M. Abkarian, M. Faivre, and A. Viallat, Swinging of Red Blood Cells under Shear Flow, Physical Review Letters, vol.98, issue.18, p.188302, 2007.
DOI : 10.1103/PhysRevLett.98.188302

M. Abkarian, C. Lartigue, and A. Viallat, Tank Treading and Unbinding of Deformable Vesicles in Shear Flow: Determination of the Lift Force, Physical Review Letters, vol.88, issue.6, p.68103, 2002.
DOI : 10.1103/PhysRevLett.88.068103

M. I. Angelova, S. Soleau, P. Meleard, J. F. Faucon, and P. Bothorel, Preparation of giant vesicles by external AC electric fields. Kinetics and applications, Prog. Colloid. Polym. Sci, vol.89, pp.127-131, 1992.
DOI : 10.1007/BFb0116295

E. S. Asmolov, The inertial lift on a small particle in a weak-shear parabolic flow, Physics of Fluids, vol.14, issue.1, pp.15-28, 2002.
DOI : 10.1063/1.1424306

D. M. Audet and W. L. Olbricht, The motion of model cells at capillary bifurcations, Microvascular Research, vol.33, issue.3, pp.377-396, 1987.
DOI : 10.1016/0026-2862(87)90029-X

P. Bagchi, Mesoscale Simulation of Blood Flow in Small Vessels, Biophysical Journal, vol.92, issue.6, pp.1858-1877, 2007.
DOI : 10.1529/biophysj.106.095042

M. Balvin, E. Sohn, T. Iracki, G. Drazer, and J. Frechette, Directional Locking and the Role of Irreversible Interactions in Deterministic Hydrodynamics Separations in Microfluidic Devices, Directional locking and the role of irreversible interactions in deterministic hydrodynamics separations in microfluidic devices, p.78301, 2009.
DOI : 10.1103/PhysRevLett.103.078301

J. O. Barber, J. P. Alberding, J. M. Restrepo, and T. W. Secomb, Simulated Two-dimensional Red Blood Cell Motion, Deformation, and Partitioning in Microvessel Bifurcations, Annals of Biomedical Engineering, vol.35, issue.10, pp.1690-1698, 2008.
DOI : 10.1007/s10439-008-9546-4

J. Beaucourt, F. Rioual, T. Séon, T. Biben, and C. Misbah, Steady to unsteady dynamics of a vesicle in a flow, Physical Review E, vol.69, issue.1, p.11906, 2004.
DOI : 10.1103/PhysRevE.69.011906

T. Biben, A. Farutin, and C. Misbah, Numerical study of 3D vesicles under flow: discovery of new peculiar behaviors, Phys. Rev. E, 2011.

G. Bugliarello and G. C. Hsiao, Phase Separation in Suspensions Flowing through Bifurcations: A Simplified Hemodynamic Model, Science, vol.143, issue.3605, pp.469-471, 1964.
DOI : 10.1126/science.143.3605.469

N. Callens, C. Minetti, G. Coupier, M. Mader, F. Dubois et al., Hydrodynamic lift of vesicles under shear flow in microgravity, Hydrodynamic lift of vesicles under shear flow in microgravity, p.24002, 2008.
DOI : 10.1209/0295-5075/83/24002

URL : https://hal.archives-ouvertes.fr/hal-01261878

R. T. Carr and L. L. Wickham, Plasma skimming in serial microvascular bifurcations, Microvascular Research, vol.40, issue.2, pp.179-190, 1990.
DOI : 10.1016/0026-2862(90)90017-L

J. K. Chesnutt and J. S. Marshall, Effect of particle collisions and aggregation on red blood cell passage through a bifurcation, Microvascular Research, vol.78, issue.3, pp.301-313, 2009.
DOI : 10.1016/j.mvr.2009.09.003

S. Chien, C. D. Tvetenstrand, M. A. Epstein, and G. W. Schmid-schonbein, Model studies on distributions of blood cells at microvascular bifurcations, Am. J. Physiol. Heart Circ. Physiol, vol.248, pp.568-576, 1985.

G. Coupier, B. Kaoui, T. Podgorski, and C. Misbah, Noninertial lateral migration of vesicles in bounded Poiseuille flow, Physics of Fluids, vol.20, issue.11, p.111702, 2008.
DOI : 10.1063/1.3023159

URL : https://hal.archives-ouvertes.fr/hal-01086715

G. Danker and C. Misbah, Rheology of a Dilute Suspension of Vesicles, Physical Review Letters, vol.98, issue.8, p.88104, 2007.
DOI : 10.1103/PhysRevLett.98.088104

URL : https://hal.archives-ouvertes.fr/hal-00197591

G. Danker, P. M. Vlahovska, and C. Misbah, Vesicles in Poiseuille Flow, Vesicles in Poiseuille flow, p.148102, 2009.
DOI : 10.1103/PhysRevLett.102.148102

J. W. Dellimore, M. J. Dunlop, and P. B. Canham, Ratio of cells and plasma in blood flowing past branches in small plastic channels, Am. J. Physiol. Heart Circ. Physiol, vol.244, pp.635-643, 1983.

