A. Bock, K. Forchhammer, J. Heider, and C. Baron, Selenoprotein synthesis :An expansion of the genetic code, Trends Biochem. Sci, vol.16, p.463467, 1991.

L. Lim, M. Glasner, S. Yekta, C. Burge, and D. Bartel, Vertebrate MicroRNA Genes, Science, vol.299, issue.5612, p.1540, 2003.
DOI : 10.1126/science.1080372

M. Mandal, B. Boese, J. Barrick, and W. Winkler, Riboswitches Control Fundamental Biochemical Pathways in Bacillus subtilis and Other Bacteria, Cell, vol.113, issue.5, pp.577-586, 2003.
DOI : 10.1016/S0092-8674(03)00391-X

M. T. Cheah, A. Wachter, N. Sudarsan, and R. R. , Breaker Control of alternative RNA splicing and gene expression by eukaryotic riboswitches, Nature, vol.447, p.497500, 2007.

R. B. Lyngso and C. N. Pedersen, RNA Pseudoknot Prediction in Energy-Based Models, Journal of Computational Biology, vol.7, issue.3-4, p.409427, 2000.
DOI : 10.1089/106652700750050862

E. Nawrocki and D. Kolbe, Infernal 1.0: inference of RNA alignments, Bioinformatics, vol.25, issue.10, pp.1335-1337, 2009.
DOI : 10.1093/bioinformatics/btp157

B. Knudsen and J. Hein, Pfold: RNA secondary structure prediction using stochastic context-free grammars, Nucleic Acids Research, vol.31, issue.13, p.31, 2003.
DOI : 10.1093/nar/gkg614

M. Zuker and P. Stiegler, Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information, Nucleic Acids Research, vol.9, issue.1, pp.133-181, 1981.
DOI : 10.1093/nar/9.1.133

L. Ivo, W. Hofacker, . Fontana, F. Peter, . Stadler et al., Fast folding and comparison of RNA secondary structures, Monatsh. Chem, vol.125, p.167188, 1995.

D. H. Mathews, M. D. Disney, J. L. Childs, S. J. Schroeder, M. Zuker et al., Turner Incorporating chemical modification constraints into a dynamic programming algorithm for prediction of RNA secondary structure PNAS, pp.7287-7292, 2004.

N. R. Markham and M. Zuker, UNAFold, Methods Mol. Biol, vol.453, pp.3-31, 2008.
DOI : 10.1007/978-1-60327-429-6_1

H. Stephan, H. Bernhart, U. Tafer, and . Mckstein, Christoph Flamm, Peter F Stadler, and Ivo L Hofacker Partition function and base pairing probabilities of RNA heterodimers, Mol. Biol, vol.1, issue.3, 2006.

U. Muckstein, H. Tafer, J. Hackermuller, S. H. Bernhart, P. F. Stadler et al., Hofacker Thermodynamics of RNA-RNA binding, Bioinformatics, vol.22, p.11771182, 2006.

S. B. Needleman and C. D. Wunsch, A general method applicable to the search for similarities in the amino acid sequence of two proteins, J. Mol. Biol, vol.48, issue.3, p.443453, 1970.

T. F. Smith and M. S. Waterman, Identification of common molecular subsequences, Journal of Molecular Biology, vol.147, issue.1, p.195197, 1981.
DOI : 10.1016/0022-2836(81)90087-5

S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman, Basic local alignment search tool, Journal of Molecular Biology, vol.215, issue.3, p.403410, 1990.
DOI : 10.1016/S0022-2836(05)80360-2

S. F. Altschul and E. V. Koonin, Iterated profile searches with PSI-BLASTa tool for discovery in protein databases, Trends Biochem. Sci, vol.23, issue.11, p.444447, 1998.

S. F. Altschul, T. L. Madden, A. A. Schaffer, J. Zhang, Z. Zhang et al., Gapped BLAST and PSI-BLAST: a new generation of protein database search programs, Nucleic Acids Research, vol.25, issue.17, p.2533893402, 1997.
DOI : 10.1093/nar/25.17.3389

H. Yang, F. Jossinet, N. Leontis, L. Chen, and J. Westbrook, Helen Berman and Eric Westhof Tools for the automatic identification and classification of RNA base pairs Nucl, Acids Res, issue.13, pp.313450-3460, 2003.

