.. Résultats-sur-les-composants-de-puissance, 84 2.3.2.1 Etude préliminaire des JFET type N (FL0288-09) Mesures contact du substrat reporté en surface ? Substrat, 1 Mesures Grille ? Source (P + -N-N + ) et Drain ? Source, p.86

J. Fonctionnement-des-composants and N. , 2.3.2.2.1 Caractérisation I ds (V ds ) en fonction de V gs

J. Fonctionnement-des-composants and P. , AE0695-02), p.93

.. Résultats-sur-les-composants-de-l-'étage-de-commande, 101 2.3.3.1 Etude préliminaire des JFET type N et P (R0413-01), Mesures Grille ? Source, Drain ? Source, p.101

/. Réalisation-du-contact-ohmique-ni, /. Ti, and P. Al-sur-sic-4h-type, 121 3.3.1 Préparation des échantillons et procédé de réalisation des contacts, p.121

.. Gravure-sèche-par-plasma, 35 i) Interaction plasma-surface, ., p.36

J. Achard, . Tallaire, . Bonnin, K. Lombardi, A. Hassouni et al., High quality MPACVD diamond single crystal growth: high microwave power density regime, these.pdf © [F. Laariedh], p.6175, 2007.
DOI : 10.1088/0022-3727/40/20/S04

A. Syrkin, V. Dmitriev, O. Kovalenkov, D. Bauman, and J. Crofton, Liquid-Phase Epitaxial Growth of Heavily Doped Al p-Type Contact Layers for SiC Devices and Resulting Ohmic Contacts, Materials Science Forum, vol.389, issue.393, pp.389-393, 2001.
DOI : 10.4028/www.scientific.net/MSF.389-393.291

W. Alexandrov, M. Wright, M. Pan, L. Weiner, J. H. Jiao et al., Demonstration of high voltage (600???1300 V), high current (10???140 A), fast recovery 4H-SiC p-i-n/Schottky(MPS) barrier diodes, Solid-State Electronics, vol.47, issue.2, pp.263-269, 2003.
DOI : 10.1016/S0038-1101(02)00205-8

B. J. Baliga, Power semiconductor device figure of merit for high-frequency applications, IEEE Electron Device Letters, vol.10, issue.10, p.455, 1989.
DOI : 10.1109/55.43098

]. J. Berzelius, Unterfuchungen über die Flufsfpathfäure und deren merkwürdigften Verbindungen, Annalen der Physik und Chemie, vol.1, pp.169-230, 1824.

S. Blanqué, R. Pérez, P. Godignon, N. Mestres, E. Morvan et al., Room Temperature Implantation and Activation Kinetics of Nitrogen and Phosphorus in 4H-SiC Crystals, Materials Science Forum, vol.457, issue.460, pp.457-460, 2004.
DOI : 10.4028/www.scientific.net/MSF.457-460.893

J. M. Bluet, J. Pernot, J. Camassel, S. Contreras, J. L. Robert et al., Activation of aluminum implanted at high doses in 4H???SiC, Journal of Applied Physics, vol.88, issue.4, p.1971, 2000.
DOI : 10.1063/1.1305904

H. Bracht, N. A. Stolwijk, M. Laube, and G. Pensl, Diffusion of boron in silicon carbide: Evidence for the kick-out mechanism, Applied Physics Letters, vol.77, issue.20, p.3188, 2000.
DOI : 10.1063/1.1325390

P. Brosselard, X. Jorda, M. Vellvehi, A. Perez-tomas, P. Godignon et al., 1.2 kV Rectifiers Thermal Behaviour: comparison between Si PiN, 4H-SiC Schottky and JBS diodes, 2007 European Conference on Power Electronics and Applications, pp.1-9, 2007.
DOI : 10.1109/EPE.2007.4417474

URL : https://hal.archives-ouvertes.fr/hal-00358819

J. Camassel and J. L. Robert, matériaux semi-conducteurs grand gap : SiC. Technique de l'ingénieur : traité électronique, 1990.

N. Camara and K. Zekentes, Study of the reactive ion etching of 6H???SiC and 4H???SiC in SF6/Ar plasmas by optical emission spectroscopy and laser interferometry, Solid-State Electronics, vol.46, issue.11, pp.1959-1963, 2002.
DOI : 10.1016/S0038-1101(02)00129-6

J. B. Casady and R. W. Johnson, Status of silicon carbide (SiC) as a wide-bandgap semiconductor for high-temperature applications: A review, Solid-State Electronics, vol.39, issue.10, pp.1409-1422, 1996.
DOI : 10.1016/0038-1101(96)00045-7

P. Chabert, N. Proust, J. Perrin, and R. W. Boswell, High rate etching of 4H???SiC using a SF6/O2 helicon plasma, Applied Physics Letters, vol.76, issue.16, p.2310, 2000.
DOI : 10.1063/1.126329

W. J. Choyke and G. , Physical Properties of SiC, MRS Bulletin, vol.339, issue.03, p.25, 1997.
DOI : 10.1557/S0883769400032723

]. T. Chu and R. B. Campbell, Chemical Etching of Silicon Carbide with Hydrogen, Journal of The Electrochemical Society, vol.112, issue.9, pp.955-956, 1965.
DOI : 10.1149/1.2423742

