
HAL Id: tel-00940088
https://theses.hal.science/tel-00940088

Submitted on 31 Jan 2014

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Contributions to the reliability of numerical simulations
in fluid mechanics. Application to the flow simulation of

thermodynamically complex gases
Pietro Marco Congedo

To cite this version:
Pietro Marco Congedo. Contributions to the reliability of numerical simulations in fluid mechan-
ics. Application to the flow simulation of thermodynamically complex gases. Fluids mechanics
[physics.class-ph]. Université Sciences et Technologies - Bordeaux I, 2013. �tel-00940088�

https://theses.hal.science/tel-00940088
https://hal.archives-ouvertes.fr


UNIVERSITY OF BORDEAUX 1

HDR

Defended by

Pietro Marco Congedo

Contributions to the reliability of
numerical simulations in fluid mechanics.

Application to the flow simulation of
thermodynamically complex gases.

Defense on December 6, 2013

Jury :

President : Christophe Corre - Institut National Polytechnique de Grenoble

Reviewers : Charbel Farhat - Stanford University

Pierre Sagaut - Université Pierre et Marie Curie - Paris 6

Carlo Poloni - University of Trieste

Examinators : Bernhard Muller - Norwegian University of Science and Technology

Mejdi Azaiez - Institut Polytechnique de Bordeaux

Rémi Abgrall - INRIA and Institut Polytechnique de Bordeaux





Contributions to the reliability of numerical simulations in �uid mechanics.
Application to the �ow simulation of thermodynamically complex gases.

Abstract: At the interface of physics, mathematics, and computer science, Uncertainty Quanti�ca-
tion (UQ) aims at developing a more rigorous framework and more reliable methods to characterize
the impact of uncertainties on the prediction of Quantities Of Interest (QOI). Despite signi�cant
improvements done in the last years in UQ methods for Fluid Mechanics, there is nonetheless a long
way to go before there can be talk of an accurate prediction when considering all the numerous
sources of uncertainties of the physical problem (boundary conditions, physical models, geometric
tolerances, etc), in particular for shock-dominated problems.
This manuscript illustrates my main contributions for improving the reliability of the numerical sim-
ulation in Fluid Mechanics: i) the development of e�cient and �exible schemes for solving at low-cost
stochastic partial di�erential equations for compressible �ows, ii) various works concerning variance-
based and high-order analysis, iii) the design of some low-cost techniques for the optimization under
uncertainty. The application of interest is the robust design of turbines for Organic Rankine Cycles
(ORC). Some contributions to the numerical �ow prediction of the thermodynamically complex gases
involved in ORC will be presented.
This manuscript is divided in two parts. In the �rst part, some intrusive algorithms are intro-
duced that feature an innovative formulation allowing the treatment of discontinuities propagating
in the coupled physical/stochastic space for shock-dominated compressible �ows. Then, variance and
higher-order based decompositions are described, that could alleviate problems with large number
of uncertainties by performing a dimension reduction with an improved control. Some ANOVA-
based analyses are also applied to several �ows displaying various types of modeling uncertainties,
be it cavitation, thermodynamic or turbulence modeling. Two algorithms for handling stochastic
inverse problems are then introduced for improving input uncertainty characterization by directly
using experimental data. Finally, robust-optimization algorithms are introduced, that are e�cient
when dealing with a large number of uncertainties, relying on di�erent formulations, i.e. with de-
coupled/coupled approaches between the stochastic and the optimization solvers.
The second part is devoted to the study of dense gas �ow in ORC-cycles, which represent a highly
demanding �eld of application as far as �ow simulation reliability is concerned. The numerical ingre-
dients necessary for this kind of simulation are described. Then, some recent results are illustrated :
i) high-�delity turbine computations; ii) a feasibility study concerning the appearance and the oc-
currence of a Rarefaction Shock Wave, using experimental data and di�erent operating conditions
(in monophasic and two-phase �ows); iii) a stochastic study concerning the thermodynamic model
uncertainties.
This set of research works has produced several papers in international journals and peer-reviewed
conferences. Keywords: Uncertainty Quanti�cation, intrusive and non-intrusive methods, inverse

problem, robust optimization, CFD, thermodynamics, dense-gas, BZT.
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1.1 Reliable numerical prediction in Fluid Mechanics

1.1.1 Some basic notions

Science aims at providing a complete and accurate description of how the real world works. In
particular, the so-called Computational Science (CS) relies on the three Pillars of Knowledge (see
Fig. 1.1), i.e. Computation, Experiment and Theory, for making available reliable and predictive
tools. These three aspects should be considered at the same time, providing complementary tools for
a complete understanding of a given phenomenon. Over the years, experiments represented a unique
source of knowledge for computations and theory validation. In more recent years, computations are
more and more used as a numerical low-cost experiment. Moreover, computations can also provide
some useful indication to set-up experimental conditions via numerical simulation and statistical
characterization. Computational Science aims at developing a reliable and predictive numerical tool
relying on and exploiting the interaction between the three aforementioned Pillars. The idea is not
only to reproduce a given phenomenon but also to predict the reality, i.e. using the numerical tools
in conditions for which the tool has not been speci�cally validated nor tested.

An intrinsic limit of this process is given by the nature of observations, that are aleatory, since
they are obtained through some interfaces (our senses, measurements tools, etc). As a consequence,
our capacity (or inability) to predict or to control any type of phenomenon is conditioned by this
original "sin" : it is not directly our mind that looks at the world, but this one is observed through
some natural or arti�cial layers which alter the reality. In this sense, we are as prisoners in a Cave
1, and we need to break the chains for capturing the real physics.

The worldwide use of simulations and models in very di�erent �elds is motivated by the need to
predict reality with a good accuracy and for a low computational cost (with respect to the experiment

1The Republic, Plato.
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Phenomenon

Computation Experiment Theory

Reliable and predictive tool

Figure 1.1: Three pillars of Knowledge.

for example). Since these models rely on some approximation of the observations, it is of greatest
importance to assess the �delity of these modeling and simulation aspects.

In fact, observations are a�ected by multiple sources of error (see [Ebert 2013]). Let us list some
of these errors:

• Biases in frequency or value

• Instrument error

• Random error or noise

• Reporting errors

• Subjective observations

• Representativeness error

• Precision and conversion error

• Analysis error

• ...

Since several techniques exist for selecting, �ltering, verifying the experimental data in order to
reduce the global level of uncertainty, not considering this information (i.e. the statistical variability)
as a fundamental one for assessing the reliability of the numerical simulation can lead to erroneous
estimation and predictions. In this case, the comparison of experimental data with a numerical solu-
tion does not provide useful information, thus yielding wrong conclusions and leading consequently
to bad decisions in a design procedure. A key question is therefore : how experimental data can best
be taken into account when performing a numerical simulation ?

Let us draw a very schematic view of input/output for a CFD (Computational �uid-dynamics)
numerical code (Figure 1.2), since algorithms, methods and results discussed in this manuscript
are focused on mathematical models that are represented by partial di�erential equations for Fluid
Mechanics.

Obviously, experimental data are directly associated to the de�nition of boundary conditions,
initial conditions and geometry for the numerical simulation. These data are naturally a�ected
by some uncertainties. This kind of uncertainty is de�ned as aleatory, since this is the physical
variability present in the system, due above all to the measurement errors. Even with very accurate
measurements tools, this uncertainty can not be reduced, because it is intrinsically aleatory. Note
that aleatory uncertainty is normally characterized using probabilistic approaches. On the contrary,
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Figure 1.2: Flow chart of interaction between CFD and experiments. QOI stands for "Quantity Of
Interest" that is the main physical quantity one wishes to estimate from the CFD computation.

models are usually calibrated using some experimental data, thus yielding some empirical model-
parameters. Usually, these parameters are then tuned in order to generate a numerical solution
closer to the experimental outputs. These uncertainties are de�ned as epistemic, since this is a
potential de�ciency that is due to a lack of knowledge (see [AIAA 1998]). More generally, they can
be generated from assumptions introduced in the derivation of the mathematical model used or from
simpli�cations related to the correlation or dependence between physical processes.

These sources of uncertainty should be considered in the numerical simulation for a reliable sim-
ulation. All these physics-driven uncertainties are not the only perturbation factors of the numerical
simulation reliability. It is mandatory to consider also the error coming from the numerical solution
of the system of equations. This leads directly to the distinction between error and uncertainty (see
[Iaccarino 2008]). In this manuscript, the term error is associated to the translation of a mathemat-
ical formulation into a numerical algorithm (and a computational code). Typically, errors are also
further classi�ed as follows [Trucano 2006]

• implementation mistakes (bugs) or usage errors

• errors or bugs introduced by the coder in the preparation of the input/output for the numerical
code.

• numerical errors resulting from computing the discretized solution of the mathematical model
on a digital computer ((a) spatial and temporal discretization errors in the numerical solution
of Partial Di�erential Equations (PDEs), and (b) iterative solution errors usually resulting from
the selected solution approach for the set of nonlinear equations.)

Remark that the �rst and second sources refer to human errors.
Using the present de�nition of errors, the uncertainties are naturally associated to the choice of the

physical models and to the speci�cation of the input parameters required for performing the analysis,
as already speci�ed. When dealing with a numerical code, the term Veri�cation [Trucano 2006] is
used for the process of verifying that the numerical algorithms are correctly implemented in the
computer code, of identifying errors in the software, of determining the correctness of the numerical
accuracy of the solution, and so on. Thus, the Veri�cation process is not associated to experimental
data.
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Let us now come back to the �ow chart of Figure 1.2. Once de�ned the boundary/initial conditions
and the physical models used in the system of equations, the output, i.e. the Quantity of Interest
(QOI)), of the numerical simulation should be compared to the reality. The term Validation is used
for the process of assessing whether the mathematical/physical formulation is appropriate for the �ow
physics to analyze. This is accomplished by means of a comparison with experimental data. For a
very comprehensive survey of veri�cation and validation processes, please refer to [Oberkampf 2010].

Validation cannot be performed in a robust way without explicitly accounting for the uncertain-
ties present in both the measurements and the computations. This is why Uncertainty Quanti�cation
(UQ) plays a fundamental role in assessing the reliability of the numerical simulation. The introduc-
tion of uncertainty in numerical simulations does not alter this process but introduces considerable
di�culties in each phase. At the interface of physics, mathematics, and computer science, Uncer-
tainty Quanti�cation (UQ) aims at developing a more rigorous framework and more reliable methods
to characterize the impact of uncertainties on the prediction of Quantities Of Interest (QOI).

This manuscript is essentially devoted to two types of analysis for what is a very complex problem
in terms of methods, algorithms, computational cost, and post-processing management. Most of
the studies presented are focused on uncertainty propagation problems, designed in Figure 1.2 as
Forward problems. This means that uncertainties are taken into account in the following way: i) �rst,
input uncertainties on the model, boundary/initial conditions and so on (in terms of intervals and
probability density functions (pdf)) are de�ned, ii) then some stochastic methods are used for taking
into account these uncertainties in the numerical simulation, iii) a numerical solution (including
the computation of a QOI) is generated with an associated numerical error bar, iv) numerical and
experimental error bars are compared.

The second kind of problem treated in this manuscript is called Inverse problem. In this case,
the experimental data (with the experimental measurement errors) available for the output of the
numerical simulation are used for building the statistical properties of some inputs of the numerical
code. Let us imagine a space vehicle undergoing atmospheric re-entry (this complex case is treated
in the second part of this manuscript). In such a case, the available experimental data, pressure and
heat �ux at the stagnation point of the vehicle, correspond to the output of the numerical simulation.
In this kind of problem, the aim is to compute the pdf of the free-stream conditions, i.e. the input
of the numerical simulation, by using directly the numerical code and the experimental data known
for the output of the simulation (the stagnation point measurements).

The question of computing con�dence level in numerical simulation is especially complex in the
context of �ow simulation. Measurements in �uid mechanics devices are delicate and expensive due
mainly to unsteadiness, turbulence, multiphase nature of the �ow, and so on. This makes much more
complicated the measures, thus increasing the amount of uncertainties associated. As a consequence,
in this �eld, it is even more important to estimate the variability of the numerical solution by tak-
ing into account possibly scarce and inaccurate experimental data. Moreover, numerical simulation
for compressible �ows is strongly a�ected by some peculiar physical phenomena, such as compress-
ibility, discontinuities (compression shocks), turbulence, multi-scale phenomena, etc. These aspects
make the numerical simulation even more complex to solve and also much more expensive, thus
complicating the fact to include uncertainties in the numerical loop.

In order to clarify how complexity can rapidly increase when designing a device from �ow simula-
tions, we next detail reliability issues for a particular application, the Organic Rankine cycle (ORC).
In fact, dense gas �ow in ORC-cycles represent a highly demanding �eld of application as far as �ow
simulation reliability is concerned.

1.1.2 Application of interest: ORC-based system

An Organic Rankine cycle (ORCs) is a closed power cycle composed of four basic components. Heat
is supplied to a heater where the compressed liquid is converted into a superheated vapor at constant
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pressure. The vapor is then expanded through a turbine stage to produce a work output. For an
impulse turbine stage, the �ow is expanded through a stator stage or through nozzles. Vapor leaving
the turbine then enters the condenser where heat is removed until the vapor is condensed into the
liquid state. Saturated liquid is then delivered to a pump, which raises the pressure of the liquid
and is then delivered back to the heater from which point the cycle is then repeated. Thus, ORCs
are similar to the large steam Rankine cycle but the main di�erence is that ORCs utilize heavy
working �uids, i.e. organic compounds, which result in superior e�ciency over steam Rankine cycle
engines for heat source temperatures below around 900 K. ORCs typically require only a single-stage
expander which consists of a single rotating component for the entire system in the turbine stage,
making them much simpler than multi-stage expanders typical of the steam Rankine cycle.

Typically, the working �uids are of retrograde type. Therefore it is not necessary to use a reheat
which greatly simpli�es the cycle structure. Moreover the risk of blade erosion is avoided due to
the absence of moisture in the vapor nozzle. ORCs are an appealing option for remote, low-power
applications because of their mechanical simplicity. The point of interest in this particular application
is that a dense gas �ow in a turbine cascade is characterized by a signi�cant uncertainty on the
physical parameters and on the operating conditions at the turbine inlet. The ORCs are mainly
used in biomass and geothermal applications - development in solar and heat recovery applications
are also expected - where the renewable heat sources display a non-negligible level of variability.
This is obviously a strong source of uncertainty.

One solution for optimizing the e�ciency of ORC-based systems could be the use of BZT �uids.
BZT �uids are dense gases, that are characterized by very speci�c thermodynamic properties. Dense
gases are usually de�ned as single-phase vapors whose thermodynamic state is close to saturation
conditions, at temperatures and pressures of the order of magnitude of the critical ones. At these
conditions, real gas e�ects play a crucial role in the dynamic behavior of the �uid. The dynamics
of dense gases is governed by a thermodynamic parameter known as the Fundamental Derivative of
Gas-dynamics [Thompson 1971]:

Γ = 1 +
ρ

a

(
∂a

∂ρ

)
s

(1.1)

(with ρ the �uid density and a the sound speed), which represents a measure of the rate of change
for the local speed of propagation of weak pressure disturbances. For perfect gases, Γ = (γ + 1)/2,
where the speci�c heat ratio γ is always greater than 1 for thermodynamic stability reasons so
that Γ > 1. This is also true for most of light �uids with simple molecules, as water vapor for
instance. For more complex �uids, Γ may become lower than 1 in the dense gas region. In such
conditions, Eq. (1.1) shows that (∂a∂ρ )s < 0, i.e. the behavior of the speed of sound in the course of
an isentropic transformation is reversed with respect to classical �uids : the speed of sound increases
when the �uid is expanded and decreases when it is compressed. Most of the �uids exhibiting this
reversed behavior are of the retrograde type, i.e. they display a negative slope of the liquid/vapor
coexistence curve in the temperature-entropy plane T − s. This feature makes them particularly
suitable as working �uids in low-temperature energy-conversion cycles, since they do not condense
upon expansion and consequently no undesired liquid droplets are formed. Finally, a particular
class of highly-complex heavy �uids may exhibit negative values of Γ in a subset of the dense gas
region next to the saturation curve. Such �uids are usually referred-to as Bethe-Zel'dovich-Thompson
�uids (BZT), from the researchers who �rst postulated their existence; the thermodynamic region
characterized by negative values of Γ is called the inversion zone, and the Γ = 0 contour is said the
transition curve. It has been theoretically shown that, for Γ < 0, compression waves are smoothed
out. As an example, Fig. 1.3 illustrates the calculated negative-Γ thermodynamic region in the
temperature-entropy thermodynamic plane for siloxane D6, a candidate BZT �uid selected for the
�rst experiments in a shock-tube con�guration [Colonna 2008a].
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Figure 1.3: Close-up of the dense-gas region for a BZT �uid, namely D6, computed using the PRSV
equation of state. Subscript c indicates critical point-properties.

Compression shocks within the inversion zone violate the entropy inequality, and are there-
fore inadmissible; conversely, rarefaction shocks are allowed (see for instance [Thompson 1971,
Cramer 1992, Monaco 1997]). According to several thermodynamic models, a region of negative
Γ exists for molecularly complex �uids such as heavy hydrocarbons, per�uorocarbons, and siloxanes
[Colonna 2003]. The possibility of observing non-classical waves increases for substances possessing
large speci�c heats and molecular weight. Precisely, it strongly depends on the ratio cv∞(Tc)/R,
cv∞(Tc) being the speci�c heat at constant volume in the dilute gas limit and at the critical tem-
perature, and R = R/M the gas constant (with R the universal constant of gases and M the gas
molecular weight). The peculiar properties of BZT �uids can be exploited in energy conversion cy-
cles to improve isentropic e�ciency of turbines and compressors: theoretically, using a working �uid
characterized by low values of Γ may allow operating turbomachinery blades at near-sonic tip speeds
without any losses due to shock waves and to the related induced boundary-layer separation. This is
in clear contrast to the classical behavior of regular gases (such as air, oxygen, nitrogen, water steam
as well as classical organic �uids used in ORC turbines such as isopentane and toluene) which exhibit
much lower critical Mach numbers (around 0.75 or even less); this behavior thereby signi�cantly lim-
its the �ow-speed in the relative frame of reference and the amount of power that can be extracted
from the potential thermodynamic energy in the �owing gas. Nonclassical gas dynamics e�ects could
be exploited to considerably increase the e�ciency of supersonic turbines for small-capacity Organic
Rankine Cycle power systems [Brown 2000], whereby the detrimental e�ect of compression shocks
in the �ow passages can be largely reduced, or even suppressed, as non-classical compression fans
are instead predicted [Monaco 1997, Colonna 2004].

The use of BZT working �uids at properly chosen conditions would be su�cient, by itself, to in-
crease the turbine critical Mach number. This e�ect can be further improved with a speci�c robust
shape optimization [Cinnella 2008b], allowing to use smaller rotation speed, with consequent tech-
nical simpli�cations and improved lifetime of the rotor and bearings, or, for a given rotation speed, to
elaborate the available pressure ratio using a reduced number of stages. Up till now no experimental
data are available for �ows of heavy �uids in the dense gas region. Experiments are di�cult because
of high temperature and pressure conditions, and �uid decomposition or in�ammability in presence
of air.
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Note that BZT �uids demand very accurate equations of state for describing the region close
to the saturation curve, since a perfect gas equation of state can not capture the physics of these
gases. Note also that the thermophysical properties of dense gases are themselves characterized
by a strong uncertainty [Cinnella 2010, Cinnella 2011]: the experimentally measured values of the
critical parameters and of the caloric properties are known with an uncertainty that can exceed 5%.
The determination of critical-point data for dense gases is indeed delicate because such gases may
decompose, totally or partly, at temperatures close to the critical one; in this case, critical point
values just rely on estimates. A large number of uncertain parameters are therefore present in
the analysis of an ORC-based system.

An attempt to experimentally prove for the �rst time the existence of non-classical gas dynamics
is underway at the Delft University of Technology. A newly built shock tube [Colonna 2008a],
called Flexible Asymmetric Shock Tube (FAST), will be used to generate a Rarefaction Shock Wave
(RSW) in the dense vapor of a siloxane �uid at high reduced temperature and pressure. A major
consideration emerged from these studies: if non-classical gas dynamics e�ects do exist, they are
relatively weak, if compared, for instance, to compression shock waves, and can occur only if the
experimental conditions are controlled within a relatively small range of pressures and temperatures,
as illustrated in Fig. 1.3.

The accurate simulation of the RSW experiment can provide valuable insights both for de�ning
the initial operating conditions of the experiment and for interpreting the expected results. Flow
simulation can also be used to design ORC turbines exploiting non-classical e�ects. In any case,
it is deemed crucial to be able to properly take into account the uncertainty introduced by the
thermodynamic model in the �rst place but also by the measurement and setting of the initial
condition (for the shock tube) or the inlet boundary condition (for the turbine). In this case,
it is necessary to quantify the uncertainties associated with the numerical simulations of the TU
Delft dense gas shock tube experiments. The considered sources of uncertainty are on the one
hand the parameters of the �uid thermodynamic model and on the other hand the measurements
performed by the control system of the FAST setup in charge of setting the operating conditions.
Correctly assessing the level of accuracy needed to set the initial experimental conditions could
help maximizing the probability of actually observing the expected non-classical RSW. This is a
so-called (inverse problem), that will be presented and analyzed in the following. To address
this problem, several approaches have been proposed. The maximum likelihood method provides
the identi�cation of probabilistic models of random coe�cients based on the maximum likelihood
principle [Desceliers 2006]. Another method based on Bayesian inference [Ma 2009b], where unknown
parameters are considered as random variables, seeks the probabilistic distributions of the unknown.
Other known approaches are the spectral stochastic method [Asokan 2004], the sparse grid collocation
[Zabaras 2008] and a sensitivity derivative approach [Ngnepieba 2007]. These methods are applied
in di�erent domains, from civil engineering [Abusam 2009] to �nance [Ait-Sahalia 2007] and water
technology [Abusam 2003].

Finally, a reliable simulation of this kind of system demands the development of several meth-
ods/algorithms in UQ context: i) techniques for considering problems with a large number of un-
certainties (thermodynamic model, inlet conditions, geometric tolerances, turbulence model, etc), ii)
e�cient stochastic methods for capturing shocks in the coupled physical/stochastic space (a correct
simulation of the shock in the turbine is an essential element for correctly computing the e�ciency
and its variability), iii) low-cost strategies for optimizing the turbine geometry taking into account
the great level of variability of the energy sources, iv) accurate methods for solving inverse problems
starting from the experimental data. These items correspond to the main objectives of my research,
as will be now presented in the next section.
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1.2 Objective of my research

The main objectives of my research are focused on several topics that I presented in the previous
section. In particular, concerning methods and numerical algorithms, I focused my attention on
major issues for a reliable numerical simulation in compressible �ows for realistic systems : stochastic
methods for shock-dominated �ows, problems with a large number of uncertainties, e�cient algorithm
for solving inverse problems, robust design optimization. Finally, the other part of my studies is
focused on the physics of dense-gas �ows and ORC systems for a reliable simulation of such systems.

1.2.1 Stochastic methods for shock-dominated compressible �ows

The problem is to �nd an e�cient representation of the stochastic solution, when the �ow presents
some discontinuities, thus producing a shock evolving in the coupled physical/stochastic space. Prob-
abilistic uncertainty quanti�cation (UQ) approaches represent the inputs as random variables and
seek to construct a statistical characterization of few quantities of interest.

Let us �rst sketch some UQ techniques to �x ideas.
The most popular and known method for the uncertainty quanti�cation (UQ) is the Monte Carlo.

Its development led back to the research on the nuclear devices in the context of the Manhattan
project and is due to Fermi, von Neumann and Ulam. This method is based on a stochastic procedure
to represent realizations of the solution for which the statistic moments can be computed. Despite its
solid mathematical framework it represents a very expensive approach for most practical application
because it requires a great number of realizations. Several improved versions of the classical Monte
Carlo method have been proposed in literature for increasing the convergence rate, see for instance
the recent work presented in [Graham 2011], but they still remain unfeasible for complex problems
when the evaluation of samples is expensive, as in most engineering problems.

Classically, among the UQ techniques, the polynomial chaos (PC) has shown its e�ciency in
the case of smooth responses (see [Le Maître 2010b]). Wan and Karniadakis have introduced an
adaptive class of methods for solving the discontinuity issues by using local basis functions, the
multi-element generalized Polynomial Chaos (ME-gPC) (see [Foo 2010]). This strategy deals with
an adaptive decomposition of the domain on which local bases are employed. Long-time integration
problems could be encountered [Wan 2006b], where this behavior is due to the modi�cation in time
of the statistic properties of the solution that induces an e�ciency loss of the polynomial basis
in time. Recently, Gerritsma [Gerritsma 2010] proposed a time-dependent generalized Polynomial
Chaos scheme based on the research of a time varying optimal polynomial basis. Another class
of method is based on the stochastic collocation (SC) approach [Babu²ka 2010]. This strategy is
based on building interpolating polynomials, of the same dimensionality as the stochastic space, in
order to approximate the solution. In order to reduce the computational cost for high-dimension
problems, these methods are often coupled to sparse grids techniques. The sparse grid strategy has
been proposed by Smolyak [Smolyak 1963b] allowing interpolation of the function in a reduced subset
of points with respect to the full tensorization set. This strategy is a cure against the so-called curse
of dimensionality [Bellman 1961] problem, i.e. the exponential growth of the number of points with
respect to the stochastic dimensions [Ganapathysubramanian 2007, Griebel 2006]. In the work of
Agarwall [Agarwal 2009], an adaptive stochastic collocation method, based on the recursive splitting
of the domain, has been proposed. In this case the splitting of the domain and the adaptivity is
applied directly to the sparse grid basis. A sparse grid collocation strategy, based on piecewise multi-
linear hierarchical basis functions, has been adopted by Ma and Zabaras [Ma 2009c] to recover the
convergence loss by a global polynomial approximations in presence of discontinuities. Chantrasmi
and Iaccarino in [Chantrasmi 2009] proposed a multi-dimensional approach based on Pade-Legengre
approximation for CFD applications in presence of shock waves. A new iterative formulation to
improve the convergence of standard stochastic collocation approach has been presented by Poëtte
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and Lucor in [Poëtte 2012]. The author demonstrated the capability of the method to achieve a
better convergence with no additional cost, i.e. the additional operation with respect to the standard
spectral method are all performed in the post-processing phase. This method has been successfully
applied to Euler system of equations in [Poëtte 2012, Lucor 2012]. More recently, in the context
of the simplex approach [Witteveen 2010], Witteveen and Iaccarino introduced the concept of sub-
cell resolution for problems in which the discontinuities in the random space are directly related to
their physical counterparts [Witteveen 2013]. The presence of a sparsity character of the solution,
i.e. only few coe�cients in the PC basis are really non-null, has been employed by Doostan and
Owhadi in [Doostan 2011] to obtain a non-adapted sampling method. A direct comparison between
the iterative spectral approach, the sub-cell resolution technique within the simplex method and
the adaptive important sampling for compressing sensing has been proposed for some test cases in
[Lucor 2012].

In order to treat discontinuous response surfaces, [Le Maître 2004b, Le Maître 2004a] applied a
multiresolution analysis to Galerkin projection schemes. The intrusive Galerkin approach may lead
to an optimal representation of the solution, exhibiting an exponential convergence, if a proper basis
is chosen. However the intrusive Galerkin approach results in a larger system of equations than in
the deterministic case with, in addition, a di�erent structure that requires a new class of solver and
numerical code. Despite this issue, the intrusive Galerkin approach can be demonstrated to display
substantial advantages with respect to non-intrusive approach, not only for idealized systems, but
also for large-scale applications [Le Maître 2004b]. In this context, advancements have been achieved
in the Galerkin intrusive scheme where the wavelets formulation has been used in order to modify
the basis of approximation [Tryoen 2010]. It modi�es the basis, by enriching the space with a
hierarchical structure according to the regularity of the solution. However the Galerkin approach
presented in [Tryoen 2010] remains very problem-dependent. In fact, using a Roe-type solver requires
to know the eigenstructure of the Roe matrix explicitly; this can be very complex. Moreover, ad hoc
entropy �x should be adopted, thus increasing the numerical cost associated to the representation of
discontinuous solutions [Tryoen 2011]. This original approach has been further improved to obtain a
more e�cient scheme employing a multiresolution adaptive strategy [Tryoen 2012]. However, actually
this approach is limited by the spatial and time discretization accuracy that could dominate the
overall accuracy of the global scheme. In [Pettersson 2013], an intrusive formulation of the stochastic
Euler equations based on Roe variables is presented. It is shown that the Roe variable formulation
is robust for supersonic problems where the conservative variable formulation fails, but only for
localized basis functions of the generalized chaos representation. For global Legendre polynomials,
the discontinuities in stochastic space lead to oscillations and unphysical behavior of the solution and
numerical instability. Wavelet functions are more robust for this aspect, and do not yield oscillations
around discontinuities in stochastic space, but need very regular grids.

E�cient algorithms for stochastic compressible computational �uid-dynamics should display the
following features :

• Handling of any kind of pdf (derived from experimental data in particular). For unsteady �ows,
experimental data should be described by an unsteady pdf.

• Taking into account a very large number of uncertainties. The stochastic problem can indeed
depend on a very large number of uncertainties, depending on the �ow con�guration.

• Treating discontinuities. Remark that a physical discontinuity should propagate in the coupled
physical/stochastic space, thus yielding a very sti� problem to solve with classical approaches.

• Adaptation in the coupled physical/stochastic space at the same time.
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• Reduction of the computational cost while preserving the accuracy (for both forward and
inverse problems)

1.2.2 Variance-based and high-order decomposition

An alternative solution for reducing the cost of a UQ method is based on approaches attempting
to identify the relative importance of the input uncertainties on the output. If some dimensions
could be identi�ed as negligible, they could be discarded in a reduced stochastic problem. If the
number of uncertainties could be reduced, a better statistic estimation could be achieved with a
lower computational cost.

Concerning the computation of the most in�uential parameters, it is important to determine
the uncertain inputs which have the largest impact on the variability of the model output. In the
literature, Global sensitivity analysis (GSA) aims at quantifying how uncertainties in the input pa-
rameters of a model contribute to the uncertainties in its output (see for example [Borgonovo 2003]),
where global sensitivity analysis techniques are applied to probabilistic safety assessment models).
Sometimes, GSA classi�es the inputs according to their importance on the output variations and it
gives a hierarchy of most important ones.

Traditionally, GSA is performed using methods based on the decomposition of the output variance
[Sobol 2001], i.e. ANOVA (ANalysis Of VAriance). The ANOVA approach involves splitting a
multi-dimensional function into contributions from di�erent groups of sub-dimensions. In 2001,
Sobol used this formulation to de�ne global sensitivity indices [Sobol 2001], displaying the relative
variance contributions of di�erent ANOVA terms. In [Rabitz 1999], the authors introduced two High-
Dimensional Model Reduction (HDMR) techniques to capture input-output relationships of physical
systems with many input variables. These techniques are based on ANOVA-type decompositions.

In order to avoid to perform a large number of function evaluations, several techniques have been
developed to compute the di�erent so-called sensitivity indices at a reduced cost [Saltelli 2010]. In
[Sudret 2008, Crestaux 2009, Blatman 2010a], generalized Polynomial Chaos Expansions (gPC) are
used to build surrogate models for computing the Sobol's indices analytically as a post-processing
of the PC coe�cients. In [Foo 2010], multi-element polynomial chaos is combined with analysis of
variance (ANOVA) functional decomposition to enhance the convergence rate of polynomial chaos
in high dimensions and in problems with low stochastic regularity. In [Yang 2012], the use of
adaptive ANOVA decomposition is investigated as an e�ective dimension-reduction technique in
modeling incompressible and compressible �ows with high-dimension of random space. In Sudret
[Blatman 2010b], sparse Polynomial Chaos (PC) expansions are introduced in order to compute sen-
sitivity indices. An adaptive algorithm allows to build a PC-based metamodel that only contains the
signi�cant terms whereas the PC coe�cients are computed by least-square regression.

Other approaches are developed in the case where the assumption of independence of the input
parameters is not valid. New indices have been proposed to address the dependence [Xu 2007,
Xu 2008], but this attempts are limited to a linear correlation. In [Borgonovo 2007], they introduce
a global sensitivity indicator which looks at the in�uence of input uncertainty on the entire output
distribution without reference to a speci�c moment of the output (moment independence) and which
can be de�ned also in the presence of correlations among the parameters. In [Caniou 2011], a gPC
methodology to address global sensitivity analysis for this kind of problems is introduced. A moment-
independent sensitivity index that suits problems with dependent parameters is reviewed. Recently,
in [Borgonovo 2012], a numerical procedure is set-up for moment-independent sensitivity methods.

The ANOVA-based analysis creates a hierarchy of the most important input parameters for a
given output when variations are computed in terms of variance. A strong limitation of this approach
is the fact that it is based on the variance since the second central moment can not be considered
as a general indicator for a complete description of output variations. For example, any Gaussian
signal is completely characterized by its mean and variance. Consequently the 3rd order moment
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of a Gaussian signal is zero. Unfortunately, many signals encountered in practice have non-zero
high-order statistics, but second-order statistics contain no phase information. As a consequence,
phase signals cannot be correctly identi�ed by a 2nd-order technique. Remark also that many
measurement noises are Gaussian, and so in principle the high-order statistics are less a�ected by
Gaussian background noise than the 2nd order measures. For correctly describing the complexity
of engineering systems, the computation of Higher-Order (HO) statistics is of primary importance.
In particular, attention should be paid to the third order moment, the skewness (measure of the
non-symmetry of the distribution, i.e. any symmetric distribution will have a third central moment
of zero), and to the fourth order moment, the kurtosis (measure of whether the distribution is tall
or short, compared to the normal distribution of the same variance). If we wish to determine the
most in�uential parameters for a given output, the hierarchy of important parameters based on
2nd-order statistical moment (like in ANOVA analysis) is not the same if a di�erent statistic order
is considered. Depending on the problem, a n-order decomposition could be of interest. It seems
of primary importance to collect the set of hierarchies obtained from n-order statistical moment
decomposition, for a correct ranking of all the uncertainties.

The objective in this research �eld is directed towards e�cient and low-cost methods permitting
to analyze high-order statistics. The idea is to determine whether there are some dimensions to
neglect for reducing the problem complexity. Another issue is also the formulation of global suitable
criteria for ranking uncertainties according to the di�erent statistical moments.

1.2.3 Robust design optimization

In most engineering applications, the use of deterministic models within an optimization cycle is no
longer considered a satisfactory strategy in order to obtain reliable solutions. Design procedure must
explicitly take into account the system uncertainties, because the overall performance might be overly
sensitive to these uncertainties leading to an unacceptable variability in the operating environment.
The risk is to obtain �nal designs with good performances at the design point but poor o�-design
characteristics, an undesirable property that is well-known in the literature as over-optimization.
The goal of robust design optimization [Schueller 2008] is to determine a design which is relatively
insensitive with respect to physical and modeling uncertainties.

Robust optimization processes may require a prohibitive computational cost when dealing with
a large number of uncertainties and a highly non-linear �tness function. E�orts in the development
of numerical method are directed mainly toward the reduction of the number of deterministic eval-
uations necessary for solving the optimization problem and for performing the uncertainty quanti�-
cation (UQ) of the performances of interest [Parussini 2010, Beyer 2007, Doltsinis 2004, Mitra 2005,
Park 2006, Schueller 2008, Carlberg 2011, Carlberg 2008]. When UQ and optimization are decou-
pled, i.e. optimization strategy is not in�uenced by the presence of uncertainties, the overall cost is
typically the product of the cost of the two approaches [Diwekar 2003]. Decoupled approaches are
simple but more expensive than necessary.

Robust Design method, also called the Taguchi Method, was pioneered in [G. 1989] and is quoted
here for the sake of proper referencing even though the approach su�ers important limitations from
an optimization e�ciency point of view. Several methods incorporate the uncertainties into the
optimization problem. For example, the meta-model approach uses the data to build a meta-model
of the robustness measures by using a set of given design points. In this context, the response surface
methodology, neural networks, Kriging models, have been proposed as meta-modeling techniques
[Jensen 2007, Namura 2011, Xu 2003]. In general, meta-modeling techniques are not well suited for
large scale robust optimization problems when the number of design variables is large. Another
class of methods, usually referred to as the deterministic approach to robust optimization, calculate
explicitly the desired robustness measures. In this class, several methods prove their e�ciency for
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high-dimensional uncertain parameter (see for example [Sankaran 2010, M. S. Eldred 2008]). The
large amount of computational e�ort required for considering a large number of uncertainties is
well known in the literature under the designation "Curse of Dimensionality" [Bellman 1961]. Two
di�erent methodologies have been proposed to tackle this issue in the Uncertainty Quanti�cation
framework. First, a strategy to reduce the number of points required for the numerical integration,
named Sparse grid [Gao 2011, Ma 2009a], has been introduced. This technique can lead to a strong
reduction of the quadrature points for moderate dimensional problem, provided that the function
has some regularity. It is based essentially on some results of the interpolation theory. Certainly
the Sparse Grid allows to avoid the exponential growth of the number of points with the stochastic
dimension, so in this sense prevents from the curse of dimensionality, but for high dimensional
stochastic spaces the number of simulations required could still be prohibitive. More recently, the
attention has shifted to both the number of points required and the number of stochastic dimensions.
There are a few studies [Sankaran 2010], exploring the possibility to identify the most important
uncertainties and as a consequence to reduce the number of dimensions of the stochastic space.
If the number of uncertainties could be reduced, a better statistics estimation could be achieved
with a lower computational cost. This reduction strategy can be used into a robust optimization
framework, thus decreasing the �nal cost for obtaining the optimal individual. Generally, ANOVA-
based approaches are used in order to decompose the variance according to the di�erent contributions,
permitting to create a ranking of the most predominant uncertainties [Congedo 2011c].

For robust optimization problems, computational cost can easily become prohibitive. Let us
consider for example a decoupled approach, i.e. a stochastic problem is solved for each set of
parameters to optimize : the global cost is crudely the cost of a single stochastic problem times
the number of iterations of the optimization algorithm. As a consequence, the challenge consists in
computing accurate solution by retaining a low computational cost.

1.2.4 Understanding of dense-gas physics

Up to now, no experimental data are available for �ows of heavy �uids in the dense gas region.
Experiments are di�cult because of high temperature and pressure conditions, and �uid decompo-
sition or in�ammability in presence of air. This has motivated the use of numerical simulation as
a favoured tool for dense gas �ow analysis, but only a limited number of papers have been devoted
to the computation of dense gas �ows. With a view to support the design of experimental de-
vices allowing to demonstrate the occurrence of BZT phenomena, shock tube simulations have been
performed in [Fergason 2001] and more recently in [Colonna 2008a, Congedo 2012]. External �ows
over airfoils have been computed in [Congedo 2007, Cinnella 2005a, Brown 2000] while BZT �ows
in turbines have been simulated in [Monaco 1997, Brown 2000, Colonna 2004] and more recently
in [Turunen-Saaresti 2010a, Turunen-Saaresti 2010b, Congedo 2011b] with complex EoS to describe
the thermodynamic behavior of the gas. With no experimental validation yet available for any of
these con�gurations, care must be taken in the analysis of the computed �ow �elds because of their
sensitivity to the thermodynamic model and to the numerical ingredients of the discretization scheme
[Cinnella 2011].

The objective of this research �eld is to provide a very reliable simulation tool that could be used
also for the prediction, since no comparison with experimental data is possible. A particular attention
is paid to code validation and model assessment. The e�ect of the boundary conditions should
be also investigated: speci�cally, boundary conditions which ensure an oscillation-free behavior for
thermodynamic quantities such as enthalpy and entropy at the turbine inlet and outlet are developed,
so as to allow an accurate evaluation of the loss coe�cients for a turbine stage.

The �nely computed turbine stage should be integrated into a more global cycle analysis in order
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to derive performance indices such as e�ciencies based on the �rst and second laws as well as the
net speci�c work of the cycle. The elements included in this analysis should combine �uid properties
with cycle working conditions, namely : high and low temperatures and pressures. In this cycle
analysis, the turbine is the only simulated component but its computed performances depend on the
whole cycle conditions (super-heating or not, multistage expansion, etc).

Because of the strong existing sources of uncertainty in ORC cycles, another objective should
be to take into account uncertainty quanti�cation (UQ) to increase the reliability of the coupled
local/global approach and the robustness of the proposed designs.

A last point to assess for the reliability concerns turbulence models. Turbulence models currently
used in dense-gas �ow simulations (RANS) depend on some tuning parameters, generally calibrated
with respect to a perfect gas equation of state. More complex models (LES-DNS) should be used to
calibrate these parameters for more complex equations of state.

1.3 Highlights on my contributions to methods and applications

I summarize here my main contributions in terms of methods and results2. These are organized along
two main axes.

The �rst axis is focused on the development, use and application of UQ and Robust-Optimization
methods, both intrusive and non-intrusive, for various models and problems (see Fig. 1.4). Note
that I studied uncertain operating conditions (and more generally boundary conditions), and var-
ious models with uncertain model-parameters (for turbulence, thermodynamics, two-phase �ows).
Looking at Fig. 1.4, activities focused on CFD, UQ and Robust Optimization deal with so-called un-
certainty propagation problem, i.e. starting from a de�nition of input uncertainties, output statistics
are computed by using di�erent methods. On the contrary, activities related to experiments dealt
with a so-called inverse problem, i.e. the use of output experimental data for characterizing input
uncertainties.

The second axis is devoted to advancements for the simulation of dense gas �ows in CFD numerical
codes. In particular, I worked on the modi�cations of some numerical schemes for taking into account
non-ideal equations of state [20], on the development and use of very accurate equations of state
[13,19], on the physics of dense-gas turbulent �ows [16,17], on the shape optimization of pro�les and
turbines [9,16,18]. A very recent activity concerns the simulation of two-phase �ow with dense-gases
by means of very accurate equations of state [2]. All these activities are summarized in Fig. 1.5.

In order to give a clear idea of my contributions in terms of methods and applications, I list below
some highlights concerning methods and results for UQ and Robust Optimization.

Intrusive methods for shock-dominated compressible �ows

• The Semi-Intrusive method (SI) [7] allows the computation of statistics of linear and non linear
PDEs solutions. This method proves to be very e�cient to deal with any form of probability
density function, long-term integration and discontinuities in the stochastic space. Given a PDE
and starting from a description of the solution in terms of a space variable and a (family) of
random variables that may be correlated, the solution is numerically described by its conditional
expectancies of point values or cell averages. This is done via a tessellation of the random space
as in �nite volume methods for the space variables. Then, using these conditional expectancies
and the geometrical description of the tessellation, a piecewise polynomial approximation in
the random variables is computed using a reconstruction method that is standard for high
order �nite volume space, except that the measure is no longer the standard Lebesgue measure

2Note that each reference number is associated to the list of my publications (see Section 12.6).
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Figure 1.4: UQ and Robust-Optimization activities and contributions. Each reference number is
associated to the list of my publications (see Section 12.6), with the asterisk indicating a work-in-
progress.

but the probability measure. Starting from a given scheme for the deterministic version of the
PDE, this reconstruction is used to formulate a scheme for the numerical approximation of the
solution. This new approach is said semi-intrusive because it requires only a limited amount of
modi�cation in a deterministic �ow solver to quantify uncertainty on the �ow state when the
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Figure 1.5: Dense-gas activities and contributions. Each reference number is associated to the list of
my publications (see Section 12.6), with the asterisk indicating a work-in-progress.

�ow solver includes uncertain variables. This method is described in Section 3.1.

• TE Algorithm [4] is a novel adaptive strategy for stochastic problems, inspired from the clas-
sical Harten's framework. The proposed algorithm allows building, in a very general manner,
stochastic numerical schemes starting from any type of deterministic schemes and handling a
large class of problems, from unsteady to discontinuous solutions. Its formulations permits
to recover the same results concerning the interpolation theory of the classical multiresolution
approach, but with an extension to uncertainty quanti�cation problems. The interest of the
present strategy is demonstrated by performing several numerical problems where di�erent
forms of uncertainty distributions are taken into account, such as discontinuous and unsteady
custom-de�ned probability density functions.
Remark that the basic version of this algorithm is non-intrusive, although its following exten-
sions are intrusive, since a weak coupling between physical and stochastic space is applied.
This method is presented in the cell-average setting in Section 3.2.

• The TE method is extended to the so-called spatial-TE (sTE), for partial di�erential equations
and applied to the heat equation [24]. Moreover, the �exibility of the proposed method is
demonstrated by proposing a simple algorithm coupling high-resolution schemes in the physical
and in the stochastic spaces at the same time, and by applying it to the Burgers equation [22].
These methods are not reported in this manuscript. Please refer any interested reader to [22,24].

• aSI method [21] deals with a multiresolution strategy applied to SI scheme for compressible
�uids problems. The mathematical framework of the multiresolution framework is presented
for the cell-average setting and the coupling with the existing semi-intrusive scheme is described
from both the theoretical and practical point-of-view. Some reference test-cases are performed
to demonstrate the convergence properties and the e�ciency of the overall scheme: the linear
advection problem for both smooth and discontinuous initial conditions, the inviscid Burgers
equation and the 1D Euler system of equations to model an uncertain shock tube problem
obtained by the well-known Sod shock problem. This method is described in Section 3.2

• aSI method is coupled with a DEM (Discrete Equation Method) approach for taking into
account uncertainties in a multiphase problem (the paper is in preparation). This shows the
great �exibility of the aSI stochastic scheme permitting an easy coupling also with a very
complex code, such as a DEM-based code. Some highlights of this work are presented in
Section 11.3.
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• aSI method is extended for taking into account up to three dimensions in the stochastic space.
Some highlights of this work are presented in Section 11.3.

Variance-based and high-order decomposition

• ANOVA analysis is a very common numerical technique for computing a hierarchy of most im-
portant input parameters for a given output when variations are computed in terms of variance.
This second central moment can not be retained as an universal criterion for ranking some vari-
ables, since a non-gaussian output could require higher order (more than second) statistics for
a complete description and analysis. I studied how decomposing High-order statistics (HOSD)
[23]. In particular, how third and fourth-order statistic moments, i.e. skewness and kurtosis,
respectively, can be decomposed. It is shown that this decomposition is correlated to a polyno-
mial chaos expansion, permitting to easily compute each term. Then, new sensitivity indices
are proposed, based on the computation of the kurtosis. A part of this work is presented in
Section 4.1.

• ANOVA based analysis is applied for studying various sources of uncertainties in di�erent �ow
con�guration: turbulent and cavitating �ows [3,8], thermodynamically complex �ows [11,15],
and the in�uence of operating/boundary conditions [8,14]. Some of these works are presented
in Sections 4.2, 6.4 and in Chapter 9.

Robust optimization

• Simplex2 Method [5] is an e�cient algorithm for uncertainty quanti�cation (UQ) in compu-
tational problems with random inputs. Its formulation, based on simplex tessellation, high
degree polynomial interpolation and adaptive re�nements can be employed in problems in-
volving optimization under uncertainty. The optimization approach used is the Nelder-Mead
algorithm (NM), also known as Downhill Simplex Method. The resulting SSC/NM method,
called Simplex2, is based on i) a coupled stopping criterion and ii) the use of an high-degree
polynomial interpolation in the optimization space for accelerating some NM operators. This
method is presented in Section 6.3.3.2.

• ANOVA-based method [6] is an e�cient algorithm used in order to perform a variance-based
decomposition and to reduce stochastic dimension basing on an appropriate criterion. A mas-
sive use of metamodels allows reconstructing response surfaces for sensitivity indexes in the
design variables plan. This method is presented in Section 6.2.

Inverse problem

• A Backward uncertainty propagation method is proposed [10]. This is an innovative, �exible
and e�cient algorithm combining computational �uid dynamics (CFD), uncertainty quanti�-
cation (UQ) tools and metamodel-based optimization in order to obtain a reliable estimate for
the probability of occurrence of a given phenomenon and to prescribe the experimental accu-
racy requirements ensuring the reproducibility of the measurements with su�cient con�dence.
This method is illustrated in Section 10.1.

• A new methodology to rebuild freestream conditions for the trajectory of a re-entry vehicle
from measurements of stagnation-point pressure and heat �ux is presented [1]. Uncertainties



1.3. Highlights on my contributions to methods and applications 17

due to measurements and model parameters are taken into account and a Bayesian setting
is used to solve the associated stochastic inverse problem. A sensitivity analysis based on a
stochastic spectral framework is �rst investigated to study the impact of uncertain input data
on stagnation-point measurements. An original backward uncertainty propagation method is
then proposed, for which only the uncertainties that have the most impact are retained. This
method is presented in Section 5.1.

Concerning dense-gases numerical simulation, I list some exciting results obtained recently:

• The reliability of thermodynamic models has been assessed [11,15], focusing in particular on
�uids displaying BZT properties. The sensitivity of numerically computed �ow �elds to uncer-
tainties in thermodynamic models for complex organic �uids has been investigated. Precisely,
our focus is on the propagation of uncertainties introduced by some popular thermodynamic
models into the numerical results of a computational �uid dynamics solver for �ows of molecu-
larly complex gases close to saturation conditions (dense gas �ows). A chaos collocation method
is used to perform both a priori and a posteriori tests on the output data generated by ther-
modynamic models for dense gases with uncertain input parameters. A priori tests check the
sensitivity of each equation of state to uncertain input data via some reference thermodynamic
outputs, such as the saturation curve and the critical isotherm. A posteriori tests investigate
how the uncertainties propagate into the computed �eld properties and aerodynamic coe�-
cients for a �ow around an airfoil placed into a transonic dense gas stream. This study is
presented in Chapter 9.

• Feasibility study on the RSW (Rarefaction Shock Wave) appearance is explored [10]. The back-
ward uncertainty propagation method presented before is applied to the study of rarefaction
shock waves (RSW) in a dense-gas shock tube. Previous theoretical and numerical studies have
shown that a RSW is relatively weak and that the prediction of its occurrence and intensity are
highly sensitive to uncertainties on the initial �ow conditions and on the �uid thermodynamic
model. It is shown that requirements on the experimental uncertainties are hardly achievable
for ensuring a high probability to observe the RSW. This work is presented in Chapter 10.

• The appearance of a RSW in a two-phase �ow has been recently investigated [2]. A discrete
equation method (DEM) for the simulation of compressible multiphase �ows including real-
gas e�ects is introduced. So a numerical approximation of a reduced �ve-equation model is
obtained. A simple procedure is then proposed for using a more complex equation of state, thus
improving the quality of the numerical prediction. A computational study on the occurrence
of rarefaction shock waves (RSW) in a two-phase shock tube is presented, with dense vapors
of complex organic �uids. Since previous studies have shown that a RSW is relatively weak in
a single-phase (vapor) con�guration, its occurrence and intensity are investigated considering
the in�uence of the initial volume fraction, initial conditions and the thermodynamic model.
This work is presented in Chapter 10.

• High-�delity turbine computation of dense-gas turbines are performed by using cross-validation
between �ow solvers [13]. This study is devoted to the numerical study of dense gas �ows in
turbomachinery and the assessment of their interest as working �uids in energy-conversion
cycles. A structured and an unstructured dense-gas solver are used to ensure the reliability
of the computed results for dense gas �ows through a turbine cascade. The physical analysis
is focused on the e�ect of the working �uid and its operating thermodynamic conditions on
turbine performance. This work is presented in Chapter 8. Some recent results obtained with
a high-order residual distribution schemes are presented in Section 11.3.
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1.4 Organization of the manuscript

This manuscript is divided in two main parts. The �rst one is devoted to Uncertainty Quanti�cation
(UQ) and robust design optimization. In particular, my main contributions in terms of methods
and results are illustrated. The second part is focused on dense-gas CFD (Computational �uid-
dynamics). I brie�y describe the main numerical ingredients for a well-posed and accurate numerical
simulation of thermodynamically complex �ows. Then, the most important results in terms of
physical understanding of BZT �ows and advancements in their investigation are presented. Even
though the two parts are presented separately, several studies have been performed which mix UQ
and robust optimization with dense gas �ow analysis.
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2.1 Some de�nitions

Let us introduce the mathematical setting, used for the UQ analysis in the context of partial dif-
ferential equations. Let us consider an output of interest u(x, t, ξ(ω)) depending from the physical
space x ∈ Ω ⊂ Rnd , the time t ∈ T and a vector of parameters ξ ∈ Ξ where Ξ is the sample space.
The output of interest u can be a conserved (or primitive, or another �ow variable) variable of a
system of conservation laws.

We suppose that the output of interest is governed by an algebraic or di�erential operator L with
a source term S:

L(x, t, ξ(ω);u(x, t, ξ(ω))) = S(x, t, ξ(ω)). (2.1)

Initial and boundary conditions, that could depend from the parameter vector ξ, should be provided
for a well-posed problem. Both the operators L and the source term S are de�ned on the domain
Ω× T × Ξ.

Let us de�ne a measurable space (Ξ,Σ, p) where Σ is its σ−algebra of events and p a probability
measure with the following properties:

• p(A) ≥ 0 for all A ∈ Σ;

• Countable additivity: if Ai ∈ Σ are disjoint sets then p(
⋃

iAi) =
∑

i p(Ai);

• as probability measure p is normalized on Ξ: p(Ξ) = 1.

The Rd−valued random variable ξ speci�es a set of events with a corresponding probability. More
formally, the random variable ξ is a measurable function that maps the measurable space (Ξ,Σ, p)

to another measurable space, the Borel Bd σ−algebra of the real space (Rd,Bd,P). There is some set
of events ω, that ξ maps to an output event A ∈ Bd with the probability of occurrence of A, P(A)
equal to the probability of ω:

P(A) = p(ξ−1(A)) = p(ω : ξ(ω) ∈ A). (2.2)

As usual in the literature, we consider that P(A) = p(ξ ∈ A) = p(ξ).
The aim of UQ analysis is to �nd statistical quantities of the solution u(x, t, ξ), the statistical

moments or the probability distribution.
Assuming u(ξ) ∈ L2(Ξ, p), mean and variance can be computed as follows:

E(u,x, t) =
∫
Ξ
u(x, t, ξ)p(ξ)dξ

Var(u,x, t) =

∫
Ξ
(u(x, t, ξ)− E(u))2 p(ξ)dξ.

(2.3)
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2.2 Organization of this part

In the �rst part of this manuscript, I resume my main contributions to UQ and Robust Optimization
methods. Chapter 3 is devoted to some intrusive approaches for Partial Di�erential Equations (PDE),
in particular for hyperbolic systems: i) the Semi-Intrusive (SI) method, ii) the aSI method, that is
the coupling between SI and a multi-resolution inspired strategy, called TE method. Other intrusive
methods that are not reported in this manuscript, are then brie�y described.

In Chapter 4, non-intrusive approaches are considered. In particular, high-order statistical mo-
ments decomposition is presented. The interest of using ANOVA-based analysis is highlighted in a
study about the uncertainty propagation through some turbulence models.

Chapter 5 illustrates some recent results obtained with two algorithms for inverse problems in
dense-gas �ows and in an aerospace application.

Finally, in Chapter 6, the focus is on my contributions to Robust Optimization methods: the
Simplex2 Method, and an ANOVA-based optimization method. Finally, the shape optimization of
an airfoil in a BZT �ow is illustrated.
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In this chapter, I describe the work done on two intrusive approaches, i.e. the methods SI and aSI.
Other methods not reported in this manuscript, are brie�y resumed in Section 3.3.

3.1 Semi-intrusive method

3.1.1 Principles of the method

3.1.1.1 General formulation of the method

Let us start from some model represented by a PDE, say

L(u) = 0, (3.1)

de�ned in a domain K of Rd subjected to boundary conditions, and if needed initial conditions. The
operator depends in some way of parameters (for example the equation of state, or the parameter of
a turbulent model, to give an example in �uids), that in many cases are not well known. Hence we
assume they are random variables de�ned on some universe Ω, and that these random variables are
measurable with respect to a measure dµ de�ned on Ω. Hence our problem can formally be seen as
a �stochastic� PDE of the type

L(u,X) = 0, (3.2)

de�ned in a domain K of Rd, subjected to initial and boundary conditions, and where X is a random
variable de�ned on Ω. By abuse of language, we use the same notation L for the problem. The
operator L depend on u := u(x, t,X) or u := u(x,X) depending on of the problem is time dependent
or not and X := X(ω) where x ∈ Rd for s ∈ {1, 2, 3} and t ∈ R+ are the usuals and respectively
space and time parameters, the event ω belongs to Ω. The random variable may also depend on
space and time, as well as the measure µ.
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We will identify Ω to some subset of Rs, s being the number of random parameter to de�ne X.
Thus we can also see (3.2) as a problem de�ned on a subset K ′ of Rd × Rs.

For any realization of Ω, we assume to be able to solve the following approached deterministic
form of (3.2) in space and time, by some numerical method:

Lh(uh, X(ω)) = 0. (3.3)

In order to approximate a solution of (3.2), the �rst step is to discretize the probability space Ω. We
construct a partition of Ω, i.e. a set of Ωj , j = 1, . . . , N that are mutually independent

µ(Ωi ∩ Ωj) = 0 for any i 6= j (3.4)

and that cover Ω
Ω = ∪N

i=1Ωi. (3.5)

We assume µ (Ωi) =
∫
Ωj
dµ > 0 for any i. We wish to approximate the solution of (3.2) by the

average conditional expectancies E(uh|Ωj)

E (uh | Ωj) =

∫
Ωj
uhdµ∫

Ωj
dµ

(3.6)

from the knowledge of the operator Lh.
Let us illustrate how this idea can be made e�ective. If an iterative technique is used for solving

(3.3), as it is often the case, a deterministic solution can be written as

un+1
h = = (unh) (3.7)

where the operator = is a succession of additions, multiplications and function evaluations. In (3.7),
the index n can be the index of the iteration stricto sensu, or the index of the time step in the case
of an explicit method for a time dependent problem, etc. This leads to

E
(
un+1
h | Ωj

)
= E (= (unh) | Ωj) . (3.8)

This scheme is fully de�ned if E (= (unh) | Ωj) can be evaluated. We show how to do that in
sections 3.1.1.2 and 3.1.1.3. Thus we are able to construct a sequence

(
E
(
un+1
h | Ωj

))
n≥0

. If the
problem is steady and if this sequence converges in some sense, the limit is the sought solution. In the
case of time dependent problems, (3.8) represents an approximation of the conditional expectancy
at time tn+1. In the case of explicit/implicit methods, as for dual time stepping, the interpretation
of (3.8) can easily be done in the relevant context.

3.1.1.2 Consistency of the method

Given the conditional expectancies E (X | Ωj), can we estimate for a given f , E(f(X)) ?
We assume X = (X1, . . . , Xn). The idea is the following: For each Ωj , we �rst de�ne a stencil,

i.e. a set Si = {Ωj}j∈Ii with Ωi ∈ Si and we wish to evaluate a polynomial Pi ∈ R [x1, · · · , xn] of
degree p such that

E (X | Ωj) =

∫
Rn 1Ωj (x1, · · · , xn)P (x1, · · · , xn) dµ̃

µ (Ωi)
for j ∈ Si (3.9)

where dµ̃ is the image of dµ. 1

1 for example dµ is the sum of a Gaussian and a Dirac at x0,∫
Rn

P (x)dµ̃ = α
1√
2πσ

∫
R
P (x)e−

(x−m)2

2σ dx+ (1− α)P (x0)
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This problem is reminiscent of what is done in �nite volume schemes to compute a polynomial
reconstruction in order to increase the accuracy of the �ux evaluation thanks the MUSCL reconstruc-
tion. Among the many references that have dealt with this problem, with the Lebesgue measure
dx1 . . . dxn, one may quote [Harten 1987] and for general meshes [Barth 1990, Abgrall 1994a]. A
systematic method for computing the solution of problem (3.9) is given in [Abgrall 1997b].

Assume that the stencil Si is de�ned, the technical condition that ensure a unique solution to
problem (3.9) is that the Vandermonde�like determinant (given here for one random variable for the
sake of simplicity)

∆i = det

(
E(xl|Ωj)

)
0≤l≤n,j∈Si

. (3.10)

is non zero. In the case of several random variable, the exponent l above is replaced by a multi�index.
A necessary condition, in 1D, is that #Si ≥ p(p+1)

2 . Similar, but more complex expressions of this
type exist for multivariate polynomials.

Once the solution of (3.9) is known, we can estimate

E (f(X)) ≈
N∑
j=1

∫
Ωj

f (P (x1, · · · , xn)) dµ̃ (3.11a)

by using a relevant quadrature formula in each Ωj . For example, if dµ̃ has a density in Ωi, we can do∫
Ωj

f
(
P
(
x
))
dµ̃ ≈

mi∑
k=1

wi
kf

(
P
(
xik
))

(3.11b)

where the weights are the wi
k and the quadrature points are the xik. If dµ̃ has no density, the ad hoc

formula must be used, but the principle stays the same.
We have the following approximation results : if f ∈ C1(Rn) ∩ L1(Ω, µ) and X of class Cr,

r ≥ p+ 1 then∣∣∣∣E (f(X))−
N∑
j=1

∫
Rn

1Ωj (x1, · · · , xn) f (P (x1, · · · , xn)) dµ̃
∣∣∣∣

≤ max ||Dp+1X||∞max
Ωi

min
ωi∈Ωi

E(||(ω − ωi)
p+1|| |Ωi).

for a set of regular stencils. The proof of this results is given in [Abgrall 2013b].
We notice that we never need to make any additional assumption on the structure of X to

evaluate P in (3.9). In particular, there is no need to assume that the random variables Xi are
mutually independent.