J. Deschamps, V. Kantsler, E. Segre, and V. Steinberg, Dynamics of a vesicle in general flow, Proc. Natl Acad. Sci. USA 106, 2009.
DOI : 10.1073/pnas.0902657106

URL : https://hal.archives-ouvertes.fr/hal-00437406

R. Ditchfield and W. L. Olbricht, Effects of Particle Concentration on the Partitioning of Suspensions at Small Divergent Bifurcations, Journal of Biomechanical Engineering, vol.118, issue.3, pp.287-294, 1996.
DOI : 10.1115/1.2796009

J. Dupire, M. Abkarian, and A. Viallat, Chaotic Dynamics of Red Blood Cells in a Sinusoidal Flow, Physical Review Letters, vol.104, issue.16, 2010.
DOI : 10.1103/PhysRevLett.104.168101

URL : https://hal.archives-ouvertes.fr/hal-00538828

A. W. El-kareh and T. W. Secomb, A model for red blood cell motion in bifurcating microvessels, International Journal of Multiphase Flow, vol.26, issue.9, pp.1545-1564
DOI : 10.1016/S0301-9322(99)00096-8

S. Eloot, F. De-bisschop, and P. Verdonck, Experimental evaluation of the migration of spherical particles in three-dimensional Poiseuille flow, Physics of Fluids, vol.16, issue.7, pp.2282-2293, 2004.
DOI : 10.1063/1.1723465

G. Enden and A. S. Popel, A Numerical Study of the Shape of the Surface Separating Flow Into Branches in Microvascular Bifurcations, Journal of Biomechanical Engineering, vol.114, issue.3, pp.398-405
DOI : 10.1115/1.2891401

W. Engl, M. Roche, A. Colin, P. Panizza, and A. Ajdari, Droplet Traffic at a Simple Junction at Low Capillary Numbers, Physical Review Letters, vol.95, issue.20, 2005.
DOI : 10.1103/PhysRevLett.95.208304

R. Fan, O. Vermesh, A. Srivastava, B. Yen, L. Qin et al., Integrated barcode chips for rapid, multiplexed analysis of proteins in microliter quantities of blood, Nature Biotechnology, vol.123, issue.12, pp.1373-1378, 2008.
DOI : 10.1073/pnas.95.25.14863

A. Farutin, T. Biben, and C. Misbah, Analytical progress in the theory of vesicles under linear flow, Physical Review E, vol.81, issue.6, p.61904, 2010.
DOI : 10.1103/PhysRevE.81.061904

B. M. Fenton, R. T. Carr, and G. R. Cokelet, Nonuniform red cell distribution in 20 to 100 ??m bifurcations, Microvascular Research, vol.29, issue.1, pp.103-126, 1985.
DOI : 10.1016/0026-2862(85)90010-X

J. Frechette and G. Drazer, Directional locking and deterministic separation in periodic arrays, Journal of Fluid Mechanics, vol.627, pp.379-401, 2009.
DOI : 10.1016/0021-9797(83)90022-X

Y. C. Fung, Stochastic flow in capillary blood vessels, Microvascular Research, vol.5, issue.1, pp.34-48, 1973.
DOI : 10.1016/S0026-2862(73)80005-6

Y. C. Fung, Biomechanics: Mechanical Properties of Living Tissues, 1993.

G. Ghigliotti, T. Biben, and C. Misbah, Rheology of a dilute two-dimensional suspension of vesicles, Journal of Fluid Mechanics, vol.292, pp.489-518, 2010.
DOI : 10.1039/b716612e

V. Girault and P. Raviart, A. 1986 Finite Element Methods for Navier?Stokes Equations: Theory and Algorithms
URL : https://hal.archives-ouvertes.fr/hal-01265320

A. J. Griggs, A. Z. Zinchenko, and R. H. Davis, Low-Reynolds-number motion of a deformable drop between two parallel plane walls, International Journal of Multiphase Flow, vol.33, issue.2, pp.182-206, 2007.
DOI : 10.1016/j.ijmultiphaseflow.2006.06.012

R. Guibert, C. Fonta, and F. Plouraboue, A New Approach to Model Confined Suspensions Flows in Complex Networks: Application to Blood Flow, Transport in Porous Media, vol.27, issue.2, pp.171-194
DOI : 10.1007/s11242-009-9492-0

URL : https://hal.archives-ouvertes.fr/hal-00477624

F. Hecht and O. Pironneau, 2010 A finite element software for PDEs: freeFEM++. Available at

D. W. Inglis, Efficient microfluidic particle separation arrays, Applied Physics Letters, vol.94, issue.1, 2009.
DOI : 10.1063/1.3068750

R. D. Jäggi, R. Sandoz, and C. S. Effenhauser, Microfluidic depletion of red blood cells from whole blood in high-aspect-ratio microchannels, Microfluidics and Nanofluidics, vol.4, issue.1, pp.47-53, 2007.
DOI : 10.1007/s10404-006-0104-9

J. Janela, A. Lefebvre, and B. Maury, A penalty method for the simulation of fluid - rigid body interaction, ESAIM: Proceedings, vol.14, pp.115-123, 2005.
DOI : 10.1051/proc:2005010

URL : https://hal.archives-ouvertes.fr/hal-00728372

V. Kantsler, E. Segre, and V. Steinberg, Dynamics of interacting vesicles and rheology of vesicle suspension in shear flow, EPL (Europhysics Letters), vol.82, issue.5, p.58005, 2008.
DOI : 10.1209/0295-5075/82/58005

B. Kaoui, G. Coupier, C. Misbah, and T. Podgorski, Lateral migration of vesicles in microchannels: effects of walls and shear gradient, La Houille Blanche, vol.5, issue.5, pp.112-119, 2009.
DOI : 10.1051/lhb/2009063

B. Kaoui, G. Ristow, I. Cantat, C. Misbah, and W. Zimmermann, Lateral migration of a two-dimensional vesicle in unbounded Poiseuille flow, Physical Review E, vol.77, issue.2, p.21903, 2008.
DOI : 10.1103/PhysRevE.77.021903

URL : https://hal.archives-ouvertes.fr/hal-00674499

Y. W. Kim and J. Y. Yoo, The lateral migration of neutrally-buoyant spheres transported through square microchannels, Journal of Micromechanics and Microengineering, vol.18, issue.6, p.65015, 2008.
DOI : 10.1088/0960-1317/18/6/065015

A. Lefebvre, 2007 Fluid?particle simulations with FreeFem++, ESAIM: Proc, pp.120-132
DOI : 10.1051/proc:071810

URL : https://hal.archives-ouvertes.fr/hal-00728387/document

B. Maury, Numerical Analysis of a Finite Element/Volume Penalty Method, SIAM Journal on Numerical Analysis, vol.47, issue.2, pp.1126-1148, 2009.
DOI : 10.1137/080712799

H. N. Mayrovitz and J. Roy, Microvascular blood flow: evidence indicating a cubic dependence on arteriolar diameter, Am. J. Physiol, vol.255, pp.1031-1038, 1983.

