancement 2".

Forced Measurements Symmetry The objective here is to jointly mitigate

measurement outliers and packet losses. Hence, we propose to force the distance

measurements for each pair of nodes into being symmetric, as follows:

δij(t) = δji(t) =
wij(t)δij(t) + wji(t)δji(t)

wij(t) + wji(t)
(4.11)

Practically, once the peer-to-peer range measurements between two nodes i and j

are recovered independently in both directions (i.e. δij(t) or δji(t)), our proposal

consists in sharing the related information between each pair of nodes in order

to mitigate possible packet losses (and thus missed measurements) that may occur
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during the ranging transactions. Moreover, if we suppose that the distance observed

by node i from node j is strongly a�ected by measurement noise and/or bias (i.e.

δij(t)) but that the distance observed by node j is less noisy, outliers are mitigated

or more generally speaking, the resulting apparent measurement variance is divided

by a factor 2 after averaging, even in case of identically biased distance.

In the following, this proposal will be depicted as "Enhancement 3".

4.2.2 Medium Access Control For Localization-Enabled WBAN

In our WBAN localization context, one key feature of the Medium Access Control

(MAC) is to enable ranging between the nodes, as well as further exchanges of any

kind of location-dependent information. In [101] a beacon-aided TDMA superframe

has been presented, which was adapted for WBAN applications running on top of

the IEEE 802.15.4 radio standard. Figure 4.2 represents the MAC superframe used

in [8] (and inspired from [101]) adapted for localization purposes. In our work, we

also consider using this MAC superframe.

As shown in Figure 4.2, the superframe structure is delimited by a beacon,

which is transmitted periodically by the coordinator (e.g. possibly one on-body

anchor here) to all the nodes in order to resynchronize all the WBAN (i.e. in-

dicating the beginning of the superframe). The beacon fully describes the MAC

superframe, specifying the Time Slots (TSs) allocated for each transmitting node

and further information about the current network status. The Contention Access

Period (CAP) is devoted to contention-based transmissions, while the Contention

Free Period (CFP) is composed of guaranteed TSs allocated by the coordinator.

During the inactive period, the nodes may enter in a sleep mode to reduce energy

consumption. The peer-to-peer range information is derived from RT-TOF estima-

tion, which relies on 2-Way Ranging (2-WR) or 3-Way Ranging (3-WR) handshake

protocol transactions and unitary TOA estimates for each involved packet [32], as

already seen in Chapter 1. Two guaranteed TSs are involved in the case of 2-WR

protocol to investigate the peer-to-peer range measurements between two nodes i

and j, where node i sends its request packet inside the assigned TS at time T̃i0 .

Once this packet is received by node j at time T̃j0, node j sends its response back

to the requester node i inside its own dedicated TS at time T̃j1, after a known time

of reply. Node i will receive this packet at time T̃i1. Hence, the estimated RT-TOF

through 2-WR is simply given as follows:

T̃OF =
1

2
[(T̃i1 − T̃i0)− (T̃j1 − T̃j0)] (4.12)

So as to estimate and compensate possible clock drift e�ects, the responder node j

can transmit one additional packet inside a third TS at time T̃j2. This packet will be

received by node i at time T̃i2, and hence a new 3-WR protocol is considered. Figure

4.3 shows a simpli�ed representation of the ranging transactions within 3-WR. In

the speci�c case when the �rst response duration is equal to the slot duration, the
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�nal corrected RT-TOF estimate can be simply built as follows:

T̃OF =
1

2
[(T̃i1 − T̃i0)− (T̃j1 − T̃j0)]

− 1

2
[(T̃i2 − T̃i1)− (T̃j2 − T̃j1)] (4.13)

Besides the local timer values associated with the intermediary TOA estimates,

which are required to compute the RT-TOF (possibly corrected or not), the pay-

load of the ranging packets can be advantageously exploited to carry additional

information related to positioning (e.g. to collect local estimated positions to the

coordinator for synchronous display, to exchange pair-wise ranges in case of forced

measurements symmetry as seen before...).

Finally, note that Aggregate-and-Broadcast (A-B) procedures can be optionally

applied to ranging packets [32], [102] so as to limit the localization-speci�c over-the-

air tra�c and especially, the number of required slots to perform all the possible pair-

wise measurements in a mesh con�guration. Accordingly, under full connectivity,

3n + 2m transmission slots would be required to guarantee ranging transactions

between any pair of nodes, instead of 2n(n+m−1) otherwise. Such A-B procedures

enable to share time resource in such a way that each node initiates speci�c ranging

transactions with all the other nodes, and each transmitted packet can play di�erent

roles (i.e. either a request, or a response, or even a drift correction packet, depending

on the receiving neighbor status and current step in the 3-Way procedure).

Figure 4.2: Beacon-aided TDMA MAC superframe format supporting the localiza-

tion functionality [8].

4.2.3 Simulations and Results

4.2.3.1 Scenario Description

In our evaluation framework, human mobility is based on a mixed model, like in

[101]. A �rst macroscopic mobility Reference Point Group Mobility Model (RPGM)

accounts for the body center mobility, where the reference point as a function of

time is a Random Gauss Markov process [8], [103]. The intra-WBAN mobility

pattern is based on a biomechanical cylindrical model [104]. The body extremities

are modeled as articulated objects, which consist of rigid cylinders connected to
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Figure 4.3: Peer-to-peer measurement procedure between nodes i and j through 2-

and 3-Way ranging protocols, applying TOA estimation for each received packet.

each other by joints. A snapshot of the resulting articulated body under pedestrian

mobility is represented in Figure 4.4 at an arbitrary time stamp. This biomechanical

model enables the generation of true inter-node distances and obstruction conditions,

whatever the time stamp.

In our scenario, for each random realization, the reference body moves in a

20m×20m×4m 3D environment with a constant speed of 1 m/sec for a duration of

80 sec. The network deployment is similar to that presented in Figure 4.1, where 5

anchors are positioned at �xed locations relatively to the LCS and 10 blind mobile

nodes with unknown positions must be positioned.

Figure 4.4: Snapshot of the biomechanical mobility model based on a piece-wise

cylindrical representation and used for the generation of realistic inter-node distance

measurements under body mobility.
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4.2.3.2 Simulation Parameters

Regarding the physical radio parameters, we assume in �rst approximation that the

received power is larger than the receiver sensitivity, enabling peer-to-peer commu-

nication links with a worst-case Packet Error Rate (PER) of 1 %, as speci�ed by

the IEEE 802.15.6 WPAN Task Group 6 [11]. This PER �gure is applied onto 3-

way ranging protocol transactions to emulate incomplete ranging (i.e. whenever 1

packet is lost out of 3). Inspired by the TOA-based IR-UWB ranging error model

described in Chapter 3 and [44], [45], which has been speci�ed in the IEEE 802.15.6

mandatory band centered around 4 GHz with a bandwidth of 500 MHz, ranging

errors are added depending on the current LOS or NLOS channel con�guration at

time stamp t, as follows:

d̃ij(t) = dij(t) + nij(t) if LOS

d̃ij(t) = dij(t) + nij(t) + bij(t) if NLOS
(4.14)

where d̃ij(t) and dij(t) are respectively the measured and the real distance between

nodes i and j at time t, nij(t) is a centered Gaussian random variable with a

standard deviation σ, and bij(t) is a bias term due to the absence of direct path

when estimating TOA.

Simplifying the model from Chapter 3 and [44], [45], our �rst simulations are

carried out using a constant σ equal to 10 cm, independently of SNR(t), but still

in the range of the values observed out of real measurements. bij(t) is a posi-

tive bias added only into NLOS conditions, which follows a uniform distribution in

[0, 10]cm, considering that the valid Rx observation would be restricted around the

temporal synchronization point (i.e. applying temporal �ltering of the multipath

components). Moreover, bij(t) is assumed constant over one walk cycle in �rst ap-

proximation (i.e. bij(t) = bij , ∀t), which is also in compliance with the �rst empirical
observations in Chapter 3 and [44], [45] with dynamic links over NLOS portions (i.e.

with reproducible bias from one walk cycle to the next).

Concerning the settings of the CDWMDS algorithm, three �xed-length link con-

straints are imposed, as materialized with black lines in Figure 4.1. We also assume

that the weight function wij(t) is equal to 1 in connectivity conditions and 0 when

the nodes i and j are disconnected, regardless of the neighbor's information relia-

bility (i.e. with no soft weighting under connectivity). The variable ri(t) associated

with the prior estimated position of the current mobile node is also taken equal to 1

like in [65], for simpli�cation. As for the benchmarked MDS algorithm, a complete

matrix is required with all the distances between all the pairs of nodes. Thus, in-

spired from the coarse geometric constraints used in [61], which rely for each link on

the prior knowledge of minimal and maximal feasible distances under radio connec-

tivity, we substitute the missing distances δij(t) by random variables, which follow

a uniform distribution in [min
t

(dij(t)), max
t

(dij(t))].

After running simulations of the walk cycle with 100 independent realizations of

the ranging errors based on the TOA estimation and PER, localization performance
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is assessed in terms of the Root Mean Squared Error (RMSE) per node or average

RMSE (i.e. over all the mobile nodes), while considering di�erent approaches. In a

�rst evaluation, we consider updating the positions with a systematic and regular

refreshment rate of 30 ms, whereas the latency introduced by the exchanged packets

is not taken into account. However, in a second and more realistic approach, we

consider a TDMA MAC superframe similar to that presented in Figure 4.2, where

an Aggregate-and-Broadcast (A-B) procedure is applied to ranging packets to speed

up convergence. Finally, parametric simulation-based studies have also been carried

out in order to assess the performance (over all the on-body nodes) as a function

of the PER and the standard deviation σ of intra-BAN ranging errors in equation

(4.14).

4.2.3.3 Simulation Results

Figure 4.5 shows the RMSE performance per node for the unconstrained DWMDS

and the CDWMDS algorithms. The latter is considered with self-calibrated �xed-

length ranges or exact �xed-length ranges. It is thus rather clear that one can expect

bene�ts from incorporating �xed-length constraints in comparison with the nomi-

nal DWMDS, whatever the considered node. Moreover, no signi�cant degradations

have been observed after self-learning the �xed-length distances (e.g. during a pre-

calibration phase, when each constraint is calculated as the mean of the measured

distances in an observation window of 9 sec) in comparison with a genius-aided intro-

duction of the exact �xed-length distances. Overall, in this case, the average RMSE

(over all the nodes) spans from 26 cm using DWMDS down to 23 cm and 22 cm

using CDWMDS with estimated and true constraints respectively, representing a

relative improvement of 15.4 %.

On Figure 4.6, we compare the RMSE per node of the standard CDWMDS

algorithm (still assuming that any �xed-length constraint is learnt as the mean of

the measured distances in an sliding observation window of 9 sec) with a solution

applying unidirectional censoring of the fastest nodes (i.e. 4 and 6). It is thus

noticeable that such censoring schemes, mitigating error propagation, are globally

e�cient to improve the localization performances of both penalizing and favorable

nodes simultaneously. The average RMSE (i.e. over all the nodes) is for instance

decreased from 23.3 cm down to 19.7 cm, representing one more improvement by

15.4 %.

The e�ect of introducing scheduling in the sequence of location updates is also

illustrated on Figure 4.7. Blue bars represent the localization performance of CD-

WMDS using censoring but random scheduling for the update of nodes' locations,

whereas red bars account for situations when the slowest nodes are updated in pri-

ority and the same fast peripheral nodes (i.e. 4 and 6) are updated later on. The

average RMSE per node then decreases from 19.7 cm down to 17.5 cm, leading to a

11.1 % improvement. Moreover the gain is mainly spectacular for the most poorly

positioned nodes. Note that with such location updates scheduling, the refreshment

rate could be also adjusted depending on the local mobile speed in order to favor
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Figure 4.5: Relative localization RMSE (m) per on-body node (ID), for various

asynchronous and decentralized positioning algorithms: unconstrained (DWMDS -

blue), constrained (CDWMDS) with self-calibrated �xed-length ranges (green) and

exact �xed-length ranges (red).

Figure 4.6: Relative localization RMSE (m) per on-body node with and without

censoring of rapid nodes for σ = 10 cm and a refreshment rate of 30 ms.
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the most demanding nodes, what was not the case in our simulations.

Figure 4.7: Relative localization RMSE (m) per on-body node with and without

updates scheduling for σ = 10 cm and a refreshment rate of 30 ms.

On Figure 4.8 the blue bars represent the RMSE per node of the CDWMDS

algorithm when applying the two �rst enhancements (i.e. censoring and schedul-

ing), whereas red bars show the performance while forcing the symmetry of range

measurements. The average RMSE (m) per node then decreases from 17.5 cm down

to 15.5 cm under symmetric measurements, representing one improvement of 11.4

%.

