A. Aamodt and E. Plaza, Case-Based Reasoning: Foundational Issues, Methodological Variations, and System Approaches, pp.39-59, 1994.

P. Agre and D. Chapman, Pengi, Proceedings of the 6th National Conference on Artificial Intelligence (AAAI-87), pp.268-272, 1987.
DOI : 10.1017/CBO9780511571169.014

J. S. Aikins, Prototypical knowledge for expert systems, Artificial Intelligence, vol.20, issue.2, pp.163-210, 1983.
DOI : 10.1016/0004-3702(83)90017-6

V. Akman and M. Surav, The Use of Situation Theory in Context Modeling, Computational Intelligence, vol.13, issue.3, pp.427-438, 1997.
DOI : 10.1111/0824-7935.00046

K. Althoff, F. Maurer, and R. Rehbold, Multiple Knowledge Acquisition Strategies in MOLTKE", in Current Trends in Knowledge Acquisition, Proceedings of the Fourth European Knowledge Acquisition Workshop (EKAW'90), pp.21-40, 1990.

D. Angluin, Queries and concept learning, Machine Learning, vol.27, issue.4, pp.319-342, 1988.
DOI : 10.1007/BF00116828

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.454.4681

P. Bareiss, . Wier, E. R. Bareiss, B. W. Porter, and C. C. Wier, Protos: an exemplar-based learning apprentice, Machine Learning, pp.112-127, 1990.
DOI : 10.1016/S0020-7373(88)80012-9

J. Barwise and J. Perry, Situations and Attitudes, The Journal of Philosophy, vol.78, issue.11, 1983.
DOI : 10.2307/2026578

J. S. Bennett, ROGET: A knowledge-based system for acquiring the conceptual structure of a diagnostic expert system, Journal of Automated Reasoning, vol.1, issue.1, pp.49-84, 1985.
DOI : 10.1007/BF00244289

F. Bergadano and A. Giordana, Guiding Induction with Domain Theories, Machine Learning, pp.474-492, 1990.

F. Bergadano and D. Gunetti, An Interactive System to Learn Functional Logic Programs, Proceedings of the 13th International Joint Conference on Artificial Intelligence (IJCAI'93, pp.1044-1049, 1993.

G. Bisson and . Kbg, Induction de bases de connaissances en logique des prédicats, 1993.

D. G. Bobrow and B. Fraser, An Augmented State Transition Network Analysis Procedure, Proceedings of the International Joint Conference on Artificial Intelligence (IJCAI'69), pp.557-567, 1969.

J. Boose, A knowledge acquisition program for expert systems based on personal construct psychology, International Journal of Man-Machine Studies, vol.23, issue.5, pp.495-525, 1985.
DOI : 10.1016/S0020-7373(85)80055-9

J. Boose, J. Bradshaw, J. Koszarek, and D. Shema, Knowledge acquisition techniques for group decision support, Knowledge Acquisition, vol.5, issue.4, pp.405-447, 1993.
DOI : 10.1006/knac.1993.1015

R. J. Brachman, On the Epistemological Status of Semantic Networks, Associative Networks: Representation and Use of Knowledge by Computers, pp.3-50, 1979.

J. Breuker, Components of problem solving and types of problems, A future for Knowledge Acquisition, Proceedings of the 8th European Knowledge Acquisition WorkshopBreslow et Aha, pp.118-136, 1994.
DOI : 10.1007/3-540-58487-0_7

L. Breslow and D. Aha, Simplifying decision trees: A survey, The Knowledge Engineering Review, vol.12, issue.01, pp.1-40, 1997.
DOI : 10.1017/S0269888997000015

P. Brézillon, Interpretation and rule packet in expert systems Application to the SEPT expert system, in Knowledge Based Computer Systems, Lectures Notes in Artificial Intelligence, vol.444, pp.78-87, 1990.

P. Brézillon, Context in Human-Machine Problem Solving: A Survey, 1996.

. Brézillon, P. Cavalcanti-]-brézillon, and M. Cavalcanti, Modeling and Using Context: Report on the First International and Interdiciplinary Conference CONTEXT-97, Knowledge Engineering Review, vol.12, issue.4, pp.1-10, 1997.

R. A. Brooks, Intelligence without representation, Artificial Intelligence, vol.47, issue.1-3, pp.139-159, 1991.
DOI : 10.1016/0004-3702(91)90053-M

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.12.1680

B. Buchanan and E. Shortliffe, Rule-Based Expert Systems, 1984.

D. Cañamero, Modelling Plan Recognition for Decision Support, A future for Knowledge Acquisition, Proceedings of the 8th European Knowledge Acquisition Workshop, pp.158-177, 1994.

D. Cañamero, REPLACE: un modèle pour la reconnaissance de plans, 1995.

D. Cañamero, D. Et-kodratoff-]-cañamero, J. F. Delannoy, and Y. Kodratoff, Explications dans un système de reconnaissance de plans pour l'aide à la décision, Actes des deuxièmes journées Explication du PRC-GDR-IA, 1992.

L. Carbonara and D. Sleeman, Improving the efficiency of Knowledge Base Refinement, Proceedings of the 13th International Conference on Machine Learning (ICML'96, pp.78-86, 1996.