J. L. Mcwhirter, H. Noguchi, and G. Gompper, Flow-induced clustering and alignment of vesicles and red blood cells in microcapillaries, Proc. Natl Acad. Sci. USA, pp.6039-6043, 2009.
DOI : 10.1073/pnas.0811484106

S. Mortazavi and G. Tryggvason, A numerical study of the motion of drops in Poiseuille flow. Part 1. Lateral migration of one drop, Journal of Fluid Mechanics, vol.411, pp.325-350, 2000.
DOI : 10.1017/S0022112099008204

H. Noguchi, Dynamic modes of red blood cells in oscillatory shear flow, Physical Review E, vol.81, issue.6, p.61920, 2010.
DOI : 10.1103/PhysRevE.81.061920

D. Obrist, B. Weber, A. Buck, and P. Jenny, Red blood cell distribution in simplified capillary networks, simplified capillary networks, pp.2897-2918, 2010.
DOI : 10.1038/nm.2022

P. Olla, The Lift on a Tank-Treading Ellipsoidal Cell in a Shear Flow, Journal de Physique II, vol.7, issue.10, pp.1533-1540, 1997.
DOI : 10.1051/jp2:1997201

URL : https://hal.archives-ouvertes.fr/jpa-00248531

N. Pamme, Continuous flow separations in microfluidic devices, Lab on a Chip, vol.6, issue.12, pp.1644-1659, 2007.
DOI : 10.1039/b712784g

P. Peyla, Rheology and dynamics of a deformable object in a microfluidic configuration: A numerical study, Europhysics Letters (EPL), vol.80, issue.3, p.34001, 2007.
DOI : 10.1209/0295-5075/80/34001

T. Podgorski, N. Callens, C. Minetti, G. Coupier, F. Dubois et al., Dynamics of Vesicle Suspensions in Shear Flow Between Walls, Dynamics of vesicle suspensions in shear flow between walls, pp.263-270, 2010.
DOI : 10.1007/s12217-010-9212-y

URL : https://hal.archives-ouvertes.fr/hal-00634494

A. R. Pries, K. Ley, M. Claassen, and P. Gaethgens, Red cell distribution at microvascular bifurcations, Microvascular Research, vol.38, issue.1, pp.81-101, 1989.
DOI : 10.1016/0026-2862(89)90018-6

A. R. Pries, T. W. Secomb, and P. Gaethgens, Biophysical aspects of blood flow in the microvasculature, Cardiovascular Research, vol.32, issue.4, pp.654-667, 1996.
DOI : 10.1016/S0008-6363(96)00065-X

F. Risso, F. Collé-paillot, and M. Zagzoule, Experimental investigation of a bioartificial capsule flowing in a narrow tube, Journal of Fluid Mechanics, vol.547, issue.-1, pp.149-173, 2006.
DOI : 10.1017/S0022112005007652

B. W. Roberts and W. L. Olbricht, Flow-induced particulate separations, AIChE Journal, vol.38, issue.07, pp.2842-2849, 2003.
DOI : 10.1002/aic.690491116

B. W. Roberts and W. L. Olbricht, The distribution of freely suspended particles at microfluidic bifurcations, AIChE Journal, vol.26, issue.1, pp.199-206, 2006.
DOI : 10.1002/aic.10613

M. Schindler and A. Ajdari, Droplet Traffic in Microfluidic Networks: A Simple Model for Understanding and Designing, Physical Review Letters, vol.100, issue.4, p.44501, 2008.
DOI : 10.1103/PhysRevLett.100.044501

J. A. Schonberg and E. J. Hinch, Inertial migration of a sphere in Poiseuille flow, Journal of Fluid Mechanics, vol.203, pp.517-524, 1989.
DOI : 10.1017/S0022112067002150

T. W. Secomb, B. Styp-rekowska, and A. R. Pries, Two-Dimensional Simulation of Red Blood Cell Deformation and Lateral Migration in Microvessels, Annals of Biomedical Engineering, vol.255, issue.5, pp.755-765, 2007.
DOI : 10.1007/s10439-007-9275-0

D. A. Sessoms, M. Belloul, W. Engl, M. Roche, L. Courbin et al., Droplet motion in microfluidic networks: Hydrodynamic interactions and pressure-drop measurements, Physical Review E, vol.80, issue.1, p.16317, 2009.
DOI : 10.1103/PhysRevE.80.016317

URL : https://hal.archives-ouvertes.fr/hal-00663117

K. Svanes and B. W. Zweifach, Variations in small blood vessel hematocrits produced in hypothermic rats by micro-occlusion, Microvascular Research, vol.1, issue.2, pp.210-220, 1968.
DOI : 10.1016/0026-2862(68)90019-8

H. Tanaka and T. Araki, Simulation Method of Colloidal Suspensions with Hydrodynamic Interactions: Fluid Particle Dynamics, Physical Review Letters, vol.85, issue.6, pp.1338-1341, 2000.
DOI : 10.1103/PhysRevLett.85.1338