Figure 4.9 shows a comparison of the RMSE performances per node for the stan-

dard CDWMDS and the CDWMDS under unilateral censoring of nodes 4 and 6,

with the CRLB per node computed according to Appendix C under full mesh con-

nectivity (i.e. without missing links due to deliberate censoring). For simpli�cation

purposes regarding the latter CRLB calculi, the ranging error is now considered as

a centered Gaussian variable of variance σ2 = (10cm)2 regardless of the LOS/NLOS

conditions (i.e. the bias terms applied previously under NLOS conditions are now

eliminated). As shown on this �gure, new enhancements would still be welcome re-

garding the settings of the CDWMDS algorithm (i.e. using soft weighting functions,

more accurate initial positions), in order to reach the CRLB at each node. However,

it also appears that the performance of CDWMDS with unilateral censoring at some

nodes (i.e. nodes 4 and 6) is "better" than those theoretical bounds. This apparent

contradiction simply re�ects the fact that censoring sometimes outperforms the best

performance that would be achieved under full mesh and cooperative connectivity,

hence emphasizing the relevance of links selection and parsimonious cooperation. A

new computation of the CRLB under unilateral censoring of some nodes (though not
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Figure 4.8: Relative localization RMSE (m) per on-body node with and without

forcing measurements symmetry, with σ = 10 cm and a refreshment rate of 30 ms.

treated herein) would be required for a fairer comparison, but facing possibly numer-

ical instability due to badly conditioned matrix problems, inherent to sparseness.

A comparison between MDS and CDWMDS, with and without MAC super-

frames, is also provided on Figures 4.10 and 4.11. First Figure 4.10 shows the vari-

ation of the average RMSE (over all the nodes) as a function of the PER. Blue, red

and green curves represent respectively the localization performance of CDWMDS,

CDWMDS under forced measurement symmetry and MDS algorithms, while the

dashed curves represent the corresponding RMSE when considering a realistic MAC

superframe. It can be seen that CDWMDS outperforms MDS, with and without

MAC superframe, for each tested PER value. Moreover, the harmful e�ects of the

latency induced by real MAC transactions (in particular between the collection of

measurements and the positioning step) are also illustrated. The e�ect is however

all the more noticeable with centralized approaches, like within MDS. As expected,

it appears that forcing measurements symmetry is also an e�cient way to mitigate

packet losses, outliers or more simply large measurement noise occurrences (even if

not outliers). Finally, the localization performance is slowly degraded as PER in-

creases in our solution, most likely due to the jointly cooperative and decentralized

nature of the proposed algorithm.

Figure 4.11 shows the variation of the average RMSE over all the nodes as a

function of the standard deviation of the on-body ranging errors de�ned in equation

(4.14). As expected, the performance is rapidly and rather strongly degraded as

measurement errors increase. Indeed, the relative single-link errors become hardly
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Figure 4.9: Comparison of the average RMSE (m) per on-body node with and

without unilateral censoring of nodes 4 and 6, with respect to theoretical CRLB

with a ranging standard deviation σ = 10 cm, a refreshment rate of 30 ms and a

PER of 1 %.

Figure 4.10: Average relative localization RMSE (m) over all the on-body nodes as

a function of PER, with σ = 10 cm.
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compliant with relatively short true distances in a WBAN context. At very large

noise standard deviations (e.g. larger than 20 cm), we even observe that the la-

tency e�ects introduced by the use of a realistic MAC superframe are minimized,

experiencing approximately similar performances (i.e. between dotted and their cor-

responding continuous curves in Figure 4.11). The previous observation indicates

that measurement errors are far dominating in this case in comparison with latency

e�ects (so far revealed by the presence of realistic MAC constraints), which could

hence be neglected.

Figure 4.11: Average relative localization RMSE (m) for all the on-body nodes as a

function of the standard deviation of ranging errors, with PER = 0.01.

In the next section, CDWMDS will be adapted into a 2-step algorithm for LSIMC

purposes.

4.3 Large-Scale Absolute On-Body Localization

In this section, we address the absolute on-body positioning problem within a het-

erogeneous WBAN context. More particularly, we consider using on-body wireless

links in a mesh intra-WBAN topology, as well as o�-body wireless links with respect

to external elements of infrastructure, set as �xed anchors. Multi-standard wireless

on-body nodes are thus required, being compliant with e.g., IR-UWB IEEE 802.15.6

[4] for intra-WBAN communications and IR-UWB IEEE 802.15.4a or IEEE 802.15.4

over larger-range o�-body links. Di�erent scenarios will be compared in terms of

location-dependent radio metrics (i.e. TOA, TDOA, RSSI), synchronization con-

straints and transmission ranges. We also describe speci�c algorithms to express

the estimated coordinates of on-body nodes into an absolute GCS external to the
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body, as well as to mitigate body obstructions and packet losses.

We �rst assume a set of �xed anchor nodes placed at known positions in the

indoor environment and forming the building infrastructure. These nodes will be

also depicted as infrastructure anchors in the following. A second set of wireless

devices is deployed placed on the pedestrian body. These devices comprise the on-

body mobile nodes and the reference on-body anchors. The latter are attached onto

the body like in the relative localization case and then de�ne a stable Cartesian

LCS, which remains unchanged and time-invariant under body mobility.

Figure 4.12 shows a typical deployment scenario, where the LCS is obviously

in movement and misaligned relatively to an external GCS. In the following,

{Xac
i }i=1...Na represents the set of the absolute 3D known positions of the Na �xed

infrastructure anchors expressed in the GCS, where Na should be equal or larger

than 4. {Xa
i (t)}i=1...n and {Xr

i (t)}i=1...n represent respectively the absolute and

relative 3D unknown positions of the n mobile nodes deployed on the body at time

t, as respectively expressed in the GCS and LCS. Similarly, {Xa
i (t)}i=n+1...n+m and

{Xr
i }i=n+1...n+m represent respectively the absolute 3D unknown positions of the m

on-body anchors at time t and their corresponding relative known positions (time-

invariant), where m should be equal or larger than 4. Now let d̃ij(t) be one range

or pseudo-range measurement available at time t between one on-body node i and

a connected node j, j being one on-body node, one on-body anchor or one infras-

tructure anchor, and let lij be a constant distance (i.e. time-invariant over body

mobility whatever the coordinates system), which will be considered as a constraint.

Given all the available measurements {d̃ij(t)}i,j at time t between cooperative

on-body nodes or between on-body nodes and infrastructure anchors, on the known

locations of on-body anchors and infrastructure anchors respectively in the LCS and

GCS, the problem that we want to solve consists in estimating the absolute positions

of the on-body nodes in the GCS.

4.3.1 Absolute Localization Algorithms

4.3.1.1 Proposed 2-Step Approach

The idea here is to start the LSIMC procedure by localizing the on-body nodes

relatively to the LCS, using cooperative peer-to-peer range measurements. As seen

in the previous section, the CDWMDS algorithm is relatively well suited to this

relative positioning problem. It allows each on-body node to estimate its coordinates

X̂r
i (t) into the LCS, by minimizing the local cost function in equation (4.7), which

depends uniquely on its relative neighborhood information. Once the minimization

process is accomplished by all nodes, the set {X̂r
i (t)}i=1...n is available into the LCS.

The second stage consists in converting the relative locations de�ned into the

LCS to absolute locations into the GCS. This transformation of LCS includes a

rotation and a translation. Since on-body anchors are time-invariant in the LCS

under mobility, it is preferable to rely on those nodes to transform the LCS. In 3D

environments, the absolute locations of at least 4 on-body anchors are needed to �nd
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Figure 4.12: Typical deployment scenario for the absolute localization of on-body

wireless nodes.

the absolute locations of the other mobile nodes. Hence, we determine the absolute

localization of the on-body anchors into the GCS �rst.

Based on both known on-body ranges and range measurements with respect to

external anchors, on-body anchors are localized through Non-Linear Least Squares

(NLLS) optimization, by minimizing a new local cost function as follows:

X̂a
i (t) = argmin

Xa
i (t)

[
n+m∑

j=n+1,j 6=i
wij(t)(dij(t)− d̂ij(Xa

i (t), X̂a
j (t)))2

+

Na∑
k=1

wik(t)(δik(t)− d̂ik(Xa
i (t), Xac

k ))2] (4.15)

where X̂a
i (t) is the vector of the estimated 3D coordinates of on-body anchor i

into the GCS at time t, dij(t) and d̂ij(X
a
i (t), X̂a

j (t)) denotes respectively the true

distance between on-body anchors i and j and the corresponding distance built out

of the estimated coordinates, Na is the number of infrastructure anchors and δik(t)

is the observed distance between on-body anchor i and infrastructure anchor k.

Getting back to our initial aim of localizing on-body nodes into the GCS, the

absolute coordinates can be obtained out of the relative coordinates into the LCS

after a few transformations (i.e. rotation and a translation) [105], which can be

represented as follows:

Xa
i (t) = A(t)Xr

i (t) + b(t) (4.16)

The goal now is to estimate the rotation matrix A and the translation

component b out of noisy observations, by minimizing the di�erence in
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the least squares sense between the absolute locations of on-body anchors

and the corresponding versions, which are obtained through the transforma-

tion of estimated relative positions. For a given on-body anchor l, we

set ∆Xr(t) = [∆Xr
n+1(t), ...,∆X

r
l−1(t),∆X

r
l+1(t), ...,∆X

r
n+m] and ∆Xa(t) =

[∆Xa
n+1(t), ...,∆X

a
l−1(t),∆X

a
l+1(t), ...,∆X

a
n+m], where ∆Xr

i (t) = Xr
i (t)−Xr

l (t) and

∆Xa
i (t) = Xa

i (t)−Xa
l (t) for l 6= i. The alignment problem can therefore be formu-

lated as a standard LS optimization problem, as follows:

Â(t) = argmin
A(t)

n+m∑
i=n+1,i 6=k

||A(t)∆Xr
i (t)−∆Xa

i (t)||2 (4.17)

The analytical solution of this linear LS problem is given by Â(t) =

∆Xa(t)(∆Xr(t))T (∆Xr(t)(∆Xr(t))T )−1. Finally, the absolute locations of all the

on-body mobile nodes in the GCS are simply derived from their corresponding rel-

ative versions in the LCS, as follows:

X̂a
i (t) = Â(t)(X̂r

i (t)− X̂r
l (t)) + X̂a

l (t) (4.18)

The overall 2-step approach is summarized with the block diagram of Figure

4.13.

Figure 4.13: 2-step LSIMC approach.

4.3.1.2 Single Step Approach

For reference and comparison purposes, we also consider the case when the positions

of all the on-body mobile nodes are directly calculated in the GCS. The idea is to
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combine simultaneously all the available measurements, which can be performed

between on-body devices or with respect to infrastructure anchors. Accordingly,

the cost function to be minimized by each on-body device i is rather similar to that

of equation (4.15) but now incorporates also cooperative distance measurements

between on-body devices, as follows:

X̂a
i (t) = argmin

Xa
i (t)

[
n+m∑

j=1,j 6=i
wij(t)(δij(t)− d̂ij(Xa

i (t), X̂a
j (t)))2

+

Na∑
k=1

wik(t)(δik(t)− d̂ik(Xa
i (t), Xac

k ))2] (4.19)

4.3.2 Distance Approximation and Completion Over Neighbor-

hood Graph

A graph is usually considered as a collection of vertices (or nodes) and edges (or

distances) that connect pairs of vertices [106], [107]. In the very WBAN localization

context, we assume that the on-body devices and infrastructure anchors form such a

graph. The edges, which can be weighted by the observation distances, then re�ect

connectivity between the di�erent entities.

So as to mitigate link obstructions, as an improvement of the previous algo-

rithms, we propose to reconstruct the graph based on connectivity and measure-

ment information, by computing the shortest distances over neighborhood graph.