F. Laariedh, Technologie d'intégration monolithique des JFET latéraux, Thèse INSA de Lyon ? AMPERE, p.61

C. Contiero, P. Galbiati, M. Palmieri, G. Ricotti, and R. Stella, Smart power approaches VLSI complexity, Proceedings of the 10th International Symposium on Power Semiconductor Devices and ICs. ISPSD'98 (IEEE Cat. No.98CH36212), pp.11-15, 1998.
DOI : 10.1109/ISPSD.1998.702539

J. Crofton, Finding the optimum Al???Ti alloy composition for use as an ohmic contact to p-type SiC, Solid-State Electronics, vol.46, issue.1, pp.109-113, 2001.
DOI : 10.1016/S0038-1101(01)00208-8

J. Crofton, Titanium and aluminum-titanium ohmic contacts to p-type SiC, Solid-State Electronics, vol.41, issue.11, pp.1725-1729, 1997.
DOI : 10.1016/S0038-1101(97)00168-8

M. K. Das, J. J. Sumakeris, B. A. Hull, J. Richmond, S. Krishnaswami et al., Drift-Free, 50 A, 10 kV 4H-SiC PiN Diodes with Improved Device Yields, Materials Science Forum, vol.483, pp.965-968, 2005.

]. G. Ferro, New Approaches to <i>In Situ</i> Doping of SiC Epitaxial Layers, Advanced Materials Research, vol.324, issue.11, pp.14-19, 2011.
DOI : 10.4028/www.scientific.net/AMR.324.14

A. Fissela, U. Kaisera, W. Schro¨ter, F. Richter, and . Bechstedt, MBE growth and properties of SiC multi-quantum well structures, Applied Surface Science, vol.184, issue.1-4, pp.37-42, 2001.
DOI : 10.1016/S0169-4332(01)00473-1

A. Frazzetto, F. Giannazzo, R. Lo-nigro, V. Raineri, and F. Roccaforte, Structural and transport properties in alloyed Ti/Al Ohmic contacts formed on p-type Al-implanted 4H-SiC annealed at high temperature, Journal of Physics D: Applied Physics, vol.44, issue.25, p.255302, 2011.
DOI : 10.1088/0022-3727/44/25/255302

URL : https://hal.archives-ouvertes.fr/hal-00627540

]. K. Fujikawa, K. Shibata, T. Masuda, S. Shikata, I. Member et al., Fukumoto. 800 V 4H-SiC RESURF-Type Lateral, IEEE ELECTRON DEVICE LETTERS, 2008.

]. L. Fursin, J. H. Zhao, and M. Weiner, Nickel ohmic contacts to p- and n-type 4H-SiC, Electronics Letters, vol.37, issue.17, p.1092, 2001.
DOI : 10.1049/el:20010738

P. Friedrichs, H. Mitlehner, R. Schörner, K. O. Dohnke, and D. Stephani, High voltage, modular switch based on SiC VJFET -first results for a fast 4.5kV/1.2W configuration, Materials Science Forum, pp.433-436, 2003.

C. Hallin, R. Yakimova, B. Pecz, A. Georgieva, T. Marinova et al., Improved Ni ohmic contact on n-type 4H-SiC, Journal of Electronic Materials, vol.24, issue.3, p.119, 1997.
DOI : 10.1007/s11664-997-0136-2

J. Hancock, F. Bjoerk, M. Treu, R. Rupp, and T. Reimann, 2 nd generation 600V SiC Schottky diodes use merged pn/Schottky structure for surge overload protection, IEEE Applied Power Electronics Conference and Exposition, p.4, 2006.

F. Laariedh, Technologie d'intégration monolithique des JFET latéraux, Thèse INSA de Lyon ? AMPERE 62

R. Hattori, K. Kamei, K. Kusunoki, N. Yashiro, and S. Shimosaki, LPE Growth of Low Doped n-Type 4H-SiC Layer on On-Axis Substrate for Power Device Application, Materials Science Forum, vol.615, issue.617, pp.615-617, 2008.
DOI : 10.4028/www.scientific.net/MSF.615-617.141

]. S. Hara-06b, M. Harada, K. Kato, M. Suzuki, T. Okamoto et al., 3 m?cm 2 , 1100 V 4H-SiC Implantation and Epitaxial MOSFET, Materials Science Forum, vol.4, pp.527-529, 2006.

]. J. Hassan, J. P. Bergman, A. Henry, and E. Janzén, High Growth Rate with Reduced Surface Roughness during On-Axis Homoepitaxial Growth of 4H-SiC, Materials Science Forum, vol.679, issue.680, pp.679-680, 2010.
DOI : 10.4028/www.scientific.net/MSF.679-680.115

]. R. Howe-08a, S. Howell, S. Buchoff, T. R. Van-campen, H. Mcnutt et al., Comparisons of Design and Yield for Large-Area 10-kV 4H-SiC DMOSFETs Electron Devices, IEEE Transactions, vol.55, issue.8, pp.1816-1823, 2008.

]. R. Howe-08b, S. Howell, S. Buchoff, T. R. Van-campen, A. Mcnutt et al., A 10-kV Large-Area 4H-SiC Power DMOSFET With Stable Subthreshold Behavior Independent of Temperature. Devices, IEEE Transactions on, vol.55, issue.8, pp.1807-1815, 2008.

. Leslie, A 180 Amp/4.5 kV 4H-SiC PiN Diode for High Current Power Modules, IEEE International Symposium on Power Semiconductor Devices and IC's, pp.1-4, 2006.

