*. Ssa=a, *. Ssa, and . P+a, Yr(i))+SSa; %Calcul du denominateur de l'estimateur de a SOa=(h*SX)*[1;0]*p+A*SOa*p+(f*SOa)*(Yr(i+1)-Yr(i))+SOa; end a=([1 1]*SSa)/([1 1]*SOa); %Calcul de l'estimateur de a A=[-a a;b -b]; k(w)=a; end plot(k) %Evolution de l'estimateur de a A% M a t r i c e A SX=SX+A*SX*p+f*SX*(Yr(i+1)-Yr(i)); %Sigma(X) %Denominateur de l'estimateur de c: SOb=(e*SX)*[0;1]*p+A*SOb*p+(f*SOb)*(Yr(i+1)-Yr(i))+SOb, )==0) STT=(A*STT)*p+(e*SX)*[0;1]*(Yr(i+1)-Yr(i))

V. Bally and G. Pagès, A quantization algorithm for solving discrete time multi-dimensional optimal stopping problems,B e r n o u l l i, pp.1003-1049, 2003.

M. Basseville and I. V. Nikiforov, Detection of Abrupt Changes : Theory and Application, 1993.
URL : https://hal.archives-ouvertes.fr/hal-00008518

C. Baysse, D. Bihannic, A. Gégout-petit, M. Prenat, J. Saracco et al., Detection of a degraded operating mode of optronic equipment using Hidden Markov Model, E
URL : https://hal.archives-ouvertes.fr/hal-00762227

A. Brandejsky, B. De-saporta, and F. Dufour, Numerical method for expectations of piecewise deterministic Markov processes, Communications in Applied Mathematics and Computational Science, vol.7, issue.1, pp.63-104, 2012.
DOI : 10.2140/camcos.2012.7.63

B. Castanier, C. Bérenguer, and A. , A sequential condition-based repair/replacement policy with non-periodic inspections for a system subject to continuous wear, Applied Stochastic Models in Business and Industry, vol.2, issue.4, pp.327-347, 2003.
DOI : 10.1002/asmb.493

J. Chiquet and N. Limnios, Amethodtocomputethetransitionfunction of a Piecewise Deterministic Markov Process with application to reliability, 2008.

C. Cocozza-thivent, Processus stochastiques et fiabilité des systèmes,E d i t i o nS p r i n g e r, pp.9-9

M. H. Davis, Piecewise-deterministic Markov Process : A General Class of Non-diffusion Stochastic Models, Journal of the Royal Statistical Society. Series B (Methodological), 1984.

M. H. Davis, Markov Models and Optimization, Hall, 1993.
DOI : 10.1007/978-1-4899-4483-2

E. Deloux, B. Castanier, and C. Berenguer, Optimisation de la politique de maintenance pour un systèmè a dégradation graduelle stresse, 7 ` e m e ´ e d i t i o n d u c o n g r ` e s i n t e r n a t i, 2007.

B. De-saporta and H. Zhang, Predictive maintenance for the heated hold-up tank, Reliability Engineering and System Safety, 2013.

B. De-saporta, F. Dufour, C. Elegbede, and H. Zhang, Arrêt optimal pour la maintenance prédictive, 2010.

B. De-saporta, F. Dufour, and K. Gonzales, Numerical method for optimal stopping of piecewise deterministic Markov processes, The Annals of Applied Probability, vol.20, issue.5, 2010.
DOI : 10.1214/09-AAP667

URL : https://hal.archives-ouvertes.fr/hal-00367964

L. Dieulle, C. Bérenguer, A. Grall, and M. , Sequential condition-based maintenance scheduling for a deteriorating system, European Journal of Operational Research, vol.150, issue.2, pp.451-461, 2003.
DOI : 10.1016/S0377-2217(02)00593-3

R. Feldman, Optimal replacement with semi-Markov shock models, Journal of Applied Probability, vol.13, issue.01, pp.108-117, 1976.
DOI : 10.1017/S0305004100045096

J. Fridlyand, A. M. Snijders, D. Pinkel, D. G. Albertson, and A. N. Jain, Hidden Markov models approach to the analysis of array CGH data, Journal of Multivariate Analysis, vol.90, p.132153, 2004.

O. Gaudoin and J. L. Soler, Failure rate b ehavior of comp onents sub jected to random stresses, 1997.

A. Grall, C. Bérenguer, and L. Dieulle, A condition-based maintenance policy for stochastically deteriorating systems, Reliability Engineering & System Safety, vol.76, issue.2, pp.167-180, 2002.
DOI : 10.1016/S0951-8320(01)00148-X

E. P. Kao, Optimal Replacement Rules when Changes of State are Semi-Markovian,O pe r a t i o n sR e s e r c h

P. Kloeden, E. Platen, and H. Schurz, Numerical solution of SDE Edition, 1992.

C. T. Lam and R. H. Yeh, Optimal maintenance-policies for deteriorating systems under various maintenance strategies, IEEE Transactions on Reliability, vol.43, issue.3, pp.423-430, 1994.
DOI : 10.1109/24.326439

M. Fouladirad, A. Grall, and L. Dieulle, On the use of on-line detection for maintenance of gradually deteriorating systems, Reliability Engineering & System Safety, vol.93, issue.12, pp.1814-1820, 2008.
DOI : 10.1016/j.ress.2008.03.020

J. M. Van-noortwijk, As u r v e yo ft h ea p p l i c a t i o no fg a m m ap r o cesses in maintenance,R e l i a b i l i t yE n g i n e e r i n ga n dS y s t e mS a f e t, p.221, 2009.

E. S. Page, Continuous inspection schemes,B i o m e t r i k a, pp.100-115, 1954.

G. Pagès, A space quantization method for numerical integration, Journal of Computational and Applied Mathematics, vol.89, issue.1, pp.1-38, 1997.
DOI : 10.1016/S0377-0427(97)00190-8

G. Pagès and J. Printems, Optimal quadratic quantization for numerics: the Gaussian case, Monte Carlo Methods and Applications, vol.9, issue.2, pp.135-165, 2003.
DOI : 10.1515/156939603322663321

K. Park, Optimal continuous-wear limit replacement under periodic inspections, IEEE Transactions on Reliability, vol.37, issue.1, pp.97-102, 1988.
DOI : 10.1109/24.3722

M. Rausand and A. Hoyland, Systen Reliability Theory-Models, 2004.

P. Vrignat, M. Avila, F. Duculty, B. Robles, S. Begot et al., Indicators generation as part of a policy of conditional preventive maintenance,C o n g r ` e sd eM a ? ? t r i s ed e sR i s q u e se tSûtS?tSû r e t, pp.18890-893, 2012.

H. Wang, A survey of maintenance policies of deteriorating systems, European Journal of Operational Research, vol.139, issue.3, pp.469-489, 2002.
DOI : 10.1016/S0377-2217(01)00197-7

G. A. Whitmore, Estimating degradation by a wiener diffusion process subject to measurement error, Lifetime Data Analysis, vol.61, issue.1
DOI : 10.1007/BF00985762

O. Zeitouni and A. Dembo, Exact filters for the estimation of the number of transitions of finite-state continuous-time Markov processes, IEEE Transactions on Information Theory, vol.34, issue.4, pp.890-893
DOI : 10.1109/18.9793