J. G. Carbonell, Derivational Analogy: A Theory of Reconstruction Problem Solving and Expertise Acquisition, Machine Learning: An Artificial Approach, pp.371-392, 1986.

J. G. Carbonell and Y. Gil, Learning by Experimentation: The Operator Refinement Method, Machine Learning, pp.191-213, 1990.

J. G. Carbonell, C. A. Knoblock, and S. Minton, PRODIGY, Architectures for Intelligence, pp.241-278, 1991.
DOI : 10.1145/122344.122353

K. Causse, MCC: vers l'acquisition de connaissances de contrôle, Thèse de l, 1994.

J. Cendrowska, PRISM: An algorithm for inducing modular rules, International Journal of Man-Machine Studies, vol.27, issue.4, pp.349-370, 1987.
DOI : 10.1016/S0020-7373(87)80003-2

B. Chandrasekaran, Generic Tasks in Knowledge-Based Reasoning: High-Level Building Blocks for Expert System Design, IEEE Expert, vol.1, issue.3, pp.23-29, 1986.
DOI : 10.1109/MEX.1986.4306977

J. Chandrasekaran, B. Chandrasekaran, and T. R. Johnson, Generic Tasks and Task Structures: History, Critique and New Directions, Second Generation Expert Systems, pp.237-272, 1993.
DOI : 10.1007/978-3-642-77927-5_12

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.21.1227

J. Cheng, U. M. Fayyad, K. B. Irani, and Z. Qian, Improved Decision Trees: A Generalized Version of ID3, Proceedings of the 5th International Conference on Machine Learning (ICML'88, pp.100-106, 1988.
DOI : 10.1016/B978-0-934613-64-4.50016-5

W. J. Clancey, Notes on ???Epistemology of a rule-based expert system???, Artificial Intelligence, vol.59, issue.1-2, pp.215-251, 1983.
DOI : 10.1016/0004-3702(93)90186-F

W. J. Clancey, Heuristic classification, Artificial Intelligence, vol.27, issue.3, pp.289-350, 1985.
DOI : 10.1016/0004-3702(85)90016-5

W. J. Clancey, The Frame of Reference Problem in the Design of Intelligent Machines, Architectures for Intelligence, pp.357-423, 1991.

W. J. Clancey, Situated Cognition: Stepping out of Representational Flatland, AI Communications, vol.4, issue.23, pp.109-112, 1991.

W. J. Clancey, Model construction operators, Artificial Intelligence, vol.53, issue.1, pp.1-115, 1992.
DOI : 10.1016/0004-3702(92)90037-X

W. J. Clancey, Situated Action: A Neuropsychological Interpretation Response to Vera and Simon, Cognitive Science, vol.17, issue.1, pp.87-116, 1993.
DOI : 10.1207/s15516709cog1701_7

W. J. Clancey, The knowledge level reinterpreted: Modeling socio-technical systems, International Journal of Intelligent Systems, vol.1, issue.1, pp.33-50, 1993.
DOI : 10.1002/int.4550080104

W. J. Clancey, The Conceptual Nature of Knowledge, Situations and Activities, Human and Machine Expertise in Context, pp.247-291, 1997.

W. J. Clancey, Situated Cognition, On Human Knowledge and Computer Representations, 1988.

H. Cohen, How to draw three people in a botanical garden, Proceedings of the 7th National Conference on Artificial Intelligence (AAAI'88), pp.846-855, 1988.

P. Compton, Insight and Knowledge", in Working Notes of Cognitive Aspects of Knowledge Acquisition, pp.57-63, 1992.

P. Compton and R. Jansen, A philosophical basis for knowledge acquisition, Knowledge Acquisition, vol.2, issue.3, pp.241-258, 1990.
DOI : 10.1016/S1042-8143(05)80017-2

P. Compton, B. Kang, P. Preston, and M. Mulholland, Knowledge acquisition without analysis, Proceedings of the 7th European Knowledge Acquisition For Knowledge- Based Systems Workshop (EKAW'93, pp.277-299, 1993.
DOI : 10.1007/3-540-57253-8_59

P. Compton, P. Preston, B. Kang, and T. Yip, Local Patching Produces Compact Knowledge Bases", in A future for Knowledge Acquisition, Proceedings of the 8th European Knowledge Acquisition Workshop (EKAW'94), pp.104-117, 1994.

P. Compton, P. Preston, G. Edwards, and B. Kang, Knowledge based systems that have some idea of their limits, Proceedings of Banff Knowledge Acquisition For Knowledge- Based Systems Workshop (KAW'96), 1996.

A. Srinivasan and S. Sammut, RDR: Possibilities and Limitations, Proceedings of the 7th Banff Knowledge Acquisition for Knowledge-Based Systems Workshop (KAW'91), pp.6-7, 1991.

A. Cornuéjols, De l'Apprentissage Incrémental par Adaptation Dynamique : le système INFLUENCE, Thèse de l, 1989.

A. Cornuéjols, Analogie, principe d'économie et complexité algorithmique, Journées Acquisiton, Apprentissage (JAVA'96), pp.233-247, 1996.

S. Craw and D. Sleeman, Automating the Refinement of Knowledge-Based Systems, Proceedings of the 9h European Conference on Artificial Intelligence (ECAI'90), pp.167-172, 1990.