3.1.1.3 Polynomial reconstruction

In this section, we provide explicit examples and applications of the reconstruction technique that we
have abstractly sketched in the previous paragraph. Let us subdivide the space Ω into non overlapping
measurable subsets. For the simplicity of exposure we will consider one source of uncertainty, thus
the subsets can be identi�ed, via the measure dµ, to N intervals of R which are denoted by Ωj =

[ωj−1/2, ωj+1/2] . The case of multiple sources can be considered by tensorisation of the probabilistic
mesh. Note it does not mean that dµ is of the form dµ = dµ1 ⊗ . . .⊗ dµs as it would be the case for
independent variables: this formalism enables to consider correlated random variables, as we show
later in the text. Note that the subsets Ωj+1/2, seen as subsets of Rn may well be unbounded, the
only relevant information is that their measure µ(Ωj+1/2) is bounded. This is obviously the case
because µ is a probability measure.
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Let us describe in details what is done for one source of uncertainties. In the cell Ωi, the
polynomial Pi ∈ Pk(R) of degree k is fully described by a stencil Si = {Ωi,Ωi1+1/2, . . .} such that in
any cell [ωj−1/2, ωj+1/2] ∈ Si we have

E(Pi|[ωj−1/2, ωj+1/2]) = E(u|[ωj−1/2, ωj+1/2]). (3.12)

It is easy to see that there is a unique solution to that problem provided that the cells of Si do not
overlap, which is the case, and if k = #Si+1/2 − 1 . In the numerical examples, we consider three
reconstruction mechanisms :

• a �rst order reconstruction: we simply take Si = {Ωi} and the reconstruction is piecewise
constant,

• a centered reconstruction: the stencil is Si+1/2 = {i− 1/2, i+1/2, i+3/2} and the reconstruc-
tion is piecewise quadratic. At the boundary of Ω, we use the reduced stencils S1/2 = {1/2, 3/2}
for the �rst cell [ω0, ω1] and SN−1/2 = {N − 1/2, N − 3/2} for the last cell [ωN−1, ωN ], i.e. we
use a linear reconstruction at the boundaries.

• An ENO reconstruction : for the cell [ωi−1/2, ωi+1/2], we �rst evaluate two polynomials of degree
1. The �rst one, p−i , is constructed using the cells {[ωi−1/2, ωi+1/2], [ωi−3/2, ωi−1/2]} and the

second one, p+i , on {[ωi−1/2, ωi+1/2], [ωi+1/2, ωi+3/2]}. We can write (with ωi =
ωi−1/2+ωi+1/2

2 )

p+i (ξ) = a+i (ξ − ωi) + b+i and p
−
i (ξ) = a−i (ξ − ωi) + b−i .

We choose the least oscillatory one, i.e. the one which realizes the oscillation min(|a+i |, |a
−
i |).

In that case, we take a �rst order reconstruction on the boundary of Ω.

Other choices are possible such as WENO-like interpolants.

Once the polynomial is reconstructed, we need to evaluate conditional expectancies. This amounts
to perform numerical integrations over Ωj . If dµ = µ(ω)dω, this can be done thanks to a classical
quadrature method, as the following third order Gaussian quadrature:∫ b

a
h(ω)dω ≈ b− a

2
(h(ξ1) + h(ξ2)), (3.13)

where ξ1 =
a+ b

2
− b− a

2

√
3

3
and ξ2 =

a+ b

2
+
b− a

2

√
3

3
.

In all the practical illustrations, we will use only one or two sources of uncertainty even though the
method can be used for any number of uncertain parameters, this leading to other known problems
such that the curse of dimensionality. Using classical quadrature formulas in multi-dimensional
stochastic problem, the computational cost can increase exponentially [Smolyak 1963a], and others
methods, as the sparse grid methods must be used [Gerstner 1998, Ma 2009a]. These methods are
based on a linear combination of tensor product of one dimensional quadrature formulas.

3.1.1.4 1D-1D Discretization

Fundamental concepts have been introduced in the previous sections, and we will now focus on a
detailed discretization of an 1D-1D PDE. By �1D-1D�, we mean one dimension in the geometric space
and one dimension in probabilistic space. Let us consider the following equation

∂u

∂t
+
∂f(u)

∂x
= S,

Initial and/or boundary conditions,

(3.14)
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de�ned in a domain K = D ×Ω ⊂ R2, where u := u(x, t,X(ω)), S := S(x, t,X(ω)) is a source term
and t > 0. The space parameter x is de�ned on D ⊂ R, ω and X are respectively a random parameter
and a random variable, de�ned on the probability space (Ω, dµ) where dµ is the probability measure
and Ω ⊂ R. The initial conditions, boundary conditions and the domain D may be random.

As explained previously in section 3.1.1.1, the discretization of (3.14) is based on two steps, the
integration of the deterministic part of the system and the integration of the probabilistic part.

Deterministic formulation

We consider a spatial discretization for (3.14) with nodes points xi = i∆x where i belongs to
some subset of Z, a time step ∆t > 0 and a set tn = ∆t, n ∈ N. The control volume is as usual the
intervals Ci = [xi−1/2, xi+1/2] with xi+1/2 = (xi + xi+1)/2. We start from a �nite volume scheme,
and for the simplicity of exposure, we only consider a �rst order in time.

Thus we de�ne the deterministic scheme (i.e. for any �xed ω) as

un+1
i (X(ω)) = uni (X(ω))

− ∆t

|Ci|

(
F (uni+1(X(ω)), uni (X(ω)))− F (uni (X(ω)), uni−1(X(ω)))

)
+

∫
Ci

S(x, tn, X(ω)) dx,

(3.15)

where F is a consistent approximation of the continuous �ux f . The cell-averaged quantity is de�ned
as

uni (X(ω)) =
1

|Ci|

∫
Ci

u(x, tn, X(ω))dx. (3.16)

Probabilistic formulation

The next step is the discretization of the probabilistic part of the equation, where the variables
must be represented by their conditional expectancies. We consider a probabilistic discretization for
(3.15) with nodes points ωj+1/2 = (j + 1/2)∆ω where j belongs to some subset of Z. The control
volume is the intervals Ωj = [ωj−1/2, ωj+1/2].

Thus we de�ne the probabilistic scheme as

un+1
i,j = uni,j −

∆t

|Ci|

(
E(F (uni+1, u

n
i )|Ωj)− E(F (uni , u

n
i−1)|Ωj)

)
+

∆t

|Ci|
E

(∫
Ci

S(x, tn, X(ω))dx

∣∣∣∣Ωj

) (3.17)

where the cell-averaged conditional expectancy is de�ned as

uni,j = E(uni (X)|Ωj) =
1

µ(Ωj)

∫
Ωj

uni (X(ω))dµ(ω). (3.18)

Numerical �ux evaluation

The expectancy of the numerical �ux can be approached as it is shown in section 3.1.1.2 by

E(F (uni+1, u
n
i )|Ωj) ≈

1

µ(Ωj)

∫
Ωj

F (Pn
i+1,j , P

n
i,j) dµ, (3.19)

where Pi,j is a piecewise polynomial reconstruction of the probabilistic solution. Assuming that we
require all polynomial reconstructions Pi,j to have the correct cell average, we have

E(Pi,j |Ωj) = E(ui|Ωj). (3.20)
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To achieve the second order accuracy, there are many reconstruction methods. As it is shown in
section 3.1.1.3 one can use a second order centered method, where polynomial reconstruction have
the following form:

Pi,j(ω) = a+ b(ω − ωj) + c(ω − ωj)
2,

and where ωj =
ωj+1/2 + ωj−1/2

2
.

We rephrase in the present context the discussion of section 3.1.1.3 to clarify as much as possible.
The coe�cients a, b and c are determined using the previous requirement (3.20), thus for l ∈ {j −
1, j, j + 1}

E(Pi,l|Ωl) = E(ui|Ωl).

By linearity of expectancy, this leads to resolve the system

a+ b E(ω − ωj+1/2|Ωl) + c E((ω − ωj+1/2)
2|Ωl)

= E(ui,l|Ωl) for any l ∈ {j − 1, j, j + 1}.

Once reconstructed, the polynomial is injected in the numerical �ux F . For the simplicity of the
exposure let's formulate F thanks to the Roe's method:

F (Pn
i+1,j , P

n
i,j) =

1

2

(
f(Pn

i+1,j) + f(Pn
i,j)− |A(Pn

i+1,j , P
n
i,j)|(Pn

i+1,j − Pn
i,j)
)

(3.21)

where |A(uni+1,j , u
n
i,j)| is the Jacobian matrix evaluated at the Roe's average, see [Roe 1981] for

details. Of course other method are applicable.
Time stepping procedure

To �nish with the discretization, the time step evolution is evaluated taking into account ∆tΩj

for any realization Ωj , which is obtained under classical CFL stability conditions. Thus the general
time step is evaluated as

∆t = min
Ωj

∆tΩj . (3.22)

Implementation issues

The deterministic scheme is sketched in the Algorithm 1 in order to better show in the Algorithm
2 what are the modi�cations. The Algorithm 3 shows how to implement the stochastic resolution of
the system (3.14). As indicated, the modi�cations to the deterministic code are rather small. The
�rst loop, on top of all the others, is a loop over the iterative parameter introduced in (3.8). It
already exists in the deterministic method, see Algorithm 1.

Algorithm 1: Flow chart for the deterministic scheme (3.7).

Initialise U0

for n:= 1 to nmax: Deterministic loop do
From Un, evaluate the relevant parameters V n for the solver =,
Evaluate =(V n) = Un+1.

The second loop, enclosed by the previous one, is a loop over the subsets Ωj which also does not
induce any modi�cation of the code. In this loop, we �rst evaluate the reconstruction polynomials
(in the stochastic direction), and for each quadrature points in (3.11), we evaluate the relevant data
to be sent to the deterministic solver. Then we apply the deterministic solver = on this datum. Once
this loop is done, we evaluate Un+1, the vector made of {E(Un|Ωj)}Ωj as in the quadrature formula
(3.11).

This method is further exempli�ed for (3.14) in algorithm 3.
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Algorithm 2: Flow chart for the system (3.14). The deterministic sequence are underlined,
they corresponds to the steps of the deterministic algorithm 1.

for j:=1 to jmax : Probabilistic loops do
Evaluate U0

j , the initial condition.
for n := 1 to nmax: Deterministic loop do
for j:=1 to jmax : Probabilistic loops do
For each Ωi, evaluate the reconstruction polynomial R(Un)i(x, ω).
for jquad := 1 to jquadmax : Quadrature loop: do
Evaluate the relevant parameters V n

jquuad
= R(Un)i(x, ωjquad)

Evaluate =(V n
jquad

) = Un+1
jquad

.

From the {Un+1
jquad

}jquad , evaluate Un+1 from the quadrature formula (3.11).

Algorithm 3: Flow chart for the system (3.14). The deterministic steps are underlined
for n:= 1 to nmax: Deterministic loop do
for j:=1 to jmax : Probabilistic loops: do
for jquad := 1 to jquadmax : Quadrature loop: do
Reconstruct a piecewise polynomial unjquad(x) of u

n(x,X(ω)) in each cell Ωj

for i := 1 to imax : Deterministic loop do
reconstruct a piecewise polynomial un

i,jquad
of un

jquad
(x) in each cell Ci

Compute �uxes F (uni+1,jquad
, uni,jquad), . . . using deterministic solver

Control time step ∆tΩjquad

compute expectancies E(F (uni+1, u
n
i )|Ωj), . . . using quadrature formula

update probabilistic time step ∆tΩj = minΩjquad
(∆tΩjquad

)

update total time step ∆t = minΩj (∆tΩj )

for j := 1 to jmax : Probabilistic loop do
for i := 1 to imax : Deterministic loop do
update values

un+1
i,j = uni,j +

∆t

|Ci|

(
E(F (uni+1, u

n
i )|Ωj)− E(F (uni , u

n
i−1)|Ωj)

)
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3.1.2 Some signi�cant results

3.1.2.1 Kraichnan-Orszag problem

The Kraichnan Orszag three-modes problem has been introduced by Kraichnan [Kraichnan 1963]
and Orszag [Orszag 1967]. It has been intensively studied to study the loss of accuracy of gPC ex-
pansion for problems involving long time integration. In [Wan 2005], the exact solution is given, and
di�erent computations have been performed in [Wan 2005, Wan 2006a, Foo 2008, Gerritsma 2010,
Agarwal 2009, Ma 2009a]. This problem is de�ned by the following system of nonlinear ordinary
di�erential equations

dy1
dt

= y1y3,

dy2
dt

= −y2y3,

dy3
dt

= −y21 + y22

(3.23a)

subject to stochastic initial conditions

y1(0) = y1(0;ω), y2(0) = y2(0;ω), y3(0) = y3(0;ω). (3.23b)

In general, uniform distributions are considered, except in [Wan 2006a] where beta and Gaussian
distributions are also taken into account. The computational cost of SI method for the K-O problem
is compared to that of other methods, namely a quasi-random Sobol (MC-SOBOL) sequence with
81̇06 iterations, and a Polynomial Chaos Method (PC) with Clenshaw-Curtis sparse grid. The error
in variance of y1 is considered at a �nal time tf of 50. We de�ne the error between two numerically
integrated functions f1 (tj) and f2 (tj), j = 1, · · · , nt, as:

εL2 =

1
nt

√∑nt
j=1 (f1 (tj)− f2 (tj))

2

1
nt

√∑nt
j=1 (f1 (tj))

2
,

where f1 is considered the Monte Carlo converged solution. Similarly, the L∞ error is de�ned by

εL∞ =
maxj=1,...,nt |f1(tj)− f2(tj)|

maxj=1,...,nt |f1(tj)|
.

For di�erent error levels, corresponding computational cost is computed.
1D

First, we study the 1D problem corresponding to initial conditions of the form

y1(0) = 1.0, y2(0) = 0.1ξ, y3(0) = 0.0,

where ξ is a uniformly distributed random variable varying in [−1, 1]. We use SI, MC-SOBOL and
PC method to compute the variance of y1. In Table 3.1.2.1, we show the results in terms of number
of samples required to reach a prescribed error in the L2 and L∞ norms. The performance of the SI
method are comparable and even better than PC method, at least on this problem.

Then, the same problem described previously but with a di�erent probability distribution for
y2(0) has been considered. In particular, ξ is discontinuous on [a, b] = [−1, 1] with a density de�ned
by :

f(γ) =
1

M
×


1 + cos(πx)

2
if x ∈ [−1, 0]

10 +
1 + cos(πx)

2
if x ∈ [0, 1]

0 else

(3.24a)
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Error level εL2 MC − SOBOL PC SI

10−1 75 24 24
10−2 520 37 36
10−3 4500 85 82

Table 3.1: Number of samples required for the 1D K-O problem for time t ε [0, 10]. The error norm
is L∞.

and M = 11
2 to ensure normalization.

Because of the discontinuous pdf, only MC-SOBOL and SI solutions can be compared, showing
the great �exibility given by SI method with respect to the form of the pdf. In Figure 3.1, variance
of y1(t) is reported for the converged solutions obtained with MC-SOBOL and SI. The SI method
permits to reproduce exactly MC-SOBOL solution. In Figure 3.2, a convergence study for SI is
reported by using an increasing number of points in the stochastic space. In Table 3.2, we reported
number of samples required to reach a prescribed error εL2 . The SI method shows to be very
competitive in terms of e�ciency and computational cost with respect to MC-SOBOL method when
whatever form of pdf is used (a discontinuous pdf in this case). Let us remark that a uniform grid
is used in the stochastic plane without any type of adaptation. This displays the great potentiality
of this method if coupled with an adaptive methods.

t

σ2 (y
1)

0 10 20 30 40 50

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

MC-SOBOL
SI 1000

Figure 3.1: Variance of y1 computed by means of SI and MC-SOBOL methods.

2D

Then, we use SI method to study the K-O problem with two-dimensional random inputs:

y1(0) = 1.0, y2(0) = 0.1ξ1, y3(0) = ξ2,
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t
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Figure 3.2: Variance of y1 computed by means of SI for di�erent meshes in the stochastic space.

Error level εL2 MC − SOBOL SI

10−1 60 15
10−2 450 240
10−3 3500 1400

Table 3.2: Number of samples required for the 1D-discontinuous K-O problem for time t ε [0, 50].
The error norm is L∞.

where ξ1 is discontinuous on [a, b] = [−1, 1] with a density de�ned by (3.24) and ξ2 is a uniform
random variable in [-1,1].

In Figure 3.1.2.1, the SI capability to reproduce exactly MC-SOBOL solution is represented. The
SI and MC-SOBOL solutions are nearly coincident also for long time (t = 50). The mesh convergence
study in the stochastic space for SI is reported in Figure 3.1.2.1 showing that the solution obtained
with a mesh of 320× 320 is well converged. In Table 3.3, the computational cost required to reach a
prescribed error of εL2 is reported. Reductions from 50% to 66% are obtained using SI with respect
to MC-SOBOL solutions. Once again, let us emphasis that these results have been obtained without
any mesh adaptation, contrarily to [Gerritsma 2010]. In our case, adaptivity is doable and certainly
much better results in term of cost could be obtained in that case. Our emphasis here is to show the
potential of the method without any fancy subtilities and improvements.

Error level εL2 MC − SOBOL SI

10−1 400 170
10−2 18000 4000
10−3 400000 160000

Table 3.3: Number of samples required for the 2D-discontinuous K-O problem for time t ε [0, 50].
The error norm is L∞.
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Figure 3.3: Variance of y1 computed by means of SI and MC-SOBOL methods.
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Figure 3.4: Variance of y1 computed by means of SI for di�erent meshes in the stochastic space.

3.1.2.2 Nozzle �ow with shock

The steady shocked �ow in a convergent-divergent nozzle is taken into account with a �xed (deter-
ministic) geometry:

A(x) =

{
1 + 6(x− 1

2)
2 for 0 < x ≤ 1

2

1 + 2(x− 1
2)

2 for 1
2 < x ≤ 1
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The outlet pressure (subsonic outlet �ow with pe = 1.6529 bar) is chosen in order to have a compres-
sion shock in the divergent part of the nozzle, exactly located at x = 0.75. For the other boundary
conditions, a subsonic inlet �ow with a stagnation pressure p0 = 2 bar and a stagnation temperature
T0 = 300 K are considered. The mean γ is 1.4. Two test-cases are considered. First, an uncertain
heat coe�cient ratio γ is assumed. The random parameter ω = γ varies within the range [1.33, 1.47],
following various choices of pdf (uniform and discontinuous) described below. In the second test-case,
two-uncertainties stochastic problem is solved where γ follows a discontinuous pdf and the subsonic
outlet �ow varies uniformly within the range 1.6529± 2%.

The random parameter ω (de�ning either the heat ratio or the subsonic outlet �ow) ranges
between ωmin and ωmax; the interval [ωmin, ωmax] is mapped onto [a, b] by a linear transformation
and the pdf on [a, b] is either :

• uniform with ω ∈ [a, b] = [0, 1],

• discontinuous on [a, b] = [0, 1] with a density de�ned (3.24).

Again, various stochastic methods are used to compute statistics of the supersonic nozzle. In a
�rst step, a uniform pdf on γ is used in order to compare MC-SOBOL, PC and SI. In a second step,
γ follows (3.24) and we compare MC-SOBOL and SI to demonstrate the �exibility, and the accuracy,
o�ered by the SI method.

After a study on the grid convergence, the 1D physical space is divided in 201 points (with
the normalized geometric domain that varies from 0 to 1). The base scheme is a standard TVD
scheme using MUSCL extrapolation on the characteristic variables with Roe �ux and Harten-Yee
entropy �x. The scheme is implicit to speed up the convergence to steady state. The code has been
modi�ed along the lines of the algorithms 2. A preliminary convergence study with respect to the
stochastic estimation has been realized, by using an increasing re�nement of the probabilistic space
discretization in the case of the SI method, and an increasing polynomial order in the case of PC
method. The probabilistic space discretization varies from 5 to 160 points (in practice: 5, 10, 20, 40,
80, 160 points), while the polynomial order varies from 2 to 100. Next, the stochastic solutions are
compared computing the mean and the variance of the Mach number and pressure distributions along
the nozzle using various choices of pdf for γ. Finally, a comparison in terms of computational cost
is performed by computing error εL2 with respect to x. In Figure 3.5, the mean solutions of Mach
number and the pressure along the 1D nozzle are reported, where the mean stochastic solutions are
computed with the SI method using 10 points in the probabilistic space and the PC method using a
10th order polynomial, with γ described by a uniform pdf (γ varying between 1.33 and 1.47). As can
be observed in Figure 3.5, the mean �ow is characterized by an isentropic region of increasing speed
or Mach number between x = 0 and the mean shock location in the divergent (the �ow becoming
supersonic at the nozzle throat located in x = 0.5), followed by a subsonic �ow behind the shock with
decreasing speed. The mean solutions computed by the two UQ methods are coincident. Next the
standard deviation of the Mach number is computed along the nozzle by using di�erent re�nement
levels for the probabilistic space in the case of the SI method and di�erent polynomial order in the
case of the PC method, always keeping a uniform pdf for γ. In Table 3.4, the number of samples
required to reach a prescribed error εL2 is reported for each strategy. The SI method demands fewer
points in the stochastic space for a given level of error.

Error level εL2 MC − SOBOL PC SI

10−1 5 6 5
10−2 24 19 10
10−3 70 59 40

Table 3.4: Number of samples required for the 1-uncertainty nozzle problem, uniform pdf.
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Figure 3.5: Nozzle �ow with uncertain γ (uniform pdf). Computed mean distribution for the Mach
number (left) and the static pressure (right) using the semi-intrusive method with 10 points in the
probabilistic space and the PC method with a 10th order polynomial.

Then, a discontinuous pdf is considered for the stochastic γ. It is interesting to show the kind
of innovative contribution the SI method can bring with respect to the PC method (in its classical
version). To this end, in Figure 3.6, the standard deviation of Mach is reported along the nozzle
when the discontinuous pdf (3.24) is considered. Note that choosing (3.24)) to describe the random
variable γ introduces no change whatsoever in the application of the SI method (while the PC
method can no longer be used. The standard deviation of the Mach number distribution computed
for this discontinuous pdf is plotted in Figure 3.6 for several levels of discretization re�nement in
the probabilistic space: here again the result can be considered as almost converged with no more
than a 40-point discretization and fully converged with a 80-point discretization. In Figure 3.7,
the standard deviation of the Mach is reported along the nozzle for the discontinuous pdf by using
SI and MC-SOBOL methods. The standard deviation distributions computed by means of the SI
and MC-SOBOL methods are coincident, even for the maximal standard deviation. The stochastic
estimation remains globally very similar for the newly proposed SI approach and the well-established
MC-SOBOL method, which allows to validate the SI method results for the case of a discontinuous
pdf on γ. Let us estimate the respective computational cost of SI, MC-SOBOL for this case. In
Table 3.1.2.2, the number of samples required to reach a prescribed error for εL2 is reported for the
SI and MC-SOBOL methods. A drastic reduction of the computational cost is obtained by using the
SI method with respect to MC-SOBOL solutions.

Error level εL2 MC − SOBOL SI

10−1 4 5
10−2 42 20
10−3 250 40

Table 3.5: Number of samples required for the 1-uncertainty nozzle problem, discontinuous pdf

Next, a two-uncertainties stochastic problem is considered by assuming a discontinuous pdf for γ
and a uniform pdf for pe. In Figure 3.8, the standard deviation of the Mach is reported along the
nozzle for SI and MC-SOBOL. The standard deviation distributions computed by means of SI and
MC-SOBOL are coincident. As shown in Table 3.6, the SI method allows strongly reducing the
computational cost until six times with respect to MC-SOBOL method.
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Figure 3.6: Nozzle �ow with uncertain γ (discontinuous pdf). Convergence study for the standard
deviation on the Mach number distribution computed using the SI method.
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Figure 3.7: Nozzle �ow with uncertain γ (discontinuous pdf). Standard deviation for the Mach
number distribution for MC-SOBOL and SI methods. Left : global view; right : close-up on the
shock region.
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Figure 3.8: Nozzle �ow with uncertain γ (discontinuous pdf) and pe (uniform pdf). Standard devi-
ation for the Mach number distribution for MC-SOBOL and SI methods. Left : global view; right :
close-up on the shock region.

Error level εL2 MC − SOBOL SI

10−1 35 25
10−2 1000 400
10−3 20000 3600

Table 3.6: Number of samples required for the 2-uncertainties nozzle problem, discontinuous pdf

3.1.2.3 Viscous Burgers equation

In this section, we show how higher order reconstruction techniques a�ect the accuracy of the nu-
merical solution with respect to a reference analytical solution. Let us consider the viscous Burger's
equation

1

2

∂u2

∂x
= ν

∂2u

∂x2
, (3.25)

where x ∈ [0, 1] and u(0) = 1 and u(1) = −1. We take

ν = 0.1 + 0.2
(
cos(2πω) + 1.

)
(3.26)

with a uniform ω ∈ [0, 1].
The computation is initialized by using u0 = 1−2x and run up to convergence. For this equation,

it is possible to compute exactly the solution uν(x) = tanh

(
x
2ν

)
and the associated variance.

Several probabilistic reconstructions have been used, here are our notations for the Figures

• O3 and centered �ve points: for the cell j, use j−2, j−1, j+1 and j+2 (probabilistic indices).

• O2 and centered 3 points : for the cell j, use j − 1 and j + 1 (probabilistic indices).

• ENO : ENO reconstruction using the cells j j − 1 and j + 1 for the cell j,

• O1 : use the cell j only.

The �gure 3.9 displays the solution (with a zoom on the right) for ∆x = 1
41 , δω = 1

11 .
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Figure 3.9: For a �xed spatial resolution and a �xed �probabilistic� resolution, comparison of the
O3,O2,ENO and �rst order reconstructions. The exact variance is obtained from the exact solution
with ∆x = 1/160 and ∆ω = 1/40.

As expected higher is the formal accuracy, better are the results. In particular, the centered 3
points reconstruction gives the best results with respect to the exact solution while the less accurate
solution have been obtained by using the �rst order reconstruction.

These behavior is con�rmed by a convergence analysis, as shown in Figure 3.10, where L2 and
L∞ norms of the variance have been reported for several spatial resolutions. Remark that the error
saturates (i.e. if δω is too large, the main error is the spatial error), and this error decreases when
∆x decreases. Finally, these results show how the statistics accuracy can be improved by using an
higher reconstruction order in the stochastic space.
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Figure 3.10: For the O3,O2,ENO and �rst order reconstruction, evaluation of the (spatial) L2 and
L∞ norms of the variance for the spatial resolutions of ∆x = 1/40, 1/80, 1/160. Left : L2 norm,
right :L∞ norm
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3.1.3 Conclusions

This study deals with the formulation of a semi-intrusive (SI) method allowing the computation of
statistics of linear and non linear PDEs solutions. This method is said semi-intrusive because it
requires only a limited amount of modi�cations in a deterministic �ow solver to quantify uncertainty
on the �ow state when the �ow solver includes uncertain variables. Then, it can be considered as
very easy to implement in comparison with other intrusive methods, like as Polynomial Chaos. This
method shows to be very e�cient to deal with probability density function of whatsoever form, long-
term integration and discontinuities in stochastic space. Several test cases have been considered.
First, a modi�ed version of the Kraichnan-Orszag three-modes problem has been taken into account
by considering a discontinuous pdf for the stochastic variable. This test is very challenging seeing that
other intrusive methods well known in literature can su�er of long time integration problems even
for uniform pdf. The SI method displays good results and a drastic improvement in computational
time with respect to Monte Carlo solutions. Secondly, a stochastic nozzle �ow has been considered
with discontinuous pdf again, where SI shows large reduction of computational cost with respect to
Monte Carlo solution. Then, SI has been applied to solve the viscous Burgers equation with several
probabilistic reconstruction of stochastic space. As expected, higher order reconstruction allow to
reduce the error by using the same number of points in the stochastic space, displaying the interest
to use more accurate reconstruction in order to improve numerical accuracy of statistic properties.

Let us emphasis that the results presented in this study have been obtained by using always a
uniform grid in the stochastic space without any kind of adaptivity. For this reason, a multi-resolution
based algorithm has been developed. This is illustrated in the next section.

3.2 Adaptive semi-intrusive Method

3.2.1 Introduction and motivation

Following the general idea of a semi-intrusive propagation of the uncertainties, we introduced in [4]
(see Section 12.6) a point-value setting in the multiresolution (MR) framework to represent data in
the stochastic space. The multiresolution representation of data permits to increase the e�ciency
of the numerical code for the solution of stochastic partial di�erential equations. The idea of intro-
ducing the MR representation of data, in the context of stochastic problem, is not totally new. In
[Le Maître 2010b], a multiresolution basis is employed to represent the solution of a partial di�eren-
tial equations after �xing the physical coordinate. This representation is very e�cient but limited to
the case where the stochastic representation is used at a �xed physical location. To overcome this
issue, more recently, Tryoen et al. introduced in [Tryoen 2010] a multiresolution wavelets represen-
tation in the context of intrusive Galerkin projections. However, the Galerkin approach presented
remains very problem-dependent. This approach is limited by the spatial and time discretization ac-
curacy (only �rst order) that could dominate the overall accuracy. Moreover, the approach that we
proposed in [4] has the advantage to remain very general, not limited from the order of the spatial and
time discretization, from the probability density function (that can be even discontinuous and time
varying) and, eventually, from the geometry of the stochastic space in the case of multidimensional
problems.

In this section, the MR is presented in the cell-average framework and the representation is
implemented in the SI scheme. Moreover, we demonstrate the advantages of the introduction of a
real-time adaptivity in the stochastic space, by following the evolution of the solution in the overall
physical and stochastic space. This is shown by comparing the accuracy, at a �xed computational
cost, with and without the adaptivity based on the MR framework on the original SI scheme. Di�erent
reference test-cases are performed for which the reference solution can be obtained in an analytical
or semi-analytical approach.
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Section 3.2.2 illustrates the multi-resolution framework of Harten, generalized for the stochastic
space, where a cell-average setting is chosen. In particular the Truncate and Encode algorithm is
presented in Section 3.2.2.1 where the representation of the discrete data is obtained from the coarsest
level towards the �nest. The semi-intrusive scheme is detailed for the MUSCL-Hancock method in
Section 3.2.3. The overall formulation of the adaptive semi-intrusive scheme is presented in Section
3.2.4. Several numerical results are presented in Section 3.2.5. In particular, the introduction of
the adaptive representation of data in the stochastic space is demonstrated to improve the spatial
convergence and to cure the staircase approximation phenomenon with respect to an equivalent not
adapted solution. The linear advection equation, the inviscid Burgers equation and an uncertain
version of the Sod shock tube are performed as test-cases. Concluding remarks are reported in
Section 3.2.6.

3.2.2 The cell-average multiresolution setting

In this section, the multiresolution framework in a cell-averaged representation of data is presented.
The original Harten's framework [Harten 1993, Harten 1994, Harten 1995, Abgrall 1998] is here mod-
i�ed to allow an e�cient representation of data with respect to a general weighted function. In the
context of UQ, the weighted function is easily identi�ed as the probability distribution of the input
parameters.

In this study, only the cell-average framework is analyzed and this choice allows a straightforward
extension of the �nite volume representation of data in the coupled physical/stochastic space as
already shown in [Abgrall 2011] employing only uniform meshes in both spaces (see later Section
3.2.3).

The Harten framework can be considered, as pointed out by Aràndiga and Donat in
[Arandiga 2000], as a rearrangement of the information in a set of discrete data representing dif-
ferent resolution levels. This rearrangement of data with the addition of a truncation procedure
could yield a reduction of the computational cost and of the memory usage associated to the repre-
sentation/calculation and memorization of discrete data.

The Harten framework can be viewed as a more general framework with respect to the clas-
sical wavelets framework in which the hierarchical representation of data is obtained by means of
a functional basis based on a dilating equation and a so called mother wavelets. As presented in
[Arandiga 2009] the dilating equation in a general space can be di�cult to solve, especially for do-
mains of complex geometries. The Harten framework is capable to avoid the solution of a dilating
equation obtaining a local polynomial basis for general geometries with, eventually, data-dependent
strategies for the representation of data. All this features makes the Harten framework, an optimal
starting point for the development of a general framework for the representation of data.

Two building blocks exist: a discretization operator Dk and a reconstruction operator Rk. Both
operators operates between the continuous space to represent (the stochastic space in this context)
and one of its discrete representation, for instance the resolution level k−th. The knowledge of
the these two operators allow to de�ne in an unique way two other operators working on data
rearrangement between di�erent resolution levels. These discrete operators between consecutive
levels k (higher resolution) and k − 1 (lower resolution) are the operators of decimation Dk−1

k and
prediction Pk

k−1.
In this section, we consider the cell-average framework. Let us consider a function f = f(ξ),

f : Ξ ⊂ Rd → R with d the number of uncertain parameters. In the classical MR cell-average
framework, f ∈ F where F is the functional space of the absolutely integrable functions F = L1(Ξ).
However, in the context of UQ, F is identi�ed with L2 to deal with function with �nite variance.
Let us consider the probability density function p(ξ) and let us de�ne the following measure:

dµ(ξ) = p(ξ)dξ. (3.27)
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If the stochastic space is represented by means of a non-overlapping tessellation

Ξ =

Nξ⋃
j=1

Ξj , with Ξi ∩ Ξj = 0 if i 6= j. (3.28)

the measure of each element of the tessellation can be found as follows

µ(Ξj) =

∫
Ξj

dµ(ξ). (3.29)

Let us consider a set of discrete operators of discretization {Dk}Lk=0, each of them de�ned on a
vectorial space of �nite dimension

Dk : F → Vk with dim(Vk+1) > dim(Vk) = Jk. (3.30)

The sequence {Dk}Lk=0 has to be nested according to the following properties:

• Dk is onto

• the null space of each level include the null space associated to the previous resolution level
N (Dk) ⊂ N (Dk+1).

These properties re�ect in the following relation between discretization operators

Dk+1(f) = 0 ⇒ Dk(f) = 0 ∀f ∈ F . (3.31)

A such operator on the k-th level can be de�ned over the j-th cell Ξk
j as

(Dkf)j
def
=

1

µ(Ξk
j )

∫
Ξk
j

f(ξ)dµ(ξ) = vkj . (3.32)

Thanks to the onto property of each operator Dk, the reconstruction operator Rk can be de�ned
as its right-inverse

Rk : Vk → F . (3.33)

The reconstruction operator is not required to be linear and this makes the Harten's multiresolution
more general with respect to the wavelets framework [Getreuer 2008].

The reconstruction operator Rk for the cell average setting originally has been introduced by
Harten in the 1D case employing the concept of reconstruction via primitive function. In practice,
the cell-averaged function is replaced by a point valued function that corresponds to its primitive in
the nodes of the mesh. A more convenient approach can be adopted, following Abgrall and Sonar
[Abgrall 1997a], even for multidimensional problems on unstructured meshes [Abgrall 1998]. Fixed a
polynomial degree of reconstruction r, a stencil Sk

j of cells with cardinality s = s(r) = card(Sk
j ) can

be �xed. On each stencil Sk
j , a polynomial Pk

j (ξ; f) of degree r can be constructed. The admissibility
of this stencil obeys to a Vandermonde condition (see for further details [Abgrall 1997a]). Supposing
the stencils admissible, the conditions to satisfy for the computation of Pk

j is

Dk(Pk
j (ξ; f))l = Dk(f)l, ∀l ∈ Sk

j . (3.34)

The reconstruction operator Rk in this case is exactly equal to the union of all the polynomial Pk
j

de�ned on all the cells Ξk
j .

The two operators Dk and Rk should satisfy a consistency relationship between them

(DkRk)(v) = v ∀v ∈ Vk, (3.35)
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thus implying DkRk = Ik where Ik is the identity operator on Vk.
For the nested sequence whose elements are de�ned in (3.30), the decimation operator Dk−1

k can
be de�ned, which is a linear mapping between Vk onto Vk−1:

Dk−1
k : Vk → Vk−1, (3.36)

where
Dk−1

k vk = Dk−1f ∈ Vk−1 ∀vk = Dkf ∈ Vk. (3.37)

The decimation operator, independent from the particular f , is employed to generate recursively
the set of discrete data from the highest resolution level (k = L) to the lowest (k = 0) {vk}L−1

k=0 ,

vk−1 = Dk−1
k vk ∀k = L,L− 1, . . . , 1. (3.38)

By an agglomeration (splitting) procedure, for a generic mesh, even non structured, it is always
possible to obtain a less (higher) resolution level. To each cell Ξk

j at the lower resolution level
corresponds a number of cell (l̄c) at the higher resolution level. To preserve the nested character
between levels, the following properties between meshes should hold:

Ξk
j =

l̄c∑
l

Ξk+1
l . (3.39)

In the following, without loss of generality, l̄c = 2. This happens naturally for the 1D case of equally
splitted cells between levels in the case of regular nested meshes.

In this case, the decimation operator (see Figure 3.11) could be obtained as follows

(Dk−1
k vk)j = (Dk−1

k Dkf)j = (Dk−1f)j =
1

µ(Ξk−1
j )

∫
Ξk−1
j

f(ξ)dµ(ξ)

=
1

µ(Ξk−1
j )

(
µ(Ξk

2j)(Dkf)2j + µ(Ξk
2j−1)(Dkf)2j−1

)
.

(3.40)

Moreover, the prediction Pk
k−1 allows to approximate the set of data vk from vk−1

vk = Dkf ≈ Dk(Rk−1v
k−1). (3.41)

This leads to the de�nition of the prediction operator Pk
k−1 between discrete data on successive

resolution level as
Pk
k−1

def
= DkRk−1 : V k−1 → V k. (3.42)

The prediction operator Pk
k−1 is obtained following the de�nition (3.42) and using �rst the re-

construction procedure (3.34) for the level k − 1th, and then applying the discretization operator
Dk(Pk−1

j ) relative to the level k.
A consistency property can be de�ned, Dk−1

k Pk
k−1 = Ik, that follows from

vk−1 = Dk−1
k vk = Dk−1

k Dkf = Dk−1
k DkRk−1v

k−1 = Dk−1
k Pk

k−1v
k−1. (3.43)

The last element of the MR framework is constituted by the prediction error ek

ek
def
= vk − Pk

k−1v
k−1 = (Ik − Pk

k−1D
k−1
k )vk. (3.44)

The prediction error satis�es (from the consistency property (3.43))

Dk−1
k ek = Dk−1

k (vk − Pk
k−1v

k−1) = vk−1 − vk−1 = 0, (3.45)
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then it is in the null space of the decimation operator ek ∈ N (Dk−1
k ). Using the de�nition (3.36) and

applying the rank theorem, it is possible to write

dim(Vk) = dim(N (Dk−1
k )) + dim(Vk−1) → dim(N (Dk−1

k )) = dim(Vk)− dim(Vk−1) = Jk − Jk−1.

(3.46)
The linear independent coordinates of ek are called wavelets or details dk. Two operators can be

de�ned to link the prediction error to the details, Ek and Gk, as follows

ek
def
= Ekdk, dk

def
= Gkek with EkGk : V k → N (Dk−1

k ). (3.47)

Using all the operators described in this section, a multi-resolution representation of data can be
de�ned.

This is obtained by two procedure: the encoding and the decoding. The encoding moves from the
highest resolution level to the lowest one applying recursively (for all k = L, . . . , 1) the decimation
operator and computing the details{

vk−1 = Dk−1
k vk

dk = Gk(Ik − Pk
k−1D

k−1
k )vk.

(3.48)

The multi-resolution representation vMR refers to the possibility to obtain a one-to-one correspon-
dence between the highest resolution level vL and the sequence of the details dk in addition to the
lowest resolution level v0:

vMR
def
= {v0, d1, . . . , dL}. (3.49)

The decoding procedure is the dual procedure with respect to the encoding : recursively moves
from the lowest resolution level v0 together with the prediction error ek for all the levels k = 1, . . . , L

vk = Pk
k−1v

k−1 + Ekd
k. (3.50)

Ideally, decoding and encoding permit an ideal exchange of information among di�erent resolution
levels. In order to be useful, these operations are coupled with an operator of data truncation. This
additive operator allows, under a certain tolerance, to eliminate the over abundant information. The
compression capability opens several possibilities to the application of the multi-resolution framework
to compress the data as, for instance, in the signal/image representation schemes [Arandiga 2009] or
as a fundamental brick in the solution of intrinsically multi scales problems, as demonstrated already
in the �rst seminal works of Harten [Harten 1994, Harten 1995].

The truncation is instead based on the elimination of the wavelets dk under a prescribed tolerance.
The problem statement is the following: given a sequence of scale coe�cients or wavelets for a �xed

level dk and assigned a level dependent tolerance criterion εk, we should generate d̂k =
{
d̂kj

}Jk−Jk−1

j=1

according to

d̂kj = tr(dkj , εk) =

{
0 |dkj | ≤ εk

dkj otherwise.
(3.51)

Di�erent choices exist in literature for the threshold parameter εk: a level independent choice
εk = ε or a dependent criterion εk = ε/2L−k. Since the original work of Harten, the stability of
the MR representation of the data has been studied. Harten proposed [Harten 1993] to modify the
encoding procedure in order to preserve the following condition

||vL − v̂L|| ≤ Cε, (3.52)

with a constant C and measured in some norms as the L1 and L∞.
In this work, the main contribution is to adapt this framework performing the one-time encoding

and truncated procedure in order to obtain a compact representation of the data in the stochastic
space. This fundamental brick of the algorithm is described in the following section.
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3.2.2.1 A one-time truncate and encode cell-average representation

In this section, the truncate and encode TE algorithm is described in the case of cell-average quan-
tities. The pivotal idea of the algorithm is to identify in the prediction error ek at a certain k−th
level, a measure of the quality of the predictor operator Pk

k−1.
From classical interpolation results (see for instance [Quarteroni 2008]), note that the interpola-

tion error diminishes, moving from a coarser level to a �ner one, with respect to the local regularity
of the function and to the local polynomial order of the interpolation. On the contrary, in presence
of discontinuities, the error remains constant and of the order O[1]. This means that, starting from
the knowledge of a �ne level k (using the discretization operators Dk), the recursive combinations of
prediction operations via the operators Pk

k−1 and evaluations of the error ek permits to determine
the region, where the solution respects a certain accuracy criterion. In particular, if the criterion is
equal to the truncation operation described above, at the end of the algorithm, the discretized set
of data {vk}Lk=0 is directly related to the data {v̂k}Lk=0 obtained under the same truncation criterion
by the classical MR framework.

The algorithm starts with the de�nition of the coarsest level of resolution k = 1. On this level
the discretization operator is applied obtaining the discrete data v1: v1 = D1f . By decimation, it is
also possible to obtain the discrete data on the level k = 0 knowing only v1:

v0 = D0
1v

1. (3.53)

An encoding step (analogous to what is normally done in the classical MR (see (3.48))) is then
completed, by computing the linear independent coe�cients dk of ek for k = 1:

dk = Gk(Ik − Pk
k−1D

k−1
k )vk. (3.54)

The truncation is applied on d1 with respect to the threshold ε, de�ned by the user, and to the
relation εk = εk(ε, k):

d̂1 = tr(d1, εk). (3.55)

This operation relies on the knowledge of the �nest level (k = L), where the threshold is always
equal to ε (see (3.51)). The integer k = L is assigned to the �nest level if the coarsest is marked as
k = 0 and at each re�nement k is increased by one.

The data d1 are analyzed in order to locate the region of the domain, where the accuracy of the
prediction, via Pk

k−1, is not adequate. This is accomplished in a very simple way after the truncation,
by identifying the non-zero wavelets d1j . At each non-zero (truncated) wavelets, corresponds a region
where the knowledge of the solution is not su�cient under the criterion used in the truncation (3.55).
Then, further information are added. In particular, after the generation of the mesh on the level
k = 2, on all the cells/points inside the regions (at level k = 0) used to generate the corresponding
wavelets d1j , the discretization operator D2 is applied. On the contrary, in the region marked as
well-described, the decoding procedure is performed:

v2 = P2
1v

1 + E2d
2 ' P2

1v
1. (3.56)

The assumption in the equation (3.56) means that for every null wavelets at a level k − 1, the
corresponding wavelets at level k are null too. In the case of non null details, the equation (3.56)
is not applied, but substituted by a direct (exact) discretization of the function by means of the
operator Dk for k = 2.

Knowing v2 and v1, the encoding is performed by computing d2 and their truncated counterpart
d̂2 by (3.51). The algorithm is then repeated until reaching the �nest level L or a full satisfactory
prediction, i.e. dkj = 0 for all j = 1, . . . , Jk − Jk−1.

To make things clear, the algorithm is now presented in the case of 1D stochastic space. Some
preliminary operation are �rst performed:
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• Generation of a nested set of meshes Gk for k = 0, . . . , L (0 is the coarsest mesh):

Gk =
{
Ξk
j

}Jk

j=1
where Ξk

j = [ξkj−1, ξ
k
j ]. (3.57)

In this case the case of bounded probability density function is addressed and a topological
tessellation for the mesh can be obtained, i.e. each cell has the same Lebesgue measure equal
to 1/Jk. Otherwise, in the case of unbounded pdf, the set of meshes can be built on a nested
sequence of cells with the same probability measure dµ.

• De�nition of the operator Dk, Rk, Dk−1
k and Pk

k−1 according to �3.2.2:

(Dkf(ξ))j =
1

µ(Ξk
j )

∫
Ξk
j

f(ξ)p(ξ)dξ

Rk : (DkRkv
k)l = (Dkf(ξ))l with l ∈ Sk

j

(Pk
k−1v

k−1)j = (DkRk−1v
k−1)j =

1

µ(Ξk
j )

∫
Ξk
j

Rk−1v
k−1p(ξ)dξ.

(3.58)

The decimation operator can be de�ned when the topological relation between the cells at two
di�erent resolution levels is known. Let us consider the situation sketched in Figure 3.11. We
assume that the cells generated by the splitting of Ξk−1

j , are named as Ξk
2j−1 and Ξk

2j even
if this numeration does not correspond to the index j of the generating stochastic cell at the
lower resolution level. The indexes numeration in Figure 3.11 is exactly matched only if all the
cells are splitted from a resolution level to the higher one. In that case, the dimensions of the
spaces of the two levels k − 1 and k are related by the following relation, Jk/Jk−1 = 2. In the
following, the abstract indexes 2j and 2j − 1 are employed to make evident the dependence of
the two cells, at level k, from the generating cell Ξk−1

j . However, the indexes should always be
intended in the sense described above. When a cell is split to obtain the higher resolution level
(see Figure 3.11), the measure dµ is de�ned as follows:{

µ(Ξk−1
j ) = µ(Ξk

2j−1) + µ(Ξk
2j)

µ(Ξk
2j−1) = µ(Ξk

2j).
(3.59)

Ξk
2j−1 Ξk

2j

Ξk−1
j

ξk−1
jξk−1

j−1

ξk2jξk2j−1ξk2j−2

k

k − 1

Figure 3.11: Example of 1D stochastic nested meshes for the cell-average setting decimation proce-
dure.

Then, the decimation operator is simply obtained as

(Dk−1
k vk)j = vk−1

j =
1

µ(Ξk−1
j )

(
µ(Ξk

2j)v
k
2j + µ(Ξk

2j−1)v
k
2j−1

)
(3.60)

• Setting a proper threshold ε and a proper relation for εk = εk(ε, k;L)
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• Discretization of the level k = 1: (v1) = (D1f);

• Decimation of the discrete data v1 to obtain (v0) = (D0
1v

1).

The TE algorithm for cell-average setting in 1D stochastic space can be explicitly written as:

Algorithm 4: Truncate and Encode algorithm for the cell average setting in 1D stochastic
space.

while 2 ≤ k ≤ L do

for j = 1, . . . , Jk−2 do
Encoding:

(dk−1)j = vk−1
2j − (Pk−1

k−2v
k−2)2j = vk−1

2j −
(

1
µ(Ξk−1

2j )

∫
Ξk−1
2j

Rk−2v
k−2p(ξ)dξ

)
;

Truncation: d̂k−1
j = tr(dk−1

j , εk−1) ;
end

for j = 1, . . . , Jk−1 do

if d̂k−1
j > 0 then

Discretization: vk2j = (Dkf)2j =
1

µ(Ξk
2j)

∫
Ξk
2j
f(ξ)p(ξ)dξ ;

Discretization: vk2j−1 = (Dkf)2j−1 =
1

µ(Ξk
2j−1)

∫
Ξk
2j−1

f(ξ)p(ξ)dξ ;

end

end

end

At this level, remark that the sequence of discretization operators should be nested and N (Dk) ⊂
N (Dk+1). This means that the error vector ek can be represented by means of only its independent
components, the wavelets dk, thanks to the relation (3.47). It is always possible to write, recalling
the de�nition of the error vector ek (3.44) and the nested property of the discretization operator
(3.40), as follows

ek2j−1 = vk2j−1 − (Pk
k−1v

k−1)2j−1

=
1

µ(Ξk
2j−1)

(
µ(Ξk−1

j )vk−1
j − µ(Ξk

2j)v
k
2j

)
− 1

µ(Ξk
2j−1)

(
µ(Ξk−1

j )vk−1
j − µ(Ξk

2j)(P
k
k−1v

k−1)2j

)
=

µ(Ξk
2j)

µ(Ξk
2j−1)

(
Pk
k−1v

k−1)2j − vk2j

)
= −

µ(Ξk
2j)

µ(Ξk
2j−1)

dkj .

(3.61)

The �rst loop should be performed in order to compute all the wavelets dkj , while the second loop
is performed over the whole set of cells belonging to the resolution level. In particular, the error
vector component is compared with the threshold for deciding whether the discretization via the
model evaluation is necessary. In the second loop, in the case of a nested sequence, with splitting
based on the probability measure, the local error is equal to wavelet computed over the same cell Ξk−1

j

(see equation (3.61)). Therefore, the truncated wavelet is exactly equal to the truncated component
of the error.

In the classical framework, the �rst step is the encoding procedure moving from the �nest
level to the coarsest. In this case, the explicit evaluation of the function f is performed
at the �nest level while the other levels are obtained by agglomeration. In the present pa-
per, the encoding is performed proceeding from the coarsest level. Each time a higher res-
olution level is added, i.e k, the function is explicitly evaluated via the discretization opera-
tor Dk. Due to numerical errors, the relation (3.37) could not hold. In such a case, the
wavelets dk are not the linear independent components of the error vector ek. For represent-
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ing the error vector in terms of its independent components dk, the Discetrize Agglomerate Dec-
imate (DAD) algorithm is introduced. The DAD algorithm consists in the following operations

Algorithm 5: DAD algorithm.
Discretization:

vk2j =
1

µ(Ξk
2j)

∫
Ξk
2j
f(ξ)p(ξ)dξ ;

vk2j−1 =
1

µ(Ξk
2j−1)

∫
Ξk
2j−1

f(ξ)p(ξ)dξ ;

Agglomeration:
µ(Ξk−1

j ) = µ(Ξk
2j−1) + µ(Ξk

2j) ;
Decimation:

(Dk−1
k vk)j = vk−1

j = 1
µ(Ξk−1

j )

(
µ(Ξk

2j)v
k
2j + µ(Ξk

2j−1)v
k
2j−1

)
The DAD algorithm should be always performed before the Encoding in the TE algorithm 5. The
introduction of the DAD algorithm is a peculiarity of the cell-average framework, while the point-
value setting does not require any similar procedure because two successive levels are constituted by
a set of points in the intersection of the two spaces.

Another peculiarity of the cell average framework is the presence of integral quantities that
requires di�erent evaluation in each cell, according to the numerical rule used to obtain the integrals
in the discretization operator (3.32). The family of Newton-Cotes formula, employing only equally
spaced points, is the best choice in term of computational cost; this family of quadrature rule is both
nested and based on equally spaced points. The three point quadrature rule of Newton Cotes, known
also as the Cavalieri-Simpson rule, is employed in this work:∫ b

a
f(ξ)dµ(ξ) ≈ b− a

6

(
f(a) + 4f

(
a+ b

2

)
+ f(b)

)
. (3.62)

When a cell is split, it is easy to see that only three of the six points required (three for each cells)
should be computed again. On the contrary, the points employed at the previous level can be re-
employed thanks to the nested nature of the meshes. This makes the sequence of cell evaluations
from the coarsest resolution level to the �nest one, only a hierarchical representation without extra
computational e�ort. For instance, if a Gauss (two points) quadrature rule would be employed, the
point of a previous level could not be used for the evaluation, of the integrals, at successive resolution
levels. This feature is a key aspect when the MR framework is coupled (see section �3.2.4) with the
semi-intrusive scheme presented in the following section.

3.2.2.2 ENO polynomial reconstruction for the MR setting

In this section, further details on the polynomial interpolation are provided. The Rk operator,
from a practical point of view, can be obtained by the union of all the polynomial obtained by the
conservative interpolation techniques described by the equation (3.34). Two di�erent operations are
relative to the piecewise polynomial approximation Pj . The �rst is to obtain Pk

j from the mesh at the
resolution level k and, of course, from the cell average quantities at this resolution level. The second
operation is the prediction of a cell average value (for a cell entirely contained in the support of the
polynomial Pk

j ) at the successive resolution level (see equation (3.42)). To make things clearer, the
case of uniform probability distribution is here addressed. The �rst task is to de�ne the polynomial
representation for a second order polynomial piecewise approximations (r = 2), over the stochastic
cell Ξj :

Pj = a(ξ − ξj)
2 + b(ξ − ξj) + c, (3.63)

where ξj is the coordinate of the center of the stochastic cell.
To obtain the coe�cients a, b and c, the conditions (3.34) must be ful�lled for a certain stencil.

In the case of centered reconstruction, the stencil is �xed and equal to Sj = {Ξj−1,Ξj ,Ξj+1}. A
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linear system can be obtained as

E(Pk
j |Ξj−1) =

1

µ(Ξk
j−1)

∫
Ξk
j−1

Pk
j dξ = µ(Ξk

j−1)v
k
j−1

E(Pk
j |Ξj) =

1

µ(Ξk
j )

∫
Ξk
j

Pk
j dξ = µ(Ξk

j )v
k
j

E(Pk
j |Ξj+1) =

1

µ(Ξk
j+1)

∫
Ξk
j+1

Pk
j dξ = µ(Ξk

j+1)v
k
j+1,

(3.64)

where the linear operator E(• |Ξ) becomes (on the generic cell Ξj)

E(Pk
j |Ξj) = a E((ξ − ξj)

2 |Ξj) + b E((ξ − ξj) |Ξj) + c. (3.65)

If the integration is performed analytically, with respect to the parameter (ξ−ξj), the system becomes
E((ξ − ξj)

2 |Ξj−1) E((ξ − ξj) |Ξj−1) 1

E((ξ − ξj)
2 |Ξj) E((ξ − ξj) |Ξj) 1

E((ξ − ξj)
2 |Ξj+1) E((ξ − ξj) |Ξj+1) 1


ab
c

 = A(ξ − ξj)

ab
c

 =


µ(Ξk

j−1)v
k
j−1

µ(Ξk
j )v

k
j

µ(Ξk
j+1)v

k
j+1

 , (3.66)

where the matrix A = A(ξ− ξj) is dependent from the stochastic cell Ξj via its coordinate ξj . From
a practical point of view, when the polynomial reconstruction should be performed over a cell Ξj ,
the matrix A−1(ξ− ξj) is �rst evaluated and then the vector of coe�cients is obtained by the matrix
vector product with the right hand side that depends from both the resolution level k and the stencil
Sj .

However, the procedure described above should be modi�ed if the ENO interpolation is required.
The only modi�cation concerns the choice of the stencil: the procedure select the less oscillatory one
between the following {Ξj−2,Ξj−1,Ξj} , {Ξj−1,Ξj ,Ξj+1} and {Ξj ,Ξj+1,Ξj+2}. The smoothest one
is selected choosing the one with min(|a|) following [Abgrall 1994b]. Obviously, at the boundaries of
the domain, the stencil is always modi�ed to be inside the domain. This is a key aspect if the higher
accuracy is desired. With the modi�cation of the stencil, the scheme preserves its maximal accuracy
as it is shown for the solution of the stochastic linear advection equation with smooth solution in
�3.2.5.1.

The second task to solve is the prediction of a cell average vk+1
j at the next following resolution

level, if the polynomial Pk
j reconstruction at the previous resolution level is available (the cell Ξk+1

j ⊂
Ξk
j as required by the nested character of the discretization procedure). This task is accomplished

analytically in the following way. The expectancy operator is applied to the polynomial Pk
j over the

stochastic cell Ξk+1
j ⊂ Ξk

j

E(Pk
j |Ξk+1

j ) = a E((ξ − ξkj )
2 |Ξk+1

j ) + b E((ξ − ξkj ) |Ξk+1
j ) + c, (3.67)

where the terms E((ξ − ξkj )
2 |Ξk+1

j ) and E((ξ − ξkj ) |Ξ
k+1
j ) + c) can be analytically evaluated when

the cell Ξk+1
j is de�ned.

The procedure described in this section is used in SI scheme in order to obtain the polynomial
representation of the functions along the stochastic space to evaluate the expectancy of the �ux
function.

3.2.3 The semi-intrusive �nite volume formulation for PDEs

In this section, the semi-intrusive (SI) method is coupled to a second order MUSCL-Hancock method
(MHM) for the deterministic part of the scheme. This result, to the best of our knowledge, is the
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�rst adaptive intrusive scheme of high-order. Another adaptive intrusive strategy based on data-
independent wavelets limited only to �rst order in time and space is the work of Tryoen et al.
[Tryoen 2011]. This work is the �rst to introduce wavelets adaptivity into an intrusive stochastic
formulation by means of the polynomial chaos technique, but remain very limited in its generality
requiring for each case ad hoc modi�cations.

3.2.3.1 MUSCL-Hancock deterministic numerical formulation

The MHM is a slightly di�erent approach with respect to the classical predictor-corrector MUSCL
approach. It requires only the computation of slopes in the predictor step. Moreover, it does not
require the solution of Riemann problems in the predictor step. The corrector step is based on
the evolution of cell-average quantities, taking into account their contribution related to the �ux at
interfaces obtained by the solution of a Riemann problem. Let us consider a 1D scalar conservation
law

∂u(x, t)

∂t
+
∂f(u(x, t))

∂x
= 0, (3.68)

where x ∈ Ω ⊂ R is the physical space and t ∈ T ⊂ R+ is the time space. The physical space is
divided in a set of non-overlapping cells Ci with Ω =

⋃
i Ci. The classical �rst order Godunov scheme,

applied to (3.68), is obtained introducing the so-called cell-average ūi on each cell Ci:

ūi(t) =
1

|Ci|

∫
Ci
u(x, t)dx, (3.69)

where |Ci| indicates the volume of the cell. Van Leer [LeVeque 2002, Toro 1997] proposed to consider
non-constant data on each cell to achieve a higher accuracy in the so-called Monotone Upstream-
centred Scheme for Conservation Laws (MUSCL). The piecewise linear approximation is used for the
solution u(x, t) on the cell |Ci|:

u(x, tn) = ūni + σni (x− xi) with xiL ≤ x ≤ xiR , (3.70)

with σni the so-called slope. Of course, the choice of σni = 0 leads to the Godunov scheme. A slope
limiter should be introduced near the discontinuity to avoid oscillations. In this work, both the Roe's
superbee limiter and the van Leer limiters are employed. The superbee limiter in its limited slope
form is 

σni = maxmod
(
σn(1), σ

n
(2)

)
σn(1) = minmod

((
ūni+1 − ūni

|Ci|

)
, 2

(
ūni − ūni−1

|Ci|

))
σn(2) = minmod

(
2

(
ūni+1 − ūni

|Ci|

)
,

(
ūni − ūni−1

|Ci|

))
,

(3.71)

where the minmod and maxmod functions are de�ned as follows

minmod(a, b) =


a if |a| < |b| and ab > 0

b if |a| > |b| and ab > 0

0 if ab <= 0

maxmod(a, b) =


a if |a| > |b| and ab > 0

b if |a| < |b| and ab > 0

0 if ab <= 0.
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The van Leer limiter, in the form of slope limiter, is de�ned as (see Toro [Toro 1997] for further
details)

σni =

MIN

(
2R

1 +R
,

2

1 +R

)
ūni+1 − ūni−1

2∆x
if R > 0

0 if R ≤ 0,

(3.72)

where R is the ratio between successive slopes R = (ūni − ūni−1)/(ū
n
i+1 − ūni ).

The MHM is then introduced in order to avoid the problem related to the solution of the so-called
generalized Riemann problem, in which the two states are not constant. The fully discrete second
order MHM, for computing the cell averaged solution ūn+1

i , consists of the following three steps:

• Step 1 - For each cell C` ∈ {Ci−1, Ci, Ci+1}, the solution at the interface is computed according
to 

un`L = ūn` − σn`
|C`|
2

un`R = ūn` + σn`
|C`|
2

(3.73)

• Step 2 - On each cell C` ∈ {Ci−1, Ci, Ci+1}, the solution evolved of a half time step employing
the �ux function f = f(u):

u⇑`R = ū`R +
1

2

∆t

|C`|
(
f(un`L)− f(un`R)

)
u⇑`L = ū`L +

1

2

∆t

|C`|
(
f(un`L)− f(un`R)

) (3.74)

• Step 3 - The cell-averaged value on the cell Ci evolves following

ūn+1
i = ūni − ∆t

|Ci|

(
FRM

(
u⇑i−1R

, u⇑iL

)
−FRM

(
u⇑iR , u

⇑
i+1L

))
. (3.75)

The symbol FRM is employed to indicate the �ux evaluated at the interface, after the solution of the
Riemann problem de�ned by two constant states based on the evolved extrapolated values. For the
linear advection �3.2.5.1 and Burgers equation �3.2.5.2, an exact Riemann solver is used. Moreover,
in the case of the Euler system of equations �3.2.5.3, the Roe-Pike method is employed with the
Harten-Hyman entropy �x following [Toro 1997].

The time advancing formula is then limited to a stencil of only three cells Ci−1, Ci and
Ci+1 but the computation of the slopes for the cells Ci−1 and Ci+1 requires (see (3.71) and
(3.72)) also to know the solution on the two sourrounding cells Ci−2 and Ci+2. The average
solution ūn+1

i , on each cell Ci at time tn+1 = tn + ∆t, can be computed knowing the solu-
tion on the augmented stencil

{
ūni−2, ū

n
i−1, ū

n
i , ū

n
i+1, ū

n
i+2

}
. In the following, the notation ūn+1

i =

MHM
(
ūni−2, ū

n
i−1, ū

n
i , ū

n
i+1, ū

n
i+2,∆t

)
is used to identify the ensemble of the operation described above.