V. Vitkova, M. Mader, B. Polack, C. Misbah, and T. Podgorski, Micro-Macro Link in Rheology of Erythrocyte and Vesicle Suspensions, Micro?macro link in rheology of erythrocyte and vesicle suspensions, pp.33-35, 2008.
DOI : 10.1529/biophysj.108.138826

URL : https://hal.archives-ouvertes.fr/hal-00381579

P. M. Vlahovska, T. Podgorski, and C. Misbah, Vesicles and red blood cells in flow: From individual dynamics to rheology, Comptes Rendus Physique, vol.10, issue.8, pp.775-789, 2009.
DOI : 10.1016/j.crhy.2009.10.001

S. Yang, A. Undar, and J. D. Zahn, A microfluidic device for continuous, real time blood plasma separation, Lab Chip, vol.3, issue.2, pp.871-880, 2006.
DOI : 10.1039/B516401J

S. Yang and J. D. Zahn, Particle Separation in Microfluidic Channels Using Flow Rate Control, Fluids Engineering, 2004.
DOI : 10.1115/IMECE2004-60862

R. T. Yen and Y. C. Fung, Effect of velocity distribution on red cell distribution in capillary blood vessels, Am. J. Physiol. Heart Circ. Physiol, vol.235, pp.251-257, 1978.

J. Y. Yoo and Y. W. Kim, 2010 Two-phase flow laden with spherical particles in a microcapillary, Intl J. Multiphase Flow, vol.36, pp.460-466

S. Zheng, J. Liu, and Y. Tai, Streamline-Based Microfluidic Devices for Erythrocytes and Leukocytes Separation, Journal of Microelectromechanical Systems, vol.17, issue.4, pp.1029-1038, 2008.
DOI : 10.1109/JMEMS.2008.924274

.. Semi-dilute-suspensions, 219 8.2.1 The viscosity of a confined dilute suspension of solid disks, p.223

D. Andelman, K. Kawakatsu, and . Kawasaki, Equilibrium Shape of Two-Component Unilamellar Membranes and Vesicles, Europhysics Letters (EPL), vol.19, issue.1, p.57, 1992.
DOI : 10.1209/0295-5075/19/1/010

E. Robert, Y. Apfel, J. Tian, T. Jankovsky, . Shi et al., Free oscillations and surfactant studies of superdeformed drops in microgravity, Physical review letters, issue.10, pp.781912-1915, 1997.

G. Batchelor and J. Green, The determination of the bulk stress in a suspension of spherical particles to order c 2, Journal of Fluid Mechanics, vol.19, issue.03, pp.401-427, 1972.
DOI : 10.1007/BF01976445

J. Beaucourt, F. Rioual, T. Seacuteon, T. Biben, and C. Misbah, Steady to unsteady dynamics of a vesicle in a flow, Physical Review E, vol.69, issue.1, p.11906, 2004.
DOI : 10.1103/PhysRevE.69.011906

S. Bertoluzza, M. Ismail, and B. Maury, Analysis of the fully discrete fat boundary method, Numerische Mathematik, vol.210, issue.1, pp.49-77, 2011.
DOI : 10.1007/s00211-010-0317-4

URL : https://hal.archives-ouvertes.fr/hal-00665644

T. Biben and C. Misbah, Tumbling of vesicles under shear flow within an advected-field approach, Physical Review E, vol.67, issue.3, p.31908, 2003.
DOI : 10.1103/PhysRevE.67.031908

K. Thierry-biben, C. Kassner, and . Misbah, Phase-field approach to three-dimensional vesicle dynamics, Physical Review E, vol.72, issue.4, p.41921, 2005.
DOI : 10.1103/PhysRevE.72.041921

R. P. Bonet-chaple, Numerical stabilization of vonvection-diffusion-reaction problems, 2006.

N. Alexander, . Brooks, J. Thomas, and . Hughes, Streamline upwind/petrov-galerkin formulations for convection dominated flows with particular emphasis on the incompressible navier-stokes equations. Computer methods in applied mechanics and engineering, pp.199-259, 1982.

C. Bui, V. Lleras, and O. Pantz, Dynamics of red blood cells in 2d, ESAIM: Proceedings, pp.182-194, 2009.
DOI : 10.1051/proc/2009046

URL : https://hal.archives-ouvertes.fr/hal-00784177

T. T. , C. Bui, P. Frey, and B. Maury, A coupling strategy based on anisotropic mesh adaptation for solving two-fluid flows, International Journal for Numerical Methods in Fluids, 2010.

E. Burman and P. Hansbo, Edge stabilization for Galerkin approximations of convection???diffusion???reaction problems, Computer Methods in Applied Mechanics and Engineering, vol.193, issue.15-16, pp.15-161437, 2004.
DOI : 10.1016/j.cma.2003.12.032

E. Burman and P. Hansbo, Edge stabilization for the generalized Stokes problem: A continuous interior penalty method, Computer Methods in Applied Mechanics and Engineering, vol.195, issue.19-22, pp.19-222393, 2006.
DOI : 10.1016/j.cma.2005.05.009

C. Caldini-queiros, V. Chabannes, M. Ismail, G. Pena, C. Prud-'homme et al., Towards large-scale three-dimensional blood flow simulations in realistic geometries, ESAIM: Proceedings, vol.43, p.17, 2012.
DOI : 10.1051/proc/201343013

URL : https://hal.archives-ouvertes.fr/hal-00786556

P. B. Canham, The minimum energy of bending as a possible explanation of the biconcave shape of the human red blood cell, Journal of Theoretical Biology, vol.26, issue.1, pp.61-81, 1970.
DOI : 10.1016/S0022-5193(70)80032-7

