P. Wallace, The Band Theory of Graphite, Physical Review, vol.71, issue.9, pp.622-634, 1947.
DOI : 10.1103/PhysRev.71.622

C. Lee, X. Wei, J. W. Kysar, and J. Hone, Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene, Science, vol.321, issue.5887, pp.385-393, 2008.
DOI : 10.1126/science.1157996

L. Tong, M. Mehregany, and L. G. Matus, Mechanical properties of 3C silicon carbide, Applied Physics Letters, vol.60, issue.24, p.2992, 1992.
DOI : 10.1063/1.106786

K. Nakayama, K. Nakatani, S. Khamseh, M. Mori, and K. Maezawa, Step Hall Measurement of InSb Films Grown on Si(111) Substrate Using InSb Bilayer, Japanese Journal of Applied Physics, vol.50, 2011.

S. Morozov, K. Novoselov, M. Katsnelson, F. Schedin, D. Elias et al., Giant Intrinsic Carrier Mobilities in Graphene and Its Bilayer, Physical Review Letters, vol.100, issue.1, pp.11-14, 2008.
DOI : 10.1103/PhysRevLett.100.016602

. Grigorieva, Electric field effect in atomically thin carbon films, Science, vol.306, issue.5696, pp.666-675, 2004.

A. S. Mayorov, R. V. Gorbachev, S. V. Morozov, L. Britnell, R. Jalil et al., Micrometer-Scale Ballistic Transport in Encapsulated Graphene at Room Temperature, Nano Letters, vol.11, issue.6, pp.2396-2405, 2011.
DOI : 10.1021/nl200758b

K. Bolotin, K. Sikes, Z. Jiang, M. Klima, G. Fudenberg et al., Ultrahigh electron mobility in suspended graphene, Solid State Communications, vol.146, issue.9-10, pp.9-10, 2008.
DOI : 10.1016/j.ssc.2008.02.024

E. H. Marchenkov, P. N. Conrad, W. First, and . De-heer, Electronic confinement and coherence in patterned epitaxial graphene, Science, vol.312, issue.5777, pp.1191-1197, 2006.

D. K. Eddy and . Gaskill, Correlating Raman spectral signatures with carrier mobility in epitaxial graphene: a guide to achieving high mobility on the wafer scale, Nano letters, vol.9, issue.8, pp.2873-2879, 2009.

Z. Guo, R. Dong, P. S. Chakraborty, N. Lourenco, J. Palmer et al., Record Maximum Oscillation Frequency in C-Face Epitaxial Graphene Transistors, Nano Letters, vol.13, issue.3, pp.942-949, 2013.
DOI : 10.1021/nl303587r

URL : https://hal.archives-ouvertes.fr/hal-00911215

S. Y. Zhou, G. Gweon, A. V. Fedorov, P. N. First, W. A. De-heer et al., Substrate-induced bandgap opening in epitaxial graphene, Nature Materials, vol.51, issue.10, pp.770-775, 2007.
DOI : 10.1038/nmat2003

N. Ferralis, R. Maboudian, and C. Carraro, Evidence of Structural Strain in Epitaxial Graphene Layers on 6H-SiC(0001), Physical Review Letters, vol.101, issue.15, pp.156-801, 2008.
DOI : 10.1103/PhysRevLett.101.156801

F. Schwierz, Graphene Transistors: Status, Prospects, and Problems, Proceedings of the IEEE, pp.1567-1584, 2013.
DOI : 10.1109/JPROC.2013.2257633

W. A. De-heer, C. Berger, M. Ruan, M. Sprinkle, X. Li et al., Large area and structured epitaxial graphene produced by confinement controlled sublimation of silicon carbide, Proceedings of the National Academy of Sciences of the United States of America, pp.16-900, 2011.
DOI : 10.1073/pnas.1105113108

URL : https://hal.archives-ouvertes.fr/hal-00911226

Y. Lin, D. Farmer, and K. Jenkins, Enhanced Performance in Epitaxial Graphene FETs With Optimized Channel Morphology, IEEE Electron Device Letters, vol.32, issue.10, pp.1343-1345, 2011.
DOI : 10.1109/LED.2011.2162934

S. K. Tutuc, L. Banerjee, R. S. Colombo, and . Ruoff, Large-area synthesis of high-quality and uniform graphene films on copper foils, Science, vol.324, issue.5932, pp.1312-1316, 2009.

P. J. Ko, H. Takahashi, S. Koide, H. Sakai, T. V. Thu et al., Simple method to transfer graphene from metallic catalytic substrates to flexible surfaces without chemical etching, Journal of Physics: Conference Series, vol.433, issue.1, pp.12-14, 2013.
DOI : 10.1088/1742-6596/433/1/012002

H. Bae, Y. Kim, X. Lee, J. Xu, Y. Park et al., Roll-to-roll production of 30-inch graphene films for transparent electrodes, Nature Nanotechnology, vol.76, issue.8, pp.574-582, 2010.
DOI : 10.1038/nnano.2010.132

T. Kobayashi, M. Bando, N. Kimura, K. Shimizu, K. Kadono et al., Production of a 100-m-long high-quality graphene transparent conductive film by roll-to-roll chemical vapor deposition and transfer process, Applied Physics Letters, vol.102, issue.2, pp.23-112, 2013.
DOI : 10.1063/1.4776707

E. M. Colombo, R. S. Vogel, R. M. Ruoff, and . Wallace, The effect of chemical residues on the physical and electrical properties of chemical vapor deposited graphene transferred to SiO2, Applied Physics Letters, vol.99, issue.12, pp.122-108, 2011.

M. Holland, Y. K. Byrne, J. J. Gun-'ko, P. Boland, G. Niraj et al., High-yield production of graphene by liquid-phase exfoliation of graphite, Nature nanotechnology, vol.3, issue.9, pp.563-8215, 2008.

A. A. Green and M. C. Hersam, Solution Phase Production of Graphene with Controlled Thickness via Density Differentiation, Nano Letters, vol.9, issue.12, pp.4031-4037, 2009.
DOI : 10.1021/nl902200b

G. Eda, G. Fanchini, and M. Chhowalla, Large-area ultrathin films of reduced graphene oxide as a transparent and flexible electronic material, