
�>���G �A�/�, �i�2�H�@�y�y�N�j�N�j�9�e

�?�i�i�T�b�,�f�f�i�2�H�X���`�+�?�B�p�2�b�@�Q�m�p�2�`�i�2�b�X�7�`�f�i�2�H�@�y�y�N�j�N�j�9�e

�a�m�#�K�B�i�i�2�/ �Q�M �j�y �C���M �k�y�R�9

�>���G �B�b �� �K�m�H�i�B�@�/�B�b�+�B�T�H�B�M���`�v �Q�T�2�M ���+�+�2�b�b
���`�+�?�B�p�2 �7�Q�` �i�?�2 �/�2�T�Q�b�B�i ���M�/ �/�B�b�b�2�K�B�M���i�B�Q�M �Q�7 �b�+�B�@
�2�M�i�B�}�+ �`�2�b�2���`�+�? �/�Q�+�m�K�2�M�i�b�- �r�?�2�i�?�2�` �i�?�2�v ���`�2 �T�m�#�@
�H�B�b�?�2�/ �Q�` �M�Q�i�X �h�?�2 �/�Q�+�m�K�2�M�i�b �K���v �+�Q�K�2 �7�`�Q�K
�i�2���+�?�B�M�; ���M�/ �`�2�b�2���`�+�? �B�M�b�i�B�i�m�i�B�Q�M�b �B�M �6�`���M�+�2 �Q�`
���#�`�Q���/�- �Q�` �7�`�Q�K �T�m�#�H�B�+ �Q�` �T�`�B�p���i�2 �`�2�b�2���`�+�? �+�2�M�i�2�`�b�X

�G�ö���`�+�?�B�p�2 �Q�m�p�2�`�i�2 �T�H�m�`�B�/�B�b�+�B�T�H�B�M���B�`�2�>���G�- �2�b�i
�/�2�b�i�B�M�û�2 ���m �/�û�T�¬�i �2�i �¨ �H�� �/�B�z�m�b�B�Q�M �/�2 �/�Q�+�m�K�2�M�i�b
�b�+�B�2�M�i�B�}�[�m�2�b �/�2 �M�B�p�2���m �`�2�+�?�2�`�+�?�2�- �T�m�#�H�B�û�b �Q�m �M�Q�M�-
�û�K���M���M�i �/�2�b �û�i���#�H�B�b�b�2�K�2�M�i�b �/�ö�2�M�b�2�B�;�M�2�K�2�M�i �2�i �/�2
�`�2�+�?�2�`�+�?�2 �7�`���M�Ï���B�b �Q�m �û�i�`���M�;�2�`�b�- �/�2�b �H���#�Q�`���i�Q�B�`�2�b
�T�m�#�H�B�+�b �Q�m �T�`�B�p�û�b�X

�6�`�Q�K �/���i���~�Q�r�@�#���b�2�/ �p�B�/�2�Q �+�Q�/�B�M�; �i�Q�Q�H�b �i�Q �/�2�/�B�+���i�2�/
�2�K�#�2�/�/�2�/ �K�m�H�i�B�@�+�Q�`�2 �T�H���i�7�Q�`�K�b

�>�2�`�p�û �u�p�B�[�m�2�H

�h�Q �+�B�i�2 �i�?�B�b �p�2�`�b�B�Q�M�,

�>�2�`�p�û �u�p�B�[�m�2�H�X �6�`�Q�K �/���i���~�Q�r�@�#���b�2�/ �p�B�/�2�Q �+�Q�/�B�M�; �i�Q�Q�H�b �i�Q �/�2�/�B�+���i�2�/ �2�K�#�2�/�/�2�/ �K�m�H�i�B�@�+�Q�`�2 �T�H���i�7�Q�`�K�b�X
�P�i�?�2�` �(�+�b�X�P�>�)�X �l�M�B�p�2�`�b�B�i�û �_�2�M�M�2�b �R�- �k�y�R�j�X �1�M�;�H�B�b�?�X ���L�L�h �, �k�y�R�j�_�1�L�R�a�y�N�8���X ���i�2�H�@�y�y�N�j�N�j�9�e��

ANNÉE 2013

THÈSE / UNIVERSITÉ DE RENNES 1
sous le sceau de l'Université Européenne de Bretagne

pour le grade de

DOCTEUR DE L'UNIVERSITÉ DE RENNES 1

Mention : Informatique

École doctorale Matisse

présentée par

Hervé Yviquel
préparée à l'unité de recherche IRISA (UMR 6074)

Institut de Recherche en Informatique et Systèmes Aléatoires
École Nationale Supérieure des Sciences Appliquées et de Technologie

From

Data�ow-Based

Video Coding Tools

to Dedicated

Embedded Multi-Core

Platforms

Thèse soutenue à Lannion
le 25 octobre 2013

devant le jury composé de :

Alain GIRAULT,
Directeur de recherche, Inria Rhône-Alpes
/Rapporteur

Marco MATTAVELLI,
Maitre d'enseignement et de recherche, École Poly-
technique Fédérale de Lausanne
/Rapporteur

Tanguy RISSET,
Professeur des universités, Institut National des Sci-
ences Appliquées de Lyon
/Examinateur

Jarmo TAKALA,
Professeur, Tampere University of Technology
/Examinateur

Emmanuel CASSEAU
Professeur des universités, Université de Rennes1
/Directeur de thèse

Mickaël RAULET
Ingénieur de Recherche, Institut National des Sci-
ences Appliquées de Rennes
/Co-directeur de thèse

Hervé Yviquel: From Data�ow-based Video Coding Tools to Dedicated Embedded
Multi-core Platforms,© 2010-2013

Don't loaf and invite inspiration;
light out after it with a club,

and if you don't get it
you will nonetheless get something

that looks remarkably like it.

— Jack London

A B S T R A C T

The development of multimedia technology, along with the emergence of
parallel architectures, has revived the interest on data�ow programming
for designing embedded systems. Indeed, data�ow programming offers a
�exible development approach in order to build complex applications while
expressing concurrency and parallelism explicitly. Paradoxically, most of the
studies focus on static data�ow models of computation, even if a pragmatic
development process requires the expressiveness and the practicality of a
programming language based on dynamic data�ow models, such as the
language included in the Recon�gurable Video Coding framework.

In this thesis, we describe a development environment for data�ow pro-
gramming that eases multimedia development for embedded multi-core
platforms. This development environment is built upon a modular software
architecture that bene�ts from modern software engineering techniques such
as meta modeling and aspect-oriented programming. Then, we develop an
optimized software implementation of data�ow programs targeting desktop
and embedded multi-core platforms. Our implementation aims to bridge
the gap between the practicality of the programming language and the ef-
�ciency of the execution. Finally, we present a set of runtime actors map-
ping/scheduling algorithms that enable the execution of dynamic data�ow
programs over multi-core platforms with scalable performance.

R É S U M É

Le développement du multimédia, avec l'émergence des architectures paral-
lèles, a ravivé l'intérêt de la programmation �ux de données pour la concep-
tion de systèmes embarqués. En effet, la programmation �ux de données
offre une approche de développement suf�sament �exible pour créer des
applications complexes tout en exprimant la concurrence et le parallélisme
explicitement. Paradoxalement, la plupart des études portent sur des mo-
dèles �ux de données statiques, même si un processus de développement
pragmatique nécessite l'expressivité et la practicité d'un langage de pro-
grammation basé sur un modèle �ux de données dynamiques, comme le
langage de programmation utilisé dans le cadre de Recon�gurable Video
Coding.

Dans cette thèse, nous décrivons un environnement de développement
pour la programmation �ux de données qui facilite le développement mul-
timédia pour des plates-formes multi-cœr embarquées. Cet environnement
de développement repose sur une architecture logicielle modulaire qui bé-
né�cie de techniques modernes de génie logiciel telles que la méta modéli-
sation et la programmation orientée aspect. Ensuite, nous développons une
implémentation logicielle optimisée des programmes �ux de données ci-
blant aussi bien les ordinateurs de bureau que les plates-formes embarquées.
Notre implémentation vise à combler le fossé entre la practicité du langage
de programmation et l'ef�cacité de son exécution. En�n, nous présentons
un ensemble d'algorithmes de projection et d'ordonnancement d'acteurs qui
permettent l'exécution de programmes �ux de données dynamiques sur des
plates-formes multi-cœur avec des performances extensibles.

v

A C K N O W L E D G M E N T S

Feeling gratitude and
not expressing it is like
wrapping a present and

not giving it.

— William Arthur Ward

First, I would like to thank my advisors Pr Emmanuel Casseau and Dr
Mickaël Raulet for their help and support during these three years. Working
with both of you has been a very pleasant experience from a scienti�c point
of view, as much as from a human relation point of view. Thank you for
your trust in my work, the freedom you let me has been a great source
of motivation. Emmanuel, thank you for all your consideration: Your wise
advices as well as your ability to take a step back on my work are one of
the reasons of the success of my PhD. Mickaël, Thank you for the close and
unlimited support: Your expertise in video decoding has always been very
helpful to make things working, and our long discussions have helped me
to take the right decisions. In fact, working with both of you has been very
enriching and I hope that our collaboration will be able to continue.

I would also like to give my thanks to Pr Alain Girault and Pr Marco
Mattavelli for reviewing this thesis, and to Pr Tanguy Risset and Pr Jarmo
Takala for participating to the jury. All your comments on my work were
detailed and very encouraging. Marco, thank you for allowing the multiple
collaborations with your team. Tanguy, thank you for you interest on my
work. Alain, thank your again for your reviewing: Reading your comments
on my thesis was a true pleasure. Jarmo, thank you for your involvement
in my PhD: The few months I spent in visit at Tampere have been truly
pro�table for me.

I would like to extend my thanks to the people that I have had the plea-
sure to work with. Thanks to the former PhD students for introducing me
to the world of Orcc: Matthieu Wipliez, Jérôme Gorin and Nicolas Siret.
Matthieu, our never-ending debates have always been a pleasure for me.
Thanks to all my collegues with who I have enjoyed working with: Antoine
Lorence, Khaled Jerbi, Alexandre Sanchez, Maxime Pelcat, Jean-François
Nezan. I would also like to thank Pekka Jääskeläinen for making me feel
very welcome during my visit in Tampere. In fact, I would like to thank
the Orcc and TCE communities as a whole for actively participating in the
development of the tools which offers solid basements to this work. I would
also give a special thanks to Angélique Le Pennec and Jocelyne Tremier for
managing administrative tasks seamlessly.

Additionally, I would like to thank my family and friends for their sup-
port during all these years. Big thanks to my parents and sisters for their
love. Thank you for accepting my craziness has it is. Many thanks to all my
friends: Thank you for all the good time spent together, for all the incredible
parties we have made.

Finally, I would like to give a special thanks to my hidden proofreader
that has spent so many nights to �x and improve the English of this thesis.

vii

C O N T E N T S

1 introduction 1
1.1 Landscape of Embedded Computing 1

1.1.1 Embedded Hardware 2
1.1.2 Embedded Software . 2
1.1.3 Embedded System Design 3

1.2 Our Approach and Contributions 4
1.3 Outline . 5

i background 7
2 embedded parallel programming 9

2.1 Parallelism is Everywhere . 9
2.2 Embedded Parallel Platforms 10

2.2.1 Homogeneous versus Heterogeneous 11
2.2.2 Memory Architecture 12
2.2.3 Memory Hierarchy . 13
2.2.4 On-Chip Interconnection Network 14

2.3 Parallel Programming Models 15
2.3.1 General-Purpose Parallel Programming 16
2.3.2 Assisted Parallel Programing 17
2.3.3 High-level Parallel Programming 18

2.4 Mapping and Scheduling . 20
2.5 Conclusion . 21

3 dataflow programming 23
3.1 De�nition of a Data�ow Program 24
3.2 Data�ow Paradigm to Enhance Programming 24

3.2.1 Modular Programming 25
3.2.2 Parallel Programming 25

3.3 Model of Computation . 27
3.3.1 Kahn Process Network 27
3.3.2 Data�ow Process Network 28
3.3.3 Static Data�ow Models 29
3.3.4 Quasi-Static Data�ow Model 29

3.4 Comparing Data�ow MoCs . 30
3.4.1 Characterization of Data�ow MoCs 30
3.4.2 Taxonomy of Data�ow MoCs 31

3.5 Dynamic Modeling Requires Dynamic Analysis 32
3.5.1 Classi�cation . 32
3.5.2 Critical Path Analysis 33

3.6 Execution Models . 34
3.6.1 Multi-Threading . 34
3.6.2 Dynamic Scheduling . 35
3.6.3 Static Scheduling . 36
3.6.4 Multi-core scheduling 37

3.7 Existing Data�ow-based Languages and Tools 38
3.8 Conclusion . 39

4 reconfigurable video coding 41
4.1 Limits of the Standardization Process 41

4.1.1 Multiplication of the Standards 41
4.1.2 Monolithic Speci�cations of the Standards 43

ix

x contents

4.2 An Innovative Development Framework 43
4.2.1 Data�ow to Enhance Multimedia Development 44
4.2.2 Towards the RVC Vision 45

4.3 Multimedia-Speci�c Languages 46
4.3.1 From Text to Visual Network Programming 46
4.3.2 Actor Programming Made Easy 48

4.4 Applications . 51
4.4.1 Video Codecs . 51
4.4.2 Other Applications . 53

4.5 Existing Tools Supporting RVC 53
4.5.1 OpenDF . 54
4.5.2 Orcc . 54

4.6 Advances and Challenges of the RVC Framework 55
4.6.1 Tools Development . 55
4.6.2 Applications Development 56
4.6.3 Platform Implementation 57

4.7 Conclusion . 58

ii contributions 59
5 advanced development environment for dataflow pro -

gramming 61
5.1 Enhanced Data�ow-speci�c Compilation Infrastructure 61

5.1.1 Multi-Target Compilation Infrastructure 62
5.1.2 Model-driven Compilation Infrastructure 63
5.1.3 Uni�ed Graph Library 64
5.1.4 Separation of Concerns 65
5.1.5 Procedural Aspect of the Intermediate Representation 65
5.1.6 Data�ow Aspect of the Intermediate Representation . 68

5.2 Architecture Model for Dedicated Embedded Multi-Core Plat-
forms . 70
5.2.1 Processor Architecture 71
5.2.2 Prede�ned Con�gurations of Processors 72
5.2.3 Data�ow-speci�c Memory Architecture 72

5.3 Data�ow Compiler for Embedded Multi-core Platforms . . . 74
5.3.1 Multi-stage Co-design Flow 74
5.3.2 Hardware Synthesis . 76
5.3.3 Software Synthesis . 77
5.3.4 Simulation Infrastructure 78

5.4 Conclusion . 80
6 optimized software implementation of dynamic dataflow

programs 81
6.1 Implementation of Data�ow Process Networks 81
6.2 Optimized Communications . 82

6.2.1 To Be or Not To Be FIFO Channels 82
6.2.2 Software Circular Buffer 83
6.2.3 Control-Free Communications 84
6.2.4 Multi-rate Communications 85
6.2.5 Copy-Free Communications 86
6.2.6 Ef�cient Broadcasting of Communications 87

6.3 Optimized Scheduling . 88
6.3.1 Scheduling Scheduling 89
6.3.2 Action Scheduling . 89
6.3.3 Actor Machine . 90

contents xi

6.3.4 Quasi-Static Scheduling 91
6.4 Study of RVC-based Video Decoders 92

6.4.1 Experimental setup . 92
6.4.2 Analysis of Global Performance 93
6.4.3 Analysis of Internal Communications 94
6.4.4 Analysis of the Application Decomposition 95
6.4.5 Comparison of the Scheduling Strategies 99

6.5 Conclusion .101
7 scalable multi -core scheduling of dynamic dataflow

programs 103
7.1 Actors Mapping . 104

7.1.1 De�nition of the metrics 104
7.1.2 Evolutionary-based Actor Mapping 105
7.1.3 Graph Partitioning problem 106
7.1.4 Graph partition methodology 107
7.1.5 Mapping Flow . 108

7.2 Actor Scheduling . 109
7.2.1 Distributed Scheduler 109
7.2.2 Multi-core Scheduling Strategies 109
7.2.3 Lock-Free Scheduling Communications 110

7.3 Scalability Analysis of RVC-based Video Decoders 111
7.3.1 Experimental setup . 112
7.3.2 Desktop Multi-core Implementation 113
7.3.3 Embedded Multi-core Implementation 116

7.4 Conclusion .117
8 conclusions and outlook 119

8.1 Summary .119
8.2 Perspectives .120

8.2.1 An Even More Advanced Development Environment . 120
8.2.2 An Even More Optimized Software Implementation . 121
8.2.3 Towards a Platform Dedicated to RVC-based Video

Decoders .122

iii appendix 125
a résumé en français 127

a.1 Systèmes embarqués .127
a.1.1 Matériels embarqués . 128
a.1.2 Logiciels embarqués . 128
a.1.3 Conception de systèmes embarqués 129

a.2 Approche et contributions . 129
a.3 État de l'art . 131

a.3.1 Programmation �ux de données 131
a.3.2 Recon�gurable Video Coding 132

a.4 Environnement de développement dédié 133
a.4.1 Infrastructure de programmation �ux de données . . . 134
a.4.2 Modèle d'architecture dédié 134
a.4.3 Co-conception de systèmes embarqués 136

a.5 Implémentation logicielle des programmes �ux de donnée . . 136
a.5.1 Implémentation optimisée 137
a.5.2 Implémentation extensible 138

a.6 Conclusion et perspectives . 138
a.6.1 Environnement de développement avancé 139
a.6.2 Implémentation logicielle optimisée 140

xii contents

a.6.3 Plate-forme dédiée aux codecs vidéo RVC 141

publications 152
bibliography 153

1I N T R O D U C T I O N

To invent an airplane is nothing.
To build one is something.

But to �y is everything.

— Otto Lilienthal, Aviation pioneer

This thesis investigates pragmatic programming approaches of real-world
applications for current and upcoming embedded systems. Actually, the pro-
gramming experience is becoming a central problem for embedded comput-
ing. On the one hand, embedded devices are now complex hardware sys-
tems, known as Multi-Processor System-on-Chip(MPSoC), that include more
and more heterogeneous components on a single chip in order to increase
product functionalities and to meet expectations of the embedded market.
On the other hand, the complexity of the software deployed on these de-
vices keeps growing exponentially, because these are being used to solve
more dif�cult technical problems. As a result, programmers have to imple-
ment increasingly complex applications for increasingly complex devices
while respecting time-to-market and cost demand requirements.

This thesis aims at providing a toolkit to ease the development of real-
world applications for MPSoC-based platforms from a pragmatic point of
view. Thus, we propose to implement and evaluate a set of methodologies
for designing embedded systems from the application speci�cation to the
platform implementation. In order to bene�t from all parallelism present
in the algorithms, applications are already speci�ed in a decomposed form,
called Data�ow Process Network(DPN), by way of a practical data�ow lan-
guage inheriting from CAL Actor Language. They are latter mapped onto
Very Long Instruction Word -like processors which are able to execute mul-
tiple operations at the same time. We evaluate the toolkit using state-of-
the-art video decoders, including the emerging High Ef�ciency Video Cod-
ing (HEVC) standard.

Now, let us take a look of the landscape of embedded computing in order
to understand the complexity of the problematic that this thesis faces.

1.1 landscape of embedded computing

Embedded systems are now widely used, much more than other comput-
ing systems with billions sold every year [182], �ooding the market of
general-purpose computers. Recent analyses have shown a drop in sales
of desktop computers in favor of smartphones, tablets and other embed-
ded devices. As opposed to general-purpose computers, embedded systems
must meet quanti�able goals: real-time performance, restricted power/en-
ergy consumption and market cost. Thus, the design of embedded systems
is entirely guided by these quanti�able goals which make it much more
challenging than general-purpose computers design.

1

2 introduction

1.1.1 Embedded Hardware

Up till recent years, embedded devices were designed around a single pro-
cessor associated with a set of peripherals and hardware accelerators. How-
ever, the increasing demand for �exibility from the embedded market has re-
sulted in a migration from hardware to software. In other words, previously
hardwired functionalities are now performed by programmable processors.

To handle increasingly demanding applications, the design of higher per-
formance processors was achieved, until recent years, by increasing proces-
sor frequency. But, similarly to general-purpose computers, embedded sys-
tems have hit the power wallof the semiconductor technology, forcing chip
manufacturers to look towards multi-core architectures to improve the over-
all system performance. As a result, embedded systems integrate more and
more programmable processors, but contrary to general-purpose comput-
ers, most of these processors are tailored to speci�c tasks in order to bridge
the gap between hardware ef�ciency and software �exibility.

�������������������������	�����

�������

��������

������������������������
���������
��������

���
��������

������������������������
���������
��������

����������������
������������
�����������

���������
��������

�����������
��������
������

�������
�����������
���������� ���
���	�����!

Figure 1: Generic MPSoC-based platform

Embedded devices are now complex heterogeneous multi-core platforms
with an increasing number of processor cores so as to meet the performance
requirement (Figure 1). For example, commercial many-core platforms like
Intel SCC, Tilera TILE or STMicroelectronics SThorm [22] contain already
hundred of programmable cores. The increasing number of processor cores
has however raised new questions about hardware designs, such as the
memory organization and the interconnection network, and about the way
to program such a complex architecture.

1.1.2 Embedded Software

Early forms of embedded software were small programs usually written in
assembly to get maximal performance. They can be now complex applica-
tions containing multiple algorithms [183]. Moreover, the nature of the com-
putations performed in different parts of the application can vary widely
(types of operations, memory requirement, parallelism, etc). As a matter of
fact, this variability matches well with heterogeneous architectures. As an
example, considering the structure of modern video decoders [150], the mo-
tion compensation has clearly the largest requirement in memory space and
bandwidth, while the residual decoding and the intra prediction are mostly
computational.

The embedded market is currently driven by user application demands
increasing the complexity of embedded software. For instance, on the one
hand, the new video compression standard namely HEVC reduces bit-rate
requirement by 50% with same picture quality as its predecessor, and thus

1.1 landscape of embedded computing 3

allows higher-de�nition video. On the other hand, HEVC standard increases
the computational complexity by 1.6x compared to its predecessor [171].
Complex applications are often limited to certain application domains like
multimedia and communication. For example in a 3G phone, above 60%
of the power and over 90% of the available performance are consumed by
radio and multimedia applications [170].

Beyond the heterogeneity and the complexity of the applications, target-
ing multi-core platforms raises new questions concerning embedded soft-
ware, such as the application decomposition in parallel tasks as well as the
mapping and scheduling of these tasks on the multi-core platform.

1.1.3 Embedded System Design

Today, embedded computing is confronted to a fast technology evolution
and a great variety of computing systems. Therefore, highly �exible design
processes are required. As a matter of fact, the design of embedded systems
can be decomposed in three aspects (architecture, application and method-
ology) as illustrated in Figure 2.

Since software and hardware are tightly coupled in embedded system de-
sign, embedded designers have to consider all architectural aspects includ-
ing the organization of the hardware components (processors, memories,
interconnections), the decomposition of the software in tasks in order to
bene�t as much as possible from the parallelism, and the mapping between
the hardware and the software to get the best performance. Additionally, de-
signers have to deeply understand their applications to take advantage of all
possible optimizations. Finally, methodologies are central for successful em-
bedded system design. Modeling provides higher-level of abstractions that
are necessary to handle the growing complexity of embedded systems. As
regards to the dif�culty of analyzing and debugging hardware platforms,
simulation and analysis are necessary to determine the ef�ciency and the
cost of the design. Model-based design requires synthesis tools translating
high-level speci�cations into optimized implementations. Moreover, auto-
matic veri�cation processes are also essential to achieve the required relia-
bility level with minimal cost.

���������������������	

�
�������������������

�
��������������������

�������������������������	�
���������������
�����������������������������	�
������������������
�����������������������������
�������
������
�����
�����������������������
��������������������
�������������������������	�
���������������
��������������������
���
������
�������������
����������	���������
����

���	���������������
����
���
���������
���
�������
�����
��������������������������
�����

�����������
����
������������
���������
�����������
����
���
���������	����
�
� �����
���
�������
����

Figure 2: Aspects of embedded system design (adapted from Wolf's analysis [182])

In conclusion, tools are particularly important in embedded system de-
sign. Tools allow rapid design of embedded systems to deal with time-to-
market pressure while achieving their high constraints of ef�ciency and re-
liability.

4 introduction

1.2 our approach and contributions

The emergence of massively parallel architectures, along with the need for
modularity in software design, has revived the interest in data�ow pro-
gramming. Indeed, data�ow programming offers a �exible development
approach which is able to build complex applications while expressing con-
currency and parallelism explicitly. Paradoxically, most of the studies stay
focused on static data�ow programming, even if a pragmatic development
process requires the expressiveness and the practicality offered by dynamic
data�ow programming.

MPEG has however introduced an innovative framework, called Recon�g-
urable Video Coding(RVC), that can be considered as the �rst large-scale ex-
perimentation on dynamic data�ow programming to our knowledge. RVC

has been initially introduced to overcome the lack of interoperability be-
tween the various video codecs deployed in the market. The framework
allows the development of video coding tools, among other applications, in
a modular and reusable fashion thanks to the inclusion of a subset of CAL

programming language.

