?. Chapitre and I. , 1. Les modèles densité-dépendants peuvent présenter de la coexistence autour d'un équilibre strictement positif LES E * (voir Props

R. Arditi and L. R. Ginzburg, Coupling in predator-prey dynamics: Ratio-Dependence, Journal of Theoretical Biology, vol.139, issue.3, pp.311-326, 1989.
DOI : 10.1016/S0022-5193(89)80211-5

J. Arino, S. Pilyugin, and G. Wolkowicz, Considerations on yield, nutrient uptake, cellular growth, and competition in chemostat models, Canadian Applied Mathematics Quarterly, issue.112, pp.107-142, 2003.

P. Auger and J. C. Poggiale, Aggregation and emergence in systems of ordinary differential equations, Mathematical and Computer Modelling, vol.27, issue.4, pp.1-22, 1998.
DOI : 10.1016/S0895-7177(98)00002-8

G. Bastin and D. Dochain, On-line estimation and adaptive control of bioreactors, Dynamics of Microbial Competition, p.13, 1991.

B. Benyahia, T. Sari, B. Cherki, and J. Harmand, Sur le modèle AM2 de digestion anaérobie, CARI2010, Proceedings of the 10th African Conference on Research in Computer Science and Applied Mathematics INRIA, pp.453-460, 2010.

B. Benyahia, T. Sari, B. Cherki, and J. Harmand, Bifurcation and stability analysis of a two step model for monitoring anaerobic digestion processes, Journal of Process Control, vol.22, issue.6, pp.1008-1019, 2012.
DOI : 10.1016/j.jprocont.2012.04.012

URL : https://hal.archives-ouvertes.fr/hal-00777051

O. Bernard, Z. Hadj-sadok, D. Dochain, A. Genovesi, and J. P. Steyer, Dynamical model development and parameter identification for an anaerobic wastewater treatment process, Biotechnology and Bioengineering, vol.29, issue.7, pp.424-438, 2001.
DOI : 10.1002/bit.10036

B. Li and L. Bishop, Micro-profiles of activated sludge floc determined using microelectrodes, Water Research, vol.38, issue.5, pp.1248-1258, 2004.
DOI : 10.1016/j.watres.2003.11.019

G. J. Butler and S. K. Wolkowicz, A Mathematical Model of the Chemostat with a General Class of Functions Describing Nutrient Uptake, SIAM Journal on Applied Mathematics, vol.45, issue.1, pp.138-151, 1985.
DOI : 10.1137/0145006

Z. C. Chiu, M. Y. Chen, D. J. Lee, C. H. Wang, and J. Y. Lai, Oxygen diffusion and consumption in active aerobic granules of heterogeneous structure, Applied Microbiology and Biotechnology, vol.69, issue.3, pp.685-691, 2007.
DOI : 10.1007/s00253-007-0847-6

D. E. Contois, Kinetics of Bacterial Growth: Relationship between Population Density and Specific Growth Rate of Continuous Cultures, Journal of General Microbiology, vol.21, issue.1, pp.40-50, 1959.
DOI : 10.1099/00221287-21-1-40

J. Costerton, Overview of microbial biofilms, Journal of Industrial Microbiology, vol.46, issue.3, pp.137-140, 1995.
DOI : 10.1007/BF01569816

A. Ding, M. Hounslow, and C. Biggs, Population balance modelling of activated sludge flocculation: Investigating the size dependence of aggregation, breakage and collision efficiency, Chemical Engineering Science, vol.61, issue.1, pp.63-74, 2006.
DOI : 10.1016/j.ces.2005.02.074

J. Heßeler, J. K. Schmidt, U. Reichl, and D. Flockerzi, Coexistence in the chemostat as a result of metabolic by-products, J. Math. Biol, issue.4, pp.53556-584, 2006.

R. Fekih-salem, N. Abdellatif, T. Sari, and J. Harmand, Sur un modèle de digestion anaérobie avec dégradation enzymatique du substrat sous forme solide, Proceedings of the 5th conference on Trends in Applied Mathematics in Tunisia, pp.457-463, 2011.