S. Lemieux and F. Major, RNA canonical and non-canonical base pairing types: a recognition method and complete repertoire, Nucleic Acids Research, vol.30, issue.19, pp.4250-63, 2002.
DOI : 10.1093/nar/gkf540

B. P. Lewis, C. B. Burge, and D. P. , Conserved seed pairing, often anked by adenosines, indicates that thousands of human genes are microRNA targets, Cell, vol.12015, issue.20, 2005.

V. Ambros, B. Bartel, D. P. Bartel, C. B. Burge, J. C. Carrington et al., Ruvkun and Thomas Tuschl A uniform system for microRNA annotation RNA, pp.277-279, 2003.

K. Ivey and D. Srivastava, MicroRNAs as Regulators of Differentiation and Cell Fate Decisions, Cell Stem Cell, vol.7, issue.1, p.3641, 2010.
DOI : 10.1016/j.stem.2010.06.012

S. Sassen, E. A. Miska, and C. Caldas, MicroRNA : implications for cancer. Vir-chows Archiv, pp.1-10, 2008.

J. Johansson, P. Mandin, A. Renzoni, C. Chiaruttini, M. Springer et al., An RNA Thermosensor Controls Expression of Virulence Genes in Listeria monocytogenes, Cell, vol.110, issue.5, pp.551-561, 2002.
DOI : 10.1016/S0092-8674(02)00905-4

W. Winkler, A. Nahvi, and R. R. Breaker, Thiamine derivatives bind messenger RNAs directly to regulate bacterial gene expression, Nature, vol.53, issue.6910, pp.419952-956, 2002.
DOI : 10.1038/nature01145

M. Parisien and F. Major, The MC-Fold and MC-Sym pipeline infers RNA structure from sequence data, Nature, vol.349, issue.7183, pp.51-56, 2008.
DOI : 10.1038/nature06684

P. Brion and E. Westhof, Hierarchy and dynamics of RNA folding. Annual review of biophysics and biomolecular structure, pp.113-137, 1997.

J. Gorodkin, L. J. Heyer, and G. D. Stormo, Finding the most significant common sequence and structure motifs in a set of RNA sequences, Nucleic Acids Research, vol.25, issue.18, pp.3724-3732, 1997.
DOI : 10.1093/nar/25.18.3724

D. H. Mathews and D. H. Turner, Dynalign: an algorithm for finding the secondary structure common to two RNA sequences, Journal of Molecular Biology, vol.317, issue.2, 2002.
DOI : 10.1006/jmbi.2001.5351

R. Sean, Eddy and Richard Durbin RNA sequence analysis using covariance models Nucleic Acids Research, pp.2079-2088, 1994.

R. Nussinov and A. B. Jacobson, Fast algorithm for predicting the secondary structure of single-stranded RNA., Proceedings of the National Academy of Sciences, pp.776309-6313, 1980.
DOI : 10.1073/pnas.77.11.6309

D. H. Mathews, J. Sabina, M. Zuker, and D. H. Turner, Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure, Journal of Molecular Biology, vol.288, issue.5, pp.911-940, 1999.
DOI : 10.1006/jmbi.1999.2700

M. Zuker, Mfold web server for nucleic acid folding and hybridization prediction, Nucleic Acids Research, vol.31, issue.13, pp.3406-3415, 2003.
DOI : 10.1093/nar/gkg595

L. Ivo, Hofacker Vienna RNA secondary structure server Nucl, Acids Res, vol.31, issue.13, pp.3429-3431, 2003.

Y. Ding, C. Y. Chan, and C. E. Lawrence, RNA secondary structure prediction by centroids in a Boltzmann weighted ensemble, RNA, vol.11, issue.8, 2005.
DOI : 10.1261/rna.2500605

H. Chitsaz, R. Salari, S. C. Sahinalp, and R. Backofen, A partition function algorithm for interacting nucleic acid strands, Bioinformatics, vol.25, issue.12, pp.365-373, 2009.
DOI : 10.1093/bioinformatics/btp212

N. Metropolis and S. Ulam, The Monte Carlo Method, Journal of the American Statistical Association, vol.44, issue.247, pp.335-341, 1949.
DOI : 10.1080/01621459.1949.10483310