V. Chabannes, Vers la simulation desécoulementsdesécoulements sanguins, 2013.

V. Chabannes, G. Pena, and C. Prud-'homme, High-order fluid???structure interaction in 2D and 3D application to blood flow in arteries, Fifth International Conference on Advanced COmputational Methods in ENgineering, pp.1-9, 2011.
DOI : 10.1016/j.cam.2012.10.006

URL : https://hal.archives-ouvertes.fr/hal-00657622

G. Cottet and E. Maitre, A level-set formulation of immersed boundary methods for fluid???structure interaction problems, Comptes Rendus Mathematique, vol.338, issue.7, pp.581-586, 2004.
DOI : 10.1016/j.crma.2004.01.023

G. Cottet and E. Maitre, A LEVEL SET METHOD FOR FLUID-STRUCTURE INTERACTIONS WITH IMMERSED SURFACES, Mathematical Models and Methods in Applied Sciences, 2010.
DOI : 10.1142/S0218202506001212

URL : https://hal.archives-ouvertes.fr/hal-00103198

Y. Davit and P. Peyla, Intriguing viscosity effects in confined suspensions: A numerical study, EPL (Europhysics Letters), vol.83, issue.6, p.64001, 2008.
DOI : 10.1209/0295-5075/83/64001

C. Kh-de-haas, . Blom, . Van-den-ende, J. Duits, and . Mellema, Deformation of giant lipid bilayer vesicles in shear flow, Physical Review E, vol.56, issue.6, p.7132, 1997.
DOI : 10.1103/PhysRevE.56.7132

H. Deuling and W. Helfrich, The curvature elasticity of fluid membranes : A catalogue of vesicle shapes, Journal de Physique, vol.37, issue.11, pp.1335-1345, 1976.
DOI : 10.1051/jphys:0197600370110133500

URL : https://hal.archives-ouvertes.fr/jpa-00208531

J. Douglas, T. Dupont, V. Doyeux, Y. Guyot, V. Chabannes et al., Interior Penalty Procedures for Elliptic and Parabolic Galerkin Methods, Computing Methods in Applied Sciences Journal of Computational and Applied Mathematics, vol.58, issue.0, pp.207-216, 1976.
DOI : 10.1007/BFb0120591

V. Doyeux, T. Podgorski, S. Peponas, M. Ismail, and G. Coupier, Spheres in the vicinity of a bifurcation: elucidating the Zweifach???Fung effect, Journal of Fluid Mechanics, vol.235, pp.359-388, 2011.
DOI : 10.1017/S0022112010006567

URL : https://hal.archives-ouvertes.fr/hal-00665656

. Doyeux, . Vincent, . Chabannes, . Vincent, C. Prud´homme et al., Simulation of vesicle using level set method solved by high order finite element, ESAIM: Proceedings, vol.38, pp.335-347, 2012.
DOI : 10.1051/proc/201238018

URL : https://hal.archives-ouvertes.fr/hal-00665007

V. Ducrot and P. Frey, Anisotropic Level Set Adaptation for Accurate Interface Capturing, Proceedings of the 17th International Meshing Roundtable, pp.159-176, 2008.
DOI : 10.1007/978-3-540-87921-3_10

A. Einstein, Eine neue Bestimmung der Molek??ldimensionen, Annalen der Physik, vol.17, issue.2, pp.289-306, 1906.
DOI : 10.1002/andp.19063240204

D. Enright, R. Fedkiw, J. Ferziger, and I. Mitchell, A Hybrid Particle Level Set Method for Improved Interface Capturing, Journal of Computational Physics, vol.183, issue.1, pp.83-116, 2002.
DOI : 10.1006/jcph.2002.7166

B. Fabrèges, Une méthode de prolongement régulier pour la simulation d'´ ecoulements fluide / particules, 2012.

A. Farutin, T. Biben, and C. Misbah, Analytical progress in the theory of vesicles under linear flow, Physical Review E, vol.81, issue.6, p.61904, 2010.
DOI : 10.1103/PhysRevE.81.061904

L. P. Franca, S. L. Frey, and T. J. Hughes, Stabilized finite element methods: I. Application to the advective-diffusive model, Computer Methods in Applied Mechanics and Engineering, vol.95, issue.2, pp.253-276, 1992.
DOI : 10.1016/0045-7825(92)90143-8

URL : https://hal.archives-ouvertes.fr/inria-00075259

T. Franke, H. Ronald, C. Hoppe, L. Linsenmann, C. Schmid et al., Numerical simulation of the motion of red blood cells and vesicles in microfluidic flows. Computing and visualization in science, pp.167-180, 2011.

C. Geuzaine and J. Remacle, Gmsh: A 3-D finite element mesh generator with built-in pre- and post-processing facilities, International Journal for Numerical Methods in Engineering, vol.69, issue.4, pp.791309-1331, 2009.
DOI : 10.1002/nme.2579

G. Ghigliotti, T. Biben, and C. Misbah, Rheology of a dilute two-dimensional suspension of vesicles, Journal of Fluid Mechanics, vol.292, pp.489-518, 2010.
DOI : 10.1039/b716612e

G. Ghigliotti, A. Rahimian, G. Biros, and C. Misbah, Vesicle Migration and Spatial Organization Driven by Flow Line Curvature, Physical Review Letters, vol.106, issue.2, p.28101, 2011.
DOI : 10.1103/PhysRevLett.106.028101