]. K. Ito, S. Tsukimoto, and M. Muratami, Effects of Al ion implantation to 4H-SiC on the specific contact resistance of TiAl-based contact materials, Science and Technology of Advanced Materials, vol.7, issue.6, pp.496-501, 2006.
DOI : 10.1016/j.stam.2006.04.011

T. Jang, B. Odekirk, L. D. Madsen, and L. M. Porter, -type 6H SiC, Journal of Applied Physics, vol.90, issue.9, p.4555, 2001.
DOI : 10.1063/1.1407316

URL : https://hal.archives-ouvertes.fr/hal-00957227

J. R. Jenny, J. Skowronski, W. C. Mitchel, H. M. Hobgood, and R. C. Glass, Deep level transient spectroscopic and Hall effect investigation of the position of the vanadium acceptor level in 4H and 6H SiC, Applied Physics Letters, vol.68, issue.14, p.1963, 1996.
DOI : 10.1063/1.115640

E. O. Johnson, Physical limitations on frequency and power parameters of transistors, IRE International Convention Record, pp.163-177, 1965.
DOI : 10.1109/IRECON.1965.1147520

A. Kakanakova-georgieva, R. Yakimova, A. Henry, M. K. Linnarsson, and M. Syväjärvi, Cathodoluminescence identification of donor???acceptor related emissions in as-grown 4H???SiC layers, Journal of Applied Physics, vol.91, issue.5, p.2890, 2002.
DOI : 10.1063/1.1436293

]. R. Kaplar, S. Dasgupta, M. J. Marinella, B. Sheffield, R. Brock et al., degradation mechanisms and charachterization techniquesin silicon carbide MOSFETs at high-temperature operation,EESAT 2011, 2011.

S. Koizumi, K. Watanabe, and M. Hasegawa, Formation of diamond p???n junction and its optical emission characteristics, Diamond and Related Materials, vol.11, issue.3-6, pp.307-311, 2002.
DOI : 10.1016/S0925-9635(01)00537-4

A. Ni and /. Ti, Al ohmic contact materials for p-type 4H- SiC, Mater. Sci. Eng, vol.98, pp.286-293, 2003.

]. Kosugia, K. Fukudab, and K. Arai, High Temperature Rapid Thermal Oxidation and Nitridation of 4H-SiC in Diluted N2O and NO Ambient Materials Science Forum Vols, pp.483-485, 2005.

F. Laariedh, Technologie d'intégration monolithique des JFET latéraux, Thèse INSA de Lyon ? AMPERE 63

D. W. Kim, H. Y. Lee, B. J. Park, H. S. Kim, Y. J. Sung et al., High rate etching of 6H???SiC in SF6-based magnetically-enhanced inductively coupled plasmas, Thin Solid Films, vol.447, issue.448, pp.447-448, 2004.
DOI : 10.1016/j.tsf.2003.09.030

]. T. Kimoto, A. Itoh, and H. Matsunami, Step-Controlled Epitaxial Growth of High-Quality SiC Layers, physica status solidi (b), vol.202, issue.1, p.247, 1997.
DOI : 10.1002/1521-3951(199707)202:1<247::AID-PSSB247>3.0.CO;2-Q

]. D. Larkin, SiC Dopant Incorporation Control Using Site-Competition CVD, physica status solidi (b), vol.202, issue.1, p.305, 1997.
DOI : 10.1002/1521-3951(199707)202:1<305::AID-PSSB305>3.0.CO;2-9

M. Lazar, L. Ottaviani, M. L. Locatelli, C. Raynaud, D. Planson et al., Improved Annealing Process for 6H-SiC p<sup>+</sup>-n Junction Creation by Al Implantation, Materials Science Forum, vol.338, issue.342, pp.338-342, 2000.
DOI : 10.4028/www.scientific.net/MSF.338-342.921

A. A. Lebedev, Deep level centers in silicon carbide: A review, Semiconductors, vol.33, issue.2, p.107, 1999.
DOI : 10.1134/1.1187657

A. A. Lebedev, Deep level centers in silicon carbide: A review, Semiconductors, vol.33, issue.2, pp.107-130, 1999.
DOI : 10.1134/1.1187657

S. Lee, E. Danielsson, C. Zetterling, M. Östling, J. Palmquist et al., The Formation and Characterization of Epitaxial Titanium Carbide Contacts to 4H-SiC, Mat. Res. Soc. Symp. Proc.T6.9, p.622, 2000.
DOI : 10.1016/0038-1101(96)00071-8

]. Lee-00b, C. Lee, and M. Zetterling, Östling TiW (Titanium tungsten) for Ohmic and Schottky contacts to 4H-SiC, Proc. H7.2, p.640, 2000.

S. Lee, C. Zetterling, M. Ostling, J. Palmquist, H. H@bullet-ogberg et al., Low resistivity ohmic titanium carbide contacts to n- and p-type 4H-silicon carbide, Solid-State Electronics, vol.44, issue.7, pp.1179-1186, 2000.
DOI : 10.1016/S0038-1101(00)00056-3

S. Leone, Y. C. Lin, F. S. Beyer, S. Andersson, A. Henr et al., Chloridebased CVD at high rates of 4H-SiC on-axis epitaxial layers for power devices, Materials Science Forum, pp.679-680, 2010.

V. Hobgood and C. H. Balakrishna, Carter Jr. 100 mm 4HN-SiC Wafers with Zero Micropipe Density, Materials Science Forum, vol.600, pp.7-10, 2009.

J. A. Lely, Sublimation process for manufacturing silicon carbide crystals. Emmasingel, Eindhoven, Nertherlands, assignor, by mesne assignements, Philips company Inc, pp.492-385, 1955.