N. Metropolis, The Beginning of the Monte Carlo Method, Los Alamos Science, vol.15, pp.125-130, 1987.

N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller, and E. Teller, Equation of State Calculations by Fast Computing Machines, The Journal of Chemical Physics, vol.21, issue.6, pp.1087-1092, 1953.
DOI : 10.1063/1.1699114

K. Binder, Monte Carlo simulation in statistical physics, p.127, 1988.

K. Binder, Monte Carlo and molecular dynamics simulations in polymer sciences, p.587, 1995.

D. Landau and K. Binder, A guide to Monte Carlo simulations in statistical. physics, p.384, 2000.

M. Kalos, Monte Carlo methods, 1986.

W. K. Hastings, Monte Carlo Sampling Methods Using Markov Chains and Their Applications Biometrika, pp.97-109, 1970.

R. H. Swendsen and J. Wang, Nonuniversal critical dynamics in Monte Carlo simulations, Physical Review Letters, vol.58, issue.2, p.868, 1987.
DOI : 10.1103/PhysRevLett.58.86

F. Wang and D. P. Landau, Determining the density of states for classical statistical models: A random walk algorithm to produce a flat histogram, Physical Review E, vol.64, issue.5, p.056101056101, 2001.
DOI : 10.1103/PhysRevE.64.056101

F. Wang and D. P. Landau, Efficient, Multiple-Range Random Walk Algorithm to Calculate the Density of States, Physical Review Letters, vol.86, issue.10, 2001.
DOI : 10.1103/PhysRevLett.86.2050

R. E. Belardinelli, S. Manzi, and V. D. , Pereyra Analysis of the convergence of the 1t and Wang-Landau algorithms in the calculation of multidimensional integrals Phys, Rev. E, vol.78, p.67701, 2008.

P. Ojeda, M. Garcia, A. Londono, and N. Y. , Chen Monte Carlo Simulations of Proteins in Cages : Influence of Confinement on the Stability of Intermediate States, Biophys. Jour, issue.3, pp.96-10761082, 2009.

P. Bradley and K. M. , Misura and David Baker Toward high-resolution de novo structure prediction for small proteins, Science, vol.309, p.18681871, 2005.

R. Das and D. Baker, Automated de novo prediction of native-like RNA tertiary structures, Proc. Natl Acad. Sci. USA, p.1466414669, 2007.
DOI : 10.1073/pnas.0703836104

A. Ortiz, A. Kolinski, and S. , Fold assembly of small proteins using Monte Carlo simulations driven by restraints derived from multiple sequence alignments, Journal of Molecular Biology, vol.277, issue.2, p.419448, 1998.
DOI : 10.1006/jmbi.1997.1595

C. Flamm, W. Fontana, and L. Ivo, Hofacker and Peter Schuster RNA folding at elementary step resolution, RNA, vol.6, issue.325338, 2000.

L. Danilova, D. Pervouchine, A. Favorov, and A. Mironov, RNAKINETICS: A WEB SERVER THAT MODELS SECONDARY STRUCTURE KINETICS OF AN ELONGATING RNA, Journal of Bioinformatics and Computational Biology, vol.04, issue.02, 2006.
DOI : 10.1142/S0219720006001904

H. Isambert and E. D. Siggia, Modeling RNA folding paths with pseudoknots: Application to hepatitis delta virus ribozyme, Proc. Natl Acad. Sci. USA, 97, p.65156520, 2000.
DOI : 10.1073/pnas.110533697

A. Xayaphoummine, T. Bucher, and H. , Kinefold web server for RNA/DNA folding path and structure prediction including pseudoknots and knots, Nucleic Acids Research, vol.33, issue.Web Server, pp.605-610, 2005.
DOI : 10.1093/nar/gki447

J. Cupal, I. L. Hofacker, and F. Peter, Stadler Dynamic programming algorithm for the density of states of RNA secondary structures, Prooceedings of the German Conference on Bioinformatics), pp.184-186, 1996.

S. W. , W. Fontana-ivo, and L. , Hofacker Peter Schuster Complete suboptimal folding of RNA and the stability of secondary structures, Biopolymers, vol.49, p.145164, 1999.