The aim is to evaluate the updated value in time of a certain cell ūn+1
i , knowing the solution at the

previous time step.

3.2.3.2 Semi-intrusive formulation for the MHM

The SI version of the MHM (here presented in the 1D stochastic case without loss of generality) can be
obtained adding one dimension more (the stochastic space) with a �nite-volume like representation.
In particular, the conditional expectancy operator, de�ned on the stochastic cell Ξj , is introduced
according to the following de�nition:

E(• |Ξj) =
1

µ(Ξj)

∫
Ξj

•(x, ξ, t) p(ξ, t) dξ. (3.76)
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If the conditional expectancy operator is applied to the step three of the MHM scheme (3.75),
the following scheme is obtained:

E(un+1
i |Ξj) = E(uni |Ξj)−

∆t

|Ci|

(
E(FRM

(
u⇑i−1R

, u⇑iL

)
|Ξj)− E(FRM

(
u⇑iR , u

⇑
i+1L

)
|Ξj)

)
. (3.77)

The evaluation of the updated conditional expectancy value on the cell Ξj , is obtained by evaluat-

ing the conditional expectancy contribution related to the numerical �uxes E(FRM
(
u⇑i−1R

, u⇑iL

)
|Ξj)

and E(FRM
(
u⇑iR , u

⇑
i+1L

)
|Ξj). To evaluate this integral contribution, a polynomial representation

of the physical averaged solution with respect to the stochastic dimensions, has to be obtained.
The conservative interpolation procedure, already presented in �3.2.2 to obtain the reconstruction
operator Rk, can be adopted requiring for the polynomial Pj(ξ):

E(P`(ξ) |Ξ`) = E(u |Ξ`) ∀Ξ` ∈ Sj (3.78)

If the stencil Sj is chosen with a cardinality s = s(r) = card(Sj) = r + 1 (for a 1D space), a
polynomial Pj(ξ) of degree r can be built.

The polynomial representation Pj(ξ) can be injected into the steps 1 (3.73) and 2 (3.74) of the
MHM. If the Cavalieri-Simpson rule (using three quadrature points ng = 3) is adopted for the
quadrature, the SI scheme for the MHM can be recasted in a form that makes easy the use of MR
stochastic representation of data.

We assume a uniform tessellation for the physical and stochastic space, with a number of cells
equal to Nx and Nξ, respectively and a constant time step ∆t. The �rst step is to evaluate the initial
condition in terms of conditional expectancies. This can be obtained easily via a tensorization of the
quadrature rule and evaluating the analytical value of the function u(x, ξ, 0). This step yields the
stochastic initial condition E(ui(x, ξ, 0) |Ξj) for all i = 1, . . . , Nx and j = 1, . . . , Nξ.

The SI algorithm becomes:

Algorithm 6: Semi-intrusive version of the MUSCL-Hancock method for a 1D stochastic
space.

for n = 1, . . . , Nt do

for i = 1, . . . , Nx do

for j = 1, . . . , Nξ do
Polynomial reconstruction (via (3.78)) over Ξj = [ξj−1, ξj ] ⇒ Pj(ξ) ;
for ng = 1, . . . , 3 do

ξng = ξj−1 +
ξj−ξj−1

2 (ng − 1) ;

Step 1 (see (3.73)) ⇒ ∀C` ∈ {Ci−1, Ci, Ci+1, } →
{
un`L(ξng), u

n
`R
(ξng)

}
;

Step 2 (see (3.74)) ⇒ ∀C` ∈ {Ci−1, Ci, Ci+1, } →
{
u⇑`L(ξng), u

⇑
`R
(ξng)

}
;

end

Flux expectancy computation:
E(FRM

L |Ξj) =
∑3

ng=1wng FRM
(
u⇑i−1R

(ξng), u
⇑
iL
(ξng), ξng

)
;

E(FRM
R |Ξj) =

∑3
ng=1wng FRM

(
u⇑iR(ξng), u

⇑
i+1L

(ξng), ξng

)
;

Time update:
E(ūn+1

i |Ξj) = E(ūni |Ξj)− ∆t
|Ci|
(
E(FRM

L |Ξj)− E(FRM
R |Ξj)

)
end

end

end

where E(FRM
L |Ξj) = E(FRM

(
u⇑i−1R

, u⇑iL

)
|Ξj) and E(FRM

R |Ξj) = E(FRM
(
u⇑iR , u

⇑
i+1L

)
|Ξj).
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3.2.4 The overall multiresolution adaptive-SI scheme

In the previous section, the SI scheme applied to the MHM is presented. In this section, the adaptive
version of the numerical algorithm (aSI) is described. The main di�erence, referring to the algorithm
6 is in the internal loop, on j, concerning the stochastic cells. This loop should be substituted by
the application of the TE algorithm 4. The discretization step is performed by the application of
the MHM, as presented in the internal loop (on j), in the algorithm 6. The complete aSI scheme is:

Algorithm 7: Semi-intrusive version of the MUSCL-Hancock method for a 1D stochastic
space.

for n = 1, . . . , Nt do

for i = 1, . . . , Nx do

while 2 ≤ k ≤ L do

for j = 1, . . . , Jk−2 do
Encoding:

dk−1
j = vk−1

2j − (Pk−1
k−2v

k−2)2j = vk−1
2j −

(
1

µ(Ξk−1
2j )

∫
Ξk−1
2j

Rk−2v
k−2p(ξ)dξ

)
;

Truncation: d̂k−1
j = tr(dk−1

j , εk−1) ;
end

for j = 1, . . . , Jk−1 do

if d̂k−1
j > 0 then
Discretization:

for Ξq ∈
{
Ξk
2j−1,Ξ

k
2j

}
do

for ng = 1, . . . , 3 do

Polynomial evaluation: ū(x, ξng, tn) ' (DkRLv
L(tn))(ξng)

Step 1 (see (3.73)) ⇒ ∀C` ∈ {Ci−1, Ci, Ci+1, } →
{
un`L(ξng), u

n
`R
(ξng)

}
Step 2 (see (3.74)) ⇒ ∀C` ∈ {Ci−1, Ci, Ci+1, } →

{
u⇑`L(ξng), u

⇑
`R
(ξng)

}
end

Flux expectancy computation:

E(FRM
L |Ξq) =

∑3
ng=1wng FRM

(
u⇑i−1R

(ξng), u
⇑
iL
(ξng), ξng

)
E(FRM

R |Ξq) =
∑3

ng=1wng FRM
(
u⇑iR(ξng), u

⇑
i+1L

(ξng), ξng

)
Cell agglomeration of E(uni |Ξq) via equation (3.79)

Time update:
E(ūn+1

i |Ξq) = E(ūni |Ξq)− ∆t
|Ci|
(
E(FRM

L |Ξq)− E(FRM
R |Ξq)

)
end

end

end

end

Reconstruction: (DLRLv
L)l = (DLū(xi, ξ, tn+1))l with l ∈ SL

j ;
end

end

The reconstruction operator Rk for each cell Ξj is the polynomial Pj reconstructed for the SI
scheme. A link between the MR representation and the SI scheme exists since the polynomial
representation of the data in the stochastic space is the same for the SI and TE. The polynomial
reconstruction is carried out when the algorithm attain the highest resolution level (indicated in
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the algorithm by k = L) and the reconstruction operator RL is then obtained and stored. The
reconstruction operator is then used, for the polynomial evaluation before Step 1. The physical cell-
averaged values are obtained, for each quadrature points ξng, applying the discretization operator
Dk. Moreover, a conservative interpolation is also present into the MR algorithm, where the operator
Rk is used to obtain the wavelets during the encoding procedure.

One important feature of the aSI algorithm is the possibility to locally re�ne/dere�ne the stochas-
tic space, as a function of the variation of the solution during the computation. At the end of each
time step, for each physical location, the algorithm produces a sequence of conditional expectancies
E(un |Ξj) with di�erent measures µ(Ξj), due to the local re�nement/dere�nement of the tessellation.
The TE strategy starts from the coarsest level to the �nest (until some cell have to be split or the
maximum resolution level is reached). In practice, if a cell has not to be splitted, it is moved at the
highest resolution level. The local variation of the cell measure yields a strong relation between the
actual level of evaluation of the scheme, and the maximum level (locally) reached at the previous
time step (and consequently the measure of each cell). Two problems exist: the agglomeration of a
cell at a time n, and the splitting of a cell at a time n + 1. The MR framework presented is based
on a nested subdivision of the cell. Then, at the end of the TE algorithm, each cell belonging to the
coarsest level k = 0, will result in a set of cells. When the TE algorithm requires the application of
the SI-MHM at a generic level k, an equivalent conditional expectancy E(u |Ξk

j ) evaluated at time
n is computed by applying the equation (3.77). This conditional expectancy should be obtained by
the agglomeration of all the stochastic cells belonging to Ξk

j at time n, following the exact de�nition:

E(u |Ξk
j ) =

1

µ(Ξk
j )

∑
Ξ`⊆Ξk

j

µ(Ξ`)E(u |Ξ`). (3.79)

Obviously, it is easy to verify that the limit case is the one with a cell not subdivided, then the
equation (3.79) reduces to an identity. Due to the nested sequences of operators and meshes, a
cell would be always constituted by an integer number of cells at the end of the TE algorithm (see
algorithm 4). A sketch of a possible situation for the agglomeration of a cell Ξk

j is reported in Figure
3.12.

Ξk
j

Ξ`

dµ(Ξ`)
dµ(Ξk

j )

Figure 3.12: Example of the agglomeration procedure to obtain a coarser cell Ξj even if the TE
algorithm yields a set of children cells.

The other issue is related to reduce the computational cost basing on the computed quantities,
when a cell has to be split. For this reason, the quadrature rule of Newton-Cotes is adopted. In
this case, the entire set of degrees of freedom (dof) can be saved, if the cell has to be split. Let us
consider the Figure 3.13, where the Cavalieri-Simpson rule is used. On the left, the cell at level k
is represented with its dof, the circles are used for the value of ūi obtained via the polynomial Pj

(the polynomial evaluation step in the algorithm 7), and squares for the �uxes obtained after the
application of the step 1 and 2 of the MHM. When the cell is split in two cells, only three points
have to be added (the numerical scheme has to be applied). On the contrary, the other points can
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be obtained directly from the mother cell at level k. In the Figure 3.13, the black circle/squares
represent the new points to compute. In practice, the black points are associated to the values for ūi
obtained by interpolation and the �uxes are obtained via the Step 1 and 2; otherwise, they are only
recovered from the mother cell. Finally, the �uxes conditional expectancy computation is performed
easily combining the new �uxes (black) and the old ones (white) with the correct weights for the
quadrature.
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Figure 3.13: Example of a splitting procedure to save the computational cost associated to the degree
of freedom already computed. On the left the cell at level of resolution k is reported while on the
right the corresponding split cells are reported with the new points to explicitly add (black symbols).

The nested procedure described above allows to extend the accuracy of the quadrature rule even
to high-order Newton-Cotes formula. Moreover, in the present work, the three points Cavalieri-
Simpson rule (see (3.62)) is employed. The error is proportional to the fourth derivative of the
integrand, so the rule is fully accurate to polynomial function of order equal or less than three (see
[Quarteroni 2008] for further details). In the following, the variance of the outputs of interest is
computed. In this case, the quadrature of the polynomial Pj squared has to be evaluated on each
cell Ξj = [ξa, ξb]. In order to attain the exact integration of P2

j , the closed four points Newton-Cotes
rule (also known as the Boole's rule) is employed∫

Ξj

f(ξ)dξ =
ξb − ξa
90

(
7f(ξa) + 32f

(
ξa +

ξb − ξa
4

)

+ 12f

(
ξa +

ξb − ξa
2

)
+ 32f

(
ξa + 3

ξb − ξa
4

)
+ 7f(ξb)

)
.

(3.80)

The last �ve points rule has an error O(f (6)(η)), where η ∈]ξa, ξb[, so it is able to integrate exactly
polynomial function of order equal to �ve.

3.2.5 Numerical results

In this section, the aSI scheme derived in Section 3.2.4 is applied to several problems. The aim is
to show the convergence properties and to provide some evidence of the advantage to employ an
adaptive representation of the solution in the stochastic space. For all the problems, the expectancy
and the variance of the some outputs are computed according to the de�nitions (2.3) with respect to
their exact value. Di�erent 1D-1D test cases are taken into account. The linear advection problem
is solved for both smooth and discontinuous initial conditions in section �3.2.5.1. In the �rst case,
the uncertainty is considered in the initial condition, while in the discontinuous case an uncertain
advection velocity is considered. For this test case, both the convergence curves for the �rst order
Godunov method and the MHM are reported to demonstrate the ability of the scheme to maintain the
convergence properties of the deterministic scheme. The Burgers equation is then solved employing
a smooth initial, but uncertain, initial condition (�3.2.5.2). This case is chosen to demonstrate the
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ability of the scheme to capture (re�ning the stochastic space) a discontinuous solution (along the
stochastic dimension) even if the discontinuities form during the evolution of a smooth solution.
This property is a key feature in the development of numerical schemes for UQ in compressible
�ows applications. The last test case is the stochastic analysis of the uncertain shock tube problem
solving the Euler system of equations in section �3.2.5.3. In this case, the statistics of the density are
compared to the semi-analytical solution of the Euler equations, considering an uncertain parameter
on the initial conditions.

Systematically in this study, the spatial norms are computed employing the following de�nitions
errEm |Lp

= ||Em(x)− Em
ref(x)||Lp =

(
1

Nx

Nx∑
i=1

|Em(ūi)− Em
ref(ūi)|

p

)1/p

errEm |L∞
= ||Em(x)− Em

ref(x)||L∞ = max
i

|Em(ūi)− Em
ref(ūi)| ,

(3.81)

where the integer p = 1, 2 for the L1 and L2 norms in the physical space and Em indicates a statistical
moment, i.e. the expectancy or the variance.

3.2.5.1 Linear advection

The �rst test case is the linear advection problem here reported, for Ω = [0, 1], in its general stochastic
formulation 

∂u(x, ξ, t)

∂t
+ a(ξ, t)

∂u(x, ξ, t)

∂x
= 0

u(x, ξ, 0) = u0(x, ξ),

(3.82)

where both the advection velocity a and the initial condition u0 can depend on a random parameter.
Let us consider �rst the smooth test-case with an initial condition equal to u0(x, ξ, t) = sin(4πx+

20ξ), with the random parameter uniformly distributed ξ ∼ U [0, 1]. The problem is solved until the
time t = 1 with a constant advection velocity equal to a = 0.1 and with periodic boundary conditions.
The exact solution can be computed analytically as follows

u(x, ξ, 1) = sin(4(x− 0.1t)π + 20ξ) (3.83)

The exact statistics can be computed as function of the i−th cell Ci = [xi− |Ci|
2 , xi+

|Ci|
2 ], integrating

�rst with respect to the stochastic space and then with respect to the space
E(ūi) =

1

|Ci|

∫
Ci

∫
Ξ
u(x, ξ, 1) dξ dx

Var(ūi) =
1

|Ci|

∫
Ci

∫
Ξ
u2(x, ξ, 1) dξ −

(∫
Ξ
u2(x, ξ, 1) dξ

)2

dx.

(3.84)

Expressions for both statistics are obtained using the MAPLE software. Numerical simulations are
carried out on equally spaced spatial meshes of 51, 101, 201 and 401 points, with Nt = 200 time
steps and ∆t = 5× 10−3.

In Figure 3.14, both the expectancy of the solution 3.14(a) and the variance 3.14(a) for the linear
advection problem (3.82) with smooth initial condition and constant advection velocity are reported.
The continuous lines indicate the solution obtained via the scheme without compression, while with
the dashed lines the solution obtained via the application of the aSI algorithm. In particular, the
polynomial reconstruction is taken as a centered second-order polynomial except for the two boundary
cells where the stencil is fully shifted into the numerical domain in order to maintain the order of
accuracy. In particular, both the Godunov �rst order scheme and the MHM are reported to show that
the numerical scheme is able to preserve the expected order of convergence even with compression.
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To preserve the formal second order of accuracy, the slope for the MHM is evaluated by a centered
approximation without any limiter function. The full solution is obtained on an equally spaced
mesh of 128 stochastic cells while the aSI algorithm is applied starting from a coarse level of 16 cell
(m0 = 4) to a higher resolution level of 128 cells (m = 7) and a threshold equal to ε = 10−3. Note
that the �nest level is indicated as m. This case is reported in order to show the formal accuracy of
the method because the solution is regular enough to minimize the gain associated to the compression
of the solution. In particular, the average number of cells employed by the aSI scheme is 126 against
the 128 of the full solution. Of course, the level of compression could be easily increased in this
case employing a higher order polynomial Pj for the reconstruction. Remark that, looking at the
accuracy, the stochastic reconstruction (quadratic polynomial) is su�ciently accurate with respect
to the spatial and time accuracy (second order in the case of MHM). On the contrary, looking at the
compression, a higher polynomial order can yield a stronger compression keeping the second order
convergence rate.
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Figure 3.14: Spatial convergence for the linear advection problem with smooth initial condition
(3.83). The statistics of the solution (mean (a) and variance (b)) obtained with (aSI) and without
(full) compression are reported for both the Godunov �rst order scheme and the MHM method with
a centered slope.

Let us consider now the linear advection problem (3.82), that is solved with an uncertain advection
(ξ ∼ U [15 ,

4
5 ]) velocity de�ned as

a(ξ) =
1

40
e5ξ

2
+

1

5
, (3.85)

considering a discontinuous initial condition (in the physical space)

u(x, ξ, 0) =

 1 if
2

5
≤ x ≤ 3

5

0 if otherwise.
(3.86)

In this case, the problem is solved until the �nal time of t = 0.4 with 200 equal steps of ∆t =
2× 10−3. The exact solution is derived for the �rst two statistical moments employing the following
procedure. Referring to the Figure 3.15, starting from the initial condition (de�ned by the points
A1, A2, B2, B1) the new points (coordinates in the physical space) at the �nal time (t = 0.4) can be
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computed as follows 

A′,x
1 = Ax

1 + a

(
1

5

)
t =

12

25
+

1

100
e

1
5

A′,x
2 = Ax

2 + a

(
1

5

)
t =

12

25
+

1

100
e

1
5

B′,x
1 = Bx

1 + a

(
1

5

)
t =

12

25
+

1

100
e

16
25

B′,x
2 = Bx

2 + a

(
1

5

)
t =

12

25
+

1

100
e

16
25 .

(3.87)
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Figure 3.15: Schematic representation of the evolution between the initial condition (points
A1, A2, B1, B2) and the �nal condition at time t = 0.4 (points A′

1, A
′
2, B

′
1, B

′
2) (a). The regions

in which the exact solution should be computed, at the �nal time t = 0.4, are reported in (b).

At the �nal time step, four di�erent regions can be identi�ed (see Figure 3.15(b)). The solution
in the external region, where x ≤ A′,x

1 and x ≥ B′,x
2 , is easily identi�ed as u(x, ξ, t) = 0. For the

remaining regions, the position of the discontinuity has to be computed. In particular, it is possible
to de�ne the two functions ξ1d = ξ1d(x) and ξ2d = ξ2d(x) as the positions of the discontinuities for
each x belonging respectively to the intervals [A′,x

1 , B′,x
1 ] and [A′,x

2 , B′,x
2 ]. If x belongs to the interval

de�ned above, the following relations must hold
x = A′,x

1 + a
(
ξ1d
)
t =

12

25
+

1

100
e(ξ

1
d)

2
if x ∈ [A′,x

1 , B′,x
1 ]

x = A′,x
2 + a

(
ξ2d
)
t =

17

25
+

1

100
e(ξ

2
d)

2
if x ∈ [A′,x

2 , B′,x
2 ].

(3.88)

As a consequence, the position of the discontinuities, for a certain physical position can be derived
ξ1d = ξ1d(x) =

√
ln

(
100

(
x− 12

25

))

ξ2d = ξ2d(x) =

√
ln

(
100

(
x− 17

25

))
.

(3.89)

The exact statistics of the physical cell average ūi can be computed exactly for each cell Ci =
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[
xi − |Ci|

2 , xi +
|Ci|
2

]
(in the limit of |Ci| → 0). For the mean, they are de�ned as

E(ūi) =



0 if xi ≤ A′,x
1 or xi ≥ B′,x

2

5

3

(
ξ1d(xi)−

1

5

)
if xi ∈ [A′,x

1 , A′,x
2 ]

5

3

(
ξ1d(xi)− ξ2d(xi)

)
if xi ∈ [A′,x

2 , B′,x
1 ]

5

3

(
4

5
− ξ2d(xi)

)
if xi ∈ [B′,x

1 , B′,x
2 ].

(3.90)

Concerning the variance, they can be obtained as (and not as Var = E((ūi)2)− (E(ūi))2)

Var = E(ūi)− (E(ūi))2 ∀xi ∈ [0, 1], (3.91)

because in this speci�c case (ū(x, ξ, t) = 1)∫
Ξ
ū(xi, ξ, t)

2p(ξ)dξ =

∫
Ξ
ū(xi, ξ, t)p(ξ)dξ = E(ūi). (3.92)

In Figure 3.16, the spatial convergence for the aSI scheme and for the full scheme, employing
only the MHM with the superbee limiter (3.71), are reported for the mean 3.16(a) and the variance
3.16(b) (L2 norms). Similar curves are obtained for L1 and L∞ norms but are not reported here for
brevity. The computations are performed over equally spaced meshes in the physical space Ω with
51, 101, 201, 401 and 601 points. The aSI scheme is applied with a coarsest level of 16 cells (m0 = 4),
a �nest level of 256 stochastic cells (m = 4) and a threshold equal to ε = 10−3. The polynomial
reconstruction is the quadratic polynomial with and without ENO selection of the stencil. The
average number of stochastic cells employed is equal to 39 when the ENO selection is employed and
40 with the centered stencil.
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Figure 3.16: Spatial convergence for the linear advection problem with discontinuous initial condition
(3.86). The statistics of the solution (mean (a) and variance (b)) obtained with (aSI) and without
(full) compression are reported for the MHM method with the superbee limiter (3.71).

The Figure 3.16 shows that the aSI scheme is able to preserve the accuracy and the order of
convergence of the full scheme with a reduction of the computational cost with respect to the full



3.2. Adaptive semi-intrusive Method 59

solution obtained over a grid of 256 cells (m = 8). The aSI scheme requires a computational e�ort
equivalent to a computation carried out on about 40 equally spaced stochastic cells. The full solutions
on 32 (m = 5) and 64 (m = 6) cells are then reported in order to compare the e�ciency of the scheme
with respect to a solution obtained with a similar computational e�ort. However, the aSI scheme
performs better with respect to both the full solution at 32 and 64 cells. Moreover, the quality with
respect to the full solution of 256 cells is only slightly degraded. In �gures 3.17 and 3.18, the statistics
of the solution are reported over the entire physical space (the mesh of 601 points) and compared
to the exact solution (see (3.90)) obtained on 2001 equally spaced points in the physical space. The
solutions obtained with the full scheme with 32 and 64 stochastic cells exhibit the well-known staircase
phenomenon, i.e. in presence of discontinuous solutions the statistics are constituted by a series of
plateau. The presence of the plateau is due to the lower resolution associated to the discretization of
the stochastic space with respect to the resolution of the physical space. The staircase phenomenon
is more evident for the coarser case (32 cells), reduces slightly with 64 cells, and disappear with 256
cells. The aSI scheme automatically re�nes the space where a higher resolution is required. Remark
that the staircase problem disappears by using aSI even if the (average) number of cells employed is
lower than 64 (see Figure 3.17(b) and 3.18(b)).
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Figure 3.17: Expectancy for the cell averaged solution of the linear advection equation with discon-
tinuous initial condition (3.86) at the �nal time t = 0.4. The whole physical domain is represented
in (a), while in the Figure (b) a zoom in the shock region is reported. The mesh is constituted by
601 equally spaced points.

The ability of aSI scheme to re�ne only locally the space allows to increase locally the resolution
along the stochastic space. In Figure 3.19, the distribution of the stochastic cells over Ω at the �nal
time step t = 0.4 is reported. It is evident that the higher computational e�ort is located in the
region of the strong gradients; comparing the Figure 3.18 and 3.19, it is evident that the two peaks
associated to the local higher computational e�ort (in terms of stochastic cells) corresponds to the
two peaks in the variance of the solution. In Figure 3.19, the number of points employed by the
aSI scheme with and without the ENO selection of the stencil are also reported. The ENO selection
of the stencil reduces the number of cells employed. Morevoer, comparing the average number of
stochastic cells employed for each computation, it is evident that the e�ciency of the ENO selection
increases with the spatial resolution. This is due to the global representation of the solution u(x, ξ, t)
over cells Ci × Ξj . Higher is the spatial resolution, sharper are the resulting discontinuities, so the
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Figure 3.18: Variance for the cell averaged solution of the linear advection equation with discontin-
uous initial condition (3.86) at the �nal time t = 0.4. The whole physical domain is represented in
(a), while in the Figure (b) a zoom in the shock region is reported. The physical mesh is constituted
by 601 equally spaced points.

ENO becomes more useful in order to gain in terms of accuracy (with the SI algorithm) and in terms
of compression capabilities (with the TE algorithm). Figure 3.19(b) displays that for too coarse
spatial resolution, the ENO selection of the stencil can be negative in terms of both accuracy and
compression. The solution becomes smoother and smoother by decreasing the spatial resolution, so
a centered stencil becomes the best choice.
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Figure 3.19: Evolution of the number of stochastic cells employed in each physical location for the
aSI scheme with and without the ENO reconstruction (a) for the linear advection equation with
discontinuous initial condition. The average number of stochastic cells employed by the aSI scheme
as function of the physical space resolution is reported in (b).
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3.2.5.2 Inviscid Burgers equation

In this section, the aSI algorithm is applied to the solution of the inviscid Burgers equation

∂u(x, ξ, t)

∂t
+
∂f(u(x, ξ, t))

∂x
= 0 x ∈ [0, 1] and t ∈ [0, T ], (3.93)

where the �ux function is de�ned as f = f(u(x, ξ, t)) = 1
2u

2(x, ξ, t).
We assume the following uncertain initial condition, with the random parameter uniformly dis-

tributed ξ ∼ U [0, 1],

u(x, ξ, 0) =

{
H(ξ) if x ∈ [Ax

1 , A
x
2 ]

0 if otherwise.
(3.94)

The initial condition is represented by a hat function with a di�erent amplitude dependent (non
linearly) from the random parameter, H(ξ) = 1

3ξ
2 + 1

100ξ +
9
10 . To obtain the exact solution it is

necessary to consider the two elementary solutions of the Riemann problem of the inviscid Burgers
equation (see [LeVeque 2002] for further details). The �rst case at the left of the hat function (x = 1

10)
is the Riemann problem with ul < ur that admits as solution a rarefaction wave (depending on the
uncertainty parameter) as follows

u(x, ξ, t) =


0 if x ≤ Ax

1

F (x) if x ∈ [Ax
1 , A

x
1 +H(ξ)t]

H(ξ) if x > Ax
1 +H(ξ)t,

(3.95)

where the solution inside the rarefaction wave is F (x) = (x+Ax
1) /t.

Knowing the function H(ξ), the exact solution for the uncertain rarefaction wave can be com-
puted. Let us consider now the right of the hat initial function (x = 1

2), where the solution of the
Riemann problem is a shock wave traveling with an uncertain speed s = H(ξ)/2. The complete
solution of the Riemann problem is then

u(x, ξ, t) =

{
H(ξ) if x < Ax

2 + st

0 if x > Ax
2 + st.

(3.96)

We solve the problem (3.93) until a time equal to T = 0.6, with the initial condition (3.94) de�ned
by Ax

1 = Bx
1 = 1

10 and Ax
2 = Bx

2 = 1
2 . The solution appears as sketched in Figure 3.20, where the tail

of the fan is at rest (x = 1
10) while the position of the head is a function of the random parameter

and its value is bounded between the slower moving fan (A′,x
1 = 1

10 +H(0)t) and the fast moving fan
(B′,x

1 = 1
10 +H(1)t). The random parameter corresponding to a physical position x ∈ [A′,x

1 , B′,x
1 ] can

be found after some algebraic manipulations analytically, by solving for ξ the equation x = Ax
1+H(ξ)t

for A′,x
1 ≤ x ≤ B′,x

1 , ξF = ξF (x) (see Figure 3.20 for the locus ξF ). Following a similar procedure,
the value of the random parameter corresponding to the shock position ξSW = ξSW (x) can be found
analytically, solving for ξ the equation x = Ax

2 +
1
2H(ξ)t for A′,x

2 ≤ x ≤ B′,x
2 .

The statistics of the solution can be computed analytically for each cell Ci as follows. For the
expectancy of the physical cell averaged value ūi, it holds that

E(ūi) =



0 if xi ≤ Ax
1 or xi ≥ B′,x

2

F (xi) if xi ∈ [A1, A
′,x
1 ]∫ ξF (xi)

0
H(ξ)dξ + F (xi)(1− ξF (xi)) if xi ∈ [A′,x

1 , A′,x
2 ]∫ ξSW (xi)

ξF (xi)
H(ξ)dξ + F (xi)(1− ξF (xi)) if xi ∈ [A′,x

2 , B′,x
1 ]∫ 1

ξSW (xi)
H(ξ)dξ if xi ∈ [B′,x

1 , B′,x
2 ].

(3.97)
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in which the exact solution should be computed, at the �nal time t = 0.6, are reported in (b).

All the integrals in the equation (3.97) can be computed analytically.
Moreover, the variance is easily analytically computed, due to the polynomial behavior of H(ξ),

as follows

Var(ūi) =



0 if xi ≤ A′,x
1 or xi ≥ B′,x

2∫ ξF (xi)

0
H2(ξ)dξ + F 2(xi)(1− ξF (xi))− E2(ūi) if xi ∈ [A′,x

1 , A′,x
2 ]∫ ξSW (xi)

ξF (xi)
H2(ξ)dξ + F 2(xi)(1− ξF (xi))− E2(ūi) if xi ∈ [A′,x

2 , B′,x
1 ]∫ 1

ξSW (xi)
H2(ξ)dξ − E2(ūi) if xi ∈ [B′,x

1 , B′,x
2 ].

(3.98)

The (stochastic) inviscid Burgers problem (3.93) is solved over a set of equally spaced physical
meshes with 51, 101, 201, 401 and 601 points. The time space is discretized using 600 time steps of
constant length ∆t = 1× 10−3. The error norms in L2, with respect to the exact stochastic solution
(see equations (3.97) and (3.98)), are reported in Figure 3.21. Similar results are obtained for L1

and L∞ norms, but are not reported here for brevity. The reference solution is the full computation
performed with the SI scheme and a 256 (m = 8) equally spaced stochastic cells. This solution is
compressed by means of the aSI scheme with a coarsest level of m0 = 4 and a �nest level of m = 8

with a threshold equal to ε = 10−4. For both the full SI and the aSI schemes the computations
are performed employing quadratic polynomial reconstruction with and without the ENO selection
of the stencil. For each computation, the average number of stochastic cells is evaluated obtaining
the equivalent number of equally spaced stochastic cells (with the same computational cost). The
evolution of the number of stochastic cells associated to the di�erent (physical) spatial resolutions
are reported in Figure 3.24(b) for the aSI scheme with and without the ENO procedure. Moreover,
SI scheme is applied over 16 (m = 4) and 32 (m = 5) equally spaced stochastic cells. These
resolutions are chosen because the average number of stochastic cells employed by the aSI scheme
varies between these values. The SI scheme fails to converge with the expected �rst order slope both
with and without the ENO, because of the appearance of the staircase phenomenon. The stochastic
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resolution is not high enough with respect to the physical resolution, as evident looking at the three
last spatial resolutions in Figure 3.21.
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Figure 3.21: Spatial convergence for the Burgers equation with an uncertain hat initial condition
(3.94). The statistics of the solution (mean (a) and variance (b)) obtained with (aSI) and without
(full) compression are reported for the MHM method with superbee limiter (3.71).

The staircase phenomenon is evident in Figures 3.22 and 3.23, where the expectancy and the
variance of the solution are reported over the 601 points physical mesh (the exact solution is evalu-
ated over a mesh of 2001 equally spaced points). In particular, �gures 3.22(b) and 3.23(b) show a
zoom of the curves in the region, where the (uncertain) shock wave propagates (see Figure 3.20). As
expected, increasing the number of stochastic cells, even equally spaced, reduces the staircase phe-
nomenon (from 16 to 32 cells). It disappears at 256 cells. Note that the aSI scheme, with an overall
computational cost similar to the two coarse full simulations, produces better results (without the
appearance of the staircase phenomenon) concentrating the computational e�ort, i.e. the number of
cells, in the regions where the solution is less regular. The capability to re�ne and dere�ne during
the simulation following the evolution of the solution in the physical/stochastic space makes the aSI
scheme more e�cient, yielding results that nearly coincide with the full reference solution.

As already discussed for the solution of the linear advection equation with discontinuous initial
condition, the presence of the ENO selection of the stencil makes the computations progressively
more e�cient increasing the physical resolution. This e�ect is evident in Figure 3.24(b), where the
(average) number of stochastic cells employed is reported as a function of the physical resolution. In
Figure 3.24(a), the direct comparison between the aSI scheme with and without the ENO selection of
the stencil over the �nest 601 points physical mesh is shown. With lower resolution meshes, there is
no advantage in using the ENO procedure due to the representation of the solution over cells in the
overall physical/stochastic space. However, the slope associated to the average number of stochastic
cells shows that the solutions are represented by a narrow discontinuity (due to the increase of the
spatial resolution). As a consequence, the non-oscillatory interpolation helps to avoid the so-called
pollution of the stencil, i.e. the propagation of the interpolation error in the neighboring cells of a
discontinuity. Again, the combination of the aSI scheme and the use of the ENO procedure for the
polynomial interpolation, becomes even more e�cient as the spatial resolution is increased. This is
a desired property for any intrusive UQ scheme.

In the following section, the aSI scheme is applied to non linear system of stochastic partial
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Figure 3.22: Expectancy for the cell-averaged solution of the inviscid Burgers equation at the �nal
time t = 0.6. The whole physical domain is represented in (a), while in Figure (b) a zoom in the
shock region is reported. The physical mesh is constituted by 601 equally spaced points.
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Figure 3.23: Variance for the cell-averaged solution of the inviscid Burgers equation at the �nal time
t = 0.6. Two di�erent zooms in the shock region are reported. The physical mesh is constituted by
601 equally spaced points.

di�erential equations.

3.2.5.3 Uncertain shock tube

In this section, the solution of the uncertain shock tube problem is reported. The problem can be
modeled by the well-known 1D Euler equations

∂u

∂t
+∇ · f(u) = 0 (3.99)
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Figure 3.24: Evolution of the number of stochastic cells employed for each physical location for the
aSI scheme with and without the ENO reconstruction (a) for the inviscid Burgers equation. The
average number of stochastic cells employed by the aSI scheme as a function of the physical space
resolution is reported in (b).

where the vector of conservative variables, the density ρ, the momentum m = ρu and the total
Energy Et, u ∈ R3 and the �ux vector f(u) ∈ R3 are

u =

 ρ

m

Et

 f(u) =


m

m2

ρ
+Π(u)

m

ρ

(
Et +Π(u)

)
.

 (3.100)

The pressure Π(u) (as function of the conservative variables) can be derived for a polytropic ideal
gas as follows

Π(u) = (γ − 1)

(
Et − 1

2

|m2|
ρ

)
. (3.101)

The initial condition for the uncertain shock tube problem is derived from the classical Sod test
case [Sod 1978], where an uncertainty of the density at the left state (x < xd for t = 0) is introduced:

uL(x, ξ, t) =


ρL(ξ)

0
pL
γ − 1

 uR(x, ξ, t) =


ρR

0
pR
γ − 1

.

 , (3.102)

In particular, the density on the left state is dependent from an uniformly distributed random
parameter ξ ∼ U [0, 1]: ρL(ξ) = 0.3 + 1.6ξ. The values of the pressures are pL = 1 and pR = 0.1,
while the right value of the density is ρR = 0.125. The total energy Et is obtained (considering the
gas at the rest in the whole domain) as a function of the local pressure and the ratio between speci�c
heats, that for a diatomic gas can be assumed equal to γ = 1.4.

As pointed out by Toro [Toro 1997], analyzing the eigenvalue structure of the Euler equations, the
Riemann problem for the 1D Euler equations (see �gure 3.25) generates (for t > 0) four states, where
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two are not known (variables are indicated with a star in the following). The Riemann problem for
the solution of the 1D Euler equation can be reduced to the solution of a single non-linear algebraic
equation for the pressure in the star region p? from which the other quantities can be computed.
With an uncertain shock tube problem, the dependence of p? from the random parameter p? = p?(ξ)

should be considered. Unfortunately, this dependence cannot be computed explicitly. In this paper,
only the case involving a left moving rerefaction fan and a right moving shock wave are considered.
Moreover, initial conditions (3.102) produce this wave structure for all the random parameter taken
into account. The problem is further complicated by the presence of complex functions that should be
integrated to compute the exact statistics required. The solution strategy employed is the following.
For each physical location, where the exact statistics should be computed, the solution along the
stochastic space is divided into smooth regions (where the numerical quadrature with a large number
of points produces fair well-converged results even for non-polynomial functions). The main issue
is to determine the location of a discontinuity. This task can be accomplished solving an algebraic
non-linear equation for the random parameter that can be formulated to involve all (but not only) the
derivative available for the solution of the deterministic Riemann problem. After the subdivision of
the random space in more regions, where the quadrature can be done numerically without accuracy
loss (to the desired global accuracy), the statistics are computed in order to obtain the desired
reference solutions.

t

x

uR

u?
L u?

R

right going waveleft going wave

uL

contact discontinuity

star region

Figure 3.25: Riemann wave structure for the 1D Euler equation.

Details of the numerical procedure to obtain the reference solution of the stochastic Riemann
problem are reported in [21].

Simulations are performed over a physical domain Ω = [−1
5 ,

6
5 ] until a �nal time t = 0.31 with

the position of the diaphragm equal to xd = 0.42. The time space is divided in 6200 equal time steps
of length ∆t = 5×10−5. The simulations are carried out over equally spaced meshes of 201, 401, 801
and 1001 points employing the aSI scheme based on the MHM with a van Leer limiter (see equation
(3.72)).

In �gure 3.26, the spatial convergence is reported for both the mean (3.26(a)) and the variance
(3.26(b)) in L2 for the density ρ. The aSI method is obtained with a coarsest level of 4 (m0 = 2)
cells and a �nest level of 256 (m = 8) stochastic cells with ε = 10−4, while the reference solution
is the full SI scheme with 256 cells. The aSI scheme has used an average number of stochastic cells
between the two levels m = 5 and m = 6 (see �gure 3.29(b)), so the other solutions are computed
by means of the SI scheme for comparison. For all the schemes, both the centered second order
polynomial reconstruction and the non-linear ENO one are used. The di�erence between the two
polynomial reconstructions is di�cult to appreciate because the spatial resolution is too poor for a
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sharp representation of the discontinuities. In this sense, there is no advantage in using the ENO
reconstruction (for the aSI scheme and the SI scheme). The �rst order of convergence is attained for
the expectancy of the density ρ, while, even with the SI scheme, the variance exhibits a lower rate of
convergence 3.26(b). This behavior clearly indicates that even the solution employing 256 stochastic
cells is not fully converged for moments higher than the expectancy.
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Figure 3.26: Spatial convergence for the stochastic shock tube problem equation with uncertain
initial condition (3.102). The statistics of the solution (mean (a) and variance (b)) obtained with
(aSI) and without (full) compression are reported for the MHM method with van Leer limiter (3.72).

However, the aSI scheme displays the required properties: it saves the order of accuracy of the
full SI scheme, both for mean and variance (see �gure 3.26), and the degradation of the accuracy is
strongly limited. Moreover, as already shown in the previous numerical results, the phenomenon of
the staircase approximation of the statistics is prevented by the adaptation in the stochastic space.
As shown in �gure 3.27, note that all the numerical solutions are very similar to the exact solution
3.27(a) obtained over a mesh of 2001 equally spaced points in the physical space. By zooming
(3.27(b)), the presence of the typical staircase phenomenon for both the SI scheme with 32 and 64
stochastic cells appears. The solution obtained with the aSI scheme agree very well with its full
counterparts.

As already demonstrated for the mean, even for the variance, the presence of the staircase ap-
proximation is prevented by the re�nement of the stochastic space (see �gure 3.28). Even if curves
nearly coincide in �gure 3.28(a), in the shock region the presence of the typical step pattern is evident
for the full SI solution with 32 and 64 equally spaced stochastic cells (see 3.28(b)).

The lower order of convergence attained for the variance, even for the non compressed solution,
highlights that the error in the stochastic space dominates the global error. As already demonstrated,
the e�ciency of the ENO selection of the stencil is related to the sharp representation of the discon-
tinuities. In this case, the results with and without the ENO selection of the stencil are very similar.
No advantages, even in term of compression, are observed. This issue is evident in �gure 3.29(a),
where the number of stochastic cells, along the physical domain, are reported. The region associated
to the discontinuity spreads over a larger domain and, globally, the presence of non-centered stencils
degradates the quality of prediction. This issue is well known in the ENO literature [Aràndiga 2004].
A possible cure, outside the scope of the present paper, would be the introduction of WENO type
of interpolation. Employing a WENO type of interpolation, the correct centered stencil could be
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Figure 3.27: Density Expectancy for the cell averaged solution of the uncertain shock tube problem
at the �nal time t = 0.31. The whole physical domain is represented in (a), while in the �gure (b)
a zoom in the shock region is reported. The physical mesh is constituted by 1001 equally spaced
points.
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Figure 3.28: Density Variance for the cell averaged solution of the uncertain shock tube problem at
the �nal time t = 0.31. The whole physical domain is represented in (a), while in the �gure (b)
a zoom in the shock region is reported. The physical mesh is constituted by 1001 equally spaced
points.

recovered without strong degradation of the prediction (the author already introduced a WENO
interpolation in [Abgrall 2013a] in the context of the MR point-value setting).

The evolution of the average number of stochastic cells employed by the aSI scheme with and
without the ENO interpolation is reported in 3.29(b). In this case, there is no intersection between
the two curves, revealing that in this case the ENO interpolation gives no advantage, even for high
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Figure 3.29: Evolution of the number of stochastic cell employed for each physical location for the
aSI scheme with and without the ENO reconstruction for the shock tube problem. The average
number of stochastic cells employed by the aSI scheme as function of the physical space resolution
has been reported in (b).

physical space resolutions.

3.2.6 Concluding remarks

In this section, a classical MR Harten framework, in its cell average setting, has been coupled to the
Semi-Intrusive (SI) scheme. The overall numerical scheme is the so-called adaptive-SI scheme. We
demonstrated that it preserves the convergence properties of the original SI scheme with a strong
saving in terms of computational cost. Di�erent test-cases have been presented to demonstrate the
e�ciency and the accuracy properties of the aSI scheme. The linear advection equation has been
solved for initial smooth and discontinuous solution to demonstrate the capability of the stochastic
scheme to preserve the accuracy related to the deterministic MUSCL-Hancock method (MHM). A
second test-case has been focused on the inviscid Burgers equation. We demonstrated the capability
of the method to automatically re�ne/dere�ne following the changes in the regularity of the solution
in the coupled stochastic/physical space. In particular, a smooth solution has been considered,
in the stochastic space, as initial condition, where shock waves velocities are directly related to
the parameter in the stochastic space. The �nal test case proposed has been the Euler system of
equation to solve an uncertain shock tube problem. The aSI scheme has been demonstrated to
be e�cient also in the case of vectorial problems. For the computation of the convergence curves,
an original strategy for the semi-analytical solution of the stochastic shock tube problem has been
also developed following and extending the classical numerical procedure for the solution of the
Riemann problem for the Euler equations. The generality of the approach is not limited to second
order scheme, but can be easily extended to higher order numerical formulation for the physical
space and time discretizations. In the present work, both the linear and non-linear MR framework
have been presented in which the selection of the stencil to obtain the reconstruction operators
can be obtained by a data-dependent procedure. The ENO selection of the stencil has been also
introduced. Considering the numerical results presented, note that the advantages related to the
non-linear schemes are very limited. This issue is related not to the non-linear procedure itself but
to the peculiarity of the SI scheme that produces representations of the solution in a combined
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physical stochastic space. The representation of discontinuous solution along the stochastic space
can recover a smoother behavior when the physical spatial resolution is not high enough. This has
been demonstrated showing that the importance of the ENO scheme increases with the physical
space resolution. To improve the global properties of the scheme, two further steps seem useful. The
�rst is the introduction of the WENO reconstruction instead of the ENO interpolation recovering the
correct stencil in all the regions in which the solution is smooth, as it has been already presented for
the point-value setting [Abgrall 2013a]. The other step could be to increase the polynomial order for
the reconstruction. This should improve both accuracy and compression capabilities. The extension
and the analysis of the aSI scheme for a moderate number of dimension is actually underway. Some
highlights are given in Section 11.3.

3.3 Other works on intrusive methods

In this manuscript, the SI method is presented in details. Then, the TE algorithm for cell-averaged
representation is coupled with the SI, thus yielding a global formulation for the aSI scheme.

Other works on the same research axis are not reported in the manuscript. In particular, the
TE algorithm has been formulated �rst on node representation in [4] (See Section 12.6). Then, it
has been applied to the approximation of stochastic ODEs [4] and to stochastic systems of partial
di�erential equations [24]. This framework is e�cient and very �exible; it allows to couple together
di�erent deterministic solvers(�rst order/high-order FV solvers, �nite elements) and di�erent time
discretization. It is also able to treat time varying discontinuous non-classical pdf. Moving from the
TE method, recently, an high-order numerical method for solving e�ciently sPDE has been proposed
[22], based on the reduction of the number of points employed in the physical/stochastic space by
means of an adaptive technique. A weak coupling is performed in this case, since the number of
points in the stochastic space varies according to the physical space, but the number of points in
the physical space remains unchanged. A high-order ENO reconstruction is used for the stochastic
space. The focus of this research is on non-linear hyperbolic systems with discontinuous solutions
in both physical and stochastic spaces. Two di�erent test cases are considered: the scalar Burgers
equation and the Euler system of equations, in particular the simulation of a perfect gas �ow in a
shock-tube con�guration.

Moreover, the aSI method has been recently incorporated into a DEM (Discrete Equation
Method) formulation for two-phase �ows. The idea is to build a very e�cient tool for studying
uncertainty propagation in high-�delity multiphase code. Some highlights of this method are pro-
vided in Section 11.3.
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In this chapter, I present some results obtained on ANOVA-based analysis and uncertainty propa-
gation. Some basic de�nitions for decomposing high-order statistics are provided. I present some
results showing the importance of considering kurtosis sensitivity indices when ranking a set of un-
certainties. Finally, an ANOVA-based analysis is applied to the simulation of a turbulent �ow in a
pipe.

4.1 High-order decomposition

4.1.1 HO statistics de�nitions and functional decomposition

Let us consider a real function f = f(ξ) with ξ a vector of random inputs ξ ∈ Ξd = Ξ1 × · · · × Ξn

(Ξ ⊂ Rd) and ξ ∈ Ξd 7−→ f(ξ) ∈ L2(Ξd, p(ξ)), where p(ξ) =
∏d

i=1 p(ξi) is the probability density
function of ξ.

We can de�ne the central statistical moment of f of order n as

µn(f) =

∫
Ξd

(f(ξ)− E(f))np(ξ)dξ, (4.1)

where E(f) indicates the expected value of f

E(f) =

∫
Ξd

f(ξ)p(ξ)dξ. (4.2)
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In the following, we indicate with σ2, the variance (second-order moment), with s the skewness
(third-order), and with k the kurtosis (fourth-order).

Let us apply the de�nition of the Sobol functional decomposition [Sobol 2001] to the function f
as follows

f(ξ) =

N∑
i=0

fmi(ξ ·mi), (4.3)

where the multi-index m, of cardinality card(m) = d, can contain only elements equal to 0 or 1.
Clearly, the total number of admissible multi-indicesmi isN+1 = 2d; this number represent the total
number of contributes up to the dth-order of the stochastic variables ξ. The scalar product between
the stochastic vector ξ and mi is employed to identify the functional dependences of fmi . In this
framework, the multi-index m0 = (0, . . . , 0), is associated to the mean term fm0 =

∫
Ξd f(ξ)p(ξ)dξ.

As a consequence, fm0 is equal to the expectancy of f , i.e. E(f). Let us assume, in the following,
to order the N multi-indices mi in the following way:

m1 = (1, 0, . . . , 0)

m2 = (0, 1, . . . , 0)

...

md = (0, . . . , 1)

md+1 = (1, 1, 0, . . . , 0)

md+2 = (1, 0, 1, 0, . . . , 0)

...

mN = (1, . . . , 1).

(4.4)

Except the term m0, that should be the �rst in the series, the remaining N multi-indices mi should
be classi�ed with respect to a prescribed criterion. However, this criterion does not a�ect in any way
the successive ANOVA functional decomposition.

The decomposition (4.3) is of ANOVA-type in the sense of Sobol [Sobol 2001] if all the members
in Eq. (4.3) are orthogonal, i.e. as follows∫

Ξd

fmi(ξ ·mi)fmj (ξ ·mj)p(ξ)dξ = 0 with mi 6= mj , (4.5)

and for all the terms fmi , except f0, holds∫
Ξd

fmi(ξ ·mi)p(ξj)dξj = 0 with ξj ∈ (ξ ·mi) . (4.6)

Each term fmi of (4.3) can be expressed as

fmi(ξ ·mi) =

∫
Ξd−card(m̂i)

fmi(ξ ·mi)p(ξ̄i)ξ̄i −
∑

mj 6=mi

card(m̂j)<card(mi)

fmj (ξ ·mj), (4.7)

where the multi-indexes, m̂i, have cardinality equal to the number of non-null elements in mi and
ξ̄i contains all the variables not contained in (ξ ·mi), i.e. (ξ ·mi) ∪ ξ̄i = ξ.

The functional decomposition (4.3) is usually employed [Sobol 2001] to compute the contribution
of each term to the overall variance, as shown in the next section. In [Abgrall 2012], we present how
decomposing and computing HO statistical moments. Here, for the sake of brevity, we illustrate how
computing variance in details.
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4.1.2 Polynomial Chaos framework

This section and the following are devoted to show how variance can be easily computed in the
polynomial chaos framework. If a polynomial chaos formulation is used, an approximation f̃ of the
function f is provided

f(ξ) ≈ f̃(ξ) =

P∑
k=0

βkΨk(ξ), (4.8)

where P is computed according to the order of the polynomial expansion n0 and the stochastic
dimension of the problem d

P + 1 =
(n0 + d)!

n0!d!
. (4.9)

Each polynomial Ψk(ξ) of total degree no is a multivariate polynomial form which involve tensoriza-
tion of 1D polynomial form by using a multi-index αk ∈ Rd, with

∑d
i=1α

k
i ≤ n0:

Ψk(ξ ·m?,k) =
d∏

i=1
m?,k

i 6=0

ψαk
i
(ξi) (4.10)

where the multi index m?,k = m?,k(αk) ∈ Rd is a function of αk: m?,k = (m?,k
1 , . . . ,m?,k

d ), with

m?,k
i = αk

i /
∣∣∣∣∣∣αk

i

∣∣∣∣∣∣
6=0
.

Remark that, for each polynomial basis, ψ0(ξi) = 1 and then Ψ0(ξ) = 1. Then, the �rst coe�-
cient β0 is equal to the expected value of the function, i.e. E(f). The polynomial basis is chosen
accordingly to the Wiener-Askey scheme in order to select orthogonal polynomials with respect to
the probability density function p(ξ) of the input. Thanks to the orthogonality, the following relation
holds ∫

Ξ
Ψi(ξ)Ψk(ξ)p(ξ)dξ = δij〈Ψi(ξ),Ψi(ξ)〉 (4.11)

where 〈·, ·〉 indicates the inner product and δij is the Kronecker delta function.
The orthogonality can be advantageously used to compute the coe�cients of the expansion in a

non-intrusive PC framework

βk =
〈f(ξ),Ψk(ξ)〉
〈Ψk(ξ),Ψk(ξ)〉

, ∀k. (4.12)

Several approaches can be used to estimate PC coe�cients. The approach used in this manuscript
is generally based on quadrature formulae, namely a non-intrusive formulation (see [Ghanem 2003,
Le Maître 2010a] for details). When the number d of variables is large, quadrature formulae based on
tensor product of a 1D formula require too many numerical evaluations and Sparse Grid integration
based on Smolyak's construction is preferred.

4.1.3 Variance decomposition

Considering that variance can be easily computed as (the interested reader can refer to [Abgrall 2012])

σ2 = E(f2)− E(f)2 =

P∑
k=1

β2k〈Ψ2
k(ξ)〉, (4.13)

it can be decomposed following
σ2mi

=
∑

k∈Kmi

β2k〈Ψ2
k(ξ)〉, (4.14)
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where Kmi represent the set of indexes in associated to the variable contained in the vector (ξ ·mi):

Kmi =
{
k ∈ {1, . . . , P} |m?,k = m?,k(αk) = mi

}
(4.15)

If a total sensitivity index is needed, i.e. it is necessary to compute the overall in�uence of a
variable, it can be computed summing up all the contributions in which the variable is present

TSIj =
∑

ξj∈(ξ·mi)

σ2,SeImi
(4.16)

Here, de�nitions are provided for the variance, but all this can be extended to high-order moments
([Abgrall 2012]), thus de�ning for example total sensitivity indexes for kurtosis too:

TSIkj =
∑

ξj∈(ξ·mi)

kSeImi
, (4.17)

where kSeImi
is the conditional contribution associated to a speci�c multi-index for the kurtosis

(See [Abgrall 2012] for more details).
In the following section, we illustrate a simple test-case for displaying the importance of decom-

posing HO moments.

4.1.4 On the advantages of high-order indexes for global Sensitivity analysis

The importance of including high-order conditional terms computation in the statistics analysis is
demonstrated in this section by means of several model functions. Note that this kind of approach
is conceived in order to extend the global sensitivity analysis based on the variance. Anyway, in
some situations, criteria based on statistical moments are not adequate and moment independent
criteria should be adopted. The interested reader should refer to [Plischke 2013] for a discussion in
this sense.

The �rst model function is the well-known Ishigami function

f(ξ) = (1 + 0.1ξ43) sin(ξ1) + 7 sin(ξ2)
2 where ξi ∼ U(−π, π). (4.18)

For this function, the �rst-order Sensitivity Indexes (SeI) contribution (for variance, skewness and
kurtosis) computed for to the third variable ξ3 are equal to zero. In Figure 4.1, sensitivity indexes
are reported for variance, skewness and kurtosis.

Remark that the interaction between the third and the �rst variable is not negligible, obtaining
a kSeImi

, for mi = (1, 0, 1), higher than 0.4. Also the interaction between the three variables is almost
equal to 0.2 for the kurtosis but it is zero for both variance and skewness. It is also interesting to
note that, even if the ranking of the variables it is not directly a�ected by the choice of the order
of Sensitivity Indexes (SeI) (i.e. for the variance, skewness or kurtosis), the three indexes provide
complementary results. For instance, the relative importance of �rst-order terms is about 0.75 for
the variance, while it is only 0.15 for the kurtosis. The analysis of the table 4.1, where the total
sensitivity indexes are reported, con�rms that the ranking of the variables is nearly the same for each
statistical moment.

Let us consider now, the classical Sobol function (four dimension)

f(ξ) =
4∏

i=1

|4ξi − 2|+ ai
1 + ai

, (4.19)

where ξi ∼ U(0, 1). Two possible choices of the coe�cients are considered here

• ai = (i− 1)/2 the so called linear g-function fglin
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Figure 4.1: Sensitivity indexes for the Ishigami function (4.18) obtained with a PC series with total
degree n0 = 7.

Variable TSI TSIs TSIk

ξ1 0.57 0.00 0.91
ξ2 0.43 1.00 0.50
ξ3 0.25 0.00 0.64

Table 4.1: Total sensitivity indexes for the Ishigami function (4.18) based on a PC series with total
degree n0 = 7.

• ai = i2 the so called quadratic g-function fgquad.

In �gure 4.2, Sensitivity Indexes (SeI) for the linear g-function fglin are reported. Looking
at �gure 4.2, several di�erences can be noticed between the sensitivity indexes computed on the
variance or on other high-order moments. The variance-based ranking illustrates that the �rst-order
sensitivity indexes are higher than the second order one, while these last ones are higher than the
third and fourth order ones. This is not the case for skewness and kurtosis, where the second-order
contributions are higher than the �rst-order and third-order ones. This behavior reveals that the
variance is able to catch the absolute ranking of the variables in terms of �rst-order contributions,
but the importance associated to higher-order interactions between the parameters is totally lost.
From a practical point of view, underestimating the importance of high-order interactions between
variables can lead to wrong decisions in a dimension reduction strategy. The variance based only
on �rst-order contributions exceeds 0.8, while skewness and kurtosis do not attain 0.1. This can be
demonstrated to be very in�uential if the probability distribution for reduced models is considered
(see [23]). However, in table 4.2, the total sensitivity indexes for the four variables are reported. It
is evident that the ranking of variables is not in�uenced by the statistical moment, but their relative
importance can vary signi�cantly.

The same functional form can lead to slightly di�erent results if the quadratic function coe�cients
are considered. In Figure 4.3, the sensitivity indexes for the g-function with a quadratic dependence
of the coe�cients are reported. In this case, the di�erence between the �rst order contribution and
high-order terms is even more evident. Considering the variance, �rst-order contributions exceed
0.98, while a value larger than 0.5 is computed for high-order interactions when considering skewness
and kurtosis. In this case, the contribution of the �rst variable exceeds 0.8, but in order to attain
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Figure 4.2: Sensitivity indexes for the linear g-function fglin (4.19) obtained with a PC series with
total degree n0 = 5.

Variable TSI TSIs TSIk

ξ1 0.57 0.79 0.86
ξ2 0.29 0.56 0.64
ξ3 0.17 0.36 0.44
ξ4 0.11 0.24 0.31

Table 4.2: Total sensitivity indexes for the linear g-function function (4.19) based on a PC series
with total degree n0 = 5.

this level, it is necessary to include contributions related to the �rst variable and the second-order
interaction between the �rst and second variable. In the table 4.3, total sensitivity indexes are
reported for the four variables. In this case, variance contributions for both the third and fourth
variables are below 0.05, while for both skewness and kurtosis, only the fourth variable contribution
takes a TSI value of 0.04. A low level of TSI for the variables ξ3 and ξ4 could suggest to truncate
the dimensionality of the model to the �rst two variables or neglect the contributions related to the
order higher than one. This case is analyzed in the following section in order to demonstrate the
importance of high-order sensitivity indexes analysis.

Variable TSI TSIs TSIk

ξ1 0.82 0.95 0.97
ξ2 0.14 0.47 0.44
ξ3 0.04 0.13 0.12
ξ4 0.01 0.04 0.04

Table 4.3: Total sensitivity indexes for the quadratic g-function fgquad (4.19) based on a PC series
with total degree n0 = 5.
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Figure 4.3: Sensitivity indexes for the quadratic g-function fgquad (4.19) obtained with a PC series
with total degree n0 = 5.

Let us now consider the following functions:

f1 = ξ1e
ξ2

ξ23+1 + ξ1ξ2

f2 =

3∏
i=1

2ξi + 1

2
,

(4.20)

where the parameters are ξi ∼ U(0, 1).
Sensitivity indexes associated to the �rst function f1 are reported in Figure 4.4. For the function

f1, the most important variable is ξ1. For the variance, the �rst-order sensitivity index relative to ξ1
is also the most important SeI. On the contrary, for both skewness and kurtosis, the highest SeI is
associated to the second-order interaction between the �rst and the second variable. In this case, the
inspection of the total sensitivity indexes, reported in the table 4.4, suggests that the third variable
ξ3 is meaningless with respect to the variance. The TSI associated to ξ3 are lower than the limit
proposed in [Gao 2010] to identify a negligible uncertainty that could be frozen. However, if this
information is used together with the high-order total sensitivity indexes information, the choice
of freezing the third variable should be considered more carefully. This re�ects the importance of
the third variable in the actual form of the probability density function of f1 even if its variance is
not heavily in�uenced by it. The results of a model reduction decision, totally based on variance
measures, is further discussed in the following section.

Variable TSI TSIs TSIk

ξ1 0.79 0.96 0.97
ξ2 0.26 0.96 0.67
ξ3 0.02 0.10 0.10

Table 4.4: Total sensitivity indexes for the �rst function f1 (4.20) based on a PC series with total
degree n0 = 7.

The last example, i.e. the function f2, is reported here to underline the di�erence between the
measure of sensitivity associated to the variance and to the higher-order moments. In particular, the
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Figure 4.4: Sensitivity indexes for the �rst function f1 (4.20) obtained with a PC series with total
degree n0 = 7.

functional form of f2 (4.20) includes an equal contribution of three variables. However, looking at
the �gure 4.5, it is possible to note that the variance is concentrated only on �rst-order contributions
of the single variables and their sum exceeds 0.9. The skewness and kurtosis contributions, on the
contrary, are concentrated on second-order interaction. For kurtosis, the third-order interaction is
the highest contribution. The skewness associated to a model including only �rst-order contribution
does not include the skewness information about the probability distribution of the output.

Values for the total sensitivity indexes are reported in table 4.5 for this case. It is interesting to
note that the sum of the total sensitivity indexes over the three variables is much more higher for
skewness and kurtosis with respect to the variance. Then, they refer, correctly, to an intrinsically
high-order (of interaction) function (see equation (4.20) for f2 de�nition).
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Figure 4.5: SeI for the function f2.
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Variable TSI TSIs TSIk

ξ1 0.36 0.70 0.71
ξ2 0.36 0.70 0.71
ξ3 0.36 0.70 0.71

Table 4.5: Total sensitivity indexes for the �rst function f2 (4.20) based on a PC series with total
degree n0 = 7.