����������������
�	�
�������
����������	���

���������	�������	���
���������	���	�������	���

������	������
�����
�����
���	�������	����������	�
���������	���

��������������	���������
��������	�����������	���

��������

���������	��������������
�
��������

���������	������������������������	���

��

��
��

��������

Figure 3: Contributions of this thesis on data�ow-based embedded system design

All along this thesis, we study all steps of the development of RVC-based
video decoders (Figure 3), from their speci�cation based on the data�ow
paradigm to their implementation on embedded multi-core platforms. This
thesis makes the following contributions:

• Contribution 1 [5, 7, 2, 3]: An entire co-design �ow to develop RVC-
based applications for embedded multi-core platforms. The co-design
�ow relies on a advanced simulation process and a dedicated architec-
ture model. Additionally, the multi-target compilation infrastructure
underlying our co-design �ow has been enhanced by the way of mod-
ern software engineering techniques such as Model-Driven Engineer-
ing (MDE).

• Contribution 2 [8, 1]: An optimized software implementation of dy-
namic data�ow programs based on ef�cient communication techniques
that limit the accesses to the memory, and based on advanced schedul-
ing strategies that reduce the overhead of the scheduling.

• Contribution 3 [4, 6]: A set of actor mapping/scheduling algorithms
executable at runtime in order to handle the unpredictable behavior
of dynamic data�ow programs, and to achieve scalable performance
over multi-core platforms, either desktop multi-core processors or em-
bedded multi-core platforms.

In addition to the speci�cation of our data�ow-based development pro-
cess, we evaluate the ef�ciency of this contribution using a set of video

1.3 outline 5

decoders, including a decoder based on the HEVC standard, that were imple-
mented within the RVC framework.

All this work has been implemented within two open-source software: a
data�ow-based development environment known under the name of Open
RVC-CAL Compiler (Orcc) [134], and a co-design toolkit using Transport-
Trigger Architecture (TTA) as the architecture template called TTA-based Co-
design Environment (TCE) [166].

1.3 outline

This thesis is decomposed in two distinct parts as follows. Part i contains an
introduction to the global notions and research problems discussed in this
thesis, and details also the previous works that lead to our work. Chapter
2 explores the existing programming models of embedded multi-core plat-
forms including the in�uence of the hardware architecture. Then, Chapter
3 focuses on data�ow programming and shows the pragmatism underly-
ing the dynamic data�ow model for software development. Finally, Chapter
4 introduces the Recon�gurable Video Coding framework, and deeply in-
spects its current state for highlighting the open challenges of the approach.

Part ii contains the contributions and proposed techniques of this thesis.
Chapter 5 starts by introducing the tool �ow. Chapter 6 details our opti-
mized software implementation of dynamic data�ow programs. Chapter 7
closes this part by proposing a set of actor mapping/scheduling algorithms
in order to obtain scalable performance on multi-core platforms.

Part I

B A C K G R O U N D

2E M B E D D E D PA R A L L E L P R O G R A M M I N G

We have seen that computer programming is an art,

because it applies accumulated knowledge to the world,
because it requires skill and ingenuity, and especially

because it produces objects of beauty.

— Donald E. Knuth [114]

Embedded computing has emerged in early in the history of computer
sciences. Already in 1951, a group of researchers from the MIT have built
the Whirlwind computer, the �rst real-time computer, which was adopted
by the U.S. Air Force to integrate its air defense system. Latter in 1966,
the Apollo Guidance Computer was designed at the MIT to integrate the
navigation system that controls the spacecraft of the Apollo program. While
the Whirlwind can hardly be considered as an embedded system because of
its impressive dimensions, the Apollo Guidance Computer was embedded
in the aircraft modules of several lunar missions requiring more compact
dimensions. Since this time, embedded systems have massively gained in
popularity, and are now everywhere.

Similarly, processor programming has moved well beyond the early days
of assembly programming of 8-bit micro-controllers. The advances in com-
pilation have allowed the translation of high-level language programs into
ef�cient machine code. As a consequence, the developer simply writes his
application keeping its attention on software aspects, and lets the compiler
in charge of code optimization to reach the expected performance.

The physical limitations of current semiconductor technology have made
it increasingly dif�cult to achieve frequency improvements in processors.
Thus, hardware designers have organized computers, including embedded
systems, into multi-core architecture to achieve the performance required
for current applications. This raise of parallel computing has however intro-
duced new challenges to both programmers and compiler developers. On
the one hand, the programmers have to describe their application in such
a way that the compiler is able to decompose it in parallel computations.
On the other hand, the compiler has to translate the application to machine
code that can exploit all the parallel ability of the executing platform.

2.1 parallelism is everywhere

The execution of an algorithm onto multiple processing units involves par-
allelism which can be de�ned as the decompositionof the computation into
multiple pieces that can be executed in parallel [169].

Let us differentiate the granularity of the decomposition (�ne-grain and
coarse-grain) from the form of the decomposition (task, data and pipeline
parallelisms). On the one hand, the granularity of the parallelism describes
the amount of computation in relation to communication [156]. During this
thesis, we distinguish only �ne and coarse granularities:

9

10 embedded parallel programming

• Fine-grain parallelism refers to instruction-level parallelismthat has
been typically exploited by Very Long Instruction Word (VLIW) and
super-scalar processors.

• Coarse-grain parallelism refers to task-level parallelism, also calledthread-
level parallelism, that has been typically exploited by multi-processor
platforms.

On the other hand, the form of the parallelism describes the decomposition
of the computation into multiple chunks of smaller entities:

• Data parallelism, requiring data decomposition, is the simultaneous ex-
ecution of the same computation across different datasets.

• Task parallelism, requiring functional decomposition, is the simultane-
ous execution of different computations across the same or different
datasets.

• Pipeline parallelism, requiring temporal decomposition, is the simulta-
neous execution of multiple stages of a given computation. To achieve
pipelining, the computation must be applied repeatedly and must be
subdivided into a sequence of subtasks. The subtasks can then be per-
formed in an overlapped fashion.

Combining all forms and granularities in multi-level parallelism(Table 1),
let us fully exploit the potential parallelism of the application. The challenge
is then to leverage the multi-level parallelism according to the processing
capabilities of the platform.

Fine-grain Coarse-grain

Instruction, Loop Procedure, Subprogram

Task VLIW instruction Concurrent thread

Data Vectorization Kernel function

Pipeline Software pipelining Thread pipelining

Table 1: Parallelism is multi-form and multi-level

2.2 embedded parallel platforms

Computer systems have traditionally been characterized by their Instruction
Set Architecture (ISA). The ISA provides the visible interface to program the
processor: the operations available, the number of operands necessary for
a given operation, as well as the type and the size of the operands, and
the storage locations that are available. Computer systems are then cate-
gorized depending on the complexity of their instruction sets, known as
Reduced Instruction Set Computer (RISC) and Complex Instruction Set Com-
puter (CISC). The development of specialized processors such as Application-
Speci�c Instruction-Set Processor (ASIP) and Digital Signal Processor (DSP),
and the emergence of heterogeneous and hybrid systems make this classi�-
cation outdated.

The most popular taxonomy of parallel systems has been introduced by
Flynn in 1972[77]. Flynn classi�es computer organization according to the
multiplicity of the hardware resources provided to the instruction and data
streams :

2.2 embedded parallel platforms 11

Single Instruction Single Data streams (SISD) computer organization rep-
resents traditional serial processors. Instructions are executed sequen-
tially but may be overlapped in their execution stages.

Single Instruction Multiple Data streams (SIMD) computer organization
represents most Graphics Processing Units (GPUs) available today. Mul-
tiple processing elements execute simultaneously the same instruction
but operate on different data sets from distinct data streams.

Multiple Instruction Single Data streams (MISD) computer organization
represents systolic arrays. Multiple processing units execute distinct
instructions over the same data stream and its derivatives. The results
of one processing unit become the input of the next processing unit in
the array.

Multiple Instruction Multiple Data streams (MIMD) computer organiza-
tion represents multi-core platforms. Multiple processing elements ex-
ecute distinct instructions which are operating over distinct data streams.

Obviously, the last three classes of computer organization are the classes of
parallel computers.

2.2.1 Homogeneous versus Heterogeneous

Knowing that multi-core platforms are by de�nition composed of multiple
cores, they can be classi�ed ashomogeneousor heterogeneous(Figure 4):

• Homogeneous platforms are composed of identical cores (Figure 4a).
For instance, Texas Instruments commercializes a set of homogeneous
multi-core platforms (excluding hardware accelerators), known as Key-
Stone TMS320C667x family, that targets a large range of application
domains including machine vision and software de�ned radio.

• Heterogeneous platforms are composed of different types of cores
(Figure 4b) that make their programming more challenging. The het-
erogeneity can however refer to several aspects of the processor cores
(frequency, ISA, etc). For instance, the big.LITTLE MP is an heteroge-
neous architecture developed by ARM coupling a low power Cortex-
A7 processor with a more powerful Cortex-A15 processor, both shar-
ing the same ISA [92]. Nvidia commercializes another type of het-
erogeneous Multi-Processor System-on-Chips (MPSoCs), known as the
Tegra's family, that are composed of an ARM processor and a Geforce
GPU.

In fact, most of modern MPSoCs are heterogeneous and embed in the same
chip General-Purpose Processors (GPPs),DSPs and hardware accelerators,
but homogeneous organizations can still be present locally. As an exam-
ple, the STHORM multi-core platform developed by STMicroelectronics is
composed of homogeneous clusters of processors [22].

Heterogeneity is obviously the solution to handle all forms and levels
of parallelism that are present inside the algorithms. Heterogeneity makes
however the implementation process of applications exponentially harder
by adding new constraints to the application mapping and scheduling, and
by requiring multiple compilation �ows.

Multi-core platforms are not only characterized by the architecture of their
processor cores but also by their memory architecture.

12 embedded parallel programming

���� ����

���� ����

(a) Homogeneous

����

��������

����

(b) Heterogeneous

Figure 4: Processor architectures characterizing multi-core platforms

2.2.2 Memory Architecture

Multi-core systems are traditionally based on shared-memory architectures,
i.e. multiple processors fully connected to one or multiple memory modules
through an interconnection network with no access restriction. As the num-
ber of processors grows (many-core processors already comprise hundreds
of cores), it quickly becomes impossible for a centralized memory system
to meet the bandwidth needs of the processors. Then, distributed memory
system becomes a necessity [147].

Memory architectures are usually classi�ed as follow [185]:

• Uniform Memory Access (UMA): The memory is shared and can be ac-
cessed uniformly by all processors (Figure 5a), in other words the pro-
cessors have an equal access and access times to any memory location.
In UMA , all the processors are tightly-coupled with the memory com-
ponents. Such a centralized memory architecture is commonly used in
GPP such as the ARM Cortex A-15.

• Non-Uniform Memory Access (NUMA): The memory is shared and
can be similarly accessed by all processors but not with an equal access
time (Figure 5b). In NUMA , processors and memory components are
clustered making the memory accesses across the clusters slower but
still possible. For instance, in Figure 5b the processor �� can access
both memories �� and ��, but accessing �� will be much faster
than accessing�� because�� and �� are tightly-coupled.

• NO Remote Memory Access (NORMA): The memory is not shared by
the processors, i.e. distributed memory, but the processors can com-
municate directly through the interconnection network by the way of
a dedicated communication protocol (Figure 5c). IBM's Cell processors
are popular NORMA -based commercial platforms [109].

The memory architecture of multi-core platforms impacts directly the pro-
gramming of processors. Therefore, the programming of shared-memory
platforms and distributed-memory platforms is usually very different.

On the one hand, the programming of shared-memory systems stays
closely similar to the programming of uniprocessor systems, which makes it
easier to be handle by the developers. In fact, communication among proces-
sors is simply achieved by writing to and reading memory locations since all
processors are allowed to see data written by any processor. But, multiple

2.2 embedded parallel platforms 13

(a) Uniform Memory Access (b) Non-Uniform Memory Access

(c) NO Remote Memory Access

Figure 5: Memory architectures characterizing multi-core platforms

processors may access the same memory location concurrently and cause
unexpected behaviors, usually called race conditions. Thus, the synchroniza-
tion among processors is required and usually achieved using locks and
barriers.

On the other hand, the programming of distributed-memory systems re-
quires additional interfaces to handle communication among processors.
Since each processor has its own memory system, a processor must commu-
nicate explicitly with the other processors to exchange data using dedicated
methods such as message passing. Thus, programming distributed-memory
systems is not as natural as shared-memory systems. For instance, IBM's
Cell processors suffer from the complexity of their programming.

2.2.3 Memory Hierarchy

Similarly to uniprocessor, designing multi-core platform on top of hierarchi-
cal memory organization (Figure 6), brings several advantages:

• Reduction of the latency of memory accesses by replicating data in
small and fast memory components.

• Reduction of the demands of external memory bandwidth by exploit-
ing spatial localityand temporal localityof data accesses within algo-
rithms.

As we have seen, shared-memory systems do not scale well when the
number of processors increases: the interconnection network connecting the

14 embedded parallel programming

processors to the shared memory becomes a bottleneck when too many pro-
cessors are trying to access it simultaneously. Therefore, the introduction of
a private level to the memory hierarchy limits the contention on the intercon-
nection network. But, the memory being shared, the replication of data at
private-level introduces a problem of consistency between the memory com-
ponents, when a data is replicated and goes out of synchronization with the
original values where the modi�cations have taken place. Consequently, the
systems have to ensure the coherency between the memory components.

����������

����������

�	���
��

�������

����������������

������������

��������������

Figure 6: Hierarchical memory organization for multi-core platforms

In embedded systems, two types of hierarchical memory, known as cache
and scrachpad memories, are dominating the market (Figure 7):

cache Data replication is controlled by the hardware that automatically
loads the data when needed, providing transparent memory accesses
to the developers but implying unpredictable access time [161] (Figure
7a). In fact, cache mechanism has been extensively used and studied
in general-purpose computing.

scratchpad Data replication is controlled by the software, done explicitly
by the developer or added automatically by the compiler [19, 18] (Fig-
ure 7b). In fact, predictability is the key attribute of scratchpad memo-
ries [182]. All data movement being solved at compile-time, scratchpad
memories have a smaller power consumption than caches.

Even if cache and scratchpad memories have different approaches to solve
the memory wall, they may be mixed in the same system to bene�t from all
aspects.

2.2.4 On-Chip Interconnection Network

The interconnection network is responsible for the exchange of informa-
tion between the components of the multi-core platform. Consequently, the
global performance of the multi-core platform is directly affected by the ef-
�ciency of its interconnection network. Two types of exchange are possible:

• Simple accesses from processors to memories.

• Direct communication from a processor to another, to provide message
passing facility.

2.3 parallel programming models 15

������������

(a) Cache

������������

(b) Scratchpad

Figure 7: Hardware versus software implementation of hierarchical memories

Two types of interconnection network are dominating for intra-chip com-
munication, bus and Network-on-Chip (NoC). We sum up their properties in
Table 2.

buses Bus interconnect has been the dominant architecture for intra-chip
communications, but its lack of scalability makes it clearly not suitable
for massively parallel systems. One the one hand, bus-based systems pro-
vide high-speed communication and large communication bandwitch while
keeping low-cost implementation and easy testability. On the other hand, it
suffers from a number of drawbacks such as a poor scalability, no fault toler-
ance, and a limited parallelism exploitation. Actually, even a well-designed
bus-based system may suffer from data congestions that limit the global per-
formance of the system. It is also not inherently scalable. As more and more
modules are added to a bus, not only data congestion increases, but power
consumption also rises due to the increased load presented to the bus driver
circuits.

network- on- chip NoC is another interconnection scheme that has the
potential to overcome the limitations of bus-based interconnections. In a
NoC-based system, the components are connected via a multistage switching
system composed of point-to-point links. Such a multistage interconnection
avoids the scaling issues of long wires. Since several paths may be avail-
able in the network, the switches dynamically route the data according to
the communication traf�c, similarly to networking theory. Consequently, the
scalability of the interconnection network comes at the expense of the vari-
ability in memory access latencies (i. e.NUMA) as well as increased design
complexity to guarantee correctness and fairness and to avoid deadlocks
and starvations.

2.3 parallel programming models

Programming languages are historically sequential, making the program-
ming of modern embedded platform a challenge. In their survey about
MPSoC design methods and tools [138, 137], Park et al. classify the exist-

16 embedded parallel programming

Pros Cons

Bus High-speed Scalability

Low-cost

Large bandwidth

NoC High-speed Design complexity

Scalability Variable latency

Power ef�ciency

Table 2: Comparison of interconnection networks

ing programming approaches of MPSoC based on the initial speci�cation of
the applications as follows:

• Compiler-based approaches that use compilation techniques to auto-
matically extract the parallelism from the sequential description of an
application,

• Language-extension approaches that ask the programmer to provide
additional parallelism information into the description of the appli-
cation using directives or Application Programming Interface (API) in
order to help the compiler during the parallelizing stage,

• Model-based approaches that rely on Model of Computations (MoCs)
to describe an application to abstract the parallel description of the
application, and

• Platform-based approaches, an additional category introduced by Park
as a model-based approach that embeds parallel information and ar-
chitectural constraints.

Park's taxonomy clearly shows the challenge of programming multi-core
platforms by exposing the variety of studies about MPSoCs programming
but it suffers from few aspects. First, his classi�cation does not highlight
the tight link between the platform architecture and its programming. Then,
the last category only is a bit arti�cial since it only includes his own work.
As a consequence, we organized our overview of parallel programming ap-
proaches for embedded systems as follows: General-purpose programming,
assisted programming, and high-level programming.

2.3.1 General-Purpose Parallel Programming

Programming languages are designed to create programs that control com-
puters on which they are running. Knowing that, most general-purpose pro-
gramming models directly inherit from an underlying processor architec-
ture. Like imperative programming inherits from the Von Newman architec-
ture, both ensure a sequential execution of the instructions according to the
control �ow. Similarly, parallel programming models inherit from the archi-
tecture of parallel platforms. For instance, multi-threading abstracts shared-
memory architecture, message-passing abstracts distributed-memory, and
stream processing abstractsGPU-like architecture.

multi -threading De�nitely the most widely used parallel program-
ming model, that is to say multi-threading, is based on the parallel execu-

2.3 parallel programming models 17

tion of tasks, called threads, that share a single address-space. The shared
memory makes multi-threading ideal to program platforms based on shared
memory architecture. But, in the thread model, the programmer has to han-
dle every low-level details, from the creation of the threads to their synchro-
nizations. In fact, multi-threading requires synchronization primitives, such
as semaphores, to handle concurrent memory accesses.

A well-know implementation of the thread model is the POSIX threading
library pthread.

message passing Another well-known parallel programming model is
message passing in which the developer describes a set of concurrent pro-
cesses that exchange data by sending and receiving messages. In contrast
with multi-threading, message-passing systems have been introduced to
program platforms based on distributed memory architecture. In message-
passing systems, communications may be point-to-point, collective, synchronous,
or asynchronous. Synchronous communications, also called rendezvous, re-
quire sender and receiver to wait for each other in order to transfer a mes-
sage, synchronizing the processes and removing the need for buffering
mechanism. Asynchronous communication simply delivers a message from
the sender to the receiver without any assumption on the availability of the
receiver.

Message Passing Interface (MPI) is a standardized message-passing sys-
tem resulting of a joint effort of academician and industrial researchers [79].
While MPI has been heavily used in High Performance Computing (HPC), the
emergence ofNoC-based interconnection network has revived the interest of
MPI for programming embedded multi-core platforms [75, 108].

stream processing More recently, the development of General-Purpose
Processing onGPUs (GPGPU) has revived this interest for an SIMD-related pro-
gramming model usually called stream processing. Instead of describing
task parallelism, this model focuses on computations, usually called kernels,
that can be applied simultaneously on a large panel of data. Data-parallel
programming is usually built on top of an abstract architectural model com-
posed of one hostthat controls the execution and a set of devicesin which the
kernels are executed. Because the kernels usually operate on huge amount
of data, the developer has to manage precisely the data transfers between
host and devices.

OpenCL and CUDA are well-know GPGPU-based implementations of stream
processing principle. OpenCL is developed by Khronos as a standard for het-
erogeneous computing while CUDA is provided by Nvidia in order to give
GPGPU facilities to their products. Brook [40] is another programming lan-
guage, developed at Standford university, that inherits directly from stream
processing.

2.3.2 Assisted Parallel Programing

General-purpose parallel programming is clearly error-prone and usually
requires from the developer a real expertise about parallel computing to take
care of low-level details. A large portion of applications is already written
in a sequential way, and knowing that modifying an existing application
is a well-known source of bugs, many efforts have been made to provide
assisted parallelization methodologies.

18 embedded parallel programming

automatic parallelization The ultimate goal, the Holy Graalof par-
allel computing, is the automated extraction of parallelism from the sequen-
tial description of the application. Early parallelization studies have focused
on the extraction of instruction-level parallelism for VLIW processors. More
recently, the extraction of �ne-grain data parallelism, so-called vectorization,
has been studied to take advantage of SIMD instructions such as Intel's
MMX and ARM's NEON for general-purpose processors. However, embed-
ded platforms require also a coarser decomposition to really bene�t from
multi-core architecture.

Most of coarse-grain parallelization techniques start by analyzing the pro-
gram statically, to identify time-consuming portions and dependences, then
try to decompose it in parallel tasks using heuristics. In order to overcome
static analysis limitations, some studies propose to identify hidden paral-
lelism, then expose it with the help of the developer [48]. Others studies
used optimization techniques such as machine learning [47], integer linear
programming [53, 54] or genetic algorithms [52] but they require execution
pro�ling and may be time-consuming.

In fact, the ef�ciency of automatic parallelization remains limited on irreg-
ular applications. Generally speaking, automatic parallelization approaches
suffer from a lack of knowledge about the application domain. Consequently,
restricting general-purpose languages, or else extending the program with
additional information, may improve the parallelization by making easier
the analysis.

directive -based programming Directive-based programming aims
at providing a rapid and easy-going parallelization methodology to the de-
veloper. Traditional programming languages are extended with a set of di-
rectives (such as pragmain C) that informs the compiler about the paral-
lelism potential of certain portions of the program, usually loops but also
parallel sections and even pipeline sections [122,145].

1 #pragma omp parallel for

2 for (i = 0; i < N; i++) {

3 a[i] = 2 * i;

4 }

Listing 1: One simple directive to parallelize a loop

OpenMP [57] is a standardized language extension (Listing 1) which relies
on multi-threading. OpenMP is probably the most popular directive-based
programming interface. OpenACC [133] is an emerging standard that aims
to make easier GPGPU, similarly to HMPP [62].

2.3.3 High-level Parallel Programming

Embedded computing usually relies on programming techniques that have
been developed for general-purpose processors, but the speci�cities of em-
bedded systems make their programming more challenging. Embedded sys-
tems have to meet memory footprint constraints, real-time performance con-
straints, as well as power consumption constraints. General-purpose paral-
lel programming is error-prone and assisted parallelization of sequential
programs is limited by nature. Thus, higher-level programming approaches
aim to providing useful abstractions and optimization tools to ef�ciently
program embedded systems.

2.3 parallel programming models 19

algorithmic skeletons Algorithmic skeletons are a high-level pro-
gramming model that takes advantage of common programming patterns to
hide the complexity of parallel programming [51]. Similarly to software de-
sign patterns, algorithmic skeletons de�ne general programming solutions
to solve common occurring problems. But, while software design patterns
focus on software design, algorithmic skeletons provide parallel resolution
of computational problems.

Algorithmic skeletons aim to be an effective, generic and high-level ap-
proach for parallel programming. To do so, a skeleton is both composed
of a generic interface that abstracts parallel computations, communications,
or interactions, and of an implementation that handles all low-level details
related to the parallelization. The synchronization between the parallel com-
putations is hidden by the implementation of the skeleton, reducing the risk
of errors and making the code more portable.

Dozens of patterns have been proposed since the introduction of algorith-
mic skeletons as a solution for parallel programming. These patterns can be
classi�ed in three families [85]:

• Data-based patterns: Map, Fork, Reduce.

• Task-based patterns: Pipe, For, While, If.

• Resolution-based patterns: Divide & Conquer, Branch & Bound.

Obviously, algorithmic skeletons are not the ultimate solution of parallel
programming but provide a set of best practices that have been proven use-
ful.

dataflow programming Data�ow programming is another high-level
programming method that describes parallel applications inherently [58]. A
data�ow program is described as a directed graph composed of a set of com-
putational units interconnected by communication channels. Data�ow pro-
gramming being also graphical, it is a very natural way for describing par-
allel algorithms. And, contrary to general-purpose parallel programming,
data�ow programming is not built upon an underlying computer architec-
ture.

In fact, data�ow programming is related to message passing in the sense
that it describes a set of concurrent processes interacting by explicit com-
munications. But, contrary to message passing, data�ow programming is
build upon a strict formalism that provides useful abstractions and enables
advanced analysis. For instance, the developer has to describe explicitly the
communication network, so two processes cannot communicate directly if
they are not linked by a communication channel. Data�ow programming
being the main subject of Chapter 3, no more details are given here.

domain -specific language As de�ned by Van Deursen et al. [61], a
Domain-Speci�c Language (DSL) is a programming language or executable
speci�cation language that offers, through appropriate notations and ab-
stractions, expressive power focused on, and usually restricted to, a partic-
ular problem domain. Thus, DSLs can provide knowledge about the applica-
tion domain that is lacking in general-purpose languages, in order to allow
automatic parallelization for example. Additionally, DSLs intend to be writ-
ten by domain experts and not by experts in parallel programming.