A. Gruber, R. Lorenz, S. Bernhart, R. Neuböck, and I. Hofacker, The Vienna RNA Websuite, Nucleic Acids Research, vol.36, issue.Web Server, 2008.
DOI : 10.1093/nar/gkn188

R. Steven, . Morgan, G. Paul, and . Higgs, Barrier heights between ground states in a model of RNA secondary structure, J. Phys. A : Math. Gen, 1998.

P. Clote, E. Kranakis, D. Krizanc, and B. Salvy, ASYMPTOTICS OF CANONICAL AND SATURATED RNA SECONDARY STRUCTURES, Journal of Bioinformatics and Computational Biology, vol.07, issue.05, pp.869-893, 2009.
DOI : 10.1142/S0219720009004333

URL : https://hal.archives-ouvertes.fr/inria-00411277

R. A. Dimitrov and M. Zuker, Prediction of Hybridization and Melting for Double-Stranded Nucleic Acids, Biophysical Journal, vol.87, issue.1, pp.215-226, 2004.
DOI : 10.1529/biophysj.103.020743

N. R. Markham, Algorithms and software for nucleic acid sequences, 2006.

B. Voss, C. Meyer, and R. Giegerich, Evaluating the predictability of conformational switching in RNA, Bioinformatics, vol.20, issue.10, pp.1573-82, 2004.
DOI : 10.1093/bioinformatics/bth129

P. Steffen, B. Voss, M. Rehmsmeier, J. Reeder, and R. Giegerich, RNAshapes: an integrated RNA analysis package based on abstract shapes, Bioinformatics, vol.22, issue.4, p.500503, 2006.
DOI : 10.1093/bioinformatics/btk010

E. Freyhult, V. Moulton, and P. Clote, Boltzmann probability of RNA structural neighbors and riboswitch detection, Bioinformatics, vol.23, issue.16, p.20542062, 2007.
DOI : 10.1093/bioinformatics/btm314

Z. Lu, J. W. Gloor, and D. H. , Mathews Improved RNA secondary structure prediction by maximizing expected pair accuracy RNA, pp.1805-1813, 2009.
DOI : 10.1261/rna.1643609

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2743040

Y. Ding and C. E. , A statistical sampling algorithm for RNA secondary structure prediction, Nucleic Acids Research, vol.31, issue.24, pp.7280-7301, 2003.
DOI : 10.1093/nar/gkg938

S. Wuchty, W. Fontana, I. L. Hofacker, and P. Schuster, Complete Suboptimal Folding of RNA and the Stability of Secondary Structures Biopolymers, pp.145-165, 1999.

E. Freyhult, V. Moulton, and P. Clote, RNAbor: a web server for RNA structural neighbors, Nucleic Acids Research, vol.35, issue.Web Server, pp.305-314, 2007.
DOI : 10.1093/nar/gkm255

R. Olsthoorn, S. Mertens, F. Brederode, and J. Bol, A conformational switch at the 30 end of a plant virus RNA regulates viral replication, EMBO J, vol.18, p.48564864, 1999.

D. Repsilber, S. Wiese, M. Rachen, A. Schroder, D. Riesner et al., Formation of metastable RNA structures by sequential folding during transcription: Time-resolved structural analysis of potato spindle tuber viroid (???)-stranded RNA by temperature-gradient gel electrophoresis, RNA, vol.5, issue.4, p.574584, 1999.
DOI : 10.1017/S1355838299982018

P. Ray, J. Jia, P. Yao, M. Majumder, and M. Hatzoglou, Fox PL A stress-responsive RNA switch regulates VEGFA expression, Nature, issue.7231, p.457915919, 2009.