4.1.5 Dimension reduction

In this section, the problem of reducing the number of dimensions is analyzed through some numerical
test-cases based on the results obtained in the previous section. The �rst test-case is represented
by the quadratic g-function (4.19). From the analysis conducted in the previous section (see table
4.3), note that the third and fourth variables seem to be meaningless for the variance-based indexes.
Their total sensitivity indexes sum up to 0.05 for the variance, while exceed 0.15 for both skewness
and kurtosis. Considering only the sensitivity indexes computed on the variance, the decision-maker
could be tempted to neglect the variables ξ3 and ξ4. In this case, the ANOVA expansion does not
include the terms containing ξ3 and ξ4, as follows

fG1 = f0 + f1(ξ1) + f2(ξ2) + f12(ξ1, ξ2)

fG2 = f0 + f1(ξ1) + f2(ξ2) + f12(ξ1, ξ2) + f3(ξ3) + f13(ξ1, ξ3) + f23(ξ2, ξ3) + f123(ξ1, ξ2, ξ3),
(4.21)

where in the �rst case fG1 both are neglected; on the contrary for fG2 only ξ4 is neglected. In
this case, the ANOVA terms and the statistics can be computed analytically. In the table 4.6, the
percentage errors, for the �rst four central moments, are reported with respect to the analytical exact
solution for both the reduced models fG1 and fG2.

Function Variance Skewness Kurtosis
fG1 4.7997 29.236 15.039
fG2 1.2369 7.7705 4.0632

Table 4.6: Percentage
(
abs(µ−µex)

µex
× 100

)
errors related to the reduced g-function fG1 and fG2.

In table 4.6, it is evident that an error of only 5% on the variance can correspond to a much
greater error on the higher moments. This behavior is justi�ed looking at the Figure 4.6, where
the probability density function is computed for both fG1 and fG2 and compared with the complete
function (4.19). In this case, the model with only the �rst two variables can not reproduce the tails
while a good approximation is attained in the middle part. However, this test-case clearly shows
that considering only the sensitivity indexes based on the variance could be very risky in a decision-
making process. In this case, the pdf results to be analytically bounded between 0.4 and 1.8. If the
third variable is included in the reduced model, both variance and skewness are computed with an
error lower than 5%, while the error on the kurtosis remains lower than 8%. The total sensitivity
indexes associated to the fourth variable is reported in table 4.3 and it is lower than 5% for the
three moments. The improvement of the model given by including the third variable is evident in
Figure 4.6, where the pdf of the reduced model allows recovering much better the pdf of the complete
function.

From a practical point-of-view, the dimension reduction is commonly applied by freezing the
neglected parameters. For an analytical function, it is possible to compute the constant values to
choose, for both ξ3 and ξ4, in order to obtain a reduced model that preserves both the expectancy
and the variance of the original complete model. Of course, both requirements cannot be satis�ed at
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Figure 4.6: PDFs for the complete g-function and the reduced models (see equations 4.21).

the same time, but a set of values satisfying the mean and the variance can be obtained analytically
requiring that

|4ξ̄j − 2|+ aj
1 + aj

= 1(
|4ξ̄j − 2|+ aj

1 + aj

)2

=

∫ 1

0

(
|4ξj − 2|+ aæ

1 + aj

)2

dξj .

(4.22)

The following values can be analytically computed for the two variables: ξ3 =

{1/4, 3/4, 91/120, 29/120} and ξ4 = {1/4, 3/4, 77/102, 25/102}.

In Figure 4.7, the pdf associated to the complete quadratic g-function with parameters ξ3 and ξ4
frozen, are reported with the complete pdf and the totally reduced one.

From Figure 4.7, it is evident that freezing some parameters in order to assure the correctness
of the mean and the variance, yields pdf very close to that one obtained by neglecting entirely the
ANOVA terms. From a practical point-of-view, the analysis of the reduced model can be carried out
both with the ANOVA reduced model (if it is analytically possible to compute the integrals) and by
freezing the parameter to neglect by satisfying the requirement on the expectancy and variance.

The numerical test-cases presented here, can be resumed by stating that the information coming
from the sensitivity indexes associated to the variance seem to be incomplete in order to understand
the true dependence of a model from its variables. In particular, the variance seems to give a too
predominant role to the low-order interactions with respect to the sensitivity indexes associated to
skewness and kurtosis. As a consequence, the sensitivity indexes on the skewness and on the kurtosis
could contribute to understand much better the interactions between some subsets of variables.
Please refer to [23] for a more detailed discussion about the application of high-order sensitivity
indices on the truncation strategy in a dimension-reduction framework.
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Figure 4.7: PDFs for the complete g-function and the reduced models.

4.2 ANOVA-based analysis in RANS/LES models

In this section, we apply the uncertainty propagation method based on Polynomial Chaos described
in Sections 4.1.2 and 4.1.3 to the stochastic simulation of turbulent �ows. Other studies have been
focused on the e�ect of di�erent sources of uncertainty in RANS [Simon 2010, Han 2012] and LES
[Lucor 2007, Meldi 2011, Meldi 2012] simulations. In this study, the focus is on the comparison
between stochastic RANS and LES simulations with respect to the experimental data for a speci�c
con�guration.

4.2.1 Flow con�guration

The turbulent �ow in a pipe with an axisymmetric expansion experimentally studied by Dellenback
et al. [Dellenback 1987] is considered. This choice relies on two main reasons : i) it covers a vari-
ety of �ow regimes, displaying recirculating �ow regions and high turbulence levels, ii) it is a well
documented experiment allowing for a �ne comparison between measurements and computations.
This experiment has already been used by Schlüter et al. [Schlüter 2004] as a reference for (de-
terministic) numerical simulations in an hybrid RANS/LES context and by Gyllenram and Nilsson
[Gyllenram 2008] as a validation test-case for a modi�ed k − ω turbulence model. A sketch of the
experimental con�guration is given in Figure 4.8 where the plane generating the full geometry by
rotation around the z-axis is displayed : the �uid is �owing from left to right, entering the pipe at
z = −2D with or without swirl and leaving the expansion at z = 10D . Measurements with laser
Doppler anemometer are available upstream of the expansion located in z = 0, allowing for a proper
description of the mean in�ow quantities such a time-averaged axial and tangential velocity. Avail-
able probe locations downstream the expansion are also indicated in Figure 4.8. This incompressible
�ow con�guration is described by two non-dimensional parameters : the Reynolds number Re based
on the �uid kinematic viscosity, the inlet diameter D and the bulk velocity Ub and the swirl number
Sw describing the level of swirl the inlet �ow. The swirl number is de�ned as the ratio between
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Figure 4.8: Experimental con�guration of Dellenback.

angular momentum �ux and axial momentum �ux :

Sw =
1

R

∫ R

0
r2〈uz〉〈uθ〉 dr∫ R

0
r〈uz〉2 dr

, (4.23)

where R = D/2, r is the radial coordinate (see Fig. 4.8) and 〈uz〉, 〈uθ〉 denote respectively the time-
averaged streamwise and tangential velocity components. The experiment is reported performed
for a Reynolds number Re = 30000 and two values of the swirl number : a no-swirl con�guration
(Sw = 0) and a strong swirl con�guration (Sw = 0.6). The baseline �ow (BF) con�guration with a
bulk velocity yielding Re = 30000 and no swirl (NS) will be denoted from now on BFNS test-case;
similarly BFHS will denote the baseline �ow at Re = 30000 with high swirl (Sw = 0.6).

4.2.2 Turbulence modeling and numerical tools

The incompressible turbulent �ow considered in this study is governed by the instantaneous Navier-
Stokes equations expressing mass and momentum conservation :

∂ui
∂xi

= 0,

∂ui
∂t

+
∂uiuj
∂xj

= −1

ρ

∂p

∂xi
+

∂

∂xj

(
ν
∂ui
∂xj

)
,

(4.24)

where ui, p, ρ and ν are respectively the velocity components, the pressure, the (constant) density
and kinematic viscosity. For high level turbulent �ows, it is not possible to perform direct numerical
simulation (DNS) i.e. to solve directly these equations with the computing resources available because
of the too large range of �uid motion scales to account for. Some modeling of a part of the �ow
dynamics is needed to overcome this limitation. The Reynolds-Averaged Navier-Stokes (RANS)
approach solves the mean �ow and attempts to model the �uctuating �eld. The governing equations
take the form : 

∂〈ui〉
∂xi

= 0,

∂〈ui〉 〈uj〉
∂xj

= −1

ρ

∂〈P 〉
∂xi

+
∂

∂xj

(
(ν + νT )

∂〈ui〉
∂xj

)
.

(4.25)
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where 〈ui〉 denotes the time-averaged velocity �eld components and 〈P 〉 is the modi�ed mean pres-
sure. The in�uence of the �uctuations on the mean �ow is described by the turbulent stress tensor
νT

∂〈ui〉
∂xj

with the turbulent viscosity νT to be modeled in order to close the system. Several standard
turbulence models can be applied to de�ne νT and perform RANS simulations [Platteeuw 2008]. In
the present work, the standard k − ε model has been retained [Jones 1972], where νT is expressed
as a function of the turbulent kinetic energy k and the dissipation ε of this turbulent energy. These
two additional turbulent quantities are themselves determined by solving transport equations which
are not detailed here.

Alternatively, the large-eddy simulation (LES) approach proposes to solve only the �ltered
velocity �eld ūi, where the �ltering operation allows to separate the scales of the �ow motion at the
grid level, with the small motion scales taken into account by a subgrid-scale model. The �ltered
velocity �eld is computed as the solution of the �ltered Navier-Stokes equations :

∂ūi
∂xi

= 0,

∂ūi
∂t

+
∂ūi ūj
∂xj

= −1

ρ

∂P̄

∂xi
+

∂

∂xj

(
(ν + νSGS)

∂ūi
∂xj

)
.

(4.26)

where the eddy viscosity νSGS must be de�ned to close system (4.26). The standard dynamic
Smagorinsky model [Germano 1991] will be used in this study : the eddy viscosity is computed
as νSGS = (C ∆)2

∣∣S̄ (x, t)
∣∣, where ∣∣S̄ (x, t)

∣∣ is the norm of the �ltered strain rate tensor. This
expression de�nes νSGS algebraically so that no additional equation needs to be solved; the C
coe�cient is dynamically computed following Germano's de�nition [Germano 1991].

The k − ε model is not necessarily the best choice for an accurate RANS computation of the
�ow under study and the dynamic Smagorinsky model is not the sole choice of subgrid model.
Let us emphasize however our objective is not to investigate the accuracy of RANS modeling with
respect to LES but to assess the comparative behavior of both approaches when uncertainties are
introduced in the �ow description. In this respect, the k − ε model on one hand and the dynamic
Smagorinsky model on the other hand, which are commonly used models, remain valid choices.
Both RANS and LES approaches have been used such as implemented into the open source
�nite volume code OpenFOAM 1. In systems (4.25) and (4.26), convective and viscous �uxes
are discretized with a second order accurate central di�erencing scheme. The pressure-velocity
coupling is insured by using the PISO algorithm [Issa 1986]. To avoid spatial oscillations of the
pressure �eld over the collocated grid arrangement, Rhie and Chow pressure-weighted interpolation
is applied [Rhie 1983]. Moreover, for system (4.26), time advancement is performed by using a
Crank-Nicholson scheme.
For RANS steady simulations, the out�ow boundary condition is based on extrapolation conditions
which require the derivatives of all quantities in the direction normal to the boundary be zero.
However, this condition is known to be not satisfactory in unsteady �ows [Ferziger 1997]. A
convective out�ow condition [Orlanski 1976] is thus used for LES unsteady simulations.
For both RANS and LES computations, the pro�les of the time-averaged streamwise and ortho-
radial velocities are imposed at the inlet boundary, from the measured data of Dellenback et al.
[Dellenback 1987]. These pro�les depend on the bulk velocity Ub and the swirl number Sw. Since the
�rst measure point in the inlet section is located outside the boundary layer, the imposed velocity
pro�les are smoothly connected to the zero value at the wall by a zero-pressure gradient turbulent
boundary layer velocity distribution.
When the LES approach is applied, this time-averaged pro�le must be completed to de�ne the

1www.openfoam.com
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time-dependent inlet velocity distribution :

ūi,LES (t) = 〈ui,EXPE〉(Ub, Sw) + γi

√
2

3
ki, (4.27)

where 〈ui,EXPE〉 is the experimental time-averaged velocity depending on Ub and Sw, ki is the inlet
turbulent kinetic energy and γi is a sequence of random numbers conditioned so that each distribution
has zero mean and unit variance. The inlet boundary condition (4.27) is applied for the BFNS
con�guration only. Indeed, Schlüler et al. [Schlüter 2004] have shown that turbulent �uctuations
can be neglected when strong swirl is considered so that ūi,LES (t) = 〈ui,EXPE〉 for BFHS.
When the RANS approach is used, the condition ūi,RANS = 〈ui,EXPE〉 is systematically used. However,
additional inlet conditions have to be de�ned for the additional transport equations of k and ε. The
inlet value of k and ε are computed from the bulk velocity Ub and estimated values of the turbulence
intensity Ti and the characteristic turbulence length scale Lt, following the classical relations :

k =
3

2
(Ti Ub)

2 ε =
k3/2

Lt
, (4.28)

In conclusion, the RANS inlet boundary condition depends on a set of 4 physical parameters : Ub,
Sw, Ti and Lt. The LES inlet boundary condition solely depends on Ub and Sw for BFHS and also
depends on Ti for BFNS. For BFNS and BFHS, Ub = 0.452m/s corresponds to Re = 30000 and
Sw = 0 or Sw = 0.6. The turbulence intensity Ti is estimated equal to 0.03, leading to velocity
�uctuation about 3% of the bulk velocity, and the turbulence characteristic length scale Lt equal to
5% of the inlet radius. Note that these quantities are rarely available from experimental data and
there are no well-established rules to determine their values. This is an additional motivation to
quantify uncertainties on the results due to uncertainties on such inlet levels.

4.2.3 Setting up the uncertainties

The calculations performed in the previous section assumed exactly known inlet �ow conditions
when using the RANS or LES numerical modeling; the grid-converged computed results were then
compared with measured quantities also assuming exactness of the measurements. In reality, the
measured distributions reported in Dellenback et al. [Dellenback 1987] must be considered as aver-
aged distributions over a set of experimental realizations. From one realization to another, the inlet
bulk velocity Ub and swirl number Sw (for the BFHS con�guration) are subject to a level of �uctu-
ation, which lead in turn to some �uctuations in the velocity measurements. We will consider from
now on Ub = 0.452m/s and Sw = 0.6 (for BFHS) to be mean values around which actual values of
Ub and Sw in the series of experiments are uniformly distributed. In other words, Ub and Sw are now
stochastic variables described by uniform probability distribution functions (pdf) over the respective
intervals [0.975Ub, 1.025Ub] and [0.975Sw, 1.025Sw] . The choice of a 2.5% variance for both Ub

and Sw is based on the analysis of the experimental set up description provided by Dellenback et
al. [Dellenback 1987]. The inlet turbulence characteristics are also subject to uncertainty. However,
since no information is available in Dellenback et al. [Dellenback 1987] regarding these quantities, the
extent of variation for Ti and Lt was estimated from previous calculations on similar con�gurations
[Xia 1997, Yeh 2008, Cole 1998]. The turbulence intensity Ti is assumed to vary between 0.006 and
0.06 following a uniform pdf, i.e. the velocity �uctuation is assumed to vary uniformly between 0.6%

and 6% of the mean velocity; the characteristic turbulence length-scale is assumed to vary between
0.1% and 10% of the inlet radius R, following a uniform pdf.
The uncertainty on Ub impacts all the simulations through the inlet velocity boundary condition :
with or without swirl, using RANS or LES approach. The uncertainty on Sw impacts the simulations
with swirl only, since Sw is assumed to remain very close to zero (with a negligible uncertainty) for
the con�guration without swirl. The uncertainty on Ti impacts all the RANS calculations through
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Figure 4.9: High-swirl �ow. RANS computations analyzed using PC(3). Mean-value contours
(ms−1) of the time-averaged velocity magnitude. Vertical lines correspond to the sections used
for the comparison with experiment (Fig. 4.10 and 4.11).

the inlet boundary condition (4.28) for k and ε and the LES calculation for the con�guration with-
out swirl through the inlet boundary condition (4.27). The uncertainty on Lt impacts all the RANS
calculations through the inlet boundary condition (4.28) for ε but does not play a role in the LES
calculations. The uncertainties taken into account in the study are summarized in Table I. The sys-
tematic choice of uniform pdf leads to a maximization of the uncertainty e�ects, a desirable feature
for the present exploratory study. It remains to analyze how these physical (Ub, Sw) and modeling
(Ti, Lt) uncertainties impact the numerical solutions provided by the RANS and LES approaches.

Table 4.7: Considered uncertainties for the various computations
Simulations Ub (m/s) Sw Ti Lt

RANS with swirl 0.452± 0.0113 0.6± 0.015 0.006 to 0.06 0.1%R to 10% R

RANS without swirl 0.452± 0.0113 / 0.006 to 0.06 0.1%R to 10% R

LES with swirl 0.452± 0.0113 0.6± 0.015 / /
LES without swirl 0.452± 0.0113 / 0.006 to 0.06 /

4.2.4 High-swirl con�guration

Figure 4.9 displays the central plane of the �ow colored by the mean time-averaged axial velocity
computed using the RANS computations and PC(3). In particular, a recirculation zone is observed
occurring around the �ow centerline downstream of the expansion zone.

4.2.4.1 Comparison with experiment

Experimental measurements and simulation results are now compared taking into account the
measurement errors and the propagation of uncertainties on the inlet �ow conditions in the numerical
simulations as detailed in Table I. Figure 4.10 reports the experimental, RANS and LES axial mean
velocity distributions along the radial coordinate in several transversal sections, where error bars
indicate the computed variance of the numerical solutions (using PC(3) for the RANS results and
PC(2) for the LES results) and the experimental error. A tentative estimation of the error levels
associated with the measurement instruments used at the time of the experiment (1987) led us to
assume the measurement error on the local velocity values to be consistently equal to ±0.04m/s,
be it in the inlet section or at any downstream location. Three sections have been considered (see
Fig. 4.8), located respectively near the expansion (L/D = 0.75), in the center of the computational
domain (L/D = 1.5) and near the exit (L/D = 4.0).
The present analysis provides a more realistic assessment of the predictive properties of the RANS
and LES approaches since the stochastic DOE for Ub, Sw, Ti and Lt reproduces the actual variability
of the inlet �ow conditions encountered in the experiment. Ideally, when the inlet �ow conditions
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follow the statistical description summarized in Table I, the mean numerical solution should be close
to the reported (mean) experimental distribution with a variance associated with the numerical
results similar to the estimated experimental error.
When using RANS modeling, the mean axial velocity curves remain systematically far from the
experimental distributions (see Fig. 4.10 (a) (b) (c)). This observation is consistent with the well
known fact that the turbulent-viscosity assumption leads to inaccurate �ow patterns for strong
swirling �ows. Furthermore, the computed error bars at section L/D = 0.75 in the back-�ow
region close to the centerline r/R = 0 (Fig. 4.10 (a)) are much larger than the 2.5% inlet velocity
uncertainty, indicating the strong sensitivity of the RANS approach. These computed errors bars
tend to reduce rapidly for more downstream sections since they are of the same order than the
measurement error bars (assumed consistently equal to the input uncertainty) for L/D = 1.5 and
smaller for L/D = 4.0 but with a computed mean distribution largely overestimated near the �ow
centerline. When using LES modeling, the picture is quite di�erent since the mean solution is
globally in good agreement with the measured distribution and the numerical error bars remain
similar or even smaller than the experimental error bars in all the sections under study (see Fig.
4.10 (d) (e) (f)).
Another indicator of the statistical �ow behavior is the coe�cient of variation (standard deviation
over mean value) of the axial time-averaged velocity computed at the �ow centerline r/R = 0 for
successive sections. The computed coe�cients are reported in Table III along with the assumed
experimental coe�cient. The RANS coe�cient of variation exceeds 100% at sections L/D = 0.75

and L/D = 1.5 where the swirl e�ects are signi�cant while it goes down to 6.6% at L/D = 4.0

further away from the inlet. Note this drastic reduction does not necessarily imply the RANS
prediction is improved at L/D = 4.0 (the computed mean distribution remains far from the
experimental mean distribution, see Fig. 4.10 (c)); the sensitivity of the computed solution to
uncertain inlet conditions is reduced in this �ow region far from the inlet while it is particularly
high in the �rst section, closest to the inlet boundary where swirl e�ects are most signi�cant. The
LES coe�cient of variation does not depart much from the prescribed value on the inlet conditions
and remains in the same range (between 4.75% and 10.2%) along the pipe centerline.

A similar analysis can be performed for the time-averaged tangential velocity distributions

Table 4.8: High-swirl �ow. Coe�cient of variation (%) for the axial velocity at r/R = 0 and successive
sections.

L/D 0.75 1.5 4.0

RANS 130.4 106.4 6.6

LES 4.75 10.2 8.0

Experiment 25 40 101

and the computed mean values and variance distributions at the same sections L/D = 0.75, 1.5

and 4 are reported in Figure 4.11. As observed in Fig. 4.11 (a,b,c), the error bars for the RANS
prediction remain small, inferior to the experimental error. The computed mean distribution remains
however systematically far from the measured pro�le. The RANS approach can be considered as
unable to correctly predict the physical �ow solution on the basis of a full analysis including the
uncertainties on the inlet �ow conditions. It must also be noted these physical uncertainties have
speci�cally a great impact on the numerical prediction of the axial velocity in recirculating �ow
regions.
When using the LES approach, the errors bars on tangential are also small but with a computed
mean solution which remains systematically close to the experimental pro�les (see Fig. 4.11 (d,e,f)).
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Figure 4.10: High-swirl �ow. Statistics of the axial velocity distributions (mean value and standard
deviation displayed as error bar) at successive sections (from left to right : upstream to downstream)
computed with RANS modeling / PC(3) (top : a,b,c) and LES modeling / PC(2) (bottom : d,e,f).
Numerical results are compared with experimental measurements (mean value and assumed experi-
mental error bar).
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Figure 4.11: High-swirl �ow. Statistics of the tangential velocity distributions (mean value and
standard deviation displayed as error bar) at successive sections (from left to right : upstream to
downstream) computed with RANS modeling / PC(3) (top : a,b,c) and LES modeling / PC(2)
(bottom : d,e,f). Numerical results are compared with experimental measurements (mean value and
assumed experimental error bar).
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Figure 4.12: High-swirl �ow. RANS computations analyzed using PC(3). Variance contours (m2 s−2)
of the time-averaged velocity magnitude.

Figure 4.13: High-swirl �ow. RANS computations analyzed using PC(3). Contours of Ti uncertainty
contribution to the variance of the time-averaged velocity magnitude.

4.2.4.2 Explanation of variance

Since mean �ow quantities and their variance are computed at each grid point, it is possible to
plot the contours of the variance �eld for the time-averaged velocity magnitude in order to better
understand how the computed uncertainties are spatially distributed in the �ow. This analysis will
be performed for the RANS approach only since the uncertainties associated with the LES approach
were found to remain small. The variance contours plotted in Fig.4.12 indicate the highest values for
the variance of the time-averaged velocity magnitude are correlated with the location of the back-
�ow region well visible in Fig.4.9. Moreover, ANOVA analysis can be applied at each grid point
to estimate the contribution of each uncertainty to the global variance and the contours of these
uncertainty contributions can be plotted and analyzed. Such a process is successively applied to the
four uncertainties taken into account when applying RANS modeling to the high-swirl con�guration.
The contours of Ti uncertainty contribution to the variance are plotted in Fig.4.13 : they are very
similar to the contours of the global variance plotted in Fig.4.13, which indicates the global variance
of the RANS computations is essentially produced by the uncertainty on inlet turbulence intensity.
The contours of Ub, Sw and Lt uncertainty contributions to the variance of the time-averaged velocity
magnitude are respectively plotted in Fig. 4.14, 4.15, 4.16 and illustrate the very weak contribution
to the global variance of the uncertainty on bulk velocity, swirl number and turbulence length scale.
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Figure 4.14: High-swirl �ow. RANS computations analyzed using PC(3). Contours of Ub uncertainty
contribution to the variance of the time-averaged velocity magnitude.

Figure 4.15: High-swirl �ow. RANS computations analyzed using PC(3). Contours of Sw uncertainty
contribution to the variance of the time-averaged velocity magnitude.

Figure 4.16: High-swirl �ow. RANS computations analyzed using PC(3). Contours of Lt uncertainty
contribution to the variance of the time-averaged velocity magnitude.
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Figure 4.17: No-swirl �ow. RANS computations analyzed using PC(3). Mean-value contours (ms−1)

of the time-averaged axial velocity. Vertical lines correspond to the sections used for the comparison
with experiment (Fig. 4.18).

4.2.5 No-swirl con�guration

Figure 4.17 displays the mean value contours of the time-averaged axial velocity for the no-swirl
con�guration computed using the RANS approach and PC(3). With respect to the previously studied
con�guration, the absence of swirl yields a higher velocity in the centerline region of the �ow; note
also that back-�ow regions appear close to the wall immediately downstream of the expansion.

4.2.5.1 Comparison with experiment

As already done for swirling �ows, the experimental pro�les of the time-averaged axial velocity are
plotted in Fig.4.18 along with the mean values of the computed distributions using RANS and LES
modeling; the experimental and computed standard deviation are also reported on the same plots.
Let us recall the error bar for the local velocity components measurement is systematically assumed
equal to ±0.04m/s. Three sections, where experimental data are available, have been considered (see
Fig. 4.8), respectively near the inlet (L/D = −0.50), in the center of the �ow domain (L/D = 1.0)
and near the exit (L/D = 3.0). The measured value at centerline r/R = 0 in section L/D = 1

is reported but seems spurious when compared to the other nearby measured values in the same
section; it will be discarded in the following comments.
When the mean curves computed with RANS modeling are compared with measurements, taking
into account their respective error bars, a correct agreement is found between experiment and com-
putation. RANS modeling tends to underpredict, in the mean, the values of axial velocity near the
centerline r/R = 0 and to slightly overpredict these values near the walls. However, the upper limit
of the computed envelope near the centerline is located inside the region bounded by the lower and
upper limits of the measured envelope at section L/D = −0.50 and L/D = 1; this same upper limit
of the computed envelope remains slightly below the lower limit of the measured envelope in the
downstream section L/D = 3.0. In contrast with the previous high-swirl con�guration, the variation
of the error bars between the far upstream and far downstream sections remains very small. This
statistical �ow behavior is con�rmed by the analysis of the coe�cient of variation for the axial ve-
locity along the centerline r/R = 0. The values reported in Table IV show this RANS coe�cient
of variation remains between 4.7 and 5.1. (to be compared with this same coe�cient varying from
130.4 to 6.6 when using RANS to compute the high-swirl con�guration). The LES prediction is
also in very good agreement with the experiments (see Fig. 4.18 (d,e,f)). LES modeling tends to
slightly overpredict, in the mean, the axial velocity near the centerline. However the upper limit of
the computed envelope in this centerline region tends to coincide with the upper limit of the mea-
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Figure 4.18: No-swirl �ow. Statistics of the axial velocity distributions (mean value and standard
deviation displayed as error bar) at successive sections (from left to right : upstream to downstream)
computed with RANS modeling / PC(3) (top : a,b,c) and LES modeling / PC(2) (bottom :d,e,f).
Numerical results are compared with experimental measurements (mean value and assumed experi-
mental error bar).
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Table 4.9: No-swirl �ow. Coe�cient of variation (%) for the axial velocity distribution at r/R = 0

computed at successive sections.
L/D −0.5 1.0 3.0

RANS 4.7 4.8 5.1

LES 2.9 2.8 2.9

Experiment 7 7.3 8

Figure 4.19: No-swirl �ow. RANS computations analyzed using PC(3). Variance contours (m2 s−2)
of the time-averaged velocity magnitude.

sured envelope. Moreover the computed error bars for LES are su�ciently small for the numerical
envelope to be almost fully included into the measured envelope for the three sections under study.
The weak in�uence of inlet uncertainties on the LES prediction is also apparent in Table 4.9 where
the coe�cient of variation for the axial velocity at r/R = 0 remains below 3%.

4.2.5.2 Explanation of variance

The variance contours of the velocity magnitude in the central plane of the pipe are plotted in �gures
4.19 for RANS computations. The maximum value reached by this variance remains well below the
previously computed level for the high-swirl con�guration (0.0009 against 0.015m2 s−2). Moreover
this variance reaches its maximum well downstream from the expansion while this maximum was
located in the immediate neighborhood of the expansion for the high-swirl case (see Fig.4.12). The
contours of the various contributions to this global variance are also reported in Fig.4.20-4.22. In
contrast with the high-swirl case where the inlet turbulence intensity Ti was explaining most of the
variance, the uncertainties on Ub, Lt et Ti are all signi�cantly contributing to the global variance in
this no-swirl case. The uncertainty on bulk velocity explains most of the variance in the inlet region
while the downstream peak of the global variance is explained mostly by the uncertainties on the
inlet turbulence intensity and turbulence characteristic length scale.

A summary of the ANOVA analysis is proposed in Figure 4.23 where the contributions to
the maximum variance of the velocity magnitude are reported for the high-swirl and no-swirl
con�gurations computed using RANS or LES modeling. The contribution of each uncertain inlet
parameter to the variance (in %) is plotted for each combination of �ow con�guration and turbulence
modeling, keeping in mind (see Table 3.1.2.1) that Sw is �xed to zero for the no-swirl case and
that LES modeling makes use of Ti for the no-swirl case only and does not make use of Lt at all.
The overwhelming in�uence of the Ti uncertainty on the RANS high-swirl computations is clearly
illustrated (with a contribution equal to 96% of the variance in that case). For the RANS no-swirl
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Figure 4.20: No-swirl �ow. RANS computations analyzed using PC(3). Contours of Lt uncertainty
contribution to the variance of the time-averaged velocity magnitude.

Figure 4.21: No-swirl �ow. RANS computations analyzed using PC(3). Contours of Ub uncertainty
contribution to the variance of the time-averaged velocity magnitude.

Figure 4.22: No-swirl �ow. RANS computations analyzed using PC(3). Contours of Ti uncertainty
contribution to the variance of the time-averaged velocity magnitude.
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Figure 4.23: High-swirl / no-swirl �ows. Analysis of the contributions to the maximal variance of
the time-averaged velocity magnitude computed using RANS / PC(3) and LES / PC(2).

case, the uncertainties on both inlet turbulent conditions Ti and Lt contribute to more than 90% of
the variance.
The maximum variance associated with the LES computation of the high-swirl �ow is explained by
both uncertain parameters retained in that case, namely Ub and Sw, with respective contributions
of 75% and 24%. Similarly, the maximum variance associated with the LES computation of the
no-swirl �ow is explained by both uncertain parameters retained in that case, namely Ub and Ti,
with respective contributions of 80% and 20%.

4.2.6 Concluding remarks

In this study, a non-intrusive Polynomial Chaos method has been used for taking into account ex-
perimental physical uncertainties in numerical simulation of a turbulent �ow con�guration. Two
di�erent ways of treating turbulence has been used, a classical RANS equations system and LES
simulations. Statistic computations and analysis of variance allowed evaluating robustness of tur-
bulence models with respect to physical uncertainties and predominant parameters that in�uence
more the global variance. Robustness of di�erent techniques showed to be problem-dependent. In
the case of swirling �ows, RANS equations are not robust when computing axial velocity in recir-
culating region, and error bars are much greater than input variations. But, RANS solutions are
robust for tangential velocities, that indicate a decoupling between the components of the velocity.
When no-swirling �ows have been taken into account, RANS solutions show a better agreement with
experimental results and a lower sensitivity to in�ow uncertainties. This shows the ability to the
RANS approach to simulate no-swirling �ows in comparison with swirling case. On the contrary,
LES solutions show a great agreement with experience and very small error bars in all the cases that
we studied. Finally analysis of variance showed that the uncertainty on the turbulence intensity, Ti,
needed in the RANS approach is the predominant parameter that contributed more to the variance
in the case of swirling �ows. When using LES, two uncertainties showed slight di�erences between
them both in swirling and non-swirling �ows.
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In this chapter, I present the bayesian-based algorithm for treating inverse problem. In particular,
it is applied on the rebuilding of free-stream conditions for a reentry vehicle. The other algorithm
developed for the inverse problem, i.e. the deterministic one, is described in Section 10.1.

5.1 Bayesian-based algorithm: characterization of the uncertain in-

put data for the EXPERT vehicle

Simulation of atmospheric entries of spacecraft is a challenging problem involving many complex
physical phenomena, including rare�ed gas e�ects, aerothermochemistry, radiation, and the response
of thermal protection materials to extreme conditions. The availability of powerful computational
resources and general-purpose numerical algorithms creates increasing opportunities to perform mul-
tiphysics simulations of complex systems, in particular in aerospace science. Reliable predictions
require sophisticated physico-chemical models as well as a systematic and comprehensive treatment
of model calibration and validation, including the quanti�cation of inherent model uncertainties.
Conventionally, engineers resort to safety factors to avoid space-mission failure.

The post-�ight analysis of a space mission requires accurate determination of the freestream
conditions for the trajectory, that is, temperature and pressure conditions and the Mach number
in front of the shock. The latters can be rebuilt from the pressure and heat �ux measured on the
spacecraft by means of a Flush Air Data System (FADS). This instrumentation comprises a set of
sensors �ush mounted in the thermal protection system to measure the static pressure (pressure taps)
and heat �ux (calorimeters) (see Figure 5.1). As shown by zur Nieden and Olivier [zur Nieden 2007],
state of the art techniques for freestream characterization rely on several approximations, such as
the equivalent speci�c heat ratio approximation, which means that one replaces a complex high
temperature e�ect possibly including thermo-chemical non-equilibrium by an equivalent calorically
perfect gas. This approximation is then used, starting from sensors measurements, to reconstruct
freestream conditions and prescribe error intervals on these quantities. These techniques do not yet
integrate measurement errors nor the heat �ux contribution, for which a correct knowledge drives
more complex models such as gas surface interaction. In this context, Computational Fluid Dynamics
(CFD) supplied with UQ tools permits to take into account chemical e�ects and to include both
measurement errors and epistemic uncertainties on the chemical model parameters in the bulk and
at the wall (surface catalysis). Rebuilding the freestream conditions from the FADS data therefore
amounts to solving a stochastic inverse problem.
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Figure 5.1: RAFLEX Flush Air Data System (FADS), sensors indicated in blue are �ush mounted in
the thermal protection system to measure the static pressure (pressure taps) and heat �ux (calorime-
ters)

The forward problem, which consists in predicting stagnation-point pressure and heat �ux from
freestream conditions, is described by a physico-chemical model and solved by suitable numerical
methods proposed by Barbante [Barbante 2001]. One point of the trajectory of the European EX-
Perimental Reentry Test-bed (EXPERT) vehicle is investigated, which has been developed by the
European Space Agency as part of its General Technological Research Program. The trajectory
point corresponds roughly to the chemical non-equilibrium �ow conditions of Table 5.1. The inverse

Flow conditions Altitude [km] T∞ [K] p∞ [Pa] M∞ [-]
Chemical non-equilibrium 60 245.5 20.3 15.5

Table 5.1: Freestream conditions for one trajectory point of the EXPERT vehicle.

problem is then reduced to determine for instance only freestream pressure and Mach number. The
purpose of this study is to propose a new methodology for solving the inverse problem based on a
Bayesian setting, that is, probability densities of possible values of freestream conditions are rebuilt
from stagnation-point pressure and heat �ux measurements. A Bayesian setting o�ers a rigorous
foundation for inferring input parameters from noisy data and uncertain forward models, a natural
mechanism for incorporating prior information, and a quantitative assessment of uncertainty on the
inferred results [Kaipio 2010].

In Section 5.1.1, the forward model and the associated numerical code are brie�y described, as
well as the di�erent sources of uncertainty on input data. The latters are parametrized with random
variables and propagated into the forward model using the non-intrusive polynomial chaos method
described in Sections 4.1.2 and 4.1.3. The impact of the di�erent uncertainties on the stagnation-
point measurements is then studied through a sensitivity analysis based on the metamodel obtained
with the stochastic spectral method. In Section 5.1.2, the new backward uncertainty propagation
method is described, considering measurement errors and the input uncertainties that have the most
impact.



5.1. Bayesian-based algorithm: characterization of the uncertain input data for the
EXPERT vehicle 99

5.1.1 Forward problem and sensitivity analysis

5.1.1.1 Physical problem and sources of uncertainty

Here, the quantities of interest are the pressure pst and heat �ux qst at the stagnation point. A set
of physico-chemical models to simulate high temperature reacting �ows is used, including 2D axi-
symmetric Navier Stokes equations and gas/surface interaction equations (see Ref. [Barbante 2001]).
Indeed, the wall of the spacecraft acts as a catalyzer and promotes combination of atoms. This
phenomenon is modeled by a catalytic wall at radiative equilibrium, where the so-called e�ective
catalytic recombination coe�cient γ represents the proportion of gas impinging the body that will
be recombine. A mixture of 5 species of air is used, namely N, O, N2, O2, and NO, with the
corresponding Park chemical mechanism [Park 2001]. Input data for the forward model are the
freestream pressure p∞ and Mach number M∞, the e�ective catalytic recombination coe�cient γ,
and the gas reaction rate coe�cients of the chemical reactions kr.

Uncertainties are considered on p∞, M∞, and γ, with uniform distributions detailed in Table 5.2.
Indeed, only ranges of plausible values are known for these input quantities.

Variable Distribution Min Max
p∞ [Pa] Uniform 16.3 24.3
M∞ [-] Uniform 13.7 17.3
γ [-] Uniform 0.001 0.002

Table 5.2: Distributions of M∞, p∞, and γ

Uncertainty is also considered on the gas reaction rate coe�cients kr of four chemical reactions
of the dissociation reaction. To determine which reactions need to be accounted for, a preliminary
triage was done using a 1D code to simulate the stagnation line [Villedieu 2011]. Following the
suggestion of Bose et al.[Bose 2004], the uncertainty concerns only the pre-exponential factor Ar of
the Arrhenius rate equation: kr = ArT

br exp(−Er/RT ). Since the uncertainties on kr can be quite
large, it is appropriate to consider them on a logarithmic scale ; in particular, log10(kr/kr,0), with
kr,0 the recommended rate constant, is commonly assumed to vary following a normal distribution,
with probability distribution de�ned by:

P (kr) ∝ exp

[
−1

2

(
log10(kr/kr,0)

σr

)2
]

(5.1)

where ±2σr (reported in Table 5.3) de�nes the 95% con�dence limits symmetrically bounding kr,0.

Gas reaction Distribution of log10 kr σr
NO+O → N+O+O Normal 0.12
NO+N → N+O+N Normal 0.12
O2 +N2 → 2O+N2 Normal 0.10
O2 +O → 2O+O Normal 0.10

Table 5.3: Distributions of log10 kr

5.1.1.2 Numerical tools

To simulate the forward problem the in-house code COSMIC developed by Barbante [Barbante 2001]
is used. This solver was designed to approximate hypersonic �ow models where chemical non-
equilibrium e�ects need to be accounted for. It relies on a Hybrid Upwind Splitting (HUS)
scheme [Coquel 1995], which is an interesting attempt of combining, in a mathematically rigorous
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way, Flux Vector Splitting (FVS) and Flux Di�erence Splitting (FDS) schemes. The design principle
combines the robustness of FVS schemes in the capture of nonlinear waves and the accuracy of some
FDS schemes in the resolution of linear waves. In particular, COSMIC uses the hybridization of the
Van Leer scheme [Leer 1979] and the Osher scheme [Osher 1982] and includes a carbuncle �x.

The boundary conditions are illustrated in the right panel of Figure 5.2 : an axi-symmetric
condition is imposed on the y axis, while the wall of the body is modelled by a partially catalytic
wall at radiative equilibrium. The mesh used for the computations is given in the right panel
of Figure 5.2. Pressure and temperature iso-contours of the �ow around EXPERT obtained with
COSMIC for input data mean values are shown in Figure 5.3.

Figure 5.2: Boundary conditions (left) and mesh (right)

Figure 5.3: Pressure and temperature iso-contours for input data mean values

The stochastic method used in this study to deal with the forward uncertainty quanti�cation is
the non-intrusive polynomial chaos described in Sections 4.1.2 and 4.1.3.
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5.1.1.3 Numerical results

Propagation of the uncertainties into the forward model has been performed using di�erent polyno-
mial orders No and a Smolyak Fejer quadradure formula of level 6, thus requiring 18947 resolutions
of the deterministic code. Means and variances of pst and qst are reported in Table 5.4, while Sobol
�rst order indices Si and total order indices ST,i are reported in Table 5.5.

pst qst
No = 2 No = 3 No = 4 No = 2 No = 3 No = 4

µ 6.49 · 103 6.49 · 103 6.49 · 103 2.75 · 105 2.75 · 105 2.75 · 105
σ2 1.36 · 106 1.37 · 106 1.39 · 106 9.73 · 109 2.01 · 1010 6.18 · 1010

Table 5.4: Means (µ) and variances (σ2) of pst and qst for No = 2, 3, 4

pst qst
No = 2 No = 3 No = 4 No = 2 No = 3 No = 4

p∞ S1 4.00 · 10−1 3.99 · 10−1 3.93 · 10−1 2.06 · 10−2 1.07 · 10−2 3.49 · 10−3

ST,1 4.09 · 10−1 4.07 · 10−1 4.02 · 10−1 3.38 · 10−2 6.18 · 10−2 4.91 · 10−2

M∞ S2 5.90 · 10−1 5.87 · 10−1 5.79 · 10−1 5.18 · 10−1 2.52 · 10−1 8.78 · 10−2

ST,2 5.98 · 10−1 5.99 · 10−1 5.91 · 10−1 5.28 · 10−1 7.14 · 10−1 2.81 · 10−1

γ S3 6.78 · 10−4 6.76 · 10−4 2.36 · 10−3 1.94 · 10−1 9.40 · 10−2 1.09 · 10−1

ST,3 6.79 · 10−4 2.30 · 10−3 1.22 · 10−2 1.94 · 10−1 3.03 · 10−1 5.44 · 10−1

O2 +N2 → 2O+N2 S4 3.72 · 10−6 4.54 · 10−6 3.07 · 10−5 1.86 · 10−3 9.31 · 10−4 9.64 · 10−4

ST,4 2.76 · 10−5 1.65 · 10−4 8.33 · 10−4 7.52 · 10−3 2.70 · 10−2 3.98 · 10−2

O2 +O → 2O+O S5 2.65 · 10−6 3.90 · 10−6 1.98 · 10−5 1.10 · 10−3 6.35 · 10−4 5.47 · 10−4

ST,5 1.34 · 10−5 1.17 · 10−4 4.97 · 10−4 3.40 · 10−3 2.23 · 10−2 2.43 · 10−2

NO+O → N+O+O S6 2.20 · 10−4 2.21 · 10−4 3.22 · 10−4 6.17 · 10−2 3.01 · 10−2 1.41 · 10−2

ST,6 2.53 · 10−4 7.56 · 10−4 5.88 · 10−3 7.02 · 10−2 1.02 · 10−1 2.50 · 10−1

NO+N → N+O+N S7 6.60 · 10−4 6.58 · 10−4 2.33 · 10−3 1.83 · 10−1 8.86 · 10−2 1.04 · 10−1

ST,7 6.61 · 10−4 2.28 · 10−3 1.21 · 10−2 1.83 · 10−1 3.00 · 10−1 5.36 · 10−1

Table 5.5: Sobol �rst order (Si) and total order indices (ST,i) for No = 2, 3, 4

According to Table 5.4, the PC expansions of the stagnation pressure pst and of the stagnation
heat �ux qst are convergent in the mean-square sense. The interpretation of the indices Si and ST,i is
the following : Xi is an in�uential input parameter if Si is important, whereas Xi is not an in�uential
parameter if ST,i is small. Moreover, Si close to ST,i means that interactions between Xi and the
other parameters are negligible. From Table 5.5, p∞ andM∞ are observed to have the largest impact
on pst with an equivalent magnitude, whereas the e�ective recombination factor and the reaction rate
coe�cients have a very small e�ect on pst. This result was expected since the chemistry usually only
in�uences the heat �ux. Moreover, interactions between p∞ and M∞ are negligible. The results are
rather di�erent when the heat �ux is considered: all the inputs are observed to have a non negligible
impact on qst, with relatively equivalent orders of magnitude for p∞, M∞, γ, k6, k7, and smaller
orders of magnitude for k4 and k5. Moreover, interactions between the di�erent parameters are quite
large. Finally, important coe�cients of variation (ratio of the standard deviation to the mean) are
observed on the stagnation pressure and heat �ux: the value on pst is 18%, whereas the value on
qst is approximately 52%. A possible way to reduce these uncertainties is to rebuild the probability
densities of p∞ and M∞, which have an important impact on pst and qst.

5.1.2 Backward uncertainty propagation method

The purpose of this section is to rebuild the probability densities of the freestream conditions p∞
and M∞ from noisy observations of stagnation pressure pst and heat �ux qst, by taking into account
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only the in�uence of measurement uncertainty concerning pst and the in�uence of measurement and
chemistry uncertainty concerning qst.

5.1.2.1 Bayesian inference for inverse problems

The output of Bayesian inference is not a single value for the model parameters, but a posterior
probability distribution that summarizes all available information about parameters. From this dis-
tribution, one can calculate means, modes, and high-order moments, compute marginal distributions,
or make additional predictions by averaging over the posterior.

Let F denote the forward mathematics model de�ned as follows : d = F (m, c), which yields
predictions of the stagnation pressure and heat �ux d = (pst, qst) as a function of the freestream
conditions m = (p∞,M∞) and the chemistry coe�cients c = (γ, (kr)r=1,2,3,4). The uncertainty on c

is assumed to be known and to follow a distribution pc(c) = pγ(γ)
∏4

r=1 pkr(kr), γ following a uniform
distribution detailed in Table 5.2 and kr following lognormal distributions detailed in Table 5.3. In the
Bayesian setting, both m and d are random variables and Bayes rules are used to de�ne a posterior
probability density for the model parameters m, given n observations of the data {d1, . . . ,dn} :

p(m|d1, . . . ,dn) =
p(d1, . . . ,dn|m, c)pm(m)pc(c)∫

p(d1, . . . ,dn|m, c)pm(m)pc(c)dmdc
. (5.2)

Prior probability pm(m) represents the degree of belief about possible values of m = (p∞,M∞)

before observing any data ; p∞ and M∞ are a priori assumed to follow uniform distributions, with
minima and maxima given in Table 5.2. Data then enters the formulation through the likelihood
or joint density of the observations given m and c, namely p(d1, . . . ,dm|m, c). A common model
assumes independent observations so that independent additive errors account for the deviation
between predicted and observed values of d :

dj = F (m, c) + ηj , j = 1, . . . , n. (5.3)

Because pst and qst can be considered as independent, a typical assumption is ηj ∼ N (0,Γ), where
Γ = diag(σ2pst , σ

2
qst), σpst and σqst encompassing measurement errors. In that case, dj |m, c ∼

N (F (m, c),Γ), and the likelihood is

p(d1, . . . ,dm|m, c) =
n∏

j=1

pdj (dj |m, c) =
n∏

j=1

pη(d
j − F (m, c),Γ), (5.4)

with pη the Gaussian density probability of N (0,Γ). Since in general measurement errors are not
known with exactness, one can consider σst = (σpst , σqst) as hyperparameters of the Bayesian setting
that needs to be inferred, with noninformative uniform a priori on σpst and σqst . For simplicity,
measurement errors are here assumed to be known, with σpst = 0.1µ(pst) and σqst = 0.1µ(qst).

5.1.2.2 Markov Chain Monte Carlo

Markov Chain Monte Carlo (MCMC) encompasses a broad class of methods that simulate drawing
samples from the normalized posterior [Gilks 1996]:

p(m|d1, . . . ,dn) ∝ p(d1, . . . ,dn|m, c)pm(m)pc(c), (5.5)

thus avoiding complex numerical integrations in high dimensions to form the posterior distribution.
In this study, the Metropolis-Hastings algorithm is used with single-site updating and Gaussian
proposal density to draw samples of p(m|d1, . . . ,dn) and process as follow :

0. initialize the chain state mk=0 = (pk=0
∞ ,Mk=0

∞ ) = (µ(p∞), µ(M∞))
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1.a generate ck,1 and a candidate p̃∞ ∼ N (pk∞, ω
2
p∞

)

1.b evaluate the acceptance rate α(pk∞, p̃∞) = min
{
1,

p(d1,...,dm|p̃∞,Mk
∞,ck,1)pp∞ (p̃∞)

p(d1,...,dm|pk
∞,Mk

∞,ck,1)pp∞ (pk
∞)

}
1.c generate uk,1 ∼ U(0, 1) and update: if uk,1 < α(pk∞, p̃∞), pk+1

∞ = p̃∞, else pk+1
∞ = pk∞

2.a generate ck,2 and a candidate M̃∞ ∼ N (Mk
∞, ω

2
M∞

)

2.b evaluate the acceptance rate α(Mk
∞, M̃∞) = min

{
1,

p(d1,...,dm|pk+1
∞ ,M̃∞,ck,2)pM∞ (M̃∞)

p(d1,...,dm|pk+1
∞ ,Mk

∞,ck,2)pM∞ (Mk
∞)

}
2.c generate uk,2 ∼ U(0, 1) and update: if uk < α(Mk

∞, M̃∞), Mk+1
∞ = M̃∞, else Mk+1

∞ =Mk
∞

3. k = k + 1, go to 1.a while k < NMCMC, with NMCMC a prede�ned number of times.

Regardless of the initial chain state, the above algorithm produces a Markov chain that converges
to the posterior distribution ; the initial chain state values are here choosen to be the a priori mean
values of each component. Nevertheless, the proposal distribution widths vector ω = (ωp∞ , ωM∞)

have to be chosen carefully in order for the chain to mix well and represent the full posterior distri-
bution in the given number of MCMC steps. If the proposal distribution widths are too large, a great
proportion of the proposed moves will be rejected, and the chain will not move very often. On the
other hand, if they are too small, most proposed moves will be accepted but the chain will move very
slowly through the posterior support. A way to choose ω e�ciently is to plot the empirical autocor-
relation at lag s, denoted by β(s), for each component of the vector to infer and di�erent proposal
distribution widths. Indeed, the autocorrelation quanti�es the interdependence of the iterations of a
stochastic process, so that an e�cient proposal distribution width implies the quickly decay of the
autocorrelation with lag along the chain.

In steps 1.b and 2.b, F (p̃∞,Mk
∞, c

k,1) and F (pk+1
∞ , M̃∞, c

k,2) needs to be computed. The problem
is that we can not a�ord to call COSMIC two times for each iteration of the Markov Chain, since
COSMIC is time-consuming (about one hour per simulation) and one needs some thousands of
iterations to produce a good sample of the posterior. To tackle this issue, one can rely on a metamodel,
which gives an approximation of the outputs of COSMIC as a function of its inputs. Metamodels
based on intrusive and non-intrusive stochastic spectral methods have already been proposed in the
context of Bayesian inference[Marzouk Y.M. 2007, Y.M. 2009], with PC expansions. PC expansion
metamodel functions can be obtained, providing an approximation of the response (pst, qst) as a
function of (m, c). In Figure 5.4, approximated response surfaces of pst and qst are represented as a
function of p∞ andM∞ in the top panels, the chemical inputs being �xed to their mean values ; then
as a function of log10(k1/k1,0) and log10(k3/k3,0) in the bottom panels, the other inputs being �xed
to their mean values. These response surfaces are obtained from the metamodels computed with the
non-intrusive Polynomial Chaos, with a Sparse Grid integration method and a PC expansion of order
No = 3. The response surfaces of pst are well approximated, this assertion was veri�ed by plotting
in the same graph the outputs provided by the resolutions of the COSMIC code in Section 5.1.1.3.
The PC expansion of pst can therefore be used as a metamodel. Moreover, these surfaces match with
the results obtained in Section 5.1.1.3 : pst variates signi�catively with p∞ and M∞, whereas it does
not vary a lot with the chemical reaction rates (a similar behavior can be observed when plotting pst
as a function of γ, the other parameters �xed to their mean values). However, the response surfaces
of qst are not well approximated, because the values are not consistent with the ones obtained with
COSMIC (the approximated response surface at the right top panel also reaches negative values,
which is obviously unphysical). This behavior is explained by the fact that interactions between the
di�erent parameters are quite large (as pointed out in Section 5.1.1.3) and qst strongly depends on
all the parameters, so that a global polynomial approximation can not tackle every local variation,
which results in an oscillatory behavior. The PC expansion of qst can therefore not be used as a
metamodel.
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Figure 5.4: Response surfaces of pst and qst obtained with the non-intrusive Polynomial Chaos, a
Sparse Grid integration method, and a PC expansion of order No = 3

To cope with this complication, it was decided to solve �rst the stochastic inverse problem
by considering only the stagnation-point pressure measurements {p1st, . . . , pnst}, for which the PC
expansion metamodel can be used, in order to �nd better a priori distributions for p∞ and M∞.
Since the chemical inputs have negligible impact on pst, they are �xed to their mean values so that c
does not appear any more in the MCMC algorithm. Moreover, the vector of observations {d1, . . . ,dn}
is reduced to {p1st, . . . , pnst} and we rely on the PC expansion metamodel of pst in steps 1.b and 2.b
to compute the likelihood.

5.1.2.3 Numerical results

A noisy data vector {p1st, . . . , p10st } is generated by solving the forward model with COSMIC for
a �true� vector of input parameters (m, c), then perturbing the output value pst n = 10 times
with independent samples of a Gaussian noise ηi ∼ N (0, σ2pst). For simplicity, σpst is supposed
to be known (see Section 5.1.2.1). The �true� model parameters m = (p∞,M∞) is chosen as a
sample of p∞ andM∞ from their prior (uniform) distributions, while the �true� chemistry coe�cients
c = (γ, (kr)r=1,2,3,4) is chosen as a sample of pc. The generated �true� values considered here are
p∞ = 19.65,M∞ = 15, γ = 1.86 · 10−3, k1 = 2.55 · 1021, k2 = 1.03 · 1022, k3 = 1.34 · 1017, and
k4 = 1 · 1017. The output obtained for the latter inputs is pst = 5.86 · 103 and perturbations of
this �true� output, representing 10 independent measurements of pst su�ering from errors, can be
observed in Figure 5.5.
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Figure 5.5: �True� pst in red and 10 pseudo-measurements of pst su�ering from error in green
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Figure 5.6: Joint posterior density of (p∞,M∞)

A �rst graphical representation of the joint posterior density of (p∞,M∞) is obtained in Figure 5.6
by direct evaluations of the normalized posterior (5.5) on the prior intervals of p∞ andM∞, relying on
the stagnation-point pressure metamodel. The joint density exhibits a ridge spread along a lightly
curved line in the (p∞,M∞) plane. This density structure suggests a high degree of correlation
between the two parameters, which is consistant with the physics of the system. Samples of the
posterior p(m|p1st, . . . , p10st ) are then computed through the above MCMC algorithm with a proposal
distribution widths vector ω = (ωp∞ , ωM∞) = (0.9, 0.5). Results showing the chain position over
10000 iterations are reported in Figure 5.7, plotted in two dimensions and separately for p∞ and
M∞. Visual inspection suggests that the chain mixes well and that it moves in the band of Figure
5.6 where the probability is nonzero. In Figure 5.8, the empirical autocorrelation at lag s, namely
β(s), is plotted for each component of m ; β(s) decays relatively quickly with lag along the chain,
consistent with the good mixing in Figure 5.7. From Figures 5.6 and 5.7, it can be observed that the
posterior credible interval of p∞ remains the same as the prior one, whereas the posterior credible
interval of M∞ is slightly reduced compared to the prior one. Furthermore, the credible couples
(p∞,M∞) set has been considerably reduced.

From the MCMC sample, the posterior distribution can be summarized in terms of means, stan-
dard deviations, and marginal distributions [Gilks 1996]. In order to approximate them, it is im-
portant to drop the �rst b − 1 iterations of the MCMC sample, where b is commonly called the
�burn-in� time, necessary for the chain to reach a good behavior. Let so consider (pk∞,M

k
∞)k=b,...,K

; the marginal mean and variance of p∞ and M∞ are estimated by

µ(p∞) =
1

K − b

K∑
t=b+1

pk∞, µ(M∞) =
1

K − b

K∑
t=b+1

Mk
∞, (5.6)
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and

σ2(p∞) =
1

K − b− 1

K∑
t=b+1

(pk∞ − µ(p∞))2, σ2(M∞) =
1

K − b− 1

K∑
t=b+1

(Mk
∞ − µ(M∞))2. (5.7)

The values obtained here are µ(p∞) = 20.07, µ(M∞) = 15.29, σ(p∞) = 2.31, and σ(M∞) = 0.71.
The posterior means are roughly the same as the prior ones, while the posterior standard deviation
of p∞ is the same as the prior one and the posterior standard deviation of M∞ is slighly smaller as
the prior one. Finally, marginal distributions can be estimated by kernel density estimation :

p(p∞|p1st, . . . , p10st ) ≈
1

K − b

K∑
k=b+1

K(pk∞|mk), p(M∞|p1st, . . . , p10st ) ≈
1

K − b

K∑
k=b+1

K(Mk
∞|mk),

(5.8)
where K(pk∞|mk) (resp. K(Mk

∞|mk)) is a density concentrated around pk∞ (resp. Mk
∞). Here we use

a one-dimensional Gaussian kernel, K = N (pk∞, ω
2) (resp. K = N (Mk

∞, ω
2)), with bandwith ω de-

termined by the method of Sheather & Jones [Sheather 1991]. The estimated marginal distributions
are plotted in Figure 5.9.
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(a) Posterior distribution of p∞ (b) Posterior distribution of M∞

Figure 5.9: Marginal distributions of p∞ and M∞ obtained with kernel density estimation.

5.1.3 Conclusion

This study deals with the reconstruction of the freestream conditions (p∞,M∞) for the trajectory
of a re-entry vehicle from measurements of stagnation-point pressure and heat �ux (pst, qst). Prior
uniform distributions are �rst assumed for (p∞,M∞) and some chemistry parameters are considered
uncertain, with known distribution functions. The impact of the di�erent uncertain inputs on the for-
ward problem simulated by the in-house code COSMIC is studied owing to a non-intrusive stochastic
spectral method. Uncertainties on (p∞,M∞) are observed to have a large impact on pst, whereas
the chemistry uncertainties are observed to have a negligible impact on it. On the contrary, all the
input parameters are observed to have a considerable impact on qst. Then, a backward uncertainty
propagation method is proposed to solve the inverse problem by taking into account uncertainties
due to measurements and model parameters. To this end, a Bayesian framework is used supplied
with MCMC algorithms to sample the posterior distribution of (p∞,M∞). A major di�culty lies
in the fact that one needs to compute the forward problem for each iteration in the Markov chain.
A metamodel for pst is computed owing to the non-intrusive spectral method, unfortunately such a
metamodel can not be obtained for qst because of the large interactions between the di�erent pa-
rameters and the strong dependence of qst on all the parameters. It was therefore decided to solve
the stochastic problem only relying on the stagnation pressure measurements and the metamodel for
pst in a �rst step, so as to reduce the a priori on (p∞,M∞). On-going e�orts consists in considering
this new a priori for the resolution of the stochastic inverse problem with measurements of pst and
qst, using adaptive algorithm to �nd the optimal widths vector in the MCMC algorithm and running
Markov chains in parallel to accelerate the calculations.
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In this Chapter, �rst I illustrate an ANOVA-based optimization algorithm, relying on the computa-
tion of the ranking of most predominant uncertainties (via ANOVA) for some samples in the design
space, and on the building of a response surface of the sensitivity indexes (associated to each uncer-
tainty) in the design space. Secondly, another approach for robust design optimization is presented,
called Simplex2 (S2M), based on the merging of the Simplex Stochastic Collocation (SSC) for UQ and
the Nelder-Mead (NM) methods for the optimization. This is accomplished by means of a coupled
stopping criterion and by the use of an high-degree polynomial interpolation for the space spanned by
the design variables. Finally, some e�cient techniques are applied to the robust shape optimization
of BZT �ows.

6.1 Some de�nitions

Consider the following computational problem for an output of interest u(x, t,y, ξ(ω)), that is gov-
erned by the numerical discretization of a mathematical model of the engineering system represented
by an operator L (algebraic or di�erential) and a source term S

L(x, t,y, ξ(ω);u(x, t,y, ξ(ω))) = S(x, t,y, ξ(ω)), (6.1)

with appropriate (if needed) initial and boundary conditions.
To make things clearer, let us consider a Computational �uid-dynamics (CFD) example. Then,

L represents the Navier-Stokes equations (system of nonlinear partial di�erential equations). Initial
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and boundary conditions are chosen to simulate the �ow around an airfoil in the space coordinate x.
The output of interest, u, is the lift of the airfoil (obtained by integration of vertical pressure forces
over the surface area of the airfoil). Now, let us imagine to parameterize the shape of the airfoil by
means of some design variables collected in the vector y. This means that to a speci�c realization of
y is associated a particular geometry of the airfoil. Solving the Navier-Stokes equations on a speci�c
airfoil geometry allows to compute a certain value of lift. If some uncertainties are considered, called
ξ, for example a non-uniform incoming air velocity, then some statistical quantities of the lift can be
computed, like the mean and standard deviation, with respect to the uncertainties ξ.