S. Craw and D. Sleeman, Knowledge-based Refinement of Knowledge Based Systems, 1995.

J. David, J. Krivine, and R. B. , Building and Maintaining a Large Knowledge-Based System from a ???Knowledge Level??? Perspective: the DIVA Experiment, Second Generation Expert Systems, pp.376-401, 1993.
DOI : 10.1007/978-3-642-77927-5_17

R. Davis, Interactive transfer of expertise: Acquisition of new inference rules, Artificial Intelligence, vol.12, issue.2, pp.121-157, 1979.
DOI : 10.1016/0004-3702(79)90014-6

R. Davis and B. Buchanan, Meta-Leval Knowledge-Overview and Applications, Proceedings of the Fifth International Joint Conference on Artificial Intelligence (IJCAI'77), pp.920-927

R. Davis, B. Buchanan, and E. Shortliffe, Production rules as a representation for a knowledge-based consultation program???, Artificial Intelligence, vol.8, issue.1, pp.15-45, 1977.
DOI : 10.1016/0004-3702(77)90003-0

G. Dejong, Generalizations Based on Explanations, Proceedings of the Seventh International Joint Conference on Artificial Intelligence (IJCAI'81, pp.67-69, 1981.

G. Dejong and R. Mooney, Explanation-based learning: An alternative view, Machine Learning 1, pp.145-176, 1986.
DOI : 10.1007/BF00114116

. Dent, . Boticario, M. Mcdermott, . Zabowski, L. Dent et al., A Personal Learning Apprentice, Proceedings of the 10th National Conference on Artificial Intelligence (AAAI'92), pp.96-103, 1992.

D. Kleer and J. , An assumption-based TMS, Artificial Intelligence, vol.28, issue.2, pp.127-162, 1986.
DOI : 10.1016/0004-3702(86)90080-9

D. Raedt, L. Bruynooghe, and M. , Interactive concept-learning and constructive induction by analogy, Machine Learning, vol.4, issue.2, pp.107-150, 1992.
DOI : 10.1007/BF00992861

K. Devlin, Logic and information, 1991.

S. Donoho and D. Wilkins, ODYSSEUS2: Addressing the Challenges of Apprenticeship, Proceedings of the 8th Banff Knowledge Acquisition for Knowledge-Based Systems Workshop, pp.14-15, 1994.

L. Eshelman, D. Ehret, J. Macdermott, and M. Tan, MOLE: a tenacious knowledge-acquisition tool, International Journal of Man-Machine Studies, vol.26, issue.1, pp.41-54, 1987.
DOI : 10.1016/S0020-7373(87)80034-2

E. Feigenbaum, The Art of Artificial Intelligence: Themes and case studies of Knowledge Engineering, Proceedings of the Fifth International Joint Conference on Artificial Intelligence (IJCAI'77), pp.1014-1029, 1995.

J. Ferber, Les systèmes multi-agents, vers une intelligence collective, 1995.

K. Fikes, R. Fikes, and T. Keller, The role of frame-based representation in reasoning, Communications of the ACM, vol.28, issue.9, pp.906-920, 1985.
DOI : 10.1145/4284.4285

H. Fikes, . Nilsson, R. E. Fikes, P. E. Hart, and N. J. Nilsson, Learning and executing generalized robot plans, Artificial Intelligence, vol.3, issue.2, pp.251-288, 1972.
DOI : 10.1016/0004-3702(72)90051-3

D. H. Fisher, Knowledge acquisition via incremental conceptual clustering, Machine Learning, vol.1, issue.2, pp.139-172, 1987.
DOI : 10.1007/BF00114265

C. Floyd, A Systematic Look at Prototyping, Approaches to Prototyping, pp.1-18, 1984.
DOI : 10.1007/978-3-642-69796-8_1

J. Fodor, The Modularity Of Mind, 1983.

B. R. Gaines, Induction and visualization of rules with exceptions, Proceedings of the 7th Banff Knowledge Acquisition for Knowledge-Based Systems Workshop (KAW'91), pp.7-8, 1991.

B. R. Gaines, Transforming Rules and Trees into Comprehensible Knowledge Structures, Advances in Knowledge Discovery and Data Mining, pp.205-226, 1996.

B. R. Gaines and P. Compton, Induction of ripple-down rules applied to modeling large databases, Journal of Intelligent Information Systems, vol.27, issue.3, pp.211-228, 1995.
DOI : 10.1007/BF00962234

B. R. Gaines and M. L. Shaw, A Networked, Open Architecture Knowledge Management System, Proceedings of Banff Knowledge Acquisition For Knowledge-Based Systems Workshop (KAW'96), 1996.

M. Georgeff, Reasoning about procedural knowledge, 5th Computers in Aerospace Conference, 1985.
DOI : 10.2514/6.1985-5046

M. Georgeff and U. Bonollo, Procedural Expert Systems, Proceedings of the Eight International Joint Conference on Artificial Intelligence (IJCAI'83, pp.151-157, 1983.

M. Georgeff, A. Lansky, and P. Bessiere, A Procedural Logic, Proceedings of the Nine International Joint Conference on Artificial Intelligence, pp.673-680, 1985.
URL : https://hal.archives-ouvertes.fr/hal-00106198

. Ginsberg and A. Ginsberg, Automatic Refinement of Expert System Knowledge Bases, 1988.