The idea is to start by initializing the weight of an edge between nodes i and j

by the observation distance d̃ij(t) in case of connectivity, and by ∞ otherwise

[105]. In a second step, we replace each weight (i.e. distance) by the shortest

path separating the graph nodes in the local neighborhood, that is to say, updating

d̃ij(t
+) = min(d̃ij(t

−),
√

(d̃ik(t−)2 + d̃kj(t−)2). Figure 4.14 illustrate such distance

approximation and/or completion with simpli�ed examples. On the left generic case

involving 4 nodes, with the initial graph exhibiting a disconnection only between

node 1 and 4, the weights between nodes 1 and 2 on the one hand, and nodes 1 and

4 on the other hand, would be both reconstructed identically based on the shortest

observed paths going through node 3. The right �gure shows one possible applica-

tion into the heterogeneous WBAN context, where a missing o�-body measurement

between nodes i and j (due to body shadowing) is approximated using another

o�-body measurement available between i and k and additional on-body informa-

tion between j adn k. The selection of some kind of "triangular" approximate (i.e.√
(d̃ik(t−)2 + d̃kj(t−)2)) instead of the linear one (i.e. d̃ik(t

−) + d̃kj(t
−)), appears

more adaptable to the deployment of on-body devices with respect to the infras-

tructure (i.e. 2 on-body devices and an infrastructure anchor are most likely not

aligned but somehow form a "triangle", even if not necessarily forming a 90° angle

depending on the body orientation). Our proposal, which performs distance estima-

tion over neighborhood graph, also generally leads to an important reduction of the

ranging errors a�ecting the measured distances (e.g. outliers), and more noticeably
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in NLOS conditions due to body shadowing. Moreover, missing distances under

partial connectivity are approximated whenever one single path has been found in

the graph.

Figure 4.14: Example of distance estimation over neighborhood graph (left): the

blue graph represents the initial graph based on the observation distances and con-

nectivity information. The black graph is reconstructed based on the calculation of

the shortest paths. Example of reconstructed distance through triangular and linear

estimation over o�-body links (right).

4.3.3 Simulations and Results

4.3.3.1 Scenario Description

In our evaluation framework, the simulation of human mobility is based on the

same mixed model as in subsection 4.2.3.1, with a snapshot illustrated on �gure 4.4.

Furthermore, the scene is surrounded by 8 infrastructure anchors set at the corners.

The network deployment is similar to that presented on Figure 4.12, with 5 on-body

anchors and 10 blind on-body nodes.

4.3.3.2 Simulation Parameters

Concerning the physical radio parameters, we di�erentiate intra-WBAN and o�-

body links. We �rst assume IR-UWB over on-body radio links. We still consider

that the received power is larger than the receiver sensitivity, which allows peer-

to-peer communications with a worst-case PER of 1%, as speci�ed by the IEEE

802.15.6 standard [11]. This PER �gure is applied to each single packet involved in

3-way ranging protocol transactions within the same TDMA scheme as previously

[101], thus emulating similarly incomplete ranging transactions (i.e. whenever at

least one packet is lost out of 3). Based on the TOA-based IR-UWB model from

Chapter 3, we consider exactly the same error model and parameters as in Section

4.2.3.2 for relative on-body localization, with ranging errors according to equation



92 Chapter 4. Localization Algorithms for Individual Motion Capture

LOS NLOS

σn=0.3 m σn=0.5 m

bij(t) = 0 bij(t) ∈ [1, 2] m

Table 4.2: TOA-based ranging error parameters over indoor o�-body IR-UWB links,

according to [8].

(4.14), a constant standard deviation σn = 10 cm and NLOS random positive biases

uniformly distribution in [0 10]cm.

As for o�-body links between on-body devices and infrastructure anchors, radi-

olocation measurements can be delivered either through IR-UWB TOA or N-B RSSI

estimation. In case of IR-UWB (e.g. according to the IEEE 802.15.4a standard),

the conditional TOA-based ranging error model is similar to that of equation (4.14),

but noise parameters have been adjusted according to [8] and [108], as reported in

Table 4.2. NLOS conditions are assumed to be caused uniquely by body shadowing

here. Regarding N-B RSSI-based ranging (e.g. according to the IEEE 802.15.4 stan-

dard in a band centered around 2.4GHz), inspired by the o�-body channel model

from Chapter 3 and [12], the path-loss model used in our simulations is simpli�ed

after eliminating fast fading components (i.e. considering that one would average

over a su�cient number of consecutive RSSI readings per link in a real system), as

follows:

PL(d) = PL0 + 10nlog10(d/d0) + S (4.20)

where PL(d) is the path-loss in dB between two devices separated by a distance

d, PL0 represents the path-loss in dB at a reference distance d0 = 1 m, n is the

path-loss exponent and S represents the body shadowing.

As previously, we also suppose that the latter shadowing term is normally dis-

tributed with a zero mean and standard deviation σS = 2 dB, which represent a

plausible median value for both conditional LOS and NLOS regimes, as seen in

Chapter 3 in Table 3.4. Note that the RSSI radiolocation metrics will be integrated

only in the 2-step localization scenario, where the infrastructure anchors are just

connected to on-body anchors. We have classi�ed those links into two di�erent sets

depending on the locations of their involved on-body nodes. In �rst approxima-

tion, generalizing the model in [12] and reported in Table 3.3 for a WBAN planar

monopole antenna and two di�erent speci�c links, the two sets of links are thus as-

sociated with the same channel parameters as that observed for an antenna placed

either on the heart or on the left hip. The estimated RSSI-based distance is �nally

extracted from RSSI readings using the ML estimator proposed in [109], as follows:

d̃ij(t) = exp(Mij − L2
ij) (4.21)

where Mij = σS ln(10)
10nij

and Lij =
(PLij−PL0)ln(10)

10nij
+ ln(d0).
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Concerning the localization algorithm settings, three �xed-length link constraints

are imposed to the CDWMDS algorithm, as materialized with black lines in Figure

4.12. We also set wij(t) = 1 in connectivity conditions and 0 otherwise, regardless

to neighbor's information reliability (i.e. with no soft weighting under connectivity).

ri(t) is also equal to 1 for simpli�cations. Finally, localization updates are realized

in average with a refreshment rate of 30 ms.

Based on the previous models and settings, simulations have been carried out to

illustrate and compare the LSIMC performances of both single- and 2-step localiza-

tion approaches. We have also considered several options for o�-body links (in the

latter 2-step embodiment), integrating di�erent radiolocation metrics, namely TOA,

TDOA -formed from TOA- and RSSI. Additional simulations aim at illustrating the

bene�ts from estimating the distances over neighborhood graph in order to mitigate

obstructions and too large measurement errors. Running trials of the walk cycle

with 100 independent realizations of measurement error processes, the performance

is assessed in terms of the estimation Root Mean Squared Error (RMSE) for each

on-body mobile node, like in the relative localization case.

4.3.3.3 Simulation Results

As shown on Figure 4.15, mostly due to severe obstructions and partial connectivity

conditions, the performances of the standard 2-step RSSI-based and 1-step TOA-

based approaches look rather poor and de�nitely not compliant with the requested

LSIMC level of precision, even if the TOA-based option seems slightly better. How-

ever, based on IR-UWB TOA estimation over o�-body links (i.e. TOA or TDOA)

in the 2-step approach, rather clear gains can already be observed in comparison

with the single-step approach, even though the resulting average precision would be

mostly interesting to navigation application and still meaningless for LSIMC, with

an average RMSE over all the on-body nodes respectively equal to 1.1 m and 1.2

m using the TOA and TDOA metrics over o�-body links, hence justifying further

enhancements.

On Fig 4.16, we show similar results, but with the additional distance approxi-

mation and completion technique, which consists in identifying the shortest distance

over neighborhood graph. The average RMSE per node is then decreased from 1.1

m down to 0.31 m, leading to a signi�cant improvement by 72 %. On the one hand,

rather comparable levels of precision can now be achieved for absolute on-body lo-

calization at the building scale in comparison with the best performance of relative

on-body localization at the body-scale in Section 4.2. On the other hand, penalized

nodes located at the body extremities, which classically su�er from lower connec-

tivity, poor geometric dilution of precision and higher accelerations (e.g. nodes 4, 6,

9 and 11 in our example), now seem to enjoy better robustness in comparison with

other nodes. Considering relaxed deployment constraints and the claimed WBAN

low consumption, these results could make this coarse LSIMC solution a reasonable

alternative to costly, power greedy and geographically restricted technologies.
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Figure 4.15: Absolute localization RMSE of estimated locations per on-body node

(ID) with both single- and two-step LSIMC based on TOA, TDOA and RSSI metrics

over o�-body links.

Figure 4.16: Absolute localization RMSE per on-body node (ID) with two-step

LSIMC based on TOA metrics over o�-body links and distances estimation over

neighborhood graph.
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4.4 Conclusion

In this Chapter, we have addressed the problem of relative and absolute on-body

localization for individual MoCap purposes.

In Section 4.2, we have dealt with relative body motion capture only. The

corresponding personal contributions have led to the publication of two conference

papers [46], [47] and one journal [48]. A decentralized and cooperative DWMDS al-

gorithm, which can asynchronously estimate unknown on-body nodes locations, has

been adapted in the very context. We have introduced learnt �xed-length geometric

constraints that correspond to time-invariant Euclidean inter-node distances un-

der body mobility. Furthermore, the initial CDWMDS has been enhanced through

scheduling and censoring to mitigate error propagation and harmful e�ects due to

location-dependent node speed disparities. It has been also shown that forcing mea-

surements symmetry could help to mitigate outliers and packet losses. Moreover,

CDWMDS has been proved to outperform with a classical MDS algorithm in terms

of localization accuracy for various PER values and ranging standard deviations

with and without realistic MAC superframe, hence illustrating rather �ne robust-

ness against latency e�ects. However, given the remaining limitations still observed

in terms of achievable precision, which is hardly compliant with high precision Mo-

Cap needs (especially when compared with theoretical bounds at some pathological

nodes), axes of improvement can be identi�ed, such as a judicious coupling with

tracking/smoothing algorithms, better initialization or a soft weighting of the avail-

able measurements.

In Section 4.3, we have addressed the problem of absolute motion capture over

large-scale indoor trajectories in location-enabled heterogeneous wireless body area

networks. The related personal contribution has led to the publication of one con-

ference paper [49]. Two approaches have been presented to estimate the absolute

locations of on-body nodes in a global coordinates system, considering di�erent ra-

diolocation metrics over o�-body links with respect to infrastructure anchors. One

2-step solution relies on preliminary relative localization at the body scale and ap-

plies further transformations through the absolute localization of on-body anchors.

At �rst sight, body shadowing seems very challenging, not to say redhibitory to

achieve precision levels compatible with high-precision MoCap needs. However we

have proposed another algorithm that estimates the shortest path between on-body

and infrastructure anchors over neighborhood graph to compensate for possible ra-

dio obstructions and most penalizing large measurement errors. Thanks to the

latter improvement, approximately the same levels of precision as that obtained for

relative on-body localization could be theoretically achieved over large-scale tra-

jectories. This makes our radio-based solution still attractive for coarse absolute

MoCap applications, even if new improvements are still foreseen, such as the use of

body-to-body cooperation.

The next Chapter will precisely concern cooperative navigation functionalities

in groups of WBANs, relying on such body-to-body links and on-body deployment

diversity. On this occasion, di�erent localization and tracking algorithms will be
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also evaluated and compared.
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5.1 Introduction

As seen in Chapter 1, in our WBAN context, one can make a distinction between

classical individual navigation on the one hand, where the on-body nodes belong

to one single body, whose "macroscopic" position must be estimated with respect

to a GCS, and collective navigation (CGN) on the other hand, which consists in

retrieving the absolute positions of several mobile users belonging to the same group,

each user wearing his own WBAN. In the �rst case, cooperative on-body and o�-

body links are considered (i.e. just like for LSIMC in the previous Chapter), whereas

additional body-to-body links may be involved in the latter case. In both scenarios,

we assume that �xed and known elements of infrastructure are disseminated in the

environment for absolute localization purposes. In terms of radiolocation metrics

and radio standards, we consider peer-to-peer range measurements through TOA

estimation over IR-UWB links or RSSI estimation over N-B links, like previously.

We also admit various combinations of such cooperative links and measurements,

hence assuming a heterogeneous WBAN context.
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This Chapter addresses both individual and collective kinds of navigation. For

this sake, a NLLS positioning algorithm and a centralized EKF tracking algorithm

are considered. Furthermore, a new individual navigation scheme is proposed, in

which the propagation of the positioning errors is avoided and the overall system

complexity could be reduced. Besides, di�erent cooperation scenarios are also com-

pared in terms of localization accuracy.

The structure is as follows. After providing the generic problem formulation,

Section 5.2 deals with positioning and tracking solutions for individual navigation,

considering the new proposed cooperation scheme, whereas Section 5.3 investigates

the CGN problem, introducing body-to-body cooperation. Finally, Section 5.5 con-

cludes the Chapter.

5.2 Individual Navigation

We �rst assume that {Xi}i=n+1...n+m is a set of vectors containing the absolute 3D

known positions Xi = [xi, yi, zi] of the m �xed infrastructure anchors expressed in

the GCS, where m should be equal to or larger than 4. {Xi(t)}i=1...n is a set of

vectors representing the unknown absolute 3D positions Xi(t) = [xi(t), yi(t), zi(t)]

of the n on-body nodes at time t, also expressed in the GCS.