For example, Streamit [168] and Halide [148] are DSL that inherit directly
from stream processing. In contrast with general-purpose languages such as

20 embedded parallel programming

OpenCL and CUDA, Streamit and Halide target especially signal processing
applications and intend to simplify their development by providing a higher
abstraction of the underlying architecture.

2.4 mapping and scheduling

In contrast with traditional compilers that stay focused on instruction schedul-
ing, MPSoC-based compilation �ows have to take advantage of the parallel
processing capabilities of multi-core platforms to satisfy the performance
constraints of the applications. Let us assume that the application has been
previously decomposed into small tasks using automatic, assisted or man-
ual techniques. Then, the tasks composing the application are mapped and
scheduled onto the executing platform, two distinct processes that are inti-
mately related:

• The mapping is the process of assigning a processor to a task, in other
words wherethe task is executed, that involves the partitioning of the
pool of tasks.

• The scheduling is the process of deciding the moment of the execution
of a task, in other words when the task is executed, that involves the
orderingof the tasks and the timing of their execution.

The mapping and scheduling problem is a NP-hard problem, equivalent
to Quadratic Assignment Problem[81]. Thus, many heuristics aim to �nd a
nearly optimal solution satisfying all the given constraints. The heuristics
depend on both the application description, usually represented as a task
graph, and the platform speci�cation, based on an architecture modelsuch as
S-LAM [140] or AADL [74], as well as the architecture model used in Syn-
dex [91]. Due to the inherent constraints of embedded systems, mapping
and scheduling heuristics may target power consumption and reliability, ad-
ditionally to execution performance.

As presented in Table 3, Lee and Ha have classi�ed the different ap-
proaches according to the moment, run-time or compile-time, when the
mapping, ordering and timing stages are performed [118]. On the one hand,
fully dynamic approaches can ef�ciently balance the workload of any ap-
plication over the processors by making all decisions at run-time, but they
come at the cost of a larger execution overhead. On the other hand, fully
static approaches determine all decisions at compile-time to minimize the
execution overhead, but they are only suitable for a subset of applications
that do not have dynamic behavior. Static-assignment approaches partition
the tasks over the processors at compile time to reduce the execution over-
head at the cost of the load-balancing, and self-timed approaches addition-
ally determine the ordering of the task execution at compile-time without
notion of the time. Additionally, compile-time approaches bring guarantees
on the obtained schedule which is a central bene�t for safety critical systems.
Indeed, proving real-time constraints on dynamic scheduling is dif�cult.

Similarly, Singh et al. introduce additional criteria to characterized schedul-
ing and mapping methodologies [155]:

• Mapping methodologies can target either homogeneous platforms,
composed of identical cores, or heterogeneous platforms, composed
of different types of cores, as introduced previously by Section 2.2.1.
The heterogeneity of multi-core platforms imposes additional param-
eters to mapping heuristics.

2.5 conclusion 21

Mapping Ordering Timing

Fully dynamic run run run

Static-assignment compile run run

Self-timed compile compile run

Fully static compile compile compile

Table 3: Dynamism-based taxonomy of mapping and scheduling approaches, run-
time or compile-time, from Lee and Ha's work [118]

• Mapping and scheduling methodologies performed at run-time re-
quire a management system responsible for taking the decisions. This
system may be centralized and executed by in a single processor, ded-
icated or not, as well as distributed all over the platform.

Task mapping and scheduling have been extensively studied in both com-
munities of general-purpose computing and embedded computing. A good
overview of these techniques for embedded systems has been made by
Singh et al. [155], and, as they say, the application mapping problem is still
one of the most urgent problem to be solved for implementing embedded
systems.

2.5 conclusion

All along this chapter, we have presented the variety of solutions for pro-
gramming parallel platforms that clearly demonstrates its complexity. While
expressing parallelism within an algorithm is already challenging, the archi-
tectural variability of parallel platforms in terms of component organization
and interconnection makes the task in�nitely harder.

While general-purpose computing stays often attached to conventional
programming schemes, embedded computing must move towards higher-
level programming approaches, like data�ow models and DSL, that provide
the abstraction necessary to reach the ef�ciency and reliability that are re-
quired by embedded systems. While MoCs underlying data�ow program-
ming provide formalism, DSLs provides domain knowledge by restricting
the application description.

The next chapter deeply inspects data�ow programming, and we focus es-
pecially on practical aspects that enable the development of real-world appli-
cations. Then, Chapter 4 introduces the Recon�gurable Video Coding (RVC)
framework, an innovating framework dedicated to the development of video
coding tools that is built upon a data�ow-based DSL known as CAL Actor
Language (CAL). After that, the last chapters describe the contributions of
this thesis, that is to say the programming of embedded multi-core plat-
forms thanks to the RVC framework.

3D ATA F L O W P R O G R A M M I N G

Pˆnta ûeØ(Panta rhei), "everything �ows".

— Heraclitus

The concept of data�ow representation was introduced by Sutherland in
1966as a visual way to describe an arithmetic computation [165]. Sutherland
represents a sequence of arithmetic statements as a data�ow graph (Figure
8b), in contrast with its mathematical form (Figure 8a), to demonstrate the
advantages of the graphical form. In fact, the graphical form replaces each
temporary variable by a simple edge that symbolizes the dependences be-
tween the computations. Inversely, the graphical form emphasizes the input
and output variables.

(a) Written statement

(b) Graphical statement

Figure 8: The �rst data�ow representation, the graphical representation of an arith-
metic computation, that was introduced by Sutherland in 1966[165]

Later in 1974, Dennis has described formally the �rst data�ow program-
ming language [58]. In this language, a program is modeled as a directed
graph where the edges represent the �ow of data and the nodes describe
control and computation.

Following his work on a data�ow language, Dennis has introduced a
novel hardware architecture on top of the data�ow model, known under

23

24 dataflow programming

the name of static data�ow architecture[59]. This architecture differs from the
traditional Von Neumannarchitecture by making an instruction executable
when all its inputs are available. As a consequence, the instruction-level
parallelism can be directly exploited by the processor. Similarly, Watson et
al. have introduced in 1979the tagged-token data�ow architecture [174] to
overcome the limitation of static data�ow architecture. But, the too �ne gran-
ularity of data�ow architectures prevents them from obtaining scaled per-
formance on large programs.

3.1 definit ion of a dataflow program

Thus, a data�ow program is de�ned as a directed graph (Figure 9) com-
posed of a set of computational units interconnected by communication
channels through ports:

• The communication corresponds to a stream of atomic data objects,
called tokens, that follows the First-In-First-Out (FIFO) strategy.

• The computational units, usually called processesor actors, may �rst
read some tokens from their input channels, may then process some
internal computations, and may �nally write some tokens to their out-
put channels.

Conceptually, data�ow programming can be considered as the association
of the component-oriented programming with message-passing communi-
cation.

Figure 9: A data�ow network of �ve processes, the vertices named from A to E, that
communicate through a set of communication channels, represented by the
directed edges

3.2 dataflow paradigm to enhance programming

Since the early studies on data�ow paradigm, data�ow programming has
been mainly considered as an interesting approach for two domains of ap-
plication, signal processing and parallel processing [107, 159].

During the last twenty years, data�ow programming has been heavily
used for the development of signal processing applications due to its consis-
tency with the natural representation of the digital signals processing. More
particularly, data�ow programming gives the opportunity to use visual pro-
gramming so as to describe the interconnection between its components.
Such a graphical approach is very natural and makes it more easily under-
standable by programmers who can focus on how things connect.

The emergence of massively parallel architectures, along with the dif�-
culties to program these architecture, make data�ow paradigm an alterna-
tive to the imperative paradigm thanks to its ability to express concurrency
without complex synchronization mechanism. The internal representation
of the application is a network of processing blocks that only communicate

3.2 dataflow paradigm to enhance programming 25

through the communication channels. Consequently, the blocks are indepen-
dent and do not produce any side-effect: This removes the potential concur-
rency issues that arise when the programmer is asked to manually manage
the synchronization between the parallel computations.

3.2.1 Modular Programming

The decomposition of the program into black boxesenables the separation of
concerns, improves maintainability by enforcing the encapsulation of the
components, and makes the application description modular:

• Hierarchical: A component of the network may represent another net-
work, such as the component B in Figure 10. The ability of an appli-
cation to be speci�ed in a hierarchical way is allowed by the strict
separation between the modeling of the interconnection network and
the behavior of the components.

• Reusable: A single component can be used to specify several applica-
tions, or can be used several time in the network which speci�es the
application, such as the components A and C in Figure 10 that are
both reused by the subnetwork. This ability for a coded algorithm to
be reused, is simpli�ed by the strong encapsulation of the components
in data�ow programming that makes them side-effect free. A feature
also found in functional programming that highlights the strong links
between functional and data�ow programming.

• Recon�gurable: A component can easily be replaced by another one
while its interfaces (input and output ports) are strictly identical, such
as the components D and G in Figure 10. Thus, the recon�gurability,
i.e. the ability to switch the system into a new con�guration in a timely
and cost effective manner, is simpli�ed by data�ow modeling.

Figure 10: The data�ow representation is modular by offering hierarchical ability,
re-usability and recon�gurability.

3.2.2 Parallel Programming

A data�ow program states an abundance of parallelisms thanks to the ex-
plicit exposition of the concurrency. In its structural view, the data�ow
model presents three potential degrees of parallelism (task, data and pipeline)
that can be applied to different granularities of description (Figure 11).

26 dataflow programming

1. Task parallelism refers to the potential parallelism between the inde-
pendent parts of an application. In a data�ow context, it appears when
two or more components do not have any dependency constraints (Fig-
ure 11c).

2. Data parallelism refers to a unique computation performed on differ-
ent sets of data. It can be applied by duplicating a given component
when it processes successively several sets of data with no dependen-
cies between them (Figure 11b).

3. Pipeline parallelism can be considered as a mixture of task and data
parallelisms. Pipelining represents the separation of a computation in
several stages that can be executed in parallel. This parallelism is in-
herent to streaming execution model in case of a chain of components
(Figure 11d). Pipelining does not enhance the throughput on one cal-
culation, but the processing of a sequence of calculation.

4. Coarse-grain and �ne-grain parallelisms refer to the granularity of
the decomposition of the application's algorithms into components,
i.e. the ratio of computation to the amount of communication in a
given component [156]. A �ne-grain description is composed of small
and atomic components that frequently exchange data, for instance a
unique arithmetic operation such as presented in Figure 8. Conversely,
a coarse-grain description is composed of larger components, which
perform intensive computations and exchange a large amount of data
in each �ring. Consequently, a �ne-grain description states higher de-
gree of parallelism thanks to a higher number of actors, but has also a
cost tied to the communication synchronization between actors.

(a) Sequential (b) Data parallelism

(c) Task parallelism (d) Pipeline parallelism

Figure 11: Parallelizing the data�ow program presented in Figure 9 from a sequen-
tial execution (11a) to parallel execution using different strategies (11b,
11d, 11c).

3.3 model of computation 27

Additionally, these kinds of parallelism as well as the instruction-level
parallelism, i.e. the potential overlap among instructions, can be potentially
extracted from the internal algorithm of the components such as any proce-
dural language.

3.3 model of computation

A MoC is an abstract speci�cation of how a computation can progress. A MoC

is useful to de�ne the semantics of a programming model, i.e. the type of
components it can contain and the way they interact [152]. Classical exam-
ples of MoC are the Turing machine and Lambda calculus models. During the
last twenty years, dozens of data�ow MoCs were studied due to the attrac-
tive use of data�ow programming for the development of signal processing
applications.

Existing data�ow MoCs can be split into two main classes: The static ones
allow a predictable behavior such as the scheduling can be done at compile
time. The dynamicones have a data-dependent behavior. Most of the studies
on data�ow programming focus on the statically schedulable MoC because
of the ef�ciency of synthesis techniques on such models due to their ana-
lyzability. Unfortunately, they do not take into consideration the �exibility
and the expressiveness offered to the programmers by the dynamic data�ow
MoC.

3.3.1 Kahn Process Network

A Kahn Process Network (KPN) [110] is represented as a graph G = (V; E)
such that V is a set of vertices modeling computational units that are called
processes andE is a set of unidirectional edges representing unbounded
communication channels based on FIFO principle. The behavior of this MoC

can be described using the denotational semanticintroduced by Kahn [110].
A FIFO channel e 2 E can be empty, deinputnoted as ?, or can carry a

possibly in�nite sequence of tokens X = [x 1 ; x2 ; ...], where each xi is an
atomic data called a token. A sequence X that precedes a sequenceY, e.g.
X = [x 1 ; x2] and Y = [x 1 ; x2 ; x3], is denoted X v Y. The set of all possible
sequences is denotedS, while Sp is the set of p-tuples of sequences on the
p FIFO channels of a process. In other words, [X1 ; X2 ; ...; Xp] 2 Sp represents
the sequence consumed/produced by a process. The length of a sequence is
given by jXj.

A KPN with m input ports and n output ports is a continuous and mono-
tonic function denoted as:

F : Sm ! Sn (1)

A process is triggered when the given sequences of tokens Sm appears on
its input ports; it is activated iteratively as long as Sm exists. Conversely, the
process is suspended when Sm does not exist on its input ports. In other
terms, reading from a FIFO channel can be blocking for one process until Sm

appears again.
The blocking reads ensure that every program following this model of

concurrency is deterministic. However, it also implies to backup the current
context of the blocked process before executing the next one when imple-
menting KPN-based programs in a sequential environment.

28 dataflow programming

3.3.2 Data�ow Process Network

Data�ow Process Network (DPN) [121], also known as Dynamic Data-Flow
(DDF), is closely related to KPN. The DPN model is Turing-complete which
means it can model any algorithm even non-deterministic ones.

In this model, an application is represented as a graph G = (V; E) within
the vertices/processes called actors. Additionally to the KPN model, it in-
troduces the notion of �ring. An actor �ring, or action, is an indivisible
quantum of computation which corresponds to a mapping function of in-
put tokens to output tokens applied repeatedly and sequentially on one or
more data streams. This mapping is composed of three ordered and indi-
visible steps: data reading, then computational procedure, and �nally data
writing. These functions are guarded by a set of �ring rules R which speci-
�es when an actor can be �red, i.e. the number and the values of tokens that
have to be available on the input ports to �re the actor.

More formally, �rings can be described using the denotational semantic
extended by Dennis [58]. Every actor a 2 V is associated with its own set of
�ring function Fa , and �ring rules Ra such that:

Fa = [f 1 ; f 2 ; ...; fM] (2)

Ra = [R 1 ; R2 ; ...;RN] (3)

Within each function f i 2 Fa is associated to a given �ring rule Ri 2 Ra .
A �ring rule Ri de�nes a �nite sequence of patterns, one for each input

m of the actor such as Ri = [P i;1 ; Pi;2 ; ...; Pi;m] 2 Sm . A pattern Pi;j is an
acceptable sequence of tokens inRi on one input j from the input m of an
actor. It is satis�ed if and only if Pi;j v Xj where Xj is the sequence of
tokens available on the j th FIFO channel. The pattern Pi;j = ? designates
any empty list where any available sequence on input j is acceptable. The
pattern Pi;j = [�] is acceptable for any sequencecontaining at least one token.
The length of a pattern Pi;j is denoted jPi;j j. We abuse of this notation by
using jRi j to express the consumption rate of the �ring rule Ri and jf i j the
production rate of the �ring function f i .

An actor can �re when at least one of its �ring rules is satis�ed, and, when
several �ring rules are satis�ed at the same time, a single one is chosen
and its corresponding �ring function is executed. So that, DPN can describe
nondeterministic algorithms which is not possible with the KPN model.

Figure 12: A self-contained actor with its own state, actions and �ring rules

The strong encapsulation of the actors is described by Figure 12 that in-
troduces the internal state of an actor. In fact, such an internal state is just

3.3 model of computation 29

a more convenient representation since it is strictly equivalent to a feedback
loop, so it only depends on the ability of the language syntax to describe
state variables.

3.3.3 Static Data�ow Models

Static data�ow models can be seen as a simpli�cation of the DPN model, in
which tokens consumption and production follow a predictable behavior,
which means no data-dependent behavior.

synchronous dataflow The Synchronous Data-Flow (SDF) model is
a simple static data�ow model, in which an actor consumes and produces
a constant number of tokens at each �ring. It may have a single �ring rule,
which is valid for any sequence Sm of a certain size on its inputs [119]. In
the case where an actor has several �ring rules, an actor is SDF if all its �ring
rules have the same consumption, which mean for RA 2 R and 8RB 2 R:

jRA j = jRB j (4)

All the �ring functions of an SDF actor must also produce a �xed number
of tokens at each �ring, which means for f a 2 F and 8f b 2 F:

jf a (s)j = jf b (s)j (5)

for any s 2 Sm and sb 2 Sm

cyclo -static dataflow The Cyclo-Static Data-Flow (CSDF) MoC [30]
extends SDF actors by allowing the number of tokens produced and con-
sumed to vary cyclically. This variation is modeled with a state in the actor,
which returns to its initial value after a de�ned number of �ring.

Several other static models were studied to solve a variety of speci�c
problems. For instance, the Interface-Based Synchronous Data�ow (IBSDF)
model [143] is a hierarchical MoC based on SDF that can be analyzed hierar-
chically in order to extract additional information that can be relevant for
the processing.

3.3.4 Quasi-Static Data�ow Model

Data�ow modeling is the question of striking the right balance between
expressive power and analyzability: On the one hand, synchronous and
cyclo-static data�ow limit the algorithms to be modeled as graphs with
�xed production and consumption rates for their predictability and their
strong properties that allow powerful optimizations to be applied. On the
other hand, dynamic data�ow offers a large expressiveness, until Turing-
completeness, able to describe complex algorithms with variable and data-
dependent communication rate that makes their analyze and optimization
ultimately harder.

The need for a trade-off between expressiveness and predictability has
brought the de�nition of so-called “quasi-static” data�ow models. Quasi-
static data�ow differs from dynamic data�ow in that there are techniques
that statically schedule as many operations as possible so that only data-
dependent operations are scheduled at runtime [41, 42, 26, 60, 83, 80, 21].

30 dataflow programming

boolean dataflow Buck's Boolean Data-Flow (BDF) model [41, 42] ex-
tends the SDF model with production/consumption rates that depend on a
control port with a consumption rate statically �xed at one token by �ring.
Basically, the rate of a given port p of an actor can be controlled by its asso-
ciated control port Cp , which means that the actor consumes a token from
Cp and the value of this token varies the consumption/production rate of p.
The fundamental dynamic actors of the BDF model are the Switch and Select
that simply choose one of its two inputs or outputs according to the control
token. The BDF model has been proven Turing-complete [41] but it implies a
restrictive coding style that is not useful for practical cases.

parameterized dataflow Parameterized data�ow presented by Bhat-
tacharya et al. [26], as well as the Parameterized and Interfaced Data�ow
Meta-Model (PiMM) [60], are both a higher-level approach to model quasi-
static behavior by extending the semantic of existing data�ow models using
parameters modi�able at runtime. For example, Parameterized synchronous
data�ow (PSDF) [26], Parameterized and Interfaced Synchronous Data�ow
(�SDF) [60], Schedulable Parametric Data�ow (SPDF) [80] and the Boolean
Parametric Data-Flow (BPDF) [21] are all a generalization of the initial SDF

model that allows the expression of quasi-static behavior. In fact, PiMM can
be considered as an evolution of the parameterized data�ow, that intends
to reach a faster propagation of the parameters, a lighter runtime overhead
and a more friendly modeling of the application.

scenario aware dataflow Scenario Aware Data�ow (SADF), intro-
duced by Theleen et al. [167], is a generalization of the SDF model where
the dynamism is modeled by a collection of static behaviors, called sce-
narios. The scenarios may differ in their computation and production/con-
sumption rates, but, are all extended by a probability of occurrence. The
switch between the scenarios is made by speci�c actors, called detectors, that
can recon�gure other actors by sending them speci�c tokens sequentially
through control channels. A restricted version, known as Heterochronous
Data�ow (HDF) [83] or FSM-SADF [163], increases the analyzability by model-
ing the dynamism using a state machine.

3.4 comparing dataflow mocs

The data�ow MoCs, presented in Section 3.3, have been designed to solve
a wide range of practical issues. In fact, the design of such a formalism
involves a trade-off between several properties, from expressiveness to pre-
dictability including practical details.

3.4.1 Characterization of Data�ow MoCs

Since the MoC is the underlying structure of a programming language, we
have to consider formal properties as well as practical properties, that may
be hard to formalize. Here is a non-exhaustive list of criteria that character-
ize data�ow MoCs.

expressiveness The expressiveness of a formalism is de�ned as its the-
oretical expressive power, regardless of the ease [73]. For instance, aMoC

is said Turing-complete when it can model any calculation without any as-
sumptions about the effort to achieve it.

3.4 comparing dataflow mocs 31

practicality Practicality is de�ned informally by the ease to describe[73].
In fact, practicality differs from formal expressiveness in the sense that it
deals more with the idea of expressing a given system concisely,intuitively
and readily. As an example, a model, proved to be Turing-complete, can
imply a restrictive coding style that is not useful for practical cases.

analyzabil ity The analyzability of a formalism deals with the availabil-
ity of automated processes able to analyze its behavior, for instancetermina-
tion and boundedness. A high analyzability offers larger degrees of freedom
for optimizations. In fact, the analyzability is directly related to the expres-
siveness: The more a formalism can express, the less it can be analyzed.

efficiency This criterion is related to the theoretical ef�ciency of the im-
plementation. In fact, the implementation ef�ciency can be measured with
the metrics usually involved in the evaluation of an algorithm: speed, i.e. the
execution time, and space, i.e. the memory, that are needed by the algorithm
to perform a certain number of computations.

3.4.2 Taxonomy of Data�ow MoCs

Figure 13 presents a classi�cation system of the data�ow MoCs according to
the evaluation of the criteria introduced below, extending the system used
by Stuijk et al. to demonstrate the interest of scenario-aware data�ow model-
ing [163], by separating the practicality of the modeling from the theoretical
expressiveness. This separation is made in order to better re�ect the usabil-
ity of the models to describe real-world applications. The taxonomy re�ects
that the theoretical expressive power is progressively restricted, from DPN

towards SDF, while the analysis become more amenable, as well as the ef-
�ciency in general. For example, the proof of termination with bounded
memory consumption is decidable for SDF and CSDF models but undecid-
able for BDF, DPN and KPN models [139]. However, the practicality of the
modeling does not obey to the same rules.

Figure 13: Comparison of data�ow MoCs, extending the classi�cation system intro-
duced by Stuijk et al. [163], which shows that DPN is the most suitable
model for a practical programming language

DPN is considered more expressive and ef�cient than KPN, because it al-
lows non-determinate behavior and does not rely on blocking mechanism.
BDF is as expressive asDPN but its restrictive syntax makes it not practical.

32 dataflow programming

SADF, although quite expressive, speci�es the execution time of the actors
for each scenario, which offers the ef�ciency but clearly not the practicality.
HDF, PSDFand �SDF are intermediate trade-offs between these criteria.

In a practical point-of-view, DPN is well suited to model real-world pro-
grams, that become increasingly complex, by offering Turing completeness
while also keeping an intuitive description. Yet, the implementation needs
to be carefully set up in order to ensure the required ef�ciency. One way to
reach such a goal is the development of advanced analysis that could bridge
the gap between practical development and ef�cient implementation.

3.5 dynamic modeling requires dynamic analysis

In the last section, we have claimed that the DPN model enables expressive-
ness and practicality, as well as ef�cient implementation, at the expense
of the analysis power. Yet, the limit of static analysis can be overcome by
the use of advanced analysis techniques such as classi�cation and dynamic
analysis.

3.5.1 Classi�cation

Classi�cation is an analysis that determines the behavior of a given actor
in terms of production/consumption of tokens, patterns that may govern
token exchanges, and possibly acceptable token values. The goal of the clas-
si�cation is to detect the MoC of an actor. In fact, restricted MoCs represent
different trade-offs between expressiveness and predictability.

In the simplest case, structural information of an actor is enough to clas-
sify it, for instance the rules for an actor to be considered SDF only depend
on the input and output patterns of actions. In more complicated cases, it is
necessary to gather information from an actual execution of the actor.

The literature introduces several algorithms [186, 173,178,179,49] to clas-
sify dynamic actors into restricted MoCs that can be summed up as follow:

1. Detection of time-dependent actors: DPN places no restrictions on the
description of actors, and as such it is possible to describe a time-
dependent actor in that its behavior depends on the time at which
tokens are available. This happens when a given action reads tokens
from input ports which are not read by a higher-priority action, and
when their �ring rules are not mutually exclusive.

2. Identi�cation of static behavior: Classi�cation tries to classify each
actor within models that are increasingly expressive and complex. The
rationale behind this is that the more powerful a model is, the more
dif�cult it is to analyze. If an actor cannot be classi�ed as a static actor,
the method will try to classify it as cyclo-static, and then as quasi-
static. An actor is classi�ed as static if and only if it conforms to the
SDF MoC, which means that all its actions have the same input and
output patterns. A one-action actor is by de�nition static.