R. Fekih-salem, N. Abdellatif, T. Sari, and J. Harmand, Analyse mathématique d'un modèle de digestion anaérobie à trois étapes, Proceedings of the 11th African Conference on Research in Computer Science and Applied Mathematics, INRIA, pp.459-466, 2012.

R. Fekih-salem, N. Abdellatif, T. Sari, and J. Harmand, On a three step model of anaerobic digestion of solid waste, p.177, 2012.

R. Fekih-salem, N. Abdellatif, T. Sari, and J. Harmand, On a three step model of anaerobic digestion of solid waste, 7th Vienna International Conference on Mathematical Modelling, Mathematical Modelling, pp.671-676, 2012.

R. Fekih-salem, N. Abdellatif, T. Sari, and J. Harmand, Analyse mathématique d'un modèle de digestion anaérobie à trois étapes, p.177

R. Fekih-salem, N. Abdellatif, T. Sari, and J. Harmand, Qualitative properties of 3-step model of anaerobic digestion including hydrolysis of particulate matter, International Joint Conference CB-WR-MED Conference/ 2nd AOP' Tunisia Conference for Sustainable Water Management' Tunis, pp.93-94, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00859567

R. Fekih-salem, J. Harmand, C. Lobry, A. Rapaport, and T. Sari, Extensions of the chemostat model with flocculation, Journal of Mathematical Analysis and Applications, vol.397, issue.1, pp.292-306
DOI : 10.1016/j.jmaa.2012.07.055

URL : https://hal.archives-ouvertes.fr/hal-00604633

R. Fekih-salem, T. Sari, and N. Abdellatif, Sur un modèle de compétition et de coexistence dans le chémostat, Proceedings of the 10th African Conference on Research in Computer Science and Applied Mathematics, INRIA, pp.437-444, 2010.

R. Fekih-salem, T. Sari, and N. Abdellatif, Sur un modèle de compétition et de coexistence dans le chémostat, pp.15-30, 2011.

R. Fekih-salem, T. Sari, and A. Rapaport, La flocculation et la coexistence dans le chemostat, Proceedings of the 5th conference on Trends in Applied Mathematics in Tunisia, pp.477-483, 2011.

R. Freter, H. Brickner, and S. Temme, Microecology and therapy, SIAM Journal on Applied Mathematics, vol.16, pp.147-155, 1986.

J. P. Grover, Resource Competition. Chapman and Hall, 1997.

B. Haegeman, C. Lobry, and J. Harmand, Modeling bacteria flocculation as density-dependent growth, AIChE Journal, vol.66, issue.2, pp.535-539, 2007.
DOI : 10.1002/aic.11077

URL : https://hal.archives-ouvertes.fr/hal-01019312

B. Haegeman and A. Rapaport, How flocculation can explain coexistence in the chemostat, Journal of Biological Dynamics, vol.7, issue.1, pp.1-13, 2008.
DOI : 10.1016/S0043-1354(98)00392-3

URL : https://hal.archives-ouvertes.fr/hal-00857826

M. Hajji and A. Rapaport, Practical coexistence of two species in the chemostat ??? A slow???fast characterization, Mathematical Biosciences, vol.218, issue.1, pp.33-39, 2009.
DOI : 10.1016/j.mbs.2008.12.003

URL : https://hal.archives-ouvertes.fr/hal-00858543

S. R. Hansen and S. P. Hubell, Single-nutrient microbial competition: qualitative agreement between experimental and theoretically forecast outcomes, Science, vol.207, issue.4438, pp.1491-1493, 1980.
DOI : 10.1126/science.6767274

G. Hardin, The Competitive Exclusion Principle, Science, vol.131, issue.3409, pp.1292-1297, 1960.
DOI : 10.1126/science.131.3409.1292

J. Harmand and J. J. Godon, Density-dependent kinetics models for a simple description of complex phenomena in macroscopic mass-balance modeling of bioreactors, Ecological Modelling, vol.200, issue.3-4, pp.393-402, 2007.
DOI : 10.1016/j.ecolmodel.2006.08.012

J. Hebeler, J. K. Schmidt, U. Reichl, and D. Flockerzi, Coexistence in the chemostat as a result of metabolic by-products, J. Math. Biol, issue.4 10, pp.53556-584, 2006.