R. Lossy, W. Reichert, W. Obermeier, and . Skorupa, Doping of 3C-SiC by implantation of nitrogen at high temperatures, Journal of Electronic Materials, vol.22, issue.3, pp.123-127, 1997.
DOI : 10.1007/s11664-997-0137-1

E. D. Luckowski, J. M. Delucca, J. R. Williams, S. E. Mohney, M. J. Bozack et al., Improved ohmic contact to n-type 4H and 6H-SiC using nichrome, Journal of Electronic Materials, vol.66, issue.2, p.330, 1998.
DOI : 10.1007/s11664-998-0410-y

H. Matsuura, T. Kimoto, and H. Matsunami, Nitrogen Donor Concentrations and Its Energy Levels in 4H-SiC Uniquely Determined by a New Graphical Method Based on Hall-Effect Measurement, Japanese Journal of Applied Physics, vol.38, issue.Part 1, No. 7A, pp.4013-4016, 1999.
DOI : 10.1143/JJAP.38.4013

M. Mazzola, J. B. Casady, N. Merrett, I. Sankin, W. Draper et al., Assessment of "Normally On" and "Quasi On" SiC VJFET's in Half-Bridge Circuits, Materials Science Forum, vol.457, issue.460, pp.457-460, 2004.
DOI : 10.4028/www.scientific.net/MSF.457-460.1153

F. Laariedh, Technologie d'intégration monolithique des JFET latéraux, Thèse INSA de

]. J. Chen, A. J. Steckl, and M. J. Loboda, Heteroepitaxial Growth of SiC on Si by Gas Source MBE with Silacyclobutane, Materials Science Forum, vol.264, issue.268, pp.264-268, 1998.
DOI : 10.4028/www.scientific.net/MSF.264-268.239

E. Morvan, J. Montserrat, J. Rebollo, D. Flores, X. Jorda et al., Stoechiometric Disturbances in Ion Implanted Silicon Carbide, Mater. Sci. Forum, pp.264-268, 1998.

H. Chayahara and . Yamada, Synthesis of large single crystal diamond plates by high rate homoepitaxial growth using microwave plasma CVD and lift-off process, Diamond Relat. Mater, vol.17, pp.415-418, 2008.

]. B. Murari, C. Contiero, R. Gariboldi, S. Sueri, and A. Russo, Smart power technologies evolution, Conference Record of the 2000 IEEE Industry Applications Conference. Thirty-Fifth IAS Annual Meeting and World Conference on Industrial Applications of Electrical Energy (Cat. No.00CH37129), pp.10-19, 2000.
DOI : 10.1109/IAS.2000.880960

P. G. Neudeck, Electrical Impact of SiC Structural Crystal Defects on High Electric Field Devices, Materials Science Forum, vol.338, issue.342, pp.1161-1166, 2000.
DOI : 10.4028/www.scientific.net/MSF.338-342.1161

]. K. Nuttall, O. Buiu, and V. V. Obreja, Surface leakage current related failure of power silicon devices operated at high junction temperature, Microelectronics Reliability, vol.43, issue.9-11, pp.1913-1918, 2003.
DOI : 10.1016/S0026-2714(03)00325-1

]. V. Obreja and . Nuttall, On the high temperature operation of high voltage power devices. Semiconductor Conference, Proceedings. International, vol.2, pp.253-256, 2002.

S. J. Pearton, Wet and dry etching of SiC. process technology for silicon carbide devices, 2002.

G. Pensl and W. J. Choyke, Electrical and optical characterization of SiC, Physica B: Condensed Matter, vol.185, issue.1-4, p.264, 1993.
DOI : 10.1016/0921-4526(93)90249-6

M. P. Lam, K. T. Kornegay, M. Inc, and A. Tempe, Recent progress of submicron CMOS using 6H-SiC for smart power applications, Electron Devices : IEEE Transactions, vol.46, issue.3, pp.546-554, 2002.

T. Frank, H. Itoh, G. Pensl, J. Heindt, H. P. Strunk et al., Doping of SiC by Implantation of Boron and Aluminium, phys. stat. sol, pp.162-277, 1997.

F. Roccaforte, A. Frazzetto, G. Grecoa, F. Giannazzo, P. Fiorenza et al., Critical issues for interfaces to p-type SiC and GaN in power devices, Applied Surface Science, vol.258, issue.21, pp.8324-8333, 2012.
DOI : 10.1016/j.apsusc.2012.03.165

F. Laariedh, Technologie d'intégration monolithique des JFET latéraux, Thèse INSA de Lyon ? AMPERE 65

]. A. Rite-10, D. C. Ritenour, V. Sheridan, J. B. Bondarenko, and . Casady, Performance of 15mm2 1200 V Normally-Off SiC VJFET with 120 A Saturation Current, Materials Science Forum, pp.645-648, 2010.

R. Rurali, P. Godignon, J. Rebollo, E. Hernandez, and P. Ordejon, First-principles study of n-type dopants and their clustering in SiC, Applied Physics Letters, vol.82, issue.24, pp.4298-4302, 2003.
DOI : 10.1063/1.1583870

]. E. Rudolf, P. Friedrichs, and J. Biela, Fast switching with SiC VJFET ? influence of the device topology, Materials Science Forum, vol.645648, pp.933-936, 2010.