. Ginsberg and A. Ginsberg, Knowledge-Base Reduction: A New Approach to Checking Knowledge-Bases for Inconsistency & Redundancy, Proceedings of the 7th National Conference on Artificial Intelligence (AAAI'88), pp.585-589, 1988.

. Ginsberg and A. Ginsberg, Theory Revision via Prior Operationalization, Proceedings of the 7th National Conference on Artificial Intelligence (AAAI'88), pp.590-595, 1988.

A. Ginsberg, Theory Reduction, Theory Revision and Retranslation, Proceedings of the 8th National Conference on Artificial Intelligence (AAAI'90), pp.777-782, 1990.

S. Grant, Modeling complex cognition: contextual modularity and transitions, Proceedings of the 4th International Conference on User Modeling, pp.157-162, 1994.

T. Gruber, Automated Knowledge Acquisition of Strategic Knowledge, Machine Learning, vol.4, pp.293-336, 1989.

T. Gruber, The Acquisition of Strategic Knowledge, 1989.

C. Hewitt, P. Bishop, and R. Steiger, A Universal Modular ACTOR Formalism for Artificial Intelligence, Proceedings of the 3th International Joint Conference on Artificial Intelligence (IJCAI'73), pp.235-245, 1973.

D. Hofstadter, Eveil après le rêve booléen", ou " sous-cognition computationnelle, 1988.

P. Jackson, Introduction to Expert Systems, 1990.

K. Jaspers, Die Geistige Situation der Zeit, 1932.
DOI : 10.1515/9783110805666

L. P. Kaelbling, An Architecture for Intelligent Reactive Systems Reasoning About Actions & Plans, Proceedings of the 1986 Workshop, pp.395-411, 1986.

. Karbach, . Linster, . Voss, W. Karbach, M. Linster et al., Models, methods, roles and tasks: Many labels???one idea?, Knowledge Acquisition, vol.2, issue.4, pp.279-299, 1990.
DOI : 10.1016/S1042-8143(05)80011-1

B. Kang and P. Compton, Towards a Process Memory, in Working Notes of " Cognitive Aspects of Knowledge Acquisition, pp.139-146, 1992.

B. Kang, P. Compton, and P. Preston, Simulated Expert Evaluation of Multiple Classification Ripple Down Rules, Proceedings of the 11th Banff Knowledge Acquisition For Knowledge-Based Systems Workshop (KAW'98), p.4, 1998.

D. Kayser, La représentation des connaissances, Hermès, 1997.

G. A. Kelly, The Psychology of Personal Constructs, 1955.

G. Klinker, C. Bhola, G. Dallemagne, D. Marques, and J. Macdermott, Usable and reusable programming constructs, Knowledge Acquisition, vol.3, issue.2, pp.117-135, 1991.
DOI : 10.1016/1042-8143(91)90001-4

Y. Kodratoff, Leçons d'apprentissage symbolique, Cépaduès Editions, 1986.

Y. Kodratoff, Guest Editor's Introduction: The Comprehensibility Manifesto, AI Communications, vol.7, issue.2, pp.83-85, 1994.

. Kodratoff, . Ganascia, Y. Kodratoff, and J. Ganascia, Improving the Generalization Step in Learning, Machine Learning: An Artificial Approach, pp.215-244, 1986.

J. Kolodner, Case-Based Reasoning, 1993.

R. Kohavi, Bottom-up induction of oblivious read-once decision graphs, Proceedings of the European Conference on Machine Learning, pp.154-169, 1994.
DOI : 10.1007/3-540-57868-4_56

W. Kowalczyk and J. Treur, On the use of a formalized generic task model in knowledge acquisition", in Current Trends in Knowledge Acquisition, Proceedings of the Fourth European Knowledge Acquisition Workshop (EKAW'90), pp.198-221, 1990.

J. Krivine and J. David, Acquisition de connaissances expertes à partir de situationstypes, huitièmes journées internationales " Les systèmes experts et leurs applications, 1988.

J. Krivine and J. David, L'acquisition des connaissances vue comme un processus de modélisation : méthodes et outils, Intellectica, vol.12, pp.101-137, 1991.

T. Kuhn, The structure of scientific revolutions, trad. fr.: Meyer L., La structure des révolutions scientifiques, 1970.

J. Laurière and I. Artificielle, résolution de problèmes par l'Homme et la machine, 1986.

J. Lave, Cognition in Practice, 1988.
DOI : 10.1017/CBO9780511609268

J. Lebbe and R. Vignes, Génération de graphes d'identification à partir de description de concepts, Induction symbolique et numérique à partir de données Cépaduès Editions, pp.193-239, 1997.

B. Lemaire, B. Safar, and C. Yonnet, L'acquisition des connaissances d'explication, Acquisition et Ingénierie des Connaissances, tendances actuelles Cépaduès Editions, pp.367-384, 1996.

P. Lévy, Les technologies de l'intelligence, 1990.

H. Lieberman, Knowledge Acquisition By Demonstration, Papers from the AAAI Symposium " Acquisition, Learning & Demonstration: Automating Tasks for Users, pp.62-65, 1996.