R. Glowinski, . Tw-pan, . Hesla, J. Joseph, and . Periaux, A Fictitious Domain Approach to the Direct Numerical Simulation of Incompressible Viscous Flow past Moving Rigid Bodies: Application to Particulate Flow, Journal of Computational Physics, vol.169, issue.2, pp.363-426, 2001.
DOI : 10.1006/jcph.2000.6542

R. Glowinski, T. Pan, I. Todd, . Hesla, D. Daniel et al., A distributed Lagrange multiplier/fictitious domain method for particulate flows, International Journal of Multiphase Flow, vol.25, issue.5, pp.755-794, 1999.
DOI : 10.1016/S0301-9322(98)00048-2

J. L. Guermond, P. Minev, and J. Shen, An overview of projection methods for incompressible flows, Computer Methods in Applied Mechanics and Engineering, vol.195, issue.44-47, pp.44-476011, 2006.
DOI : 10.1016/j.cma.2005.10.010

G. Hauke, A simple subgrid scale stabilized method for the advection-diffusionreaction equation, Computer Methods in Applied Mechanics and Engineering, vol.191, pp.27-282925, 2002.

W. Helfrich, Abstract, Zeitschrift f??r Naturforschung C, vol.28, issue.11-12, pp.693-703, 1973.
DOI : 10.1515/znc-1973-11-1209

J. Thomas, . Hughes, P. Leopoldo, . Franca, M. Gregory et al., A new finite element formulation for computational fluid dynamics: Viii. the galerkin/least-squares method for advective-diffusive equations, Computer Methods in Applied Mechanics and Engineering, vol.73, issue.2, pp.173-189, 1989.

S. Hysing, S. Turek, D. Kuzmin, N. Parolini, E. Burman et al., Quantitative benchmark computations of two-dimensional bubble dynamics, International Journal for Numerical Methods in Fluids, vol.3, issue.5, pp.1259-1288, 2009.
DOI : 10.1002/nme.1620150502

M. Ismail, Méthode de lafrontì eré elargie pour la résolution deprobì emes elliptiques dans des domaines perforés. Application auxécoulementsauxécoulements fluides tridimensionnels, 2004.

M. Ismail and A. Lefebvre-lepot, A necklace model for vesicles simulations in 2D, International Journal for Numerical Methods in Fluids, vol.196, issue.4-6, 2012.
DOI : 10.1002/fld.3960

URL : https://hal.archives-ouvertes.fr/hal-00670072

L. Jibuti, Locomotion etécoulementsetécoulements dans les fluides complexes confinés, 2011.

J. Janela, A. Lefebvre, and B. Maury, A penalty method for the simulation of fluid - rigid body interaction, ESAIM: Proceedings, vol.14, pp.115-123, 2005.
DOI : 10.1051/proc:2005010

URL : https://hal.archives-ouvertes.fr/hal-00728372

A. Johnson and T. Tezduyar, Simulation of multiple spheres falling in a liquidfilled tube, 1995.

E. Jones, T. Oliphant, and P. Peterson, SciPy: Open source scientific tools for Python, 2001.

V. Kantsler, V. Steinberg, ]. B. Kaoui, J. Harting, and C. Misbah, Orientation and Dynamics of a Vesicle in Tank-Treading Motion in Shear Flow, Physical Review Letters, vol.95, issue.25, pp.258101-83066319, 2005.
DOI : 10.1103/PhysRevLett.95.258101

B. Kaoui, G. H. Ristow, I. Cantat, C. Misbah, and W. Zimmermann, Lateral migration of a two-dimensional vesicle in unbounded Poiseuille flow. pre, p.21903, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00674499

B. Kaoui, N. Tahiri, T. Biben, H. Ez-zahraouy, A. Benyoussef et al., Complexity of vesicle microcirculation, Physical Review E, vol.84, issue.4, p.41906, 2011.
DOI : 10.1103/PhysRevE.84.041906

B. Kaoui, Modélisation de vésicules en géométrié etendue et dans des systèmes micro-fluidiques, 2009.

B. Kaoui, G. Biros, and C. Misbah, Why Do Red Blood Cells Have Asymmetric Shapes Even in a Symmetric Flow?, Physical Review Letters, vol.103, issue.18, p.188101, 2009.
DOI : 10.1103/PhysRevLett.103.188101

B. Kaoui, A. Farutin, and C. Misbah, Vesicles under simple shear flow: Elucidating the role of relevant control parameters, Physical Review E, vol.80, issue.6, p.61905, 2009.
DOI : 10.1103/PhysRevE.80.061905

C. E. Kees, I. Akkerman, M. W. Farthing, and Y. Bazilevs, A conservative level set method suitable for variable-order approximations and unstructured meshes, Journal of Computational Physics, vol.230, issue.12, pp.4536-4558, 2011.
DOI : 10.1016/j.jcp.2011.02.030

Y. Kim and M. Lai, Simulating the dynamics of inextensible vesicles by the penalty immersed boundary method, Journal of Computational Physics, vol.229, issue.12, pp.4840-4853, 2010.
DOI : 10.1016/j.jcp.2010.03.020

M. Kraus, W. Wintz, U. Seifert, and R. Lipowsky, Fluid Vesicles in Shear Flow, Physical Review Letters, vol.77, issue.17, pp.3685-3688, 1996.
DOI : 10.1103/PhysRevLett.77.3685

A. Laadhari, Modelisation numérique de la dynamique des globules rouges par la méthode des fonctions de niveau, 2011.

A. Laadhari, P. Saramito, and C. Misbah, Computing the dynamics of biomembranes by combining conservative level set and adaptive finite element methods, Journal of Computational Physics, vol.263, 2011.
DOI : 10.1016/j.jcp.2013.12.032