Now let d̃ij(t) be one range (or pseudo-range) measurement available at time

t between one on-body node i and a connected node j, j being another on-body

node (belonging to the same WBAN or to a distinct WBAN) or one infrastructure

anchor. Given all the available measurements {d̃ij(t)}i,j at time t, e.g. based on IR-

UWB TOA or RSSI estimation, and given the known locations of the infrastructure

anchors, the problem that we want to solve consists in estimating in the GCS the

absolute positions of the carrying bodies, relying on their on-body nodes.

As said before, in the individual navigation context, the presence of a few nodes

on a single body (most likely, a smaller set than in the LSIMC case) is expected to

improve the performance in terms of both precision and robustness, by providing

spatial diversity and measurements redundancy on the one hand (i.e. especially in

case of NLOS obstructions with respect to the infrastructure), as well as practical

"averaging" possibilities (i.e. each on-body node contributing to the re�nement of

the global body position). More precisely, a reference point on each body shall be

chosen to account for the "macroscopic" position in the room or in the building,

such as the geometric center of the body torso or the centroid of all the on-body

nodes. In our work, for performance assessment, the latter true centroid position

is retained as the reference macroscopic position of the body. Figure 5.1 shows a

typical deployment scenario, including 4 on-body nodes and 4 anchors.

5.2.1 Classical Approach

In a �rst intuitive scheme, all the on-body nodes can be preliminarily positioned

in the GCS, and then a macroscopic body position is obtained as the centroid of
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Figure 5.1: Typical WBAN deployment scenario for individual navigation.

the previous estimates. Figure 5.2 shows an example of �owchart diagram corre-

sponding to this simple approach, assuming n on-body nodes. Note that each node

is actually localized using all the available peer-to-peer range measurements (i.e.

with respect to external anchors and/or even to other on-body nodes) and their

neighbors' information.

In this case, if we suppose that the estimated position of one node is strongly

biased, then the computation of the centroid position may be a�ected accordingly.

Furthermore, in cooperative (and decentralized) scenarios, where the localization of

one particular node is based on the estimated positions of its neighbors, the error

can propagate rapidly over the entire network, causing possibly divergence. Hence,

as an alternative, the following subsection de�nes a new proposal for computing the

centroid more e�ciently and avoid such error propagation.

5.2.2 New Proposal

The proposed scheme consists in localizing directly the reference centroid, instead

of performing the preliminary localization of on-body nodes before averaging the

resulting estimated positions. Thus intermediary distances are estimated instead,

corresponding to the distances separating this on-body centroid from the deployed

external anchors, based on the coarse prior knowledge of the relative dispersion

("statistical" or deterministic) of on-body nodes and based on the available range

measurements between these on-body nodes and external anchors. Figure 5.3 shows

a �owchart diagram for this new navigation scheme.

If diA(t) denotes the true distance between on-body node i and external anchor
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Figure 5.2: Example of classical scheme for individual navigation, based on the

posterior computation of the on-body nodes' centroid.

A at time t, then

1

n

n∑
i=1

d2iA(t) =
1

n

n∑
i=1

x2i (t)−
2xA
n

i=n∑
i=1

xi(t) + x2A

+
1

n

n∑
i=1

y2i (t)−
2yA
n

n∑
i=1

yi(t) + y2A

+
1

n

n∑
i=1

z2i (t)− 2zA
n

n∑
i=1

zi(t) + z2A (5.1)

Similarly if dbA(t) denotes the true distance between the on-body centroid of coor-

dinates Xb(t) = [xb(t) = 1
n

∑n
i=1 xi(t), yb(t) = 1

n

∑n
i=1 yi(t), zb(t) = 1

n

∑n
i=1 zi(t)]

and anchor A, then

d2bA(t) = (
1

n

n∑
i=1

xi(t))
2 − 2xA

n

n∑
i=1

xi(t) + x2A

+ (
1

n

n∑
i=1

yi(t))
2 − 2yA

n

n∑
i=1

yi(t) + y2A

+ (
1

n

n∑
i=1

zi(t))
2 − 2zA

n

n∑
i=1

zi(t) + z2A (5.2)
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By subtracting equation (5.2) from equation (5.1), one can straightforwardly get:

1

n

n∑
i=1

d2iA(t)− d2bA(t) =
1

n
(

n∑
i=1

x2i (t))− (
1

n

n∑
i=1

xi(t))
2

+
1

n
(

n∑
i=1

y2i (t))− (
1

n

n∑
i=1

yi(t))
2

+
1

n
(

n∑
i=1

y2i (t))− (
1

n

n∑
i=1

yi(t))
2 (5.3)

Now let the sets of all the on-body coordinates at time t, namely {xi(t)}i=1...n,

{yi(t)}i=1...n and {zi(t)}i=1...n, be viewed as sample realizations of three unknown

independent random variables x(t), y(t) and z(t) (i.e. somehow accounting for the

uncertainty of on-body deployment). Then, equation (5.3) could be rewritten into:

1

n

n∑
i=1

d2iA(t)− d2bA(t) ≈ E(x2(t))− (E(x))2 + E(y2(t))

− (E(y))2 + E(z2(t))− (E(z))2 (5.4)

where E(.) denotes the statistical expectation operator and the left term, according

to equation (5.3) involves the sample-based empirical versions of the exact statistical

moments of x, y and z.

In other words, once E(x2(t)) − (E(x))2 + E(y2(t)) − (E(y))2 + E(z2(t)) −
(E(z))2 is known a priori and {d̃iA(t)}i=1...n, ∀A have been collected to substitute

{diA(t)}i=1...n into equation (5.4), then dbA(t), ∀A can be also estimated and classical

algorithms can be applied to localize the centroid.

From a practical point of view, the prior knowledge of the on-body nodes' dis-

persion can be obtained by letting the user deploy the nodes within a reasonably

constrained area (e.g. considering that on-body nodes' coordinates are uniformly or

normally distributed within a square of known edge length and drawn on a speci�c

piece of clothes, typically on the torso). In a more extreme case, one could also

impose �xed on-body locations to the user. In this situation, the prior knowledge of

the on-body nodes' relative dispersion is no more statistical but purely deterministic

and geometric (e.g. setting the on-body nodes at the corner of the square area) so

that the right wing of equation (5.3) can be explicitly computed regardless of the

chosen GCS. As a realistic compromise, the knowledge of this dispersion could be

"statistical" in some dimensions under arbitrary deployment (e.g. in the coronal

plane) but likely deterministic in others (e.g. along the sagittal axis).

The expected gains from this new proposal are three-fold: i) keep on bene�ting

from measurements diversity and redundancy with respect to anchors thanks to

on-body nodes, ii) avoiding the error propagation that would be caused by biased

intermediary on-body location estimates in the classical approach, iii) enabling the

computation of one single position, thus contributing to reduce system complexity,

computational load and consumption.
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Figure 5.3: New proposed scheme for individual navigation, where one single body

position is computed, based on intermediary estimated distances between the on-

body centroid and external anchors.

5.3 Collective Navigation

In this application, a few mobile users wearing on-body nodes and forming a group,

must be localized with respect to an external GCS. The localization can then rely on

peer-to-peer range measurements between on-body nodes and infrastructure anchors

over o�-body links, and/or with respect to other on-body nodes on the same or

di�erent bodies (i.e. over on- and body-to-body links). Figure 5.4 shows a typical

deployment with 3 users. Similarly to individual navigation, each user belonging to

the group is tracked by estimating his macroscopic position, for instance de�ned as

the centroid of his deployed on-body nodes.

5.4 Simulations and Results

5.4.1 Scenario Description

In our evaluation framework, a group of 3 persons is de�ned, where each body is

assumed to move randomly and independently from each other (at least in terms

of directions), for simplicity. The human mobility of each user is based on a mixed

model similar to that already presented in Subsection 4.2.3.1. A snapshot of the

resulting animated group is represented on Figure 5.5.

Furthermore, for each random trial, the di�erent bodies move in a 20m× 20m ×
4m 3D environment at the constant speed of 1m/sec for an overall duration of

112sec. The scene is surrounded by 4 infrastructure anchors, set at the corners.

The network deployment is similar to that presented on Figure 5.4, where 4 on-

body nodes are placed on each body. All the on-body nodes are indexed from 1 to
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Figure 5.4: Typical WBAN deployment scenario for collective navigation (CGN)

within a group of 3 equipped users.

12 (i.e. grouping the three sets of 4 on-body nodes).

Figure 5.5: Mobility model, including a biomechanical representation based on piece-

wise cylinders and a macroscopic RGPM model, used for the generation of realistic

distance measurements over body-to-body links in the collective navigation (CGN)

scenario.

Still for simplicity, we assume hereafter that the distances over on-body links are

a priori known and invariant over time, for instance by placing the on-body nodes

at �xed and judicious locations (e.g. on the torso and the back).

5.4.2 Simulation Parameters

Radiolocation measurements can be delivered over o�-body and body-to-body links,

either through IR-UWB TOA or through N-B RSSI estimation. In case of IR-
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UWB (e.g. according to the IEEE 802.15.4a standard), the conditional TOA-based

ranging error model is assumed to be similar for both of o�-body and inter-body

links. The retained model is similar to that of equation (4.14), but noise parameters

have been adjusted according to [8] and [108], as already reported in Table 4.2 for

LSIMC simulations. Regarding N-B RSSI-based ranging (e.g. according to the IEEE

802.15.4a standard in the band centered around 2.4GHz), still inspired by the o�-

body and body-to-body channel models in [12] and [13], which have been speci�ed

in the ISM band (i.e. at 2.45 GHz) for WBAN planar monopole antennas, the

used path loss model corresponds to equation (4.20), with the parameters already

reported in Tables 3.3 and 3.5, with a conditional shadowing standard deviation of

2 dB. In both cases, NLOS conditions are assumed to be caused uniquely by body

shadowing. Finally, similarly to LSIMC, single-link range measurements are derived

from RSSI readings using the ML estimator proposed in [109], as shown in equation

(4.21).

Concerning the localization algorithms and settings, each estimated body po-

sition is updated in average with a refreshment period of 30 ms. A �rst NLLS

positioning algorithm is considered, whose settings are similar to that in Chap-

ter 4 for LSIMC. An alternative EKF tracking algorithm is also considered, whose

main formalism and principle are reminded in Appendix D. Accordingly, we con-

sider a linear state-space mobility model, accounting for the evolution of the

6n dimensional state-space vector at time-stamp kT (or iteration k), S(k) =

[XT
1 (k) V T

1 (k) XT
2 (k) V T

2 (k) ... XT
n (k) V T

n (k)], which includes the three-dimensional

positions and velocities of each blind node to be positioned, under the same nota-

tions as in Appendix D. Finally, we empirically and a priori determine the state-space

noise covariance matrix Q, relying on the variation of the true simulated on-body

locations over a long period of time. In details, we apply the state-space equation

onto these real positions, aggregate the noise residuals over each state component

(i.e. computing u(k) = S(k)−AS(k−1), ∀k) over a long time period (still with the

same time step of 30 ms) and �nally compute the variance over each state component

of S, leading to the following numerical values:

Q = In ⊗



0.004 0 0 0 0 0

0 0.002 0 0 0 0

0 0 10−4 0 0 0

0 0 0 4.3 0 0

0 0 0 0 2.25 0

0 0 0 0 0 0.1253


(5.5)

5.4.3 Simulation Results

Based on the previous models and settings, simulations have been carried out to

illustrate and compare the performances of both individual and collective naviga-

tion. Running 100 trials of the walk cycle with distinct independent realizations of

the range measurement error processes, the empirical Cumulative Density Function
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(CDF) of the RMSE of the estimated on-body nodes' centroid has been character-

ized (i.e. over all the trajectory trials and noise realizations).

First of all, addressing the individual navigation problem, we compare the lo-

calization performances of both NLLS and EKF algorithms, where the distance

measurements over o�-body links are based on TOA and/or RSSI estimation.

In particular, Figure 5.6 shows the nominal performance obtained with NLLS, where

the TOA-based metrics clearly outperforms the RSSI-based metrics. Thus, the lat-

ter does not seem compliant with the requested level of precision, even if it may

be useful as an indirect source of information (e.g. to solve ambiguities through

hypothesis testing [110]).

Still based on the NLLS algorithm but uniquely with TOA-based range mea-

surements over o�-body links, Figure 5.7 illustrates the additional gains that could

be achieved through distance reconstruction based on the shortest distance over

neighborhood graph, as originally proposed for LSIMC to combat body shadowing

obstructions. The median error decreases from 0.55m to 0.24m in this example,

what looks de�nitely compliant with personal navigation needs.

On Figure 5.8, we show similar results with our additional proposal, which consists

in estimating directly the body position, out of approximated distances between the

external anchors and the centroid, relying on the prior knowledge of the on-body

nodes' dispersion. Our proposal then leads to slightly better performances only,

while reducing system complexity and energy consumption.