R. Rupp and I. Zverev, SiC Power Devices: How to be Competitive towards Si-Based Solutions?, Materials Science Forum, vol.433, issue.436, pp.433-436, 2013.
DOI : 10.4028/www.scientific.net/MSF.433-436.805

S. Ryu, S. Krishnaswami, M. O. 'loughlin, J. Richmond, A. Agarwal et al., 10-kV, 123-m<tex>$Omega cdot $</tex>cm<tex>$^2$</tex>4H-SiC Power DMOSFETs, IEEE Electron Device Letters, vol.25, issue.8, pp.556-558, 2004.
DOI : 10.1109/LED.2004.832122

S. Ryu, S. Krishnaswami, B. Hull, J. Richmond, A. Agarwal et al., 10 kV, 5A 4H-SiC Power DMOSFET. Power Semiconductor Devices and IC's, pp.1-4, 2006.

J. Sanchez, Intégration fonctionnelle de composants de puissance, principes et technologie. Habilitation à Diriger des Recherches -LAAS, 1995.

M. Soueidan, G. Ferro, B. Nsouli, M. H. Roumié, . S. Nada et al., Elaboration and characterization of boron doping during SiC growth by VLS mechanism, Journal of Crystal Growth, vol.327, issue.1, pp.46-51, 2006.
DOI : 10.1016/j.jcrysgro.2011.04.007

. Shen, T. C. Shen, G. B. Gao, and H. Et-morkoc, Recent developments in ohmic contacts for III???V compound semiconductors, Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, vol.10, issue.5, pp.5-2113, 1992.
DOI : 10.1116/1.586179

. Morkoc, Demonstration of the first SiC power integrated circuit, Solid-State Electronics, vol.52, pp.1636-1646, 2008.

A. Shrivastava, P. Muzykov, B. Pearman, S. M. Angel, and T. S. Sudarshan, Study of triangular defects and inverted pyramids in 4H-SiC 4?? off-cut (0001) Si face epilayers, Journal of Crystal Growth, vol.310, issue.20, pp.4443-4450, 2008.
DOI : 10.1016/j.jcrysgro.2008.07.102

R. Singh, J. Cooper, M. Melloch, T. Chow, and E. J. Palmour, SiC power Schottky and PiN diodes, IEEE Transactions on Electron Devices, vol.49, issue.4, pp.665-672, 2002.
DOI : 10.1109/16.992877

K. Singh, F. Guedon, R. Mcmahon, and S. Weier, Parameter extraction and calorimetric validation for a silicon carbide JFET PSpice model, Machines and Drives (PEMD), 5th IET International Conference on, pp.1-6, 2010.

T. Straubinger, High Quality 100mm 4H-SiC Substrates with Low Resistivity, Materials Science Forum, vol.645, issue.648, pp.3-8, 2010.
DOI : 10.4028/www.scientific.net/MSF.645-648.3

Y. Sugawara, D. Takayama, K. Asano, R. Singh, J. Palmour et al., 12-19 kV 4H-SiC pin diodes with low power loss, Proceedings of the 13th International Symposium on Power Semiconductor Devices & ICs. IPSD '01 (IEEE Cat. No.01CH37216), pp.27-30, 2001.
DOI : 10.1109/ISPSD.2001.934552

F. Laariedh, Technologie d'intégration monolithique des JFET latéraux, Thèse INSA de Lyon ? AMPERE 66

S. G. Sridhara, L. L. Clemen, R. P. Devaty, W. J. Choyke, D. J. Larkin et al., Photoluminescence and transport studies of boron in 4H SiC, Journal of Applied Physics, vol.83, issue.12, p.7909, 1998.
DOI : 10.1063/1.367970

S. M. Sze, Physics of Semiconductors Devices, second edition, 1981.

J. A. Vodakov, Method for epitaxial production of semiconductor silicon carbide utilizing a close-space sublimation deposition technique. brevet Appl, p.27, 1978.

H. Yanoa, T. Hatayamab, Y. Uraokac, and T. Fuyuki, High temperature NO annealing of deposited SiO2 films on N-type 4H-SiC, Materials Science Forum, pp.483-485, 2005.

P. H. Yih, V. Saxena, and A. J. Steckl, A Review of SiC Reactive Ion Etching in Fluorinated Plasmas, physica status solidi (b), vol.202, issue.1, p.605, 1997.
DOI : 10.1002/1521-3951(199707)202:1<605::AID-PSSB605>3.0.CO;2-Y

J. Zhao, P. Alexandrov, and E. X. Li, Demonstration of the first 10-kV 4H-SiC Schottky barrier diodes, IEEE Electron Device Letters, vol.24, issue.6, pp.402-404, 2003.
DOI : 10.1109/LED.2003.813370

J. H. Zhao, K. Tone, X. Li, P. Alexandrov, L. Fursin et al., 6A, 1kV 4H-SiC Normally-Off Trenched-and-Implanted Vertical JFETs, Materials Science Forum, vol.457, issue.460, pp.457-460, 2004.
DOI : 10.4028/www.scientific.net/MSF.457-460.1213

R. Zhang1, A. Callanan, A. Agarwal, M. Burk, J. O¢loughlin et al., Scozzie10 kV, 10 A Bipolar Junction Transistors and Darlington Transistors on 4H-SiC, II-VI 12, pp.645-648, 2010.