3. Finding cyclo-static behavior: An actor has to meet two conditions
to be a candidate for cyclo-static classi�cation: it must have a state
and there must be a �xed number of data-independent �rings that
depart from the initial state, modify the state, and return the actor to
its original state. Once the actor was identi�ed as a valid cyclo-static

3.5 dynamic modeling requires dynamic analysis 33

candidate, abstract interpretation [56] can be used to determine the se-
quence of actions characterizing its behavior, as well as its production
and consumption rates [178, 179].

4. Determining quasi-static behavior: A quasi-static actor is informally
described as an actor that may exhibit distinct static behaviors depend-
ing on data-dependent conditions. The algorithm is composed of two
steps. First, the detection of the input FIFO channels used to control
the behavior of the actor and their existing con�guration. Then, the
identi�cation of static behavior for each con�guration using abstract
interpretation.

5. If not classi�ed in a restricted MoC, the actor is de�ned as dynamic.

After being classi�ed, the actors, as well as the network they compose,
may be subject to additional analysis and optimizations that require the
respect of more restricted MoCs, such as static scheduling (Section3.6.3).

3.5.2 Critical Path Analysis

As de�ned by the Amdahl's law and similarly to any program, the execu-
tion time of a data�ow program is constrained by the sequential portions
contained in the program. Even if data�ow modeling exposes explicitly the
parallelism inside an application, the execution of a program is still driven
by the data dependencies between the actors, which are characterized by
the communication channels.

The widest metric to evaluate this ef�ciency in data�ow programming is
the critical path, i.e. the longest, time-weighted sequence of events from
the start of the program to its termination regardless the availability of
the hardware resources. Since the static analysis of programs based on dy-
namic data�ow MoC is limited due to their data-dependent behavior, some
works [102, 36,38] investigate the evaluation of the critical path from the ex-
ecution trace obtained after the simulation of the execution. These method-
ologies are composed of the following steps:

1. First, the execution trace is built from the simulation of the execution
of the program. An execution trace is formally described as a directed
acyclic graph G = (V; E) where vi 2 V corresponds to the �ring of
an action and ej = (v x ; vy) 2 E corresponds to the functional depen-
dency between two action �rings, i.e. vx produces some data that are
consumed by vy .
The functional dependency between the two action �rings imposes an
order in their execution vx � vy and, by extension, a partial order on
the execution trace V. Thus, this execution trace describes an abstract
execution of the application, which is independent from the executing
platform, and independent from the actor mapping/scheduling.

2. Then, a weight wv i is assigned to each action �ring vi 2 V of the
execution trace in order to determine the critical path. The weight of
a given action �ring corresponds to the time that is needed to execute
this particular �ring such as

wv i = � select v i
+ � process v i

+ � comm v i
(6)

where � select v i
corresponds to the scheduling overhead introduced

by the selection of the action associated to vi , where � process v i
cor-

34 dataflow programming

responds to the time needed to process vi , and where � comm v i
cor-

responds to the time that is needed to read and write the data from
the communication channels. These values can be estimated by instru-
mented simulation or evaluated precisely by instrumented execution
using pro�ling tools such as Valgrind.

3. Next, a source node vsource and a sink node vsink and their depen-
dencies are added to the graph in order to ease the analysis. To do so,
two types of dependencies are added to the graph: new edges from
vsource to any node without incoming edge, and, respectively, new
edges from all nodes without outgoing edges to vsink .

4. Finally, the critical path corresponds to the weighted longest path from
vsource to vsink , which can be evaluated in linear time using the al-
gorithms presented in [36].

The critical path can be associated to a more practical metric such as
the throughput of the application, which is quite convenient for stream-
based application. Increasing the critical path would ultimately reduce the
throughput performance.

This runtime critical path analysis is dependent to the input stimulus,
which may reduces the interest of the analysis. Consequently, suf�ciently
large input stimulus have to be used to overcome this limitation.

3.6 execution models

Data�ow MoCs assume an ideal execution model, offering unlimited compu-
tation resources and unbounded communication channels, which enable the
execution of all actors in parallel. But the practical limit of this assumption
requires the de�nition of an execution model that enables the execution of
a data�ow program on a processor.

Fortunately, the strong encapsulation of data�ow components, on top of
explicitly modeling the concurrency, lets the choice in a variety of execution
models. But, the ef�ciency of these execution models stays strongly depen-
dent to the data�ow MoC that they implement. In fact, this execution model
is the formalization of task mapping and scheduling processes introduced
in Chapter 2.

3.6.1 Multi-Threading

A natural approach for handling concurrent execution on a sequential en-
vironment is the use of threads, which can be seen as lightweight pro-
cesses that share a single address space. Similarly to multitasking, multi-
threading is based on a scheduler that organizes the concurrent execution
of the threads using preemptive or cooperative strategies.

As a matter of fact, data�ow programs can be easily implemented on a
multi-threading environment. Each component of the data�ow graph is ex-
ecuted in its own thread and we let the scheduler organize the execution.
Multi-threading is commonly used to execute KPN-based programs on pro-
cessors thanks to the blocking access to theFIFO channels [82,94, 128].

However, thread-based implementations can lead to a large overhead
when a large number of components are executed to the same processing
unit [43]. That's why some works have studied lightweight thread imple-
mentations, such as Protothreads [94,128].

3.6 execution models 35

3.6.2 Dynamic Scheduling

Instead of relying on threads managed by the operating system kernel, the
DPN model allows a continuous execution of the operations of a graph
thanks to a user-level scheduler [121]. This scheduler can sequentially test
the �ring rules from several actors, and �re an actor if a �ring rule is valid.
An ef�cient scheduling for data�ow programs consists in �nding a, pre-
de�ned or not, order of actor �rings throughout the execution process capa-
ble of maximizing the use of all the processing units in one platform.

Since actors in a DPN may have data-dependent behaviors, and data are
unknown in the system, determining an optimal schedule of a program is
not possible at compile-time (equivalent to the halting problem [139]), i.e.
the scheduling can be only done in the general case at run time. We present
here two strategies of dynamic scheduling that has been extensively used
for the implementation of dynamic data�ow program based on DPN MoC

[177] [4].

round -robin This strategy is a simple scheduling strategy based on
compile-time ordering of actor execution. The scheduler continuously goes
over a static list of actors: The scheduler evaluates the �ring rules of an
actor, �res the actor if a rule is met and continues to evaluate the same actor
until it no longer meets a �ring rule. Then, the scheduler switchesto the next
actor. This scheduling policy guarantees to each actor an equal chance of
being executed, and avoids deadlock and starvation. Contrary to classical
round-robin scheduling, there is no notion of time slice so the timing is
performed at run-time: an actor is executed until it cannot �re anymore
in order to minimize the number of actor switching and consequently the
scheduling overhead. The reason of this actor switching is that in practice
the FIFO channels will �nally be full or empty because of their bounded
sizes.

Figure 14: Round-robin scheduling of the actor of the data�ow network presented
in Figure 9

Figure 14 shows an application of this round-robin scheduling on the
example of data�ow graph presented in Figure 9. The scheduler executes the
actors in a circular order i.e. the �ve actors A, B, C, D and E are successively
executed then the scheduler starts again from A and so on.

data -driven / demand -driven This strategy is a more advanced
runtime scheduling strategy. Indeed, the round-robin strategy schedules ac-
tors unconditionally i.e. the �ring rules of an actor could be checked even if

36 dataflow programming

they are all invalid. In this case, the �ring rules of the actor will be checked,
but no computation will be performed: That is called a miss. As a result, the
round-robin strategy becomes inef�cient with complex applications contain-
ing hundred of actors and a lot of control communications.

Data-driven / demand-driven scheduling strategy is based on the well-
known data driven and demand driven principles [139]. On the one hand,
data-driven policy executes an actor when its input data have to be con-
sumed to unblock the execution of the precedent actor. On the other hand,
demand-driven executes an actor when its output is needed by one of its
successor actor. Two types of events can cause the blocking of an actor exe-
cution, each one is implying a different scheduling decision:

• When an actor is blocked because an input communication channel
is empty, demand-driven policy is applied and asks the scheduler to
execute the predecessor of this channel.

• When an actor is blocked because an output communication channel
is full, data-driven policy is applied and asks the scheduler to execute
the successor of this channel.

Contrary to the round-robin algorithm, the ordering of the actor execution
is made at run-time. Thus, a dynamic list is needed to store next schedula-
ble actors. The behavior of this schedulable list is illustrated with Figure 15.
When an actor is blocked during its execution, the empty or full FIFO chan-
nels are identi�ed and their associate predecessors or successors are added
to the schedulable list. The actor to be executed next corresponds to the next
entry in the schedulable list.

Figure 15: Behavior of the dynamic list of next schedulable actor used by data-driven
/ demand-driven scheduling

3.6.3 Static Scheduling

The main feature of static data�ow MoCs, i.e. SDF or CSDF, is their ability
to be scheduled at compile-time, which allows optimizations that are not
possible with dynamic MoCs. In fact, static scheduling aims to determine
a valid schedule of a data�ow graph that can be applied periodically. A
valid schedule consists in a �nite sequence of actor �rings that introduces
no deadlock. When every actor appears just once in the valid sequence, we
call the sequence a single appearance schedule.

Given a graph G=(V,E) with jVj = n and jEj = m, a sequence of actor �ring
is de�ned by a repeatvector q = (qv1 ; qv2 ; � � � ; qvn) where each qv k is the
number of �ring of the actor vk 2 V.

3.6 execution models 37

A valid sequence must respect the following equality:

8e = (v x ; vy) 2 E; prod(e)q(v x) - cons(e)q(v y) = 0 (7)

This equation can be reformulated as an equivalent matrix equation:

� = 0 (8)

where � is the matrix of consumption/production, called topology matrix,
whose entries are de�ned by � = (i;j)16 i6 m;1 6 j6 n such as:

 i;j =

8
>><

>>:

prod(e i) if src(ei) = vj

-cons(e i) if dst(ei) = vj

0 otherwise

(9)

The resulting topology matrix de�nes a set of balance equationsq = ~0. A
valid schedule exists only if the set of balance equations admits a non-zero
solution.

The problem of �nding an optimal schedule being NP-complete, several
heuristics have been studied [120, 27, 132,142]. The main objective of static
scheduling for single processor is the minimization of memory require-
ments. Knowing that the single appearance property guarantees the opti-
mal code size of a static schedule, the studies focus on buffer minimization
[120, 27, 132].

3.6.4 Multi-core scheduling

As seen before, multi-core scheduling of applications has been extensively
studied over the last decade [155]. Considering especially the mapping of
data�ow applications, most of the studies focus on static data�ow MoCs since
they can more easily be analyzed [154,72,13,142]. However, we can extract
from the literature three categories of multi-core scheduling that allow dy-
namism within the application description.

scenario -based approaches These approaches handle the schedul-
ing of dynamic applications using multiple static scenarios [162, 163, 153].
While scenario-based approaches have proved to be very ef�cient, they are
not truly scalable as the number of scenarios increases exponentially with
the complexity of the application. Moreover, describing the scenarios re-
quires either additional work from developers, which is not very practical,
or advanced analyses to detect them automatically, closely related to the
classi�cation described in Section 3.5.1.

trace -based approaches These approaches handle the scheduling of
dynamic applications using execution trace analysis [17, 45, 44]. In fact, the
performance ef�ciency of data�ow programs is often characterized by the
makespan, the length of the critical path obtained under scheduling con-
straints, due to its close relationship with the application throughput. Thus,
several works perform actor mapping strategies as makespan minimization
on the execution trace. While trace-based approaches are very ef�cient, they
cannot be performed at runtime due to the complexity of execution trace
analyses.

38 dataflow programming

profi l ing -based approaches These approaches handle the schedul-
ing of dynamic applications by way of pro�ling [123]. The execution of the
application is �rstly pro�led with an initial scheduling, then the schedul-
ing system computes a better schedule from the pro�ling information. For
example, Lucarz describes an algorithm [123] that assigns successively the
actors to the available processors starting from the ones with higher work-
load. But, his approach focuses on the workload without taking into account
other aspects such as the communications. Thus, Lucarz presents another al-
gorithm based on Simulated Annealing that considers the communication
with the cost of the algorithm complexity.

3.7 existing dataflow -based languages and tools

Since Sutherland's preliminary work, data�ow programming has been heav-
ily studied. In fact, dozens of languages, exploiting the data�ow paradigm,
were designed to solve a wide range of problems, from digital signal pro-
cessing to hardware design. In fact, data�ow languages can be described as
DSL [61] that focus on how things connect.

Here is a non-exhaustive list of modern languages and tools that are based
upon the data�ow paradigm:

lustre is a synchronous data�ow language developed for programming
real-time systems and describing hardware [95]. It was introduced in
the early 1980s by a research project and is now used as the core lan-
guage of the SCADE toolset, an environment with certi�ed code gener-
ation dedicated to the programming of critical systems such as aircraft
and nuclear plant.

signal is another synchronous data�ow language that was designed for
programming real-time systems [117], similarly to Lustre. SIGNAL is
supported by the open-source Polychrony toolset that provides a com-
plete integrated development environment.

streamit is a data�ow language based on SDF MoC, which was later ex-
tended with dynamic features. Streamit was initially developed as a
support for research studies on data�ow programming at MIT [168].
Streamit is also a dedicated compilation infrastructure that includes
compilation �ow for several microprocessors, performing a set of domain-
speci�c and architecture-speci�c optimizations.

daedalus is a system-level design environment for MPSoC platform [130],
which automatically parallelizes the C speci�cation of an application
using the Polyhedral Process Network (PPN) model, which is a special
class of KPN that involves nested loops.

maps is another programming environment for MPSoC applications that is
based on the KPN model [44, 45]. MAPS targets automatic paralleliza-
tion of sequential application, scheduling of parallel application, as
well as multi-applications scheduling.

preesm is an open-source tool [141] that aims to generate ef�cient code for
multi-core DSP thanks to a rapid prototyping approach based on static
data�ow modeling.

c~ pronounced c-�ow, is a KPN-based language targeting hardware devel-
opment [181]. Syn�ow, the start-up company developing C~language

3.8 conclusion 39

and the associated tools Syn�ow studio, intends to make hardware de-
sign more ef�cient and reliable using the high abstraction level offered
by the data�ow paradigm.

cal is a data�ow language based on the DPN model [67]. CAL was devel-
oped by Eker and Janneck to provide a practical language for the de-
velopment of applications in a variety of domains, such as multimedia
processing, control systems, network processing, etc.CAL has been de-
signed as a part of the Ptolemy project, which studies model-based
techniques for the development of real-time and embedded system,
inside a tool called Ptolemy II [68].

This subset of data�ow languages and tools shows already the variety of
the application domains where data�ow programming has been applied.

3.8 conclusion

All along this chapter, we introduce data�ow programming as a challeng-
ing programming paradigm that offers a �exible development approach to
deal with the increasing complexity of the applications, and that offers a
large degree of parallelism to exploit the massive parallel capabilities avail-
able in modern architectures. We also show that the use of a programming
language based on the dynamic data�ow model, rather than static mod-
els, is a pragmatic choice to implement complex applications. Indeed, these
dynamic data�ow languages offer a large expressive power along with a
practical syntax that are both required for an industrial-scale development.

Before explaining our contribution to dynamic data�ow programming,
the next chapter introduces the RVC framework: an innovative framework,
introduced in order to improve the standardization process of video com-
pression standards, that can be considered as the �rst large-scale experi-
mentation on dynamic data�ow programming to our knowledge.

4R E C O N F I G U R A B L E V I D E O C O D I N G

Before you become too entranced with
gorgeous gadgets and

mesmerizing video displays,

let me remind you that
information is not knowledge,
knowledge is not wisdom, and

wisdom is not foresight.

Each grows out of the other, and
we need them all.

— Arthur C. Clarke, British writer

The growing popularity of multimedia has made digital video mainstream.
Digital video is now used for a wide range of applications that are achiev-
able with the advances in computing and communication technologies as
well as video compression techniques. However, the deployment and adop-
tion of these technologies were possible primarily because of the standard-
ization process that offers the interoperability between the multimedia de-
vices available on the market.

The standardization process of video compression formats is mainly driven
by the following organizations that are themselves driven by the industry
with participation and contributions from academia:

• The International Organization for Standardization (ISO) and the In-
ternational Electrotechnical Commission (IEC) that have jointly formed
the Moving Picture Experts Group (MPEG).

• The International Telecommunication Union (ITU) and more speci�-
cally its Video Coding Experts Group (VCEG).

Since2001, both working groups are collaborating in the standardization of
the major video formats. The standardization process is composed of several
steps that start with a call for proposal asking for tools and technologies to
solve a given problem. Then, the proposals are experimentally evaluated
in order to choose the tools and technologies selected to take part of the
standards and keep the standards relevant to the needs of industry.

4.1 limits of the standardization process

Video compression standards have become extremely complicated systems,
and are consequently long to specify. So, traditional standardization pro-
cesses quickly show their limits as regards to the time-to-market pressure.

4.1.1 Multiplication of the Standards

Since the standardization of H.120, the �rst digital video coding standard
(in 1984 by the ITU), the number of video coding standards has increased

41

42 reconfigurable video coding

in a linear way, as presented in Figure 16. Even if the H.120 standard was
not widely used due to practical reasons, it represents the roots of digital
video compression techniques, and most of recent video standards can be
considered as its direct successors.

Figure 16: Multiplication of the video compression standards

In fact, the standardization organizations, ITU and ISO/IEC, have rati�ed
most of the successful video standards: H.262 / MPEG-2 Part 2 in 1996and
H.264 / MPEG-4 Part 10 in 2003. However, the controversy about the patent
licensing of these standards has led to the de�nition of royalty-free formats
such as the Google's VP8/VP9, BBC's Dirac and Xiph's Theora/Dalaa. Var-
ious other video compression formats were standardized as well such as
Microsoft's VC-1 included in the Blu-ray standard or the Chinese Audio
Video Standard (AVS).

Apart from the question of licensing, a large choice of compression stan-
dards is offered to encode a video stream:

• The increasing demand in multimedia applications, requiring constantly
higher compression rate, combined with the technological improve-
ment of computing hardware, offering ever more computational ca-
pabilities, has led to the recurring development of additional video
coding standards based on state-of-the-art algorithms. For instance,
the new High Ef�ciency Video Coding (HEVC) standard has been de-
signed to take advantage of the parallel processing capabilities offered
by modern devices [164].

• Digital video compression techniques have expended their applica-
tion domains according to the development of multimedia. Nowadays,
video compression is involved in a large panel of applications such as
streaming, conferencing, surveillance, storage, medical monitoring, etc.
As a consequence, theITU/ISO video standards are structured around
the de�nition of several pro�les, each one de�ning a subset of features
that is relevant for the applications that they characterize. H.264 / Ad-
vanced Video Coding (AVC) has even been amended with additional
pro�les in order to provide scalable and multiview capabilities.

Unfortunately, a standard does not disappear when a new one is an-
nounced, so they have to coexist in most of the situations. In fact, the mi-

4.2 an innovative development framework 43

gration towards a newly adopted standard is a long-time process that often
requires a large scale hardware update, which is much more dif�cult than
updating a software. As an example, MPEG-2 part 2, yet released in 1995,
is still being used by the television broadcast network in north America,
although MPEG-4 part 10 is also proposed.

4.1.2 Monolithic Speci�cations of the Standards

Since the speci�cation of MPEG-2, the textual reference of each standard is
provided with an implementation of a video decoder complying with the
rati�ed standard. This normative implementation, called reference software,
has been up to now developed in monolithic fashion using regular C/C++
languages. Nevertheless, the structure of a software system impacts all its
life, from the development to the deployment through the maintenance, and
a monolithic architecture brings the following limitations:

• Software designers are often compelled to rewrite the decoder from
scratch so as to design a new architecture that may be necessary not
only to reach the performance expected, but also to adapt the software
description to the design methodologies of the computing devices. For
instance, it is impossible to translate automatically such a monolithic
implementation into a synthesizable hardware description. Moreover,
programming languages based on the imperative paradigm have in
general a limited potential of parallelism due to their tendencies to
over-specify the programs.

• Seeing that most of the new standards can be considered as an evo-
lution of the last one, the monolithic implementation of the reference
software has brought a lot of redundancy in video compression stan-
dards and their reference software. As an example, the deblocking
�lter is available in both AVC and HEVC standards but, because of their
slight differences, it was entirely rewritten during the speci�cation of
HEVC. Unfortunately, the dif�culty to extract the redundancies among
the video standards limits the development of decoding systems sup-
porting several standards.

4.2 an innovative development framework

To overcome the lack of interoperability between all the video compres-
sion standards deployed in the market, MPEG has introduced an innovating
framework, called RVC [125,29,126], dedicated to the development of video
coding tools in a modular and reusable fashion.

The MPEG RVC framework de�nes two standards that have been produced
by the RVC working group:

• The codec con�guration representation (ISO/IEC 23001-4or MPEG-B pt.
4) [10] describes the format with which an RVC decoder can be de�ned
as a network of computational blocks, as well as a textual language for
the de�nition of video coding blocks (Section 4.3).

• A video tool library (ISO/IEC 23002-4or MPEG-C pt. 4) [11] that stan-
dardizes actors needed to describe existing video coding standards
(Section 4.2.2), currently MPEG-4 part 2 and MPEG-4 part 10.

44 reconfigurable video coding

In fact, RVC does not only provide a new standardization process that
overcomes the limits of the current standardization process, but also intro-
duces a framework that enhances multimedia development by offering all
the advantages of data�ow programming with the pragmatism required by
the development of complex applications.

4.2.1 Data�ow to Enhance Multimedia Development

The traditional imperative programming paradigm leads to the implemen-
tation of monolithic applications that are limited by nature. The RVC frame-
work overcomes this limitation by exploiting the data�ow programming
paradigm in order to propose a �exible development approach that pro-
duces modular, scalable and portable applications.

modularity Multimedia applications become more and more complex.
To handle this complexity, the development process has to be �exible enough
to allow the writing of modular descriptions. The strong encapsulation of
the components of a data�ow program offers the required modularity:

1. Hierarchical ability enables the organization of the components in
subnetworks according to their concern, such as the motion prediction
or the residual decoding in a video decoder.

2. In video compression standardization, re-usability is particularly rel-
evant to describe the multiple pro�les of a given standard that may
share a large portion of their algorithms.

3. Recon�gurability enables adaptive execution, which is required by
the ideal video decoder: A universaldecoder which would be able to
decode any video stream, independently from the compression stan-
dard to which it refers.

scalabil ity Modern multimedia applications manipulate rich media
contents, such as video stream, and consequently can be quali�ed as compute-
intensive applications. As presented in Chapter 2, modern architectures
offer massive parallel capabilities in order to achieve the real-time perfor-
mance required by these compute-intensive applications. One of the advan-
tages of data�ow programming, that we have emphasized in Section 3.2, is
the explicit concurrency that simpli�es the use of the parallelism compared
to traditional imperative programming paradigm. As an example, some par-
allelisms are inherent to video processing:

1. The succession of processings on the data stream (�ltering, transform-
ing, etc), which composes a video codec, can be directly modeled by
a set of interconnected boxes making Pipeline-Level Parallelism and
Task-Level Parallelism straight-forward.

2. The independent processings of the image components, Luma and
Chroma, are a good example of the Data-Level Parallelism that can
be exposed within a data�ow description.

portabil ity The heterogeneity of multimedia devices makes portabil-
ity an interesting property of video coding tools, and their implementation
within the RVC framework enables their compatibility with hardware and

4.2 an innovative development framework 45

software platforms. In fact, these high-level descriptions aim to be trans-
compiled in lower-level languages in order to bridge the gap between exist-
ing programming models:

1. Hardware synthesis: Data�ow modeling simpli�es the translation of
the description of an application into Hardware Description Languages
(HDLs) targeting Application-Speci�c Integrated Circuits (ASIC) and
Field-Programmable Gate Arrays (FPGAs). In fact, the explicit concur-
rency is quite similar to the structural view of a hardware descrip-
tion, contrary to monolithic speci�cations that usually involve com-
plex analysis such as the ones performed in High-Level Synthesis
(HLS).

2. Software programming: When hardware synthesis is straight forward,
the translation of data�ow descriptions into software programming
languages usually requires an execution model to handle the schedul-
ing of the data�ow components in a sequential environment (Section
3.6). But, the increasing parallel capability of modern processors takes
advantage of explicit concurrency of data�ow descriptions. Further-
more, explicit communications simplify the execution on architectures
that require advanced memory accesses such asDSP and GPU.

3. Co-design for heterogeneous platform: Describing the application us-
ing a set of interconnected components enhances its ability to be ex-
ecuted on an heterogeneous platform, containing a mixture of micro-
processors and/or hardware processing units. Since the components
can be translated independently into software or hardware, the co-
design �ow performs the mapping of the components onto the avail-
able computing resources according to the speci�cation of the applica-
tion, the executing platform, and the user-de�ned constraints.