S. B. Hsu, Limiting Behavior for Competing Species, SIAM Journal on Applied Mathematics, vol.34, issue.4, pp.760-763, 1978.
DOI : 10.1137/0134064

G. E. Hutchinson, The Paradox of the Plankton, The American Naturalist, vol.95, issue.882, pp.137-145, 1961.
DOI : 10.1086/282171

D. Jones, H. Kojouharov, D. Le, and H. L. Smith, The Freter model: A simple model of biofilm formation, Journal of Mathematical Biology, vol.47, issue.2, pp.137-152, 2003.
DOI : 10.1007/s00285-003-0202-1

K. Khalil, Nonlinear Systems, p.49, 2002.

R. Kreikenbohm and W. Stephan, Application of a two-compartment model to the wall growth ofPelobacter acidigallici under continuous culture conditions, Biotechnology and Bioengineering, vol.88, issue.3, pp.296-301, 1985.
DOI : 10.1002/bit.260270313

Y. A. Kuznetsov, Elements of Applied Bifurcation Theory, p.83, 2004.

P. De-leenheer, D. Angeli, and E. Sontag, A Feedback Perspective for Chemostat Models with Crowding Effects, In Lecture Notes in Control and Inform Sci, vol.294, issue.10, pp.167-174, 2003.
DOI : 10.1007/978-3-540-44928-7_23

P. De-leenheer, D. Angeli, and E. Sontag, Crowding effects promote coexistence in the chemostat, Journal of Mathematical Analysis and Applications, vol.319, issue.1, pp.48-60, 2006.
DOI : 10.1016/j.jmaa.2006.02.036

C. Lobry and J. Harmand, A new hypothesis to explain the coexistence of n species in the presence of a single resource, Comptes Rendus Biologies, vol.329, issue.1, pp.40-46, 2006.
DOI : 10.1016/j.crvi.2005.10.004

URL : https://hal.archives-ouvertes.fr/hal-01001131

C. Lobry and F. Mazenc, Effect on persistence of intra-specific competition in competition models, Electron. J. Differential Equations, vol.125, pp.10-12, 2007.

C. Lobry, F. Mazenc, and A. Rapaport, Persistence in ecological models of competition for a single resource, Comptes Rendus Mathematique, vol.340, issue.3, pp.199-204, 2005.
DOI : 10.1016/j.crma.2004.12.021

URL : https://hal.archives-ouvertes.fr/hal-01001120

C. Lobry, A. Rapaport, and F. Mazenc, Sur un mod??le densit??-d??pendant de comp??tition pour une ressource, Comptes Rendus Biologies, vol.329, issue.2, pp.63-70, 2006.
DOI : 10.1016/j.crvi.2005.11.004

C. Lobry, T. Sari, and S. Touhami, On Tikhonov's theorem for convergence of solutions of slow and fast systems, Electron. J. Diff. Eqns, vol.50, issue.109, pp.1-22, 1998.