Using a more accurate and general mathematical framework, L and S are de�ned on the domain
D× T ×Ξu ×Ξd, where x ∈ D and t ∈ T are the spatial and temporal coordinates with D ⊂ RDim,
Dim ∈ {1, 2, 3}, and T ⊂ R. The vector y is de�ned on the domain Ξd ⊂ RN and represents the
vector of design variables, where N is the number of design variables. A set of nξ second-order
random parameters ξ(ω) = {ξ1(ω1), . . . , ξnξ(ωnξ)} ∈ Ξu are considered with Ξu ⊂ Rnξ . The symbol
ω = {ω1, . . . , ωnξ} ∈ Ω ⊂ Rnξ denotes events in the complete probability space (Ω, F , P ) with
F ⊂ 2Ω the σ�algebra of subsets of Ω and P a probability measure. The random variables ω are
by de�nition standard uniformly distributed as U(0, 1). Random parameters ξ(ω) can have any
arbitrary probability density fξ(ξ(ω)). The argument ω is dropped from here on to simplify the
notation.

Then, the objective of uncertainty propagation is to �nd the probability distribution of u(x, t,y, ξ)
and its statistical moments µui(x, t,y) given by

µui(x, t,y) =

∫
Ξu

u(x, t,y, ξ)ifξ(ξ)dξ, (6.2)

where statistical moments remain dependent on the vector of design variables y. A minimization
problem can be formulated as follows

min
y⊂Ξd

µui(x, t,y), (6.3)

where the process of �nding solutions of equations (6.1) and (6.3) is referred to as robust design
optimization and typically involves only few low-order moments in (6.2).

6.2 ANOVA-based optimization

An e�cient strategy based on ANOVA analysis in order to perform robust optimization with multiple
sources of uncertainty is proposed and applied to the simulation of turbine cascade in ORCs systems.
Standard deviation is chosen as the basic criterion for robust optimization, and then ANOVA is
retained as technique of stochastic dimension reduction. Basing on these assumptions, an e�cient
technique consisting in response surface construction over sensitivity indexes derived from ANOVA
analysis in the design variables plan is proposed. The algorithm proposed in this section, that can
be divided in two subsequent steps, is presented in details in Section 6.2.1. This algorithm is applied
to the optimization of a turbine cascade in a ORCs system (Section 6.2.2). Inlet/outlet conditions
and geometrical factors are chosen as design parameters.

6.2.1 Description of the algorithm

In this section, the algorithm for multi-objective robust design optimization is described. The strategy
is constituted by two steps, that are schematically represented in �gure 6.1.

During the �rst step (reported in the �gure 6.1(a)), the focus is on building a response surface
for each TSIj , i.e. T̃ SIj(y), in the design space. This step is constituted by the following actions:
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• An initial set of N designs (design variables yl with l = 1, .., N) in the design space, i.e. a
design of experiment (called hereafter DOE), is generated.

• Eq. 6.2 is solved for each design yl using the PC expansion or other techniques (quasi-Monte
Carlo, collocation, ...).

• TSIj is computed for each uncertainty j and for each yl.

• A response surface in the design space for each uncertainty j, T̃ SIj(y), is built by using a kriging
method based on a DACE approach [Sacks 1989] and the set of TSIj(yl), that are computed
at the previous step. The advantage of DACE approach is the possibility of implementing an
adaptive response surface in order to minimize the statistical error between the real function
and the extrapolated one.

During the second step of the algorithm (represented in �gure 6.1(b)) the focus is on solving Eq.
6.3. The optimizer is the NSGA algorithm [Deb 2002]. The main tuning parameters of the algorithm
are the population size, the number of generations, the crossover and mutation probabilities and the
distribution indexes for crossover and mutation operators. Typical values for the last four parameters
are, respectively, 0.9, 1, 20 and 20. Remark that the global strategy proposed in this work can be
applied for a whatever kind of optimizer.

In order to initialize the Genetic Algorithm, the same initial set of N samples, yl, considered
during the �rst step, are taken into account. Now, at each iteration of the proposed algorithm, (i.e.
for each evaluation of the �tness function), the following operations are performed :

• Supposing a given design yn, the response surface is used to compute the approximated value
of TSIj , i.e. TSIj(yn) ∼= T̃ SIj(yn), for each uncertainty. Moreover, the 2% criterion on
TSIj [Gao 2010] is applied to build the reduced set of uncertainties to consider. Finally, the
stochastic problem, expressed in Eq. 6.2, is solved by means of PC expansion.

• Fitness functions, in terms of mean and variance, are computed and used by the optimizer.

When convergence is reached, the �tness functions of the optimal designs are re-computed by
considering the whole set of uncertainties.

6.2.2 Results on complex �ows in a turbine cascade

The algorithm described in the previous section is applied to the optimization of a turbine blade, i.e.
the two dimensional VKI LS-59 cascade [Kiock 1986, Congedo 2011b]. An unstructured CFD dense-
gas solver is used to ensure the reliability of the computed results for dense gas �ows through a turbine
cascade (for more details see [Congedo 2011b]).The two-dimensional �ow domain is discretized by a
structured C-grid comprised of 192x16 cells. The boundary conditions are imposed as follows: at the
inlet and outlet boundaries, non-re�ecting boundaries are applied using the method of characteristics;
a slip condition is imposed at the wall, which uses multi-dimensional linear extrapolation from interior
points to calculate the wall pressure; periodicity conditions are prescribed at the inter-blade passage
boundaries. The siloxane dodecamethylcyclohexasiloxane (C12H36Si6)O6), commercially known as
D6, is the �uid considered in this study. The physical properties of D6 are reported in Table 6.1.
The Peng-Robinson (PRSV) equation is used as thermodynamic model for D6. It depends on the
following parameters, the �uid acentric factor ω, the isobaric speci�c heat in the ideal gas state, i.e.
cv∞, and a �uid-dependent parameter n (the mean values of these parameters for D6 are de�ned in
Table 6.2). Performance of the turbine cascade can be evaluated by using several output criteria.
Here, the power output per unit depth (PO) expressed as δh × ṁ/wmol [W] is taken into account,
where δh is the enthalpy variation through turbine stage, ṁ is the mass �ow rate and wmol is the
molecular weight.
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Figure 6.1: Compact scheme for the kriging procedure (a) and the overall optimization strategy (b)

Table 6.1: Thermodynamic data for D6, where M is the percentage molecular weight and Tb is the
boiling temperature at 1 atm. Properties are taken from [Colonna 2008b]

Three main sources of uncertainties are considered in this study (globally eight uncertainties): i)
the uncertainties on the operating conditions, i.e. inlet total temperature, Tin/Tc, inlet total pressure,
pin/pc, angle of incidence β and the stagger angle θ, ii) the uncertainties on the thermodynamic model,
i.e. ω, cv∞ and n, and uncertainties on geometrical parameters, i.e. the blade thickness φ. Basing on
[Kiock 1986], the 3.0% of uncertainty for the temperature and pressure levels at the inlet conditions
has been taken into account. The PRSV thermodynamic model is considered as a good trade-o�
between the accuracy of thermodynamic properties and the functional complexity since it depends
on a limited number of parameters, hence a reduced number of uncertainty sources [Cinnella 2011].
The following uncertainties are retained for this model (see the table 6.2 and Ref. [Cinnella 2011]),
listed with their associated error bars: the acentric factor ω (2%), the isobaric speci�c heat in the
ideal gas state and a �uid-dependent parameter n (6%). For the other parameters, it is assumed an
uncertainty of 3% for the angle of incidence β and the stagger angle θ, and an uncertainty of 2% for
the thickness φ.

6.2.2.1 Problem de�nition

Optimization problem is de�ned as follows: to �nd the optimal values for Tin/Tc , pin/pc , β and θ
(four design variables) in order to maximize the mean of power output, µ(PO), and to minimize its
standard deviation, σ(PO) (two objective-optimization problem). Ranges for each design variable
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Table 6.2: Thermodynamic constant for D6, PRSV equation of state, mean and min/max values for
the uniform probability density function, data taken from [Colonna 2008c]

Table 6.3: Ranges of design variables in the optimization plan

are de�ned in table 6.3. Remark that the lower limit for the temperature is given by the saturation
curve limit (SCL). Seeing that CFD code can compute only 1-phase �ows, it has to be veri�ed that
the uncertainty region does not cross the maximal saturation curve (that can be computed as the
upper limit of the 100% con�dence intervals when uncertainties on thermodynamic model are taken
into account). Finally, the optimization problem consists in �nding the optimal values for four design
variables where the output to maximize is dependent from eight uncertainties.

6.2.2.2 ANOVA decomposition over the geometric plan and construction of kriging

response surface

The algorithm described in �gure 6.1(a) is applied on the problem de�ned in the previous section.
A design of experiment (DOE) of 50 elements in the four design variable space is generated. Then,
for each design, a quasi-Montecarlo plan (based on Sobol sequences) of two hundred individuals
in the stochastic plan is generated and TSI is computed for each uncertainty. The convergence of
TSI indexes for each uncertainty and design is veri�ed by increasing the number of individuals until
�ve hundred. Following the approach proposed in this work, the convergence of TSI is much more
important than the convergence on the variance since only the correct use of the criterion should
be assessed, i.e. it is not important to compute exactly the variance of all the individuals but only
of the best individuals. Then, if the stochastic reduction allows obtaining an optimal individual,
this one can be analyzed by considering all the uncertainties during the a-posteriori validation. In
�gures 6.2 and 6.3, TSI contours are reported for each uncertainty in the plan p-T, where the point
in the plan p-T is associated to the couple ( pin , Tin ) of inlet thermodynamic conditions. As
shown in �gure 6.2(a,b), TSI associated to the uncertainty on pin vary from 8% to 44% while vary
from 39% to 83% for uncertainty on in T . For the uncertainties on two geometrical parameters, θ
and φ (see �gure 6.2 (c,d)), TSI vary from 7% to 25% and from 0.7% to 2.9%, respectively. TSI
associated to the uncertainties on thermodynamic model, i.e. ω , cv∞ and n (see �gure 6.3), and on
the geometrical parameter φ, are less than 0.29%, then they are negligible with respect to the TSI
criterion ([Gao 2010]). Data represented in �gures 6.2 and 6.3 are used as the training database for
the kriging model, which is then used in order to estimate TSI of each uncertainty for each design
generated during the optimization loop.

6.2.2.3 Optimization

As shown in �gure 6.1(b), during the optimization loop, for each design y a Polynomial Chaos Method
is used on the reduced problem where the reduction is based on the computation of T̃ SIj(y) and
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(a) (b)

(c) (d)

Figure 6.2: TSI contours in the plan p-T for pin (a), Tin (b), θ (c), ϕ (d).
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(a) (b)

(c) (d)

Figure 6.3: TSI contours in the plan p-T for cv,∞ (a), n (b), ω (c), β (6d).
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Figure 6.4: Pareto front in the plan µ(PO)â�� σ(PO)

a TSI criterion (2%). For each design of the DOE that has been previously computed for kriging
metamodel, the reduced stochastic problem is performed and the statistics are computed in terms of
mean and standard deviation for PO. Then, twenty individuals evolved during forty generations. The
converged Pareto front is represented in �gure 6.4. Various con�gurations are obtained with a large
variation of the PO, going from 0.91 to 1.46. Four individuals are extracted from the Pareto front in
order to evaluate di�erences in the solution: one individual at the lowest variance (denoted hereafter
LV), one at the largest mean (denoted HM), and two others, denoted BT1 and BT2, representing
potential trade-o� between mean and standard deviation. In �gure 6.5, the mean pressure is shown
in the computational domain for LV, HM, BT1 and BT2. Remark that high inlet turbine pressure
are associated to high mean of PO, displaying a strong dependence of turbine performances from
thermodynamic inlet conditions. In a similar way, standard deviation of the pressure is reported in
�gure 6.6. Variance is concentrated around the compression shock location near the trailing edge.
Moreover, the variance of PO seems related to the peak of maximal variance of the pressure, i.e.
when the maximal variance is lower, variance of PO is lower too.

6.2.2.4 A-posteriori validation and computational cost reduction

Statistics of LV, HM, BT1 and BT2 are validated by performing a complete stochastic computation
without uncertainty reduction. The interest is twofold, i.e. to verify that i) the statistic of the
optimal individuals can be computed correctly also by performing the reduced stochastic problem,
and that ii) LV, HM, BT1 and BT2 belong to the same Pareto front. In �gure 6.7, the Pareto front
constituted by LV, HM, BT1 and BT2 has been computed by means of the reduced (grey square) and
the complete stochastic problem (circle). As shown in the �gure, the four designs belong to the same
Pareto front also if statistics are evaluated by taking into account all the uncertainties. Moreover,
the di�erences on mean and standard deviation are shorter than 0.5%. In �gure 6.8, the coe�cient
of variation for the pressure has been computed for the LV design by means of the complete and
reduced stochastic problem. As it is evident, solutions are very similar. Let us estimate the saving
in computational cost realized through the Sobol proposed approach with respect to the complete
stochastic problem (using all the uncertainties at the same time). For each individual obtained
during optimization, the number of uncertainties varies from 3 to 4 (see �gures 6.2 and 6.3 and
remember that TSI criterion is of 2%) with respect to 8, that is the global number of uncertainties.
This approach displays a strong reduction of stochastic computational cost by preserving the same
accuracy.
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(a) (b)

(c) (d)

Figure 6.5: Mean of pressure for LV (a), BT2 (b), BT1 (c), HM (d)
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(a) (b)

(c) (d)

Figure 6.6: Standard deviation of the pressure for LV (a), BT2 (b), BT1 (c), HM (d)

Figure 6.7: Pareto front in the plan µ(PO)− σ(PO). Grey square: reduced, circle: complete
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(a) (b)

Figure 6.8: Coe�cient of variation of pressure for LV design, reduced (a) and complete (b)

6.3 Simplex2

In this section, we present the Simplex2 method, relying on the coupling between two methods based
on simplex space representation, the Simplex Stochastic Collocation (SSC) method for UQ and the
Nelder-Mead (NM) algorithm for the optimization. The idea is to build a multi-scale strategy based
on simplex representation in order to minimize global cost of the robust design.

The SSC method [Witteveen 2012b, Witteveen 2012a] is an e�cient algorithm for UQ in com-
putational problems with random inputs and displays super-linear convergence and a linear increase
of the initial number of samples with increasing dimensionality. These properties have been demon-
strated for uniform and non-uniform distributions, and correlated and uncorrelated parameters.

The NM algorithm is one of the best known algorithms [Nelder 1965] for multi-dimensional un-
constrained optimization without derivatives. In many numerical tests, NM method allows obtaining
a good reduction in the computational cost by preserving accuracy. Despite its success, very few the-
oretical results have been demonstrated for this algorithm. More recently, Gao and Han [Gao 2010]
proposed a new implementation in which the expansion, contraction and shrink parameters depend on
the dimension of the optimization problem that displays good results for high dimensional problems.

6.3.1 Numerical ingredients for robust design optimization

Solving a robust design problem requires an algorithm for solving (6.2) and (6.3). Remark that a
non-intrusive formulation for solving (6.2) is considered. This means that the numerical method used
to solve (6.1) is not modi�ed for taking into account uncertainties, i.e. problem expressed in (6.1) is
solved several times for di�erent samples of ξ(ω). Now, let us focus our attention to the resolution of
(6.2) and (6.3). Classical approaches for robust design optimization are based on two di�erent and
independent methods for solving (6.2) and (6.3), respectively.

In this section, the SSC method (for solving (6.2)) and the NM algorithm (for solving (6.3)) are
described.

6.3.1.1 Simplex Stochastic Collocation

In local UQ methods such as the multi-element stochastic collocation approach [Foo 2010, Ma 2010]
the weighted integrals in (6.2) de�ned over the parameter space Ξu are computed as a summation of
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Figure 6.9: Simplex Elements (Triangles in 2D)

integrals over ne disjoint subdomains Ξu =
⋃ne

j=1 Ξ
u
j

µui(x, t,y) ≈
ne∑
j=1

∫
Ξu
j

u(x, t,y, ξ)ifξ(ξ)dξ + ε, (6.4)

where ε is the error involved in the approximation.
Main features of SSC method ([Witteveen 2012b, Witteveen 2012a]) are i) the possibility to com-

pute an error estimate, ii) the adaptive H-re�nement and iii) P-re�nement capabilities, iv) treating
non-Â­â��hypercube parameter spaces, v) treating discontinuities in the stochastic space. Proper-
ties i,ii,iii) will be presented here since they are the main ingredients for the S2M method, that is
proposed in this paper and will be presented in the next section. Other properties of SSC methods,
such as iv,v) will be not described here (for more details see [Witteveen 2012b, Witteveen 2012a]).

In the SSC approach [Witteveen 2012b, Witteveen 2012a], the integrals in the simplex elements
Ξu
j are computed by approximating the response surface u(ξ) by an interpolation w(ξ) of ns samples

v = {v1, . . . , vns}. In �gure 6.9, an example of simplex elements in 2 dimensions is reported.
Sample vk is computed by solving (6.1) for realization ξk of the random parameter vector ξ

L(x, t,y, ξk; vk(x, t,y)) = S(x, t,y, ξk), (6.5)

for k = 1, . . . , ns.
The interpolation of the samples w(ξ) consists of a piecewise polynomial function

w(ξ) = wj(ξ), for ξ ∈ Ξu
j , (6.6)

with wj(ξ) a polynomial interpolation of degree p of the samples vj = {vkj,0 , . . . , vkj,Ns
} at the

sampling points {ξkj,0 , . . . , ξkj,Ns
} in element Ξu

j , where kj,l ∈ {1, . . . , ns} for j = 1, . . . , ne and
l = 0, . . . , Ns, with Ns the number of samples in the simplexes.

The polynomial interpolation wj(ξ) in element Ξu
j can then be expressed in terms of a truncated

Polynomial Chaos expansion

wj(ξ) =

P∑
m=0

cj,mΨj,m(ξ). (6.7)

where the polynomial coe�cients cj,m can be determined from the interpolation condition

wj(ξkj,l) = vkj,l , (6.8)
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Figure 6.10: P-re�nement in 2D stochastic space.

for l = 0, . . . , Ns, which leads to a matrix equation, that can be solved in a least-squares sense for
Ns > P . Note that a one-to-one correspondence exists between the choice of stochastic variable ξi
and the polynomials Ψj,m. For instance, if ξi is a normal/uniform variable, the corresponding Ψj,m

are Hermite/Legendre polynomials (see [Witteveen 2012b]).
Concerning the i) property, the error ε is estimated using hierarchical surpluses considering in

each element Ξu
j , the di�erence between interpolated and exact value. In this way, both local and

global error in each simplex can be computed, thus identifying the simplex element, where the error
is the largest one.

Concerning H-re�nement, SSC has two components: i) simplex selection (based on the previous
error estimator), and ii) simplex splitting, designed to avoid clustering. Basic principles are displayed
in �gure 6.11: a) simplex element where ε is the largest is selected for re�nement, b) a region is
selected for node insertion, c) random node insertion (guaranteed away from the others). Remark
that a threshold, εSSC , is generally �xed for deciding when stopping the re�nement, i.e. when
ε < εSSC , re�nement is stopped.

When using SSC, the error convergence of �rst degree SSC decreases for an increasing nξ. To cure
this issue, a P-re�nement criterion for higher degree SSC has been conceived. In practice, the idea is
to use higher degree polynomial interpolation stencil based on Newton-Cotes quadrature. In �gure
6.10, it is shown for a 2D stochastic space, how more than 3 samples can be used to construct better
approximates by enlarging the stencil. The choice of the optimal polynomial degree p is selected
based on the number of uncertainties nξ and the required order of convergence. A super-linear
convergence can be obtained for smooth responses (see [Witteveen 2012b] for more details).

Then, SSC is constituted by the following operations:

• Initial discretization (2nξ vertexes of the hypercube enclosing the probability space Ξu and one
sampling point in the interior)

• nsinit initial samples vk computed by solving nsinit deterministic problems (6.1) for the parameter
values corresponding to the initial sampling points ξk located in Ξu only

• Polynomial approximation (Eq. 6.7) and P-re�nement

• Error estimate and H-re�nement according to the threshold εSSC



122 Chapter 6. Robust optimization

61"/-%(."#$%"+&.(

C%&#&1)(.&%&+)&G(F*3(3&?1&#&1)(
(a) K&D"*1(.&%&+)&G(F*3(1*G&("1.&3/*1((b)K-1G*#(1*G&("1.&3/*1(q(D5-3-1)&&G(-O-=(F3*#(*),&3.((c)

Figure 6.11: H-re�nement

Finally, the probability distribution function and the statistical moments µui of u(ξ) given by
(6.4) are then approximated by the probability distribution and the moments µwi of w(ξ)

µui(x, t,y) ≈ µwi(x, t,y) =

ne∑
j=1

∫
Ξu
j

wj(x, t,y, ξ)
ifξ(ξ)dξ, (6.9)

in which the multi-dimensional integrals are evaluated using a weighted Monte Carlo integration of
the response surface approximation w(ξ) with nmc � ns integration points.

6.3.1.2 Nelder-Mead Algorithm

The Nelder-Mead (NM) method is one of the most popular for solving optimization problem, like
in (6.3). It uses also a simplex representation in the space spanned by the design variables; this
consists of N + 1 vertices if N is the dimension of vector y. The method generates new designs by
extrapolating the behavior of the objective function measured at each one of the basic designs, that
constitute the geometric simplex. At each iteration, the vertices of the simplex are ordered according
to the objective function values. Then, the algorithm uses four operators, i.e. re�ection, expansion,
contraction and shrink. Simplex structure evolves until the optimal point is found.

For more details concerning NM algorithm, see [Gao 2010].

6.3.2 Optimization Algorithms

In this section, the optimization algorithms are introduced and described. First, the principles of the
decoupled approach are drawn. Then, the Simplex2 method is presented.

6.3.2.1 Decoupled approach

As already explained before, using a decoupled approach for robust design optimization, means that
the algorithm used for the evaluation of a given design (solving (6.2) for a design y) is completely
decoupled from the algorithm used for the optimization (�nding the best y in order to solve (6.3)).
Implementation of this approach is very easy, but the most signi�cant challenge consists in solving
(6.2) for each design y by �nding a good trade-o� between accuracy and computational cost.

In this work, a decoupled approach is performed using the NM algorithm as optimizer and the
SSC as stochastic method for solving (6.2). This is retained as a reference in order to estimate
performances of the proposed approach, the Simplex2 method introduced in the next section.
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Figure 6.12: Two types of simplexes in Simplex2 Method.

6.3.2.2 Simplex2 Method

In this section, the Simplex2 (S2M) method is presented. It is an e�cient multi-scale coupling of
SSC and NM methods, based on two di�erent levels of the simplex tessellation. Let us consider the
design variable space, and generate an initial Design of Experiment (2N vertexes of the hypercube
enclosing the probability space Ξu and one sampling point in the interior). In �gure 6.12, a case
with two design variables is considered, with designs varying in [0, 1]. To each design, that is one
of the simplex vertex, a simplex in the stochastic space is associated (micro-scale) (see again �gure
6.12). Then, there is one geometric simplex (macro-scale) constituted by the set of designs, and
there are a number of stochastic simplex that is equal to the number of designs. Remark that in
the formulation of the algorithms and the examples we show below we assume that the uncertain
variables and the design parameters are independent for simplicity, then the geometric simplex and
each of the stochastic simplex do not share the same space. It is possible to use the same approach
for cases in which some of the design variables are uncertain; this will be explored in a future work.

The Simplex2 Method is based on the following ideas:

1. A stopping criterion for the H-re�nement in the stochastic space that is driven from the size
of the geometric simplex. The idea is to have some more re�ned stochastic simplex for only
particular designs (close to the optimal solution), and very coarse stochastic simplex for bad
designs (thus permitting to save computational cost).

2. An high-degree interpolation (P-re�nement) on the geometric simplex

3. The use of the above-mentioned interpolation for having an estimator for the NM operators that
can be very expensive. Then, NM Method could be accelerated with respect to the classical
version by using this response surface.

4. The error introduced by the interpolating polynomials is estimated in order to decide whether
or not using the interpolation during the algorithm steps

Let us focused on the stopping criterion for the H-re�nement. Consider the space spanned by the
design variables Ξd, and an element i of Ξd as Ξd

i . To each vertex of the element i corresponds a design
point y. To each design point yo, the stochastic simplex tessellation of Ξu is associated, thus the
problem is to compute µui(x, t,yo). To solve this problem, the SSC method is applied. For the NM
algorithm, it is necessary to focus the attention to the simplex constituted by the best N+1 designs,
where N is the number of design variables, considering that µui(y1) < µui(y2)... < µui(yN+1) (for
a minimization problem). As shown in the previous section, if the error is larger than a prescribed
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threshold εSSC , then a H-re�nement on the stochastic simplex is performed. First fundamental
feature of S2M is to compute the threshold error for the H-re�nement for each stochastic simplex as
follows

εSSC = µui(yN+1)− µui(y1), (6.10)

where N represents the number of design variables. Note that the same threshold is used for each
stochastic simplex. This criterion determines a strong coupling between SSC and NM methods, and
it is a fundamental property of S2M method. This permits to obtain very re�ned stochastic simplex
associated to the best design, while coarser stochastic simplex for bad designs. Remark that this
criterion can be applied the �rst time only after the evaluation of µ for each design point in the
initial geometric simplex.

Second important feature of S2M method is constituted by the building of the Polynomial ap-
proximation (Eq. 6.7) with P-re�nement, that has been described in the previous section for SSC,
on the geometric simplex by considering the whole set of designs generated during the optimization.
The idea is to build a metamodel for accelerating some operators of NM algorithm. Note that a
uniform probability density function is retained since the design space is considered (each design is
considered to have the same probability). The polynomial interpolation wj(y) (6.7) on Ξd is then
constructed (denoted P1 in the following), by solving (6.7) on Ξd using all the designs generated
during the optimization. The P-order is chosen according to the number of design variables, as done
in SSC. This allows computing an approximation of µui , i.e. µui,P1, by means of P1. During the
optimization, only for the points accepted (see step 8 in the S2M algorithm reported in the following),
the error between the response surface P1 and the exact values, i.e. εPOL, is computed as follows

εPOL = |µui − µui,P1| . (6.11)

Then, this error can be computed on one or more points depending on the number of designs generated
during one iteration of the NM algorithm (see step 8 in the S2M algorithm reported in the following).
If this error is less than εSSC/10, then the response surface P1 is used as metamodel for some operators
in the next iteration of S2M method, thus permitting a strong reduction of the computational cost.

Let us draw the last important remarks. The choice of the initial Design of Experiment in the
design space is completely arbitrary. S2M method is general with respect to this choice. What we
did generally, is to generate an initial geometric DOE basing on a given number of points (using for
example a Latin-Hypercube distribution), since no H-re�nement is used for the geometric simplex.
For the stochastic simplex, we use systematically the vertexes and the center of the hypercube,
where the h-re�nement is used for generating new samples. According to the order of the statistical
moment, such as for example mean and standard deviation, the re�nement of each stochastic simplex
associated to a given design, can change. Obviously, computing standard deviation demands generally
much more points than for the mean. As a consequence, the re�nement of the stochastic simplex for
a �xed design can vary according to the statistical moment to optimize.

We now outline the S2M method. Let assume that the objective is to minimize a given function
constituted by statistics of a given output, for example to minimize the mean µ.

One iteration of S2M method

1. Order. Order µui using the tie-break rules given in [Gao 2010] and the following relation

µui(y1) < µui(y2)... < µui(yN+1). (6.12)

2. Gravity. Compute the center of gravity y0 of all points except yN+1.

3. Response surface. If εPOL < εSSC/10, use µui,P1 in order to estimate µui during the iteration
steps, otherwise use SSC.
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4. Re�ection. Compute the re�ection point, i.e. yr = y0 + α(y0 − yN+1) with α = 1. Evaluate
µui(yr). If µui(y1) < µui(yr)... < µui(yN ), then accept yr. Then go to 8.

5. Expansion. If µui(yr) < µui(y1), then compute the expansion point ye = y0+Γ(y0−yN+1) with
Γ = 2. Evaluate µui(ye). If µui(ye) < µui(yr), then replace yN+1 with ye. If µui(ye) > µui(yr),
then replace yN+1 with yr. Then go to 8.

6. Contraction. If µui(yr) > µui(yN ), perform a contraction between y0 and the better of yN+1

and yr.
Outside Contraction:
If µui(yN ) < µui(yr) < µui(yN+1), perform an outside contraction, yc = y0 + γ(yr − y0) with
γ = 0.5. Evaluate µui(yc). If µui(yc) < µui(yr), then replace yN+1 with yc, otherwise go to 7.
Inside Contraction:
If µui(yr) > µui(yN+1), perform an inside contraction, yc = y0 − γ(y0 − yN+1) with γ = 0.5.
Evaluate µui(yc). If µui(yc) < µui(yN+1), then replace yN+1 with yc. , otherwise go to 7.

7. Shrink. Consider N points yi = y1 + σ(yi − y1) with σ = 0.5, and evaluate µui(yi) by means
of SSC. Then go to 8.

8. Update. For the points accepted, if the response surface has been used, compute the exact
values by means of SSC and evaluate the error between the response surface P1 and the exact
values, i.e. εPOL. Update the response surface P1 with the new points.

This algorithm has been implemented in Matlab exploiting some speci�c functions for Delau-
nay triangulation (DELAUNAYN ), for enclosing Delaunay triangle (TSEARCH ) and for generating
Sobol sequences (SOBOLSET ).

6.3.3 Numerical Results

6.3.3.1 Rosenbrock stochastic problem

Several stochastic formulations of the Rosenbrock optimization problem exist [Yang 2010]. In this
work, we propose a version in which a non-linear dependence on a stochastic variable is included.
More precisely, we consider the following function

f (y) =
N−1∑
i=1

[
(1− yi)

2 + 100
√
ξi + α

(
yi+1 − y2i

)2]
(6.13)

where ξi are uniform random variables in [0, 1] and α is taken equal to 1. This stochastic function
has the same global optimum of its deterministic counterpart at (1,1,1,...).

We show results obtained by comparing two di�erent formulations. In the �rst one, SSC and
NM methods have been used in a decoupled way, i.e. the NM method is used in its traditional
version and SSC method is seen as a black-box, as it has been described in section 6.3.2.1. The
second formulation is the S2M method described in section 6.3.2. The problem de�ned by (6.13) is
considered with N = 2, then with two design variables and one uncertainty. First, we apply S2M
method for minimizing µ(f). In table 6.4, results obtained in terms of deterministic evaluations are
reported for each formulation (Decoupled and S2M), where NDOE indicates the number of initial
designs in the optimization space used as starting point for identifying N+1 starting points needed
for NM (Design Of Experiment, DOE), N0−DOE is the global number of deterministic evaluations
employed for the DOE, and N0 is the number of deterministic evaluations necessary for convergence.

The exact same optimal design is obtained (the optimal �tness function is nearly 10−6 where
the optimal theoretical �tness is equal to zero) when considering either the standard or the S2M
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Table 6.4: Rosenbrock problem with N = 2. N0 number of deterministic evaluations excluding the
DOE
NDOE Formulation N0 (N0−DOE) for min(µ) N0 (N0−DOE) for min(µ+ σ)

10 Decoupled 707 (102) 753 (109)
10 S2M 352 (102) 374 (109)
20 Decoupled 707 (200) 739 (211)
20 S2M 360 (200) 377 (211)
40 Decoupled 494 (396) 520 (418)
40 S2M 246 (396) 227 (418)

Table 6.5: Rosenbrock problem with N = 3. N0 number of deterministic evaluations excluding the
DOE
NDOE Formulation N0 (N0−DOE) for min(µ) N0 (N0−DOE) for min(µ+ σ)

40 Decoupled 3674 (1969) 3358 (1989)
40 S2M 888 (1969) 695 (1989)

algorithm. However, the S2M method shows an important advantage in terms of computational cost,
i.e. allowing a reduction of about 50% for N0 with respect to the decoupled formulation. Simplex
evolution in the design variables space is reported in �gure 6.13 (on the left). For the optimal
individual, the stochastic response surface with respect to the uncertainty is nearly coincident with
the exact solution, as shown in �gure 6.13 (on the right).

The same optimization is performed in order to minimize µ(f)+σ(f), and the results are reported
in in table 6.4. Results obtained by using S2M con�rm the reduction of about 50% for N0.

Now, let us consider a case with N = 3: three design variables and two uncertainties. Two
optimization runs are performed for minimizing µ(f) and µ(f) + σ(f), respectively (NDOE equal to
40 samples in the geometric simplex is used for each formulation). The results in terms of N0 are
reported in table 6.5. Results obtained with S2M are extremely encouraging because we observe a
reduction for N0 of 75.8% and 79.3% by minimizing µ(f) and µ(f) + σ(f), respectively. These �rst
results show the potentiality of the proposed approach on a classical problem of robust optimization.
In the next section, a more complex algebraic functions is taken into account, i.e. the function
proposed by Yang [Yang 2010].

6.3.3.2 Realistic case

The proposed S2M approach is �nally applied to a more realistic case of robust optimization of the
aerodynamic performance of a race-car multi-component wing. In this case the analysis is based
on a computational �uid dynamic (CFD). The geometry and the associated mesh are illustrated in
�gure 6.14. The velocity �eld for the base con�guration is illustrated in �gure 6.15. We consider the
horizontal position of the �ap with respect to the main wing as the main design variable, x, while we
assume that uncertainty is represented by a non-uniform incoming air velocity, represented in terms
of a single uniform random variable. The physical justi�cation for this choice is the fact that race
cars operate in close vicinity to each other and the wings typically operate in dirty environments.
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Figure 6.13: Left: Simplex evolution in the geometric plan. Right: Response surface in the stochastic
simplex for the optimal individual

Table 6.6: Realistic problem. N0 number of deterministic evaluations excluding the DOE
NDOE Formulation N0 (N0−DOE) for max(µ(CL)) N0 (N0−DOE) for max(µ(CL)− σ(CL))

10 Decoupled 550 (112) 748 (146)
10 Coupled 201 (112) 262 (146)

It is of paramount importance that the wing aerodynamic performance - speci�cally the downforce
(lift) and drag - are not sensitive to the variability in the incoming air�ow.

Decoupled formulation and S2M method are compared in terms of computational cost in order
to maximize µ and µ − σ of CL and CL/CD (where CL and CD are the lift and drag coe�cient
respectively). For each case, the same optimum is obtained by using both formulations. For CL, the
maximal value for µ(CL) is 0.0041343 obtained at x = 0.016563 (the associated optimal design is
indicated with G1 hereafter), while the maximal value for µ(CL)−σ(CL) is 0.0040705 that is obtained
at x = 0.020391 (G2). For CL/CD, the maximal value for µ(CL/CD) (µ(CL/CD) − σ(CL/CD)) is
28.4129 (25.5571) at x = 0.041263 (G3) (x = 0.041259 (G4)).

Results in terms of computational cost are summarized in tables 6.6 and 6.7 for CL and CL/CD,
respectively. With respect to the decoupled formulation, using S2M permits a reduction of 63.5% for
µ(CL) and of 65.0% for µ(CL)−σ(CL). Concerning CL/CD, a reduction of 57.5% for µ(CL/CD) and
of 60.9% for µ(CL/CD)−σ(CL/CD) is obtained using S2M with respect to the decoupled formulation.
These trends con�rm the good performances of the proposed method observed for simple problems
before.

In �gure 6.16, the optimal geometries are reported, i.e. G1, G2, G3 and G4, showing the e�ect of
the optimization goal on the result. It is worth to remark that the two pro�les obtained optimizing
the statistical moment for CL are slightly di�erent while the pro�les obtained optimizing CL/CD

are nearly coincident. The results are also reported in terms of friction coe�cient on the airfoil to
illustrate the uncertainty present; 99% con�dence intervals are drawn in Figure 6.17 and 6.18.

Table 6.7: Realistic problem. N0 number of deterministic evaluations excluding the DOE
NDOE Formulation N0 (N0−DOE) for max(µ(CL/CD)) N0 (N0−DOE) for max(µ(CL/CD)− σ(CL/CD))

10 Decoupled 1002 (170) 1153 (203)
10 S2M 426 (170) 451 (203)
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Figure 6.14: Geometry and associated mesh of the multi-component airfoil

(a) (b)

Figure 6.15: X (a) and Z (b) component velocity �eld
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Figure 6.16: Optimal geometries

6.4 Application to the shape optimization of BZT �ows

6.4.1 Baseline con�guration and sources of uncertainty

Let us consider now some e�cient techniques for the shape optimization of BZT �ows. The steady
transonic inviscid �ow of a dense gas over a symmetric pro�le is considered as baseline con�guration
for investigating a shape optimization process taking into account uncertainties; this choice, over for
instance a turbine cascade geometry, is mainly motivated by the objective of cost reduction when
performing this preliminary study. The initial pro�le is a sonic arc for a perfect gas (with γ = 1.4)
�ow, that is the shape around which the �ow is nowhere supersonic even when the in�ow Mach
number is getting close to unity. Note it is possible to theoretically derive the shape of a sonic arc in
the case of a perfect gas or a real gas described by the Van der Waals equation of state, as reported
in [Z. Rusak 2000]. The �uid considered is the heavy �uorocarbon PP10 (C13F22), with critical
properties reported in Table 6.8. The thermodynamic (reduced) conditions of the free-stream are pr =
0.985, ρr = 0.622 with a freestream Mach numberM∞ = 0.95 (there is no incidence, only a half-airfoil
being computed). The set of operating conditions is denoted from now on as inputO = M∞, pr, ρr.
The saturation curve for PP10 constructed by means of the PRSV equations is reported with the iso-Γ
curves in Fig. 6.19: it can be observed the chosen set for inputO lies near the inversion region (Γ ≈ %
0.3) yet not too close to ensure the thermodynamic state remains in the monophasic region even when
uncertainties introduce �uctuations in this thermodynamic state. This con�guration has also been
previously studied by the authors: in [Congedo 2007] for a similar optimization process but without
taking into account the uncertainty and in [Cinnella 2011] for analyzing the sole thermodynamic
uncertainties independently from any optimization process. In accordance with now well-established
conclusions from previous studies [Cramer 1992, Cinnella 2005b, Z. Rusak 2000], the use of a BZT
gas allows a signi�cant increase of the critical Mach number as well as the divergence Mach number:
for the present sonic arc geometry, the drag divergence occurs for a freestream Mach number of
about 0.83 in the case of the perfect gas �ow and 0.91 in the case of the dense gas �ow (Fig. 6.20).
All the �ow computations performed in the study use a half C-grid made of 100x32 cells, with a
mean height of the �rst cell closest to the wall equal to 0.001 chords and an outer boundary located
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Figure 6.17: Mean and error bars (standard deviation) of the friction coe�cient on the front �ap for
G1 (a), G2 (b), G3 (c) and G4 (d)
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Figure 6.18: Mean and error bars (standard deviation) of the friction coe�cient on the rear �ap for
G1 (a), G2 (b), G3 (c) and G4 (d)
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Property Pc (atm) Tc (K) Zc Tc (K) n Cm,1(Tc)/R x

16.2 630.2 0.2859 467 0.5255 78.37 0.4833

Table 6.8: Mean values adopted for the �uid considered, the PP10.

Mean values Max variation PDF

Input_G {X1,X2,X3} Decoupled {0.044993,0.040517,0.060488} 0.7% Uniform/Gaussian

Coupled Uniform

Input_O {M
1
,pr,pr} Decoupled {0.95,0.985,0.622} 1% Uniform/Gaussian

Coupled Gaussian

Input_T {x,n,cm,1(Tc)/R} Decoupled {0.5255,78.37,0.4833} 3% Uniform/Gaussian

Coupled Gaussian

Table 6.9: Summary of the mean values, maximal variation and probability density function (PDF)
for inputG, inputO and inputT .

at 10 chords from the airfoil surface. This grid represents a reasonable trade-o� between accuracy
and computational cost, given the number of CFD runs required by the stochastic solver. Some
considerations about the e�ect of the computational grid on the quality of the stochastic simulations
are reported in [Cinnella 2011] where stochastic simulations have been performed with uncertainties
on the physical properties of the dense gas only: it was demonstrated, for a �ow con�guration similar
to the one studied here, the proposed level of grid re�nement is su�cient to provide a reasonable
representation of the �ow solution expectancy and variance. The sonic arc is de�ned by a Bézier
polynomial [Congedo 2007] using six points of �xed position along the airfoil unit chord as indicated
in Fig. 6.21. The arc being symmetric with respect to x/c = 0.5, the geometry is constructed on [0,
0.5] and then re�ected on [0.5, 1.0]. The �rst and last point are, respectively, �xed to (0, 0) and (0.5,
0.06), the airfoil thickness normalized by the chord being chosen equal to 0.12. The position of the
�fth control point is �xed to (0.426, 0.06) to ensure the tangent to the pro�le at mid-airfoil (x/c = 0.5)
is horizontal. The y-coordinates of the three internal points are left free and form a set of geometric
parameters denoted as inputG = y1, y2, y3. The parameters de�ning the set inputO of operating
conditions are supposed to display a 1% variation with respect to their prescribed average values.
This choice allows to deal with a signi�cant uncertainty while remaining in a monophasic region; for
a stronger variation of inputO parameters, the �ow could enter the liquid-vapour mixture region,
which must be avoided since the �ow solver does not include two-phase �ow models. The physical
properties of the PRSV model de�ning the set inputT are a�ected by a very strong uncertainty
(see [Zam�rescu 2008]), re�ected in a 3% variation with respect to their mean values, which are
reported in Table 6.8 and correspond to the heavy �uorocarbon PP10. Note it has been checked
again that all the possible thermodynamic states for the chosen uncertainty ranges always remain in
the monophasic region. The geometric tolerances are taken into account by injecting uncertainties
on the Bezier parameters of inputG: a maximal variation of 0.7% is considered. A summary of the
mean values and uncertainty intervals associated with the three sources of uncertainties and the nine
uncertain parameters is provided in Table 6.9.

6.4.2 Problem formulation

Our aim is to �nd an optimal shape for an isolated symmetric airfoil which provides a robust minima
for the drag coe�cient. Robust means this shape simultaneously minimizes the mean value and the
variance of the drag coe�cient computed when taking into account the physical uncertainties of the
problem gathered in the previously de�ned sets inputT , inputO and inputG. Note this bi-objective
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Figure 6.19: Saturation curve and iso-gamma for the PP10, computed by means of PRSV equation,
�lled point the chosen operating condition.

Figure 6.20: Drag coe�cient of the sonic arc at zero incidence as a function of Mach number for a
perfect and dense-gas �ow.

Figure 6.21: Baseline pro�le with its interpolating Bézier points.
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problem possesses a set of solutions, forming the global Pareto front and corresponding to various
trade-o� between a low mean value and a low variance. In mathematical terms, the problem to solve
is expressed as:

min
y1,y2,y3

(mean(CD), σ(CD)) (6.14)

with y1, y2, y3 varying in the solution space S, made of intervals de�ned as [yi − δyi; yi + δyi] with
yi the reference mean value for the geometric parameter yi (these reference mean values are those used
to reproduce the baseline sonic arc) and δyi 10% of the corresponding mean value yi. The drag coe�-
cient CD is a function of inputT = x, nexp, cv∞(Tc)/R, inputO =M∞, pr, ρr and inputG = y1, y2, y3.
With the non-intrusive statistical approach considered in this paper, the stochastic simulation al-
lowing to compute the mean and the variance of CD reduces to perform series of CFD evaluations
using speci�c sets of values for inputT , inputG and inputO, which are chosen as reported in the
previous section. For a given shape in the previously prescribed domain of geometric de�nition, a
single evaluation corresponds to a particular combination of inputG, inputO and inputT ; the global
set containing all the possible variations of the uncertain inputs is called Uncertain Design of Ex-
periment (UDOE). Three input data de�ne the UDOE: (i) the mean values of inputG, inputT and
inputO parameters (the mean values of inputT and inputO are �xed throughout the optimization
problem), (ii) the maximal variations associated with these parameters, (iii) the density probability
distribution associated with each of these parameters. The UDOE is a set of combinations for inputG,
inputT and inputO, determined by the quadrature formulae used to compute the PC coe�cients.
For every combination, a CFD evaluation is performed giving a computed CD value; when such a
value has been obtained for each element of the UDOE, the mean value and variance of the drag
coe�cient are estimated using the non-intrusive Polynomial Chaos described in Sections 4.1.2 and
4.1.3. A shape optimization procedure including uncertainties is made of two steps schematized in
Fig. 6.22. The �rst step is the generation of a DOE for the variables of the optimization problem;
in the present case a set of initial mean values for inputG is generated in the solution space S. Using
the non-intrusive Polynomial Chaos, a UDOE is built for each value of inputG in the initial DOE;
a grid is then generated for each distinct value of inputG and the �ow is computed on each of this
grid using the CFD code with the corresponding values of inputT and inputO in the UDOE. The
mean value and variance of the drag coe�cient are computed from the set of values associated with
the UDOE and once this computation has been performed for all the values of inputG in the initial
DOE the �rst generation for solving Eq. 6.14 is available.

The second step corresponds to the optimization process itself. In the present work the NSGA
algorithm [59] is applied to obtain the optimal Pareto set associated with Eq. 6.14. The main tuning
parameters of the algorithm are the population size, the number of generations, the crossover and
mutation probabilities pc, pm and the so-called sharing parameter r used to take into account the
relative isolation of an individual along a dominance front. Typical values for pc, pm are, respectively,
0.9 and 0.1; values of r are retained following a formula given in [Deb 2002] that takes into account the
population size and the number of objectives. Using the values of the objective functions mean(CD),
σ(CD) and selection, cross-over, mutation genetic operators, a new population of mean values for the
inputG parameters is generated in S. For each member of the population (viz. airfoil shape) a UDOE
is built, which di�ers from the ones previously used by the values of inputG only since the mean
values of inputT and inputO are �xed once for all in the present problem. A grid is generated for each
new shape and a CFD run is performed for the corresponding inputT , inputO in the UDOE. The
quantities mean(CD), σ(CD) are then computed using the non-intrusive PC and a new population
of potentially improved individuals is obtained which is evolved by applying the genetic operators.
This procedure is repeated until a convergence criterion is satis�ed (typically the variation of the
Pareto set is required to decrease below a prescribed threshold).
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Figure 6.22: Fully coupled approach for optimization problem.



136 Chapter 6. Robust optimization

Figure 6.23: Approach using surrogate models for optimization problem.

6.4.3 Approach using surrogate models

As a �rst way to reduce the computational cost of a fully coupled approach, a preliminary analysis
on the baseline sonic arc is performed which allows to assess the contribution of each uncertain
parameter to the drag coe�cient variance (ANOVA-type sensitivity analysis) so as to retain only the
most in�uential ones in the UDOE used within the optimization process. A second way to achieve this
CPU reduction is the massive use of surrogate models. The optimization process relying on surrogate
models is also decomposed in two steps (see Fig. 6.23): the �rst step is identical to the one described
for the fully coupled approach but with a size of UDOE which can be reduced thanks to the previous
sensitivity analysis and with a size of DOE that can be di�erent (larger in particular) because it
will only slightly impact the global cost of the process; in the second step, the DOE of mean values
for inputG or DOE (G) with their associated computed values for the mean and variance of CD is
used in order to build a surrogate function for each of these objectives: mean(CD) = f1(inputG) =

f1(y1, y2, y3), variance(CD) = f2(inputG) = f2(y1, y2, y3) where y1, y2, y3 corresponds to a (mean)
value in the S solution space. These simple mathematical functions (approximately) account for
the uncertainties e�ects with a very modest computational cost. A Pareto optimal set for the
simultaneous minimization of f1 and f2 is readily obtained. For every member of this optimal set,
the non-intrusive PC can then be used to compute a correct �nal estimate for mean (CD) and variance
(CD), following the approach previously described and used for every population individual at each
generation in the fully coupled approach. Since the �nal population produced by NSGA is usually
entirely distributed along the global Pareto front, the total cost of the approach can be estimated as:
total cost = (unit CFD cost) x (size of initial DOE) x 2 x (size of UDOE), where the factor 2
corresponds to the initial computations of Mean (CD) and Variance (CD) and to the �nal a posteriori
computations. The cost of optimization for the surrogate functions f1, f2 is negligible with respect
to the unit CFD cost. Note however the size of the UDOE must be reduced for the calculation
to remain tractable hence the total number of uncertain parameters must be reduced as much as
possible and the preliminary ANOVA analysis remains a compulsory step.

6.4.4 Preliminary Anova-based screening

When computing the dense gas �ow over the baseline sonic arc, nine parameters are considered
uncertain, which are classi�ed into three distinct sources: the three design parameters inputG de-
scribing the geometry, the three parameters inputO de�ning the operating condition for the �ow
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Figure 6.24: Analyse of variance for the stochastic dense gas simulation when uncertainties on
geometry (inputG), operating conditions (inputO), and thermodynamic models (inputT ) are taken
in account (coupled analysis, Sparse Grid Method order 4).

and the three parameters inputT closing the gas thermodynamic model. The mean values, maximal
variations and pdf type for each parameter are summarized in Table 6.9.

All the sources of uncertainty (inputT and inputG and inputO) are simultaneously taken into ac-
count in order to assess possible interactions between the geometry, the operating conditions and the
thermophysical parameters that might contribute to the variance of CD. If the UDOE is generated
using again a third-order PC, its size will grow up to 49 = 262144. In view of this extremely high
computational cost, it is decided to resort to the Sparse Grid Method (SGM) [Congedo 2011c] to
perform this fully coupled analysis. To improve the reliability of this analysis, the SGM is applied
not only with a third-order polynomial (yielding a UDOE of size 871) but also with a fourth-order
one (yielding a UDOE of size 3463), allowing an assessment of the convergence and accuracy of the
statistical analysis. A uniform pdf is assumed for the geometrical parameters of inputG, correspond-
ing to a worst case scenario where all the parameters are equally important; a Gaussian distribution
is assumed for inputT and inputO since the previous analysis has shown the di�erence between a
Gaussian and Uniform pdf remains slight. The ANOVA analysis is performed for a third-order and
fourth-order polynomial; the hierarchy of the most in�uential parameters and the contribution of
each uncertainty to the global variance is analyzed. The results obtained with the two plans are
very similar: the hierarchy is identical with minor di�erences in the decomposition of the variance
as reported in Fig. 6.24. The fourth-order analysis is displayed in Fig. 6.25 and yields the following
comments: the uncertainty on the operating Mach number is the most in�uential with a contribution
to more than 89% of the variance; the �rst-order e�ects on the operating Mach number, pressure
and density explain 99.5% of the variance. The drag coe�cient stochastic model is of additive form
with negligible interaction e�ects. Going back to the third-order/ fourth-order comparison, the dif-
ference for the three most dominant parameters (inputO) does not exceed 10% so that the results of
the ANOVA analysis can be considered as converged. The uncertainties on the geometry (inputG)
and the thermodynamic model (inputT ) produce negligible e�ects with respect to the operating
conditions.

6.4.5 Optimization using surrogate functions

The preliminary analysis described in the previous section showed that the number of uncertainties
that should be evaluated during the optimization procedure could be reduced to the three uncer-
tainties on the operating conditions (inputO). Since inputT is �xed, it no longer appears in the
schematic view of the optimization process displayed in Fig. 6.26. Similarly, the set of mean values
for inputG given by the initial DOE (G) is directly used to generate a population of airfoil shapes,
without impacting the UDOE, the sole input of which is given by the mean values for inputO, hence
denoted UDOE (O). The remainder of the �rst step is identical to the one described in Fig. 6.23,
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Figure 6.25: Analyse of variance for the stochastic dense gas simulation when uncertainties on
geometry (inputG), operating conditions (inputO), and thermodynamic models (inputT ) are taken
in account (coupled analysis, Sparse Grid Method order 4).

with the generation of (mean value, variance) couples for the drag coe�cient associated with each
element of DOE (G). The second step is also left unchanged with the design of surrogate functions
f1(inputG), f2(inputG) for mean(CD) and variance(CD). The third step of a posteriori UQ assess-
ment for optimal shapes undergoes the same simpli�cation as the start of the �rst step: the mean
value and variance of the drag coe�cient for an optimal shape are computed using the non-intrusive
PC on UDOE (O). The proposed strategy of optimization taking into account uncertainties involves
three types of choices: the method for generating DOE (G), the method for deriving the surrogate
functions and the UQ method for generating UDOE (O). Three distinct strategies corresponding
to three di�erent combinations of methods have been considered in order to assess to what extent
the optimal values obtained for inputG are independent from these choices. In strategy 1, a Quasi
Monte Carlo (QMC) geometric DOE (G) with 20 individuals is used; the UDOE (O) is built from
a third-order Sparse Grid Method. QMC is similar to the usual Monte Carlo simulation but uses
quasi-random sequences instead of (pseudo) random numbers; these sequences are deterministic and
�ll the space more uniformly than random sequences (known as low discrepancy sequences, i.e. the
Sobol sequences). The surrogate functions f1, f2 are built from the values (mean (CD), variance
(CD)) associated with DOE (G) using a multi-layered perceptron (MLP) neural network, with a
cross validation method enabling to select 4 hidden units so that each neural network has a 3x4x1
architecture. In strategy 2, a QMC geometric DOE (G) with 40 individuals and a UDOE (O) also
based on a QMC distribution are considered. The surrogate functions are derived using the same
MLP than for strategy 1. In strategy 3, DOE (G) is generated using a Box Wilson DOE (based on
fractional factorial design) of 15 individuals and UDOE (O) is generated using the same Sparse Grid
Method as strategy 1. The surrogate functions are derived using the same MLP than for strategy 1.
The set of optimal solutions obtained using these three strategies are displayed in Fig. 6.27, both in
the objective plane (f1, f2) and in the parameter planes (y1, y2) and (y1, y3). Let us recall the solution
space for y1, y2, y3 is de�ned as [0.04049, 0.04949]x[0.03646, 0.04457]x[0.05444, 0.06654]; the Pareto
fronts in the parameter space are very similar: they correspond to the upper limit of variation for y1
and y2 with the third parameter y3 varying on [0.0544, 0.0599] for strategy 3, on [0.0575, 0.0600] for
strategy 1 and [0.0540, 0.0570] for strategy 2.

Three individuals are selected on each Pareto front in the objective plane, corresponding respec-
tively to the minimum of f1, the minimum of f2 and a point at mid-distance between the previous
ones. In the �nal step of the optimization, an a posteriori UQ is performed for these individuals, that
is (f1, f2) are replaced by (mean (CD), variance (CD)) computed using an UDOE (O) based on the
Sparse Grid Method with a fourth-order polynomial (83 CFD evaluations are performed for each ge-
ometry to quantify the e�ects of the three uncertainties inputO) or on the Quasi Monte Carlo method
(with 64 CFD evaluations for each geometry). The use of two distinct strategies for computing the
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Figure 6.26: Approach using surrogate models for optimization problem after preliminary analysis.

mean and variance of the drag coe�cient aims at o�ering some cross-validation for the conclusions
that will be drawn regarding the proposed optimal shapes. These choices of UDOE (O) are also
applied to the baseline sonic arc to compute the mean value and variance associated with this initial
geometry. Besides, a classical deterministic minimization of the drag coe�cient is also performed,
where inputT and inputO are equal to their mean values given in Table 6.9 and inputG vary in the
parameter space S. This single-objective minimization of the drag coe�cient is performed using the
same genetic algorithm as the one used for the bi-objective minimization of (mean (CD),variance
(CD)). The geometric parameters de�ning this classical optimum are reported in Fig. 6.27 along
with the Pareto fronts for strategy 1, 2 and 3 in the parameter space. It is interesting to note
this classical optimum seems to belong to these Pareto fronts; however, it is mandatory to carry
out the analysis in the plane of the real (and not surrogate) objective functions, which is done in
Fig. 6.28, respectively, using SGM and QMC for computing (mean (CD), variance (CD)). The nine
individuals (three on each Pareto front for strategy 1, 2 and 3) are numbered in Figs. 6.27-6.28, in
order to see exactly how the Pareto points move in the objective plane in Fig. 6.28 with respect to
the optimization of the surrogate functions in Fig. 6.27. Though all the optimal shapes produced
by Strategy 1, 2 and 3 as well as the deterministic optimization dominate or are not dominated by
the baseline con�guration, it must be noted the surrogate functions (f1, f2) introduce a signi�cant
error level with respect to the exact objective functions. In particular, the shapes corresponding to a
Pareto set in the (f1, f2) plane are no longer forming such a Pareto front in the (mean (CD), variance
(CD)) plane. A keypoint however is that a global Pareto front can be obtained by gathering shapes
produced by the optimization strategies with uncertainties and the deterministic shape. This latter
solution correspond to a minimal value for mean (CD) along the Pareto front but a maximal value
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Figure 6.27: Mean and variance of the drag coe�cient (a), and position of Pareto front in the
parameters plan y1 − y3 (b) and y2 − y3 (c), of the optimal individuals issued from the di�erent
strategies.
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Figure 6.28: Comparison of di�erent optimal individuals by using an UDOE based on the Sparse
Grid Method (on the left) and on the Quasi Monte Carlo Method (on the right), connected points
represent the global Pareto front.

for variance (CD), where the deterministic CD is taken into account in the deterministic optimization
process. Strategy 2 and 3 provide in particular the same robust optimum corresponding to a mini-
mal value of variance (CD) along the Pareto front but to a maximal value for mean (CD), remaining
however below the mean value provided by the baseline con�guration. The same conclusions can be
drawn from both UDOE (O) (generated either by SGM or by QMC): the maximum di�erence on the
mean drag prediction is 6% and 4.5% on the variance prediction. Moreover, the global Pareto fronts
featured in Fig. 6.28 are composed of the same individuals (1, 4, 5, 7 and the classical optimum),
though one is concave while the other is convex. This di�erence in the mean and variance drag pre-
diction can be explained by considering the speci�c behaviour of dense gas �ows. When uncertainties
on thermodynamic model and operating conditions are considered at the same time, the freestream
Mach number can be close to the critical Mach number for some particular uncertain inputs. In
this case, values of CD can be strongly reduced, that makes statistics hard to compute. Then, mean
and variance computations depend on the size of UDOE, that is why two strategies can give slightly
di�erent results. A Monte Carlo computation would be necessary in order to have a reference results
for mean and variance, but it is unfeasible given the computational cost. Several remarks can be
made by comparing the di�erent strategies. Concerning strategies 1 and 2, enriching the DOE makes
the surrogate functions more predictive, then the approximation of mean and variance (as function
of parameters y1,y2 and y3) is improved. In fact, with strategy 2 two individuals belonging to Pareto
front are obtained (individuals 4 and 5), as shown in Fig. 6.28. Seeing the complexity in mean and
variance computations, two strategies (1 and 3) can give slightly di�erent results if few design points
are considered. Geometries of the Pareto front are very similar, with di�erences on y3 parameter,
while y1 and y2 are the same. The parameter y3 is equal to 0.0544 for individuals 4 and 7, to 0.0556
for 5, to 0.0565 for the classical optimum and to 0.0578 for individual 1. Along the Pareto front, lower
y3 is linked with an increase of mean (CD). Geometry of individual 5 is very similar to geometries 4-7
(di�erence up to 0.4%, while geometries 1-6-8 are similar to the classical optimum (di�erences up to
0.3%). Even if y3 of individual 8 is close to those ones of individual 1 and of the classical optimum,
individual 8 does not belong to the Pareto front. This means there is a non-linear behaviour in the
proximity of y3 of the classical optimum. This fact could be con�rmed by means of Monte Carlo in
order to have a better estimate for statistical quantities.
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6.4.6 Concluding remarks

The predictive numerical simulation of a dense gas �ow through an ORC turbine must take into
account two types or sources of physical uncertainties: the physical properties of the �uid and the
operating conditions at the turbine inlet. When designing the geometry of the turbine so as to opti-
mize its e�ciency, the geometrical uncertainties on the manufactured shape must also be accounted
for. Shape optimization including the quanti�cation of the e�ect of uncertainties means solving a
multi-objective problem where, typically, the mean value and the variance of the initial objective
are computed using uncertainty quanti�cation tools. In this section, the feasibility of performing
such an optimization for realistic computational costs is assessed on a simpli�ed con�guration (drag
minimization under uncertainties for the BZT �ow over an isolated symmetric airfoil) and a general
procedure applicable to more complex problems is proposed.
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In this chapter, I describe the basic ingredients to be modi�ed in CFD codes for considering real-gas
e�ects.

7.1 From a usual perfect gas CFD code to a real-gas CFD code

I resume brie�y here the work demanded for the modi�cation of an existing CFD code for taking
into account complex thermodynamic models. This section describes the main features of the two
dense gas �ow solvers which are used in the present numerical study. Since these solvers rely on very
di�erent ingredients, a high level of con�dence in the numerically predicted performance is achieved
when these solvers are found to provide close results. Some details about the boundary conditions
treatment speci�c to turbomachinery �ows are also provided since this was found to be an important
point to ensure accurate computations of global turbine properties such as e�ciency.

7.1.1 Basic modi�cations to perform

Using a perfect gas equation of state is straightforward because of the direct relation between the
pressure and the internal energy. The van der Waals equation is more complicated of the PGF
equation of state, but it's always possible to write a direct relation between pressure and internal
energy. If more accurate models are demanded, such as Martin-Hou, Peng-Robinson, Span-Wagner
equations, in these cases it is not possible to derive an explicit relation between pressure and inter-
nal energy. Generally, an iterative method is necessary to compute thermodynamic properties (for
example to compute the primitive variables by starting from the conservative variables). Newton-
Raphson Method is used because of its good accuracy and convergence velocity (For details in the
implementation see [Cinnella 2005a]). Generally, if a di�erent equation of state is used, it is necessary
to change all the formulations that adopt implicitly a PFG equation of state. Obviously it is taken
for granted that the computation of thermodynamic properties changes starting from di�erent ther-
modynamic relations (typically sound of speed and internal energy). For a very detailed description
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of the main thermodynamic properties with the di�erent equation of state see [Cinnella 2011]. For
what concerns the solvers described in this manuscript (described in the next section), the numerical
schemes formulations are independent from the equation of state. A di�erent formulation for the
non-re�ecting boundary conditions based on method of characteristic is used (typically the compu-
tation of Riemann invariants changes, because it is usually written by considering a PFG equation
of state).