Figure 5.9 shows the results obtained with a classical EKF fed by TOA-based

range measurements over o�-body links. Rather surprisingly, the median error is

still around 0.38m, what is on the same order as that of the best NLLS embodiment.

However, it is worth pointing out that the optimality of the EKF is under question

here. In our case, the observation model indeed assumes systematically a zero-mean

Gaussian noise process whereas actual range measurements are notoriously biased

in NLOS conditions, as seen in Chapter 3. This suggests to modify the observa-

tion and/or even the state models in future works, accounting for the stochastic or

semi-deterministic behaviour of such NLOS TOA biases (or even estimating them),

following one of the approaches put forward in [111] or [112] for instance.

Collective navigation has been also investigated over several simulation scenar-

ios. The �rst scenario is viewed as non-cooperative and proposed for benchmark

purposes, where only the o�-body measurements are integrated in the localization

problem, so that each body position is computed independently of the others in the

group. On the contrary, Scenario 2 considers a full cooperation scheme, where all

the available kinds of links are involved (i.e. on-body, body-to-body and o�-body

links). Scenario 3 consists in using only the o�-body and body-to-body links. Fi-

nally, Scenario 4 incorporates o�-body and on-body links, so that each body position

is also computed independently just like in the previous individual navigation case.

This last scenario is proposed for benchmark purposes as well.

Based on the NLLS algorithm and on TOA-based range measurements, Figure 5.10

compares the empirical CDFs of the estimated centroids' RMSE (over the three
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Figure 5.6: Empirical CDF of the RMSE of estimated on-body nodes' centroid for

a single body, for a NLLS positioning algorithm fed by RSSI-based and TOA-based

range measurements over o�-body link.

Figure 5.7: Empirical CDF of the RMSE of estimated on-body nodes' centroid for

a single body, with and without distance reconstruction (i.e. using the shortest

distance over neighborhood graph), for a NLLS positioning algorithm fed by TOA-

based range measurements over o�-body links.
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Figure 5.8: Empirical CDF of the RMSE of estimated on-body nodes' centroid for

a single body, with distance reconstruction, for the classical cooperative scheme

vs. the new proposal (i.e. with a priori known on-body dispersion), and a NLLS

algorithm fed by TOA-based range measurements over o�-body links.

Figure 5.9: Empirical CDF of the RMSE of estimated on-body nodes' centroid for

a single body and an EKF fed by TOA-based range measurements over o�-body

links.
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users) in the di�erent scenarios. First of all, and rather surprisingly, it appears that

the non-cooperative scheme from Scenario 1 slightly outperforms the cooperative

schemes from Scenarios 2, 3 and 4, when none of the proposed enhancements to

combat body shadowing obstructions is implemented (but just the standard posi-

tioning algorithm). This phenomenon is most likely due to the strong error propa-

gation (e.g. due to cumulative NLOS e�ects over o�-body and body-to-body links)

in all the network within cooperative schemes. Moreover, the number of o�-body

measurements available at each on-body node is systematically equal to 4, which is

su�cient for estimating its 3D position in a non-cooperative scenario. Actually, in

these simulations, we ensure full connectivity to the on-body nodes with respect to

the infrastructure anchors (regardless of the NLOS conditions), while just applying

more penalizing error models in case of body shadowing. In a realistic localization

context however, as it will be seen in Chapter 6, some measurements may be missing

due to frequent packet losses. Hence cooperative schemes shall help to compensate

for such losses, contrarily to non-cooperative schemes, which may not be able to

ensure the unicity of estimated on-body locations any more. Moreover, Figure 5.10

also shows that the improvements proposed to combat body shadowing, namely the

distance reconstruction over neighborhood graph and the new navigation scheme

assuming prior knowledge of on-body dispersion, could help to achieve rather sig-

ni�cant gains, hence bene�ting already from the cooperation potential.

Finally, on Figure 5.11, we show that the performance is signi�cantly degraded

Figure 5.10: Empirical CDF of the RMSE of the RMSE of estimated on-body nodes'

centroids in a group of 3 bodies, for di�erent cooperation scenarios and a NLLS

algorithm fed by TOA-based range measurements over o�-body and body-to-body

links.

in scenario 4, when assuming RSSI-based range measurements over o�-body and

body-to-body links at 2.4 GHz. Hence, those results con�rm the same trends as

before. The RSSI is not relevant for explicit ranging measurements in the context of
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CGN applications either, but may be considered as an indirect source of information

instead.

Figure 5.11: CDFs of the RMSE of the estimated centroid location of a group

of 3 bodies. Localization is based on the NLLS algorithm and RSS-based range

measurements over inter-body and o�-body links.

5.5 Conclusion

In this chapter, we have addressed the problem of individual and collective naviga-

tion.

First of all, a cooperative NLLS algorithm has been adapted in the very con-

text, by considering di�erent radiolocation metrics over o�-body and body-to-body

links. Furthermore, we have proposed a new cooperation scheme for individual nav-

igation, which consists in estimating directly the position of the on-body centroid,

out of approximated distances with respect to the infrastructure anchors and based

on the prior knowledge of on-body nodes' dispersion (under reasonable deployment

constraints for the end user). This proposed scheme not only keeps on bene�ting

from the measurement diversity and redundancy authorized by cooperation and on-

body deployment, but it also improves the average location accuracy by avoiding

the error propagation due to strongly biased ranges and on-body nodes estimates.

Furthermore, this proposal enables to estimate only one single position, thus reduc-

ing system complexity and energy consumption accordingly. Then this algorithm

has been compared with a classical centralized EKF, showing that the latter may

be optimized to account for biased observations due to NLOS body shadowing.

Staying in the WBAN localization context, the next Chapter will account for ex-

periments based on IR-UWB radio platforms to illustrate the practical limitations

of the proposed MoCap solutions under realistic operating conditions.
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6.1 Introduction

This Chapter accounts for real experiments based on integrated IR-UWB radio

platforms. One goal is to test and partially validate some of the modeling and/or

algorithmic proposals made in Chapters 3 and 4, respectively. Another objective is

to illustrate the practical limitations of the latter developments under real operating

conditions, in comparison with the initial target speci�cations claimed in Chapter

1.

First of all, various data sets of on-body and o�-body range measurements have

been collected for di�erent body gestures and attitudes, so as to verify the mod-

eling hypotheses put forward in Section 3.2 regarding conditional single-link errors

based on IR-UWB TOA estimation. These experiments have been also used for

preliminary calibration purposes (out of raw measurements, from a LS perspective).

Hereafter, the so-called observed range measurements correspond to the calibrated

measurements.

Secondly, IR-UWB devices have been deployed on a reference subject body, with

infrastructure anchors placed in the surrounding indoor environment. In a �rst

step, the intra-WBAN full mesh topology is exploited to collect only on-body range

measurements (including real packet losses due to body shadowing) for relative

MoCap in a body-strapped LCS, applying the CDWMDS algorithm described in

Section 4.2. The second step consists in incorporating additional o�-body links

with respect to infrastructure anchors, in order to enable the absolute positioning
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of on-body nodes in a GCS external to the body for LSIMC purposes. Hence, the 2-

step localization approach described in Section 4.3 is considered. In both cases, the

obtained experimental results are discussed and compared with simulation-based

results from Sections 4.2.3 and 4.3.3. Unfortunately, due to time constraints, no

group navigation scenarios could be tested experimentally by the time this thesis

has been written.

The remaining part of this Chapter is organized as follows. Section 6.2 brie�y

describes the hardware equipment involved in our measurement campaign, including

IR-UWB LDR platforms and a reference video acquisition system. In Section 6.3, we

evaluate the real ranging errors observed over on-body and o�-body links, in both

LOS and NLOS conditions. Then Section 6.4 investigates relative and absolute

individual MoCap applications, where the involved localization algorithms are fed

with real range measurements. Finally, Section 6.5 draws a few conclusions and

summarizes the main Chapter contributions.

6.2 Used Equipment and Experimental Settings

The used radio platform, which was developed at CEA-Leti, provides a representa-

tive example of integrated IR-UWB Low Data Rate-Location and Tracking (LDR-

LT) device operating in the band [4.25, 4.75]GHz, with a complete protocol stack

from the physical layer up to the localization application layer [113], [114]. Relying

on internal 1 Gsps sampling and 1/1.5 bit quantization on the one hand, as well

as on a Di�erential Binary Phase Shift Keying (DBPSK) modulation on the other

hand, this platform enables data transmissions at the nominal rate of 350 kbps at

up to 40 m in LOS, while performing peer-to-peer ranging through RT-TOF with

clock drift compensation. Regarding unitary TOA estimates, the platform performs

FAP detection. The index of the �rst sample exceeding the threshold is viewed

as the TOA estimate in the local Rx observation window (i.e. direct detection is

performed, but no cross-correlation with a template waveform adapted to the uni-

tary expected pulse). Such detection is enabled within the �ne time resolution of 1

ns, corresponding to the internal sampling capability (i.e. equivalently within the

spatial resolution of 30 cm). The active power consumption, on the order of a few

10s of mW (typically, 10 mW in Tx and 30mW in Rx), is comparable with that of

State-of-the-art technologies foreseen in the WBAN context, such as Bluetooth and

ZigBee, but providing additional unprecedented ranging capabilities [108]. Figure

6.1 shows a picture of this platform in its plastic package.

Besides, fast measurement-oriented software, including simpli�ed MAC and ap-

plications, have also been developed and ported for �exible demonstration purposes.

In particular, the implemented MAC layer enables a beacon-enabled TDMA super-

frame structure, which appears adapted for small-size and coordinated mesh net-

works like in our WBAN context. Figure 6.2 shows the corresponding superframe

structure [9], [115]. The Beacon Period (BP) is entirely speci�ed by the coordinator,

which handles resource allocation and scheduling for the entire network. A slotted
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Aloha scheme is used in the Contention Access Period (CAP), in order to authorize

a reduction of the energy consumption [9]. Furthermore, it was chosen to trans-

mit data only during the Contention Free Period (CFP) using Guaranteed Time

Slots (GTS) to prevent from collisions and improve the Quality of Service (QoS).

Hence, in the nominal mode (i.e. in the absence of aggregation and broadcast),

three adjacent GTS are reserved for each peer-to-peer range measurement between

two distinct asyshronous devices, applying 3-Way ranging transactions, as seen in

Chapters 1 and 4. Unfortunately, the implemented MAC su�ers from a few limita-

tions in our speci�c WBAN localization context. One major problem concerns the

refreshment rate that could be achievable for updating the nodes positions, which

is strictly bounded by the superframe periodicity and by the number of available

GTS per superframe. For practicability purposes in our study (but without loss of

generality), the coordinator is external to the body and connected to a Personal

Computer (PC) through a serial port for con�guration and debug. Moreover, an

additional USB link is used as a communication interface between this coordinator

and the PC.

In our investigated scenarios, the TOA-based range measurements issued at IR-

UWB platforms are compared with side reference measurements obtained with the

optical Codamotion tracking system [10], which is able to provide very high localiza-

tion accuracy (i.e. in the order of 0.05 mm). Considering the two levels of precisions,

the Codamotion system will be used to determine the ranging errors. Hence, one

optical marker was placed on each on-body device, in order to de�ne its occupied

position in real-time. Figure 6.3 shows the Codamotion tracking system in action,

where the data �les are fully traceable using legacy �le formats such as ASCII text.

Figure 6.1: CEA-Leti's IR-UWB LDR-LT ranging-enabled platform (right) with its

package (left).
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Figure 6.2: Implemented MAC superframe in the IR-UWB platform [9].

Figure 6.3: Codamotion tracking system, which considers on-body optical markers

(left) and an external unit (CODA) equipped with 3 cameras [10].

6.3 Single-Link Ranging Experiments

In this section, we aim at empirically characterizing TOA-based ranging errors over

IR-UWB on-body and o�-body links, considering LOS and NLOS conditions in

di�erent body attitudes. Ranging accuracy will be assessed in terms of both the

mean error and its standard deviation.

6.3.1 Ranging Over On-body Links

The �rst set of measurements is performed by placing two IR-UWB devices on

the chest and the wrist of a static human body in LOS visibility of each other.

Measurements have been collected during 20 sec by a time step of 1 sec. Figure 6.4

shows the implemented scenario, which is depicted in the following as Scenario 1.

Figure 6.5 plots and compares the successive range measurements with respect to

the real distance (delivered by the Codamotion) between the involved devices. The

mean and standard deviation of ranging errors are respectively equal to 4.7 cm and

16 cm in this case.