F. Laariedh, Technologie d'intégration monolithique des JFET latéraux, Thèse INSA de Lyon ? AMPERE 67

.. Résultats-sur-les-composants-de-puissance, 84 2.3.2.1 Etude préliminaire des JFET type N (FL0288-09) Mesures contact du substrat reporté en surface ? Substrat, 1 Mesures Grille ? Source (P + -N-N + ) et Drain ? Source, p.86

J. Fonctionnement-des-composants and N. , 2.3.2.2.1 Caractérisation I ds (V ds ) en fonction de V gs

J. Fonctionnement-des-composants and P. , AE0695-02), p.93

.. Résultats-sur-les-composants-de-l-'étage-de-commande, 101 2.3.3.1 Etude préliminaire des JFET type N et P (R0413-01), Mesures Grille ? Source, Drain ? Source, p.101

F. Laariedh, Technologie d'intégration monolithique des JFET latéraux, Thèse INSA de Lyon ? AMPERE 112

/. Réalisation-du-contact-ohmique-ni and .. Ti, Al sur SiC-4H type P?????????? 121 3.3.1 Préparation des échantillons et procédé de réalisation des contacts, p.121

I. Mesure, °. V-)-À-25, /. Ni, /. Ti, /. Al et al., 127 3.3.2.1.1 Contact avec les empilements Ni, p.132

F. Laariedh, Technologie d'intégration monolithique des JFET latéraux, Thèse INSA de Lyon ? AMPERE 146

F. Laariedh, Technologie d'intégration monolithique des JFET latéraux, Thèse INSA de Lyon ? AMPERE 147

J. Crofton, Finding the optimum Al???Ti alloy composition for use as an ohmic contact to p-type SiC, Solid-State Electronics, vol.46, issue.1, pp.109-113, 2001.
DOI : 10.1016/S0038-1101(01)00208-8

J. Crofton, Titanium and aluminum-titanium ohmic contacts to p-type SiC, Solid-State Electronics, vol.41, issue.11, pp.1725-1729, 1997.
DOI : 10.1016/S0038-1101(97)00168-8

A. Frazzetto, F. Giannazzo, R. Lo-nigro, V. Raineri, and F. Roccaforte, Structural and transport properties in alloyed Ti/Al Ohmic contacts formed on p-type Al-implanted 4H-SiC annealed at high temperature, Journal of Physics D: Applied Physics, vol.44, issue.25, p.255302, 2011.
DOI : 10.1088/0022-3727/44/25/255302

URL : https://hal.archives-ouvertes.fr/hal-00627540

]. K. Ito, S. Tsukimoto, and M. Muratami, Effects of Al ion implantation to 4H-SiC on the specific contact resistance of TiAl-based contact materials, Science and Technology of Advanced Materials, vol.7, issue.6, pp.496-501, 2006.
DOI : 10.1016/j.stam.2006.04.011

M. R. Jennings, A. Perez-tomas, M. Davies, D. Walker, L. Zhu et al., Analysis of Al/Ti, Al/Ni multiple and triple layer contacts to p-type 4H-SiC, Solid-State Electronics, vol.51, issue.5, pp.797-801, 2007.
DOI : 10.1016/j.sse.2007.02.037

B. J. Johnson and M. A. Capano, The effect of titanium on Al???Ti contacts to p-type 4H-SiC, Solid-State Electronics, vol.47, issue.9, p.1437, 2003.
DOI : 10.1016/S0038-1101(03)00097-2

J. Brian and A. M. Capano, Mechanism of ohmic behavior of Al-Ti contacts to p-type 4H- SiC after annealing, Journal Of Applied Physics, vol.95, p.10, 2004.

R. Kakanakov, L. Kassamakova, I. Kassamakov, K. Zekentes, and N. Kuznetsov, Improved Al/Si ohmic contacts to p-type 4H-SiC, Materials Science and Engineering: B, vol.80, issue.1-3, pp.374-377, 2001.
DOI : 10.1016/S0921-5107(00)00600-0

W. Kern and D. A. Puotien, Cleaning solution based on hydrogen peroxide for use in silicon semiconductor technology, RCA Rev, vol.31, issue.2, pp.187-206, 1970.

R. Konishi, R. Yasukochi, O. Nakatsuka, Y. Koide, M. Moriyama et al., Development of Ni/Al and Ni/Ti/Al ohmic contact materials for p-type 4H-SiC, Materials Science and Engineering: B, vol.98, issue.3
DOI : 10.1016/S0921-5107(03)00065-5

F. Moscatelli, A. Scorzoni, A. Poggi, M. Bruzzi, S. Lagormarsino et al., Measurements of Charge Collection Efficiency of p+/n Junction SiC Detectors, Materials Science Forum, pp.483-4861021, 2005.

I. P. Nikitina, K. V. Vassilevski, N. G. Wright, A. B. Horsfall, and A. G. , Formation and role of graphite and nickel silicide in nickel based ohmic contacts to n-type silicon carbide, Journal of Applied Physics, vol.97, issue.8, p.83709, 2005.
DOI : 10.1063/1.1872200

R. Nipoti, F. Moscatelli, A. Scorzoni, A. Poggi, G. Cardinali et al., Contact resistivity of Al/Ti ohmic contacts on p-type ion implanted 4H- and 6H-SiC., MRS Fall Meeting, Symposium K Silicon Carbide -Materials, Processing and Devices, pp.2-6, 2002.
DOI : 10.4028/www.scientific.net/MSF.389-393.827

F. Laariedh, Technologie d'intégration monolithique des JFET latéraux, Thèse INSA de Lyon ? AMPERE 148

M. Soueidan, M. Lazar, D. M. Nguyen, D. Tournier, C. Raynaud et al., Process Optimization for High Temperature SiC Lateral Devices, Materials Science Forum, vol.615, issue.617, pp.615-617, 2009.
DOI : 10.4028/www.scientific.net/MSF.615-617.585