4.2.2 Towards the RVC Vision

To do so, the RVC framework introduces the concepts of Video Tool Library
(VTL) and Abstract Decoder Model (ADM) [125, 29, 126]:

• The VTL is a collection of algorithmic components composing video
codecs, known as Functional Units (FUs), that are speci�ed using a
programming language called RVC-CAL. The RVC framework provides
a normative VTL, the MPEG VTL, that contains all the FUs required to
cover all MPEG standard speci�cations. Proprietary VTLs can also be
proposed within the framework to provide extended collections of FUs

that allow optimizations or additional features.

• The ADM is a generic representation of a decoder, speci�ed using a
data�ow network of coding tools, the FUs from the VTL. Several codecs
can be speci�ed by combining FUs together from a common VTL, and,
for instance, a single FU can be involved in several speci�cations. This
re-usability simpli�es the development of multi-standard video decod-
ing applications and devices by allowing software and hardware com-
ponents to be reused across video standards.

Thus, as shown in Figure 17, a decoder description can be delivered along
with the encoded video stream. The decoder description is used to con�gure
the decoder engine to be able to decode the video stream. So, the decoder is
instantiated from the data�ow graph representing the decoder description

46 reconfigurable video coding

and the components available in the VTLs (normative and/or proprietary).
In other words, the decoder is constructed according to the video encoding
format, as opposed to traditional rigidly-speci�ed video decoders.

Figure 17: RVC vision

4.3 multimedia -specific languages

The RVC framework uses two programming languages for both levels of the
description [10]: A visual programming language, called Functional unit
Network Language (FNL), to represent the interconnection network (Section
4.3.1), and a subset ofCAL, known as RVC-CAL, to describe the component's
behavior (Section 4.3.2).

Additionally, the framework also introduces the Bitstream Syntax Descrip-
tion Language (BSDL) which describes the structure of the bit-stream [9, 149],
i.e the incoming video stream. This language aims to automatically gener-
ate the actor that can parse and decode the corresponding input stream. But,
considering that no implementation has yet demonstrated the practicality of
this approach, the BSDL will not be described deeper in this thesis.

4.3.1 From Text to Visual Network Programming

FNL is the programming language used to specify the interconnection net-
work between all the actors. The main characteristic of this language is its
ability to support a textual representation (Listing 2) as well as a graphical
representation (Figure 18). Additionally, an equivalent representation based
on eXtensible Markup Language (XML) has been standardized, known as
XML Data�ow Format (XDF), to allow the interoperability between the tools
[10] (Listing 3). As a matter of fact, each vertex or edge from the graphical
representation corresponds to an element of the textual representation, as
well as an element of their XML-based representation:

• A vertex represents one Instance of an entity. An entity can be an actor
or a network, both being identi�ed by their Class which is composed
of the package name, i.e. the localization of the entity, and the name
of the entity. An entity may also be parametrized to improve its re-
usability. By way of example, in Figure 2, the vertex Display (Line 4)
represents the instantiation of an entity, named Display as well, which
is located in the package org.sc29.wg11.common. For this instantiation,
the parameter BLK_SIDE is set to 64.

• An edge represents a Connection, i.e. a communication channel, be-
tween two entities, and, by extension, a data dependency. This edge

4.3 multimedia -specific languages 47

is connected to the port (src-port) of its source entity (src), and to the
port (dst-port) of its destination entity (dst). A connection may also be
parametrized with a speci�c channel size.

This simple example already demonstrates the practicality of visual pro-
gramming: The verbosity of the textual representation emphasizes the clar-
ity and the natural of the graphical representation. Even so, visual program-
ming requires an advanced editor to be effective.

1 network Top_mpegh_part2 _main():

2 entities

3 Source = org.sc29.wg11.common.Source();

4 Display = org.sc29.wg11.common.Display(BLK _SIDE=64);

5 Decoder = org.sc29.wg11.mpegh.part2.Decoder();

6 structure

7 Source.O --> Decoder.BYTE;

8 Decoder.VID --> Display.VID;

9 Decoder.DispCoord --> Display.DispCoord;

10 Decoder.PicSizeInMb --> Display.PicSizeInMb;

11 end

Listing 2: Textual representation of data�ow network

Figure 18: Visual representation of data�ow network

1 <?xml version =" 1.0" encoding ="UTF- 8"?>

2 <XDF name="Top_mpegh_part2_main">

3 <Instance id ="Source">
4 <Class name="org . sc29.wg11.common. Source"/>
5 </Instance>

6 <Instance id ="Display" >

7 <Class name="org . sc29.wg11.common. Display" />

8 <Parameter name="BLK_SIDE">x

9 <Expr kind =" Literal " l i teral - kind =" Integer " value="64" />

10 </Parameter >

11 </Instance>

12 <Instance id ="Decoder">

13 <Class name="org . sc29.wg11.mpegh. part2 .Decoder"/>
14 </Instance>

15 <Connection dst="Decoder" dst - port ="BYTE" src="Source"
src- port ="O" />

16 <Connection dst="Display" dst - port ="VID" src="Decoder"
src- port ="VID" />

17 <Connection dst="Display" dst - port ="DispCoord" src="Decoder"
src- port ="DispCoord" />

18 <Connection dst="Display" dst - port ="PicSizeInMb" src="Decoder"
src- port ="PicSizeInMb" />

19 </XDF >

Listing 3: XML-based intermediate representation of data�ow network

48 reconfigurable video coding

4.3.2 Actor Programming Made Easy

A subset of CAL, called RVC-CAL, has been included in the standardization
of the RVC framework [10]. The language is a mixture between imperative
and functional programming languages that introduces useful abstractions
for data�ow programming. Comparing to the original CAL language [67],
RVC-CAL provides a precise type-system as well as some practical features.

The language is used to describe the behavior of the components, called
actors. The execution of an actor is composed of a sequence of ordered steps,
applied repeatedly:

1. First, the actor consumes, or not, a given amount of data from its input
ports.

2. Then, it may modify its internal state.

3. Finally, it produces, or not, a given amount of data to its output ports.

As a consequence, describing an actor execution involves the description
of its interface such as the input and output ports, its internal state that is
modeled by a set of state variables, as well as the procedural description of
the computational steps and the internal scheduling strategy that ordered
these steps.

header In RVC-CAL, an actor can be decomposed in a header and a body
such as presented in Listing 4. The header of the actor is composed of its
signature along with its interfaces that are both declared at the top of the
actor description:

• The signature that identi�es precisely the actor in the VTL. The signa-
ture is composed of the name of the actor (IT4x4 _1d), and the name
of the package where the actor is located (devel.org.sc29.wg11.mpegh.

part2.xIT), in a Java fashion.

• The interfaces of the actor that describe the structure used to interact
with the outside. The interfaces is composed of the input ports (int(

size=16)Src) and output ports (int(size=16)Dst) connected to the com-
munication channels, and the parameters (int shift) that are variables
initialized only when the actor is instantiated within a network.

1 package devel.org.sc29.wg11.mpegh.part2.xIT;

2

3 actor IT4x4 _1d(int shift) int (size =16) Src ==> int (size =16) Dst :

4

5 // body

6

7 end

Listing 4: Header of an actor

procedural code RVC-CAL describes the behavior of an actor by the
way of imperative programming paradigm, among other speci�c structures
that we detail below. To do so, the language supports the common concepts
that are traditionally used by procedural language (Listing 5), such as vari-
ables, functions and procedures .

4.3 multimedia -specific languages 49

1 int MAX _RANGE = 15;

2 int BIT _DEPTH = 8;

3 int coeff := 32;

4

5 function abs(int (size =32) x) --> int (size =32) :

6 if(x > 0) then x else -x end

7 end

8

9 procedure nextLcuAddressFilt()

10 begin

11 xCuFilt := xCuFilt + 1;

12 if(xCuFilt = picSizeInCu[0]) then

13 xCuFilt := 0;

14 yCuFilt := yCuFilt + 1;

15 end

16 end

Listing 5: Procedural code

action An action corresponds to a �ring function, which describes, in a
procedural manner, the behavior of the actor during a �ring. For example,
the action, presented in Listing 6, reads 16 tokens from its input port Src

and copies them in a new order to its output port Dst.

1 action Src:[src] repeat 16 ==> Dst: [dst] repeat 16

2 var

3 List (type : int (size =16), size =16) dst

4 do

5 dst := [src[4 * column + row] :

6 for int row in 0 .. 3, for int column in 0 .. 3];

7 end

Listing 6: An action that transposes 4x4 blocks

internal scheduling CAL is a control-oriented language, several mech-
anisms are offered to describe explicitly the internal scheduling within an
actor [67]:

• The guards and the patterns implement together the concept of the
�ring rules introduced by the DPN model (Section 3.3.2). A guard is
a condition on the �reability of the action depending on the value
of the state variables and/or the incoming tokens, while the pattern
focuses on the amounts of tokens/rooms that have to be available on
the communication channels. As an example, being able to �re the
action getPixValue, presented in Listing 7, requires that the condition
of the line 3 is valid, and that the channel connected to the input port
B has at least256 tokens available.

1 getPixValue: action B :[Bytes] repeat 256 ==>

2 guard

3 nbBlockGot < pictureSizeInMb

4 do

5 // Body

6 end

Listing 7: Guard and pattern

50 reconfigurable video coding

• The priorities de�ne a partial-order relation on the �ring rules (lines
9-12 of Listing 8). Since two �ring rules are not necessarily exclusive,
the description of priorities reduces the possible non-determinism.

The Finite State Machines (FSMs) have also been introduced to de-
scribe the internal scheduling of an actor in a convenient way (lines
1-7 of Listing 8). In fact, the FSMs do not provide a larger expressive
power to the language than the one already available with the guards,
the patterns and the priorities.

Additionally, all actions without names, that is to say untagged ac-
tions, are not constrained by any schedules [67]. Thus, untagged ac-
tions always have the highest priority and can be executed from any
state of the FSM. Untagged actions are another practical feature that
should be however used carefully since they can imply a large schedul-
ing overhead.

1 schedule fsm initLength:

2 initLength (computeNewLength) --> copy;

3 copy (copyData) --> copy;

4 copy (endCopy) --> padding;

5 padding (zeroPadding) --> padding;

6 padding (endZeroPadding) --> initLength;

7 end

8

9 priority

10 endCopy > copyData;

11 endZeroPadding > zeroPadding;

12 end

Listing 8: FSM and priorities

types The speci�cation of the RVC-CAL language de�nes an accurate type
system containing the following data types [10]:

• An integer data type that can be signed or unsigned, declared with
the int and uint keywords respectively. An integer data type can also
be bit-accurate, for instance the type int(size=8) considers a signed
integer coded on 8 bits.

• Three �oating-point types coded on 16,32and 64bits, that are de�ned
respectively using the half, float and double keywords.

• A logical data type, having two potential values true and false, unsur-
prisingly declared using the keyword bool.

• A type to describe a sequence of characters, String.

• A list type that is declared with a given type and size, such as List(

type:int, size=8) that represents a list of 8 integers, so closely related
to a simple array.

In fact, the type system is one of the major difference between the original
CAL and the one standardized within the RVC framework. When CAL keeps
an abstract type system authorizing untyped data [67], RVC-CAL de�nes a
practical type system dedicated to the development of signal processing
algorithms.

4.4 applications 51

All these features make RVC-CAL fully analyzable, in the sense of actor-
level analysis as opposed to network-level analysis, contrary to general-
purpose programming languages such as C that are hardly analyzable be-
cause of complex mechanisms like pointers [97].

4.4 applications

The inclusion of a subset of CAL in the MPEG RVC framework has enabled
the development of several video decoders, along other applications, using
dynamic data�ow programming. Such a collection of applications offers a
great opportunity to study all the problematics related to dynamic data�ow
programs.

4.4.1 Video Codecs

Since the standardization of H.261, the �rst block-based digital video coding
standard, in 1988by the ITU, all existing ITU/MPEG video codecs have glob-
ally kept the same structure [150]. The difference between the standards
comes mainly from the evolutions of the algorithmic part that offer an in-
creasing compression rate. In fact, the decoding process can be divided in 3
distinct parts, that make the application graph of all RVC-based video codecs
quite similar [126]:

1. The �rst part, called parser, extracts values needed by the next process-
ing from the compressed data stream. The stream is decompressed
with entropy decoding techniques, then the syntax elements compos-
ing the stream are extracted in order to be transmitted to the actors
that they may concern.

2. Another one, known as residual, decodes the error resulting of the
image predication using inverse transforms, such as the well-know
IDCT. The transforms allow spatial redundancy reduction within the
encoded residual image.

3. And, a last part, called prediction, performs the intra and inter pre-
diction. Intra prediction is done with collocated blocks in the same
picture whereas inter prediction is performed as a motion compensa-
tion with other pictures. The inter prediction also implies the use of a
buffer containing decoding pictures to be able to perform the temporal
prediction.

Since its creation, theRVC working group has standardized the implemen-
tation of 3 video decoders detailed below:

mpeg-4 part 2 MPEG-4 Part 2 standard, also known as MPEG-4 visual, was
released in 1999 by the joint ISO/ITU consortium. The popular DivX
and Xvid codecs, that have largely contributed to the development
of video sharing over the Internet, implement this standard. In fact,
The Simple Pro�le of MPEG-4 Part 2 decoder was the �rst application
standardized by the RVC working group. Given the novelty of the ap-
proach, the decoder was the source of dozens of experiments that have
conducted to the development of several versions of the decoder with
variable granularities.

Figure 19 presents the normative version of the description. As pre-
sented, the structure of the application graph matches well with the

52 reconfigurable video coding

structure of the video standard. The graph can be partitioned into
three regions, each one corresponding to a dedicated processing: pars-
ing, residual decoding and motion compensation. To increase the par-
allelism exposed within the decoder, the parser can separate the pro-
cessing of each image components, luma and chroma, in three parallel
paths (Y, U and V). The image components are then merged back at
the end of the processing.

Figure 19: RVC-based description of the MPEG-4 Part 2 SP decoder

mpeg-4 part 10 Introduced in 2003,MPEG-4 Part 10, also known as MPEG-
4 AVC / H.264, is a widely-used video standard since the advent of
High De�nition in everyday usage [176]. In fact, AVC is currently one of
the most exploited standards within commercial video services, going
from web streaming to digital broadcasting including camera record-
ing.

As presented in Table 4, two pro�les of the AVC codec were standard-
ized, Constrained Baseline Pro�le (CBP) [87, 23] and Progressive High
Pro�le (PHP). The large number of actors and FIFO channels states of
the complexity of the decoder, as well as the controlled fashion of the
descriptions.

mpeg-h part 2 MPEG-H Part 2, also known as MPEG HEVC / H.265, is the
last born video coding standard, developed conjointly by ISO/ITU, as
a successor toMPEG-4 AVC / H.264. HEVC is improving the data com-
pression rate, as well as the image quality, in order to handle modern
video constraints such as the high image resolutions 4K (3840x 2160)
and 8K (7680x 4320) [164]. Another key feature of this new video cod-
ing standard is its capability for parallel processing that offers scalable
performance on the trendy parallel architectures [164].

Such parallel capabilities offer a great opportunity to prove the interest
of the RVC approach. Consequently, the RVC working group has devel-
oped, in parallel with the standardization process, an implementation
of the HEVC decoder using the RVC framework, which is presented in
Figure 20. This joint effort has permitted the demonstration of a func-
tional version during the 103th MPEG meeting in January 2013. At the
same time, the �nal draft of the HEVC standard was approved.

Table 4 summarizes the properties of each description of these well-known
decoders: Respectively, the pro�le of the decoder, the parallelization of the
decoding for each component, the number of actors and FIFO channels.

The RVC-based video decoders are described with an average granular-
ity (at block level), contrary to the traditional coarse-grain data�ow (at

4.5 existing tools supporting rvc 53

����������
���������	�
���	����

����������������
�����������������

���������
����
����

����������
���������	�
���	����

���	�
��������
����������

������������
������

����������
����

������������
������

����������
����

������������
������

����������
����

������������
������

����������
����

������������
����������

��������������
����

������������
����������

��������������
����

������������
����������

��������������
����

������������
����������

��������������
����

������� ���������� ������� ����������

�������	��������
�!�����"����

� ���#
���$�%

����������������

�	���������
�������

������������
�	�

�
��

��
��

��

Figure 20: RVC-based description of the MPEG-H Part 2 SP decoder

Standard Pro�le Version YUV #Actors #FIFOs

MPEG-4 Part 2 Simple Pro�le RVC yes 41 143

Xilinx no 34 86

Ericsson yes 42 105

EPFL no 13 29

Irisa yes 41 104

MPEG-4 AVC CBP RVC yes 94 270

PHP RVC yes 114 404

MPEG HEVC Main RVC no 34 109

Still Picture RVC no 31 74

Table 4: Statistics about theRVC-CAL description of several MPEG video decoders

frame level). This �ne-grain streaming approach induces a high potential
in pipeline parallelism and the use of small communication channels, usu-
ally between 512and 8192rooms.

4.4.2 Other Applications

While the RVC framework has been introduced in the video context, it is
actually a more general-purpose framework that is usable to model any
application, as long as it can be described in a stream-based fashion.

Beside the standardization context, the RVC framework has been used to
develop a cryptographic library [15, 14], some image codecs such asJPEG,
JPEG2000and LAR [104].

4.5 existing tools supporting rvc

Apart from the normative parts, which focus on the conceptual vision of
RVC and the standardization of the FUs, both industrials and academic re-
searchers have developed a set of tools supporting the RVC framework.

54 reconfigurable video coding

4.5.1 OpenDF

The Open Data�ow Environment (OpenDF) [28] is a data�ow toolset, initi-
ated in 2007 under open-source licensing (BSD), dedicated to the CAL lan-
guage. OpenDF is embedding an interpreter of CAL code, as well as a multi-
target compiler and some analysis tools.

The compiler is composed of three backends able to generate code for
different platforms, from an XML-based intermediate representation named
XLIM [127]: The �rst one is an HDL backend based on OpenForge [103] that
targets Xilinx FPGAs. The last two backends generate C code, one targeting
the SystemC toolchain [151] and the other one dedicated to embedded plat-
form based on ARM processor [172].

Given the technological limitations of OpenDF, the project has been pro-
gressively dropped in favor of Open RVC-CAL Compiler (Orcc) (Section
4.5.2) and is now no longer being maintained. Eker et al. have recently intro-
duced a new tool, called Caltoopia, that is promoting itself as an develop-
ment kit for CAL. Caltoopia is built on the top of a new software architecture
but uses some of the work made in OpenDF.

4.5.2 Orcc

Started in 2009, Orcc [134, 177] is an open-source toolkit dedicated to the
development of RVC applications. Orcc is a complete Eclipse-based Integrated
Development Environment (IDE) that embeds two editors for both actor and
network programming, a functional simulator and a dedicated multi-target
compiler. In fact, this compiler has been the experimental laboratory of this
thesis, as presented in Chapter5.

The compiler is able to translate the RVC-based description of an applica-
tion into an equivalent description in both hardware and software languages
for various platforms (FPGA, GPP, DSP, etc). A speci�c compiler back-end has
been written to tackle each con�guration case:

• Two software back-ends that generate C/C++ programs usable on
most of the programmable processors [180,177]. Data�ow application
produced with the software back-ends have multi-core abilities that
bene�t from the inherent parallelism of data�ow applications [4, 7],
more details are provided in Chapter 7. A rapid prototyping can addi-
tionally be performed on static applications [3].

• Two hardware back-ends using well-known High-Level Synthesis tools
to generate synthesizable HDL code for FPGA and ASIC implementa-
tions [12, 24].

• A back-end that targets embedded multi-core platforms [5]. The back-
end is implemented as an entire co-design �ow that generates the
software code as well as the hardware design that executes it. This
back-end is the main contribution of this thesis and is described along
Chapters 5 and 6.

• A back-end that produces libraries of components, usually called
VTLs, in data�ow-speci�c bitcode [88] to implement the ADM of the
RVC framework [29]. The libraries of components are then used to per-
form adaptive execution based on virtual machine mechanism using
Jade [2].

4.6 advances and challenges of the rvc framework 55

Additionally, some advanced analysis dedicated to dynamic data�ow ap-
plications can be performed during the compilation. A dynamic analysis,
called actor classi�cation [178, 179], can detect predictable behavior within
a network that may allow compile-time optimization such as static actors
scheduling. Another analysis, based on model-checking techniques [69], can
prune all unreachable execution paths to remove the unnecessary tests and
accelerate the execution.

The Orcc environment has also been the foundation of two external tools,
known as the Just-in-time Adaptive Decoder Engine (Jade) and Turnus:

jade can be considered as the software implementation of RVC concept, a
generic decoder able to con�gure itself according to a con�guration
using a VTL and the virtual machine -based mechanisms [89, 86].

turnus is a proprietary tool based on the Orcc simulator engine, which
is dedicated to the pro�ling and design space exploration of RVC-CAL

application [39].

4.6 advances and challenges of the rvc framework

Since its introduction in 2004, theRVC framework has been subject to many
studies from academic and industrial researchers. While tools and applica-
tions have now reached a certain maturity, there still are some open chal-
lenges that prevent the wide-spreading of RVC, CAL and more generally dy-
namic data�ow programming. In fact, one of the fundamental challenges of
the RVC framework is paradoxically the development of tools concurrently
with the development of applications.

4.6.1 Tools Development

Since dynamic data�ow programming has not been heavily studied, a large
part of the research work on RVC framework focuses on tools involved in the
development of new applications, e.g. Orcc or OpenDF.

assisted programming Unlike most research tools, our development
environment is actually used to write applications, and not just small bench-
marks but real-world applications that involve complex and error-prone
tasks. As a consequence, our toolset has to provide a certain number of
features that are usually present into most of the modern IDE to make the
development of applications easier and help to use a not-so-naturalprogram-
ming paradigm:

• Graphical editing of application graph, since one of the main interest
of data�ow programming is its ability for visual programming.

• Syntax coloring, code completion, code validation are all basic func-
tions that are expected in a modern text programming editor.

• Programming implies necessarily the need for debugging capabilities,
this need is increasing with the application complexity, but debugging
data�ow programs is more challenging than debugging traditional
programs [146].

While all these features truly simplify the development of new applications,
they require a time-consuming development effort that is largely beyond
our research interests.

56 reconfigurable video coding

retargetabil ity One of the main accomplishments of the RVC frame-
work is the portability of applications over a large range of platforms (FPGA,
GPP, DSP, etc). The idea of targeting multiple platforms with a single appli-
cation description may be very attractive, but it raises a certain number of
issues in term of software architecture such as:

• An increasing number of compiler back-ends, which requires the cap-
italization of algorithms.

• An extensive use of third-party tools to smoothly connect with all tar-
geted platforms.

innovation Most of the contributors to our development environment
have a main background in signal processing. On the one hand, they can
take advantage of their expertize and propose innovative techniques to im-
prove dynamic data�ow programs. On the other hand, their weak knowl-
edge in compilation and software engineering is quickly becoming an obsta-
cle due to the complexity of a software such as a compiler.

To sum up, RVC-based development environments are complex pieces of
software that have to provide the simplicity, reliability and �exibility asked
by application developers, while keeping a maintainable, extensible and scal-
able architecture for boosting research innovations of tool developers. To do
so, we need to setup a pragmatic software development process.

4.6.2 Applications Development

Dozens of applications for a variety of domains have already been produced
within the RVC framework (see Section 4.4). In fact, much of the develop-
ment time has served as manual design exploration to achieve the expected
performance. Thus, Brunet et al. have proposed a set of automatic and semi-
automatic techniques implemented in Turnus [39] to assist application devel-
opers in this exploration task [36, 38]. But, the development of applications
still involves open challenges that are portability and re-usability.

portabil ity Some of these applications, especially video decoders which
were heavily studied, present a large number of variations that have been
proposed in response to particular needs whereas RVC-CAL aspires to be
portable. As an example, there are at least four distinct descriptions of video
decoders implementing the MPEG-4 Part 2 compression standard:

• The normative description considered as the reference;

• A single-rate description developed by Xilinx to speci�cally target
hardware platforms;

• A description optimized by Ericsson for multi-core processors;

• A description, proposed by Mattavelli et al., resulting of application
design exploration;

From our point of view and in respect to the RVC principles, the applica-
tion developers should develop a single version of each description, prefer-
ably a high-level description to ease the development process, and let the
compiler automatically optimize this description according to the targeted
platforms, such as the multi-to-single rate transformation that is discussed
below to target hardware platforms.

4.6 advances and challenges of the rvc framework 57

re -usabil ity Another major interest of the RVC framework is the re-
usability of the data�ow components, called FUs, over multiple applications.
Actually, Palumbo et al. have proposed a methodology that takes advantage
of this re-utilization over multiple applications to build multi-purpose hard-
ware systems with a limited resource usage [135, 136,129]. Gorin et al. have
also bene�ted from the reutilization in their adaptive decoder to speed-up
the recon�guration [89, 86].

Unfortunately, the applications that are currently available do not make
an extensive utilization of component re-usability. In fact, only AVS and AVC

decoders really share a signi�cant amount of common components [87, 184].

4.6.3 Platform Implementation

Another challenge that have to face dynamic data�ow programs is the demon-
stration of ef�cient implementations that can achieve performance constraints
imposed by modern applications.

hardware synthesis Design �ows from RVC applications to hardware
platforms, in the sense of FPGA and ASIC, have been implemented in OpenDF
[103] and Orcc [158, 24, 12, 25]. The basic idea of these approaches is the
direct transformation of RVC-CAL descriptions into Register Transfer Level
(RTL) ones suitable for FPGA or ASIC synthesis.