Still considering the chest-wrist link, 3 other sets of measurements have been

performed in the so-called Scenarios 2, 3 and 4. Figure 6.6 shows the corresponding

body attitudes, which are de�ned by the wrist position. Figures 6.7, 6.8 and 6.9

compare the corresponding successive measurements and the real distances. Besides,
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Figure 6.4: Experimental Scenario 1: On-body ranging over a static chest-wrist link

in direct LOS visibility.

Figure 6.5: Comparison between measured and real distances over the static chest-

wrist link in Scenario 1.

Table 6.1 summarizes the related ranging error parameters (i.e. mean and standard

deviation) for each scenario. The obtained on-body ranging performances in LOS

visibility are in compliance with the results presented in [108] for classical "body-

free" LOS con�gurations at larger ranges in a typical indoor environment, showing

that the standard deviation of ranging errors is below 30 cm. Moreover, the observed

mean error is relatively small in comparison with the standard deviation and even

with the true distance value. Thus, it could be neglected in �rst approximation

over on-body links in direct LOS visibility. Those observations tend to con�rm

the zero-mean Gaussian hypothesis retained in Chapter 3 for IR-UWB TOA-based

on-body measurements in LOS. However, the standard deviation observed with the

real platforms is now larger than the values based on channel measurements (i.e.

previously on the order of 10 cm in favorable SNR conditions) and hence, larger

than the values assumed in the simulations of Chapter 4. This degraded accuracy is
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Figure 6.6: Experimental Scenarios 2 (left), 3 (middle) and 4 (right): On-body

ranging over the chest-wrist link in direct LOS visibity, for di�erent body attitudes.

mostly due to the direct sample FAP detection scheme implemented in the real IR-

UWB platforms, given the �nest temporal granularity of 1 ns, whereas in Chapter

3, the performance was bounded by the signal bandwidth and resulting resolution

capability (i.e. assuming an ideal and quasi-in�nite temporal granularity at the

receiver).

STD (cm) mean (cm)

Scenario 2 22 -4

Scenario 3 21 3

Scenario 4 24 5

Table 6.1: IR-UWB TOA-based ranging error parameters in Scenarios 2, 3 and 4.

The ranging error is now evaluated over static on-body links in systematic NLOS

con�gurations. Two IR-UWB devices have been placed on the chest and the back of

the subject body. Figure 6.10 shows the implemented scenario, depicted as Scenario

5 in the following. Similarly to the previous sets, the range measurements have

been collected for 20 sec by a time step of 1 sec. Figure 6.11 plots and compares the

observed range measurements with respect to the real distance between the involved

devices. The mean and standard deviation of ranging errors are respectively equal

to 5.68 m and 78 cm, which are likely redhibitory to the localization system. This

phenomenon is due to a missed detection of the direct path, where TOA estimation

adversely relies on a late secondary path, which may be re�ected or di�racted by the

surrounding materials (e.g. distant wall, distant metallic pieces of furniture), and

hence, the length of the detected path is signi�cantly biased from the direct one. One

more complementary remark is that the devices' placements tend to limit also the

sensitivity to close re�ections (e.g. typically single-bound re�ections on the ground)

due to severe body obstructions also along the vertical dimension, which are most

likely combined with penalizing relative antenna orientations. The propagation of

radio waves di�racted around the body seems to be excluded as well in this case.

The phenomenon is anyway all the more pessimistic in comparison with the results

from Chapter 3 since no temporal restriction of the Rx observation window (i.e. in

terms of excess delay) is applied in the IR-UWB platforms while estimating TOA

(i.e. contrarily to the 5 ns window restriction assumed in Chapter 3, corresponding
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Figure 6.7: Comparison between measured and real distances over the chest-wrist

link in Scenario 2.

Figure 6.8: Comparison between measured and real distances over the chest-wrist

link in Scenario 3.

Figure 6.9: Comparison between measured and real distances over the chest-wrist

link in Scenario 4.
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to the con�ned WBAN spatial dimensions).

Figure 6.10: Experimental Scenario 5: On-body ranging over a static chest-back

link, under systematic NLOS conditions.

Figure 6.11: Comparison between measured and real distances over the chest-back

link in Scenario 5.

Besides, another measurement set has been carried out according to Scenario

6. The chest-wrist link has been considered here, for being partially obstructed by

human body shadowing (i.e. comprising also an unobstructed portion over-the-air),

just like the link characterized in Chapter 3. Figure 6.12 shows the corresponding

scenario, where the measurements have been collected similarly to the previous sets.

Figure 6.13 plots and compares the observed range measurements with respect to

the real distance separating the involved devices. The range measurement is again

positively biased, with a mean error of 62 cm and a standard deviation of 25 cm.

Like in Scenario 5, the positive bias is due to the detection of a late re�ected path,

but most likely resulting from a less distant interaction with the environment. This

makes the use of partially obstructed links (like this chest-wrist link) much more
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tractable for localization purposes. Moreover, the idea of positively biased range

measurement over NLOS on-body links is compliant with the model that we have

de�ned in Chapter 3, all except but the order of magnitude of this bias, which again

depends on the kind of obstruction (i.e. full or partial) and Rx device capabilities

(i.e. restriction of the Rx observation window, time granularity, antenna pattern

and placement).

Figure 6.12: Experimental Scenario 6: On-body ranging over a static chest-wrist

link, under systematic NLOS conditions.

Figure 6.13: Comparison between measured and real distances over the chest-wrist

link in Scenario 6.

6.3.2 Ranging Over O�-body Links

In order to evaluate the ranging errors over o�-body links, we take bene�t from

Scenario 5, using the chest-placed device in direct LOS visibility with the coordi-

nator, which is external to the body and located in the surrounding environment.

On the other hand, the back-placed device is under systematic NLOS conditions

from the same coordinator. Figure 6.14 plots and compares the measured distances
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with respect to the real distance over the considered LOS o�-body link (i.e. chest-

coordinator). In this case, the mean ranging error is 5.6 cm and the standard

deviation 17 cm. These results are compliant with the ranging error parameters

observed over LOS on-body links. Figure 6.15 shows similar results over the con-

sidered NLOS o�-body link, whose range measurements are again positively biased,

with a mean error of 2.08 m and a standard deviation of 23 cm.

Figure 6.14: Comparison between measured and real distances over the chest-

coordinator o�-body link, under systematic LOS conditions.

6.4 Individual Motion Capture Experiments Based on

Real Range Measurements

In this section, we account for other experiments addressing relative and absolute

MoCap applications. For this sake, a full on-body mesh topology is considered,

including 10 devices, as shown on Figure 6.16. Devices 1 to 4 are considered as on-

body anchors, and the remaining devices as simple on-body nodes to be positioned.

Table 6.2 summarizes the positions occupied by those devices, along with their

status (i.e. simple mobile node or on-body anchor). Five additional infrastructure

anchors are set at known positions in the indoor surrounding environment, which

corresponds to a 4m × 4m o�ce room.

In our measurement setup, we had to face di�culties in synchronizing the Co-

damotion tracking system and the involved IR-UWB devices in case of dynamic

scenarios. To overcome this problem, we de�ned 3 static body gestures correspond-

ing to three key phases of the walk cycle. Range measurements have been collected

in each gesture for 10 sec by a time-step of 1 sec. Figure 6.17 shows successive snap-

shots of the retained body gestures, based on a biomechanical model representation

used in Chapter 4. The idea is to emulate mobility, assuming that a real body under

moderate walk would switch between the last 3 gestures, taking approximately 1 sec

between two adjacent gestures. Thus our localization problem could be considered

as quasi-dynamic.
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Figure 6.15: Comparison between measured and real distances over the back-

coordinator o�-body link, under systematic NLOS conditions.

Figure 6.16: On-body network deployment scenario for MoCap experiments.

Figure 6.17: Retained body gestures for considering a quasi-dynamic localization

problem.

In a �rst step, we consider relative positioning at the body scale (i.e. in a body-

strapped LCS) based uniquely on on-body range measurements, thus applying the

standard DWMDS and the new proposed CDWMDS algorithms described in Section
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Device ID On-body Position Category

1 Chest On-body anchor

2 Chest On-body anchor

3 Left hip On-body anchor

4 Back On-body anchor

5 Right shoulder On-body node

6 Right elbow On-body node

7 Right wrist On-body node

8 Left shoulder On-body node

9 Left elbow On-body node

10 Left wrist On-body node

Table 6.2: IDs, positions and categories of the on-body devices used in MoCap

experiments.

4.2. Figure 6.18 shows a comparison of the obtained localization RMSE per node

(i.e. averaged over the three gestures). It can be noticed that the incorporation

of �xed-length constraints globally improves the performance at all the peripheral

mobile nodes, as expected. The average accuracy (i.e. over all the mobile nodes)

is however degraded in comparison with the simulation results in Section 4.2.3, as

a direct consequence of a higher standard deviation for single-link on-body range

measurements (i.e. from 10 cm in simulations to 25 to 30 cm here), but in the same

reasonable proportions. Given the ranging capabilities of the integrated IR-UWB

devices used in our experiments, the achieved level of accuracy (e.g. with a minimum

RMSE around 20 cm for the best on-body node) is thus questionable, especially when

taking into account the MoCap speci�cation of a few centimeters initially targeted

in Chapter 1. Nevertheless, other applications necessitating relatively coarse levels

of accuracy (e.g. gesture-based remote control or rough attitude detection) may still

be covered.

The second step consists in incorporating o�-body range measurements with

respect to infrastructure anchors on top of on-body measurements, so as to en-

able the absolute positioning of on-body nodes in a GCS (e.g. associated with the

room). Accordingly, we consider applying the 2-step localization approach described

in Section 4.3, along with its distance approximation method based on graph neigh-

borhood. Figure 6.19 shows the achieved localization performances, in terms of

average RMSE per on-body device. Rather surprisingly, in this case, the results are

no more in line but signi�cantly degraded in comparison with the simulation-based

previsions in Section 4.3.3. In particular, the application of the distance approxi-

mation method based on graph neighborhood seems no more bene�cial. This may

be due to the harmful conjunction of several factors, including the propagation of

too strong on-body/o�-body errors (hence, penalizing the transformation of the es-

timated coordinates from the LCS into the GCS), or even the reduced number of

mobile on-body devices in comparison with the simulated scenarios, thus limiting the
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bene�ts from full mesh cooperation... Again, these results do not seem su�ciently

compliant with high precision MoCap requirements, but could be advantageously

used for improved personal navigation though on-body diversity.

Figure 6.18: Relative localization average RMSE (m) per on-body node (ID), for

DWMDS and CDWMDS localization algorithms.

Figure 6.19: Absolute localization average RMSE (m) per on-body node (ID), based

on the 2-step localization approach.

6.5 Conclusion

In this Chapter, we have described �eld experiments based on real IR-UWB plat-

forms (and a reference video acquisition system) for on-body and o�-body ranging

error characterization, as well as for relative and absolute MoCap purposes.

Di�erent sets of peer-to-peer measurements have been collected between IR-

UWB devices, taking into account LOS and NLOS conditions over both on-body

and o�-body links. One �rst remark is that on-body and o�-body ranging results
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look consistent, especially in the NLOS con�gurations. Secondly, the observed re-

sults are at least partly compliant with the on-body models proposed in Chapter 3,

where zero-mean random ranging errors have been assumed under LOS conditions,

with an additive positive bias under NLOS conditions. However, experiments have

revealed that the kind of on-body obstructions (i.e. full or partial) could lead to

signi�cantly di�erent statistical bias behaviours (e.g. in terms of their maximum

amplitude). In particular, it has been illustrated that the most severe chest-back

measurements (not directly investigated in Chapter 3), under full and systematic

NLOS conditions, could be biased by a few meters. This is most likely due to

the systematic detection of distant multipath components in the TOA estimation

process implemented at IR-UWB platforms, in conjunction with unfavorable an-

tenna orientations and/or polarizations. It is worth reminding that these IR-UWB

platforms have not been designed for WBAN localization (and de�nitely not for

on-body localization), but for standard indoor localization at several tens of me-

ters. Keeping the discussion at this single-link level, to combat NLOS biases, we

suggest that the embedded TOA estimator could be judiciously adapted, without

any serious hardware modi�cation (e.g. by simply limiting the search window before

the temporal synchronization point, taking into account the maximum measurable

on-body distance, like in Chapter 3). Moreover, we also suggest that further studies

are necessary regarding the antenna (i.e. jointly in terms of orientation, radiation

diagram and/or polarization), so as to enable better sentivity to closer secondary

multipath components (e.g. resulting from single-bounce re�ections on the ground),

or even, di�raction of the main direct path around the body.

In addition, we have addressed the relative and absolute on-body positioning

problem, feeding the proposed localization algorithms with the range measurements

issued at real IR-UWB platforms. The observed results show at least the robust-

ness of the CDWMDS solution with respect to the standard DWMDS algorithm.