M. Linster, Explicit and operational models as a basis for second generation knowledge acquisition tools, In Second Generation Expert Systems, pp.465-494, 1993.
DOI : 10.1007/978-3-642-77927-5_21

J. Maccarthy and P. J. Hayes, Some Philosophical Problems from the Standpoint of Artificial Intelligence, Machine Intelligence, vol.4, pp.463-502, 1969.
DOI : 10.1016/B978-0-934613-03-3.50033-7

J. L. Macclelland, Nature, Nurture, and Connections: Implications of Connectionist Models for Cognitive Development, In Architectures for Intelligence, pp.41-73, 1988.

J. Macdermott, Preliminary Steps Towards a Taxonomy of Problem-Solving Methods", in Automating Knowledge Acquisition for Expert Systems, pp.225-256, 1988.

S. Marcus, SALT: A Knowledge-Acquisition Tool for Propose-and-Revise Systems, Automating Knowledge Acquisition for Expert Systems, pp.81-124, 1988.
DOI : 10.1007/978-1-4684-7122-9_4

N. Mathé and S. Kedar, Increasingly Automated Procedure Acquisition in Dynamic Systems", in Proceedings of Banff Knowledge Acquisition For Knowledge-Based Systems Workshop (KAW'92), octobre 1992, 1992.

N. Matta and N. Aussenac-gilles, Le schéma du modèle conceptuel, étape dans la modélisation des connaissances, Acquisition et Ingénierie des Connaissances, tendances actuelles Cépaduès Editions, pp.29-48, 1996.

F. Maurer, Knowledge base maintenance and consistency checking in MOLTKE/HyDi, Current Developments in Knowledge Acquisition, Proceedings of the 6th European Knowledge Acquisition Workshop, pp.337-352, 1992.
DOI : 10.1007/3-540-55546-3_49

T. Menzies, Assessing Responses to Situated Cognition, Proceedings of Banff Knowledge Acquisition For Knowledge-Based Systems Workshop (KAW'96), 1996.

R. S. Michalski, A Theory and Methodology Of Inductive Learning, Machine Learning: An Artificial Intelligence Approach, pp.162-172, 1983.

M. Miller and I. Goldstein, Structured Planning and Debugging, Proceedings of the Fifth International Joint Conference on Artificial Intelligence (IJCAI'77), pp.773-779, 1977.

M. Minsky, A FRAMEWORK FOR REPRESENTING KNOWLEDGE, Mind Design, pp.95-128, 1981.
DOI : 10.1016/B978-1-4832-1446-7.50018-2

T. M. Mitchell, Version spaces: A Candidate Elimination Approach to Rule Learning, Proceedings of the Fifth International Joint Conference on Artificial Intelligence (IJCAI'77), pp.305-310

T. M. Mitchell, Generalization as search, Artificial Intelligence, vol.18, issue.2, pp.203-226, 1983.
DOI : 10.1016/0004-3702(82)90040-6

T. M. Mitchell, Learning and Problem Solving, Proceedings of the Eight International Joint Conference on Artificial Intelligence (IJCAI'83, pp.1139-1151, 1983.

T. M. Mitchell, R. M. Keller, and S. Kedar-cabelli, Explanation-Based Generalization : An Unifying View, Machine Learning, vol.1, pp.47-80, 1986.

T. M. Mitchell, S. Mabadevan, and L. Steinberg, LEAP, Machine Learning: An Artificial Approach, pp.271-301, 1990.
DOI : 10.1016/B978-0-08-051055-2.50016-X

T. M. Mitchell, P. E. Utgoff, and R. Banerji, Learning by Experimentation: Acquiring and Refinig Problem-Solving Heuristics, Machine Learning: An Artificial Intelligence Approach, pp.163-190, 1983.

K. Morik, Sloppy modeling, Knowledge Representation and Organization in Machine Learning, pp.107-134, 1989.
DOI : 10.1007/BFb0017219

J. Mostow, Design by Derivational Analogy: Issues in the Automated Replay of Design Plans, Machine Learning: Paradigms and Methods, pp.119-184, 1990.

M. Musen, Automated Support for Building and Extending Expert Models, Machine Learning, vol.4, pp.347-375, 1989.

C. Nédellec, A SMALLEST GENERALIZATION STEP STRATEGY, Proceedings of the 8th International Workshop (ML'91, pp.529-533, 1991.
DOI : 10.1016/B978-1-55860-200-7.50108-2

C. Nédellec, APT, apprentissage interactif de règles de résolution de problèmes en présence de théorie du domaine, Thèse de l, 1994.

C. Nédellec, APT, un système d'apprentissage coopératif, Acquisition et Ingénierie des Connaissances, tendances actuelles Cépaduès Editions, pp.307-327, 1996.

C. Nédellec, Cooperative revision with APT system, Deliverable projet ESPRIT Inductive Logic Programming

C. Nédellec, C. Nédellec, and K. Causse, Knowledge refinement using Knowledge Acquisition and Machine Learning Methods, Current Developments in Knowledge Acquisition, Proceedings of the 6th European Knowledge Acquisition Workshop, pp.171-190, 1992.
DOI : 10.1007/3-540-55546-3_40

C. Nédellec, C. Rouveirol, H. Adé, F. Bergadano, and B. Tausend, Declarative Bias in Inductive Logic Programming, Advances in Inductive Logic Programming, pp.82-103, 1996.