The major difference between the methodologies comes from the abstrac-
tion level of the generated code: Janneck et al. generate low-level and opti-
mized HDL code dedicated to a speci�c platform (close-to-gateRTL) [103, 24,
25], whereas Siret et al. generate high-level, portable and readableHDL code
(close-to-hand-writtenRTL) and let the synthesizer perform the optimizations
[158]. A novel approach capitalizes on HLS tools that are able to translate
software code into RTL descriptions, such as Xilinx Vivado HLS, in order to
focus on the generation of understandable C code [12].

All of these methodologies suffer however from a severe limitation as they
are only applicable on single-rate RVC-CAL programs, i.e. actors can only
read and write single tokens at once, that require the use of low-level actors
and �ne data�ow granularity. Jerbi et al. describe an automated transfor-
mation from multi-rate RVC-CAL programs to a single-rate programs to over-
come this limitation [105, 104]. Nevertheless, theRTL descriptions present an
explosion in the logical gate count and a signi�cant reduction in throughput
performance due to the complexity of the resulting code.

software synthesis To illustrate the dif�culties to provide ef�cient
implementations of dynamic data�ow descriptions, Figure 21 presents the
impressive evolution of the performance of the most studied video decoder
within the RVC framework on desktop mono-processors, namely the norma-
tive description of the decoder implementing the MPEG-4 Part 2 Simple-
Pro�le standard. We present frame-rates of a small QCIF video because of
its extensive utilization in the literature.

Most of the past work on software synthesis within the RVC framework
has studied the implementation of applications on GPP [177, 86?]. But, in
view of the current market of electronic products, we need to focus on
embedded systems and especially MPSoC-based platforms. Thus, new con-
straints, like power consumption, have to be taken into account.

58 reconfigurable video coding

�������� �������� �������� �������� �������� ��������
��

������

������

������

������

������

�	����

�
�
���

��
���

���
���

��

Figure 21: Performance evolution of an RVC-based video decoder. Frame-rates of the
foremansequence (QCIF) using the normative descriptionof the MPEG-4
Part 2 Simple-Pro�le decoder executed on mono-processordesktop com-
puters [151, 180,93].

4.7 conclusion

This chapter presents a development framework introduced by MPEG under
the name of RVC. This framework was initially proposed to overcome the lim-
itations of the standardization process of video compression format. Thanks
to data�ow programming, organized on top of the RVC-CAL language, the
RVC framework proposes a �exible development process that produces mod-
ular, scalable and portable applications. These advantages makeRVC suitable
for the development of any multimedia application that manipulates rich
media contents.

The next chapters explore the programming of embedded multi-core plat-
forms by the way of the RVC framework. Chapter 5 starts by introducing
the development environment, in other words the design �ow from the ap-
plication description to the executing platform. Then, Chapter 6 proposes
an implementation of dynamic data�ow programs optimized for embed-
ded multi-core platforms. Finally, we describe a set of actor mapping and
scheduling strategies that can handle the dynamism of our applications to
provide ef�cient execution.

Part II

C O N T R I B U T I O N S

5A D VA N C E D D E V E L O P M E N T E N V I R O N M E N T F O R
D ATA F L O W P R O G R A M M I N G

Remember that all models are wrong;

the practical question is
how wrong do they have to be

to not be useful.

— George E. P. Box [35]

The development and the implementation of multimedia applications,
such as video codecs, are time-consuming and error-prone tasks due to the
increasing complexity of the algorithms as well as the increasing variety of
the multimedia devices. In fact, the progression of parallel computing as the
only alternative to meet the performance requirement has made the devel-
opment and the implementation of the applications even harder. As we have
seen in Chapter 2, parallel computing has not only introduced programming
challenges but also architectural and executional challenges (synchronizing
the different tasks, balancing their loads, etc). Consequently, the need for ef-
�cient development methods and tools is becoming increasingly important
so as to meet the requirement of time-to-market.

This chapter describes an IDE dedicated to data�ow programming that
aims to make the development of data�ow programs easier, especially for
embedded multi-core platforms. Starting from the initial work of Wipliez
who has created a compilation infrastructure for data�ow programs [177]
targeting GPP, ASIC and FPGA, the main contributions of this chapter are:

1. Enhancement of the compilation infrastructure by the way of modern
software engineering techniques such as meta-modeling. A compiler
is a complex piece of software that requires reliability and robustness
offered by Model-Driven Engineering (MDE).

2. Introduction of an architecture model for embedded multi-core plat-
forms dedicated to dynamic data�ow programs.

3. Extension of the compilation infrastructure with an entire co-design
�ow that targets embedded multi-core platforms based on our dedi-
cated architecture model.

This chapter is organized as follows. We start in Section 5.1 by describ-
ing how the compilation infrastructure proposed by Wipliez [177] can be
enhanced by MDE. Then, we introduce in Section 5.2 our architecture model
that aims to design embedded multi-core platforms dedicated to the execu-
tion of RVC-based data�ow programs. Finally, we present an extension of
the compilation infrastructure for speci�cally targeting our dedicated archi-
tecture model in Section 5.3.

5.1 enhanced dataflow -specific compilation infrastructure

Compilers and programming languages are the foundation of software en-
gineering which is now present in our whole society. In the last 50 years,

61

62 advanced development environment for dataflow programming

the �eld of compiling was focused on the translation of high-level language
programs into ef�cient machine code. However, the increasing complexity
of software and machines has raised new challenges such as parallel pro-
gramming or reliability of complex systems [96].

Starting from the initial work of Wipliez [177], we propose an enhanced
compilation infrastructure for data�ow programs that takes advantage of
meta-modeling and aspect-oriented programming. The contributions of this
section are:

• Building of the whole compiler infrastructure upon meta-tools.

• Maximizing of code reutilization thanks to the implementation of a
uni�ed graph API.

• Separation of data�ow and procedural concerns within our compila-
tion infrastructure.

• Formal speci�cation of our enhanced data�ow-speci�c Intermediate
representation (IR) by the way of meta-modeling.

Please notice that most of the implementation work associated with the
contributions described in this section has been made jointly with Matthieu
Wipliez.

5.1.1 Multi-Target Compilation Infrastructure

The compilation infrastructure for data�ow programs, included in Orcc toolset
[134], on which we have worked during this thesis is introduced by Fig-
ure 22. Started by Wipliez [177], this compilation infrastructure is a trans-
compiler, also called asource-to-source compiler, that basically translates data�ow
descriptions into more traditional source codes, instead of generating di-
rectly machine codes like many compilers. But, the compilation �ow stays
very similar to traditional compilers [16] and may be summed up by the
following three steps performed consecutively:

1. Front-end (orcc-fe): The input program, written in a textual language,
is parsed and translated into an Abstract Syntax Tree (AST). The AST

is then transformed into another IR that allows fast analysis and ad-
vanced optimizations using complex data-structure. During this step,
the front-end performs semantic validation, type inference, and expres-
sion evaluation.

2. Middle-end (orcc-core): Target-independent optimizations are repeat-
edly performed as transformations on the IR. Since IRs aim to make
easier optimizations, the same program can be successively described
with several IRs during its optimization.

3. Back-end (orcc-be): Target-speci�c optimizations are �nally performed
before the code generation, which translates the optimized IR into the
targeted source code. In fact, a DSL is often translated into general-
purpose programming languages to bene�t from the power of industrial-
level compilers. The interaction with target compilers is simpli�ed by
the generation of build scripts along with the generation of the source
code.

The IR is the key data structure of any compilation infrastructure in the
sense that analysis and optimizations are applied on it. Actually, one of the

5.1 enhanced dataflow- specific compilation infrastructure 63

������������������
�����������������	����

������������

�������������
�

�����������������

����������������

����������������

�����������
������������

����������������������

������������������

�������������������	�
��������	������������������������
�������������������	������������������������
��������������	����������������������

������������������	������
�	��������������

������ ������
��������

��������

��������������
�����������������

������������	�������

������������
�������
�	������������
���������������	������

��������������
�����������������

�����������	������������

�������������	��
���	��������������

�������������	��
���	���������	����

���������������
�
��������������

Figure 22: Multi-target trans-compilation infrastructure

shortcoming problems of compiler design is the increasing complexity of
the IRs since more and more information is required to perform advanced
optimizations [106]. Similarly to DSLs, domain-speci�c IRs address a part of
this problem by focusing on the speci�city of the application domain and,
additionally, by breaking down complex structure into smaller pieces.

In his thesis [177], Wipliez describes the implementation of an IR dedi-
cated to data�ow compilers and shows naturally that such a domain-speci�c
IR is well suited for performing advanced analysis and optimizations on
data�ow programs. Now, we show how modern software engineering tech-
niques, such as meta-modeling and aspect-oriented programming, can im-
prove the manipulation of this IR and the whole compilation �ow.

5.1.2 Model-driven Compilation Infrastructure

The use of meta-models and MDE technologies speeds up the software de-
velopment by automating time-consuming and error-prone tasks:

• Maintainability: The global homogeneity of the software is increased
thanks to the generative approach of the meta-tools.

• Documentation: Models are inherent source of documentation, equiv-
alent to UML.

������������������ �������������������	 �	�
���������������� �����������������������	 ��������������� ���������������
���	
�����������������	�
������������
�����
��������������������
�	���	�������������������
�	
�����
��������������
���������	 ������������������

�����������
�����������������������	����
�����������������������������	
������������� ����������
�������
��������

�!�������	��������������������
���������
���������	�"���	�����������
�����������	
�����������#����������
�!�������������������	�������$�	���$�������������������	
�������
��

���������
�%�����������������	���������������	
�
�������������	������������
�&���
��������������

������
������'�����'�����
�	���������
������
����������
��� ����������
�������������������	��������������

����������
���������
�������	������������
��������
�����������	�(���������"���������	
�
�������'������

������
����������������	�����
��������������

Figure 23: Compilation �ow based on meta-tools

Meta-modeling also offers many advantages for a compiler infrastructure
[76, 106]. As presented in Figure 23, the three consecutive steps of our com-
pilation �ow are built upon speci�c meta-tools that aim to solve their partic-
ular problematics:

64 advanced development environment for dataflow programming

orcc- fe has been implemented on top of Xtext [66], a framework dedi-
cated to the development of DSL that generates parser, linker and edi-
tor from the grammar of the language.

orcc- core is build upon our data�ow-speci�c IR, which has been mod-
eled with the Eclipse Modeling Framework (EMF) [160], an open-source
framework implementing the Object Management Group (OMG) spec-
i�cations. EMF offers many useful methods for manipulating a data
structure thanks to the containment relationship. EMF also offers the
automatic serialization of the IR allowing incremental compilation.

Additionally, the model describing the IR is annotated with a set of
constraints , expressed in Object Constraint Language (OCL), that guar-
antees its semantic validity. An OCL constraint may be an invariant
that must be valid between each transformation. An OCL constraint
may also be a post/pre condition that must be veri�ed before/after
the realization of an operation. Theses constraints are transformed au-
tomatically into the equivalent Java code.

orcc- be realizes the code generation using Xtend [65], which provides a
�exible template-based code generation approach that is accessible for
non-expert in compilation, thanks to a simpli�ed programming lan-
guage based on Java and fully integrated within Eclipse, while provid-
ing an ef�cient code generation.

In fact, the de�nition of models allows the developer to skip most of the
implementation details and to focus on the speci�cation. Additionally, the
modeling approach also forces the developer to deeply specify the model
without leaving out any details.

5.1.3 Uni�ed Graph Library

Most data structures in compilation are related to graph theory, this is es-
pecially true for the compilation of data�ow programs. Consequently, we
choose to develop a graph library containing a uni�ed model of graph (Fig-
ure 24) and the implementation of state-of-the-art algorithms to increase the
code reutilization and speed-up the development of new features.

Figure 24: Class diagram of Graph

Our model of graph, presented in Figure 24, is composed of three classes:

graph is the top-level class of the model. A Graph object contains a list
of vertices and a list of edges. Since data�ow graphs are naturally
hierarchical, the Graph class inherits from Vertex.

5.1 enhanced dataflow -specific compilation infrastructure 65

vertex is a class that describes one kind of element of a Graph object. A
vertex references a list of incoming and outgoing edges from which it
deduces a list of successorsand predecessors.

edge is a class that implements the directed edges of the graph. An edge
references itssourceand targetvertices.

The library implements a set of algorithms for searching in a graph fol-
lowing well-known strategies, such as Breadth-First Search and Depth-First
Search [175], for �nding strongly connected components, or additionally for
computing the dominator or the post-dominator of a given vertex.

5.1.4 Separation of Concerns

We have chosen to divide the IR into data�ow aspect and procedural as-
pect. Whereas data�ow modeling naturally separates networks from ac-
tors; the analysis and transformations performed on data�ow programs by
the compilers do not usually respect such a separation. On the one hand,
data�ow compilers can perform procedural analysis and transformation just
as general-purpose compilers [177,16]. On the other hand, compilers can re-
ally bene�t from the formalism upon data�ow MoCs by performing data�ow-
level analysis and transformation [179, 32, 105]. Thus, our data�ow-speci�c
IR is likewise divided in two distinct models:

• The low-level model that contains the classical procedural description
including the instructions, expressions, blocks or even the Control-
Flow Graph (CFG), and

• The high-level model that is related to the data�ow information, such
as the interconnection between the components or their production/-
consumption rates.

Moreover, such a separation of concerns within our IR makes easier its ma-
nipulation by the meta-tools, knowing that one of the major limitation of
MDE is the scalability of meta-tools [106], i.e. their ef�ciency on large mod-
els.

5.1.5 Procedural Aspect of the Intermediate Representation

The procedural aspect of our data�ow-speci�c IR describes the computa-
tion, in the sense of the computational step of the imperative programming
paradigm. This aspect is composed of the following classes:

procedure is the top-level class of the procedural level of our IR that cor-
responds to a piece of program (Figure 25). A procedure has a name
and is composed of an ordered set of blocks, and a set of localvariables
without the notion of the scope.

var is a class that implements the concept of variable (Figures 25 and 26),
i.e. the association of a storage location and an identi�er. A variable
has a name, a type and may be assignable. A variable refers to its
de�nitions as well as its utilizations. A variable may be local or global
according to its containment.

param / arg are two classes (Figure25) used to implement the parametriza-
tion of an object (procedures, actors, networks, etc). In fact, the parametriza-
tion is a useful mechanism to increase the re-usability within the code.

66 advanced development environment for dataflow programming

Figure 25: Class diagram related to Procedure

For instance, a parametrized actor may be more easily reused in sev-
eral descriptions.

use/ def are two classes that model respectively the utilizations and the
de�nitions of the variables (Figures 26 and 27). To do so, the two
classes refer to a unique variable. On the one hand, a def is created
every time an instruction sets a variable. On the other hand, a use
is created when the value of a variable is required by an instruction.
This kind of variable management is commonly used to make easier
the static analysis and transformations of procedural code. Def/use
are, for example, heavily used to convert a code into its Static Single
Assignment (SSA) form [16].

block is an abstract class that describes a common program structure (Fig-
ure 25). The blocks organize the sequences of instructions in respect to
the semantic of the program. There are three subclasses of Block:

• BlockBasic is the simplest structure that contains a list of ordered
instructions without branching.

• BlockIf describes conditional structures. Such a block contains an
expression, the condition, and two ordered lists of Block objects
(thenBlocksand elseBlocks) as well as a speci�c basic block, called
joinBlock, used by theSSA form.

• BlockWhile describes similarly loop structures.

cfg is a direct subclass of Graph that describes the control �ow within
a procedure (Figure 25). The vertices of the graph refer to the basic
blocks, and the edges of the graph describe the branching between the
blocks. Such a representation is useful to perform many static analysis
and code optimizations.

We have chosen to not directly use the graph as the structural repre-
sentation of the control-�ow of a procedure in our IR considering the
dif�culty to maintain the graph all along the compilation �ow. Con-
sequently, we have chosen to model the control �ow of a procedure
using the control blocks as well as the block hierarchy from which the
cfg may be directly deduced.

instruction is an abstract class that describes a set of statements that
can be performed within a procedure (Figure 26). The subclasses of
Instruction are:

5.1 enhanced dataflow- specific compilation infrastructure 67

• InstAssign that simply describes the assignment of an expression
to a local variable.

• InstLoad and InstStore that describe the accesses to variables that
require memory (i.e. state variables and arrays), and may refer to
an indexing expression in case of an array.

• InstCall and InstReturn that model function-speci�c instructions.

• InstPhi that is a special instruction required by the SSA form,
closely related to a conditional assignment.

Actually, the distinction between memory accesses (load/store) and
temporary assignments is very important in a trans-compiler due to
the variety of targets. For instance in hardware languages like VHDL,
the accesses to registers and Random Access Memory (RAM) are totally
different.

Figure 26: Class diagram related to Instruction

expression is an abstract class that models the evaluation of a combina-
tion of constants, variables, values, operators and functions (Figure 27).
The subclasses of Expression are:

• ExprVar that models the evaluation of a variable or a constant.
Such an expression contains ause that refers to the associated
variable/constant following the Use/Def mechanism.

• ExprInt, ExprString and so on that contain directly a value of the
corresponding type.

• ExprCall that models the evaluation of a function. Such an ex-
pression contains a list of argumentsthat are required to evaluate
the referenced procedure.

• ExprUnary and ExprBinary that model the evaluation of a con-
tained expression (respectively a combination of contained ex-
pressions) according to a contained operator.

type is the upper abstract class of our type system, which is limited to
compile-time type inference in order not to reduce the portability of
the applications [178]. Our type system is composed of 7 subclasses:

• TypeInt and TypeUint, both for the type of the integers.

• TypeBool for the booleans.

68 advanced development environment for dataflow programming

Figure 27: Class diagram related to Expression and Type

• TypeFloat for the �oating-points.

• TypeString for the sequence of characters.

• TypeList for the lists.

• TypeVoid for the procedures that do not return any value.

As opposed to general purpose IR, our data�ow-speci�c IR does not
provide a pointer type. In fact, we argue that the use of pointers is an
answer to the lack of functionality of the type system in the application
domain, which should not occur with well-designed domain-speci�c
IRs. In addition of being a well-known source of bug, the use of pointer
requires complex pointer analysis that can ultimately lead to the inef-
�ciency of the optimizations [97].

The procedural aspect of our IR is generic, which means that nothing
related to data�ow programming is included. But, the procedural aspect of
our IR is also restricted to our application domain, especially the type system.
All of this makes that this aspect of our IR can be considered as a subset of
general-purpose IRs used in industrial compilers. While general-purpose IRs,
such as the one used in Low Level Virtual Machine (LLVM) [116], mainly
inherit from compilation experiences, our IR bene�ts from both compilation
and MDE [106].

5.1.6 Data�ow Aspect of the Intermediate Representation

Applications that are developed using data�ow programming are composed
of additional pieces of information in comparison with classical program-
ming:

network is the top-level class of the data�ow level of our IR, which inher-
its directly from the Graph class (Figure 28). A networkhas anameand
contains two sets of ports, inputs and outputs. A network also contains
a set of connectionsand a set of vertices called children, that may be
constituted indifferently by Entity or Instance.

5.1 enhanced dataflow- specific compilation infrastructure 69

Figure 28: Class diagram related to Network

entity is a class that simply contains a set of input and output ports that
may be view as a superclass between Actor, Network and Instance. In
fact, an entity is used to make easier the instantiation of Actor and
Network.

connection is a class that inherits directly from Edge. A connectionmod-
els the communication channel between two entities of the network.
Additionally to its sourceand target, a connection refers to its source-
Port and targetPort, as well as itssize.

actor is a class that represents the basic component of a data�ow program
(Figure 29). An actorcontains two sets of ports, inputs and outputs, that
de�nes its interfaces. An actor also contains a set of procedures, a set
of variables called stateVars, and a set ofactionsordered according to
their priorities. An actor may also contains an fsm, used to schedule its
actions, and a set ofparametersto increase its re-usability.

Figure 29: Class diagram related to Actor

instance is a subclass of Vertex. Instance is useful to reference a single
entity, network or actor, several times in the same description without
duplicating it. An instance may refer a set of arguments if the refer-
enced entity is parametrized.

port is a class that implements the external interface of Entity, Actor or
Network. A port has anameand a speci�c type.

70 advanced development environment for dataflow programming

fsm is a direct subclass of Graph that implements a FSM by representing
states by vertices and transitions by edges. Here, an fsm describes, in
a practical manner, a partial order between the action executions. Us-
ing an FSM to describe the action scheduling is not only a practical
structure of the programming language, it allows a factorization of
the generated code as well.

action is a class that implements the �ring function. An action is com-
posed of two procedures: Its body that models the processing of the
action, i.e. the �ring function, and its schedulerthat describes its guard,
i.e. the �ring rule. An action also contains three patterns: An inputPat-
tern and an outputPattern that correspond to the token production/-
consumption of the action, as well as a peekPattern1 that corresponds
to the amount of tokens that has to be validated by the scheduler, i.e.
the guard.

pattern is a useful class to abstract the use of communication channel
inside the procedural code. In fact, a pattern describes a mapping be-
tween the input/output ports of an actor and the procedural variables
that will contain the consumed/produced/accessed tokens by an ac-
tion. A patternalso describes the amount of tokens that are concerned.

As a result, communication-speci�c functions are no longer required
in the procedural code, neither access functions (read,write and peek1)
nor conditional function (hasRoomsand hasTokens), so that the compiler
may perform procedural analysis and transformation without taking
into consideration the data�ow aspect.

Actually, the genericity of our IR makes it usable to describe most of the
data�ow MoCs (DPN, SDF, etc). This is put in evidenced by the fact that our IR

is the central data structure of two data�ow-based IDEs, Orcc (Section4.5.2)
and Syn�ow studio (Section 3.7), using different data�ow MoCs to target
different usages.

5.2 architecture model for dedicated embedded multi -core
platforms

After describing the global structure of our data�ow-based compiler, we fo-
cus on a particular target, the main subject of this thesis, that is the embed-
ded multi-core platforms. The development of a design �ow targeting such
platforms requires the de�nition of an architecture model that matches the
behavior of the targeted platform, while keeping a high-level of abstraction
and enough con�guration options to allow Design-Space Exploration (DSE).
Alternatively, architecture models can be presented as customizable multi-
core processor templates [100] that setup the main architectural aspects.

Considering the complexity of multi-core architectures, together with the
ef�ciency and the reliability required by embedded systems, we propose
to specialize our architecture model for the execution of dynamic data�ow
programs in order to take advantage of the knowledge inherent to our ap-
plication domain, similarly to DSL. This section makes the following contri-
butions:

• The introduction of Transport-Trigger Architecture (TTA) as the inner
architecture of the processors used to execute data�ow actors.

1 Peekingrefers the reading of a token without consumed it. Peekingis an operation required by
the DPN model to describe the �ring rules.

5.2 architecture model for dedicated embedded multi- core platforms 71

• A set of prede�ned con�gurations of the processors to simplify the
DSE.

• A data�ow-speci�c memory architecture in order to overcome the
memory walloften reached by data�ow programs.

5.2.1 Processor Architecture

The processor cores underlying our abstract platform is based on a VLIW -
style architecture known as TTA [55]. TTA was chosen for the following rea-
sons:

• Instruction-Level Parallelism: TTA processors are able to take advan-
tage of the only type of parallelism which is not inherent in data�ow
model. TTA processors resembleVLIW processors in the sense that they
fetch and execute multiple instructions each clock cycle. A major differ-
ence, however, is that TTA processors have only one instruction: move,
which simply transfers data from a processor internal place to another
one.

• Embedded processors: TTA processors are ideal for targeting embed-
ded systems. Corporal states that direct programming of the data
transports reduces the register �le traf�c when compared to VLIW [55],
but however makes the compiler design quite challenging, as it is the
compiler that schedules the data transports and makes sure con�icts
are avoided. Since the compiler makes these decisions at design time,
the run-time system is simpli�ed and hence there are savings on the
processor gate count and energy consumption.

• Flexible architecture: TTA processors are extremely con�gurable. The
designer can make the processor tiny and energy-ef�cient or, if needed,
increase the instruction-level parallelism of the processor. We present
4 prede�ned con�gurations in Table 5 that have been used during the
experiments.

As an example, Figure 30 presents a simple TTA-based processor com-
posed of two buses, two Arithmetic and Logic Units (ALUs), one Register
File (RF), one Load/Store Unit (LSU) (to manage RAM accesses) and one con-
trol unit connected to the Read-Only Memory (ROM) containing the instruc-
tions. Like most modern processors, TTA processors are based on theHarvard
architecture that physically separates storage and pathway for instructions
and data.

������ ������

���������	�

�������

������������

���������	�

�������

������������

�������
���������
��������

����������������
��������

�����������
������������

��������

�������
�����������
������������������
� �	��

Figure 30: A simple processor based on Transport-Trigger Architecture

72 advanced development environment for dataflow programming

5.2.2 Prede�ned Con�gurations of Processors

Table 5 presents 4 prede�ned con�gurations of TTA-based processors used
during our experiments (respectively Standard,Custom,Fastand Huge). The
con�gurations characterize internal aspects of the processors such as the
number of FUs, ALUs, multipliers and LSUs, the number of integer and boolean
RFsas well as the number of registers they contain, and the number of buses
that interconnect all together FUs and RFs. The connectivity of the intercon-
nection network is also characterized as Full or Custom. While a Full con-
nectivity does not limit the data movement between FUs and RFs, aCustom
connectivity avoids the decrease of the clock frequency when the complexity
of the interconnection network increases.