Overall, the achieved levels of accuracy do not seem su�ciently compliant with the

initial centimetric MoCap requirements. However, considering the relative localiza-

tion results obtained at the body scale, some applications necessitating a relatively

coarse precision (e.g. gesture-based remote control or rough attitude detection)

may be covered, without necessitating any additional sensor or technology, but just

relying one the current on-body IR-UWB devices, as they stand now. One step

ahead, the absolute localization results could be advantageously used for improved

personal navigation (at least) through on-body nodes diversity, so as to reinforce the

estimated absolute macroscopic position of the user (e.g. "averaging" over on-body

nodes to get a centroid).

Finally, reconciling single-link and positioning concerns, it is also worth mention-

ing that more recent generations of integrated IR-UWB solutions could theoretically

provide centimetric ranging precision [116], [117]. The �nal on-body localization ac-

curacy being somehow proportional to the latter ranging performance, as revealed

herein by a quick comparison between simulation results and experiments, one could

extrapolate that much higher precision, compatible with MoCap applications, could

be available based on stand-alone IR-UWB systems in a reasonably short future.
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7.1 Conclusions

In this PhD dissertation, we have addressed the cooperative localization problem in

WBAN. Various research topics and domains have thus been explored, related to

physical modeling, algorithmic developments, as well as to medium access mecha-

nisms or networking. The main personal contributions issued in the frame of these

PhD investigations can be summarized as follows:

• Modeling: A dynamic on-body model has been proposed for IR-UWB TOA-

based ranging in two key frequency bands and for two representative links.

The drawn model, which relies on UWB channel measurements, takes into ac-

count dynamic channel obstruction con�gurations (i.e. LOS/NLOS) and SNR

variations under body mobility. Then the related model parameters have been

studied as a function of a controlled SNR within synthetic received multipath

signals. On this occasion, false and missed detection phenomena have been

illustrated under low SNR and NLOS conditions, as well as asymptotically

ideal detection behaviour under more favourable SNR and LOS conditions.

The performances of �rst peak and strongest peak detection schemes have

also been compared. We have shown that the ranging error distribution could

be fairly well modeled as a centered Gaussian distribution in LOS conditions

in case of systematic strongest path detection, and as a weighted mixture

between uniform and Gaussian distributions in the case of �rst path detec-

tion. In NLOS conditions, ranging errors are also shown to follow a weighted

mixture between uniform and Gaussian distributions in case of strongest path

detection.

Secondly, representative lower bounds have been derived for the standard

deviation of N-B RSSI-based and IR-UWB TOA-based range measurements

over o�-body and body-to-body links. One �rst conclusion, as expected, is

that RSSI readings in NLOS conditions due to body shadowing are hardly
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exploitable for ranging purposes on both kinds of links, whereas LOS condi-

tions may provide more acceptable ranging performance, but most likely at

short ranges (typically below 20 m). One second remark is that o�-body and

body-to-body links exhibit approximately the same behaviours in terms of

ranging error statistics, in �rst approximation.

• Design of localization algorithms:

• Relative on-body positioning for MoCap: A decentralized and coopera-

tive DWMDS algorithm, which can asynchronously estimate unknown

on-body nodes locations, has been adapted. In particular, we have in-

troduced �xed-length geometric constraints (possibly self-learnt) that

correspond to time-invariant Euclidean inter-node distances under body

mobility. This initial CDWMDS has been enhanced through schedul-

ing and censoring mechanisms to mitigate error propagation due to the

location-dependent disparities observed among on-body nodes (e.g. in

terms of connectivity, GDOP and accelerations). It has been also shown

that forcing the symmetry of pair-wise measurements could help to mit-

igate measurement outliers and packet losses. Moreover, CDWMDS

has been proved to outperform a classical MDS algorithm in terms of

localization accuracy for various single-link PER values and ranging

standard deviations even under realistic MAC superframe, hence illus-

trating rather �ne robustness against latency e�ects.

• Absolute on-body positioning for MoCap: Two approaches have been

presented to estimate the absolute locations of on-body nodes in a

global coordinates system, considering di�erent radiolocation metrics

over o�-body links with respect to infrastructure anchors. One 2-step

solution relies on the preliminary relative localization of on-body nodes

at the body scale, before applying further transformations based on the

absolute localization of on-body anchors. At �rst sight, body shadow-

ing seems very challenging, not to say redhibitory, to achieve levels of

precision compatible with high-precision MoCap needs. However we

have proposed another algorithm that estimates the shortest path be-

tween on-body and infrastructure anchors over neighborhood graph to

compensate for possible radio obstructions and penalizing measurement

errors. Thanks to the latter improvement, approximately the same lev-

els of precision as that obtained for relative on-body localization could

be achieved over simulated large-scale trajectories.

• Absolute body centroid positioning for individual and collective naviga-

tion: A cooperative NLLS algorithm has been adapted and compared

with a classical tracking EKF, while considering di�erent radiolocation

metrics over o�-body and body-to-body links. Furthermore, we have

proposed a new cooperation scheme for individual navigation, which

consists in estimating directly the position of the on-body centroid, out
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of approximated distances with respect to the infrastructure anchors.

The latter are based on the prior knowledge of on-body nodes' disper-

sion (under reasonable deployment constraints for the end user). This

scheme not only keeps on bene�ting from the measurement diversity

and redundancy authorized by cooperation and on-body deployment,

but it also improves the average localization accuracy by mitigating er-

ror propagation. Finally, only one single position needs to be computed,

thus reducing system complexity and energy consumption accordingly.

• Experiments: Field experiments, based on real IR-UWB platforms (and a ref-

erence video acquisition system) have been described. These measurements

aim at both single-link ranging error characterization and relative/absolute

MoCap evaluation. Due to time constraints, no collective navigation could be

tested however.

On-body and o�-body ranging results look consistent, especially in NLOS con-

�gurations. The observed results are also partly compliant with the originally

proposed on-body models, assuming zero-mean random ranging errors under

LOS conditions and additive positive bias under NLOS conditions. However,

these experiments have also revealed that on-body obstructions could lead

to signi�cantly di�erent bias behaviours, depending whether the obstruction

is full or partial (e.g. chest-back range measurements could be biased by a

few meters). Possible reasons have been pointed out, such as the detection of

late multipath components in the used IR-UWB platforms, which have been

designed for standard indoor localization at several tens of meters (but not

for WBAN applications), or even unfavorable antenna orientations and polar-

izations, which favor neither di�racted path around the body, nor early/close

secondary paths (e.g. single-bounce re�ections on the ground).

Additional experimental scenarios have been considered for relative and ab-

solute on-body positioning, feeding the proposed localization algorithms with

on-body (and o�-body) range measurements from the real IR-UWB platforms.

Signi�cant performance improvements have been noted when applying �xed-

length constraints, even if the achieved accuracy cannot be really compliant

with MoCap requirements at �rst sight. Nevertheless, relying uniquely on

the current on-body IR-UWB devices (i.e. even if not optimized in the very

context), gesture-based remote control or rough attitude detection could be

already covered on the one hand. The absolute localization results could

be also advantageously used for improved individual or collective navigation,

relying on on-body diversity (not shown herein).

Overall, one can conclude that the cooperative localization problem in WBAN,

as initially stated in Chapter 1 for stand-alone and opportunistic MoCap and navi-

gation applications, has been only partly solved out here (especially regarding high

precision MoCap) and numerous points still remain open. On the one hand, prac-

tical experiments and empirical channel-based observations tend to suggest that a

few working hypotheses have been underestimated at the beginning of our PhD
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investigations, as well as in our simulations (e.g. body shadowing e�ects on both

ranging errors and packet losses). On the other hand, we believe that the current

state-of-the-art radio capabilities are not yet arrived at their full potential in terms

of single-link precision. Finally, some of our initial proposals detailed above (e.g.

body-constrained decentralized localization, use of on-body diversity...), though non-

de�nitive, may deserve complementary future research e�orts, as seen in the next

subsection.

7.2 Perspectives

After recalling the main PhD contributions and their limitations, we draw hereafter

some related perspectives and possible axes of research for future works:

• Consider coupling the CDWMDS localization algorithm with track-

ing/smoothing algorithms, better initialization policy and/or a soft weighting

of the available single-link measurements in the optimized cost function (e.g.

depending on the link quality, the channel obstruction status or the empiri-

cally observed "instantaneous" PER).

• Enable more e�cient links selection and parsimonious/timely cooperation

over on-body, body-to-body and o�-body links (i.e. relying uniquely on the

most relevant and necessary links), hence improving robustness, while reduc-

ing over-the-air tra�c and latency.

• Design ranging-enabled IR-UWB receivers and impulse detection algorithms,

which could be more suitable into the WBAN localization context. For in-

stance, so as to combat NLOS biases over on-body links due to body shadow-

ing within the current IR-UWB devices (e.g. those used in our experiments),

the embedded TOA estimation procedure could be adapted without changing

the hardware capabilities, by simply limiting the search window (e.g. tak-

ing into account the maximum measurable on-body distance). Regarding the

antenna, optimizations are also expected (i.e. jointly in terms of mastered

orientation, radiation diagram and/or polarization), to enable better sensi-

bility to early/close secondary multipath components, or even, a di�raction

of the direct path around the body. Finally, more recent generations of inte-

grated low-power IR-UWB solutions, which already claim centimetric levels

of ranging precisions, should be considered in the WBAN context to scalably

achieve localization performances compatible with MoCap applications in a

reasonably short future.

• Perform hybrid data fusion to combine IR-UWB radiolocation metrics with

other modalities, such as inertial measurements issued at embedded IMU (e.g.

delivering at least accurate information about the body-limbs orientation).

Such multimodal solutions are likely to o�er the highest and most promising

potential in terms of precision, but additional research e�orts must be made
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in terms of algorithmic design and implementation, so as to limit computa-

tional complexity and power consumption, while coping with sychronization

constraints between the two sub-systems.

• Mitigate the e�ects of latency introduced by communication protocols on lo-

calization performance, and thus, emphasizing the needs for cross-layer design

approaches ("by nature").

• Develop more adapted evaluation tools, through semi-deterministic radio

modeling under complex human mobility, for realistic performance assessment

and bene�t from the latest advances in the �eld of WBAN radio propagation

prediction (e.g. di�raction theory applied to dielectric cylinders, deterministic

ray-tracing...) to elaborate even more robust ranging/localization algorithms.





Appendix A

Cramer-Rao Lower Bound for the

TOA Estimation of UWB Signals

A.1 System Structure

The Cramer-Rao Lower Bound (CRLB) of the TOA estimator, based on the IR-

UWB signals is derived here.

Let p(t) be the transmitted UWB signal. Hence, in a pure AWGN channel n(t),

the received signal r(t) is

r(t) = p(t− τ) + n(t) (A.1)

where every sample of n(t) is Gaussian distributed with zero mean and variance σ20,

and τ is the time delay to be estimated.

In a multipath channel, the received signal is given by:

r(t) =

Lp∑
j=1

αjp(t− τj) + n(t) = h(t)⊗ p(t) + n(t) (A.2)

where h(t) =
∑Lp

j=1 αjδ(t−τj) is the multipath CIR, δ(.) is the Dirac delta function,
Lp is the number of multipath components, αj and τj are respectively the amplitude

and delay of the j-th multipath component.

For the AWGN model in A.1, the received signal can be represented as a vector

of K samples as follows:

r = p + n (A.3)

where r = [r1, r2, ..., rK ], p = [p1, p2, ..., pK ] and n = [n1, n2, ..., nK ].

Suppose an unbiased estimator of τ , then the estimation error variance is lower

bounded by the CRLB, and thus, Er|(τ̂ − τ)2| ≥ CRLB(τ), where

CRLB(τ) = (Er|τ [− d2

dτ2
ln(p(r|τ))])−1 (A.4)

in A.4, p(r|τ) is the conditional pdf.

Since the additional noise n(t) is white and zero mean, p(r|τ) can be expressed

as

p(r|τ) =

K∏
k=1

1√
2πσ0

exp(− 1

2σ20
(rk − pk)2) = (

1√
2πσ0

)Kexp(− 1

2σ20

K∑
k=1

(rk − pk)2)

(A.5)
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A continuous-time equivalent of p(r|τ) can be developed [118], [119], and the

log-likelihood function L(r, τ) can be represented as follows

L(r, τ) =
1

2σ20
(2

∫
T0

r(t)p(t− τ)dt−
∫
T0

p2(t− τ)dt) (A.6)

A.2 CRLB For Single Pulse Systems in AWGN

In this case, the CRLB can be derived from A.6 or directly from [120] as the following

form

CRLB(τ) =
σ20∫

T0
ṗ2(t− τ)dt

(A.7)

where ṗ(t − τ) denotes one partial di�erentiation with respect to τ . Hence, this

equation conducts to the same form of equation 1.2.