A. Newell, The knowledge level, Artificial Intelligence, vol.18, issue.1, pp.87-127, 1982.
DOI : 10.1016/0004-3702(82)90012-1

D. Ourston and R. J. Mooney, Changing the Rules : A Comprehensive Approach To Theory Refinement, Proceedings of the 8th National Conference on Artificial Intelligence (AAAI'90, pp.815-820, 1990.

D. Ourston and R. Mooney, Theory refinement combining analytical and empirical methods, Artificial Intelligence, vol.66, issue.2, pp.311-344, 1994.
DOI : 10.1016/0004-3702(94)90028-0

S. Patil, . Schwartz, R. S. Patil, P. Szolovits, and W. B. Schwartz, Causal Understanding of Patient Illness in Medical Diagnosis, Proceedings of the Seventh International Joint Conference on Artificial Intelligence (IJCAI'81, pp.893-899, 1981.
DOI : 10.1007/978-1-4612-5108-8_16

J. Pierrel, Dialogue oral homme-machine, 1987.
URL : https://hal.archives-ouvertes.fr/inria-00525166

J. Pitrat, Penser l'informatique autrement, 1993.

L. Poittevin, Une proposition de représentation explicite des connaissances : les nodules de situation, Note de Recherche

L. Poittevin, Comprendre pour réviser : comment la situation peut-elle s'expliquer ?, Actes des 3èmes journées Explication, pp.231-243, 1996.

L. Poittevin, REVINOS : un outil de révision interactive s'appuyant sur la notion de situation, Actes des Journées Ingénierie des Connaissances et Apprentissage Automatique (JICAA'97, pp.467-580, 1997.

L. Poittevin, Building Knowledge Bases with Situations to Help the Cooperative Revision, Proceedings of the 11th Banff Knowledge Acquisition For Knowledge-Based Systems Workshop (KAW'98), p.3, 1998.

K. Popper, Objective Knowledge, An Evolutionary Approach, 1979.

P. Preston, P. Compton, G. Edwards, and B. Kang, An Implementation of Multiple Classification Ripple Down Rules, Proceedings of Banff Knowledge Acquisition For Knowledge-Based Systems Workshop (KAW'96), 1996.

E. Puerta, T. Et-musen-]-puerta, A. R. Egar, J. W. Tu, S. W. Musen et al., A multiple-method knowledge-acquisition shell for the automatic generation of knowledge-acquisition tools, Knowledge Acquisition, vol.4, issue.2, pp.171-196, 1992.
DOI : 10.1016/1042-8143(92)90025-V

J. R. Quinlan, Induction of decision trees, Machine Learning, vol.1, issue.1, pp.81-106, 1986.
DOI : 10.1007/BF00116251

J. R. Quinlan, Learning logical definitions from relations, Machine Learning, vol.2, issue.3, pp.239-266, 1990.
DOI : 10.1007/BF00117105

R. Et-vanwelkenhuysen-]-rademakers, P. Vanwelkenhuysen, and J. , Generic Models and Their Support in Modeling Problem Solving Behavior, In Second Generation Expert Systems, pp.350-375, 1993.

. Reinders, . Vinkhuyzen, . Voss, . Akkermans, . Balder et al., A Conceptual Modelling Framework for Knowledge-Level Reflection, AI Communications, vol.4, issue.23, pp.74-87, 1991.

R. Reiter, A logic for default reasoning, Artificial Intelligence, vol.13, issue.1-2, 1980.
DOI : 10.1016/0004-3702(80)90014-4

J. Richard, Les activités mentales : comprendre, raisonner, trouver des solutions, 1990.

W. E. Riddle, Advancing the State of the Art in Software System Prototyping, Approaches to Prototyping, pp.19-26, 1984.
DOI : 10.1007/978-3-642-69796-8_2

C. Riesbeck and R. Schank, Inside Case-Based Reasoning, 1989.

R. L. Rivest, Learning decision lists, Machine Learning, pp.229-246, 1987.
DOI : 10.1007/BF00058680

J. Robinet, Situation, Encyclopédie Philosophique Universelle, Dictionnaire des notions philosophiques, 1990.

R. Et-kaelbling-]-rosenschein, S. Kaelbling, and L. P. , A situated view of representation and control, Artificial Intelligence, vol.73, issue.1-2, pp.149-173, 1995.
DOI : 10.1016/0004-3702(94)00056-7

S. Russell and P. Norvig, Artificial Intelligence, A Modern Approach, 1990.

L. Saitta, M. Botta, and P. Neri, Multistrategy Learning and Theory Revision, Machine Learning, vol.11, issue.23, pp.153-172, 1993.

C. Sammut and R. B. Banerji, Learning Concepts By Asking Questions, Machine Learning: An Artificial Approach, pp.167-192, 1986.

J. Sandberg and B. Wielenga, How situated is cognition ?, Proceedings of the 12th International Joint Conference on Artificial Intelligence (IJCAI'91, pp.341-346, 1991.