J. Monod, LA TECHNIQUE DE CULTURE CONTINUE TH??ORIE ET APPLICATIONS, Ann. Inst. Pasteur, vol.79, issue.5, pp.390-410, 1950.
DOI : 10.1016/B978-0-12-460482-7.50023-3

A. Novick and L. Szilard, Description of the Chemostat, Science, vol.112, issue.2920, pp.715-716, 1950.
DOI : 10.1126/science.112.2920.715

R. O. Malley, Singular perturbation methods for ordinary differential equations, p.48, 1991.

S. Pilyugin and P. Waltman, The Simple Chemostat with Wall Growth, SIAM Journal on Applied Mathematics, vol.59, issue.5, pp.1552-1572, 1999.
DOI : 10.1137/S0036139997326181

E. Sanchez, P. Auger, and J. C. Poggiale, Two-time scales in spatially structured models of population dynamics: A semigroup approach, Journal of Mathematical Analysis and Applications, vol.375, issue.1, pp.149-165, 2011.
DOI : 10.1016/j.jmaa.2010.08.014

URL : https://hal.archives-ouvertes.fr/hal-00538044

V. Saravanan and T. R. Sreekrishnan, Modelling anaerobic biofilm reactors???A review, Journal of Environmental Management, vol.81, issue.1, pp.1-18, 2006.
DOI : 10.1016/j.jenvman.2005.10.002

T. Sari, A Lyapunov function for the chemostat with variable yields, Comptes Rendus Mathematique, vol.348, issue.13-14, pp.13-14747, 2010.
DOI : 10.1016/j.crma.2010.06.008

URL : https://hal.archives-ouvertes.fr/inria-00505288

T. Sari, Competitive Exclusion for Chemostat Equations with Variable Yields, Acta Applicandae Mathematicae, vol.57, issue.1, 2008.
DOI : 10.1007/s10440-012-9761-8

URL : https://hal.archives-ouvertes.fr/hal-00780065

T. Sari, N. Abdellatif, B. Benyahia, M. L. Diagne, M. Hajji et al., Modélisation mathématique en biologie : compétition, coexistence et croissance, Proceedings of the 5th conference on Trends in Applied Mathematics in Tunisia, pp.23-26, 2011.

T. Sari and F. Mazenc, Global dynamics of the chemostat with different removal rates and variable yields, Mathematical Biosciences and Engineering, vol.8, issue.3, pp.827-840, 2011.
DOI : 10.3934/mbe.2011.8.827

URL : https://hal.archives-ouvertes.fr/hal-00418676

M. Scheffer, S. Rinaldi, J. Huisman, and F. J. Weissing, Why plankton communities have no equilibrium: solutions to the paradox, Hydrobiologia, vol.491, issue.1-3, pp.9-18, 2003.
DOI : 10.1023/A:1024404804748

J. K. Schmidt, B. König, and U. , Characterization of a three bacteria mixed culture in a chemostat: Evaluation and application of a quantitative terminal-restriction fragment length polymorphism (T-RFLP) analysis for absolute and species specific cell enumeration, Biotechnology and Bioengineering, vol.71, issue.4, pp.96738-756, 2007.
DOI : 10.1002/bit.21147

I. Simeonov and S. Stoyanov, Modelling and dynamic compensator control of the anaerobic digestion of organic wastes, Chem. Biochem. Eng. Q, vol.17, issue.4, pp.285-292, 2003.

H. L. Smith and P. Waltman, The Theory of the Chemostat, Dynamics of Microbial Competition, pp.136-177, 1995.

E. Stemmons and H. L. Smith, Competition in a Chemostat with Wall Attachment, SIAM Journal on Applied Mathematics, vol.61, issue.2, pp.567-595, 2000.
DOI : 10.1137/S0036139999358131

B. Tang, A. Sittomer, and T. Jackson, Population dynamics and competition in chemostat models with adaptive nutrient uptake, Journal of Mathematical Biology, vol.35, issue.4, pp.453-479, 1997.
DOI : 10.1007/s002850050061

H. R. Thieme, Convergence results and a Poincaré-Bendixson trichotomy for asymptotically autonomous differential equations, J. Math. Biol, vol.30, pp.755-763, 1992.

D. N. Thomas, S. J. Judd, and N. Fawcett, Flocculation modelling: a review, Water Research, vol.33, issue.7, pp.1579-1592, 1999.
DOI : 10.1016/S0043-1354(98)00392-3

A. N. Tikhonov, Systems of differential equations containing small parameters multiplying the derivatives, Mat. Sb, vol.31, issue.109, pp.575-586, 1952.