URL : https://hal.archives-ouvertes.fr/hal-00604145

A. Lefebvre and B. Maury, Apparent viscosity of a mixture of a Newtonian fluid and interacting particles, Comptes Rendus M??canique, vol.333, issue.12, pp.923-933, 2005.
DOI : 10.1016/j.crme.2005.10.007

URL : https://hal.archives-ouvertes.fr/hal-00728382

A. Lefebvre-lepot, Modélisation numérique d'´ ecoulements fluide/particules, 2007.

R. J. Leveque, Numerical Methods for Conservation Laws, 1992.

X. Liu, S. Osher, and T. Chan, Weighted Essentially Non-oscillatory Schemes, Journal of Computational Physics, vol.115, issue.1, pp.200-212, 1994.
DOI : 10.1006/jcph.1994.1187

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.24.8744

M. Mader, V. Vitkova, M. Abkarian, A. Viallat, and T. Podgorski, Dynamics of viscous vesicles in shear flow, The European Physical Journal E, vol.19, issue.4, pp.389-397
DOI : 10.1140/epje/i2005-10058-x

URL : https://hal.archives-ouvertes.fr/hal-01261886

E. Maitre, C. Misbah, P. Peyla, and A. Raoult, Comparison between advectedfield and level-set methods in the study of vesicle dynamics, Physica D: Nonlinear Phenomena, issue.13, pp.2411146-1157, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00460668

E. Maitre, T. Milcent, G. Cottet, A. Raoult, and Y. Usson, Applications of level set methods in computational biophysics, Mathematical and Computer Modelling, vol.49, issue.11-12, pp.11-122161, 2009.
DOI : 10.1016/j.mcm.2008.07.026

URL : https://hal.archives-ouvertes.fr/hal-00177593

R. Malladi, . Jamesa, . Sethian, . Babac, and . Vemuri, A fast level set based algorithm for topology-independent shape modeling, Journal of Mathematical Imaging and Vision, vol.4, issue.No. 7, pp.269-289, 1996.
DOI : 10.1007/BF00119843

B. Maury, Numerical Analysis of a Finite Element/Volume Penalty Method, SIAM Journal on Numerical Analysis, vol.47, issue.2, pp.1126-1148, 2009.
DOI : 10.1137/080712799

B. Maury, A fat boundary method for the poisson problem in a domain with holes, Journal of Scientific Computing, vol.16, issue.3, pp.319-339, 2001.
DOI : 10.1023/A:1012821728631

S. Mendez, E. Gibaud, and F. Nicoud, An unstructured solver for simulations of deformable particles in flows at arbitrary Reynolds numbers, Journal of Computational Physics, vol.256, 2013.
DOI : 10.1016/j.jcp.2013.08.061

URL : https://hal.archives-ouvertes.fr/hal-00871557

M. Thomas, Une approche eulérienne du couplage fluide-structure, analyse mathématique et applications en biomécanique, 2009.

C. Misbah, Vacillating Breathing and Tumbling of Vesicles under Shear Flow, Physical Review Letters, vol.96, issue.2, p.28104, 2006.
DOI : 10.1103/PhysRevLett.96.028104

J. Nave, R. R. Rosales, and B. Seibold, A gradient-augmented level set method with an optimally local, coherent advection scheme, Journal of Computational Physics, vol.229, issue.10, pp.3802-3827, 2010.
DOI : 10.1016/j.jcp.2010.01.029

H. Noguchi and G. Gompper, Shape transitions of fluid vesicles and red blood cells in capillary flows, Proceedings of the National Academy of Sciences, vol.102, issue.40, pp.14159-14164, 2005.
DOI : 10.1073/pnas.0504243102

T. Santtu, C. Ollila, and T. Denniston, One-and two-particle dynamics in microfluidic t-junctions, Physical Review E, vol.87, issue.5, p.50302, 2013.

N. Parolini, Computational fluid dynamics for naval engineering problems, 2004.

S. Charles and . Peskin, Numerical analysis of blood flow in the heart, Journal of Computational Physics, vol.25, issue.3, pp.220-252, 1977.

S. Charles and . Peskin, The immersed boundary method, Acta numerica, vol.11, issue.0, pp.479-517, 2002.

P. Peyla and C. Verdier, New confinement effects on the viscosity of suspensions, EPL (Europhysics Letters), vol.94, issue.4, p.44001, 2011.
DOI : 10.1209/0295-5075/94/44001

URL : https://hal.archives-ouvertes.fr/hal-00567009

C. Pozrikidis, Effect of membrane bending stiffness on the deformation of capsules in simple shear flow, Journal of Fluid Mechanics, vol.440, pp.269-291, 2001.
DOI : 10.1017/S0022112001004657

C. Prud-'homme, V. Chabannes, and G. Pena, Feel++: Finite Element Embedded Language in C++. Free Software available at http://www.feelpp.org. Contributions from A

C. Prud´homme, . Chabannes, . Vincent, . Doyeux, . Vincent et al., Feel++ : A computational framework for Galerkin Methods and Advanced Numerical Methods, ESAIM: Proceedings, vol.38, pp.429-455, 2012.
DOI : 10.1051/proc/201238024

URL : https://hal.archives-ouvertes.fr/hal-00662868

S. Rafa¨?rafa¨?, L. Jibuti, and P. Peyla, Effective Viscosity of Microswimmer Suspensions, Physical Review Letters, vol.104, issue.9, p.98102, 2010.
DOI : 10.1103/PhysRevLett.104.098102

C. Ramon, Comparison of some finite element methods for solving the diffusionconvection-reaction equation, Computer Methods in Applied Mechanics and Engineering, vol.156, issue.1-4, pp.185-210, 1998.

P. Raviart and V. Girault, Finite element approximation of the navier-stokes equations . Lecture notes in mathematics, 1979.