URL : https://hal.archives-ouvertes.fr/hal-00391358

H. Vang, M. Lazar, P. Brosselard, C. Raynaud, P. Cremillieu et al., Ni???Al ohmic contact to p-type 4H-SiC, Superlattices and Microstructures, vol.40, issue.4-6, pp.4-6, 2006.
DOI : 10.1016/j.spmi.2006.08.004

URL : https://hal.archives-ouvertes.fr/hal-00141426

]. K. Vassilevsk, K. Zekentes, K. Tsagaraki, G. Constantinidis, and I. Nikitina, Phase formation at rapid thermal annealing of Al/Ti/Ni ohmic contacts on 4H-SiC, Materials Science and Engineering: B, vol.80, issue.1-3, pp.370-373, 2001.
DOI : 10.1016/S0921-5107(00)00597-3

F. Laariedh, Technologie d'intégration monolithique des JFET latéraux, Thèse INSA de Lyon ? AMPERE 149

F. Laariedh, Technologie d'intégration monolithique des JFET latéraux, Thèse INSA de Lyon ? AMPERE 150

.. De-commande-basse-puissance, 156 4.2.2. Description des échantillons de l'étage de puissance, Description des échantillons??????????????????????155 4.2.1 Description de l'étage

.. Dopage-par-implantation-ionique, 169 4.3.4.1 Les simulateurs SRIM et I 2, p.170

F. Laariedh, Technologie d'intégration monolithique des JFET latéraux, Thèse INSA de Lyon ? AMPERE 151

. Insa-de-lyon, Optimisation des étapes technologiques pour la fabrication de composants de puissance en carbure de silicium Etude de la gravure du carbure de silicium application à la réalisation de composants de puissance, Thèse de Doctorat CEGELY Thèse de Doctorat CEGELY, p.222, 1997.

M. Lazar, H. Vang, P. Brosselard, C. Raynaud, P. Cremillieu et al., Deep SiC etching with RIE, Superlattices and Microstructures, vol.40, issue.4-6, pp.388-392, 2006.
DOI : 10.1016/j.spmi.2006.06.015

URL : https://hal.archives-ouvertes.fr/hal-00179458

M. Lazar, F. Enoch, F. Laariedh, D. Planson, and P. Brosselard, Influence of the Masking Material and Geometry on the 4H-SiC RIE Etched Surface State, Materials Science Forum, vol.679, issue.680, pp.679-680, 2011.
DOI : 10.4028/www.scientific.net/MSF.679-680.477

URL : https://hal.archives-ouvertes.fr/hal-00661443

E. Morvan, J. Montserrat, J. Rebollo, D. Flores, X. Jorda et al., Stoechiometric Disturbances in Ion Implanted Silicon Carbide, Mater. Sci. Forum, pp.264-268, 1998.

E. Morvan, Modélisation de l'implantation ionique dans ?-SiC et application à la conception de composants de puissance, Thèse de doctorat, 1999.

Y. Negoro, K. Katsumoto, T. Kimoto, and H. Matsunami, Flat Surface after High-Temperature Annealing for Phosphorus-Ion Implanted 4H-SiC(0001) using Graphite Cap, Materials Science Forum, vol.457, issue.460, pp.457-460933, 2004.
DOI : 10.4028/www.scientific.net/MSF.457-460.933

A. Szczesny, P. Sniecikowski, J. Szmidt, and A. Werbowy, Reactive ion etching of novel materials???GaN and SiC, Vacuum, vol.70, issue.2-3, pp.249-254, 2003.
DOI : 10.1016/S0042-207X(02)00651-6

I. Sankin, V. Bonderko, R. Kellev, and J. B. Casady, SiC Smart Power JFET Technology for High-Temperature Applications, Mater Sci Forum, pp.527-291207, 2006.

S. Tsao, J. Liu, and . Scofield, Improved AlNi Ohmic Contacts to p-Type SiC, Materials Science Forum, vol.457, issue.460, pp.457-460841, 2004.
DOI : 10.4028/www.scientific.net/MSF.457-460.841

. Niveau, 15-Gravure (séparation des deux, JFETs N et P)

~. Développement, R. Ctrl-optique, and . Tencor, 1,3 µm 11 Nanolyon-ECL -vieux canon- Dépôt Ti/Ni 50A/2 × 2000 A position haute TF 45% 12 Nanolyon-ECL -Salle chimie- Lift-off Acétone chaud/ A froid

F. Laariedh, Technologie d'intégration monolithique des JFET latéraux, Thèse INSA de Lyon ? AMPERE 218

. Nanolyon-ecl-, Salle chimie- Nettoyage 3:1 H 2 SO 4, BOE, issue.2 22103

. Niveau, 20_SUBS_N (pour contacter la couche P + )(DF

. Etalage-résine-nlof, Recuit prebake 110°C ? 1 min 18 Nanolyon-ECL -MJB3- Exposition UV 9 s 19 Nanolyon-ECL -MJB3- Recuit postbake 110 °C ? 1 min/ Développement ~20 s Rinçage Ctrl optique et Tencor : 7 µm 20 Nanolyon-ECL -LEYBOLD- Dépôt Ti/Ni, V) 60 mTorr, 360 s Ctrl optique et Tencor : 1,5 µm 22 Nanolyon-ECL -Salle chimie- Nettoyage CARO, 2010.