The �rst one, called Standard, is almost equivalent to aRISC processor: in-
side the TTA processor the interconnection network is composed of 3 buses
that can provide two operands to the FU at each clock cycle and move the
result when it is available. The 3 last con�gurations, Custom,Fastand Huge,
de�ne larger processors composed of several FUs and buses able to take ad-
vantage of the instruction-level parallelism of the application (like a VLIW

processor). Concerning the Huge con�guration, its characteristics are delib-
erately over-sized to acquire the maximal performance, so this con�guration
is only used in simulation purposes.

Processor Standard Custom Fast Huge

ALUs 1 2 3 12

Multipliers 1 1 1 8

LSUs 1+ 1+ 1+ 2+

Integer RFs (32 bits) 2x12 3x12 3x14 8x32

Boolean RFs (1 bit) 1x2 1x2 1x6 1x6

Buses 3 6 18 32

Connectivity Full Full Custom Full

Table 5: Comparison of 4 prede�ned processor con�gurations

The Fast con�guration, introduced in [71] and presented in Figure 31a,
provides clustered TTA-based processors that can reach high-frequency on
FPGA with large potential of parallel computing. Table 31b presents a com-
parison of a FastTTA-based processor with the well-known softcore architec-
tures Xilinx Micro-Blaze and Altera NIOS II.

5.2.3 Data�ow-speci�c Memory Architecture

Now, we introduce an hybrid memory architecture specially designed for
data�ow programs. To limit the traditional memory bottleneck, our architec-
ture model contains both shared and private memories, as shown in Figure
32, making the memory architecture a mixture of UMA and NORMA organiza-
tion (see Chapter 2 for the de�nitions). Thus, the processors (P 1 ; ...; Pk) have
their own private memories (M 1 ; ...; M k) used for executing their actors, but
the processors are also connected, through an interconnection network, to a
set of shared memories (S1 ; ...; Sn) devoted to inter-processors communica-
tions.

5.2 architecture model for dedicated embedded multi- core platforms 73

������ ������ ������ ������ ������ ���	
�
����

���	�
��������

���	
�
����

���	
�
���� ������

(a) Prede�ned processor con�guration built on top of a clustered interconnection network

FPGA Softcore FMax LUTs Reg

Xilinx Virtex 5 TTA 192 5218 2785

MB (3) 169 1537 1318

MB (5) 195 1889 1841

Altera Stratix II TTA 148 5024 3485

Nios 175 2322 1896

(b) Comparison with well-known softcore architectures (from [71])

Figure 31: Fast TTA-based processors target high clock-frequency implementa-
tion [71].

��������������������

���������	�

����������������

������������

����������������

�� �� �� �� ������

���� ���� ����

�������������������������������
��������������

�� �� �� �� ������

� �� � �� ������

�� ��

������ ��

� ��
��������������
���������
�������������	��
�������������	�����
����������������

��������������
�������������
�������������
�����������!�
�������"��� �

�������
�����	�	�
������������

�������������	��
�������
���#����������
������������

Figure 32: An hybrid memory architecture dedicated to DPN-based programs

Modeling multi-core platforms dedicated to the execution of DPN-based
programs [121] allows us to make the following assumptions:

74 advanced development environment for dataflow programming

• Actors can only communicate through communication channels. Thus,
shared memories do not need to store data apart from the content of
FIFO-based communication channels, implemented as circular buffers
that are detailed later in Section 6.2.

• The DPN model allows stateful actors. Thus, private memories may
have to store the current states of the actors that are assigned to the
processor to which they are related. Additionally, private memories
have to store the heap and the call stack used during the execution of
the actions just as traditional programs.

Furthermore, storing communication channels in shared memory increases
the �exibility of the design �ow. Knowing that a single memory component
can contain multiple channels, the compiler has to assign not only actors
to processors but also FIFO channels to memory components. Actually, FIFO

channels can be freely mapped to memory components since they are not
dependent from each other. But, some architectural constraints may have to
be considered, such as the topology of the interconnection network or the
size of the memory components.

5.3 dataflow compiler for embedded multi -core platforms

The dif�culty of ef�ciently programming embedded multi-core platforms,
as presented in Chapter 2, still makes the design process an open challenge.
This section presents an automated co-design �ow, designed from scratch
during this thesis, that intends to implement DPN-based programs onto ded-
icated embedded multi-core platforms. This co-design �ow has been used
to perform most of the experiments presented in the next chapters, making
it a key component of this thesis [5]. To summarize, the contributions of this
section are:

• The extension of our compilation infrastructure for embedded multi-
core platform by the interfacing with a co-design toolkit dedicated to
ASIP.

• The setup of an advanced simulation process that bene�ts from data�ow
modeling to facilitate the debugging and analysis of applications onto
embedded multi-core platforms.

This section is organized as follows: First, the global co-design �ow is
introduced; Then, the hardware design �ow that generates the HDL descrip-
tion of the platform is detailed; Next, the software compilation �ow that
generates the binaries for each processor is described; And, �nally, a de-
scription of the simulation infrastructure is given.

5.3.1 Multi-stage Co-design Flow

Like most of design approaches of embedded multi-core platforms, our de-
sign �ow follows the Y-chart [113] (Figure 33) that separates the speci�cation
of the application, the platform and the mapping. Such a separation of con-
cerns facilitates the design space exploration by varying some of the aspects
while �xing the other aspects. For example, the application can be paral-
lelized to partition its components more equitably without modifying the
platform con�guration.

5.3 dataflow compiler for embedded multi- core platforms 75

���������������������	
�
������������������	

���������������
�������������������������	

�����������	��
�������������������������	

���������������	����
���	������������

�����������	������������
��������������������	

Figure 33: Designing embedded multi-core platforms following the �exible Y-chart
approach [113]

The co-design �ow is implemented around two open-source projects known
as Orcc [134] and TTA-based Co-design Environment (TCE) [166]. In fact, Orcc

can be considered as a data�ow front-end for TCE, and inversely TCE can
be considered as a processor-speci�c back-end for Orcc. Orcc performs the
high-level stage of the design �ow and provides a functional simulator, and
both are entirely independent from the architecture of the processors. For
its part, TCE performs the low-level stage of the design �ow and provides
an instruction-set simulator.

�����������������	�
�������������������

����������������
���	�
���������
�����
�������	����������

����������������
���������������������������������

�����������
���������

����������������
������������

�����������
��

���������	��������

�����
��

������

����������

�������

�������
���������

���������������������������������

�����������
���������

������

�����������	��������

����������������
���������������

�����������	�����	����������

��������������
��
� ����������������	����������!�	

���������	�������������

��������������
��
�"�����#�������
�!

�$�%���������%������

��������������
��
�����&�����	

���������������������

��������������
�����������������
�������
�������
��

����������������

�������
����������
���
�������	���������
��������

�������	����������

�������	���'

�(�(�)�*
�����������+���,

�����������������
�
�������������������

����������������������	�
�������������������

��

��

��

������

��������
�����������
�����

���������

����������
�������	�����-�����	������������+������������

����������
�������	������������+������������

����������
�����
���������������.�%�

����������
�������	����������

�������-������	����������
�����
�	�������������

�"�����%�������	������������+����������

������������������
���������������
���
�����
��

�/���.�����������
�	���������	�����������%

Figure 34: Multi-stage co-design �ow

As shown in Figure 34, our co-design �ow is multi-stage. First, the data�ow-
speci�c stage (a) is implemented in Orcc, our data�ow compiler, and com-
posed of 5 different parts:

orcc- fe & orcc- core are the initial steps in our trans-compiler, performed
before all back-ends. The application description (provided in RVC-CAL

and XDF) is translated into our data�ow-speci�c IR, which is then ana-
lyzed and transformed to be �nally ready for the next steps, depend-
ing on the targeted platform.

76 advanced development environment for dataflow programming

orcc -tta is the high-level step of the design �ow. This step transforms
our data�ow-speci�c IR into a general-purpose IR (LLVM IR) that can be
understood by the target compiler. This step also generates XML-based
processor description �les, known as Architecture De�nition File (ADF)
[50], according to the initial speci�cation of the platform.

orcc -map is the process that assigns a processor to each actor. The ac-
tor mapping has been implemented independently from the compila-
tion step to make it usable at any stage of the design �ow (even at
run-time). The actor mapping is based on the heuristics described in
Chapter 7.

orcc -sim is a functional simulator that interprets our data�ow-speci�c IR.
Such a functional simulator enables a quick validation of the applica-
tion, without requiring any code generation or third-party tools. The
simulator can also produce useful pro�ling data such as the logs of
the FIFO channels or the execution trace.

Then, the processor-speci�c stage (b) is implemented in the TCE toolkit, and
composed of two parts:

ttanetgen is the low-level stage of the design �ow. This stage both trans-
forms the general-purpose IR into instructions that can be executed by
the targeted platform, and generates the HDL description of the whole
platform from its high-level description.

ttanetsim is an instruction-set simulator for TTA-based multi-core plat-
forms. ttanetsim can either simulate the execution of the whole plat-
form according to an input �le, or simulate a single processor in a
standalone fashion using the logs of FIFO channels previously recorded
with orcc-sim.

And �nally, the hardware-speci�c stage (c) is performed by third-party tools
but automatized by a set of scripts and project �les generated by the previ-
ous stage:

logic synthesis is the last step of the design �ow. In fact, the logic syn-
thesis aims either the generation of an FPGA bitstream or the creation
of an ASIC.

logic simulation is the lower level of simulation: It can be performed
at varying degrees of physical abstraction (transistor level, gate level,
or register-transfer level). Similarly to cycle-accurate simulation, the
logic simulation can be performed either on the whole platform using
an input �le, or on a standalone processor using the FIFO channel logs.

The development of this data�ow-based co-design �ow has involved some
contributions in both tools (Figure 34).

5.3.2 Hardware Synthesis

The hardware synthesis simply transforms the speci�cation of the platform
into a synthesizable HDL description of multi-core systems. To this end, the
sizes of the memories have to be estimated in order to correctly instanti-
ate the corresponding RAM blocks. Since our architecture model is built on
memory-based interconnection, there are two types of memory:

5.3 dataflow compiler for embedded multi- core platforms 77

• The shared memories that interconnect the processors. A shared mem-
ory simply contains the communication channels that connect two ac-
tors mapped onto two different processors, i.e. the buffers and the
read/write pointers.

• The local memories that are connected to their own processor. A local
memory may contain the state of the actors that are mapped on, the
buffer of the internal communication channels, as well as the stack and
the heap.

Then, the HDL description of each processor is generated from its high-
level description by the TCE using a pre-existing database of standard hard-
ware components.

5.3.3 Software Synthesis

The software synthesis compiles data�ow-based programs into instruction
codes that are executable on the associated embedded multi-core platforms.
In contrast with the hardware synthesis, the �ow can really be decomposed
in two successive steps (Figure35):

1. A �rst step that translates the whole data�ow description into a proce-
dural IR, low-level but still target independent, which has been devel-
oped for the LLVM project [116]. This step is performed by our data�ow
compiler, described in Section 5.1. In fact, the compiler partitions the
data�ow application over the platform according to the mapping spec-
i�cation, generating a separated program for each processor.

2. Then, a second step that successively compiles the program of each
processor from LLVM IR into processor instructions thanks to the pro-
cessor description: This makes the whole application executable on
the embedded multi-core platform. This step is performed by the com-
piler of the targeted processor, thus preventing it from being platform
agnostic.

���������������������	�
�������������������
�������������������	�
�����������
��������������������������
������������������������������
�������
�����
������������

�������������������	�
�������������������

���
������������
� ���������������������������	�
�����������
�!�
���������
����������������������

�"���"���� �"�����
��

����������� �! �#�#�$�%��� �! �&�������
��������
�'����������

Figure 35: Two-step compilation �ow

The LLVM IR provides �exibility and type safety, low-level operations, and
also permits the proper representation of most of the high-level program-
ming languages. Additionally, the IR respects the SSA and Three-Address
Code (3AC) properties to improve the results of code analysis and optimiza-
tions by simplifying the properties of variables.

Our data�ow-speci�c IR is translated into an equivalent procedural IR in
order to be compiled for the processor. To do so, we perform several sophis-
ticated transformations that are explained below:

1. Communication: The operations related to FIFO channels (read,write,
peek) are instantiated to the procedural IR. More details about our im-
plementation of communications are given in Chapter 6.

78 advanced development environment for dataflow programming

2. Low-level form: A total transformation procedure enables us to make
LLVM IR representations out of our data�ow-speci�c IR by respecting
properties such as SSA and 3AC. This procedure consists of variable
indexing, �-function addition and splitting of complex expressions to
multiple primitive instructions.

3. Correct handling of word-lengths: Our data�ow-speci�c IR allows the
designer to express bit-accurately the word-length of each variable and
communication channel. The respective property is also found in the
LLVM IR. However, when a computation has to be performed with two
variables of different word-lengths, the correct result must be ensured
by the use of an explicit castinstruction.

4. Action scheduler : In our data�ow-speci�c IR, the scheduling of actions
is expressed by the use of anFSM and priorities between the actions.
We need to express the action scheduler in a procedural way to make
it understandable by the compiler. More details about our implemen-
tation of action scheduling are given in Chapter 6.

After applying these fundamental transformations, the resulting LLVM IR

representation is suitable �rst for the target-independent powerful optimiza-
tions of the LLVM compiler, and then for the speci�c optimizations of the TTA

compiler (included in ttanetgenin Figure 34).

5.3.4 Simulation Infrastructure

Much of the dif�culties of adopting embedded multi-core platforms is due
to the following reasons:

• Debugging of parallel hardware is very dif�cult when compared to
debugging of software. Execution tracing of hardware blocks is very
limited when compared to the tracing of software executions.

• Performance analysis at platform level is very dif�cult. Based on the
performance of individual blocks, it is impossible to tell anything
about the performance of the whole platform.

• System integration for embedded multi-core platforms is a slow and
error-prone process.

Our co-design �ow tackles these dif�culties by offering an advanced sim-
ulation process that eases the debugging and the pro�ling of the application
during its integration on the platform. In fact, we take advantage of data�ow
properties, such as the strong encapsulation of components and the exposed
communications, to simulate by piecesthe application, i.e. simulate each ac-
tor in a standalone fashion.

functional simulation The functional validation can be performed
directly from the development environment (i.e. Eclipse) using orcc-simthat
simply interprets our data�ow-speci�c IR generated by the front-end. Know-
ing that the interpretation of complex application can be time-consuming,
the functional validation can also be performed by compiling the applica-
tion for the host platform (i.e. developer's computer) using orcc-cin order
to allow fast executions. Actually, the developer can easily validate his ap-
plication with both methods by displaying texts, images or videos.

5.3 dataflow compiler for embedded multi- core platforms 79

Apart from the validation, this early simulation phase can be used to
record the logs of the FIFO channels, i.e. the value of the tokens that go
through the FIFO channels. Thus, the actors composing the application can
be executed independently from each other in latter simulation phases. The
simulator can also build execution traces [37], that are used by tools like
Turnus to explore the application design, or to pro�le the communication
rates within the application.

platform simulation In a latter phase of development, the developer
can simulate the application execution on the targeted platform to get pre-
cise pro�ling information. Our co-design �ow offers a two-level simulation
process that can be used with the instruction-set simulator included in TCE,
known as ttanetsim[99], and with any logic simulator (e.g. Mentor Graphics
ModelSim):

• Platform level: The whole design is simulated to check the functional-
ity of the application including the communications between the pro-
cessors. This enables us to evaluate the global performance of the sys-
tem including the synchronization between the processors.

• Processor level: Each processor can be tested independently from the
others, as presented in Figure36, using the logs of the FIFO channel that
have been previously produced. To do so, the FIFO simulators (� � � ...� �)
read the log �les and write the shared memories (� � � ...� �), supplying
the simulated processor (� �) just as incoming communications from
other processors. And, inversely, the outgoing communication data
produced by the simulated processor (� �) are automatically consumed
by the FIFO simulators (� � � ...� �) and compared to reference output
data.

��������
�����������	�
�������

��������
������������������

������������������
����������������

���������������	
������������

�������������	
���������������

�� �� �� �� ������

������ ��

�� �� �� �� ������

�� ��

�� ��

Figure 36: Processor simulation in standalone fashion by way of FIFO simulators

As a matter of fact, the simulation speed is directly related to the simu-
lation precision: The more precisely a simulator describes the platform, the
slower it is. For instance, the instruction-set simulator is about two hundreds
time faster than an RTL simulator.

80 advanced development environment for dataflow programming

5.4 conclusion

This chapter has presented a development environment built upon the data�ow
programming paradigm. This development environment, initially developed
by Wipliez [177], has served as an experimental area for studying the com-
pilation of data�ow programs over multiple platforms. We have shown
how modern software engineering techniques such as meta-modeling can
be used to improve our compilation infrastructure in terms of robustness,
ef�ciency and architecture. Starting from the global structure of the trans-
compiler, we have also detailed an entire process [5] to design embedded
multi-core platforms dedicated to data�ow programs from a �exible archi-
tecture model.

We are now going to focus on the execution of dynamic data�ow pro-
grams on multi-core platform, starting by the description of an optimized
software implementation (Chapter 6) and following by the description of
actor mapping/scheduling techniques that can handle the unpredictable be-
havior of dynamic data�ow programs (Chapter 7). We are also going to
study the effectiveness of our contributions on both modern desktop plat-
forms and embedded platforms based on our architecture model.

6O P T I M I Z E D S O F T WA R E I M P L E M E N TAT I O N O F
D Y N A M I C D ATA F L O W P R O G R A M S

Now you're coming back to Earth,
and things are getting more and more dynamic.

— Duane G. Carey, NASA astronaut, 2002

The main challenge that dynamic data�ow programs have to face is the
demonstration of ef�cient implementations that can achieve performance
constraints imposed by modern applications. For instance, video decoders
have to provide real-time frame-rates for high-de�nition video sequences,
from 25 FPS for 720p format on mobile terminals to 50 FPS at8K format
on cinema screens. While the ef�ciency of traditional language programs
is the result of 50 years of work on compilers to exploit memory locality,
abandoning memory-oriented programming in favor of data�ow program-
ming requires the development of new compilation techniques to fully ben-
e�t from the processor architecture. Moreover, the attractiveness of more
restricted data�ow models has often de�ected attention from DPN-based
programming.

This chapter describes an optimized software implementation of dynamic
data�ow programs following the DPN model. Our implementation targets
especially the ef�cient execution of video decoders onto embedded multi-
core platforms, but most of the principles can be applied to all DPN-based
programs and multi-core platforms. The main contributions of this chapter
are:

1. Software implementation of dynamic data�ow programs including op-
timized communications and scheduling. Please notice our implemen-
tation has been integrated in the co-design �ow we have introduced
in Chapter 5, so all the experiments presented below are supported by
our compilation �ow.

2. Analysis of our software implementation onto data�ow-based video
decoders that have been developed within the RVC framework. Let
us point out that real-time decoding frame-rates of high de�nition
video sequences are achieved on desktop processors using theRVC

descriptions of several video decoders, including a description of the
emerging HEVC standard which is still being developed.

This chapter is organized as follows. We start by introducing the imple-
mentation of dynamic data�ow programs. Then, we present our optimized
implementation of DPN-based programs, starting by the communications in
Section 6.2, then the scheduling in Section 6.3. Finally, we evaluate our im-
plementation onto RVC-based video decoders in Section6.4

6.1 implementation of dataflow process networks

One of the fundamental interests of dynamic data�ow programming for de-
signing embedded software is the formalismprovided by the underlying MoC.

81

82 optimized software implementation of dynamic dataflow programs

In fact, such a formalism provides a basis for analysis of system properties,
like reliability and ef�ciency, which are central in embedded systems design.
Thus, implementing DPN-based programs onto programmable processors
requires the translation of the semantic rules of the DPN MoC [121] into im-
perative constructions, which can be executed by our processors, respectful
of these rules.

In general, the implementation of dynamic data�ow programs faces two
problematics to achieve performance requirements:

• Communication is the major bottleneck of data�ow programs. Since
the actors can only communicate through the FIFO channels, the execu-
tion requires a massive amount of data movements that can ultimately
lead to poor performance.

• Scheduling is a well-known bottleneck of dynamic data�ow programs.
In fact, the expressive power offered by the DPN models requires a
large number of control structures. This is supported by the variety
of syntactic constructions available in CAL [67] that control the inner
execution of an actor (FSM, priority, pattern, guard, untagged actions)
as presented in Chapter 4.

These factors are directly impacted by the application granularity, de-
�ned in Chapter 3 as the ratio of computation to the amount of commu-
nication [156]. In the literature, the applications are informally classi�ed in
�ne-grain, average-grain and coarse-grain families. On the basis of this clas-
si�cation, we de�ne video decoders as �ne-grain when they process each
pixel at a time, as average grain when they process blocks, and as coarse-
grain when they process frames.

6.2 optimized communications

In theory the DPN model de�nes FIFO-based channels with unbounded ca-
pacity [121], in practice our FIFO-based channels are bounded to limit mem-
ory usage and avoid the overhead of dynamic memory allocation. We as-
sume here that the size of the channel is provided by the application devel-
oper, knowing that some works target their optimization by way of critical
path analysis [38] (See Chapter 3). Actually, bounded FIFO channels have
been studied extensively since the emergence of the �rst wait-free algo-
rithm presented by Lamport in the late 70s, but communicational channels
of DPN-based programs have speci�cities that make their implementation
quite challenging.

6.2.1 To Be or Not To Be FIFO Channels

As presented in Chapter 3, the DPN model de�nes action �ring as an indivis-
ible quantum of execution. Therefore, an action is �red if and only if enough
tokens are available in the input channels. Thus, the implementation of FIFO

channels for DPN-based programs requires the ability to check their state, i.e.
the number of tokens available, during the execution.

Additionally, the DPN model introduces the concept of �ring rules to or-
der the execution of the �ring functions, namely the actions. An action can
be �red if and only if its �ring rule is valid, and this validity depends on
the internal state of the actor and the value of incoming data. Therefore,
DPN-based actors peektokens from input channels, i.e. they check values of

6.2 optimized communications 83

incoming tokens without consuming them, to evaluate action �reability and
thus break FIFO principle.

Since the FIFO principle imposes that the tokens are accessed in order, a
respectful implementation would be a buffering mechanism that conserves
the tokens until they are truly consumed by the actor. In this regards, Jerbi
et al. have proposed an automatic transformation using buffering to remove
peekoperations while respecting the DPN model [105, 104]. Their transforma-
tion aims to facilitate the portability over hardware platforms, but ultimately
increases the memory usage as well as the scheduling overhead. Hardware
FIFO being traditionally implemented using acknowledgments, hardware im-
plementations [103, 157,158] have extensively performed the peekby reading
the token value without acknowledgment. While this approach is very sim-
ple and ef�cient, the peekstays however limited to the �rst token of the FIFO

channel and thus reduces the support of dynamic data�ow programs.

6.2.2 Software Circular Buffer

���������������������	���

���������������������������

����������������������

����������
������������

�������	������ �������	������

��������������������

��������

Figure 37: Concurrency-safe implementation of FIFO channels in shared-memory

1 struct fifo _s {

2 const int SIZE; / * FIFO size * /

3 unsigned int rdInd; / * Read index * /

4 unsigned int wrInd; / * Write index * /

5 tokenType * content; / * Data buffer * /

6 };

Listing 9: Software data structure of FIFO channels

In software, FIFO channels are traditionally implemented by a circular
buffer allocated in shared memory (Figure 37 and Listing 9). Readand write
are then achieved by accessing the buffer according to read and write in-
dexes that are updated afterwards (Listing 10). Moreover, the comparison of
the indexes is suf�cient to know the state of the FIFO channel. Similarly to
hardware implementations, a peekis a readwithout the update of the read
index, but any token can be peeked thanks to the full accessibility of the
shared memory.

84 optimized software implementation of dynamic dataflow programs

1 void write(Fifo * fifo, tokenType * buff, int n) {

2 for(int i=0; i<n, i++) {

3 fifo->content[fifo->wrInd] = buff[i];

4 fifo->wrInd++

5 if(fifo->wrInd == fifo->SIZE) {

6 fifo->wrInd = 0;

7 }

8 }

9 }

10

11 void read(Fifo * fifo, tokenType * buff, int n) {

12 for(int i=0; i<n, i++) {

13 buff[i] = fifo->content[fifo->rdInd];

14 fifo->rdInd++

15 if(fifo->rdInd == fifo->SIZE) {

16 fifo->rdInd = 0;

17 }

18 }

19 }

Listing 10: FIFO accesses based on circular buffer

6.2.3 Control-Free Communications

Using circular buffer to implement FIFO channels avoids side shuf�es of
data after each reading, but implies an advanced management of memory
indexes that can ultimately lead to poor performance. For instance, the up-
date of the indexes may require checking if the end of the buffer is reached
to go back to the beginning.