M. Mandal and R. Breaker, Gene regulation by riboswitches, Nature Reviews Molecular Cell Biology, vol.13, issue.6, pp.451-63, 2004.
DOI : 10.1002/anie.199410841

A. Nahvi, N. Sudarsan, S. Margaret, X. Ebert, . Zou et al., Genetic Control by a Metabolite Binding mRNA, Chemistry & Biology, vol.9, issue.9, 2002.
DOI : 10.1016/S1074-5521(02)00224-7

A. Nahvi, J. E. Barrick, and R. Breaker, Coenzyme B12 riboswitches are widespread genetic control elements in prokaryotes, Nucleic Acids Research, vol.32, issue.1, p.143150, 2004.
DOI : 10.1093/nar/gkh167

URL : http://doi.org/10.1093/nar/gkh167

A. G. Vitreschak, D. A. Rodionov, A. A. Mironov, and M. S. Gelfand, Regulation of the vitamin B12 metabolism and transport in bacteria by a conserved RNA structural element, RNA, vol.9, issue.9, p.10841097, 2003.
DOI : 10.1261/rna.5710303

URL : https://hal.archives-ouvertes.fr/inria-00099647

W. Winkler, A. Nahvi, and R. Breaker, Thiamine derivatives bind messenger RNAs directly to regulate bacterial gene expression, Nature, vol.53, issue.6910, p.952956, 2002.
DOI : 10.1038/nature01145

J. Miranda-rios, M. Navarro, and M. Soberón, A conserved RNA structure (thi box) is involved in regulation of thiamin biosynthetic gene expression in bacteria, Proc. Natl Acad.Sci. USA 98, p.97369741, 2001.
DOI : 10.1073/pnas.161168098

N. Sudarsan, J. E. Barrick, and R. Breaker, Metabolitebinding RNA domains are present in the genes of eukaryotes, RNA, vol.9, issue.644647, 2003.

D. A. Rodionov, A. G. Vitreschak, A. A. Mironov, and M. S. Gelfand, Comparative genomics of thiamin biosynthesis in prokaryotes. New genes and regulatory mechanisms, J. Biol. Chem, vol.276, issue.50935100, 2002.

V. N. Mironov, D. A. Perumov, A. S. Kraev, A. I. Stepanov, and K. G. Skryabin, Unusual structure in the regulation region of the Bacillus subtilis riboflavin biosynthesis operon, Mol. Biol, vol.24, p.256261, 1990.

M. Mandal and R. Breaker, Adenine riboswitches and geneactivation by disruption of a transcription terminator, Nature Struct. Mol. Biol, vol.11, p.2935, 2004.

F. J. Grundy and T. M. Henkin, The S box regulon: a new global transcription termination control system for methionine and cysteine biosynthesis genes in Gram-positive bacteria, Molecular Microbiology, vol.169, issue.4, p.737749, 1998.
DOI : 10.1046/j.1365-2958.1998.01105.x

B. A. Mcdaniel, F. J. Grundy, I. Artsimovitch, and T. M. Henkin, Transcription termination control of the S box system: Direct measurement of S-adenosylmethionine by the leader RNA, Proceedings of the National Academy of Sciences, vol.100, issue.6
DOI : 10.1073/pnas.0630422100

W. C. Winkler, A. Nahvi, N. Sudarsan, J. E. Barrick, and R. Breaker, An mRNA structure that controls gene expression by binding S-adenosylmethionine, Nature Structural Biology, vol.10, issue.9, p.701707, 2003.
DOI : 10.1038/nsb967

N. Sudarsan, J. K. Wickiser, S. Nakamura, M. S. Ebert, and R. Breaker, An mRNA structure in bacteria that controls gene expression by binding lysine, Genes & Development, vol.17, issue.21, p.26882697, 2003.
DOI : 10.1101/gad.1140003

N. Sudarsan, J. K. Wickiser, S. Nakamura, M. S. Ebert, and R. Breaker, An mRNA structure in bacteria that controls gene expression by binding lysine, Genes & Development, vol.17, issue.21, p.26882697, 2003.
DOI : 10.1101/gad.1140003

W. C. Winkler, A. Nahvi, A. Roth, J. A. Collins, and . Breaker, Control of gene expression by a natural metaboliteresponsive ribozyme, Nature, vol.428, p.281286, 2004.

J. E. Barrick, K. A. Corbino, W. C. Winkler, A. Nahvi, M. Mandal et al., Breaker New motifs suggest an expanded scope for riboswitches in bacterial genetic control, Proc. Natl Acad. Sci. USA 101, p.64216426, 2004.