H. Topiwala and G. Hamer, Effect of wall growth in steady-state continuous cultures, Biotechnology and Bioengineering, vol.28, issue.6, pp.919-922, 1971.
DOI : 10.1002/bit.260130614

E. Wahlberg, T. Keinath, and D. Parker, Influence of activated sludge flocculation time on secondary clarification, Water Environment Research, vol.66, issue.6, pp.779-786, 1994.
DOI : 10.2175/WER.66.6.3

W. Wasow, Asymptotic Expansions for Ordinary Differential Equations, p.111, 1976.

G. S. Wolkowicz and L. Zhiqi, Global Dynamics of a Mathematical Model of Competition in the Chemostat: General Response Functions and Differential Death Rates, SIAM Journal on Applied Mathematics, vol.52, issue.1, pp.222-233, 1992.
DOI : 10.1137/0152012

G. S. Wolkowicz and L. Zhiqi, Direct interference on competition in a chemostat, J. Biomath, vol.13, issue.26, pp.282-291, 1998.

R. Fekih-salem, T. Sari, and N. Abdellatif, Sur un modèle de compétition et de coexistence dans le chémostat, pp.15-30, 2011.

R. Fekih-salem, J. Harmand, C. Lobry, A. Rapaport, and T. Sari, Extensions of the chemostat model with flocculation, Journal of Mathematical Analysis and Applications, vol.397, issue.1, pp.292-306, 2013.
DOI : 10.1016/j.jmaa.2012.07.055

URL : https://hal.archives-ouvertes.fr/hal-00604633

R. Fekih-salem, N. Abdellatif, T. Sari, and J. Harmand, On a three step model of anaerobic digestion of solid waste, Mathematical and Computer Modelling of Dynamical Systems, 2012.

R. Fekih-salem, N. Abdellatif, T. Sari, and J. Harmand, Analyse mathématique d'un modèle de digestion anaérobie à trois étapes, 2013.

A. De-colloques.-5-]-r, T. Fekih-salem, N. Sari, and . Abdellatif, Sur un modèle de compétition et de coexistence dans le chémostat . CARI'10, Proceedings of the 10th African Conference on Research in Computer Science and Applied Mathematics, E. Badouel, A. Sbihi and I. Lokpo, pp.437-444, 2010.

R. Fekih-salem, T. Sari, and A. Rapaport, La floculation et la coexistence dans le chémostat, Proceedings of the 5th conference on Trends in Applied Mathematics in Tunisia, pp.23-26, 2011.

R. Fekih-salem, N. Abdellatif, T. Sari, and J. Harmand, Sur un modèle de digestion anaérobie avec dégradation enzymatique du substrat sous forme solide, pp.457-463

T. Sari, N. Abdellatif, B. Benyahia, M. L. Diagne, M. Hajji et al., Modélisation mathématique en biologie : compétition, coexistence et croissance, pp.19-25

R. Fekih-salem, N. Abdellatif, T. Sari, and J. Harmand, On a three step model of anaerobic digestion of solid waste, Mini-Symposium Bogaerts/Vanlmpe MATHMOD -7th Vienna International Conference on Mathematical Modelling, pp.671-676, 2012.

R. Fekih-salem, N. Abdellatif, T. Sari, and J. Harmand, Analyse mathématique d'un modèle de digestion anaérobie à trois étapes. CARI'2012, Proceedings of the 11th African Conference on Research in Computer Science and Applied Mathematics, pp.459-466, 2012.

R. Fekih-salem, N. Abdellatif, T. Sari, and J. Harmand, Qualitative properties of 3-step model of anaerobic digestion including hydrolysis of particulate matter, Proceedings of the International Joint Conference CB-WR-MED Conference/ 2nd AOP' Tunisia Conference for Sustainable Water Management, pp.93-94, 2013.
URL : https://hal.archives-ouvertes.fr/hal-00859567