Avoiding checks on the position of the indexes is however possible us-
ing absolute indexes, as proposed by Wipliez, with the cost of additional
modulo operations. Thus, performing readand write increases the indexes
in�nitely until the over�ow of the variables.

1 void write(Fifo * fifo, tokenType * buff, int n) {

2 for(int i=0; i<n, i++) {

3 fifo->content[fifo->wrInd % fifo->SIZE] = buff[i];

4 fifo->wrInd++

5 }

6 }

7

8 void read(Fifo * fifo, tokenType * buff, int n) {

9 for(int i=0; i<n, i++) {

10 buff[i] = fifo->content[fifo->rdInd % fifo->SIZE];

11 fifo->rdInd++

12 }

13 }

Listing 11: Control-free FIFO accesses

Since computing the modulo is costly on most processor architectures, it
is translated to a simple right shift by forcing the size of the buffer to a
power of two:

8 fifo i 2 FIFO; jchan i j = 2n with n 2 N (10)

6.2 optimized communications 85

Paradoxically, such a constraint on the size of the communication channels
does not have a large impact on the memory usage, especially compared to
the large needs of video decoders. Indeed, the initial sizes of our FIFO chan-
nels being reasonable, the round-up to the next power of two is relatively
small.

6.2.4 Multi-rate Communications

One of the high-level features of CAL is its ability to describe multi-tokens
actions [67], i.e. actions reading and writing pools of data at each �ring,
such as the transposition of 4x4 block presented in Listing 12 that reads and
writes 16 tokens by �ring.

1 transp: action Src:[src] repeat 16 ==> Dst: [dst] repeat 16

2 var

3 int(size =16) dst[16] =

4 [src[4 * column + row] :

5 for int row in 0 .. 3, for int column in 0 .. 3

6]

7 end

Listing 12: Transposition of a 4x4 block in RVC-CAL

Following this semantic, Wipliez has proposed an implementation of DPN-
based programs for GPP [177]. Considering an action, such as the one de-
scribed in Listing 12, the data�ow description is translated into the C code
presented in Listing 13, which is compilable with most of C compilers. In
fact, the function implementing the action body is decomposed into 3 steps
as follows:

1. Reading: Incoming tokens are read in order from the input FIFO chan-
nels and stored into the local variables referenced by the input pattern.
E.g., in Listing 12, 16 tokens are read from the port Src and stored in
the local array src.

2. Processing: The action is processed, as de�ned in its CAL description,
using the local variables referenced into the input and output patterns
as interfaces. As a consequence, the processing of data is not necessar-
ily described in order.

3. Writing: Outgoing tokens are written in order from local variables ref-
erenced by the output pattern into the output FIFO channels. E.g., in
Listing 12, 16 tokens are written successively from the local array dst

to the port Dst.

While this implementation stays respectful of the FIFO principle, with the
exception of the peeking, it also involves two additional copies between the
circular buffers and the local variables.

86 optimized software implementation of dynamic dataflow programs

1 static void transp() {

2 i16 local _Src[16], local _Dst[16];

3 i32 row, col;

4

5 // Read the input tokens in order

6 read(fifo _Src, local _Src, 16)

7

8 // Transpose the tokens

9 row = 0;

10 while (row <= 3) {

11 col = 0;

12 while (col <= 3) {

13 local _Dst[row * 4 + col] = local _Src[4 * col + row];

14 col = col + 1;

15 }

16 row = row + 1;

17 }

18

19 // Write the output tokens in order

20 write(fifo _Dst, local _Dst, 16);

21 }

Listing 13: Transposition of a 4x4 block generated in C

6.2.5 Copy-Free Communications

Since our FIFO channels are implemented in shared memory without access
restriction, we can remove the additional copies to local buffers by accessing
directly to the content of the FIFO channels within the processing of the
action. So, accesses to input and output variables, such assrc and dst, are
replaced by direct accesses toFIFO channels, such asSrc and Dst respectively.
Unfortunately, race conditions, i.e. synchronization issues, can occur when
the action processing does not ensure that the FIFO accesses are performed
in order (such as the accesses tosrc).

But, the DPN model de�nes an action �ring as a quantum of execution
[121], in other words an action �ring is an atomic step that cannot be inter-
rupted. Thus, the FIFO indexes can be updated just once at the end of the
action without changing the semantic of the application, such as presented
in Listing 14. Then, the implementation stays respectful of the FIFO princi-
ple. Indeed, other processors cannot access theFIFO rooms involved by this
processing since theFIFO indexes are not updated until the action is entirely
processed.

To summarize, the three �rst steps of action �ring (Reading, processing,
and writing) can be merged together, reducing the memory footprint and
the number of instructions to implement the action, as long as the FIFO

indexes are updated after the action processing, and thus let the other actors
using newly produced data and newly released rooms.

6.2 optimized communications 87

1 static void transp() {

2 i32 ind _Src, ind _Dst;

3 i32 row, i32 col;

4

5 // Transpose the tokens directly from/to the FIFO channels

6 row = 0;

7 while (row <= 3) {

8 col = 0;

9 while (col <= 3) {

10 ind _Src = (fifo _Src->rdInd + (4 * col + row)) % fifo _Src->

SIZE;

11 ind _Dst = (fifo _Dst->wrInd + (row * 4 + col)) % fifo _Dst->

SIZE;

12 fifo _Dst->content[ind _Dst] = fifo _Src->content[ind _Src];

13 col = col + 1;

14 }

15 row = row + 1;

16 }

17

18 // Update indexes

19 fifo _Src->rdInd += 16;

20 fifo _Dst->wrInd += 16;

21 }

Listing 14: Copy-free execution

Furthermore, this optimization is highly simpli�ed by the Pattern class
composing our data�ow IR which links together variables and ports (Section
5.1.6of Chapter 5). Therefore, when the compiler meets a variable access in
an action body (load or store), it just has to check if the given variable is
contained in one of the patterns associated to the action in order to generate
the access accordingly. For instance in Listing 12, the variable src is associ-
ated to the input port Src by the input pattern of the action, so when the
compiler meets an access to this variable src, it can translate it to a direct
access to theFIFO channel fifo _Src->content.

6.2.6 Ef�cient Broadcasting of Communications

Now, our data�ow applications also support broadcasting communication
following the 1-producer/N-consumersscheme. Thus, actors can produce data
that are transmitted simultaneously to multiple target actors through a sin-
gle port. In fact, the implementation of the broadcasting is another critical
point of communication in dynamic data�ow programs, especially for our
video decoding applications that have an extensive use of broadcasting.

As a result, the implementation of our communication channels has to be
able to ef�ciently broadcast the data over several actors, and, to our knowl-
edge, broadcasting tokens can be implemented in three ways that are illus-
trated by Figure 38:

1. Adding a speci�c actor in charge of copying the data produced to all
targeted actors (Figure 38a), as described by Wipliez in his thesis [177]:
While this implementation is �exible, adding actors complicates the
actor scheduling and involves extra data movement.

88 optimized software implementation of dynamic dataflow programs

2. Asking the source actor to broadcast itself the tokens into multiple
communication channels (Figure 38b): While the implementation is
natural, the data are copied for each target.

3. Using circular buffers with multiple read indexes (Figure 38c), the
smallest one being the global index: While this implementation re-
duces the data movements to maximum, the managing of the FIFO

channels is complicated and all the FIFO channels need to be mapped
on the same address space.

��������������

��������������

��������������

�������	�
���	����
�	��������

(a) Dedicated actor

���������������������	

�
��������
�����������

��������������

��������������

�������������������	

��������������

���������������������	

�
��������
�����������

�������������������	

(b) From source actor

��������������������

�	�
������������������

��������
����������

���������
���� ���������
����

��������������������

���������
����

(c) Extended circular buffer

Figure 38: Three way of broadcasting communications

Knowing the memory architecture of our architecture model (Section 5.2
on Chapter 5), the implementation of the broadcast depends on the reparti-
tion of the actor over the platform. If all target actors are mapped together
on the same processor, the broadcasting can be performed using multiple
read indexes. On the contrary, when the target actors are mapped to dif-
ferent processors, then the broadcast is performed directly by the source in
order to duplicate the data over several address spaces.

6.3 optimized scheduling

In Chapter 3, we have stated that one essential bene�t of the DPN model
lies in its strong expressive power, so as to simplify algorithm implemen-
tation for programmers. This expressive power includes: the ability to de-
scribe data-dependent computations through token production/consump-
tion, where production/consumption may vary according to values of to-
kens; the ability to produce time-dependent behaviors that rely on the time
at which tokens are available on the input of an actor; and, the ability to ex-
press non-determinism, which can be used to construct actors that respond
to unpredictable sequences of tokens.

However, when dealing with the scalability of this model, we have stated
that this strong expressive power has a bad in�uence on the ef�ciency of its

6.3 optimized scheduling 89

implementation, as several operations may be scheduled at run-time on a
single processing unit. The overhead caused by a scheduling strategy, along
with its variable chance of success between test/validation of a �ring rule for
each operation, can lead to inef�cient implementation of data�ow programs
or to unsteady performance on their executions.

6.3.1 Scheduling Scheduling

As de�ned by Lee and Parks [121], the execution of a DPN-based actor is
modeled by the repeated evaluation of the �ring rules that are, in case of
a success, followed by the �ring of the associated action. This process is
usually de�ned as the action scheduling.

Apart from this internal scheduling, the execution of a DPN program in a
concurrent environment requires actor scheduling. Section 3.6 of Chapter 3
has presented three models which can execute several actors on a single pro-
cessing unit, and especially two scheduling strategies, known as round-robin
and data-driven / demand-driven, dedicated toDPN-based actors. Both schedul-
ing strategies assume that an actor should not be �red inde�nitely without
external contribution (other actors that consume/produce the tokens). So,
the actor currently scheduled will be blocked at some point, with no chance
to be �red anymore, and will exit from the action scheduler to let the actor
scheduler decide the next actor to schedule.

To conclude, the execution of DPN-based programs involves both actor
schedulingand action scheduling(Figure 39). While they are two distinct lev-
els of scheduling, they are intimately related since the success of the action
scheduling within an actor is directly dependent on the production/con-
sumption performed by its predecessors/successors.

�������� �������� �������� �������� �������� �������� �������� �������� ��������

������������������

�	���
����

�	���
�����

��������������
�����	�
������
��

����������
�����	�
������
��

��������������
�����	�
������
��

��������������
�����	�
������
��

Figure 39: Hierarchical scheduling

6.3.2 Action Scheduling

As we have seen before, the action scheduler evaluates the �ring rules so
as to determine the next action to �re. In fact, the �ring rules are evaluated
successively according to the partial orderde�ned within the actor (priorities
and FSM). Thus, the action scheduler can be implemented by a simple func-
tion that evaluates the �ring rules in order [177] such as presented in Listing
15.

In theory, the scheduler evaluates only two conditions to determine the
�reability of an action: the input pattern, the amount of tokens required in
the input channel, and the guard, the potential condition on the values of
tokens and/or state variables.

90 optimized software implementation of dynamic dataflow programs

In practice, the scheduler has also to evaluate the output patternso as to
ensure that enough rooms are available in the output channels to allow the
�ring of the action without blocking. While the validation of the output pat-
tern is not required by the DPN model, it is necessary when several actors are
executed concurrently on the same processor. Indeed, waiting for the avail-
ability of an output channel, using blocking writes for instance, inevitably
leads to a deadlock if the target of the channel, the consumer, is mapped to
the same processing unit.

1 void Transpose4x4 _0_scheduler() {

2

3 while (1) {

4 if (hasTokens(fifo _Src, 16) && isSchedulable _untagged _0) {

5 if (hasRooms(fifo _Dst, 16)) {

6 // Return back to the actor scheduler

7 goto finished;

8 }

9 transp(); // Fire the action

10 } else {

11 // Try to fire the next action, but no others

12 // Return back to the actor scheduler

13 goto finished;

14 }

15 }

16

17 finished:

18 return ;

19 }

Listing 15: Action scheduler

6.3.3 Actor Machine

The large number of tests involved in actor execution so as to evaluate the
�ring rules, along with their unpredictable chance of success, can ultimately
lead to inef�cient implementation of DPN-based actors. Thus, a different ap-
proach, introduced by Janneck and Cedersjö, tries to reduce the number of
tests performed during the evaluation of the �ring rules using a new execu-
tion model, called actor machine[101, 46], that also considers the evaluation
results of previous �ring rules.

Actor machine deals with the memorization of the test results involved
in the validation of previous �ring rules to limit their reproduction. For
instance, let two �ring rules Ri and Rj tested successively such asRi =
[Pi;1 ; Pi;2] and Rj = [Pj;1 ; Pj;2] with Pi;1 = Pj;1 = [�; �]; if Ri is evaluated
false such as Ri = [true; false] then Pj;1 could be already known valid
during the evaluation of Rj and the evaluation of Pj;2 should be suf�cient.
To do so, the evaluations of previous patterns are preserved by the use of
an automaton mechanism. Several connected actor machines can also be
composed in order to increase the potential reduction [101].

On the one hand, the scheduling of an actor machine could be more ef-
�cient compared to the traditional �ring model thanks to the reduction of
the number of tests performed. On the other hand, the translation to the ac-
tor machine execution model induces an explosion of the number of states
in the scheduling algorithm due to the need of memorization. Moreover,
a circular buffer implementation of the communication channel allows a

6.3 optimized scheduling 91

similar test reduction by means of compiler optimization. Indeed, common
sub-expression elimination can search for identical patterns in �ring rules
evaluated successively, and can replace them with a single variable holding
the result of their evaluation.

6.3.4 Quasi-Static Scheduling

The challenge when optimizing the execution of a data�ow description is to
conserve the strong expressive power of DPN while reducing the overhead
caused by its required run-time scheduling. Quasi-static scheduling intends
to make scheduling decisions as much as possible at compile-time by deter-
mining all static behaviors and by keeping only the necessary decision for
run-time. The literature has introduced a large panel of methodologies to
perform quasi-static scheduling of dynamic data�ow programs in different
manners [93, 90, 69, 70, 32, 33, 34].

Some of them try to prune all unreachable execution paths to remove all
unnecessary tests using code instrumentation [32, 33, 34] or model check-
ing [69, 70] to determine the possible executions. However, both of them
are limited by their need of input data to perform their analysis. Such a
requirement prevents the full support of all possible execution paths.

Figure 40: Quasi-static scheduling using actor clustering

Another approach, based on the classi�cation results, tries to reduce the
number of actors that are required to be scheduled at run-time, by clustering
network regions that have a locally static behavior [93, 90]. We mean by one
locally static region a set of connected actors in the description that have
a �ring order we can determine statically, regardless the data stored in the
FIFO channels of the description. The actor clustering approach is based on
three existing algorithms that are applied sequentially as follows:

1. The actors with predictable behaviors presented in the data�ow de-
scription are detected using actor classi�cation as described in Section
3.5.1of Chapter 3.

2. Predictable actors connected to one another are clustered into a single
node, called composite node, to obtain a valid sequence of �ring in it that
can be determined at compile-time. As such, an essential condition
to set a composite node is to determine whether such a sequence of
�ring is possible, the composition theoremdescribed by Pino [144]. The
resulting cluster becomes a composite nodein the graph of the data�ow
description.

3. Actors grouped in a composite node are scheduled at compile-time
using the Single-Appearance Scheduling (SAS) strategy [131], the opti-

92 optimized software implementation of dynamic dataflow programs

mum static scheduling strategy for code minimization where all repe-
titions of a same actor can be found side by side. The other remaining
actors, along with the resulting composite nodes, are scheduled at run-
time.

The methodology is illustrated by the Figure 40 on a data�ow example
containing 5 actors. Each actor is �rstly classi�ed to determine, if possible,
its production/consumption rates in order to detect the existing static region
that can �nally be scheduled.

6.4 study of rvc -based video decoders

Chapter 3 has introduced the performance of the implementation as a key
point of the widespread adoption of dynamic data�ow programming. We
have also claimed that the two main problematics of software implemen-
tation to achieve the expected performance is the communication and the
scheduling.

Now, this section focuses on the implementation of our RVC-based video
decoders, because understanding the application is the key to getting the
most out of an embedded system [182]. Actually, the identi�cation of the ap-
plication characteristics enables the specialization of the system to perform
powerful optimizations, this is obviously the main interest of application-
speci�c and domain-speci�c platforms.

6.4.1 Experimental setup

In order to study the implementation on both desktop and embedded pro-
cessors, we de�ne two different con�gurations of our experimental setup as
follows:

a. Desktop implementation: In this con�guration, the tested software
implementations are generated by use of the C back-end of Orcc (pre-
viously called orcc-c), and the generated C code is compiled with GCC
and executed on an Intel Xeon W3670 clocked at 3.2GHz on top of
Ubuntu GNU/Linux.

b. Embedded implementation: In this con�guration, the tested software
implementations are generated by use of the TTA back-end of Orcc (pre-
viously called orcc-tta), then the generated code is compiled by the
TTA compiler for the processor, usually con�gured as Fastconsidering
this is our best trade-off between performance and power consump-
tion. Apart from the processor con�guration, the multi-core platform
is based on the architecture model de�ned in Section 5.2. The evalu-
ation is made thanks to the instruction-set simulator including in the
TCE (previously called ttanetsim).

The experiments have been conducted for some of the RVC descriptions
of video decoders that have been introduced in Chapter 4, and using 720P
sequences containing I/P/B frames. Here is the detailed list:

• MPEG-4 Part 2 SP - Old town cross(25fps, 6Mbps) : A custom descrip-
tion (known as Irisa) that has been optimized by hand according to the
execution analysis extracted from our embedded implementation.

• MPEG-4 AVC / H.264 PHP - A Place at the Table(25fps, 6Mbps) : The
normative version that decomposes the processing of each component
(Luma and Chroma).

6.4 study of rvc -based video decoders 93

• MPEG HEVC / H.265 Main - Kristen And Sara(60fps, 1Mbps) : The
normative version that is still being developed but already compliant
with most of HM10.0 bitstreams.

During all our experiments, all the FIFO channels in our applications are
bounded to 8192elements in order not to impact on the results.

6.4.2 Analysis of Global Performance

First of all, we analyze the global performance of each implementation of
our RVC-based video decoders.

desktop implementation Table 6 presents the frame-rates observed
during the decoding of the 720p video sequences on our desktop processor.
For this experiment, all the actors are mapped to the same processor core
and scheduled using the round-robin strategy.

Decoder Video sequence Frame-rate

MPEG-4 Part 2 SP Old town cross(720P) 33,7FPS

MPEG-4 AVC PHP A Place at the Table(720P) 4,5 FPS

MPEG HEVC Main Kristen And Sara(720P) 12,7FPS

Table 6: Maximal frame-rates achieved by our desktop implementation using round-
robin scheduling strategy

The results show a large difference between the performances of the 3
decoders. MPEG-4Part 2 SP clearly is the most ef�cient and easily achieves
real-time decoding for 720p sequences: This can be explained by its lower
complexity and by the fact that this speci�c description is the result of sev-
eral DSEs to improve the performance of the decoder.

But, our implementation of the HEVC decoder surprisingly is more ef�-
cient than the one of the MPEG AVC decoder even though the HEVC stan-
dard is much more complex than its predecessor. This can be explained by
the wrong implementation choices that have been taken during the devel-
opment of the RVC-based description of the AVC decoder. As presented in
Table 4 of Chapter 4, the description is composed of many more actors than
the other decoders: This causes a larger scheduling overhead and requires
much more communications to disseminate all the information within the
decoder. In fact, these differences clearly demonstrate the high importance
of the decomposition granularity within DPN-based programs.

As a result, we have deliberately chosen to focus, in the next sections of
this chapter, on the analysis of MPEG-4 Part 2 and MPEG HEVC / H.265
without detailing the analysis of MPEG-4 AVC / H.264.

embedded implementation Now, we evaluate the global performance
of our embedded implementation. First, let us point out that a functional
embedded implementation is much more dif�cult to obtain than a desktop
implementation. Indeed, debugging data�ow programs within embedded
multi-core platforms is a hard and time-consuming task that requires an ex-
pertize from hardware and software aspects. Moreover, the simulation speed
is rapidly becoming one of the main limitations compared to the execution
speed on desktop processors.

94 optimized software implementation of dynamic dataflow programs

Table 7 summarizes the maximal frame-rates achieved with our embed-
ded implementation on both the MPEG-4 Part 2 decoder and the MPEG
HEVC decoder (Still Picture pro�le that does not contain the inter-prediction).
The evaluated embedded platforms are composed of FastTTA-based proces-
sors clocked at 100MHz, wherein each actor is mapped to its own processor.
Thus, there is no need for an actor scheduling strategy: The global schedul-
ing is achieved by the action scheduler that checks repetitively the validity
of the �ring rules.

Decoder Video sequence Frequency Frame-rate

MPEG-4 Part 2 SP Foreman(QCIF) 100MHz 175FPS

N/A (720P) 1GHz 40 FPS1

MPEG HEVC BasketBallPass(240p) 100MHz 4 FPS

N/A (720P) 1GHz 5 FPS1

Table 7: Maximal frame-rates achieved by our embedded implementation using the
Fast con�guration clocked at 100MHz. These frame-rates have been eval-
uated during an execution of the entire multi-core platform within the
instruction-set simulator (ttanetsim)

The results clearly demonstrate the functioning of our co-design �ow (pre-
sented in Section 5.3). Actually, these results are obtained from a simulated
execution, but let us point out that successful implementations of the MPEG-
4 Part 2 SP decoder [5] has already been synthesized on two different FPGA

boards: Altera Stratix III and Xilinx Virtex 6.
Besides the functional demonstration, the results also show a large differ-

ence of performance between the two decoders, i.e. the frame-rate observed
on MPEG-4 Part 2 is about 40 times better while the tested video sequence
is only 4 times smaller. This can be explained by the performance tuning
that we have already made on the description of MPEG-4 Part 2, along with
the development status of our description of HEVC.

Considering the current performance, our embedded implementation can-
not achieve real-time decoding of high de�nition sequences. But, these re-
sults open promising perspectives about a more optimized implementation,
and about a generic video decoding platform that could reach higher clock
frequency thanks to integrated circuit technology. To this end, we have ex-
trapolated the results for higher clock frequency (1GHz) and video de�ni-
tion (720P).

6.4.3 Analysis of Internal Communications

A major interest of data�ow programs is the explicit communication be-
tween the components of the application that makes them easier to analyze.
In DPN-based video decoders, communication rates are usually irregular and
very sensitive to multiple factors (size of the FIFO channels, actor scheduling,
etc). But, communication rates become globally stable when the observed
time-slice is suf�cient. Thus, Figure 41 presents the communication rate ob-
served at each output port within the MPEG-4 Part 2 SP and MPEG HEVC

decoders during the decoding of few frames of the tested video sequences.
Figure 41 additionally presents the degree of broadcasting of the ports, i.e.

1 Extrapolated frame-rates

6.4 study of rvc -based video decoders 95

the number of actors to which the ports are connected, in order to highlight
the duplication of data.

We can clearly identify two categories of communications from the results
presented in Figure 41:

video stream This stream is characterized by a large amount of data
that usually goes through the decoder by a single path (For instance
parser _blkexp.QFS in Figure 41a). The stream may be however divided
to increase the data parallelism, by separating the decoding of either
the image components (Luma and Chroma) [124] or the image regions
(like the tiles in HEVC / H.265 [164]).

Besides, broadcasting the video stream involves a large amount of
data duplication but is only performed one or two times (For instance
motion _add.Vid in Figure 41a), when the decoded frames are transmit-
ted to both the display and the image buffer used by the inter pre-
diction. This stream being clearly the largest of the application, this
speci�c broadcast can be the cause of a data congestion.

control information These communications are characterized by a
small amount of data disseminated through multiple channels within
the video decoder. A typical example is the transmission of the type
of the current block, parseheader.BTYPE in Figure 41a. A major part of
these communications is produced by the parserwhich extracts the
syntax elements from the input stream to parametrize the actors. As
a result, their behavior of video decoders should match well with the
semantic of quasi-static data�ow MoCs.

As opposed to the video stream, broadcasting the control information
implies a smaller amount of data but more consumers. For example,
control tokens generated by the parsermay be transmitted to most of
the next actors, like Algo _Parser.CUInfo in Figure 41b, so even a small
amount of data can introduce a lot of checks to control the state of the
communication channels.

To sum up, the video stream is processed block after block through the
actors which behave according to control data. Moreover, the broadcasting
may be an additional source of bottlenecks, causing either data congestions
or management overheads.

6.4.4 Analysis of the Application Decomposition

Now, let us take a look at the application decomposition which is funda-
mental for targeting multi-core platforms.

workload distribution We start by analyzing the distribution of the
computational workload within the video decoders, i.e the computational
workload of the actors, for both embedded and desktop implementations.
The results for two video decoders, MPEG-4 Part 2 and HEVC, are presented
in Figure 42. On the one hand, the workloads of the embedded implementa-
tion are evaluated for each actor independently in a standalone simulation.
In other words, each actor is simulated on its own processor with all incom-
ing data available, in order to hide the impact of the stream dependences
within the network. On the other hand, the workloads of the desktop imple-
mentation are evaluated when all actors are mapped to the same processor

	Abstract