B. Voss, R. Giegerich, and M. Rehmsmeier, Complete probabilistic analysis of RNA shapes, BMC Biol, 2006.

C. Abreu-goodger and E. Merino, RibEx: a web server for locating riboswitches and other conserved bacterial regulatory elements, Nucleic Acids Research, vol.33, issue.Web Server, pp.690-692, 2005.
DOI : 10.1093/nar/gki445

P. Bengert and T. Dandekar, Riboswitch finder--a tool for identification of riboswitch RNAs, Nucleic Acids Research, vol.32, issue.Web Server, pp.154-159, 2004.
DOI : 10.1093/nar/gkh352

T. Chang, H. Huang, L. Wu, C. Yeh, and B. Liu, Horng JT Computational identification of riboswitches based on RNA conserved functional sequences and conformations, RNA, issue.7, p.15, 2009.

Z. Weinberg, J. Barrick, Z. Yao, A. Roth, J. Kim et al., Breaker RR Identification of 22 candidate structured RNAs in bacteria using the CMfinder comparative genomics pipeline, Nucleic. Acids. Res, issue.14, p.3548094819, 2007.

C. B. Do, M. S. Mahabhashyam, M. Brudno, and S. Batzoglou, ProbCons: Probabilistic consistency-based multiple sequence alignment, Genome Research, vol.15, issue.2, p.330340, 2005.
DOI : 10.1101/gr.2821705

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC546535

R. Nussinov and A. B. Jacobson, Fast algorithm for predicting the secondary structure of single-stranded RNA., Proceedings of the National Academy of Sciences, p.7763096313, 1980.
DOI : 10.1073/pnas.77.11.6309

D. Mathews, Using an RNA secondary structure partition function to determine confidence in base pairs predicted by free energy minimization, RNA, vol.10, issue.8, pp.1178-1190, 2004.
DOI : 10.1261/rna.7650904

H. Kiryu, T. Kin, and K. Asai, Robust prediction of consensus secondary structures using averaged base pairing probability matrices, Bioinformatics, vol.23, issue.4, p.434441, 2007.
DOI : 10.1093/bioinformatics/btl636

J. S. Mccaskill, The equilibrium partition function and base pair binding probabilities for RNA secondary structure, Biopolymers, vol.24, issue.6-7, p.11051119, 1990.
DOI : 10.1002/bip.360290621

G. Quarta, N. Kim, J. A. Izzo, and T. Schlickj, Analysis of Riboswitch Structure and Function by an Energy Landscape Framework, Journal of Molecular Biology, vol.393, issue.4, p.9931003, 2009.
DOI : 10.1016/j.jmb.2009.08.062

M. Zuker, D. H. Mathews, and D. H. Turner, Algorithms and Thermodynamics for RNA Secondary Structure Prediction: A Practical Guide, RNA Biochemistry and Biotechnology, pp.11-43
DOI : 10.1007/978-94-011-4485-8_2

A. Serganov, Y. Yuan, O. Pikovskaya, A. Polonskaia, L. Malinina et al., Structural Basis for Discriminative Regulation of Gene Expression by Adenine- and Guanine-Sensing mRNAs, Chemistry & Biology, vol.11, issue.12, p.1117291741, 2004.
DOI : 10.1016/j.chembiol.2004.11.018

E. Regulski and R. Breaker, In-Line Probing Analysis of Riboswitches, Methods Mol Biol, vol.419, pp.53-67, 2008.
DOI : 10.1007/978-1-59745-033-1_4

P. Clote, F. Lou, and A. William, Lorenz Maximum expected accurate structural neighbors of an RNA secondary structure, 2011.

W. Lorenz and P. Clote, Computing the Partition Function for Kinetically Trapped RNA Secondary Structures, PLoS ONE, vol.101, issue.13, p.316178, 2011.
DOI : 10.1371/journal.pone.0016178.t002

N. Markham and M. Zuker, UNAFold, Methods Mol. Biol, vol.453, p.331, 2008.
DOI : 10.1007/978-1-60327-429-6_1

R. Giegerich and B. Vo, and Marc Rehmsmeier Abstract shapes of, RNA Nucleic Acids Res, vol.32, issue.16, p.48434851, 2004.

G. Blin, D. A. Dulucq, S. Herrbach, and C. , Touz H Alignments of RNA structures, IEEE/ACM Transactions on Computational Biology and Bioinformatics, 2010.