7.1.2 Evolution of the CFD code

• Structured Grid Solver:
The governing equations are discretized using a cell-centered �nite volume scheme of third-
order accuracy for structured multi-block meshes, which allows computing �ows governed by
an arbitrary equation of state. The scheme is constructed by correcting the dispersive error
term of the second-order-accurate Jameson's et al. scheme [Cinnella 2005b]. The use of a
scalar dissipation term simpli�es the scheme implementation with highly complex equations of
state and greatly reduces computational costs. To preserve the high accuracy of the scheme on
non-Cartesian grids, the numerical �uxes are evaluated using weighted discretization formulas,
which take into account the stretching and the skewness of the mesh: this ensures truly third-
order accuracy on moderately deformed meshes and at least second-order accuracy on highly
distorted meshes (see [Cinnella 2005b] for details). The equations are then integrated in time
using a four-stage Runge-Kutta scheme. Local time stepping and implicit residual smoothing
are used to e�ciently drive the solution to the steady state. The good accuracy properties of this
numerical solver have been demonstrated in previous works [Cinnella 2005b, Cinnella 2005a],
and will not be further discussed here.

• Unstructured Grid Solver:
The UGS is also based on a cell-centered �nite-volume discretization but formulated on a
general unstructured grid dividing the spatial domain into a �nite number of triangles or
quadrangles; the time rate of change of the cell-averaged state vector w is balanced with the
area-averaged (inviscid) �uxes across the cell faces. The �uxes are computed across each cell
face using the HLL scheme; second-order spatial accuracy is ensured by means of a MUSCL-
type reconstruction process on the conserved variables, where the gradient estimates required
at each cell center are obtained through a least-square formula. When the solver is applied
to the computation of �ows containing discontinuities, the reconstruction formula includes a
limitation step which ensures oscillation-free shock-capturing. Fast convergence to steady state
is provided by making the scheme implicit using a simple �rst-order Rusanov-type implicit
stage allowing the use of large CFL numbers (that is solved by an inexpensive point-relaxation
technique). The UGS is validated against the SGS solver for inviscid �ows of dense gases past
airfoils in [Congedo 2007].

7.1.3 Evolution of the boundary conditions

For a dense-gas turbine blades con�guration, suitable boundary conditions should be imposed. For
inviscid �ows, a no-slip wall boundary condition is applied along the blade. At the inlet and outlet
boundary, characteristic conditions based on the conservation of Riemann invariants are applied
(Refer to [Colonna 2004] for a detailed description of characteristic boundary conditions for �ows
governed by a general equation of state). For a subsonic inlet in a two-dimensional �ow, three
physical quantities have to be prescribed while a fourth quantity is extrapolated from the interior of
the computational domain, by imposing the conservation of the appropriate Riemann invariant. For
turbomachines, it is common practice to impose stagnation thermodynamic conditions at inlet and
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Figure 7.1: Typical computed �elds for entropy (top) and enthalpy (bottom) �elds, close up of the
outlet region for di�erent choices of the extrapolated thermodynamic variable in the subsonic outlet
boundary condition. Left: density-based extrapolation; right: entropy-based extrapolation.

the �ow direction. Here, the imposed thermodynamic quantities are the inlet entropy s and the inlet
stagnation enthalpy H. At the turbine outlet, the boundary condition depends on whether the �ow
is subsonic or supersonic. In the �rst case, one single �ow property (typically the static pressure) is
imposed, while the remaining quantities (velocity components and a thermodynamic state variable)
are extrapolated from the interior of the domain. Two di�erent choices of extrapolated state variable
have been assessed : the density and the entropy. When the extrapolated thermodynamic quantity is
the density, the numerical implementation is straightforward, but spurious oscillations appear on the
entropy and static enthalpy �elds, close to the outlet. Conversely, when the extrapolated variable is
the entropy, the solution of a nonlinear system of equations of the form{

s = s (ρ, T )

p = p (ρ, T )
(7.1)

is required to compute the conservative variables at boundary points. In turn, the computed
solutions are now smooth: Figure 7.1 displays typical entropy and static enthalpy �elds for the �ow
through a turbine cascade computed using the UGS solver and the density or entropy as extrapolated
thermodynamic quantity at outlet. Since the smoothness of the entropy and enthalpy �elds at turbine
outlet is essential for an accurate computation of the turbine stage e�ciency and power output, the
choice of entropy as extrapolated variable has been systematically retained, both for SGS and UGS.
If the �ow is supersonic at turbine outlet, the outlet state is simply extrapolated from the adjacent
interior cells.
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7.2 Hypotheses and models for dense gas RANS Equations

Since the full resolution of the NS equation requires the consideration of a big range of length and
time scales, the compressible Reynolds-averaged Navier-Stokes equations RANS equation are used
to limit the computer costs. The simulation of turbulent dense gas �ows is based on the following
working hypotheses: (a) �ow conditions are supposed to be su�ciently far from the thermodynamic
critical point, so that dense gas e�ects such as dramatic variations of the �uid speci�c heat and
compressibility can be neglected; in these conditions, density �uctuations will not be as huge as in
near-critical conditions and subsequently the turbulence structure will not be a�ected signi�cantly;
(b) at least for equilibrium boundary layers, the mean �ow behavior can be predicted adequately
using RANS completed by an eddy viscosity turbulence model; similarly, the turbulent heat transfer
can be modelled through a turbulent Fourier law, as usual for PFG �ows, where the turbulent thermal
conductivity is computed in a classical way by introducing a turbulent Prandtl number, assumed to be
roughly constant and O(1) throughout the �ow. Hypothesis (a) is justi�ed by the fact that the �ows
of interest for this study actually do not evolve in the immediate neighborhood of the critical point;
and in fact, if inviscid analyses and computations show an uncommon variation of the �uid speed
of sound (and hence compressibility) with pressure perturbations, nevertheless the magnitude of
these variations is approximately of the order of those occurring in perfect gases. Moreover, peculiar
dense gas phenomena related to �ow heating or cooling are excluded from considerations, since the
airfoil wall is supposed to be adiabatic. On the contrary, Hypothesis (b) should be considered with
some caution. On the one hand, if Hypothesis (a) is veri�ed, it seems quite reasonable to apply to
compressible dense gas �ows turbulence models initially developed for incompressible �ows of perfect
gases and currently extended in the common practice to compressible PFG �ows; on the other hand,
more or less strong pressure gradients and shock waves characterizing the outer inviscid �ow are
likely to a�ect the boundary layer, which can no longer be considered an 'equilibrium' one; this is
also true for the reference PFG �ows considered in the study, characterized by strong shock waves and
shock/boundary layer interactions. Thus, aerodynamic performance predictions will necessarily be
a�ected by de�ciencies inherent with the chosen turbulence model. Nevertheless, since investigations
are intended to provide trends of behavior more than accurate values of the computed aerodynamic
coe�cients, use of hypothesis (b) represents a means of obtaining preliminary information about
realistic dense gas �ows with a reasonable computational expense.

7.2.1 Some accurate thermodynamic models

In this section, some thermodynamic models mentioned in this manuscript are introduced. For a
more detailed presentation about equations of state, please refer to [Cinnella 2010, Cinnella 2011].

7.2.1.1 Peng-Robinson

Peng and Robinson (1976) proposed a cubic EoS of van der Waals type in the form:

p =
RT

v − b
− a

v2 + 2bv − b2
. (7.2)

where p and v denote respectively the �uid pressure and its speci�c volume, a and b are substance-
speci�c parameters related to the �uid critical-point properties pc and Tc and representative of
attractive and repulsive molecular forces. To achieve high accuracy for saturation-pressure estimates
of pure �uids, the temperature-dependent parameter a in Eq. (7.2) is expressed as

a =
(
0.457235R2T 2

c /p
2
c

)
· α (T ) , (7.3)

while
b = 0.077796RTc/pc. (7.4)
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These parameters are not completely independent, since isothermal lines in the p-v plane should
satisfy the thermodynamic stability conditions of zero curvature and zero slope at the critical point.
Such conditions allow computing the critical compressibility factor Zc = (pcvc)/(RTc) as the solution
of a cubic equation. The correction factor α in Eq. (7.3) is given by

α (Tr) =
[
1 +K

(
1− T 0.5

r

)]2
, (7.5)

with
K = K0 +K1

(
1 + T 0.5

r

)
(0.7− Tr) for Tr < 1 (K1 = 0 forTr ≥ 1) , (7.6)

and
K0 = 0.378893 + 1.4897153ω − 0.1713848ω2 + 0.0196554ω3. (7.7)

The parameter ω is the �uid acentric factor and K1 is obtained by �tting measured saturation
pressures at set temperature over a large range from close to the triple point up to the critical
pressure. The other needed information to complete the thermodynamic model, namely the ideal-
gas isochoric speci�c heat of the �uid, is approximated through a power law, i.e.,

cv,∞ (T ) = cv,∞ (Tc)

(
T

Tc

)n

(7.8)

with n a �uid-dependent parameter. The power law, already used in [Cinnella 2010] and
[Congedo 2011a], is preferred to a polynomial form, used for example in [Guardone 2010], because it
allows for an explicit dependence on physical parameters a�ected by uncertainties while introducing
negligible di�erences in the temperature range of interest w.r.t. the polynomial form (lower than
0.001% for the conditions of the experiment).

7.2.1.2 RKS equation

The Redlich-Kwong equation is commonly considered as one of the best available two-parameter
equations of state. The modi�ed Redlich-Kwong equation of state (by Soave [Soave 1972]) is given
by

p =
RT

v − b
− acα (T )

v (v + b)
(7.9)

where p being the �uid pressure, T the absolute temperature, v the speci�c volume, R the gas
constant, ac = 0.42747R2T 2

c /pc. The function α(T ) is an adimensional relationship depending on
the reduced temperature Tr = T/Tc and the substance acentric factor ω,

α (T ) =
[
1 +m

(
1− T 0.5

r

)]2
(7.10)

with m = 0.48 + 1.57ω − 0.176ω2.
The RKS equation of state is supplemented again by Eq. 7.8 to compute the ideal gas contribution

to the speci�c heat at constant volume. The RKS model in non-dimensional forms depends on three
uncertain parameters, namely, the acentric factor ω, the exponent n and the reduced ideal-gas
constant-volume speci�c heat at the critical temperature cv∞(Tc).

7.2.1.3 Martin-Hou

The comprehensive thermal equation of state of Martin and Hou [Martin 1955] is considered to
provide a realistic description of the gas behaviour close to saturation conditions. It reads

p =
RT

v − b
+

5∑
i=2

fi(T )

(v − b)i
(7.11)
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where b = RTc(1 − β/15)/pc with b = 20.533 − 31.883Zc , and the functions fi(T ) are of the form
fi(T ) = Ai + BiT + Ciexp(−kT/Tc), with Tc the critical temperature and k = 5.475. The gas-
dependent coe�cients Ai, Bi, Ci can be expressed in terms of the critical temperature and pressure,
the critical compressibility factor, the Boyle temperature (which may be expressed as a function of
the critical temperature), and one point on the vapour pressure curve. The MAH equation of state is
supplemented again by Eq. 7.8 to compute the ideal gas contribution to the speci�c heat at constant
volume. Globally, the MAH thermodynamic model requires the knowledge of six material- dependent
parameters. Precisely, the uncertain material-dependent parameters considered in this study are the
critical pressure pc , the critical temperature Tc, the critical compressibility factor Zc , the normal
boiling temperature Tb, the exponent n, and the reduced ideal-gas constant-volume speci�c heat at
the critical temperature cv∞(Tc).

7.2.1.4 Span-Wagner

In [Cinnella 2011, Colonna 2006b], a state-of-the art multiparameter thermodynamic model has been
considered, based on 12-term Span-Wagner (SW) equation of state. The SW equation is de�ned as
follows

ψ (τ, δ) =ψ0 (τ, δ) + n1δτ
0.25 + n2δτ

1.125 + n3δτ
1.5 + n4δ

2τ1.375

+ n5δ
3τ0.25 + n6δ

7τ0.875 + n7δ
2τ0.625 + n8δ

5τ1.75 + n9δ
5τ1.75

+ n10δ
4τ3.625e−δ2 + n11δ

3τ14.5e−δ3 + n12δ
4τ12e−δ3

(7.12)

where ψ is the reduced Helmoltz energy (i.e., normalized with RT), ψ0 is the ideal-gas contribution
to the Helmoltz free energy, and the remaining terms represent a real-gas correction, which depends
on the reduced density δ = ρ/ρc and on the inverse of the reduced temperature τ = Tc/T . In Eq.
(7.12), n1,...,n12 are substance-speci�c coe�cients. The relation (7.12) is valid for many classes of
non-polar and weakly polar �uids and its parameters have been determined in the literature for
di�erent classes of �uids simultaneously.

For the calculation of caloric properties, the SW EOS (Eq. (7.12)) is supplemented by the
ideal gas contribution to the speci�c heat at constant pressure, approximated here with the Aly-Lee
equation [Colonna 2008b]:

cp,∞ = α+ γ

[
χ/T

sinh (χ/T )

]2
+ δ

[
ε/T

cosh (ε/T )

]2
(7.13)

where the coe�cients depend on the substance under consideration. Pressure and internal energy
can be computed as a function of the reduced Helmotz energy (7.12) and the ideal gas (7.13) con-
tribution to the speci�c heat at constant pressure through the standard thermodynamic relations
[Colonna 2006b].

7.2.2 Laws for viscosity and thermal conductivity

Viscous e�ects in �ows of dense gases have remained largely unexplored. One of the most important
di�erences between dense gases and perfect gases is the downward curvature and nearly horizontal
character of the isotherms in the neighborhood of the critical point and upper saturation curve in the
p-v plane: the region of downward curvature of the isotherms is associated with the aforementioned
reversed behavior of the sound speed in isentropic perturbations. In the same region, the speci�c
heat at constant pressure, cp , can become quite large: this strongly in�uences the development of
the thermal boundary layer and its coupling with the viscous boundary layer in high-speed �ows. In
the dense gas regime the dynamic viscosity µ and the thermal conductivity k cannot be longer con-
sidered independent of the temperature and pressure, even in �ows with relatively small temperature
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variations. On the other hand, the well-known Sutherland law, commonly used to represent viscosity
variation with temperature, becomes invalid, as it is based on the hypothesis that the gas molecules
act as non-interacting rigid spheres, and intermolecular forces are neglected. The complexity of the
behavior of µ in the dense regime can be anticipated by recalling that the viscosity of liquids tends to
decrease with increasing temperature, whereas that of gases tends to increase: the dense gas regime
is a transition between these two qualitatively di�erent behaviors. Similarly, the classical approx-
imation of nearly constant Prandtl number (Pr = µcp/k ≈ const) cannot be used any more. As
the thermal conductivity has roughly the same variation as viscosity with temperature and pressure,
the behavior of Pr tends to be controlled by variations of cp. In regions where cp becomes large,
strong variations of Pr can be observed, contrarily to what happens in perfect gases. Neverthe-
less, if the immediate vicinity of the thermodynamic critical point is excluded from considerations,
the Prandtl number remains of order one, similar to perfect gases. In contrast, the Eckert number
(Ec = U0

2/(cpT0) , where U0 and T0 refer to a suitable reference state) decreases signi�cantly. Small
�ow Eckert number implies reduced sensitivity of the boundary layer to friction heating that remains
negligible even at moderately large supersonic Mach numbers. Moreover, for �ows past adiabatic
walls the temperature, and thus also the density, is almost constant across the boundary layer. The
�uid viscosity and thermal conductivity are evaluated using the method proposed in [Chung 1984].
The viscosity (measured in µPoise) is related to the absolute temperature through the formula:

µ = 40.785
FcM

0.5
w T 0.5

V 2/3Ωv
(7.14)

whereMw is the molecular weight in g/mol and Vc is the critical volume in cm3/mol. The coe�cient
Fc is given by Fc = 1−0.2756ω+0.059035δr

4+ξ, where ω is the acentric factor, δr is a dimensionless
dipole moment, and ξ is a special correction for highly polar substances. The viscosity collision
integral Ωv is provided by

Ωv = A (T ∗)−B + Cexp (−DT ∗) + Eexp (−FT ∗) , (7.15)

where T ∗ = 1.2593(T/Tc) , A = 1.16145, C = 0.52487, D = 0.77320, E = 2.16178 and F = 2.43787.
The thermal conductivity k is provided by:

kMw

µCv
=

3.75Ψ

Cv/R
, (7.16)

where Mw is the molecular weight in Kg/mol, cv is the constant volume speci�c heat in J/(molK),
R is the universal gas constant in J/(molK), and the coe�cient Ψ is equal to

Ψ = 1 + α1
0.215 + 0.28288α1 − 1.061β + 0.26665Ξ

0.6366 + βΞ + 1.061α1β
, (7.17)

with α1 = (Cv/R)3/2, β = 0.78620.7109ω + 1.3168ω2, Ξ = 2.0 + 10.5(T/Tc)
2.

7.3 Organization of this part

This part illustrates some results of interest for ORC-systems and dense-gas �ows. First, Chapter 8
illustrate some dense-gas results through a turbine cascade. Then, in Chapter 9, reliability of several
thermodynamic models is estimated for several �uids of interest in dense-gas framework. Finally,
Chapter 10 presents several studies on the appearance and reproducibility of a Rarefaction Shock
Wave (RSW).
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The previously described �ow solvers are now applied to the computation of inviscid transonic dense
gas �ows through a turbine cascade. In a �rst step, the reliability of the numerical simulation is
established by cross-validation of the results provided by both solvers. Next, a parametric study
of the turbine e�ciency sensitivity to the thermodynamic conditions is performed for a series of
operating points selected in the neighbourhood of the thermodynamic region Γ = 0. The performance
obtained for a molecularly complex �uid (D5) is compared with that provided by a lighter (toluene)
and a heavier (dodecamethylcyclohexasiloxane D6) �uid and the role played by dense gas e�ects is
emphasized.

8.1 Turbine con�guration

The con�guration taken into account in this study is the von-Karman Institute LS-59 plane cascade
(VKI LS-59) of rotor blades. The turbine geometry and experimental data (for air �ow) are available
in [Kiock 1986]. For all of the following computations the �ow inlet angle is taken equal to 30o and
the pressure ratio to 1.82, which corresponds to an isentropic exit Mach number equal to 1 in the case
of a diatomic perfect gas �ow. The computational domain is discretized by a C-shaped grid, selected
after a grid re�nement study. Initially three grids of increasing re�nement (192 x 16, 384 x 32 and 768
x 64 cells) have been considered; the medium grid is shown in Fig. 8.1 and the �ner and coarser grids
are generated by respectively doubling and halving the number of cells of this medium grid in each
direction. The mean height of the �rst cell closest to the wall is about 2.5x10−2 chord on the medium
grid. Roache's grid convergence index (GCI) represents an estimate of how far the numerical solution
is from its asymptotic value. When based on the computed isentropic e�ciency and estimated for
the �ner and medium grid, GCIs of 0.06% and 0.27% (respectively 0.07% and 0.12%) are found for
SGS (respectively UGS) assuming an order of convergence equal to 2.2 (respectively 1.8) based on
previous experience. In all cases, the solution is well within the asymptotic range so that the medium
grid is retained for all subsequent computations. Fig. 8.2 shows the results provided by the SGS
and the UGS for the perfect-gas case. The isentropic Mach number distributions along the blade
are in reasonable agreement with experimental data available for a �ow of air through the cascade
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Figure 8.1: View of the computational grid (384 × 32 cells).

[Kiock 1986]. The oscillations close to x/c = 1 (where x is the chordwise coordinate and c the chord)
are due to the fact that the inviscid �ow model cannot correctly capture the �ow physics around the
blunt trailing edge of the blade. The performance of the turbine cascade is evaluated by using three
criteria, namely:

• the turbine isentropic e�ciency, η = ∆h
∆hideal

, where h is the static enthalpy, δ represents the
variation of a �ow property between turbine inlet and outlet boundaries. The non-dimensional
parameter η quanti�es the thermodynamic losses due to entropy generation during turbine ex-
pansion or, translated into an energetic viewpoint, states how e�ciently the available enthalpy
jump is converted by the turbine

• the dimensional enthalpy jump δh, in kJ/mol, is directly related to the amount of work gener-
ated by expanding a kmole of �uid and provides information about the turbine dynamics;

• the relative temperature variation, ∆T
Tinlet

is equal to the Carnot inlet e�ciency of the cycle and
provides information about �rst-principle e�ciency.

The outlet �ow angle will also be monitored since it is an important parameter for the design of
subsequent stages following the cascade under consideration.

8.2 Choice of operating conditions

To investigate the role of dense gas e�ects in the chosen turbine con�guration for a large variety
of thermodynamic inlet conditions a parametric study is performed for inlet temperatures ranging
approximately between 0.96Tc and 1.01Tc and pressures between 0.62pc and 1.03pc. For D5, this
corresponds to dimensional inlet conditions 594K ≤ Tinlet ≤ 625K and 6.8atm ≤ pinlet ≤ 11.3atm.
A grid of operating point is constructed by selecting 5 equally spaced reduced temperatures in
the interval [0.96, 1.01]. For each temperature, eight points are considered, ranging from close-to-
saturation conditions up to low-density conditions (about 0.25 ρc). According to the SW EoS, all
the operating points, shown in Fig. 8.3, are located inside the single-phase vapor region. However,
due to the sensitivity of the saturation curve to the thermodynamic model, some of these points fall
inside a two-phase region for the PRSV and MAH models. Since the numerical codes considered in
this study do not handle two-phase �ows, some points of the grid (represented by �lled symbols in
Fig. 8.3) are discarded for analyzes based on the PRSV and MAH models.
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Figure 8.2: Perfect gas �ow through the VKI-LS59 cascade, Mach number distribution along the
blade wall: comparison of SGS and UGS solvers.

Figure 8.3: Temperature-entropy diagram for D5 (SW EoS) and operating points used in the para-
metric study.
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8.3 Cross validation of dense-gas �ow solvers

Since no experimental data are available for dense gas �ows through a turbine cascade, both the SGS
and UGS solvers are systematically applied for the whole set of operating conditions given in Fig.
8.3 and their computed performance parameters (η, ∆h, ∆T

Tinlet
) compared. The solution residuals

are always reduced at least by six orders of magnitude for both solvers. Typical solutions provided
by SGS and UGS are displayed in Fig. 8.4 for operating conditions (p/pc = 0.622, ρ/ρc = 0.276)
and the SW EoS. The computed Mach number contours and Mach number distributions along
the blade are almost superimposed; a similar result is obtained for di�erent operating conditions
and thermodynamic models. More quantitative conclusions can be drawn from the analysis of the
di�erences on global performance parameters computed using SGS and UGS. The relative di�erences
on (η, ∆h, ∆T

Tinlet
) and the outlet �ow angle computed by both solvers for the three choices of EoS and

their respective selected set of single-phase operating points are displayed in Fig. 8.5 as a function of
the inlet compressibility factor. The overall maximal relative di�erence between the SGS and UGS
codes on isentropic e�ciency, a quantity known to be sensitive to numerical di�usion, does not exceed
1.7%. This quite small error is not necessarily negligible since the expected e�ciency improvements
deriving from the use of dense organic working �uids have been estimated around 3% [Brown 2000].
It must be pointed out however that the predicted trends are the same for both solvers, with SGS,
based on a centered third-order scheme, systematically predicting a slightly higher e�ciency than
UGS, based on an up-wind second-order scheme. Errors of the same order (relative di�erence less
than about 1.5%) are observed for the computed enthalpy jump, whereas relative errors drop below
0.6% for the temperature variation and below 0.75% for the outlet �ow angle. The relative errors are
minimal when the SW model is considered, slightly increase with the PRSV model and are maximal
for the MAH model. This trend is correlated with the predicted extent of the inversion zone using
the three models: none with the SW model and maximal for the MAH model. Since the MAH
model predicts lower values of Γ than the other two models in the considered range of operating
conditions, this implies

(
∂a
∂ρ

)
s,MAH

<
(
∂a
∂ρ

)
s,PRSV

<
(
∂a
∂ρ

)
s,SW

according to formula (1). For a

given expansion rate, the speed of sound varies more abruptly when the MAH EoS is used, and
this a�ects in turn the numerical dissipation generated by SGS and UGS, leading to greater relative
errors. In conclusion, the SGS and UGS considered in this study yield very similar �ow �elds and
turbine performance trends, within a numerical uncertainty of 2% at most. This justi�es a physical
analysis of the �ow �eld in the turbine cascade and of its energetic performance, purely based on
numerical results provided by the SGS solver (retained for its higher space accuracy-order).

8.4 Analysis of turbine performance: In�uence of the thermody-

namic model

The �ow sensitivity to the thermodynamic model is �rst analyzed, with the SW results taken as
reference to compute the relative errors produced by the PRSV and MAH models on the global
performance parameters (see Fig. 8.6). The isentropic e�ciency predicted by the PRSV and MAH
models are in excellent agreement with the reference SW model for the whole range of operating
conditions, translated again into an inlet compressibility factor: the computed error is between 0.3%
and 0.4% for the PRSV EoS and less than 0.1% for the MAH EoS. The enthalpy jump is more
sensitive to the thermodynamic model with error ranging from 3% to 6% for PRSV; the MAH
model still provides errors smaller than 1% over most of the considered conditions. The temperature
variation is found to be a much more sensitive parameter, with both PRSV and MAH models
exhibiting errors of about 10% and the MAH model slightly more accurate than PRSV. This result
can be explained when recalling the same inlet pressure and density conditions have been used for the
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Figure 8.4: Typical numerical results of the SGS and UGS solvers for dense-gas �ow through the
LS59 cascade. (a) IsoMach lines and (b) mach distribution along the blade. Solid line (SGS), dashed
line (UGS).

Figure 8.5: Relative di�erences on turbine performance parameters computed by the SGS and UGS.
(a) Isentropic e�ciency, (b) enthalpy jump, (c) temperature variation, and (d) outlet �ow angle.
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three models, which leads to slightly di�erent inlet temperatures (di�erences up to 4% with respect
to the SW model have been observed). The most signi�cant di�erences on the inlet temperature
and consequently on the temperature variation are observed for points lying further away from the
saturation curve (but still well within the dense gas region). This means the inlet compressibility
factor cannot be retained as the only indicator of non-ideal thermodynamic behavior of the working
�uid; the fundamental derivative also plays a key role via the �uid heat capacities, which depend on
the sound speed derivatives. Finally, the computed outlet �ow angles obtained with the PRSV and
MAH models remain in excellent agreement with those associated with SW (see Fig. 8.6d) since the
relative error is below 0.2% for the PRSV EoS and below 0.5% for the MAH EoS. In conclusion, the
simple PRSV model appears as an interesting alternative to the much more complex SW EoS since
it requires only a few thermodynamic inputs to correctly reproduce the qualitative behavior of dense
gas �ows for a low computational cost. When using SGS, the cost per iteration associated with the
SW model is about three times the cost associated with the PRSV model (the MAH model being
only 10% more expensive than PRSV). Moreover, it was also observed the convergence of the solver
to a steady state was also faster with the PRSV model than with MAH or SW EoS. The average
number of iterations needed to decrease the residual by six orders of magnitude with the SW model
is about 36% larger than with the PRSV model and 20% larger than the MAH model. The overall
computa- tional cost of the PRSV EoS is eventually four times smaller than the cost of the SW
model and 20% lower than the cost of the MAH model.

8.5 In�uence of the working �uid

To investigate the e�ect of the working �uid on turbine performance, a parametric study is also
performed for toluene (chemical formula C7H8), a lighter �uid of common use in ORCs. The reduced
inlet conditions considered for the study are the same as for D5 and the computations are based on
the PRSV model. The global performance parameters (η, ∆h, ∆T

Tinlet
) are compared in Fig. 8.7a-c

for D5 and toluene. For the studied range of conditions, toluene provides slightly (about 1%) higher
e�ciencies than D5. Note however that, if the reduced operating conditions are the same for both
�uids, the critical pressure is about 40 atm for toluene while it is close to 12 atm for D5. Since the
critical temperatures of D5 and toluene are close to each other, both �uids may operate in the same
range of temperature but with substantially di�erent operating pressures. In ORCs, high operating
pressures increase the technological complexity of the sealings. The enthalpy jump for D5 is about
8% greater than for toluene, which means a higher power output for the given pressure ratio. The
relative temperature jump for both �uids display substantially di�erent behaviors. The heat capacity
of toluene is much lower than that of D5, so that for a given expansion rate starting from the same
inlet conditions, the outlet temperature is much lower in the lighter �uid. When speci�c heats tend
to in�nity, isentropic transformations tend toward isothermal ones. The lower temperature variation
in D5 makes this high heat capacity �uid more suitable for cogeneration purposes. Similar trends
have been observed using the PRSV EoS though the predicted e�ciency is a bit lower, ranging from
0.893 to 0.906 (against[0.899, 0.910] with the SW model, as displayed in Fig. 8.7a).

8.6 Role of non-classical gas-dynamics e�ects

Our last sequence of analysis will be focused on the role of non-classical gas dynamic e�ects on
turbine performance. For a qualitative assessment of this role, the analysis can be restricted to
the simple PRSV model, which predicts the existence of an inversion zone for D5. The operating
point PBZT = (p/pc = 1.04, ρ/ρc = 0.913) is selected in the close vicinity of the inversion zone
(for locating PBZT see the point (2.13, 1.01) in the plan s-T represented in Fig. 8.8a), so that the
�ow evolves in the neighborhood of the negative nonlinearity region (but not through it) during the
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Figure 8.6: Relative errors on turbine performance parameters predicted by di�erent thermodynamic
models. (a) Isentropic e�ciency, (b) enthalpy jump, (c) temperature variation, and (d) outlet �ow
angle.

Figure 8.7: Performance parameters for the LS59 cascade. SW model, SGS solver. (a) Isentropic
e�ciency, (b) enthalpy jump, and (c) temperature variation.
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expansion. For these conditions, the fundamental derivative is about 1.1 at turbine inlet but takes
values close to zero at the blade wall, due to the dropping pressure. According to formula (1), the
sound speed quickly increases, limiting the growth of the Mach number during the expansion and
reducing shock strength. Losses associated to shock waves are then reduced and turbine e�ciency
increases to 91.5%, which is 1-2.5% higher than e�ciencies measured with the PRSV EoS in the
previous parametric study, where inlet conditions remained far away from the inversion zone and led
to �ows with a higher Mach number upstream of the shocks. The iso-Mach lines and Mach number
distributions along the blade are plotted respectively in Figs. 8.9a and 10c for PBZT and in Figs.
8.9b and 8.9c for the operating point PDG = (p/pc = 0.622, ρ/ρc = 0.276) (see the point (5.86, 0.99)
in the plan s-T represented in Fig. 8.8a) yielding higher values of the fundamental derivative during
�ow expansion (Fig. 8.9d). As expected, for operating conditions closer to the inversion zone, the
maximum Mach number in the cascade is decreased, shocks are weaker and the turbine isentropic
e�ciency increases. Note that the maximum Mach Number is reduced by about 2% at most. This
rather limited reduction is due to the pressure ratio imposed on the turbine, that has been chosen
su�ciently high to generate a good performance in terms of ∆h for the geometry used in this study.
For this choice of the operating conditions, the �uid pressure drops quickly, driving the �ow below the
small BZT region. As a consequence, BZT e�ects are restricted to a small portion of the �ow �eld,
and the Mach number may reach supersonic values. The resulting gain derived from BZT or quasi-
BZT e�ects is slightly less impressive than the one observed for instance in �ows over isolated airfoils,
as shown in [Congedo 2007], where subsonic Mach number can be achieved. On the other hand the
enthalpy jump at PBZT is 1529 kJ/mol, against 2069 kJ/mol for PDG, which means the e�ciency
improvement is obtained at the expense of a lower work output per mole of operating �uid. In terms
of power output, this lower speci�c work is however counter-balanced by the higher �uid density in
the neigh- borhood of the BZT region. The temperature variation DT/Tinlet at PBZT and PDG is
respectively equal to 3% and 1.3%. This higher temperature variation and the lower enthalpy drop
at PBZT conditions are related to the lower heat capacities in the neighborhood of the saturation
curve. Thus working at lower C also improves the Carnot e�ciency in this case. Bene�cial e�ects due
to negative nonlinearities may be maximized with a working �uid displaying a larger inversion zone,
hence with a higher molecular complexity. To validate such a strategy, computations are performed
for a heavier cyclic siloxane of the same family as D5, namely dodecamethylcycloexasiloxane also
known as D6. The existence of an inversion zone for this �uid is predicted for any choice of the
thermodynamic model. The PRSV model is adopted again, for the sake of consistency with previous
calculations, and Fig. 8.10 displays the inversion zone and iso-Γ curves in the T-s plane computed
for D6 with the PRSV model. Comparing Fig. 8.10 and Fig. 8.8a, it is easy to check the predicted
inversion zone is much larger for D6 than for D5 (note the same observation holds when other models
are used). For the choice of operating condition PD6 = (p/pc = 1.05, ρ/ρc = 0.99) (see the point (2.07,
1.01) in the plan s-T represented in Fig. 8.10), the fundamental derivative is about 1.4 at turbine
inlet, but takes negative values at the blade wall, because of the dropping pressure. The associated
growth of the Mach number is limited during the expansion and the shock strength reduced (see Figs.
8.11acd). Losses associated to shock waves remain limited and turbine e�ciency increases to 92.1%.
The enthalpy jump is 1499 kJ/mol while the temperature variation is equal to 2.6%. For the sake of
comparison, the behavior of a non-BZT �uid, namely toluene, is also reported in Figs. 8.11bcd with
operating conditions PTOL = (p/pc = 0.953, ρ/ρc = 0.648) which are close to the saturation curve
so as to avoid entering the biphase region during the expansion. In these conditions, the isentropic
e�ciency reduces to 88.1% for toluene, due to the appearance of stronger shocks. The enthalpy
jump is equal to 1.514 kJ/mol, close to the value obtained for D5 at PBZT conditions. This analysis
demonstrates an inlet condition close to the saturation curve is not su�cient in itself to yield an
increase in the isentropic e�ciency; this feature remains speci�c to dense gas �uids such as D5 and
D6.
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Figure 8.8: Close-up of the dense-gas region for D5. (a) PRSV model, (b) MAH model, and (c) SW
model.

Figure 8.9: iso-Mach lines for PBZT (a) and PDG (b), Mach number (c) and C (d) distributions along
the blade wall (working �uid D5, PRSV EoS). Point PBZT is close to the inversion zone of the �uid.
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Figure 8.10: Close-up of the dense-gas region for D6 (PRSV model).

Figure 8.11: iso-Mach lines for PD6 (a) and PTOL (b), Mach number (c) and C (d) distributions
along the blade wall (working �uid D6 and toluene, PRSV EoS).
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This section investigates the sensitivity of numerically computed �ow �elds to uncertainties in ther-
modynamic models for complex organic �uids. Precisely, the focus is on the propagation of uncertain-
ties introduced by some popular thermodynamic models to the numerical results of a computational
�uid dynamics solver for �ows of molecularly complex gases close to saturation conditions (dense gas
�ows). A chaos collocation method is used to perform both a priori and a posteriori tests on the
output data generated by thermodynamic models for dense gases with uncertain input parameters.
A priori tests check the sensitivity of each equation of state to uncertain input data via some refer-
ence thermodynamic outputs, such as the saturation curve and the critical isotherm. A posteriori
tests investigate how the uncertainties propagate to the computed �eld properties and aerodynamic
coe�cients for a �ow around an airfoil placed into a transonic dense gas stream.

9.1 Introduction

No generally accepted experimental proof of non-classical gasdynamic behavior is available, as several
attempts have failed to provide evidence (see Ref. [Colonna 2003] for a review). The detection of
BZT behavior is related to a large extent to the possibility of accurately estimating the position and
extent of the inversion zone or, in other words, to the accurate evaluation of Γ.

More generally, reliable simulations of compressible �ows with complex thermodynamic behavior
require the quanti�cation of thermodynamic modelling errors, especially for those applications that
look for improvements of the order of a few percents of the system performance. This is actually the
case for energy conversion cycles (see, for instance, Ref. [Brown 2000]). The uncertainty associated to
the estimation of the thermodynamic behavior of a �uid is due both to the mathematical form of the
equation of state chosen to represent it and to the di�culty of providing reliable input thermodynamic
properties (like critical properties, acentric factor, etc.) to build the model coe�cients. Countless
equations of state (EOS) have been proposed in the literature, diversi�ed according to the substance
to be modelled. Equations of state based on theoretical and analytical criteria, such as the van der
Waals, Redlich-Kwong, Peng-Robinson, Martin-Hou equations, and many other (see, for instance,
Ref. [Reid 1987]), allow modelling the thermodynamic behaviour of a �uid for an extended range
of operating conditions provided that some thermodynamic inputs (e.g., critical temperature and
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pressure, acentric factor and other) are available for the substance of interest. However, such data
are typically a�ected by more or less signi�cant experimental errors. For instance, the determination
of critical-point data is a delicate issue, because of the highly sensitive thermodynamic response
close to critical conditions and also because complex substances may decompose, totally or partly,
at temperatures close to the critical one. In this case, critical point values just rely on estimations.

For simple �uids, large and accurate experimental data sets are available (pressure-density-
temperature, or pρT , data, speed of sound, etc.), which enables the derivation of reference mul-
tiparameter equations of state reproducing the �uid thermodynamic properties with the same level
of uncertainty a�ecting the measurements themselves. These can be as low as 0.01% for many sub-
stances of common use Ref. [Span 2001, Span 2003]. For more complex �uids, the available data sets
are often insu�cient to establish reference equations of state. In this case, a way of increasing the ac-
curacy and/or the applicability range of the thermodynamic model is to develop analytical equations
of state with a large number of expansion terms (for instance, virial expansion terms), along with suit-
able thermodynamic constraints, which allow to determine the equation coe�cients from a minimal
amount of thermodynamic input data. The more complex the equation of state, the larger number
of thermodynamic inputs is required to determine the coe�cients, compared to simple equations of
state. As a consequence, care has to be taken if too scarce or inaccurate data are available, since
even if the (deterministic) accuracy is theoretically increased, larger modelling uncertainties appear
because of the increased number of uncertain parameters. Clearly, this is a major concern for many
molecularly complex industrial �uids; namely, very little data are available for �uids falling into the
category of dense gases and, more particularly, for candidate BZT �uids. The scarcity of reliable data
is also a major di�culty for the construction of so-called 'technical' equations of state for dense gases.
These are semi-empirical equations of state based on a smaller number of parameters than reference
EOS and using a �xed mathematical form for a given class of substances (see Ref. [Span 2003]). For
instance, Ref. [Colonna 2006b] provides a listing of available data for selected siloxanes. These are
essentially restricted to critical properties, normal boiling temperatures, vaporization enthalpies, and
acentric factors along with a few saturated liquid and vapor data and p-T data for some of the �uids.
The experimental uncertainties for these data are de�nitely higher than for state-of-the-art data for
'common' �uids (from 3% up to 25% for some data). The present work investigates the sensitivity
of some thermodynamic models of common use for the simulation of dense gas �ows to uncertain
thermodynamic input data. Precisely, we focus on the sensitivity of some important thermodynamic
output (such as the saturation pressure at di�erent temperatures and the fundamental derivative of
gasdynamics) for two �uids frequently considered in the dense gas literature and for di�erent choices
of the thermodynamic model (thermal and caloric equations of state). The chosen �uids are a heavy
�uorocarbon (studied, for instance, in Refs. [Brown 2000, Cinnella 2007]) and a siloxane (considered
in Refs. [Colonna 2007, Cinnella 2008a]). The thermodynamic models under investigation include
two cubic equations of state, namely, the Redlich-Kwong EOS with the modi�cation proposed by
Soave [Soave 1972] the Peng-Robinson-Stryjek-Vera (PRSV) equation of state [Stryjek 1986], and
the �ve-term virial equation of state of Martin and Hou [Martin 1955]. These analytical equations
of state may be applied to potentially any substance and have been implemented in computational
�uid dynamics (CFD) codes for dense gas simulations since they o�er a good compromise between
accuracy and computational cost. In the past, they have been often applied to the investigation of
negative nonlinearity region of organic �uids [Lambrakis 1972, Cramer 1992] and to the analysis of
dense gas �ows Ref. [Brown 2000, Cinnella 2007, Cinnella 2008a, Cramer 1992]. In addition to the
previous ones, we also consider a thermodynamic model based on a multiparameter technical equation
of state [Span 2003], whose coe�cients have been optimized for siloxanes in Ref. [Colonna 2006b].
After performing a series of a priori tests to check the sensitivity of the equations of state to input
thermodynamic data, we quantify the impact of such uncertainties on the �ow �elds predicted by
a dense gas numerical solver, with focus on aerodynamic output data such as pressure and force
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coe�cients. The application case taken into account for these a posteriori tests is a transonic dense
gas �ow past an airfoil.

9.2 Sources of uncertainty

The role of a thermodynamic model is to reproduce as accurately as possible the thermodynamic
properties of a given substance, especially when measured data are not available or too scarce. The
main sources of uncertainty associated to a thermodynamic model are the functional form of the
model and the values taken by the substance-speci�c coe�cients. These are related directly or
indirectly to some input thermodynamic properties that can be measured or just estimated. For
simple �uids, the available data allow to develop very complex multiparameter equations of state
whose coe�cients may be optimized to a �tting accuracy of the same order of the experimental
uncertainty. For the molecularly complex �uids of interest here, the experimental data are much
scarcer and di�cult to obtain. In these conditions, the use of simpler models may be safer than
the use of complex ones, even if complex models are theoretically expected to perform better if they
could be properly optimized. The three analytical equations of state described in the previous Section
7.2.1 (RKS, PRSV, MAH) have a mathematical form depending directly on given thermophysical
properties; namely, the critical temperature and pressure and the acentric factor (RKS and PRSV
models), and additionally the critical compressibility factor and the Boyle temperature (MAHmodel).
For the calculation of caloric properties, the equations of state are supplemented by the ideal gas
contribution to the speci�c heat at constant volume, which depends on cv∞(Tc) and the power-law
exponent n. Table 9.1 lists the values found in the literature for the input thermodynamic parameters
needed by the preceding EOS for the two �uids under investigation. For PP10, the data are taken
from Refs. [Lambrakis 1972, Cramer 1992] and for D5 from Ref. [Colonna 2006b] and references cited
therein. Uncertainty estimation requires taking into account probability distributions for the input
thermodynamic properties required by the previous models. Inspection of the available literature
allows only a rough estimation of typical ranges of variation of such properties for PP10 and D5. For
PP10, no thermodynamic data are available to assess the accuracy of any thermodynamic model, as
discussed for instance in Ref. [Guardone 2004]. The critical point data are based on manufacturer
data, without any precise uncertainty quanti�cation. The dilute gas speci�c heat is estimated by
power-�tting results from the group contribution procedure of Rihani and Doraiswamy [Rihani 1965],
which may lead to errors as high as 25% on the true value. This represents possibly the largest source
of uncertainty in the thermodymamic models. Finally, even if only manufacturer data are available
for PP10, estimates provided for lighter �uids with similar chemical structures show that the expected
errors may be of the order of 3%-4% for vapor pressure data and 15%-20% on the critical speci�c
volume. Concerning D5, a little bit more information is available. For instance, data reviewed in
Ref. [Colonna 2006b] show somewhat smaller error intervals both on critical point data (of the order
of 1%-2%) and the ideal-gas speci�c heat (approximately 6%). Because of the lack of information
about uncertainties on the �uid properties and the associated probability distributions, and since
the aim of the present study is to analyse the sensitivity of the proposed models more than to give
accurate quantitative estimates of the con�dence intervals on the computed results, we assume in
the following that the input properties are described by probability density distributions with means
equal to values adopted for most deterministic computations available in the literature (see, e.g.,
Refs. [Cinnella 2007, Cinnella 2008a]) and variation coe�cients (i.e., ratio of the standard variation
to the mean) of about 3%, which is maybe optimistic for some of the considered properties, but
is expected to lead to a conservative estimate of the variability of the results. Di�erently from
the preceding models, the coe�cients of the SW thermal EOS are obtained by taking into account
uncertainties on the experimental data used for the calibration procedure. Full information about
the weighting strategy is unfortunately not available, so that we are not able to judge about the
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Property pc (atm) Tc (K) Zc Te (K) n cv;1 Tcð Þ=R x

PP10 16.0a� 16.2b 630.2b� 632.2a 0.2831a� 0.2859b 463.2a� 467b 0.5255a 78.37a 0.4833b

D5c 10.2� 11.5 617.4� 619 0.237� 0.274 484.1 0.5208d 76.0d 0.6658

Table 9.1: Ranges for di�erent thermodynamic properties and parameters of PP10 and D5.

A B C D

ÿ4.1975 0.22390 ÿ1.6880� 10
ÿ4

6.0140� 10
ÿ8

Table 9.2: Mean values of coe�cients the speci�c heat at constant pressure for D5.

sensitivity of the equation to the weighting criteria. Thus, we choose to adopt the thermal SW EOS
with �xed coe�cients and carry out a sensitivity analysis on the e�ect of the chosen caloric model
only. Precisely, we perturb the coe�cients of Eq. 7.12, whose deterministic values (taken from Ref.
[Colonna 2006b]) are provided in Table 9.2. We assume that these coe�cients are represented by
random variables with means as in Table 9.2 and variation coe�cients equal to 3%. In addition to
variation intervals, stochastic analyses also require information about the form of the probability
density functions (pdfs) for each uncertain parameter. When these informations are not available, a
reasonable choice could be to assume a Gaussian distribution. For PP10 and D5, information about
possible input pdfs is lacking. Thus, we check the in�uence of the mathematical form for the input
pdf by comparing results obtained for normal and uniform distributions with the same mean. For
the last one, the variation interval is equal to µ±3σ; µ being the mean and σ the standard deviation
of the corresponding normal distribution.

9.3 Results

In this section, we apply a Chaos Collocation Method to the propagation of thermodynamic un-
certainties through the selected thermodynamic models (Section 9.3.1) and study how they a�ect
the predicted thermodynamic behavior of the �uids under investigation. Than, we propagate these
uncertainties through the dense gas �ow solver and quantify their e�ect on the computed solutions
(Section 9.3.2).

9.3.1 Uncertain state diagrams

We �rst perform a priori tests on the sensitivity of the thermodynamic models under investigation
models to uncertain input parameters. To measure such a sensitivity, we consider the uncertain
state diagrams in the Amagat (pressure/volume) plane and compute error bars on the liquid/vapour
coexistence curve, the critical isotherm and two curves of crucial importance for dense gas �ows,
namely, two isolines of the fundamental derivative of gas dynamics. Speci�cally, we investigate the
e�ect of thermodynamic uncertainties on the shape and location of the Γ = 0 and Γ = 1 isolines
of the p-v plane, on the size (area) of the inversion zone in the non-dimensional p-v plane, denoted
as A(Γ < 0), and on the minimal value of C on the critical isotherm, i.e., Γmin,Tc = minvΓ(Tc, v).
The numerical results presented in the following are obtained by using a Chaos Collocation method
with an expansion polynomial order equal to 3. Numerical tests show that this is su�cient to ensure
converged statistics for the quantities of interest. Two �uids have been selected for this study: PP10
and D5. For PP10, the simpler models RKS and PRSV have been tested against the more complex
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MAH model. For this last model, two cases have been considered: in the �rst one, referred-to as
MAH (6), all the six uncertain parameters described in Section 9.2 are perturbed simultaneously
and in the second one (MAH (3)), just three model parameters are assumed to vary, namely, the
critical pressure and temperature and cv∞(Tc)/R. First of all, we investigate the in�uence of pdf
chosen to model input uncertainties for the most challenging case, i.e., MAH (6). We consider two
types of pdf: Gaussian distributions of the form N(µ, 0.03µ), where µ is the mean value of the
uncertain parameter of interest, and uniform distributions in the range µ ± δ, where δ was chosen
equal to 0.09µ. The mean values of the perturbed parameters for PP10 are in Table 9.1. Table 9.3
shows the mean and the standard deviation for the area of the inversion region computed in the two
cases. The results obtained with the two pdf are quite similar for all the models. The corresponding
uncertain state diagrams, reported in Fig. 9.1, exhibit only slight di�erences. For this reason, only
the normal distribution has been retained for the subsequent computations. Figures 9.2 and 9.3
shows the uncertain state diagrams and a close-up of the inversion zone for PP10, as predicted by
the RKS, the PRSV, and the MAH models (with six and three uncertain parameters). For all of the
models, the mean stochastic solution is almost superposed to the deterministic solution obtained by
taking input parameter equal to the mean values of the distribution. Moreover, the simpler RKS
and PRSV models provide similar mean curves and display similar (modest) sensitivity to the input
uncertainties. In fact, error bars on the results are of the same order of the supposed uncertainty
range for input quantities. The multiparameter MAH model predicts quite di�erent mean curves
with respect to the previous cubic models and appears to be much more sensitive to thermodynamic
uncertainties then RKS and PRSV; actually, the results are a�ected by greater error bars, which
become particularly large for the Γ isolines. The great sensitivity of the predicted results to the
mathematical form of the thermodynamic model and/or to the input thermodynamic data may
explain why tentatives of designing experimental setups for dense gas �ows (namely, dense gas shock
tubes for the study of nonclassical waves) based on preliminary numerical data provided by the MAH
model were not successful; very small deviations of the actual �ow behavior from the predicted one
may result in very di�erent values of the fundamental derivative of gas dynamics, which makes the
conditions of the experiments very hard to be controlled. This adds to the di�culty of �ne-tuning the
experimental conditions due to technological implementation details of the experimental setup and
to �uid decomposition problems. For a more quantitative evaluation of the results, Table 9.4 reports
the mean values of the computed area of the inversion zone size and of the minimum value of Γ on
the critical isotherm for the three models, as well as the corresponding standard deviations. For the
simpler models, the mean values are very close to the deterministic ones. However, the associated
standard deviations are non negligible (10%-30% of the mean). For the MAH model (three and
six uncertain parameters), standard deviation varies from 30% up to 60% of the mean. In terms
of ampli�cation factors (de�ned as the ratios of the output over the input coe�cient of variation),
for the area of the inversion region, we get 3.3, 10, 10, and 20 for RKS, PRSV, MAH (3) and (6),
respectively. The minimal value of the fundamental derivative on the critical isotherm Γmin displays
an even higher sensitivity, since it may change its sign according to the �uctuations of the model
parameters. Note that the MAH model predicts a much larger inversion zone compared to the RKS
and PRSV models. Thus, simpler cubic equations like the RKS and the PRSV may be even more
conservative in terms of predictions of BZT e�ects. A similar analysis has been carried out for D5,
a more promising candidate as ORC working �uid. For this �uid, we consider the RKS, PRSV,
and MAH models along with the possibly more accurate SW model [Span 2003, Colonna 2006b].
For the last model, only the caloric properties are perturbed, as discussed previously. Inspection of
Figures 9.4 and 9.5 shows that the mean stochastic solution is almost superposed to the deterministic
solution for all the models. The simpler RKS, PRSV, and more complex SW model provide similar
mean curves and display similar (modest) sensitivity to the input uncertainties. Output coe�cients
of variation for the quantities of interest are of the same order of those used for input quantities.
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Model l A C < 0ð Þð Þ r A C < 0ð Þð Þ l Cmin;Tc
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Table 9.3: Mean and standard deviations for the area of the inversion zone and the minimum value
of the fundamental derivative Γ along the critical isotherm, PP10 �uid, and MAH model. E�ect of
the mathematical form of the pdf for input quantities.
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Table 9.4: Means and standard deviations for the area of the inversion zone and the minimum value
of the fundamental derivative Γ along the critical isotherm. Fluid: PP10.

On the contrary, MAH exhibits signi�cant error bars for the Γ = 1 contour, as already observed for
PP10. Moreover, the Γ = 1 contour has a monotonic behavior, i.e., pressure increases when speci�c
volume tends toward unity; this is in contrast with predictions of other models. All the models,
except SW, predict an inversion zone. Table 9.5 provides quantitative results for the area of the
inversion region and Γmin. For D5, the area of the inversion zone is zero or close to zero according to
all the models. As a consequence, the standard deviation is as high as 90% of the mean. Remark that
the SW always predicts positive values of Γ, at least in the range of perturbed coe�cients considered
here, so that the standard deviation of the inversion zone is equal to zero. For Γmin, the coe�cients
of variation range from 15% to 25%, according to the chosen model.

In summary, the main results of the present a priori analysis are (1) the MAH model is much
more sensitive to uncertain input parameters than simpler cubic equations and produces unreliable
results when applied to substances lacking of high-quality experimental information; speci�cally, its
use is not recommended for substances like PP10 or D5 and (2) the PRSV model shows good stability
in the presence of uncertain inputs and provides results close to the reference SW model in terms of
size the inversion region (close to zero) and Γmin.

Model l A C < 0ð Þð Þ r A C < 0ð Þð Þ A C < 0ð Þjdet l Cmin;Tc

ÿ �

r Cmin;Tc

ÿ �

Cmin;Tc

�

�

det

RSK 0.2527� 10
ÿ2

0.1822� 10
ÿ2

0.2287� 10
ÿ2

0.2205� 10
ÿ0

0.2826� 10
ÿ1

0.2206� 10
ÿ0

PRSV 0.1097� 10
ÿ2

0.1073� 10
ÿ2

0.6430� 10
ÿ3

0.2448� 10
ÿ0

0.2655� 10
ÿ1

0.2449� 10
ÿ0

MAH (3) 0.2091� 10
ÿ1

0.1378� 10
ÿ1

0.1922� 10
ÿ1

0.1594� 10
ÿ0

0.3837� 10
ÿ1

0.1589� 10
ÿ0

MAH (6) 0.2269� 10
ÿ1

0.2015� 10
ÿ1

— 0.2006� 10
ÿ0

0.4929� 10
ÿ1

—

SW 0.0 0.0 0.0 0.2755� 10
ÿ0

0.3164� 10
ÿ1

0.2748� 10
ÿ0

Table 9.5: Means and standard deviations for the area of the inversion zone and the minimum value
of the fundamental derivative Γ along the critical isotherm. Fluid: D5.
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Figure 9.1: Uncertain state diagrams (left) and close-up of the inversion zone (right). MAH model,
�uid PP10. E�ect of the mathematical form of the pdf for the input quantities.

Figure 9.2: Uncertain state diagrams (left) and close-up of the inversion zone (right). Fluid PP10.
Top to bottom: RKS and PRSV models.
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Figure 9.3: Uncertain state diagrams (left) and close-up of the inversion zone (right). Fluid PP10.
Top to bottom: MAH model with 6 and 3 uncertain parameters.

Figure 9.4: Uncertain state diagrams (left) and close-up of the inversion zone (right). Fluid D5. Top
to bottom: RKS and PRSV models.
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Figure 9.5: Uncertain state diagrams (left) and close-up of the inversion zone (right). Fluid D5. Top
to bottom: MAH model, with 6 and 3 uncertain parameters, and SW model.



172 Chapter 9. Reliability of thermodynamic models for dense-gas �ows

9.3.2 Uncertainty propagation through the dense gas solver

As a second step, a posteriori tests are performed to study the propagation of thermodynamic
uncertainties to the numerical results for a steady transonic inviscid �ow of a dense gas over a
NACA0012 airfoil at M∞ = 0.95 and 0◦ angle of attack. The thermodynamic conditions of the
free-stream are �xed (no uncertainty) and correspond to pr = 0.985 and ρr = 0.622. In these
conditions, the lift and moment coe�cients are equal to zero, but wave drag exists. Thereby, we
focus our analyses on the drag coe�cient. Since this quantity is very sensitive to mesh resolution, we
perform a preparatory mesh study to check the independency of the computed stochastic results on
the computational grids. Because of the �ow symmetry, only one half of the computational domain
is simulated, with symmetry conditions enforced on the axis. Figure 9.6 shows the e�ect of grid
density on the stochastic and deterministic results computed by using the MAH model with normal
distributions for the input thermodynamic data. The distribution parameters are reported in Table
9.6. The mean values correspond to the thermodynamic properties of PP10. The coe�cients of
variation σ/µ of the input distributions are limited to about 1.5%. This choice avoids that large
variations of the input parameters may drive the �ow into the humid vapour region, for the chosen
thermodynamic free-stream conditions, since the �ow solver is not equipped with two-phase models.
This is a limitation of the proposed method, which will be investigated in future research. The results
are computed using increasingly �ne half C-shaped grids composed by 50x16, 100x32, and 200x64

cells, respectively. The mean height of the �rst cell closest to the wall is equal to 0.001 chords for
the medium grid. The outer boundary is located 10 chords away from the airfoil. The stochastic
results take into account only three uncertain input parameters, namely, the critical temperature
and pressure and the ideal critical heat capacity. Computations are carried out using second-order
chaos polynomials. Grid convergence of the mean stochastic solution (Fig. 9.6(a)) is slightly slower
than that of the deterministic one for this very sensitive case characterized by signi�cant dense
gas e�ects. Nevertheless, convergence of the solution standard deviation (Fig. 9.6(b)) is quite
satisfactory, and the medium grid solution provides already a reasonable representation of the solution
expectancy and variance. In the following, we compute solutions using the mean grid, but apply
Richardson extrapolation (REX) [Cinnella 2013] to the drag coe�cients obtained on two coarse grids
of increasing density. Fig. 9.6(c) displays the reconstructed probability density function of the drag
coe�cient for the di�erent computational grids and the REX method. The corresponding means and
standard deviations are also provided in the legend. The REX technique provides a distribution in
fair agreement with the �ne grid one, for computational cost that is only slightly higher with respect
to medium grid computations and is, therefore, retained for the subsequent drag computations.

Second, we check the e�ect of the chaos polynomial order used to reconstruct the stochastic
solutions. Computations with chaos polynomials ranging form 1st to 5th order have been performed
for case MAH (3) with input distributions chosen as in the preceding series of computations. Fig.
9.7 displays the mean and the standard deviation of the drag coe�cient as functions of the chaos
polynomial order. A satisfactory convergence is achieved by using second-order chaos polynomials,
which are thereby retained for the rest of the study. As stressed before, accurate information about
probability function distributions of the input stochastic parameters is not available. A priori tests
carried out using normal distributions and uniform distributions characterized by the same mean
and range ±3σ, indicated that the distribution shape a�ects only marginally the thermodynamic
output (see Section 9.3.1). Here, we check how these small di�erences propagate through the dense
gas solver. We choose case MAH (3) and compare the results obtained with the normal input
distributions of Table 9.6 (PP10) for uniform distributions characterized by the same mean values
and a variation interval equal to ±3σ. Fig. 9.8 shows the distributions of the mean pressure coe�cient
and of its standard deviation around the airfoil. The mean �elds are only slightly a�ected by the
choice of the input distribution, whereas the standard deviation �eld changes signi�cantly. The
a�ected zone is wider when considering normal distributions, and the peak value, located close to
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the airfoil wall in a region characterized by a weak shock wave, is higher. The reason is that when
the normal distribution is considered, a greater number of quadrature points produce an extended
inversion zone. As a consequence, the probability of capturing nonclassical phenomena is higher when
using a normal distribution. This is con�rmed by inspection of the computed mean and standard
deviations for the drag coe�cient; if the mean is only slightly sensitive to the input distribution
(µ = 0.3161 · 10−2 for the normally distributed case and µ = 0.3031 · 10−2 for the uniform one),
the standard deviation is more than double when normally distributed variables are considered
(0.3692 ·10−2 vs 0.1560 ·10−2). Moreover, the output distribution associated to normally distributed
input parameters is highly non normal and characterized by lower values of the mean and higher
values of the standard deviation. The lower mean drag is due to the fact that nonclassical e�ects
are encountered for a greater number of quadrature points. Since the output solution exhibits a
higher sensitivity when using a normal distribution, we consider this choice as the more conservative
(worst case possible), and thus, we consider normally distributed input parameters in all subsequent
computations. We now consider the propagation of thermodynamic uncertainties for di�erent choices
of the working �uid and of the thermodynamic model. The �rst series of results concerns �ows of
PP10. The thermodynamic models taken into account are the RKS, PRSV, and MAH (with 3
and 6 uncertain parameters). The uncertain input parameters in the thermodynamic models are
assumed to be normally distributed, with means and standard deviations listed in Table 9.5. The
reference quantities used to investigate the sensitivity of the computed �ow-�eld to the uncertain
thermodynamic model are the drag coe�cient and the pressure coe�cient. Four series of results are
considered in the following: the �rst and the second one have been obtained by means of the RKS
and PRSV models with three uncertain parameters (namely, ω, cv∞(Tc)/R, and n). The third and
fourth series have been obtained via the multiparameter MAH model and di�er between them for the
number of uncertain parameters included in the simulations. In one case, just three model parameters
are assumed to vary, namely, the critical pressure and temperature and cv∞(Tc)/R. In the second
one, all of the free parameters in the MAH model are assumed as random variables. Figure 9.9
shows the iso-contours of the mean pressure coe�cient and its standard deviation for the four cases
under study. The deterministic distributions obtained by setting the model parameters to the mean
values of the chosen distributions are also reported for reference. For the RKS and PRSV models,
the mean solution provided by the chaos collocation method is very similar to the deterministic one.
As it could be expected, the region of strongest sensitivity is located around the shock wave. The
output distribution is almost symmetric, and the mean location of the shock wave almost coincides
with the deterministic one. This is better shown by inspection of Figure 9.10 that displays the
wall distributions of the pressure coe�cient, with error bars corresponding to µ ± σ. For simpler
models, the standard deviation of the pressure coe�cient is negligible almost everywhere, except in
the shock region, where it takes values up to 40% of the mean. For the MAH model, the appearance
of nonclassical nonlinearities ampli�es the uncertainties on the input parameters signi�cantly. This
result in a considerable dispersion of the computed drag coe�cient. Figure 9.11 shows the computed
probability density function for the drag coe�cient, cd. This has been obtained via Monte-Carlo
sampling over 500 points of the output distribution reconstructed via Eq. (12). For the RKS and
the PRSV models, the drag coe�cient is characterized by almost normal pdfs. The CD distribution
for RKS exhibits a higher mean than the PRSV one, which is consistent with the fact that the �rst
model predicts a smaller inversion zone and, consequently, more reduced dense gas e�ects. On the
other hand, the RKS model is also slightly less sensitive than PRSV to input uncertainties, and
the associated standard deviation is lower. Numerical values for the mean and standard deviation
of the drag coe�cient, along with the corresponding deterministic values, is provided in Table 9.7.
Figures 9.9 and 9.10 also provide results for the comprehensive MAH model. Several remarks are in
order. First of all, both the deterministic and the mean stochastic solutions provided by this model
strongly di�er from those given by the simpler ones. This is due to the fact that, for the chosen
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pc Tc Zc Te n cv;1 Tcð Þ=R

@ 16:2; 0:27ð Þ @ 630:2; 10:5ð Þ @ 0:286; 0:005ð Þ @ 467; 7:7ð Þ @ 0:526; 0:009ð Þ @ 78:3; 1:31ð Þ

Table 9.6: Distributions of the uncertain parameters used for a posteriori tests. PP10.