. Niveau, 14 ? ACTV (pour définir les motifs d'alignement des niveaux suivants) (DF

F. Laariedh, Technologie d'intégration monolithique des JFET latéraux, Thèse INSA de Lyon ? AMPERE 219

>. Développement, R. Ctrl-optique, and . Tencor, 7 µm 38 Nanolyon-ECL -chimie- Gravure chimique BOE:HF (48%) (3:1) 15 s puis 1min BOE Ctrl optique et Tencor : 2 µm 39 IPNL -Implanteur IMIO400- Implantation canal P Al 680 keV ? 3E12 cm -2 580 keV ? 3E12 cm -2, pp.420-423

S. Etalage-résine, 30 s 42 Nanolyon-INSA EVG - Recuit prebake 110 °C ? 1 min 43 Nanolyon-INSA EVG Exposition UV 480 mj, 20704000.

>. Développement, R. Ctrl-optique, and . Tencor, 7 µm 45 Nanolyon-ECL -chimie- Gravure chimique BOE:HF (48%) (3:1) 15 s puis 1 min BOE Ctrl optique et Tencor : 2 µm 46 Nanolyon-ECL -chimie- Délaçage de la résine Acétone chaud/ A froid, pp.4-14

N. Développement, ou =120 s Rinçage Ctrl optique et Tencor : 7 µm 54 Nanolyon-ECL -chimie- Gravure chimique BOE:HF (48%) (3:1) 15 s puis 1 min BOE Ctrl optique et Tencor

F. Laariedh, Technologie d'intégration monolithique des JFET latéraux, Thèse INSA de

. Etalage-résine-nlof, 30 s 64 Nanolyon-INSA EVG Recuit prebake 110 °C ? 1 mn 65 Nanolyon-INSA EVG Exposition UV 66mj, 20203000.

D. Ti, Ni sur la face arrière 5/150 nm position haute TF 50% 71 AMPERE-INSA -JIPELEC- Recuit RTA 900 °C

N. Evg, Recuit prebake 110 °C ? 1 mn 74 Nanolyon-INSA EVG Exposition UV 66mj

F. Laariedh, Technologie d'intégration monolithique des JFET latéraux, Thèse INSA de Lyon ? AMPERE 221

R. Tencorecl-laybold-dépôt-ni, /. Ti, and /. Al, 10 nm 78 Nanolyon-ECL -Salle chimie- Lift-off Acétone chaud/ A froid/ Spray bleu, Etanol 79 AMPERE-INSA -JIPELEC à lampes- Recuit RTA 800 °C/ 90s 80 Nanolyon-ECL -MJB3- Litho 9

>. Développement, R. Ctrl-optique, and . Tencor, µm 85 Nanolyon-ECL -Laybold- Dépôt Ni

F. Laariedh, Technologie d'intégration monolithique des JFET latéraux, Thèse INSA de Lyon ? AMPERE 222

. Nanolyon-ecl-, Salle chimie- Nettoyage RCA -Organic Clean -Ionic Clean -Oxide Strip

. Niveau, 1-Gravure (séparation des deux, JFETs N et P)

~. Développement, R. Ctrl-optique, and . Tencor, 1,3 µm 11 Nanolyon-ECL -vieux canon- Dépôt Ti/Ni 50 A/2×1000 A position haute TF 45% 12 Nanolyon-ECL -Salle chimie- Lift-off Acétone chaud/ A froid

. Niveau, 2 ? ACTV (pour définir les motifs d'alignement des niveaux suivants) (DF

F. Laariedh, Technologie d'intégration monolithique des JFET latéraux, Thèse INSA de Lyon ? AMPERE 223

S. Etalage-résine, 30 s 42 Nanolyon-INSA EVG - Recuit prebake 110 °C ? 1 min 43 Nanolyon-INSA EVG Exposition UV 480 mj, 20704000.

N. Développement, ou =120 s Rinçage Ctrl optique et Tencor : 7 µm 54 Nanolyon-ECL -chimie- Gravure chimique BOE:HF (48%) (3:1) 15 s puis 1 min BOE Ctrl optique et Tencor : 2 µm 55 Nanolyon-ECL -chimie- Délaçage, p.56

F. Laariedh, Technologie d'intégration monolithique des JFET latéraux, Thèse INSA de

. Etalage-résine-nlof, 30 s 64 Nanolyon-INSA EVG Recuit prebake 110 °C ? 1 mn 65 Nanolyon-INSA EVG Exposition UV 66 mj, 20203000.

D. Ti, Ni sur la face arrière 5/150 nm position haute TF 50% 71 AMPERE-INSA -JIPELEC- Recuit RTA 900 °C

N. Evg, Recuit prebake 110 °C ? 1 mn 74 Nanolyon-INSA EVG Exposition UV 66 mj

F. Laariedh, Technologie d'intégration monolithique des JFET latéraux, Thèse INSA de Lyon

. Etalage-résine-nlof, 30 s 81 Nanolyon-ECL -MJB3- Recuit prebake 110 °C ? 1 mn 82 Nanolyon-ECL -MJB3- Exposition UV 66 mj, 2000.

>. Développement, R. Ctrl-optique, and . Tencor, 2 µm 85 Nanolyon-ECL -Laybold- Dépôt Ni/Ti/Au 200 A/5000 A/1500 A position haute TF 50% 86 Nanolyon-ECL -Salle chimie- Lift-off Acétone chaud/ A froid

F. Laariedh, Technologie d'intégration monolithique des JFET latéraux, Thèse INSA de Lyon ? AMPERE 231