R. Schank, Dynamic Memory: A Theory of Reminding and Learning in Computers and People, 1982.

R. Schank, Looking at Learning, Proceedings of the European Conference on Artificial Intelligence (ECAI'82), pp.11-18, 1982.

J. Schlimmer and D. Fischer, A Case Study of Incremental Concept Induction, Proceedings of the 5th National Conference on Artificial Intelligence (AAAI'86), pp.496-501, 1986.

M. J. Schoppers, The use of dynamics in an intelligent controller for a space faring rescue robot, Artificial Intelligence, vol.73, issue.1-2, pp.175-230, 1995.
DOI : 10.1016/0004-3702(94)00018-V

N. Shadbolt and B. Wielenga, Knowledge-Based Knowledge Acquisition : The next generation of support tools", in Current Trends in Knowledge Acquisition, Proceedings of the Fourth European Knowledge Acquisition Workshop (EKAW'90), pp.318-338, 1990.

E. Y. Shapiro, An Algorithm that Infers Theories from Facts, Proceedings of the Seventh International Joint Conference on Artificial Intelligence (IJCAI'81), pp.446-451, 1981.

M. L. Shaw and B. R. Gaines, Personal construct psychology foundations for knowledge acquisition and representation, Proceedings of the 7th European Knowledge Acquisition For Knowledge- Based Systems Workshop (EKAW'93, pp.256-276, 1993.
DOI : 10.1007/3-540-57253-8_58

M. L. Shaw and B. R. Gaines, WebGrid: Knowledge Modeling and Inference through the World Wide Web, Proceedings of Banff Knowledge Acquisition For Knowledge-Based Systems Workshop (KAW'96), 1996.

. Smith, B. D. Smith, and P. S. Rosenbloom, Incremental Non-Backtracking Focusing: A Polynomially Bounded Generalization Algorithm for Version Space, Proceedings of the 8th National Conference on Artificial Intelligence (AAAI'90), pp.848-853, 1990.

. Smith, M. Winston, . Buchanan, R. Smith, H. Winston et al., Representation and Use of Explicit Justifications for K B Refinement, Proceedings of the Nine International Joint Conference on Artificial Intelligence, pp.673-680, 1985.

P. Smolenski, IA connexionniste, IA symbolique et cerveau, Introduction aux sciences cognitives, pp.77-106, 1992.

E. Sommer, An Approach to Quantifying the Quality of Induced Theories, Proceedings of IJCAI-95 Workshop, pp.93-107, 1995.

L. Steels, Components of Expertise, AI magazine 11, pp.28-49, 1990.

L. Steels, The Componentiel framework and its role in reusability, Second Generation Expert Systems, pp.273-298, 1993.

G. Tecuci, Cooperation in Knowledge Base Refinement, Proceedings of the 9th International Workshop on Machine Learning (ML'92), pp.445-450, 1992.
DOI : 10.1016/B978-1-55860-247-2.50062-0

G. Tecuci and Y. Kodratoff, APPRENTICESHIP LEARNING IN IMPERFECT DOMAIN THEORIES, Machine Learning, pp.514-551, 1990.
DOI : 10.1016/B978-0-08-051055-2.50028-6

P. Terpstra, G. Van-heijst, N. Shadbolt, and B. Wielenga, Knowledge Acquisition Process Support Through Generalised Directive Models, In Second Generation Expert Systems, pp.428-455, 1993.

J. Thomas, Vers l'intégration de l'apprentissage symbolique et de l'acquisition de connaissances basées sur les modèles: le système ENIGME, Thèse de troisième cycle à l, 1996.

J. Thomas, P. Laublet, and J. Ganascia, A machine learning tool designed for a model-based knowledge acquisition approach, Proceedings of the 7th European Knowledge Acquisition For Knowledge-Based Systems Workshop (EKAW'93, pp.124-138, 1993.
DOI : 10.1007/3-540-57253-8_51

R. M. Turner, Context-sensitive Reasoning for Autonomous Agents and Cooperative Distributed Problem Solving Using Knowledge in its Context, Proceedings of the IJCAI-93 Workshop on, pp.143-153, 1993.

P. Utgoff, Incremental Induction of Decision Trees, Machine Learning, vol.4, issue.2, pp.161-186, 1989.
DOI : 10.1023/A:1022699900025

W. Van-de-velde, Reasoning, Behavior and Learning: A Knowledge Level Perspective, Cognitiva'90, pp.451-465, 1990.

. Van-harmelen, F. Bundy-]-van-harmelen, and A. Bundy, Explanation-based generalisation = partial evaluation, Artificial Intelligence, vol.36, issue.3, pp.401-412, 1988.
DOI : 10.1016/0004-3702(88)90088-4

Z. Van-someren, . Post, M. Van-someren, L. L. Zheng, W. Post et al., Models or Compiled Knowledge ? a Comparative Analysis and Proposed Integration, Current Trends in Knowledge Acquisition, Proceedings of the Fourth European Knowledge Acquisition Workshop (EKAW'90, pp.339-355, 1990.

F. Varela, E. Thompson, and E. Rosch, L'inscription corporelle de l'esprit, trad. fr

M. Veloso, PRODIGY / ANALOGY: Analogical Reasoning in General Problem Solving, Topics in Case-Based Reasoning Proceedings of the First European Workshop on Case-Based Reasoning (EWCBR'93), pp.33-50, 1993.