Model l cdð Þ r cdð Þ cdð Þdet

RKS 0.6253� 10
ÿ1

0.7724� 10
ÿ3

0.6214� 10
ÿ1

PRSV 0.5175� 10
ÿ1

0.1177� 10
ÿ2

0.5150� 10
ÿ1

MAH, 3 unc. 0.3161� 10
ÿ2

0.3692� 10
ÿ2

0.2587� 10
ÿ2

MAH, 6 unc. 0.4344� 10
ÿ2

0.6169� 10
ÿ2

—

Table 9.7: Mean and standard deviations of the computed drag coe�cient for di�erent models.
Working �uid PP10.

�uid properties and far-�eld thermodynamic conditions, the MAH model predicts the �ow to evolve
essentially within or in the immediate neighbouring of the inversion zone. In such conditions, the
�ow physics is dramatically a�ected by dense gas e�ects. Namely, compression shock waves tend to
disintegrate and the �ow �eld is almost smooth. Unfortunately, no experimental data are available for
this problem, so that there is no mean of determining which models gives the more realistic results.
It is quite universally accepted that the MAH model is one of the more accurate models for the
computation of thermodynamic properties of �uorinated substances, whenever high-quality data for
validation are available. Nevertheless, when applied to substances for which scarce and/or uncertain
data are available, the MAH model provides results for the location and extent of the inversion zone
that are extremely sensitive to the model parameters, as demonstrated by the preceding a priori tests.
As a consequence, the aerodynamic �eld displays a much greater sensitivity to the input parameter
than in the previous computations with the simpler models. Note that the solution computed by
considering only three well-chosen uncertain parameters is quite close to that computed by allowing
all the model parameters to vary. This demonstrates that the dispersion of the computed results
may be quanti�ed with reasonable accuracy using a reduced number of uncertain parameters, that
is, with a substantial reduction in the global computational cost. The computed probability density
functions for the drag coe�cient obtained in the two cases are also shown in Figure 9.11. In this
case, the results display signi�cant non-Gaussian interactions, with more dispersion of the data on
the high-CD side of the curve. High-drag values are associated to the presence of a stronger shock
wave in the solution, i.e., gas behaviour is closer to the ideal-gas one. The drag coe�cient is a�ected
by a very large uncertainty, with standard deviation which is larger than the mean value for both the
case with 3 and the case with 6 uncertain model parameters. In the �rst case, however, the mean drag
coe�cient is about 20% lower than in the second one (see Table 9.7), in spite of the relatively similar
mean pressure coe�cient distribution at the wall. This indicates that integrated values are more
sensitive than local ones, essentially because of large uncertainties on the shock location. Finally,
we remark that the computed means are higher than the deterministic drag coe�cient, since small
changes in the model parameter produce large variations in the size of the inversion zone, which
increases the probability for the �ow to evolve outside it.
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Figure 9.6: E�ect of mesh density on the computed results. (a) Mean pressure coe�cient at the wall,
(b) standard deviation, and (c) probability density distribution of the drag coe�cient. The results
have been obtained by using the MAH equation with 3 uncertain parameters.
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Figure 9.7: E�ect of the chaos polynomial order on the mean and standard deviation of the stochastic
drag coe�cient. The results have been obtained by using the MAH equation with 3 uncertain
parameters.

Figure 9.8: Results of stochastic computations for case MAH (3) using normally (left column) and
uniformly (right column) distributed input parameters. Top: stochastic pressure coe�cient �elds
(line: mean �eld; �ood: standard deviation). Bottom: pressure coe�cient distributions at the wall.
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Figure 9.9: Results of stochastic computations for normally distributed input parameters. Working
�uid is PP10. Left: stochastic pressure coe�cient �eld, mean value; middle: standard deviation;
right: deterministic pressure coe�cient �eld associated to the most probable (mean) values of the
input parameters.
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Figure 9.10: Results of stochastic computations for normally distributed input parameters. Working
�uid is PP10. Pressure coe�cient along the airfoil surface: mean value µ and uncertainty bars µ±σ.

Figure 9.11: Probability density functions for the drag coe�cient CD (working �uid PP10).
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A computational method for taking into account backward uncertainty propagation in �ow problems
is presented and applied to the study of rarefaction shock waves (RSW) in a dense-gas shock tube.
Previous theoretical and numerical studies have shown that a RSW is relatively weak and that the
prediction of its occurrence and intensity are highly sensitive to uncertainties on the initial �ow
conditions and on the �uid thermodynamic model. The objective of this study is to introduce an in-
novative, �exible and e�cient algorithm combining computational �uid dynamics (CFD), uncertainty
quanti�cation (UQ) tools and metamodel-based optimization in order to obtain a reliable estimate
for the RSW probability of occurrence and to prescribe the experimental accuracy requirements en-
suring the reproducibility of the measurements with su�cient con�dence. Moreover, a second study
is presented which is focused on exploring the possibility of using a two-phase shock tube for the
reproduction of a RSW.

10.1 Feasibility study on RSW appearance considering UQ and ex-

perimental set-up

The purpose of the present study is twofold. First, an e�cient and �exible algorithm is described
for computing the uncertainty levels to be achieved on input parameters of a �ow problem (such as
measured initial �ow conditions) so as to ensure a prescribed level of uncertainty on the experiment
output. Secondly, the proposed algorithm is applied to the prediction of occurrence for a rarefaction
shock wave in the FAST experiment (see Figure 10.1). Note the methodology proposed and followed
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Figure 10.1: Schematic view (top) of the FAST setup and of a rarefaction shock wave experiment.
Qualitative pressure pro�le (below) along the shock tube some time after the opening of the valve
located at x = xi.

in this study can also be easily extended to tackle the complex problem of turbomachinery design in
the particular case of ORC turbines exploiting nonclassical gas dynamics e�ects.

10.1.1 CFD solvers for dense gas �ows

zFlow is a CFD code capable of treating dense-gas �ows [Colonna 2004, Colonna 2003,
Colonna 2008c, Harinck 2009, Harinck 2010, Rebay 2009, Turunen-Saaresti 2010a]. It is linked to
the FluidProp library [Colonna 2005], which implements a wide variety of thermodynamic models.
zFlow can solve the Euler and the RANS equations coupled with the high- or low-Reynolds number
k-ω turbulence models in 1D, 2D and 3D. Other distinguishing features are a high resolution upwind
space discretization method for the advective parts of the equations suited to general unstructured
and hybrid grids and the use of an implicit time-integration scheme which proved to be crucial
for the e�ective computations of �uids modeled with complex and therefore very computationally
demanding equations of state.

The NZDG code has been developed at LEGI in Grenoble [Congedo 2007, Congedo 2011a]. It
solves the quasi-1D Euler equations with second-order accuracy in time and space. The convective
�uxes are discretized using the Roe numerical �ux and a second-order limited MUSCL variable
reconstruction. The Roe average for dense gas �ows is computed with the simpli�ed approach
proposed in [Cinnella 2006] and the slope limiter introduced in the linear reconstruction is of the
Van Albada type. Second-order accuracy in time and robust time-integration are achieved using
a three-level implicit formula to approximate the physical time-derivative, within a dual-time sub-
iterative approach to solve the resulting non-linear system.

10.1.2 Sources of Uncertainty

Two main sources of uncertainties are considered in this study: i) the uncertainties on the �uid
initial state (p, T ) in the charge tube of the FAST, denoted as IC uncertainties from now on and
ii) the uncertainties on the thermodynamic model denoted as TD uncertainties hereafter. These
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uncertainties a�ecting the �ow simulation can be propagated either in the sole PRSV EoS (Eq.
(7.2)) or in the EoS coupled with the unsteady Euler equations describing the �ow evolution in the
shock-tube. The �rst approach is referred to as an a priori strategy for analyzing uncertainty and
is used in Section 10.1.4 to determine the best initial condition for the shock tube experiment. The
second approach is called a posteriori and is applied in Section 10.1.5 and 10.1.6, respectively in a
forward and backward-propagation mode. The goal of solving the forward uncertainty propagation
problem is to quantify the impact of prescribed IC and TD uncertainty levels on the RSW probability
of occurrence. The study of the backward uncertainty problem yields the estimation of the IC and
TD uncertainty levels allowing to ensure a prescribed probability of occurrence for the RSW in the
shock tube. In the present work, the uncertain parameters will be systematically assumed to follow
a uniform probability density function; consequently, these parameters will be described by their
intervals of variation denoted %IC,%TD.

10.1.2.1 Uncertainties in the initial conditions of the experiment

The initial conditions (IC) for the experiment (and for the simulation) are prescribed so as to maxi-
mize the Mach number of the rarefaction shock wave and thus makes its detection easier, according to
the method brie�y described in [Colonna 2008a]. The maximum achievable accuracy on the tempera-
ture and pressure levels in the charge tube has been deduced from the measurement instruments and
hardware speci�cations to be 0.4% for the pressure and 0.1% for the temperature [Colonna 2008a].
Both the speci�cation of the IC conditions and the accuracy achievable with the FAST instrumenta-
tion and control are still subject of investigation and the results of this work will help directing the
e�orts. In this study, initial left state (pressure pL and temperature TL) and right state (pR and TR)
are assumed uncertain.

10.1.2.2 Uncertainties on the thermodynamic model

See Section 9.2 for the model-uncertainties of PRSV model.

10.1.3 Backward uncertainty propagation algorithm

10.1.3.1 De�nition of the inverse problem

The objective of the study is to �nd optimal uncertainty bars on input data ensuring target statistic
properties for the output of interest. Obviously, if uncertainty bars are reduced on the input data,
the variability of the output in terms of statistical moments will be also reduced. However, reducing
the uncertainty bars on input data can be costly or simply unfeasible because, for instance, of
measurement tools tolerance that limit the practically achievable accuracy. Using the notations
introduced in the previous section, the inverse problem to solve can be mathematically expressed as:

min
ξ

(|µui −Q|) and max
ξ

(‖∆ξ‖) (10.1)

where the uncertain parameters {ξ1, . . . , ξnξ} vary in a solution space made of intervals de�ned as[
ξi −∆ξi ; ξi +∆ξi

]
with ξi the reference mean value for ξi and with ∆ξ = {∆ξ1, . . . ,∆ξnξ}. The

quantity Q denotes the target value for the moment of interest µui , and ‖ξ‖ is a L2-norm.
The problem de�ned by Eq. (10.1) is a particular optimization problem, where the vector ∆ξ

de�ning the extent of the solution space is used at the same time to build a �tness function to
minimize. The problem de�ned by Eq. (10.1) can be typically formulated by an experimentalist
when setting up an experiment: it aims at �nding which uncertainty bars should be ensured for the
input parameters in order to ensure a given statistic property for the output of interest. Remark that
uncertainty bars in that case would be usually �xed according to the tolerance of the measurement



182 Chapter 10. Rarefaction Shock Wave

tools. Looking for the maximum values of uncertainty bars on the input parameters that allow to
preserve the reproducibility of the experiment (by satisfying a prescribed statistical property Q on
the output moment µui) can be interpreted as a way to relax as much as possible the constraints
on the measurement tools to be used in the experiment without compromising the quality of the
measurement.

10.1.3.2 De�nition of e�cient strategies to solve the stochastic inverse problem

The present study is focused on a �exible algorithm, independent of the way to compute µui in Eq.
(10.1). The basic structure of this algorithm is presented in Fig. 10.2. For each design vector de�ned
by a set of values for the error bars ∆ξi=1,..,nξ

, a stochastic simulation is performed by coupling
a non-intrusive stochastic method with the CFD code used as a black box to yield an estimate
for µui . This process is applied to an initial population of design vectors which is evolved using
a genetic algorithm (GA); after a few generations, an Arti�cial Neural Network (ANN) is coupled
with the GA in order to reduce the optimization cost (for more details concerning the ANN, see
[Congedo 2007, Cinnella 2008b]), i.e. the CFD and UQ calculation are replaced with an inexpensive
ANN response. The algorithm is processed until a convergence criterion is met. Since Eq. (10.1)
de�nes a bi-objective optimization problem, its solution is not necessarily unique; when applied to
the study of RSW in the fast shock tube (see Section 10.1.6) the outcome of the method will be
however a single set of optimal error bars, ∆ξOPT−i=1,..,nξ

, improving the reproducibility of the
experiment. This so-called full approach algorithm displays several advantages. The use of GA
decouples the optimization operators from the stochastic ones. The same algorithm can be used
regardless of the cost function de�nition, order of the statistical moment of interest, thus o�ering a
great �exibility. The computational cost of the method can be measured by counting the numbers
of CFD simulations required in order to achieve convergence. The overall cost is the product of
the number of stochastic evaluations (computation of µui for a given design vector) needed by the
optimization algorithm (directly related to the population size, number of generations, use of ANN)
multiplied by the number of CFD evaluations needed by the UQ method to compute each value of
µui . Using the PC approach described in Section 4.1.2 with the 8 uncertainties reported in Section
10.1.2, at least dozens of CFD runs will be needed for the stochastic evaluation of a given design;
for an 8-parameter problem the GA will need at least a few hundreds design computations to yield
a nearly converged solution or set of solutions. Consequently, thousands of CFD runs are likely to
be needed in order to solve the problem de�ned by Eq. (10.1), which can represent an excessive
computational cost. A reduced-cost approach is consequently proposed hereafter, as an alternative
to the previous brute-force approach. The proposed reduced-cost algorithm is schematized in Fig.
10.3 and is based on the following steps:

1. Assuming the moments of interest µui used in the formulation of Eq. (10.1) include the variance
σ of a physical quantity, perform a preliminary ANOVA analysis with a set of initial values for
∆ξi=1,..,nξ

.

2. Find the nξ′ most in�uential parameters ξi=1,..,nξ′ and discard the (nξ − nξ′) negligible ones to
build a new vector, ∆ξ′ = ∆ξ′i=1,..,nξ′

where ∆ξ′1, . . ., ∆ξ
′
nξ′

are ordered by decreasing rank of
in�uence.

3. Apply GA and ANN to solve Eq. (10.1) with the subset of error bars ∆ξ′i=1,..,nR
starting with

nR = 1.

4. When the optimization algorithm reaches convergence, an optimal set ∆ξ′OPT−i=1,..,nR
is gen-

erated. Since the GA is coupled with the meta-model derived from the ANN, an a-posteriori
stochastic analysis should be performed by considering nξ′ with the theoretically optimal
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∆ξ′OPT−i=1,..,nR
and the initial ∆ξ′i=nR,..,nξ′

) in order to check the solution provided by the
optimizer remains optimal or at least improves the objective |µui − Q| with respect to the
initial vector ∆ξi=1,..,nξ

.

5. If the error bars (∆ξ′OPT−i=1,..,nR
) are not physically acceptable (typically because they are

well below the physically achievable measurement accuracy), then increase nR by one (thus
increasing the number of degrees of freedom for �nding a solution of Eq. (10.1)) and restart
from Step 3.

The computational cost of the above algorithm is strongly reduced with respect to the full approach,
�rst of all because of the reduction of the number of uncertain parameters, based on the preliminary
ANOVA analysis. The progressive increase of the number of variable error bars ∆ξ′i may also signif-
icantly contribute to the speed-up of the algorithm if using nR < nξ′ is su�cient to yield physically
acceptable error bars ∆ξ′OPT−i=1,..,nR

.

OPTIMIZER

CFD+UQ

µui

∆ξOPT−i=1,..,nξ

∆ξi=1,..,nξ

if not converged

Figure 10.2: Brute-force or full approach algorithm for stochastic inverse design.

10.1.4 Preliminary analysis on dense gas shock-tube

The FAST setup is the outcome of several studies aimed at determining the best option in order
to generate and measure a rarefaction shock wave, the most dramatic of the predicted nonclas-
sical gas dynamics e�ects. The principles of operation and the design of the FAST are reported
in [Colonna 2008a], where the results of a preliminary computation for the initial �uid thermody-
namic states in the charge tube and in the reservoir (Fig. 10.1) are reported. The PRSV EoS was
then adopted and the recommended �uid thermodynamic state in the charge tube corresponds to
the PA point (p = 9.12 bar, v = 4.92 · 10−3 m3/kg, T = 368.97◦C) of Fig. 10.4 located on the D6

saturation curve. The thermal control system of the setup is designed to achieve a small degree of
superheating, in order to avoid condensation, which could hamper the interpretation of the results.

Recently, a rigorous theory has been developed, see [Guardone 2010], which allows for the com-
putation of the operating conditions leading to the RSW with maximum intensity or wave Mach
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Figure 10.3: Reduced-cost algorithm for stochastic inverse design.

number, thus maximizing the e�ect and easing its measurement. Using this theory and a multi-
parameter equation of Span-Wagner (SW) type, the conditions in the charge tube that maximize the
wave Mach number have been computed as T ≈ 371◦C, v ≈ 4.0 · 10−3 m3/kg). These values corre-
spond to a higher pressure and temperature when compared to the preliminary estimation reported
in [Colonna 2008a]. This theory has not been employed yet in our investigation, as it would demand
for additional work in order to obtain the initial conditions for the FAST experiment with the PRSV
thermodynamic model in place of SW. The validity of the methodology herein described remains un-
a�ected and the results we obtain here are therefore possibly sub-optimal. The continuation of this
work will be aimed at selecting more favorable initial conditions and better characterizing the source
of uncertainty related to measurement and control system, thanks to operational experience. With
reference to Fig. 10.1, state A must therefore be in the superheated vapor region if both IC and TD
uncertainties are taken into account. According to preliminary method described in [Colonna 2008a]
state A must also be located within the inversion region (Γ(p, T ) < 0) and should maximize the
strength of the RSW.

In order to better understand the left state e�ect on the RSW characteristics, a parametric study
is �rst performed by varying the IC: while the left state (pressure pL and temperature TL) varies
in a region between the saturation curve and the Γ = 0 curve, the right state is obtained by �xing
a pressure ratio pR/pL consistent with the value used in [Colonna 2008a] and a right temperature
TR = TL. A CFD computation using NZDG for each combination of (pL, TL), (pR, TR) is performed
and the Mach associated to the RSW is stored. The resulting Mach contours are plotted in the
p-v plane in Fig. 10.4 and illustrate a left state close to the saturation curve is required in order
to obtain the wave Mach number greater than unity, which is a mandatory feature of the RSW.
Consequently, an optimal choice of initial left state should meet the following requirements when
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Figure 10.4: Dashed lines: iso-Mach contours of RSW, where each point of the contour represents
the shock tube left state in the Amagat diagram; solid line: saturation curve; dashdotted line: Γ = 0

line.

IC and TD uncertainties are included in its a priori stochastic analysis: (R1) is in the single-phase
vapor region, (R2) is close to the saturation curve.
An automatic procedure has been set up to compute such a state, which relies on an a priori analysis
based on thermodynamic considerations only; the a posteriori analysis based on CFD computations
including the PRSV EoS is discussed in the next Section. The algorithm used to automatically detect
an initial left state satisfying the aforementioned requirements is based on three steps: in the �rst
step, a discretization of the p-v plane has been generated by moving along isobaric and isentropic
curves; in the second step, the uncertainty region is computed using the given IC uncertainty levels on
initial pressure and temperature and a Monte Carlo approach; in the third step, it is veri�ed that the
uncertainty region does not cross the maximal saturation curve (computed with the TD uncertainties
taken into account) and that the chosen point is located as close as possible to the saturation curve.
This analysis yields a new initial left state, denoted P1 (p = 9.09 bar, v = 5.25 · 10−3 m3/kg,
T = 369.63◦C) from now on, plotted in Fig.10.5 with its associated uncertainty region. It can be
checked that this uncertainty region satis�es the requirements (R1) and (R2); more precisely the P1
uncertainty region has a single point in common with the maximal saturation curve computed with
the TD uncertainties taken into account. The RSW Mach number associated with P1 is equal to
1.010, with MRSW = W

aA
(see Fig. 10.1); for point PA, MRSW = 1.023. The robustness of point

P1 for successfully performing the FAST experiment, that is ensuring with maximum likelihood the
occurrence of a RSW in the shock tube, is assessed in the following a posteriori analysis.

10.1.5 Forward uncertainty propagation problem

The stochastic properties of the RSW generated in the shock tube with uncertain IC and TD are
computed in order to assess the probability of occurrence for the RSW. A detailed cross-validation of
the two numerical codes used to compute the dense gas �ows is �rst described and the convergence
of the stochastic method is analyzed; the occurrence of RSW for P1 initial conditions is discussed
next.

The deterministic solution has been veri�ed by means of comparisons between the zFlow
and NZDG numerical codes. In this �rst numerical study, the initial conditions are taken from



186 Chapter 10. Rarefaction Shock Wave

v [m3/kg]

p
[b

ar
]

0.0045 0.005 0.0055 0.006 0.0065

8.2

8.4

8.6

8.8

9

9.2

9.4

Saturation Curve (max)
Iso-Tmin (-0.1%)
Iso-Tmax (+0.1%)
Iso-Pmin (-0.4%)
Iso-Pmax (+0.4%)
Γ=0 (minimal)

PA P1

Figure 10.5: Robust point (P1) obtained by means of an automatic a priori procedure along with its
associated uncertainty region.

[Colonna 2008a] and the Riemann problem solutions provided by both codes are compared at a non-
dimensional time t/tc = 2.5 (where tc = L/

√
pcvc with L = 1m). The veri�cation drawn for this

time instant remains valid for subsequent time steps. As shown in Fig. 10.6, solutions obtained on
the same grid are very similar with only a slight di�erence near the expansion shock. In this region,
the NZDG solution appears a bit less dissipative than the zFlow solution. Both numerical solutions
are superimposed in the nozzle region. The same trends are observed for the density and Mach
number distributions. Seeing that the results are very similar, only the NZDG code has been used
in the following computations. A mesh of 2000 cells has been retained, after a convergence study
not reported here for the sake of brevity. Each deterministic computation takes about 5 minutes on
a Intel Westmere-EP processor.

Statistic computations have been performed for various sources of uncertainty (on initial condi-
tions IC and/or thermodynamic model TD) and with various stochastic methods for a comprehensive
validation of the results. The stochastic solutions provided by the PC method have been compared
with Monte Carlo computations taken as reference. Comparisons have been made at di�erent time
steps with uncertainty sources taken into account separately (IC or TD) and together (IC+TD). In
this work, when coupled uncertainties are considered (IC+TD), PC is systematically applied with
Sparse Grid integration in order to reduce computational cost. Remark also that every stochastic
result presented in the following, has been obtained after a convergence study (on the number of
realizations for Monte Carlo method, and on the polynomial order for PC), not reported here for
brevity.

The P1 conditions produced by the a priori analysis have been retained for the left initial state.
The reference solution obtained for the pressure distribution using a Monte Carlo technique for
uncertain IC and TD is reported in Fig. 10.7. The mean stochastic solution and the deterministic
solution di�er near the RSW, the latter being sharper as expected. In Fig. 10.7, the region between
the maximal and minimal pressure distributions along the tube represents the variability region for
the stochastic solution when all the uncertainty sources are taken into account. In Fig. 10.8, the
pressure standard deviation along the tube is compared for PC, SSC and Monte Carlo at a non-
dimensional time of 2.5, when only IC uncertainties are taken into account. Monte Carlo and PC
solutions show a great similarity with a di�erence of only 1% on the computed standard deviation
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Figure 10.6: Solid line: zFlow; dashed line: NZDG. (a,c,e) Density (vc/v); (b,d,f) Mach number.
Solution along the tube (a,b), close-up on the expansion shock region (c,d), close-up on the nozzle
region (e,f). Non-dimensional time t/tc = 2.5, x expressed in [m].
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IC TD IC + TD

Xs 0.12 0.09 0.14
Us 0.45 0.31 0.49
Ms 0.38 0.50 0.46

Table 10.1: % variation between Monte Carlo and PC on position Xs, velocity Us and Mach number
Ms of the shock, when uncertainties on initial conditions and thermodynamic models are considered
separately (IC and TD), and together (IC+TD).

peak, as shown in Fig. 10.8. For PC method only 81 computations are necessary (only four uncertain
parameters are considered and a second order PC) with respect to 5000 Monte Carlo evaluations.
The SSC method is found to be less accurate in the peak region with a di�erence of 7.5% with
respect to Monte Carlo ; note however that the SSC results have been obtained with fewer (only 35)
computations.

In Table 10.1, comparisons of Monte Carlo and PC results are reported in terms of the RSW
position, velocity and Mach number at a non-dimensional time of 2.5. The values provided in Table
10.1 express the di�erence on the computed coe�cient of variation (standard deviation divided by
the mean value). These variations have been computed when each source of uncertainty (IC or
TD) is considered separately and when they are simultaneously taken into account. The di�erence
between Monte Carlo and PC remain below 0.5% in all the cases, which con�rms again that accurate
statistics can be computed with very few solution evaluations using PC. Note the di�erences in
statistic computations have been compared at several non-dimensional time steps, 1.5, 2.0, 2.5, and
the same trends have been systematically observed.

The in�uence of each source of uncertainty on RSW properties is now analyzed using PC stochas-
tic results. The coe�cients of variation for the RSW features are reported in Table 10.3. The
uncertainties on initial conditions are clearly dominant for the shock position and velocity; when
analyzing the shock Mach number, uncertainties on IC and TD are of comparable level. In Fig.
10.9, the distribution of the non-dimensional pressure standard deviation is reported along the tube,
where uncertainties on IC and TD are considered separately or simultaneously. The solutions for
IC and IC+TD are almost coincident (see in particular the close-up on the shock region displayed
in Fig. 10.9). The same analysis has been performed at di�erent times (1.5, 2.0, 2.5) and similar
conclusions can be drawn.

Since Monte Carlo computations have been performed in this study, owing to the reduced com-
putational cost of the quasi-1D �ow, it is possible to compute the probability distribution for the
Mach number of the left-running wave. Speci�cally we are interested in computing the probability
for the RSW Mach number to be less than unity sinceMRSW > 1 is a necessary condition to observe
a RSW. As shown in Fig. 10.10, this probability is equal to 27.8%, a clearly unsatisfactory prospect
for the reproducibility of the experiments since the RSW will likely be observed roughly three times
in four shock tube shots. In order to increase the probability for the RSW Mach number to be greater
than unity, it is necessary to reduce the level of variability on the IC and TD uncertainty sources
while remaining within realistic bounds as far as physical accuracy is concerned. This means solving
an inverse stochastic design problem of the form given by Eq. (10.1) thanks to the computational
strategies described in Section 10.1.3.2. The next Section will be devoted to the application of the
reduced-cost algorithm to determine the maximum uncertainty levels compatible with a prescribed
probability for the left-running wave Mach number to be greater than unity.
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Figure 10.7: (a) Mean, maximal and minimal pressure along the tube computed by means of Monte
Carlo computation (uncertainties on initial conditions and thermodynamic model); (b) close-up on
the expansion shock region. Non-dimensional time t/tc = 2.5.

ω K1 n cv,∞ (Tc) /R

0.740 -0.02798 0.5095 105.88

Table 10.2: Mean values of parameters of the adopted �uid thermodynamic model (PRSV + power
law for cv,∞) for the D6. Values are taken from [Colonna 2008b].
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Figure 10.8: (a) Comparison of pressure standard deviation between Monte Carlo, PC and SSC
(uncertainties on initial conditions); (b) close-up on the expansion shock region. Non-dimensional
time t/tc = 2.5.
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IC TD IC + TD

Xs 0.58 0.06 0.59
Us 3.21 0.31 3.24
Ms 0.80 0.39 0.90

Table 10.3: Computed coe�cient of variation (in %) using PC for the position Xs of the RSW, the
velocity Us and the Mach number Ms of the RSW, when sources of uncertainties are considered
separately (IC and TD) or together (IC+TD). Non-dimensional time t/tc = 2.5.
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Figure 10.9: (a) Standard deviation of pressure along the shock tube using PC, when uncertainties
on initial conditions (IC) and thermodynamic model (TD) are considered separately and together
(IC+TD); (b) close-up on the expansion shock region. Non-dimensional time t/tc = 2.5.
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Figure 10.10: Probability density function for the left-running wave Mach number, computed from
Monte Carlo results. Probability for the Mach to be inferior to unity equal to 27.8%.
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10.1.6 Backward uncertainty propagation problem

Assessing the reduction of the IC and TD uncertainty required to increase the probability forMRSW

to be greater than unity can be cast as an inverse analysis problem solved by coupling statistical tools
and optimization algorithms. The problem can also be de�ned as �nding the maximum uncertainty
bars for the uncertain parameters which allow minimizing the probability for the RSW Mach number
to be less than unity, that is

min
%IC,%TD

(Prob (M < 1)) and max (%IC,%TD) , (10.2)

where it is recalled that %IC denotes the extent of variation for the initial conditions around point
P1 while %TD denote the extent of variation of the thermodynamic properties around the mean
values summarized in Table 10.2.
The full optimization problem Eq. (10.2) is hard to solve directly because of its computational
cost. Indeed, computing the probability with a good degree of accuracy requires large Monte Carlo
ensembles of computations. Since the uncertainty bars must be optimized, ensemble runs have to
be performed for every set of parameters considered during the optimization, which is obviously
unfeasible. On the other hand, PC could be considered since, as previously demonstrated, it o�ers
good accuracy with a limited computational cost. However, if PC provides accurate evaluations of the
solution statistics, such as the mean value and the standard deviation, it is typically not appropriate
to evaluate the probability for the Mach number to be less than unity (it is in fact a biased estimator
and tail probabilities are a�ected by the truncation in the expansion). The optimization problem
described in Eq. (10.2) is instead converted into the following equivalent reliability problem, where
the maximum uncertainty bars allowing to minimize the quantity |µ− σ − 1| are looked for:

min
%IC,%TD

(|µ− σ − 1|) and max (%IC,%TD) , (10.3)

where µ is the mean of the RSW Mach number and σ its standard deviation. Both quantities can
be accurately computed using PC.

The problem (10.3), where PC is used for statistics, remains hard to solve because of the large
number of uncertain parameters (eight). Cost reduction is achieved using the algorithm (see Fig.
10.3) previously introduced in section 10.1.3.2, which relies on an ANOVA analysis, stochastic di-
mension reduction and a metamodel-based optimization. The ANOVA analysis, or analysis of the
contributions to the variance, is useful to �nd the input parameters that contribute the most to the
output uncertainty. Once the uncertain inputs are ranked, only a subset of those most signi�cant is
considered, so that the cost of the stochastic optimization is reduced. In addition, metamodels can be
constructed for the output |µ−σ− 1| using sampling computations (a few generations of the genetic
algorithm) and neural networks [Congedo 2011a], thus allowing a further reduction of the number of
objective function evaluations requiring a full CFD simulation. Finally, a Monte Carlo computation
is performed with the optimized parameters obtained from the previous step and Prob(M < 1) is
assessed. An ANOVA analysis based on a Polynomial Chaos expansion (starting from a Sobol plan of
5000 realizations) and 8 uncertainties is �rst performed. The contribution of each parameter to the
global variance is then computed. As indicated in Fig. 10.11, TL, cv,∞ (Tc) and PL contribute 92%
of the variance, and uncertainty on TL alone contributes 60%. Some uncertain parameters, such as
pR, TR and K1, have not been reported in Fig. 10.11 because of their negligible contribution. These
results hold also when di�erent times are considered (1.5, 2.0) and therefore a representative stochas-
tic computation inside the optimization loop can be carried out by considering only the uncertainty
on TL; if a better estimate is necessary, cv,∞ (Tc) and PL should also be included in the stochastic
analysis inside the optimization loop. In any case, the other uncertainties can be neglected since
their respective contribution to the variance is inferior to the maximal contribution by more than
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one order of magnitude. This results in a substantially smaller computational cost (for a discussion
about more systematic reduction criteria by using ANOVA, see [Gao 2011]). Problem (10.3) is �rst
solved with only TL uncertain. The optimal solution of problem (10.3) is then completed by a Monte
Carlo computation, where the other uncertainties retained after ANOVA analysis, i.e. cv,∞ (Tc) and
PL, are used for the stochastic analysis. Monte Carlo simulation allows for the computation of the
probability for the RSW Mach number to be less than unity. It is found that the probability for the
left-running wave Mach number to be inferior to 1 decreases to 19.1% when the error bars on TL
are equal to 0.04% (0.26◦C). The recommended uncertainty bars obtained from the inverse analysis
must be analyzed with respect to the accuracy levels that can be experimentally achieved. Since
such a level of accuracy on the temperature might be unfeasible, the possibility to increase the un-
certainty bars on TL if uncertainty on cv,∞ (Tc) were reduced was also investigated. The uncertainty
on cv,∞ (Tc), i.e. 6%, is linked to the lack of available experimental data and it is deemed prudential
[Nannan 2007]. The second optimization run performed with uncertain TL and cv,∞ (Tc) shows that
if the uncertainty on cv,∞ (Tc) is reduced to 1%, it is then possible to achieve a maximal uncertainty
of 0.06% (0.39◦C) on TL which yields a reduced probability of 18.9% for the RSW Mach number to
be less than unity (see Fig. 10.12). This means that if a large e�ort to improve the thermodynamic
characterization is carried out (hence reducing uncertainty on the thermodynamic model), more re-
alistic error bars on TL can be tolerated. However, since this probability is not yet negligible, a more
challenging optimization problem has been considered. The idea is to �nd the maximal uncertainty
bars allowing to minimize |µ− 2σ − 1|, that is to solve the following optimization problem:

min
%IC,%TD

(|µ− 2σ − 1|) and max (%IC,%TD) (10.4)

In this case, uncertainty on TL, cv,∞ (Tc) and PL have been simultaneously taken into account. After
optimization, it is found that error bars for TL, PL and cv,∞ (Tc) should be respectively reduced
to 0.035% (0.23◦C), 0.1% (0.009 bar), and 0.5%. A Monte Carlo computation eventually leads to
a 0.8% probability (see Fig. 10.12 on the right) for the left-running wave Mach number to be less
than 1 (to be compared with the initially obtained 27.8% probability). According to these results,
the experiment can be performed with a high degree of con�dence in that case; however, achieving
in practice the required precision on the initial conditions and the thermodynamic model might be
extremely challenging. Since di�erent initial conditions have been proposed in [Guardone 2010] along
with a Span-Wagner type equation for the thermodynamical description of the �uid, the proposed
methodology should be applied to this alternative problem set-up in order to check whether less
stringent accuracy requirements can be obtained in that case.

10.2 Preliminary study on an improved system

Following the previous study, I focused my attention to a possible improvement of the FAST setup
by investigating the feasibility of a RSW in a two-phase shock-tube con�guration. For this reason,
a DEM-based code for multiphase �ow is modi�ed for taking into account complex TD models.
Moreover, a detailed study on RSW is performed considering the in�uence of vapor fraction in
mixtures.

10.2.1 Discrete Equation Method (DEM)

The present study is based on a �ve-equation model with a single pressure and a single velocity. It is
obtained imposing the asymptotic reduction of a seven equation model following the lines of Abgrall
[Abgrall 2006]. So, a DEM [Abgrall 2003] scheme is used, applying the asymptotic reduction to a
discrete level.
Actually, the DEM method has already been extensively explained in [Abgrall 2006, Abgrall 2003],
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Figure 10.11: % contribution to the variance of the Mach number for each uncertainty, results
obtained from ANOVA analysis.
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Figure 10.12: Probability density function for the left-running wave Mach number, computed from
Monte Carlo results for the problem described by equation (10.3) (a) and by equation (10.4) (b).
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thus I recall the main idea and the �nal formulation.

10.2.1.1 The �ve equations model

The well known Baer & Nunziato [Baer 1986] model is composed by the conservative equations of
each phase and one transport equation for each volume fraction of phases (in this case no heat and
mass transfer is considered):



∂α1

∂t
=− uI · Oα1 + µ(p1 − p2)

∂α1ρ1
∂t

+ div(α1ρ1u1) = 0

∂α1ρ1u1
∂t

+ div(α1ρ1u1 ⊗ u1) + O(α1p1) = pIO(α1) +λ(u2 − u1)

∂α1ρ1E1

∂t
+ div(α1(ρ1E1 + p1)u1) = pIuI · O(α1) +λuI · (u2 − u1)+

−µpI(p1 − p2)

∂α2

∂t
+ uI · Oα2 = − µ(p1 − p2)

∂α2ρ2
∂t

+ div(α2ρ2u2) = 0

∂α2ρ2u2
∂t

+ div(α2ρ2u2 ⊗ u2) + O(α2p2) = pIO(α2) −λ(u2 − u1)

∂α2ρ2E2

∂t
+ div(α2(ρ2E2 + p2)u2) = pIuI · O(α2) −λuI · (u2 − u1)+

︸ ︷︷ ︸
Non conservative terms

+µpI(p1 − p2)︸ ︷︷ ︸
Relaxation terms

(10.5)

where the subscripts 1 and 2 refer to the two phases k. αk, ρk, uk, pk, Ek are the volume fraction,
the density, the velocity vector, the pressure and the total energy, respectively for each phase k. The
last one is de�ned as Ek = ek+0.5u2k. The interface velocity and the pressure are indicated with uI
and pI , respectively. These last one are de�ned in [Baer 1986] as uI = u2 and pI = p1, with 1 and 2
that correspond to the gas and the liquid phases, respectively. More complex de�nitions of interface
variables are given in [Abgrall 2003, Ambroso 2012].
λ and µ represent the dynamic compaction viscosity and the relaxation velocity parameter, respec-
tively.
The system (10.5) can be expressed in vectorial form:

∂U

∂t
+

∂

∂x
F (U) +B(U)

∂α1

∂x
= S(U) (10.6)

or, after some manipulation:
∂U

∂t
+ FT (U) = S(U) (10.7)

where

U =



α1

α1ρ1
α1ρ1u1

α1ρ1E1

α2

α2ρ2
α2ρ2u2

α2ρ2E2


, FT (U) =

∂

∂x
F (U) +B(U)

∂α1

∂x
,
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F (U) =



0

α1ρ1u1

α1(ρ1u1 ⊗ u1) + p1
α1(ρ1E1 + p1)u1

0

α2ρ2u2

α2(ρ2u2 ⊗ u2) + p2
α2(ρ2E2 + p2)u2)



B(U) =



uI

0

−pI
−pIuI

uI

0

−pI
−pIuI


, S(U) =



µ(p1 − p2)

0

λ(u2 − u1)

λuI · (u2 − u1)− µpI(p1 − p2)

−µ(p1 − p2)

0

−λ(u2 − u1)

−λuI · (u2 − u1) + µpI(p1 − p2)


.

Supposing the mechanical equilibrium, the equality of pressure and velocity can be obtained
in the limit of a sti� mechanical relaxation as in [Kapila 2001, Murrone 2005], i.e. the relaxation
parameters, λ and µ are taken as in�nite:

µ =
1

ε
, λ =

1

ε
, where ε→ 0+. (10.8)

Thus, the asymptotic development allows to �nd the solution such that the relaxation terms go
to zero (for more details concerning asymptotic development, Refs. [Murrone 2005, Abgrall 2006,
Abgrall 2013c] are strongly recommended). Then, after some algebraic manipulations of system
(10.5), the reduced model is so obtained:

∂α1

∂t
+ u · Oα1 =

ρ2c
2
2 − ρ1c

2
1

ρ1c21
α−1 +

ρ2c22
α2

div u

∂α1ρ1
∂t

+ O(α1ρ1u) = 0

∂α2ρ2
∂t

+ O(α2ρ2u) = 0

∂ρu

∂t
+ O(ρku⊗ u+ p) = 0

∂E

∂t
+ O((E + p)u) = 0

(10.9)

where ρ = α1ρ1+α2ρ2, E = α1ρ1e1+α2ρ2e2, p and u are the mixture density, mixture total energy,
the mixture pressure and the mixture velocity, respectively. Finally, ck is the sound of speed of each
phase.
We remember that α1 + α2 = 1, so only a single phase is considered in the unknowns of the system
that, for the system 10.9 are: α1, ρ1, ρ2, e1, e2, p and u. In order to close the system (10.9), an
equation of state (EOS) for each pure phase is needed for de�ning all the needed thermodynamic
properties. This model involves mechanical equilibrium between the phases at any time, as it is
evident for the presence of only one pressure p and only one velocity vector, u, in the system (10.9).
The computations presented in this work rely on the �ve-equation model.
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10.2.1.2 The numerical scheme

The DEM approach has been derived in [Abgrall 2003] and in [Abgrall 2006] for the �ve-equations
model, so only the main lines of the scheme are recalled.
First, remember that the DEM consists into applying at a discrete level the same procedure used to
obtain a compressible multiphase model, i.e.:

1. let us suppose that each pure �uid is governed by the Euler equations,

2. let us introduce, for each phase, the characteristic function Xk that satis�es the topological
equation:

∂Xk

∂t
+ σ · OXk = 0, with Xk =

{
1 if (~x,t) belongs to phase k

0 otherwise
(10.10)

where σ is the interface velocity between the two phases.

3. An averaging procedure, E(·), as in Drew and Passmann [Drew 1998], is applied to Euler
equations (see [Abgrall 2003]).

4. A statistical average is performed in order to obtain an approximation of the mean quantities.

In particular, to obtain the semi-discrete numerical approximation of the two-phase system 10.9,
two steps are needed. In the �rst step, the DEM method, before described, is applied to a seven equa-
tions model, i.e. to the system 10.5. After obtaining its semi-discrete numerical approximation, a
relaxation procedure is applied, always at a discrete level, in order to reach a mechanical equilibrium.

Now, let us suppose that at time t, the computational domain Ω is divided into the cells Ci =
]xi−1/2, xi+1/2[, but at time t = t + s (with s small), the interface in xi+1/2 is assumed to move at
a velocity σi+1/2 and the interface in xi−1/2 moves at a velocity σi−1/2. So, the cell Ci evolves in
C̄i =]xi−1/2+sσi−1/2, xi+1/2+sσi+1/2[ (see �gure 10.13). The cell may be either smaller or larger than
the original ones Ci, depending on the signs of the velocities. Then, let us denote with F (UL, UR)

Figure 10.13: a) Subdivision of computational domain. b) The various states in the Riemann
problem between states UL and UR.

the Godunov numerical �ux between the states UL and UR, and with F lag(UL, UR) the �ux across
the contact discontinuity between the states UL and UR (see �gure 10.13). The relation between the
two �uxes is:

F lag(UL, UR) = F (U+
LR)− σ(UL, UR)U

+
LR = F (U−

LR)− σ(UL, UR)U
−
LR,

where the superscripts ± denote the state on the right and on the left of the contact discontinuity
as in �gure 10.13.
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The semi-discrete scheme for the reduced �ve equations model in 1D is:

∂α1

∂t
= FT (U1) +

α1α2

α2ρ1a21 + α1ρ2a22

{
FT (U8)

α2ρ2χ2
− u2FT (U7)

α2ρ2χ2
+

u2
2

2 − ε2 − ρ2κ2

α2ρ2χ2
FT (U6)+

+
ρ22κ2FT (U1)

α2ρ2χ2
− FT (U4)

α1ρ1χ1
+
u1FT (U3)

α1ρ1χ1
−

u1
2

2 − ε1 − ρ1κ1

α1ρ1χ1
FT (U2)−

ρ21κ1FT (U5)

α1ρ1χ1

}
∂α1ρ1
∂t

= FT (U2)

∂α2ρ2
∂t

= FT (U6)

∂ρu

∂t
= FT (U3) + FT (U7)

∂ρE

∂t
= FT (U4) + FT (U8)

(10.11)

where χk and κk, are de�ned as following:

χk =

(
∂ek
∂Pk

)
ρk

; κk =

(
∂ek
∂ρk

)
Pk

(10.12)

where ek is the phase internal energy.
As explained before, the vector FT (Uj), with j = 1, ..., 8, is the sum of two contributions, i.e. of
the �ux of hyperbolic system (conservative term) and of the non-conservative term, obtained for
each equation of the system (10.5). The correspondence of the semi-discrete system (10.11) with
the model (10.9) has been demonstrated in [Abgrall 2006]. Note that this method allows to begin
with two di�erent thermodynamic states of phases, arriving, �nally, to a mechanical equilibrium. On
the contrary, a direct discretization of the system (10.9) imposes immediately the equality of initial
pressure and velocity of the phases. The next step is, now, to de�ne the vector FT (Uj) that for each
component will be composed by a conservative and a non-conservative terms:

FT (Uj) =
1

4x
E
(
X(xi+1/2, t)F (U

∗
i+1/2)−X(xi−1/2, t)F (U

∗
i−1/2)

)
+

+
1

4x

(
E([X]j=0)F

lag(U−
i , U

+
i−1)− E([X]j=N )F lag(U+

i , U
−
i+1)

)
, (10.13)

where U∗
i+1/2 (or U∗

i+1/2) denotes the solution of Riemann problem between U+
i and U−

i+1

(respectively,U+
i−1 and U

−
i ). [X]j=0 and [X]j=N are the jump of X at the beginning and at the end

of computational cell, respectively.

Following the procedure demonstrated in [Abgrall 2003, Abgrall 2006], the idea of DEM method
is to avoid the introduction of approximated estimation of �uxes expectancy that, on the contrary,
is estimated basing on the probability to �nd in two neighbor cells the same phase or two di�erent
phases (see the "�ow patterns" in the table 10.4). As a consequence, the �ux indicator can be
indicated as in the following:

β
(l,r)
i+1/2 = sign(σ(U l

i , U
r
i+1)) =

{
1 if σ(U l

i , U
r
i+1) ≥ 0,

−1 if σ(U l
i , U

r
i+1) < 0,

where l and r indicate the phase at the left and the right of interface, respectively.
Thus, the conservative and non-conservative terms of (10.13) can be developed supposing the
four instances. Again, for sake of clarity, let us brie�y recall the main ideas of this strategy
[Abgrall 2003, Abgrall 2006].
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Flow Patterns Jump indicator Flux Indicator

Σ1 − Σ2 [X]1,1 = 0
(
β
(1,2)
i+1/2

)
Σ1 − Σ1 [X]1,2 =

{
−1 if σ(1, 2) > 0

0 otherwise
1

Σ2 − Σ1 [X]2,1 =

{
1 if σ(2, 1) > 0

0 otherwise

(
β
(2,1)
i+1/2

)
Σ2 − Σ2 [X]2,2 = 0 0

Table 10.4: The various �ow con�gurations at cell boundary i+ 1/2.

The terms of equation (10.13) can be de�ned as:

E
(
X(xi+ 1

2
, t)F (U∗

i+ 1
2

)
)
= Pi+ 1

2
(Σ1 − Σ1)F (U

(1)
i , U

(1)
i+1)+

+ Pi+ 1
2
(Σ1 − Σ2)

(
β
(1,2)

i+ 1
2

)
F (U

(1)
i , U

(2)
i+1) + Pi+ 1

2
(Σ2 − Σ1)

(
β
(2,1)

i+ 1
2

)
F (U

(2)
i , U

(1)
i+1)

E
(
X(xi− 1

2
, t)F (U∗

i− 1
2

)
)
= Pi− 1

2
(Σ1 − Σ1)F (U

(1)
i−1, U

(1)
i )+

+ Pi− 1
2
(Σ1 − Σ2)

(
β
(1,2)

i− 1
2

)
F (U

(1)
i−1, U

(2)
i ) + Pi− 1

2
(Σ2 − Σ1)

(
β
(2,1)

i− 1
2

)
F (U

(2)
i−1, U

(1)
i )

E
(
[X]NF

lag(U
N(w)
i , U−

i+1)
)
= P1+1/2(Σ1,Σ2)

(
β
(1,2)
i+1/2

)
F lag(U

(1)
i , U

(2)
i+1)+

− P1+1/2(Σ2,Σ1)
(
β
(2,1)
i+1/2

)
F lag(U

(2)
i , U

(1)
i+1)

E
(
[X]0F

lag(U+
i−1, U

0
i )
)
= −P1−1/2(Σ1,Σ2)

(
β
(1,2)
i−1/2

)
F lag(U

(1)
i−1, U

(2)
i )+

+ P1−1/2(Σ2,Σ1)
(
β
(2,1)
i+1/2

)
F lag(U

(2)
i−1, U

(1)
i )

It remains to evaluate the term of probability, Pi±1/2(Σp,Σq) (see [Abgrall 2003]). For simplicity
the �nal formulation for i+ 1/2 is as follows:

Pi+1/2(Σ1,Σ1) :=P
(
X(x−i+1/2) = 1 and X(x+i+1/2) = 1

)
=min

(
α
(1)
i , α

(1)
i+1

)
Pi+1/2(Σ1,Σ2) :=P

(
X(x−i+1/2) = 1 and X(x+i+1/2) = 0

)
=max

(
α
(1)
i − α

(1)
i+1, 0

)
Pi+1/2(Σ2,Σ1) :=P

(
X(x−i+1/2) = 0 and X(x+i+1/2) = 1

)
=max

(
α
(2)
i − α

(2)
i+1, 0

)
Pi+1/2(Σ1,Σ2) :=P

(
X(x−i+1/2) = 0 and X(x+i+1/2) = 0

)
=min

(
α
(2)
i , α

(2)
i+1

)
.

where Σk indicates the phase, with k = 1, 2.

10.2.2 Thermodynamic closure

As previously mentioned, we deal with pure �uid and arti�cial mixture zone, thus the EOS must be
able to describe �ows both in pure �uids and mixture zones. In this section, �rst we describe three
EOSs, i.e. the Sti�ened Gas (SG) EOS, the Peng-Robinson (PRSV) EOS and the Span-Wagner (SW)
EOS. Secondly, we build the mixture EOS using the SG EOS for each phase. Then, the mixture
EOS using PRSV (or SW) and the SG for the gas and the liquid phase, respectively, is described.
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10.2.2.1 Sti�ened Gas EOS for pure �uid

The Sti�ened Gas EOS is usually used for shock dynamics and its robustness for simulating two-phase
�ow with or without mass transfer has been amply demonstrated, see for example [Abgrall 2003,
Murrone 2005, Goncalves 2009, Abgrall 2006, Saurel 2007]. It can be written as follows:

P (ρ, e) = (γ − 1)(e− q)ρ− γP∞, (10.15a)

e(ρ, T ) = Tcv +
P∞
ρcv

+ q (10.15b)

h(T ) = γcvT, (10.15c)

where p, ρ and e are the pressure, the density and the energy, respectively. The polytropic coe�cient
γ is the constant ratio of speci�c heat capacities γ = cp/cv, P∞ is a constant reference pressure and
q is the energy of the �uid at a given reference state. Moreover, T , cv and h are the temperature,
the speci�c heat at constant volume and the enthalpy, respectively. The speed of sound, de�ned as
c2 = (∂P∂ρ )s can be computed as follows:

c2 = γ
P + P∞

ρ
= (γ − 1)cpT (10.16)

where c2 remains strictly positive (for γ > 1). It ensures the hyperbolicity of the system and the
existence of a convex mathematical entropy [Harten 1998].

10.2.2.2 SG EOS based mixture

The EOS for the mixture can be easily obtained using the EOS of the single phases. In this section,
we consider the mixture obtained supposing a SG EOS for each phase. The aim is now to obtain the
mixture pressure, the starting point is the mixture energy equation:

ρE = α1ρ1e1 + α2ρ2e2. (10.17)

The energy of each phase, ek, can be replaced by (10.15a), obtaining the mixture total energy as a
function of the phase pressure. Under pressure equilibrium, we obtain the following expression for
the pressure mixture:

P (ρ, e, αk) =

ρ(E − α1ρ1q1
ρ

− α2ρ2q2
ρ

)−
(
α1γ1P∞,1

γ1 − 1
+
α2γ2P∞,2

γ2 − 1

)
α1

γ1 − 1
+

α2

γ2 − 1

(10.18)

In this study, the term q is assumed to be equal to zero for each phase.

10.2.2.3 Real EOS-SG based mixture

We consider a mixture, obtained using the SG EOS for the liquid and a complex EOS for the gas
(PRSV or SW). In the case of SG EOS (see section 10.2.2.1), we have shown how the pressure
mixture can be easily obtained from the energy and the density of each phase. If a PRSV or a SW
EOS is considered, it is not possible togive a closed form of the pressure as a function of the energy
and the density. The procedure shown in section 10.2.2.2 for the SG EOS can not be used in this
case. Under pressure equilibrium, the following system of two equations is obtained:

P1(T1, ρ1) = P2(T2, ρ2)

ρE = α1ρ1e1 + α2ρ2e2.
(10.19)
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where P1 represents the pressure state computed for the phase 1 described by the PRSV (or SW)
EOS, and P2 the pressure of the phase 2 described by SG EOS. Note that the unknowns are T1 and
T2.

Replacing P2 using Eq. (10.15a) in the �rst equation of the system (10.19), the liquid temperature
T2 can be expressed as a function of the gas temperature T1 (where P1 is a function of T1 and ρ1
using Eq. (7.12)):

T2 =
P1(T1, ρ1) + P∞,2

(γ2 − 1)ρ2cv,∞2

(10.20)

Using Eq. (10.15b) for e2 in the mixture energy equation (second equation of the system (10.19)),
we obtain:

ρE = α1ρ1e(T1, ρ1) + α2ρ2

[
T2cv,∞2 +

P∞,2

ρ2
+ q

]
. (10.21)

Replacing T2 in the Eq. (10.21) using (10.20), it is possible to derive a relation between the gas
temperature, T1, and the mixture energy. This is a function E = E(T1) that depends only on T1.
Solving iteratively Eq. (10.23) by using a Newton-Raphson method, the value of the gas temperature
T1 can be computed. Once T1 is obtained, the mixture pressure can be easily computed using Eq.
(7.12).

Let us detail the previous equation in detail for PRSV EOS. Replacing P1 as a function of T1
and ρ1 using Eq. (7.2) and P2 using Eq. (10.15a) in the �rst equation of the system (10.19), the
liquid temperature T2 can be expressed as a function of the gas temperature T1:

T2 =

[
T1R1

1

ρ1
− b1

− α(T1)a1
1

ρ21
+

2b1
ρ1

− b21

+ P∞,2

]
1

(γ2 − 1)ρ2cv,∞2

(10.22)

Replacing the energy ek of each phase for e1 and using Eq. (10.15b) for e2 in the mixture energy
equation (second equation of the system (10.19)), we obtain:

ρE = α1ρ1

[
ec +

cv,∞(Tc)

(n+ 1)Tn
c

(Tn+1
1 − Tn+1

c )

− a

2
√
2b

(
α(T1)− T1

dα(T )

dT

)
log

∣∣∣∣V + b(1 +
√
2)

V + b(1−
√
2
)

∣∣∣∣]
+ α2ρ2

(
T2cv,∞2 +

P∞,2

ρ2
+ q

)
.

(10.23)

As described before, by replacing T2 in the Eq. (10.23) using the Eq. (10.22), it is possible to derive
a relation between the gas temperature, T1, and the mixture energy. Since the function E = E(T1)

depends exclusively on T1, Eq. (10.23) can be solved by using a Newton-Raphson method.

10.2.2.4 De�nition of χk and κk

Two thermodynamics-dependent properties are χk and κk (see Eq. (10.12)). If a more complex
equation of state is used, it is not possible to explicitly compute these coe�cients. Using standard
thermodynamics, we have

χk =

(
∂ek
∂Pk

)
ρk

=

(
∂ek
∂Tk

)
ρk(

∂Pk
∂Tk

)
ρk

, (10.24a)

κk =

(
∂ek
∂ρk

)
Pk

=

(
∂ek
∂ρk

)
Tk

−

(
∂pk
∂ρk

)
Tk

(
∂ek
∂Tk

)
ρk(

∂Pk
∂Tk

)
ρk

. (10.24b)
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For SG EOS, it is trivial to compute these coe�cients as follows:

χk =

(
∂ek
∂Pk

)
ρk

=
1

(γ − 1)ρ
, (10.24c)

κk =

(
∂ek
∂ρk

)
Pk

= −P + γP∞
(γ − 1)ρ2

. (10.24d)

For a more complex EOS, derivatives in Eqs. (10.24) can be easily computed, once thermal and
caloric EOS are known (for example using Eqs. (7.2) in the case of a PRSV model).

10.2.3 Results

10.2.4 TC1: validation of PRSV equation of state in quasi-single phase �uid

We consider the test case presented by Fergason et al. [Fergason 2001], where a rarefaction shock
is observed in a single-phase shock tube con�guration. This non-classical phenomenon has been
observed numerically in the literature [Thompson 1973, Congedo 2012, Colonna 2006a], even if an
experimental con�rmation of the rarefaction shock wave still does not exist. Only an accurate EOS,
such as the PRSV EOS, can describe a so particular gas thermodynamic behavior. For this reason,
this test-case represents a good validation for checking the EOS implementation.

The shock tube is �lled out with only one �uid, the FC70, but for numerical reasons, each chamber
contains a very weak volume of fraction of water (αl = 10−8). Initial conditions for the left and right
states are speci�ed in table 10.6. The diaphragm is located at x = 2.5 m (the tube is 5 m long).
Results obtained with DEM are validated with the numerical results obtained by means of the NZDG
code (see [Congedo 2012] and Section 10.1.1 for more details), comparing the pro�les at a time of
t = 0.3 s.

Table 10.5 provides the �uid properties of FC70 and the corresponding PRSV EOS parameters,
i.e. the �uid acentric factor ω and the n coe�cient (see Eq. 7.8), taken from [Guardone 2005].

FLUID
SG EOS

γ P∞ [Pa] Cp [ J
KgK

] Cv [ J
KgK

] q q′

Liq. Dodecane 2.35 4×108 2534 1077 0 0

Vap. Dodecane 1.025 0 2005 1956 0 0

Water 4.4 6×108 18392 4180 0 0

PRSV EOS
Cv,∞

R
n ω

FC70 118.7 0.493 0.7584

Dodecane 60.4 0.69277 0.575

D6 105.88 0.5095 0.74

SW EOS

D6

n1 n2 n3 n4 n5 n6

1.691561 -3.379625 0.386090 0.0645989 0.105890 0.454568x10−4

n7 n8 n9 n10 n11 n12

0.741692 -0.0881026 -0.173733 -0.109513 -0.0626956 0.0374599

α γ χ δ ε

468.7 981.2 1792.1 686.7 786.8

Table 10.5: EOS coe�cients for liquid and gas phases.

In Figure 10.14, the evolution of dimensionless1 pressure, density, Mach and the fundamental
derivative of gas dynamics Γ along the tube axis are shown. The negative value of Γ allows us

1computed with respect to the critical point
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Figure 10.14: Comparison of the DEM results with the ones obtained with the NZDG code for a
quasi-single phase shock-tube �ow in terms of density, pressure, Mach and the fundamental derivative
of gas dynamics Γ.

to identify the zone where a rarefaction shock wave can appear [Thompson 1973, Congedo 2012,
Colonna 2006a]. Consequently, a non-classical discontinuity wave �eld displaying a rarefaction shock
wave can be observed on x = 1.8 m (see Figure 10.14), whereas we observe a compression shock wave
on x = 4.0 m. The results obtained with the DEM code and the NZDG code [Congedo 2012] show
a perfect agreement.

10.2.5 TC2: Rarefaction shock waves (RSW) in a two-phase �ow, in�uence of
gas volume fraction

A contribution of this study is to demonstrate the numerical evidence of a RSW in a two-phase �ow.
So, let us suppose we have the same �uid initial conditions of the TC1 test case, except for the initial
gas volume fraction. We assume a mixture of FC70 and water at di�erent volume percentages. In
particular, two initial conditions are imposed for both sides of the tube, i.e. αg = 0.5 and αg = 0.1,
corresponding to the case TC2(a) and TC2(b), respectively. A PRSV EOS is used for modelling the
gas phase, since SG is too simpli�ed in order to observe complex e�ects, such as BZT e�ects.

Plots of fundamental derivative of gas dynamics Γ, vapor density, mixture density, velocity,
pressure and gas temperature pro�les are reported in Figure 10.15. Let us focus on the solution
with αg = 0.5. As it can be observed, a RSW appears. In fact, a rarefaction happens at x = 1.7.
Note that the corresponding Γ is negative. This means that only rarefaction shocks are admissible
(while the compression shocks are forbidden) due to the second principle of thermodynamics. The
other structures that can be observed are a contact discontinuity at x = 2.6, and a compression at
x = 3.75. Note that this is a compression shock since the corresponding Γ is positive.

Let us now focus on the in�uence of the gas volume fraction. In particular, comparison between
the computations at α = 1 (i.e. the TC(1) presented in the previous section), αg = 0.5(TC2(a)) and
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αg = 0.1 (TC2(b)) are shown at t = 0.03s and are reported in Figure 10.15.
The main di�erences are related to the velocity of each structure, i.e. rarefaction shock, contact

discontinuity and compression shock, and to the values of the intermediate states (region between
the compression and the contact or between the rarefaction and the contact). Note that velocities
of the rarefaction shock (contact discontinuity) increases when the gas volume fraction decreases
(increases). Consequently, as it can be observed looking at Γ, that the RSW is located at x = 1.8m,
x = 1.7m and x = 0.9m for αg = 1, αg = 0.5 and αg = 0.1, respectively (see �gure 10.15). A
non-linear behavior of the compression shock velocity is observed with respect to αg. In particular,
the velocity is the slowest at αg = 0.5, while at αg = 0.1, it is faster with respect to αg = 1.0. Remark
that the mixture velocity and the Mach is radically reduced when the gas volume fraction decreases
(see �gure 10.15). Concerning the intermediate states, vapor density and pressure are higher when
αg is lower.