O. Gotoh, An improved algorithm for matching biological sequences, Journal of Molecular Biology, vol.162, issue.3, p.705708, 1982.
DOI : 10.1016/0022-2836(82)90398-9

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.204.203

L. Holm and C. Sander, Dali: a network tool for protein structure comparison, Trends in Biochemical Sciences, vol.20, issue.11, p.478480, 1995.
DOI : 10.1016/S0968-0004(00)89105-7

I. N. Shindyalov and P. E. Bourne, Protein structure alignment by incremental combinatorial extension (CE) of the optimal path, Protein Engineering Design and Selection, vol.11, issue.9, p.739747, 1998.
DOI : 10.1093/protein/11.9.739

V. A. Ilyin, A. Abyzov, and C. M. Leslin, Structural alignment of proteins by a novel TO- POFIT method, as a superimposition of common volumes at a topomax point, Protein. Sci, vol.13, issue.7, p.18651874, 2004.

J. M. Sauder, J. W. Arthur, R. L. Dunbrack, and J. , Large-scale comparison of protein sequence alignment algorithms with structure alignments, Proteins: Structure, Function, and Genetics, vol.23, issue.1, p.622, 2000.
DOI : 10.1002/(SICI)1097-0134(20000701)40:1<6::AID-PROT30>3.0.CO;2-7

M. L. Sierk, M. E. Smoot, E. J. Bass, and . Pearson, Improving pairwise sequence alignment accuracy using near-optimal protein sequence alignments, BMC Bioinformatics, vol.11, issue.1, p.146, 2010.
DOI : 10.1186/1471-2105-11-146

H. T. Mevissen and M. Vingron, Quantifying the local reliability of a sequence alignment, Protein Eng, vol.9, issue.2, p.127132, 1996.

S. Miyazawa, A reliable sequence alignment method based on probabilities of residue correspondences, "Protein Engineering, Design and Selection", vol.8, issue.10, p.9991009, 1995.
DOI : 10.1093/protein/8.10.999

M. O. Dayhoff, R. M. Schwartz, and B. C. Orcutt, A model of evolutionary change in proteins, Atlas of Protein Sequence and Structure, vol.5, issue.3, pp.345-352, 1978.

M. S. Waterman, Sequence alignments in the neighborhood of the optimum with general application to dynamic programming, Proceedings of the National Academy of Sciences, vol.80, issue.10, p.31233124, 1983.
DOI : 10.1073/pnas.80.10.3123

M. S. Waterman and M. Eggert, A new algorithm for best subsequence alignments with application to tRNA-rRNA comparisons, Journal of Molecular Biology, vol.197, issue.4, p.723728, 1987.
DOI : 10.1016/0022-2836(87)90478-5

M. S. Waterman, M. Eggert, and E. Lander, Parametric sequence comparisons., Proc. Natl
DOI : 10.1073/pnas.89.13.6090

URL : http://www.ncbi.nlm.nih.gov/pmc/articles/PMC49443

M. Zuker, Suboptimal sequence alignment in molecular biology. Alignment with error analysis

A. Musacchio, T. Gibson, V. P. Lehto, and M. Saraste, SH3 - an abundant protein domain in search of a function, FEBS Letters, vol.342, issue.1, pp.55-61, 1992.
DOI : 10.1016/0014-5793(92)80901-R

S. F. Altschul, W. Gish, W. Miller, E. W. Myers, and D. J. Lipman, Basic local alignment search tool, Journal of Molecular Biology, vol.215, issue.3, p.403410, 1990.
DOI : 10.1016/S0022-2836(05)80360-2

U. Muckstein, I. L. Hofacker, and P. F. Stadler, Stochastic pairwise alignments, Bioinformatics, vol.18, issue.Suppl 2, pp.153-160, 2002.
DOI : 10.1093/bioinformatics/18.suppl_2.S153

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.106.8478

H. E. Soper, A. W. Young, B. M. Cave, A. Lee, and K. Pearson, ON THE DISTRIBUTION OF THE CORRELATION COEFFICIENT IN SMALL SAMPLES. APPENDIX II TO THE PAPERS OF "STUDENT" AND R. A. FISHER. A COOPERATIVE STUDY, Biometrika, vol.11, issue.4, pp.328-413, 1917.
DOI : 10.1093/biomet/11.4.328