E. Rouy and A. Tourin, A Viscosity Solutions Approach to Shape-From-Shading, SIAM Journal on Numerical Analysis, vol.29, issue.3, pp.867-884, 1992.
DOI : 10.1137/0729053

D. Salac and M. Miksis, A level set projection model of lipid vesicles in general flows, Journal of Computational Physics, vol.230, issue.22, pp.8192-8215, 2011.
DOI : 10.1016/j.jcp.2011.07.019

S. Ashok, A. Sangani, P. Acrivos, and . Peyla, Roles of particle-wall and particle-particle interactions in highly confined suspensions of spherical particles being sheared at low reynolds numbers, Physics of Fluids, vol.23, issue.8, 2011.

U. Seifert, Configurations of fluid membranes and vesicles Advances in Physics, pp.13-137, 1997.

U. Seifert, K. Berndl, and R. Lipowsky, Shape transformations of vesicles: Phase diagram for spontaneous- curvature and bilayer-coupling models, Physical Review A, vol.44, issue.2, p.1182, 1991.
DOI : 10.1103/PhysRevA.44.1182

H. Selmi, L. Elasmi, G. Ghigliotti, and C. Misbah, Boundary integral and fast multipole method for two dimensional vesicle sets in poiseuille flow, Discrete and Continuous Dynamical Systems-Series B (DCDS-B), pp.1065-1076, 2011.

J. A. Sethian, Analysis of flame propagation, 1982.

J. A. Sethian, Level Set Methods and Fast Marching Methods, 1996.

R. Skalak, Motion of a tank-treading ellipsoidal particle in a shear flow, Journal of Fluid Mechanics, vol.120, pp.27-47, 1982.

B. Stamm, Stabilization strategies for discontinuous Galerkin methods, 2008.

R. , S. Osher, S. S. Antman, J. E. Marsden, and L. Sirovich, Level Set Methods and Dynamic Implicit Surfaces
DOI : 10.1115/1.1760520

URL : http://dx.doi.org/10.1016/s0898-1221(03)90179-9

S. Jasjit, S. Suri, S. Singh, X. Laxminarayan, K. Zeng et al., Shape recovery algorithms using level sets in 2-d/3-d medical imagery: A state-of-the-art review, IEEE Transactions on information technology in biomedicine, 2001.

M. Sussman, A. S. Almgren, J. B. Bell, P. Colella, L. H. Howell et al., An Adaptive Level Set Approach for Incompressible Two-Phase Flows, Journal of Computational Physics, vol.148, issue.1, pp.81-124, 1999.
DOI : 10.1006/jcph.1998.6106

M. Sussman, P. Smereka, and S. Osher, A Level Set Approach for Computing Solutions to Incompressible Two-Phase Flow, Journal of Computational Physics, vol.114, issue.1, pp.146-159, 1994.
DOI : 10.1006/jcph.1994.1155

H. Tanaka and T. Araki, Simulation method of colloidal suspensions with hydrodynamic interactions: Fluid particle dynamics. Physical review letters, pp.1338-1341, 2000.

A. Tornberg and B. Engquist, A finite element based level-set method for multiphase flow applications, Computing and Visualization in Science, vol.3, issue.1-2, pp.93-101, 2000.
DOI : 10.1007/s007910050056

K. Tsubota and S. Wada, Effect of the natural state of an elastic cellular membrane on tank-treading and tumbling motions of a single red blood cell, Physical Review E, vol.81, issue.1, p.11910, 2010.
DOI : 10.1103/PhysRevE.81.011910

K. Shravan, D. Veerapaneni, D. Gueyffier, G. Zorin, and . Biros, A boundary integral method for simulating the dynamics of inextensible vesicles suspended in a viscous fluid in 2d, Journal of Computational Physics, vol.228, issue.7, pp.2334-2353, 2009.

K. Shravan, A. Veerapaneni, G. Rahimian, D. Biros, and . Zorin, A fast algorithm for simulating vesicle flows in three dimensions, Journal of Computational Physics, vol.230, issue.14, pp.5610-5634, 2011.

P. Vigneaux, Méthodes Level Set pour desprobì emes d'interface en microfluidique, 2007.

O. Vincent, Dynamique de bulles de cavitation dans de l'eau micro-confinée sous tension. ApplicationàApplicationà l'´ etude de l'embolie dans les arbres, 2012.

C. Winkelmann, Interior penalty finite element approximation of Navier- Stokes equations and application to free surface flows, 2007.

S. Xu, The immersed interface method for simulating prescribed motion of rigid objects in an incompressible viscous flow, Journal of Computational Physics, vol.227, issue.10, pp.5045-5071, 2008.
DOI : 10.1016/j.jcp.2008.01.053

T. Steven and . Zalesak, Fully multidimensional flux-corrected transport algorithms for fluids, Journal of Computational Physics, vol.31, issue.3, pp.335-362, 1979.

J. Zhang, C. Paul, . Johnson, S. Aleksander, and . Popel, An immersed boundary lattice Boltzmann approach to simulate deformable liquid capsules and its application to microscopic blood flows, Physical Biology, vol.4, issue.4, p.285, 2007.
DOI : 10.1088/1478-3975/4/4/005

H. Zhao, H. Amir, . Isfahani, N. Luke, J. B. Olson et al., A spectral boundary integral method for flowing blood cells, Journal of Computational Physics, vol.229, issue.10, pp.3726-3744, 2010.
DOI : 10.1016/j.jcp.2010.01.024

H. Zhao, S. Eric, and . Shaqfeh, The dynamics of a vesicle in simple shear flow, Journal of Fluid Mechanics, vol.28, p.578, 2011.
DOI : 10.1017/S0022112011000115