Finally, results display a strong in�uence of the gas volume fraction on some speci�c properties
of the RSW. This is a precious indication for the set-up of an experience in order to maximize the
probability of occurrence of the RSW with respect to modeling and experimental uncertainties.

10.2.6 TC3: In�uence of thermodynamic model

Bene�cial e�ects of negative nonlinearities may be maximized with a working �uid displaying a larger
inversion zone, hence with a higher molecular complexity. To validate such a strategy, computations
are performed for a heavier cyclic siloxane, namely dodecamethylcycloexasiloxane also known as D6.
The existence of an inversion zone for this �uid is predicted for any choice of the thermodynamic
model. Properties are taken from [Guardone 2010]. The main properties for D6 are given in the
table 10.5.

In this section, we focus on the in�uence of the thermodynamic model. In �gure 10.16a, a close-up
of the saturation and iso-Γ curves obtained by means of PRSV and SW are reported. A discrepancy
exists between these two equations for predicting the saturation curve and the inversion region (where
Γ is negative), thus predicting di�erent values for Γ. Concerning D6, a question exists concerning
which thermodynamic model is the most accurate. In particular, the higher robustness of the PRSV
equation when coupled with CFD solvers with respect to more complex and potentially more accurate
multi-parameter equations of state has been discussed in [Cinnella 2010, Congedo 2011c].

The choice of initial conditions, i.e. left and right states (in terms of speci�c volume and pres-
sure) is performed in order to highlight BZT e�ects and to display the importance of an accurate
thermodynamic model. For these reasons, two initial conditions are considered. They are reported
in Figure 10.16b. In particular, red (black) points represent the left/right conditions (obviously left
states are the points at higher pressure). The left condition corresponding to the �rst choice, is near
the saturation curve, and, as it can be seen in Figure 10.16b (red points), Γ is predicted as negative
using both EOS. Note that the left condition is chosen for being inside the vapor region when using
also PRSV. The left condition corresponding to the second choice, is inside the inversion region for
SW, but not for PRSV. Dimensional values for pressure and density of both conditions are reported
in table 10.6.

We now focus on the e�ect of these initial conditions on the RSW appearance in two-phase �ow
simulations. A mixture of D6 and water at the same volume fraction (αG = 0.5) is considered. In
�gure 10.17, plots of several variables are reported when using the �rst initial condition for both
PRSV and SW. Similar structures are observed, i.e. a RSW (note that Γ is negative for both
EOS during the rarefaction at x = 2.1), a contact discontinuity and a compression shock. Pressure
evolution is very similar for both EOS, while larger di�erences are observed for density, velocity
and Mach number. Temperature prediction is di�erent when using PRSV with respect to SW, in
particular a maximal di�erence of 0.6% is computed.
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Figure 10.15: Comparison between fundamental derivative of gas dynamics Γ, vapor density, mixture
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and TC2(b)(αg = 0.1) test cases.

The �gure 10.18 illustrates results obtained by using a second couple of points for the left/right
conditions (black points in Figure 10.16b). Note that the pressure pro�les are nearly coincident and
that the observed di�erences for the other variables are concentrated on the values of the intermediate
states, except for the temperature. This last one has the same behavior than the previous point in
terms of di�erences between PRSV and SW. Anyway, a strong di�erence exists between PRSV and
SW: the appearance of a RSW is no more observed for PRSV. In particular, compression shocks and
contact discontinuity are observed for both EOS, while the rarefaction is a shock when using SW and
a wave when using PRSV. This con�rms the important sensitivity of this phenomenon to the initial
conditions and to the in�uence of the thermodynamic model. At the same time, this introduces
the possibility of using a two-phase �ow for setting-up a better experience, that could maximize the
occurrence of the RSW.
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no Fluid

Test Case (TC) conditions

AimLeft Right

α ρ [ kg
m3 ] P [MPa] α ρ [ kg

m3 ] P [MPa]

TC1
FC70 1-ε 414.819

1.0128
1-ε 219.2398

0.8635
(i) Validation PRSV

EOS. (ii) RSW for a

quasi-single phase �uid

Water ε 1000 ε 1000

TC2(a)
FC70 0.5 470.398

7.0766
0.5 248.991

0.8635
(i) RSW observation

in a BIPHASE �ow.

(ii) In�uence of initial

gas volume fraction on

RSW.

Water 0.5 1000 0.5 1000

TC2(b)
FC70 0.1 470.398

7.0766
0.1 248.991

0.8635
Water 0.9 1000 0.9 1000

TC3(a)
D6 1-ε 187.992

0.91295
1-ε 123.596

0.80724
(i) In�uence of ther-

modynamic model on

RSW observation. (ii)

Comparison of PRSV-

SW EOS in multiphase

�ows.

Water ε 1000 ε 1000

TC3(b)
D6 1-ε 176.0179

0.91295
1-ε 120.782

0.80724
Water ε 1000 ε 1000

Table 10.6: Initial conditions for all test cases. ε = 10−8. For all test cases, in the right and left
part, uk=0.
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In this section, I have summarized the main results that I have obtained along the various axes
of my research activity. In particular, what has been done and what should be done are described
for each speci�c topic. Finally, highlights on some works currently in progress are provided.

11.1 Methods and Algorithms

Intrusive schemes
The e�ort towards the development of intrusive schemes for computational �uid-dynamics can be
fully justi�ed if a very high accuracy in describing shock-dominated �ow is required. In my opinion,
research should be directed in three main directions. The �rst issue to handle is related to the degree
of intrusiveness of the approach (in terms of �exibility and work needed to perform modi�cations in a
given deterministic code). The second point is related to the number of dimensions that can be han-
dled intrusively without using some reduction strategy based on non-intrusive approach. The third
point is the possibility to automatically re�ne/coarsen the mesh in the coupled physical/stochastic
space, by ideally capturing and following for example the structure of a shock propagating in both
spaces.

The formulation of the Semi-Intrusive (SI) method could be an option for increasing the
accuracy of the stochastic solution by retaining in some way a lower degree of intrusiveness. For
this very reason, this method is said semi-intrusive because it requires only a limited amount of
modi�cations in a deterministic �ow solver to quantify uncertainty on the �ow state when the �ow
solver includes uncertain variables. It can be considered as very easy to implement in comparison
with other intrusive methods, such as Polynomial Chaos. This method proves to be very e�cient to
deal with probability density function of any form, long-term integration and discontinuities in the
stochastic space. Let us emphasize that up to now results have been obtained with SI systematically
using an uniform grid in the stochastic space, without any kind of adaptivity according to the
probability density function; there is clearly an interesting potential for further improvements along
this line of adaptivity in the stochastic space for the SI method.

Though SI represents a very good option for UQ, its use for real problem with a high number
of uncertainties remains very expensive. For this reason, the Harten multi-resolution technique has
been considered, modi�ed for the UQ framework (formulation of TE method) and then coupled with
the SI method, yielding the aSI method.
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The TE method, inspired from the classical Harten's framework, allows building, in a very general
manner, stochastic numerical schemes starting from any type of deterministic schemes and handling
a large class of problems, from unsteady to discontinuous solutions. Its formulations allows to recover
the results of the classical multiresolution approach concerning the interpolation theory, but with
an extension to uncertainty quanti�cation problems. The TE method is extended to the spatial-TE
(sTE), for partial di�erential equations and applied to the heat equation. Moreover, the �exibility
of the proposed method is demonstrated by proposing a simple algorithm coupling together high-
resolution schemes in the physical and in the stochastic spaces at the same time, and by applying it
to the Burgers equation. These methods are not reported in this manuscript. Any interested reader
might refer to [22,24].

The TE method, in its cell average setting, has been coupled with the Semi-Intrusive (SI) scheme.
The overall numerical scheme is the so-called adaptive-SI scheme. We demonstrated that it pre-
serves the convergence properties of the original SI scheme with a large saving in terms of computa-
tional cost. Di�erent test-cases have been presented to demonstrate the e�ciency and the accuracy
properties of the aSI scheme. The linear advection equation has been solved for initial smooth
and discontinuous solution to demonstrate the capability of the stochastic scheme to preserve the
accuracy derived from the deterministic MUSCL-Hancock method (MHM). A second test-case has
been focused on the inviscid Burgers equation. We demonstrated the capability of the method to
automatically re�ne/coarsen following the changes in the regularity of the solution in the coupled
stochastic/physical space. In particular, a smooth solution has been considered, in the stochastic
space, as initial condition, where shock waves velocities are directly related to the parameter in the
stochastic space. The �nal test case proposed has been the Euler system of equation to solve an
uncertain shock tube problem. The aSI scheme has been demonstrated to be e�cient also in the case
of vectorial problems. For the computation of the convergence curves, an original strategy for the
semi-analytical solution of the stochastic shock tube problem has been also developed following and
extending the classical numerical procedure for the solution of the Riemann problem for the Euler
equations. This paper represented the �rst e�ort to introduce a MR framework into the SI method.
The generality of the approach is not limited to second order scheme, but can be easily extended to
higher order numerical formulation for the physical space and time discretization. In this work, both
the linear and non-linear MR framework have been presented in which the selection of the stencil
to obtain the reconstruction operators can be obtained by a data-dependent procedure. The ENO
selection of the stencil has been also introduced. Considering the numerical results presented, note
that the advantages related to the non-linear schemes are very limited. This issue is not related to the
non-linear procedure itself but to the peculiarity of the SI scheme that produces representations of
the solution in a combined physical/stochastic space. The representation of a discontinuous solution
in the stochastic space can recover a smoother behavior when the physical spatial resolution is not
high enough. This has been demonstrated showing that the importance of the ENO scheme increases
with the physical space resolution. To improve the global properties of the scheme, two further steps
seem useful. The �rst is the introduction of the WENO reconstruction instead of the ENO inter-
polation in order to recover the correct stencil in all the regions where the solution is smooth. The
other step could be to increase the polynomial order for the reconstruction. This should improve
both accuracy and compression capabilities. The extension and the analysis of the aSI scheme for a
moderate number of dimension is ongoing. In particular, aSI method has been extended for taking
into account up to three dimensions in the stochastic space. Some highlights of this work have been
presented in Section 11.3.
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In order both to illustrate the �exibility of the aSI method and to yield an accurate stochastic
numerical code for multiphase �ow, the aSI method has been very recently incorporated into a DEM
(Discrete Equation Method) formulation. Some highlights of this work have been presented in Section
11.3.

High-order decomposition
Global sensitivity analysis aims at determining contributions of each uncertainty to the variability of
the studied output. This is a very active research �eld, since the most part of engineering applications
are someway dependent on a huge number of physical and modeling uncertainties. Though several
studies focused on ANOVA decomposition, low-cost computation by means of Polynomial-Chaos
method or global criterion including several orders of statistical moments, very few studies exist on
the extension of the ANOVA analysis to high-order statistical moments. In this �eld, my contribution
can be summarized in the following points :

• A correlation was found between the functional decomposition, as depicted by Sobol, and the
polynomial chaos development. This permitted to clearly identify each term of the decompo-
sition, drawing also a practical way to compute all these terms.

• Computing skewness was shown to be of great importance for an exhaustive and complete
stochastic analysis.

• Sensitivity indices based on kurtosis decomposition have been introduced. The importance of
ranking the predominant uncertainties in terms not only of the variance but also of higher order
moments (then extending the ANOVA analysis also to higher order statistic moments), was
demonstrated with an algebraic function, where all the decomposition terms can be calculated
analytically.

• How to compute high-order decomposition based on the Polynomial Chaos development is
presented by estimating also the required computational cost.

Future works will be oriented towards adaptive strategies for the reduction of the global compu-
tational cost in the computation of the proposed indices.

Inverse problem
Concerning inverse problem, a very rich literature exist on the topic. Actually, some speci�c issues
for CFD applications exist, since a massive use of CFD computations is not feasible in practice
due to the high computational cost of each computation. One of the most interesting option is to
build e�cient metamodels in order to obtain a response surface to use instead of the very-expensive
CFD simulation. These metamodels should be su�ciently robust for yielding a low approximation
error also in spaces with a very large number of dimensions. In this manuscript, I have presented
two methods, one deterministic and a Bayesian-one for handling inverse problem. In both cases,
the overall algorithms have included a Polynomial Chaos framework for computing statistics or
generating an accurate response surface.

In particular, the reconstruction of the free-stream conditions (p∞,M∞) for the trajectory of
a re-entry vehicle from measurements of stagnation-point pressure and heat �ux (pst, qst) has been
performed. Prior uniform distributions are �rst assumed for (p∞,M∞) and some chemistry pa-
rameters are considered uncertain, with known distribution functions. The impact of the di�erent
uncertain inputs on the forward problem simulated by the in-house code COSMIC is studied us-
ing a non-intrusive stochastic spectral method. Uncertainties on (p∞,M∞) are observed to have a
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large impact on pst, whereas the chemistry uncertainties are observed to have a negligible impact
on it. On the contrary, all the input parameters are observed to have a considerable impact on
qst. Then, a backward uncertainty propagation method is proposed to solve the inverse problem by
taking into account uncertainties due to measurements and model parameters. To this end, we rely
on a Bayesian framework supplied with MCMC algorithms to sample the posterior distribution
of (p∞,M∞). A major di�culty lies in the fact that one needs to compute the forward problem
for each iteration in the Markov chain. A metamodel for pst is computed taking advantage from
the non-intrusive spectral method; unfortunately such a metamodel can not be obtained for qst be-
cause of the large interactions between the di�erent parameters and the strong dependence of qst
on all the parameters. It was therefore decided to solve the stochastic problem only relying on the
stagnation pressure measurements and the metamodel for pst in a �rst step, so as to reduce the a
priori on (p∞,M∞). On-going e�orts consist in considering this new a priori for the resolution of the
stochastic inverse problem with measurements of pst and qst, using adaptive algorithm to �nd the
optimal widths vector in the MCMC algorithm and running Markov chains in parallel to accelerate
the calculations.

Robust Optimization: Simplex2
Concerning robust design optimization, a large set of methods exist, but very few are focused on an
e�cient coupling between the information coming from the stochastic and the optimization spaces. In
this perspective, the Simplex2 method has been conceived. In particular, it is based on a multi-scale
strategy, based on simplex tessellation on both uncertainty and design space in order to minimize
the cost of robust optimization procedures. In particular, we coupled the SSC method employed for
uncertainty quanti�cation with the well-known Nelder-Mead optimization algorithm. The e�ciency
of the former is based on high degree polynomial interpolation and randomized re�nement sampling,
while the basic properties of the Nelder-Mead algorithm are improved by accelerating some evalua-
tions by means of response surface built by performing a high-degree polynomial interpolation with
P-re�nement on the geometric simplex. The robustness and the excellent performances of the S2M
method are obtained (i) by using a coupled stopping criterion, (ii) by a high-degree polynomial inter-
polation with P-re�nement on the design space. Moreover, the error introduced by the interpolating
polynomials is estimated in order to decide whether to use the interpolation in the design domain
during the algorithm steps.

Robust Optimization: ANOVA-based analysis
Another possibility for reducing the global cost of the robust design relies on a dimension reduction
strategy that is adapted to the design. The idea is to reduce the number of dimensions in the
stochastic problem associated to a given design based on an ANOVA analysis. ANOVA analysis is
used to perform a variance-based decomposition and to compute the Total Sensitivity Indices (TSI)
for each uncertainty and an initial set of designs. Then, a response surface is generated for each TSI
in the design space, that is used during the optimization loop. In this way, the uncertainties with a
TSI lower than 2% (TSI criterion) can be discarded in the reduced stochastic problem associated to
any design. During the optimization, the stochastic problem associated to a given design is reduced,
thus decreasing the cost of the statistics estimation. This method is general and can be used with a
deterministic black box solver.

The proposed robust-optimization algorithms are very e�cient for treating high-dimensional
problem. Further e�orts are necessary for including high-order statistics by reducing the global
computational cost.
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11.2 Dense-gas physics

High-�delity turbine computations
The design of ORC turbines using dense gases to achieve improved performances relies in a crucial
way on the availability of accurate and e�cient CFD tools because of the scarcity or even lack of
available experimental set-up. The reliability of the CFD tools depends on the solution methods
used to solve the conservation laws governing the dense gas �ows and the choice of models retained
to describe the thermodynamic behavior of these �uids. The results presented in this manuscript
have demonstrated reliable numerical results could be obtained for turbine cascades using a BZT gas
as working �uid since highly similar performances were computed by two distinct solvers. It was also
pointed out a proper treatment of the outlet boundary condition was required to ensure a correct
calculation of performance indices such as turbine isentropic e�ciency, enthalpy jump and normalized
temperature variation. The in�uence of the thermodynamic model on the performance prediction
was investigated as well and it was found the simple Peng-Robinson-Stryjeck-Vera equation of state
o�ers an interesting compromise between the accuracy level of the thermodynamic description and
the computational cost of the CFD tool when used for turbine design. It must be emphasized the
reliability study of the numerical tool (cross-validation of the solvers and investigation of the EoS
in�uence) was performed on a large range of upstream thermodynamic conditions in order to account
for the variability of the �ow behavior encountered in practical applications. With the high level
of con�dence achieved regarding the output of dense gas �ow simulations in turbine cascade, it
was then possible to numerically investigate the in�uence of the choice of working �uid on turbine
performance and the exact role of non-classical dense gas e�ects. The global performance parameters
(η, δh, δT/Tinlet) provided by toluene, a �uid of common use in ORCs, were compared with those
obtained using the BZT �uid D5; the analysis was performed using both the SW and PRSV EoS for
a large range of operating conditions in order to check the comparison was only weakly dependent
on the thermodynamic model. The BZT �uid consistently displayed attractive characteristics with
respect to the conventional �uid: a higher power output for a given pressure ratio and a lower
temperature variation well suited for cogeneration purposes. The bene�cial e�ects of working in the
inversion zone associated with a BZT �uid such as D5 or D6 were also demonstrated and quanti�ed.
While the present analysis has been restricted to the well-known LS-59 plane cascade geometry, the
design of optimized ORC turbine working with BZT �uids remains however the �nal objective of our
work. The next step towards this goal is the coupling of the present reliable BZT �ow solvers with
a shape optimization loop that takes into account the existing uncertainties on the thermodynamic
model for such BZT �uids and the �uctuating inlet conditions typical of ORC sources.

Concerning dense-gas �ows, currently developed numerical codes require the use of adapted tur-
bulence models. These ones should be calibrated with respect to high-�delity (DNS) turbulent �ow
simulations, since experimental data are not available.

Robustness of thermodynamic models
Another important aspect for improving the reliability of dense gas numerical simulation is related
to the robustness of thermodynamic models. In this manuscript, for the �rst time in the litera-
ture, thermodynamic uncertainties in real gas �ows past airfoils have been quanti�ed. Propagation
uncertainty performed for thermodynamic models of common use for dense gases shows that more
complex models, used to achieve a more accurate description of the �uid thermodynamic response,
may be more sensitive to uncertainties on the �uid thermo-physical properties because of the larger
number of input parameters they require. Uncertainties are particularly critical when dense gas or
non-classical gas dynamic e�ects are to be quanti�ed. Two working �uids considered in the literature
as possible candidates for dense gas experiments, namely, PP10 (a �uorocarbon) and D5 (a siloxane)
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were analyzed with thermodynamic uncertainties propagated through a dense gas �ow solver. The
�ow case selected for the computation is a transonic inviscid dense gas �ow over a symmetric airfoil.
For both �uids, the largest error bars on the solution are achieved in the region close to the shock,
because of the highly nonlinear behavior of the �ow-�eld. For simple thermodynamic models like
RKS or PRSV, the mean stochastic solution is almost superimposed with the deterministic one,
and the output distribution is almost Gaussian with standard deviation being within roughly 10%
of the mean, at worst, i.e., approximately the order of magnitude of the input dispersion. For the
MAH model, on the other hand, the computed results are much more sensitive to model parameter
uncertainties, and the output distribution for the drag coe�cient exhibits signi�cant non-Gaussian
interactions. For all the models, the sensitivity is higher for PP10 than for D5; this is related to
the more extended region of nonclassical nonlinearity predicted for PP10, which deeply alters its gas
dynamic behavior. For D5, a state-of-the art multiparameter thermodynamic model has also been
considered, based on a 12-term SW equation of state. For this model, we restricted our investigation
to uncertainties introduced by the caloric model, since uncertainties on the �uid thermal properties
like p-v-T and saturation data are already taken into account in the regression procedure used to
calibrate the model's coe�cients by applying some weighting criteria to the calibration data. These
are known in detail for the substance of interest, and their investigation, which requires going through
the model optimization procedure, is not relevant for our purpose. For thermodynamic operating
conditions well inside the dense gas region, the selected caloric uncertainties are ampli�ed even if
the SW model does not predict any inversion region for D5; speci�cally, a 3% variation of the caloric
properties may produce variations of the drag coe�cient of about 6%. If anyway, the �ow thermo-
dynamic conditions are moved to lower pressures and density, the thermodynamic behavior of the
�uid becomes closer to that of a perfect gas, and the e�ects of thermodynamic uncertainties on the
computed solutions become almost negligible.

Rarefaction shock wave
Since no experimental evidence of a RSW exist, the use of more accurate numerical simulation
by means of uncertainty quanti�cation tools is of great interest for estimating the probability of
occurrence of this phenomenon, at least from a numerical point of view. Works presented in this
manuscript investigate the e�ciency of an existing experimental con�guration for reproducing the
RSW. Secondly, the possibility of using a new setting considering two-phase �ows is explored, though
further studies are still necessary. For estimating the reliability of the experiment in the FAST shock
tube facility at TU Delft, an algorithm has been introduced to handle stochastic inverse problem
with high e�ciency and a reduced computational cost. The expected output of the �ow problem (the
unconventional Rarefaction Shock Wave) is very sensitive to uncertainties in the initial experimental
conditions and in the parameters of the thermodynamic models adopted to describe the �uid.

The numerical deterministic simulation of the FAST experiment has been assessed by comparing
two available CFD codes capable of treating dense-gas �ows. Regarding the stochastic computa-
tions, the good accuracy provided by the PC approach for a reduced computational cost has been
demonstrated by comparison with a Monte Carlo strategy. By considering only the thermodynamic
model and its uncertainties, we �rst de�ned in a simpli�ed way a robust initial condition P1 for the
shock tube experiment, that is an initial condition which maximizes the strength of the RSW while
arguably preventing condensation in the charge tube. This initial condition may not be the best that
could be actually obtained using the FAST setup to generate and measure a RSW. However using
alternative conditions associated with a more complex equation of state would demand further work
on the formulation of the equation of state, a task which is not relevant for our purpose.

Using this initial condition P1, a forward uncertainty propagation problem based on full CFD
simulations was considered, with the variability in both the initial conditions and the thermodynamic
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model accounted for. The probability for the RSW Mach number to be less than unity was found
to be equal to 27.8%, a value considered too high for ensuring a satisfactory reproducibility of the
phenomenon. An inverse analysis has then been performed in order to determine how much the
input uncertainties had to be reduced to decrease this probability. A preliminary ANOVA analysis
was applied to obtain the most in�uential input parameters thus reducing the overall complexity
of the stochastic problem. The left state temperature and pressure as well as the ideal-gas speci�c
heat at constant volume were found to be the most in�uential parameters, contributing to 92% of
the variance. Only these parameters were therefore considered for the inverse analysis, allowing
the preservation of a high accuracy while bene�ting from a strong reduction of the computational
cost. The inverse analysis provided maximum admissible error levels on the initial conditions of the
experiment to ensure the probability to obtain a RSW Mach number less than unity remains below
1% so that the experiment can be performed with a high degree of con�dence. Unfortunately, such
requirements on the experimental uncertainties seem hardly achievable and a trade-o� between the
needed accuracy and the number of experiments must be investigated. The method described in this
paper remains a relevant tool to numerically investigate the sources of uncertainties in a delicate �ow
experiment and help directing the e�orts towards the reduction of the experimental uncertainties.
For the FAST experiment, di�erent initial conditions - with a more complex equation of state - will
be considered in order to further increase the estimated RSW Mach number.

A second work is focused on exploring the possibility of using a two-phase shock tube for the
reproduction of a RSW. A semi-discrete scheme for the resolution of interface problems has been
modi�ed for taking into account complex equations of state. A reduced �ve equation model, under
the hypothesis of pressure and velocity equilibrium, is used and discretized through the Discrete
Equations Method (DEM), assuming no mass and heat transfer.

Then, the system is coupled with a mixture equation of state, that has been formulated for a
general EOS, thus permitting real EOS-SG based mixture. In this case, SG has been systematically
used for the liquid phase, while three EOS have been considered for the gas phase, i.e. SG, PRSV and
SW. The PRSV EOS implementation has been validated by comparing the results obtained with the
DEM code with the ones of a single-phase (vapor) code [Congedo 2012]. In particular, the operating
conditions and the working �uid have been chosen in order to reproduce a rarefaction shock wave.
A perfect agreement has been obtained between the DEM and the NZDG code. Then, a two-phase
shock tube (liquid and vapor Dodecane) has been considered, where the in�uence of using a di�erent
equation of state has been evaluated. It has been observed that, for conditions closer to the saturation
curve, considering a more complex equation of state, i.e. the PRSV EOS, is of prominent importance
for achieving good predictions. Finally, the proposed method has been applied to the simulation of a
rarefaction shock wave, displaying BZT e�ects in a two-phase �ow for the �rst time in the literature.
In particular, the in�uence of the initial conditions and of the thermodynamic model (by comparing
PRSV with a very accurate technical EOS, i.e. SW EOS) has been analyzed for assessing which
conditions could maximize the intensity of the rarefaction shock. It has been observed that the
velocity of each structure in the �ow, i.e. rarefaction shock, contact discontinuity and compression
shock, is strongly in�uenced by the gas volume fraction. In particular, the velocity of RSW increases
when the gas volume fraction decreases. Concerning the in�uence of the thermodynamic model, it
has been noted that the accuracy in capturing thermodynamic behavior near the saturation curve and
the inversion region, has a strong impact on the reproducibility of the RSW. This is a con�rmation of
the sensitivity of RSW to the initial conditions and to the thermodynamic model. Nevertheless, using
a two-phase �ow for illustrating a RSW could be very useful for a better control of the experiment
in order to maximize the probability of occurrence, since no constraint for having strictly a vapor
�ow needs be imposed.

Future work will be focused on the implementation of the mass transfer terms. Moreover, a
feasibility study on the new two-phase experimental setting for reproducing a RSW will be performed,



216 Chapter 11. Some conclusions and perspectives

taking into account physical and modeling uncertainties.

11.3 Some works in progress

In this section, I mention some of my current research works.

11.3.1 SI-DEM numerical scheme for stochastic multiphase �ow

A new scheme for the numerical approximation of a �ve-equations model taking into account uncer-
tainty quanti�cation (UQ) has been formulated. In particular, the Discrete Equation Method (DEM)
for the discretization of the �ve-equations model is modi�ed for including a formulation based on the
adaptive Semi-intrusive (aSI) scheme, thus yielding a new intrusive scheme (sDEM) for simulating
stochastic two-phase �ows. Some preliminary results are shown here.

The numerical simulation of a shock tube �lled out with water and air at the same volume
fraction (αk = 0.5) on the right and on the left of a diaphragm (located at x=0.5m), is performed.
The gas volume fraction on the left state is dependent on an uniformly distributed random parameter
ξ ∼ U [0, 1]: αG(ξ) = αG ± 0.1ξ and its propagation in the shock tube is observed. Simulations are
performed over a physical domain Ω = [0, 1] until a �nal time t = 193.744 µs. The time space is
divided in 1900 equal time steps of length ∆t = 1 × 10−7. The simulations are carried out over
equally spaced meshes of 101, 201, 401 and 801 points employing the aSI scheme based on the
MUSCL method with a Superbee limiter.

In �gure 11.1(a), the spatial convergence is reported for both the mean and the variance in L1

norm for the density ρ. It has been obtained with the aSI method with a level of 128 (m = 7)
stochastic cells. Results obtained by the aSI method have been compared with the ones obtained by
a full SI scheme, in terms of L1 norm (�gure 11.1(b)), showing a perfect overlapping of the curves.
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Figure 11.1: (a) Spatial convergence for the stochastic shock tube problem with an uncertain volume
fraction as initial condition. L1 norms are shown for the density expectancy and variance of the
solution.(b) Comparison between aSI and full SI scheme obtained with a level of 128 (m=7) is shown
on the stochastic spatial convergence of the density expectancy.
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11.3.2 Extension of aSI scheme to 2D/3D

The adaptive-SI scheme has been already successfully extended to problems with 2D and 3D stochas-
tic space. Some preliminary results have already been obtained for di�erent test cases employing a
linear reconstruction operator. For instance, the classical Sod test case is solved considering an initial
condition depending on two random parameters. In particular, both density and pressure of the left
state are assumed to be uniformly distributed. In �gure 11.2, the results for both the expectancy
and the variance, over the whole physical space, are reported as a function of the spatial resolu-
tion. Despite the strong reduction achieved by the adaptive procedure in terms of computational
cost, the expected �rst order convergence, for the statistics of each conservative variable, is achieved.
The extension of the approach to a high-order non-linear multiresolution reconstruction operator is
underway.

11.3.3 High-order residual distribution schemes for dense-gases

Second and third order simulations with the non-linear residual-distribution (RD) scheme are per-
formed, for two and three dimensional problems, with complex thermodynamic laws. The ability of
the numerical solver to preserve the monotonicity of the solutions near strong shocks and the good
convergence properties of the scheme for �uids which require more complex model that the ideal gas
are veri�ed. The �ow over a two-dimensional turbine cascade with real gas e�ects is now considered.
The con�guration studied is the VKI LS-59 plane cascade of rotor blades, with the PRSV and the
SW equations of state. Simulations have been performed on a sequence of three uniformly re�ned
grids. The coarsest grid, made of 2 241 triangles, is shown in Fig. 11.3, �ner grids are obtained by
splitting each triangle into four sub-elements.

Simulations are performed with the PRSV and the SW equations of state, for the D5 working
�uid. In all the cases, the operating condition is chosen such that at the inlet boundary P/Pc =

0.6217864 and ρ/ρc = 0.2759043 and the �ow angle is 30◦, at the out�ow boundary the pressure
ratio P t

in/Pout = 1.82 is imposed, where P t
in is the total pressure at the in�ow and Pout is the static

pressure at the out�ow.
The Jacobian-free method with the LU-SGS preconditioner is used to make the scheme converge

to the steady state, which is considered to be reached when the L2 norm of the density residual has
dropped at least by ten orders of magnitude. In Fig. 11.4 the convergence histories on the three
levels of grids for the PRSV model are reported; a similar behavior is obtained with the SW equation
of state. Note that the residual of the second order simulation on the coarsest grid could not be
reduced by more than four orders of magnitude.

In Fig. 11.5, the Mach number contours of the third order simulations on the �nest grid are
displayed for the PRSV equation of state. From the in�ow boundary on the left hand side of
the domain, the �uid accelerates to supersonic velocities through the passage formed by the blade
cascade. At the blade trailing edge, an over-expansion region can be observed and a weak shock
appears downstream.

In Fig. 11.6, the distributions of the Mach number on di�erent grids and with di�erent accuracy
orders are reported for the PRSV and SW models. The oscillations of the Mach number observed
at the trailing edge are due to the fact that the inviscid �ow model cannot correctly capture the
separation around the blunt trailing edge of the blade, as also observed in Section 8. Increasing the
order of approximation allows to reach a grid independent solution more e�ciently than re�ning the
mesh. Furthermore, the discontinuities are better resolved with the high-order approximation than
the second order one, for the same number of degrees of freedom.

Finally, in Fig. 11.7 , the distributions of Mach number and pressure over the blade are reported
for the third order RD solutions on the di�erent grids; the solutions obtained with the cell-centered
FV solver of Section 8 are also reported for the sake of comparison. Taking the third order simulation
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on the �nest grid as a reference, it can be observed that, for approximately the same number of degrees
of freedom along the blade, the third order RD simulation is closer to the reference value with respect
to the FV solution. Note also that the shock is always much better resolved with the third order RD
scheme.

11.4 Short-term and long-term overall perspectives

I intend to preserve the current balance I have established between the development of methods
and algorithms for reliable numerical simulations and their application in the aerospace and energy
�elds. As demonstrated (hopefully) in this memoir, I am indeed convinced that the analysis and
design of real-life systems which are bound to introduce a large number of uncertainties not necessarily
described by conventional pdfs is the best fuel for the continuous development of UQ methods and
robust optimization techniques.

Some short-term objectives have been already mentioned in the previous paragraph for some
speci�c methods or applications. Main actions in the long-term are resumed here :

• Concerning intrusive methods, the aim is to extend the aSI scheme for handling a large number
of uncertainties by using high-order non-linear multiresolution reconstruction operator. A
massive parallelization of the stochastic space is demanded. This algorithm will be applied
to the stochastic simulation of shock-dominated compressible �ows in dense-gas �ows and
hypersonic �ows.

• Adaptive dimension-reduction strategy for problems featuring a very large number of un-
certainties will be investigated. Particular attention will be devoted to the coupling of
high-order decomposition with some recent approaches proposed in literature (for example
[Doostan 2011, Yang 2012]). Further studies concerning very e�cient and �exible optimization
strategies are under way, with a focus on high-order statistical moments. This numerical frame-
work will be used for the robust design of ORC cycles. It is planned to insert the local approach
devoted to the numerical simulation of the sole turbine stage into a more global analysis of the
whole cycle. The �exibility of the analysis and its potential to contribute to innovative designs
will lead us to derive performance indices such as e�ciencies based on the �rst and second laws
as well as the net speci�c work of the cycle.

• E�cient Bayesian approaches will be used for including directly experimental data in the
numerical framework. In this case, a massive use of metamodels is demanded, since the CFD
is too expensive if complex e�ects are taken into account. This algorithm will be then used for
improving the numerical prediction for aerospace application.
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Figure 11.2: Expectancies for the uncertain shock tube for the density (a), momentum (c) and total
energy (e). The variance of these quantities is reported respectively in (b), (d) and (f).



220 Chapter 11. Some conclusions and perspectives

YY

ZZ XX

Figure 11.3: Coarsest grid used for the simulations of the turbine cascade.
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with the PRSV models for three uniformly re�ned girds.
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Figure 11.6: Mach number pro�les over the blade on di�erent grids with linear and quadratic ap-
proximation of the solution. Top row: PRSV, bottom row: SW models.
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Figure 11.7: Mach number (a) and pressure (b) distributions along the blade for the third order RD
solution and the cell-centered FV solver. In the legend is reported the number of degrees of freedom
along the blade of the di�erent simulations.
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avec un algorithme génétique a été réalisé, ceci a permis des calculs d'optimisation de forme
de turbine. L'intérêt de ces travaux consiste dans la conception d'une géométrie de turbine
adaptée pour l'exploitation des e�ets de gaz dense, objectif atteint pour la première fois.

2. Florian Rolé, Année 2008-2009: ENSE3, Grenoble INP, Co-direction d'un stage de 2ème année,
Simulation numérique d'écoulements de gaz denses autour d'aubes de turbines . Part prise dans
l'encadrement : 50%. Ce travail a porté sur l'implémentation de la loi d'état de Peng-Robinson
dans le code NS3 pour la simulation d'écoulement dans des aubes de turbine. De plus il y a eu
un couplage du code avec les librairies FluidPROP, qui contient les données thermodynamiques
de plusieurs catégories de �uides. La version du code couplée avec la librairie a été comparé avec
la version où on avait codé en dur l'équation d'état, ceci a permis de comparer les performances
et la précision obtenues.

3. Birte Schmidmann (Université de Kaiserslautern), Année 2011 : Co-direction d'un stage, IN-
RIA Bordeaux Sud-Ouest. Part prise dans l'encadrement : 30%. Ce travail a porté sur
l'implémentation de méthodes numériques d'ordre élevé pour la simulation des écoulements hy-
personiques. Je me suis occupé d'aider l'étudiant dans la résolution des problèmes numériques.

4. Razaaly Jamal Nassim, Année 2012 : Direction d'un stage, INRIA Bordeaux Sud-Ouest. Part
prise dans l'encadrement : 100%. Ce travail consiste dans le développement d'une plateforme
numérique à utiliser pour la simulation des cycles ORC. Cette interface permet de lier ensemble
un code de quanti�cation d'incertitude, un code d'optimisation et un code permettant de décrire
un cycle ORC du point de vue thermodynamique à l'aide de Fluidprop (conçu à l'Université
de Delft pour calculer les propriétés thermodynamiques des �uides).

5. Razaaly Jamal Nassim, Année 2013, Direction d'un projet PFE, INRIA Bordeaux Sud-Ouest.
Part prise dans l'encadrement : 100%. Le travail porte sur l'extension de la méthode à résidus
distribués aux écoulements régis par des lois d'état complexes. La méthode numérique a été
modi�ée et plusieurs lois ont été implémentées. Le code ainsi modi�é a été appliqué à la
simulation des plusieurs con�gurations 2D et 3D.

6. Abdallah Mansouri, Année 2013 : Direction d'un stage, INRIA Bordeaux Sud-Ouest. Part
prise dans l'encadrement : 100%. Le travail porte sur l'application des méthodes de type
bayésien à l'optimisation robuste et à la calibration de modèles thermodynamiques complexes.

7. Marc Duvernet, Année 2013 : Direction d'un stage, INRIA Bordeaux Sud-Ouest. Part prise
dans l'encadrement : 100%. Le travail consiste dans la construction de métamodèles dans des
espaces à grande dimension. L'idée est de pouvoir utiliser une surface de réponse à moindre
coût au lieu de plusieurs calculs de �uides, qui peuvent s'averer très chers.

TER

1. Marie-Laetitia KHOURY-HELOU , Zaki ABIZA, Année 2010-2011: ENSEIRB-MATMECA,
Bordeaux, TER de deuxième année.
Part prise dans l'encadrement : 100%. Ce travail a porté sur l'implémentation d'une équation
de Peng-Robinson dans un code de simulation pour reproduire un choc de détente dans un
tube à choc.

2. Mohamad Samer , Razaaly Jamal Nassim, Année 2011-2012, ENSEIRB-MATMECA, Bor-
deaux, TER de deuxième année. Part prise dans l'encadrement : 100%. Il s'agit d'une étude
de l'in�uence des incertitudes physiques sur la conception des modèles thermodynamiques com-
plexes. En particulier, on travaille actuellement sur des méthodes e�caces pour améliorer la
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stabilité des équations d'état, pour pouvoir les utiliser dans des codes de simulation numérique
pour les gaz réels.

3. Fatmi Amine, Bordet Aurélien, Année 2011-2012, ENSEIRB-MATMECA, Bordeaux, TER de
deuxième année. Part prise dans l'encadrement : 100%. Le travail porte sur la modélisation
et la simulation des cycles ORC (Organic Rankine Cycles). L'idée consiste à mettre en place
une approche couplée en faisant en même temps la simulation numérique de la turbine ORC
et l'analyse globale du cycle. Ensuite la boucle a été liée à une méthode d'optimisation pour
pouvoir calculer les conditions idéales de fonctionnement du système.

4. Marc Duvernet, Mickael Capelli, Année 2012-2013, ENSEIRB-MATMECA, Bordeaux, TER
de deuxième année. Part prise dans l'encadrement : 100%. Le travail consiste dans
l'implémentation d'une méthode de type bayésien pour la reconstruction des conditions amont
à partir des conditions à la paroi.

5. Claire Morel, Fabien Gadichau, Année 2012-2013, ENSEIRB-MATMECA, Bordeaux, TER de
deuxième année. Part prise dans l'encadrement : 100%. Le travail consiste dans l'étude de
l'e�et thermique dans des écoulements cavitants. En particulier, la contribution des termes
conducitfs et convéctifs dans l'équation de Rayleigh-Plesset est prise en compte.

12.4 Collective tasks

1. Responsable de l'équipe associée AQUARIUS (INRIA-Bordeaux and Stanford Uni-
versity). Cette équipe rassemble trois groupes de recherches (Bacchus à INRIA Bordeaux
Sud-Ouest, le Département de Mécanique et le Département Aéronautique et Aérospatial à
l'Université de Stanford). Sa mission est l'excellence scienti�que sur deux thématiques à très
fort potentiel, c'est-à-dire la quanti�cation des incertitudes et la simulation des écoulements à
grand nombre de Reynolds (basée sur des méthodes d'enrichissement de la couche limite).

2. Activité de Révision pour Physics of Fluids, Journal of Computational Physics, Computers
and Fluids, International Journal for Numerical Methods in Fluids, International Journal of
Environmental Engineering, Engineering Computations, Journal of Marine Science and Tech-
nology, Biomedical Signal Processing and Control.

3. Participation au comité de lecture et de révision des Technical Publications pour la
conférence ASME 2010 10th Biennial Conference on Engineering Systems Design and Analysis
(ESDA 2010), Istanbul, Turkey from 12 to 14 July 2010.

4. Participation au comité de lecture et de révision des Technical Publications pour la
conférence AIAA 2012 12th Non-deterministic conference, Hawai, USA, avril 2012.

5. Participation au comité de lecture et de révision des Technical Publications pour la
conférence AIAA 2013 13th Non-deterministic conference, Hawai, USA, avril 2013.

6. Membre des Commissions d'examens des cours suivants :

• Fluidodinamica II (Dynamique des Fluides II), cours de 2ème cycle, Università del Salento,
2007/2008.

• Fluidodinamica (Dynamique des Fluides), cours de 1er cycle, Università del Salento,
2007/2008.

• Fluidodinamica numerica (Dynamique des Fluides Numérique), cours de 2ème cycle, Fa-
coltà di Brindisi, Università del Salento, 2007/2008.
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7. Co-Organisation de la conférence HONOM2013, tenue à INRIA-Bordeaux en mars 2013.

8. Chairman à la session Eurogen 2011.

J'ai été le Chairman dans la session de Optimization and Uncertainty dans le cadre de EURO-
GEN 2011, International Conference on Evolutionary and Deterministic Methods for Design,
Optimization and Control with Applications to Industrial and Societal Problems, qui s'est
tenu à Capoue, Italie. Cette conférence, qui se tient tous les deux ans, réunit les meilleurs
experts d'optimisation au monde, et est une des conférences plus connues dans le domaine de
l'optimisation.

9. Chairman à une session de la conférence Honom 2013, tenue à Bordeaux en mars 2013.

10. Participation au comité de sélection concernant le poste de MC/UPMC 0876 "Propagation
des incertitudes, optimisation, contrôle robuste en CFD", Université Pierre et Marie Curie.

11. Expertise pour l'évaluation des projets de l'Idex de Sorbonne Paris Cité, Février 2013.

12. Gestion du site web de l'équipe BACCHUS, de l'équipe associée AQUARIUS, et de la
conférence HONOM2013.

13. Référent de l'équipe pour l'organisation interne du nouveau bâtiment INRIA.

14. Organisation de rencontres appelés Brainstorming, avec les thésards de l'équipe Bacchus
pour les habituer à présenter leur travaux et éventuellement les aider dans leurs travaux.

15. Presentation de l'outil Mendeley aux chercheurs de INRIA Bordeaux Sud-Ouest, Avril 2013.

12.5 Teaching

CM+TD

1. Année 2013-2014 : ENSEIRB-MATMECA, Bordeaux, TD (20h) de Mécanique des Fluides II,
2ème année.

2. Année 2013-2014 : ENSEIRB-MATMECA, Bordeaux, CM (30h) de Simulation numérique des
écoulements �uides, 3ème année.

3. Année 2013-2014 : ENSEIRB-MATMECA, Bordeaux, TD (24h) de Analyse Numérique II,
1ère année.

4. Année 2012-2013 : ENSEIRB-MATMECA, Bordeaux, TD (20h) de Mécanique des Fluides II,
2ème année.

5. Année 2012-2013 : ENSEIRB-MATMECA, Bordeaux, CM (30h) de Simulation numérique des
écoulements �uides, 3ème année.

6. Année 2012-2013 : ENSEIRB-MATMECA, Bordeaux, TD (24h) de Analyse Numérique II,
1ère année.

7. Année 2011-2012 : ENSEIRB-MATMECA, Bordeaux, TD (24h) de Analyse Numérique II,
1ère année.

8. Année 2009-2010: Ense3, Grenoble INP, Cours de troisième année d'école d'ingénieurs, niveau
M2, Optimisation pour l'ingénieur, 8h de bureau d'études (BE).
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9. Année 2008-2009: Ense3, Grenoble INP, Cours de première année énergie et enjeux, 4 de
travaux dirigés (TD).

10. Année 2007-2008: Responsable du cours de 2ème cycle Fluidodinamica II (Dynamique des
Fluides II), à l'Università del Salento (Italie), 24 heures de cours magistraux (CM) + 12 heures
de travaux dirigés (TD).

11. Année 2007-2008: Università del Salento (Italie), Cours Fluidodinamica Numerica (Mécanique
des Fluides Numérique), Master Prototypage Numérique, 8 h.

TER

1. Année 2012-2013: ENSEIRB-MATMECA, Bordeaux, TER de deuxième année sur le problème
inverse dans les capsules aérospatiales, 6h.

2. Année 2012-2013: ENSEIRB-MATMECA, Bordeaux, TER de deuxième année sur l'e�et ther-
mique dans des écoulements cavitants, 6h.

3. Année 2011-2012: ENSEIRB-MATMECA, Bordeaux, TER de deuxième année sur la prise en
compte des incertitudes dans les équations d'état complexes, 8h.

4. Année 2011-2012: ENSEIRB-MATMECA, Bordeaux, TER de deuxième année sur la modéli-
sation et la simulation numérique des cycles ORC, 8h.

5. Année 2010-2011: ENSEIRB-MATMECA, Bordeaux, TER de deuxième année sur la simulation
numérique en gaz dense, 8h.

Encadrement

• 2 thèse de doctorat

• 3 post-doc

• 2 PFE

• 5 stage de Master II

• 5 stage de type TER

12.6 Publications

Nombre de Publications Depuis 2010 Globale

Articles dans des revues internationales avec comité de lecture 14 20
Chapitre de Livres 4 8
Articles soumis 4 4

Conférences internationales avec comité de lecture 25 41
Communication sans actes 1 9
Rapport de Recherche 13 13
Séminaires invités 14 21

Autres 0 3
GLOBALE 75 119

Articles dans des revues internationales avec comité de lecture
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1. J. Tryoen, P.M. Congedo, R. Abgrall, N. Villedieu, T. Magin, Bayesian-based Method with
metamodels for rebuilding free-stream conditions in atmospheric entry �ows. Accepted with
revisions in AIAA Journal.

2. R. Abgrall, M.G. Rodio, P.M. Congedo, Two-phase �ow numerical simulation with real-gas
e�ects: application to rarefaction shock waves. Accepted with revisions in European Journal
of Mechanics/B Fluids.

3. M.G. Rodio, P.M. Congedo, Robust Analysis of cavitating �ows in Venturi tube. Accepted
with revisions in European Journal of Mechanics/B Fluids.

4. R. Abgrall, P.M. Congedo, G. Geraci, A One-Time Truncate and Encode Multiresolution
Stochastic Framework. In press on Journal of Computational Physics.

5. P.M. Congedo, J. Witteveen, G. Iaccarino, 2013, A simplex-based numerical framework for
simple and e�cient robust design optimization. Computational Optimization and Application
56, 1, pp. 231-251.

6. P.M. Congedo, G. Geraci, R. Abgrall, V. Pediroda, L. Parussini, 2013, TSI metamodels-based
multi-objective robust optimization. Engineering Computations 30, 8.

7. R. Abgrall, P.M. Congedo, A semi-intrusive deterministic approach to uncertainty quanti�-
cations in non-linear �uid �ow problems. Journal of Computational Physics 2013, 235, pp.
828-845.

8. P.M. Congedo, G. Balarac, C. Duprat, C. Corre, Numerical prediction of turbulent �ow using
RANS and LES with uncertain in�ow conditions. International Journal for Numerical Methods
in Fluids 2013, Volume: 72, Issue: 3, pp. 341-358.

9. P. Cinnella, P.M. Congedo, 2013, Convergence behaviours of Genetic Algorithms for Aerody-
namic Optimisation Problems. International Journal of Engineering Systems Modelling and
Simulation, Vol. 5, No. 4, 2013, pp. 197-216.

10. P.M. Congedo, C. Corre, P. Colonna, J. Witteveen, G. Iaccarino, Backward uncertainty prop-
agation method in �ow problems: application to the prediction of rarefaction shock waves,
Comput. Methods Appl. Mech. Engrg. 2012, Volume: 213-216, Issue: 1, pp. 314-326.

11. P. Cinnella, P.M. Congedo, V. Pediroda, L. Parussini, Quanti�cation of uncertainties in com-
pressible �ows with complex thermodynamic behavior, Physics of Fluids 2011, 23, pp. 116101.

12. C. Duprat, G. Balarac, O. Metais, P.M. Congedo, O. Brugière, A wall-layer model for large-
eddy simulations of turbulent �ows with/out pressure gradient, Physics of Fluids 2011, 23, pp.
015101.

13. P.M. Congedo, C. Corre, P. Cinnella, Numerical Investigation of dense-gas e�ects in turboma-
chinery, Computers and Fluids 2011,Volume: 49, Issue: 1, pp. 290-301

14. P.M. Congedo, C. Corre, J.M. Martinez, Shape Optimization of an Airfoil in a BZT Flow with
Multiple-source Uncertainties, Comput. Methods Appl. Mech. Engrg. 2011, Volume: 200,
Issue: 1-4, pp. 216-232.

15. P. Cinnella, P.M. Congedo, V. Pediroda, L. Parussini, Quanti�cation of Thermodynamic Un-
certainties in Real Gas Flows, International Journal of Engineering Systems Modelling and
Simulation, Vol. 2, Nos. 1/2, 2010, pp. 12-24 .
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16. P. Cinnella, P.M. Congedo, Optimal airfoil shapes for viscous transonic �ows of Bethe-
Zel'dovich-Thompson �uids, Computer and Fluids, Volume: 37, Issue: 3, March, 2008, pp.
250-264 .

17. P. Cinnella, P.M. Congedo, Inviscid and viscous behavior of dense gas �ows past an airfoil, J.
Fluid Mech. 580(2007), 179-217.

18. P.M. Congedo, C. Corre, P. Cinnella, 2007,Airfoil shape optimization for transonic �ows of
Bethe-Zel'dovich-Thompson �uids. AIAA Journal, Vol. 45, No.6, pp.1303-1316.

19. P. Cinnella, P.M. Congedo, 2005, Aerodynamic performance of transonic BZT �ows past an
airfoil, AIAA Journal, Vol. 43, No.2, pp.370-378.

20. P. Cinnella, P.M. Congedo, 2005, Numerical solver for dense gas �ows. AIAA Journal, Vol.43,
No.11, pp. 2457-2461.

Articles soumis

21. R. Abgrall, P.M. Congedo, G. Geraci, G. Iaccarino, An adaptive multiresolution semi-intrusive
scheme for UQ in compressible �uid problems

22. R. Abgrall, P.M. Congedo, G. Geraci, G. Iaccarino, Non-linear Multiresolution framework for
Uncertainty Quanti�cation in Computational Fluid Dynamics.

23. R. Abgrall, P.M. Congedo, G. Geraci, G. Iaccarino, Decomposition and Computation of high-
order statistics.

24. R. Abgrall, P.M. Congedo, G. Geraci, Toward a Uni�ed Multiresolution Scheme in the Com-
bined Physical/Stochastic Space for Stochastic Di�erential Equations.

Chapitre de Livres

25. R. Abgrall, P.M. Congedo, G. Geraci, G. Iaccarino, Adaptive strategy in multiresolution frame-
work for uncertainty quanti�cation. Proceedings of the 2012 Summer Program, Center for
Turbulence Research, Stanford University, pp. 209-218.

26. R. Abgrall, P.M. Congedo, G. Geraci, An Adaptive Multiresolution Inspired Scheme for Solving
the Stochastic Di�erential Equations. Proceedings of MASCOT11, pp. 1-10.

27. P.M. Congedo, J. Witteveen, G. Iaccarino, Simplex-simplex approach for robust design opti-
mization, EUROGEN 2011 Proceedings, ECCOMAS Thematic Conference, pp. 554-569.

28. P.M. Congedo, G. Geraci, R. Abgrall, V. Pediroda, L. Parussini, E�cient ANOVA decomposi-
tion and metamodel-based multi-objective robust optimization, EUROGEN 2011 Proceedings,
ECCOMAS Thematic Conference, pp. 493-504.

29. P.M. Congedo, C. Corre, P. Colonna, J. Witteveen, G. Iaccarino, Robust simulation of non-
classical gas-dynamics phenomena. Proceedings of the 2010 Summer Program, Center for
Turbulence Research, Stanford University, pp. 27-40.

30. P.M. Congedo, P. Cinnella, C. Corre, E�cient Numerical Simulation of Dense Gas Flows Past
Airfoils and Wings. Computational Fluid Dynamics 2008, Part 16, pp. 295-300, Springer-
Verlag.
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31. P.M. Congedo, P. Cinnella, C. Corre, Shape Optimization for Dense Gas Flows in Turbine
Cascades. Computational Fluid Dynamics 2006, Part 6, pp. 555-560, Springer-Verlag.

32. P. Cinnella, P.M. Congedo, D. Laforgia, Transonic Flows of BZT Fluids Through Turbine
Cascades. Computational Fluid Dynamics 2004, Part VI, pp. 227-232, Springer-Verlag.

Conférences internationales avec comité de lecture

33. R. Abgrall, P.M. Congedo, D. De Santis, G. Geraci, Stochastic analysis and robust optimization
of an experimental setting for converging shock waves studies, MASCOT 2013, San Lorenzo
de El Escorial, Spain.

34. R. Abgrall, P.M. Congedo, G. Geraci, A high-order adaptive semi-intrusive �nite volume scheme
for stochastic partial di�erential equations, MASCOT 2013, San Lorenzo de El Escorial, Spain.

35. F. Fusi, P.M. Congedo, G. Quaranta, A. Guardone, Multi-�delity approach for aerospace ap-
plications, EUROGEN 2013, Las Palmas de Gran Canaria. Spain.

36. R. Abgrall, P.M. Congedo, G. Geraci, G. Iaccarino, Multi-objective design optimization using
high-order statistics for CFD applications, EUROGEN 2013, Las Palmas de Gran Canaria.
Spain.

37. P. M. Congedo, P.M. Congedo, L. Parussini, V. Pediroda, Optimization under uncertainty of
horizontal ground heat exchangers, EUROGEN 2013, Las Palmas de Gran Canaria. Spain.

38. P.M. Congedo, G. Geraci, D. De Santis, On the predictive estimation of converging shock
waves, Congrés Français de Mécanique, Bordeaux, 2013.

39. M.G. Rodio, J. Tryoen, P.M. Congedo, Construction d'un modèle thermodynamique �able et
robuste pour les mélanges liquide-vapeur, Congrés Français de Mécanique, Bordeaux, 2013.

40. P.M. Congedo, M. Ricchiuto, Robust simulation of shallow water long wave run-up, Congrés
Français de Mécanique, Bordeaux, 2013.

41. M.G. Rodio, P.M. Congedo, Robust estimation of the thermal e�ect considering convective and
conductive heat transfer in hydrogen cavitating �ow, EUROTHERM SEMINAR 96, September
2013, Bruxelles, Belgium.

42. J. Tryoen, P.M. Congedo, T. Magin, Characterization of the freestream conditions in the VKI
Longshot facility, EUROTHERM SEMINAR 96, September 2013, Bruxelles, Belgium.

43. R. Abgrall, P.M. Congedo, G. Geraci, A high-order non-linear multiresolution scheme for
stochastic-PDE, Honom 2013, March 2013, Bordeaux, France.

44. R. Abgrall, P.M. Congedo, G. Geraci, G. Iaccarino, High-order statistics-based robust design
optimization, 11th International Conference on Structural Safety & Reliability, June 2013, New
York, USA.

45. J. Tryoen, P.M. Congedo, R. Abgrall, N. Villedieu, T. Magin, Sensitivity analysis and charac-
terization of the uncertain input data for the EXPERT vehicule, 51st AIAA Aerospace Sciences
Meeting, January 2013, Grapevine, USA.

46. M. Ricchiuto, P.M. Congedo, G. Geraci, R. Abgrall, Uncertainty propagation in shallow wa-
ter long wave runup simulations, 1st International Conference on Frontiers in Computational
Physics: Modeling the Earth System, December 2012, Boulder, USA.
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47. P.M. Congedo, C. Corre, R. Abgrall, Robust performance assessment for an oscillating airfoil
using a Time-Spectral Method and a non-intrusive uncertainty propagation method, ICCFD7
- International Conference on Computational Fluid Dynamics, July 2012, Island of Hawaii,
United States.

48. R. Abgrall, M.G. Rodio, P.M. Congedo, E�cient algorithm for viscous two-phase �ows with
real gas e�ects, ICCFD7 - International Conference on Computational Fluid Dynamics, July
2012, Island of Hawaii, United States.

49. R. Abgrall, M.G. Rodio, P.M. Congedo, Innovative formulation for the numerical simulation of
uncertain shock waves in dispersed two-phase �ows, ECCOMAS 2012, September 2012, Vienna,
Austria.

50. P.M. Congedo, J. Witteveen, G. Iaccarino, A simplex-simplex approach for mixed aleatory-
epistemic uncertainty quanti�cation, 14th Non-deterministic Approaches Conference, April
2012, Honolulu, Hawai, USA.

51. R. Abgrall, P.M. Congedo, G. Geraci, An adaptive semi-intrusive �nite-volume scheme for the
solution of stochastic partial di�erential equations, MASCOT 2011 - 11TH MEETINGS ON
APPLIED SCIENTIFIC COMPUTING AND TOOLS, Oct 2011, Rome, Italy.

52. P.M. Congedo, C. Duprat, G. Balarac, C. Corre, E�ects of inlet uncertainties on prediction
of turbulent �ows using RANS and LES simulations, AIAA Paper 2011-3869, 20th AIAA
Computational Fluid Dynamics Conference, Jun 2011, Honolulu, Hawaii, USA

53. P.M. Congedo, P. Cinnella, S. Hercus, C. Corre, E�cient robust optimization techniques for
uncertain dense gas �ows, CFD & Optimization - ECCOMAS Thematic Conference, May 2011,
Antalya, Turkey.

54. P.M. Congedo, C. Corre, J.P. Thibault, G. Iaccarino, Global analysis of Organic Rankine cycles
integrating local CFD simulations and uncertainty, First International Seminar on ORC Power
Systems, September 2011, Delft, Netherlands.

55. P.M. Congedo, J. Witteveen, G. Iaccarino, Simplex-simplex approach for robust design opti-
mization, EUROGEN 2011, International Conferences on Evolutionary Computing for Indus-
trial Applications. - ECCOMAS Thematic Conference, Sep 2011, Capua, Italy

56. R. Abgrall, P.M. Congedo, S. Galera, , G. Geraci, Semi-intrusive and non-intrusive stochastic
methods for aerospace applications, 4th European Conference for Aerospace Sciences, Saint
Petersburg, Russia (2011)

57. P.M. Congedo, G. Geraci, R. Abgrall, V. Pediroda, L. Parussini, E�cient ANOVA decomposi-
tion and metamodel-based multi-objective robust optimization, EUROGEN 2011, International
Conferences on Evolutionary Computing for Industrial Applications. - ECCOMAS Thematic
Conference, Sep 2011, Capua, Italy

58. R. Abgrall, P.M. Congedo, C. Corre, S. Galera, A simple semi-intrusive method for uncertainty
quanti�cation of shocked �ows, comparison with a non-intrusive polynomial choas method,
ECCOMAS CFD 2010, 14-17 June 2010, Lisbon, Portugal.

59. C. Duprat, O. Brugière, P.M. Congedo, G. Balarac, O. Metais, A wall model for LES of
turbulent �ows with/out pressure gradient, ERCOFTAC Workshop Direct and Large Eddy
Simulation 8, July 2010, Eindhoven, The Netherland.
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60. P. Cinnella, P.M. Congedo, V. Pediroda, L. Parussini, Quanti�cation of thermodynamic un-
certainties in real �ows, 44eme Colloque d'Aérodynamique Appliquée, Nantes, avril 2009.

61. M. Giordano, P.M. Congedo, P. Cinnella, Nozzle Shape Optimization for Wet-Steam Flows,
19th AIAA Computational Fluid Dynamic Conference, San Antonio, June 2009.

62. P. Cinnella, P.M. Congedo, V. Pediroda, L. Parussini, Quanti�cation of uncertainties in com-
pressible �ows with complex thermodynamic behavior, 39th AIAA Fluid Dynamic Conference,
San Antonio, June 2009.

63. P.M. Congedo, P. Cinnella, C. Corre, 2008, Aerodynamic performance of turbulent dense gas
�ows past airfoils and wings, 5th ICCFD, Seoul, July 2008.

64. M.G. De Giorgi, P.M. Congedo, M.G. Rodio, A. Ficarella, 2008, Shape optimization for cryo-
genic cavitating �ows past an isolated hydrofoil, 2008 ASME Heat Transfer /Fluids /Solar
/Nano Conferences, Jacksonville, August 2008.

65. Pietro M. Congedo, S. Collura, Paolo M. Congedo, 2008, Modeling And Analysis of Natural
Convection Heat Transfer In Nano�uids, presented to the 2008 ASME Heat Transfer /Fluids
/Solar /Nano Conferences, Jacksonville, August 2008.

66. P. Cinnella, P.M. Congedo, 2008, Accurate and Computationally E�cient Equations of State
for the Numerical Simulation of Dense Gas Flows, 38th AIAA Fluid Dynamic Conference,
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