S. Vera, A. H. Vera, and H. A. Simon, Situated Action: A Symbolic Interpretation, Cognitive Science, vol.2, issue.1, pp.janvier-mars, 1993.
DOI : 10.1207/s15516709cog1701_2

C. Vrain, OGUST, Machine Learning, pp.360-382, 1990.
DOI : 10.1016/B978-0-08-051055-2.50020-1

B. J. Wielenga and J. A. Breuker, Models of Expertise, Proceedings of the Seventh European Conference on Artificial Intelligence (ECAI'86), pp.306-318, 1986.

. Wielenga, . Schreiber, . Breuker, B. J. Wielenga, A. T. Schreiber et al., KADS: a modelling approach to knowledge engineering, Knowledge Acquisition, vol.4, issue.1, pp.5-53, 1992.
DOI : 10.1016/1042-8143(92)90013-Q

. Wielenga, . Van-de-velde, . Schreiber, . Akkermans, B. J. Wielenga et al., Towards a Unification of Knowledge Modelling Approaches, Second Generation Expert Systems, pp.299-335, 1993.
DOI : 10.1007/978-3-642-77927-5_14

D. C. Wilkins, Knowledge Base refinement as improving an incorrect and incomplete domain theory, Machine Learning, pp.493-513, 1990.

T. Winograd, Frame Representations and the Declarative/Procedural Controversy", in Representation and Understanding: Studies in Cognitive Science, pp.185-210, 1975.

T. Winograd and F. Flores, On understanding computers and cognition: A new foundation for design, trad. fr.: Peytavin J-L, L'Intelligence Artificielle en question, 1986.
DOI : 10.1016/0004-3702(87)90026-9

P. H. Winston, Learning Structural Descriptions From Examples", in The Psychology of Computer Vision, MacGraw-Hill, pp.157-209, 1975.

J. Wogulis and M. Pazzani, A methodology for evaluating theory revision systems: Results with AUDREY IITransition network grammars for natural language analysis, Proceedings of the Thirteenth International Joint Conference on Artificial Intelligence (IJCAI'93, pp.1128-1134, 1970.

S. Wrobel, First Order Theory Refinement, Advances in Inductive Logic Programming, pp.14-33, 1996.

. De, typé" n'est pas comparé, la proposition est classée fausse (ex: si <fait1.fait6> était typé, par exemple ayant été déclarée comme étant une chaîne, la formule cidessus serait fausse également)

. Contenu-du-champ, actions " : evaluer: infos sur: enfant1 L'exécution de cette action pourra alors renvoyer par exemple les trois faits suivants: enfant1

. Contenu-du-champ, règles de choix " : si: enfant1.ville = 'Villeurbanne' alorsAller: n1; si: (enfant1.âge > 25) ET enfant1.sexe.masculin alorsAller: n2

. Contenu-du-champ, actions " : evaluer: caisseRattachement sur: affilie et: conjoint Faits renvoyés: affilie

. Le-graphe, Pour remplir cette tâche, le système peut être amené à donner des compléments d'informations au minitéliste, quant au contexte d'utilisation des documents (informations qui peuvent orienter le choix du document) Des contrôles peuvent aussi être effectués pour vérifier les droits du minitélisteaffilié relatifs au document demandé. La figure ci-dessus donne un aperçu du graphe " demandeDocuments " : les branches des nodules " lanceDemDuplicata1 " et " lanceDemEnveloppes1 " ont été raccourcies afin que les autres puissent apparaître lisiblement. Le contenu complet du graphe est donné ci-dessous, dans le langage utilisé pour stocker la base sous une forme textuelle. Le graphe est lancé avec un paramètre (valant "enveloppes, qui est stocké dans la MT avant l'activation du nodule initial, p.259

O. De and L. Revision, ils se sont succédé auxiliaire?(auxiliaire),quelAuxiliaire?(etre),verbePronominal?(nonPronominal),accordAvecLeSujet, Créez la nouvelle procédure et indiquez les faits qu'elle renvoie

. Ensuite, PARCOURS : REVINOS, informationManquante, nouvelleAction, nouveauNodule?, corrigeAction, EN MOINS : auxiliaire?(auxiliaire),quelAuxiliaire?(etre),verbePronominal?(nonPronominal)

E. Plus, Poursuit avec l'exemple : auxiliaire?(auxiliaire),quelAuxiliaire?(etre),verbePronominal?(nonPronominal), fonctionDuPronomRéfléchi?(pronomReflechiCOD),accordAvecLeSujet( Poursuit avec l'exemple : auxiliaire?(auxiliaire),quelAuxiliaire?(etre),verbePronominal?(nonPronominal), fonctionDuPronomRéfléchi?(pronomReflechiCOI),participePasséInvariable(, EXEMPLES VALIDÉS : auxiliaire?(auxiliaire),quelAuxiliaire?(etre),verbePronominal?(nonPronominal), fonctionDuPronomRéfléchi?(pronomReflechiCOD),accordAvecLeSujet(). auxiliaire?(auxiliaire),quelAuxiliaire?(etre),verbePronominal?(nonPronominal), fonctionDuPronomRéfléchi?(pronomReflechiCOI),participePasséInvariable(