A.3 CRLB For UWB Signal in Multpath Channel

In this section, we focus on multipath channels and derive the CRLBs using

joint detection for multiple multipath parameters α = [α1, ..., αj , ..., αLp ] and

τ = [τ1, ..., τj , ..., τLp ], which are treated as unknown but deterministic.

Start with A.2, the log-likelihood function in A.6 can be rewritten as L(r, τ,α)

as

L(r, τ,α) =
1

σ20

∫
T0

r(t)
∑
j

αjp(t− τj)dt−
1

2σ20
(

∫
T0

[
∑
j

αjp(t− τj)]2dt (A.8)

Lower bounds on the variances of estimates for the components of αj and τj
are given in terms of the diagonal elements of the inverse of the Fisher information

matrix J−1. After some manipulations, the Fisher information matrix J can be

given as:

J =

(
Jττ Jτα
Jατ Jαα

)
(A.9)

where Jττ , Jτα, Jατ and Jαα are all Lp×Lp matrices, as well as the [j,m]th element

is given by

Jττ [j,m] =
1

σ20

∫
T0

αjαmṗ(t− τj)ṗ(t− τm)dt (A.10)

Jαα[j,m] =
1

σ20

∫
T0

p(t− τj)p(t− τm)dt (A.11)

Jτα[j,m] = Jατ [j,m] = − 1

σ20

∫
T0

αj ṗ(t− τj)p(t− τm)dt (A.12)



Appendix B

Adaptive Self-Learning and

Detection of On-Body

Fixed-Length Links

On-body links can be classi�ed into two categories. The �rst one corresponds to the

mobile links with variable lengths, which are characterized by a distance that varies

over time under body mobility. The second category concerns the �xed-length links,

where the distance is considered as time-invariant under body mobility. Hence, we

formulate the classi�cation/identi�cation issue into a decision problem. For a given

pair of nodes, the �rst hypothesis H0 corresponds to the �xed-length link, whereas

hypothesis H1 corresponds to a variable mobile-length link under mobility.

H0 : Fixed-length link

H1 : Mobile-length link (B.1)

For the considered on-body link between two devices, d̃ = [d̃(1), d̃(2), ... , d̃(N)]

denotes the vector, which contains N consecutive distance measurements, for in-

stance based on IR-UWB TOA or N-B RSSI estimation. Hereafter, a simple new

method is proposed for the detection of the �xed-length links.

The detector is depicted as a variance-based detector. We assume that the

observed distance at time-stamp k can be represented by the following equation:

d̃(k) = d(k) + n(k) (B.2)

where, d(k) denotes the true distance at time k and n(k) is a random variable, which

represents the ranging error process. For simplicity, we assume that ranging errors

are i.i.d. variables that follow a centered Gaussian distribution, with a variance σ2.

We de�ne two unbiased estimators. The �rst one corresponds to the mean of the

observed distance measurements, denoted by d̄ and represented by equation B.3.

The second one consists in estimating the variance of the observed distance vector,

where the estimated variance ˆvar(d̃) is given by equation B.4 [121]. This empirical

variance estimator is unbiased and thus, it can be written as a sum of the statistical

variance of the range measurements d̃ seen as r.v., and an additive random variable

e resulting from the estimation process, which is zero-mean with the variance of

(var(d̃)
√

2
N−1)2, according to equation B.5.
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d̄ ,
1

N

N∑
i=1

d̃(i) (B.3)

σ̂2 ,
1

N − 1

N∑
i=1

(d̃(i)− d̄)2 (B.4)

ˆvar(d̃) = var(d̃) + e (B.5)

Under H0, for the �xed-length links, ˆvar(d̃) is close to σ2 for a su�ciently large

N , whereas it becomes signi�cantly larger than σ2 under mobility. We de�ned

the missed detection probability PM , which represents the probability to detect a

�xed-length link as variable-length one, as follows:

PM = P (Decision = H1|H0) =

∫ +∞

threshold
p(e|H0)de (B.6)

where p(e|H0) denotes the pdf of the variable e, when a �xed-length link is involved.

Once PM is speci�ed a priori, the detection threshold value can be easily calculated,

and thus, a new form of the variance-based detector can be represented in equation

B.7

Decision = H0 if ( ˆvar(d̃)− σ2) ≤ threshold

Decision = H1 if ( ˆvar(d̃)− σ2) ≥ threshold (B.7)



Appendix C

Cramer-Rao Lower Bound for

Relative On-Body Nodes

Positioning

As described in Chapter 2, the CRLB de�nes the lower bound on the variance of

any unbiased estimator. In this context, the present section derives the CRLB of

any unbiased estimator for the relative on-body nodes positions, under ranging error

based on the TOA estimation that is considered as centered Gaussian variable with

a variance σ2(t).

As for MoCap, which is investigated by estimating the 3D positions of the on-body

nodes, and thus, we are seeking for the CRLB, which characterizes the 3D positions

estimators, relying on [122].

As seen previously, a WBAN is �rst characterized by n on-body mobile nodes andm

anchors, with respective positions Xi(t) = (xi(t), yi(t), zi(t))
m+n
i=1 forming the overall

network-level vector of positions X(t) = [X1(t), ..., Xm(t), ..., Xm+n(t)] at time t.

Hence, the Fisher information matrix (FIM) can be derived as follows:

F (t) =

Fxx(t) Fxy(t) Fxz(t)

F Txy(t) Fyy(t) Fyz(t)

F Txz(t) F Tyz(t) Fzz(t)

 (C.1)

where:

[Fxx(t)]k,l =

{
1

σ2(t)

∑
i∈H(k)

(xk(t)−xi(t))2
||Xk(t)−Xi(t)||2 , k = l

−1
σ2(t)

IH(k)(l)
(xk(t)−xl(t))2
||Xk(t)−Xi(t))||2 , k 6= l

(C.2)

[Fyy(t)]k,l =

{
1

σ2(t)

∑
i∈H(k)

(yk(t)−yi(t))2
||Xk(t)−Xi(t)||2 , k = l

−1
σ2(t)

IH(k)(l)
(yk(t)−yl(t))2
||Xk(t)−Xi(t))||2 , k 6= l

(C.3)

[Fzz(t)]k,l =

{
1

σ2(t)

∑
i∈H(k)

(zk(t)−zi(t))2
||Xk(t)−Xi(t)||2 , k = l

−1
σ2(t)

IH(k)(l)
(zk(t)−zl(t))2
||Xk(t)−Xi(t))||2 , k 6= l

(C.4)

[Fxy(t)]k,l =

{
1

σ2(t)

∑
i∈H(k)

(xk(t)−xi(t))(yk(t)−yi(t))
||Xk(t)−Xi(t)||2 , k = l

−1
σ2(t)

IH(k)(l)
(xk(t)−xl(t))(yk(t)−yl(t))

||Xk(t)−Xi(t)||2 , k 6= l
(C.5)

[Fxz(t)]k,l =

{
1

σ2(t)

∑
i∈H(k)

(xk(t)−xi(t))(zk(t)−zi(t))
||Xk(t)−Xi(t)||2 , k = l

−1
σ2(t)

IH(k)(l)
(xk(t)−xl(t))(zk(t)−zl(t))

||Xk(t)−Xi(t)||2 , k 6= l
(C.6)
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[Fyz(t)]k,l =

{
1

σ2(t)

∑
i∈H(k)

(yk(t)−yi(t))(zk(t)−zi(t))
||Xk(t)−Xi(t)||2 , k = l

−1
σ2(t)

IH(k)(l)
(yk(t)−yl(t))(zk(t)−zl(t))

||Xk(t)−Xi(t)||2 , k 6= l
(C.7)

Herein, Fxx(t), Fyy(t), Fzz(t), Fxy(t), Fxz(t) and Fyz(t) are submatrices,

each of n × n elements. T denotes the matrix transpose operator. H(k) =

j ∈ [1 : n+m] that makes pair-wise observations with node k. IH(k)(l) is equal to

1 if l ∈ H(k) or 0 otherwise. dij(t) = ||Xi(t) − Xj(t)||1/2 denotes the Euclidean

distance between devices i and j.

Let X̂i(t) = (x̂i(t), ŷi(t), ẑi(t)) be an unbiased estimators of Xi(t). Thus, the

trace of the covariance matrix (i.e. F (t)−1) of the ith location estimates satis�es:

CRLBi(t) = cov(x̂i(t)) + cov(ŷi(t)) + cov(ẑi(t))

≥ [F (t)−1]i,i + [F (t)−1]i+n,i+n + [F (t)−1]i+2n,i+2n (C.8)



Appendix D

Reminder of the Extended

Kalman Filter Formulation

The KF represents a special case of the Bayesian �lter, requiring a linear state-

space equation and a linear observation model, in addition to zero-mean Gaussian

noise process. Furthermore, the KF conducts to an optimum tracking solution if

the criteria on linearity and Gaussianity are ful�lled. However, if the observation is

based on the direct range measurements, which are highly non linear with respect

to the occupied positions, then, the linear KF could be not reasonable to solve the

tracking problem.

As an alternative solution to such non-linearity issues, the EKF solution [76],

[77] considers the following state-space and observation models:

S(k) = AS(k − 1) + u(k)

d̃(k) = h(S(k)) + n(k)
(D.1)

where S(k) = [XT
1 (k) V T

1 (k) XT
2 (k) V T

2 (k) ... XT
n (k) V T

n (k)] denotes the 6n di-

mensional state-space vector at time-stamp kT or iteration k, including the three-

dimensional positions and velocities of each blind node, which must be positioned.

The vector d̃(k) = [{{d̃ij(k)}j=n+1:n+m}i=1:n} {{d̃ij(k)}j=1:n}i=1:n}] denotes the

vector of available range measurements of nodes, either with respect to other nodes

or infrastructure anchors. The state transition matrix A is given by:

A = In ⊗

I6 +

(0 1

0 0

)
⊗

T 0 0

0 T 0

0 0 T

 (D.2)

where Il denotes the l− dimensional identity matrix and ⊗ is the Kronecker product.

Hence, A is based on a priori information bridging the occupied positions at two

consecutive time stamps: kT and (k + 1)T . In this approach, we assume that each

node moves independently of each other. u(k) is the state-space noise vector, with

covariance matrix Q, and n(k) is the observation noise vector with covariance matrix

Σ(k). The noise covariance matrix can vary dynamically over time as a function of

the number of available range measurements. Finally, h(.) denotes the non-linear

relation between the observed measurements and the state vector.

The implementation of the EKF starts with the initialization phase. Afterward,
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the occupied positions are iteratively estimated, based on the state-space and the

observation according to the following phases:

Prediction Phase: This phase consists in predicting the occupied position at time-

stamp kT , as a function of the estimated position Ŝ(k − 1|k − 1) at the previous

time-stamp (k − 1)T , then, the predicted position is given as follows:

Ŝ(k|k − 1) = AŜ(k − 1|k − 1) (D.3)

where, (k|k − 1) means that the estimate at time-stamp kT is based on the knowl-

edge of the measurements and the history up to time-stamp (k − 1)T . After that

prediction, the corresponding MMSE matrix is expressed as:

M(k|k − 1) = AM(k − 1|k − 1)AT + Q (D.4)

Correction Phase: This phase consists in correcting the error committed during

the prediction, based on the observed measurements at time-stamp kT . Hence, the

Kalman gain matrix includes a weighting between the predicted estimates and the

current measurements, and is given as:

K(k) = M(k|k − 1)HT (k)(Σ(k) + H(k)M(k|k − 1)HT (k))−1 (D.5)

In the classical equations (e.g. in the case of KF), the matrix H(k) includes a linear

relation between the state and the measurements. Since for positioning applications,

we usually have a non-linear dependency, thus the observation equation is linearized

around the predicted state-space vector as follows:

h(S(k)) ≈ h(Ŝ(k|k − 1)) + H(k)(S(k)− Ŝ(k|k − 1)) (D.6)

where the Jacobian observation matrix is:

H(k) =
∂h(S(k))

∂S(k)
|S(k)=Ŝ(k|k−1) (D.7)

Hence, it includes the derivations of the observation equation with respect to the

variables of the state-space vector. Finally, the correction step combines the pre-

dicted estimates with the current measurements weighted with the Kalman gain

matrix. Thus, the �nal estimate of the state-space vector is given as follows:

Ŝ(k|k) = Ŝ(k|k − 1) + K(k)(d̃(k)− h(Ŝ(k|k − 1))) (D.8)

The corresponding MMSE matrix is obtained as:

M(k|k) = (I6n −K(k)H(k))M(k|k − 1) (D.9)
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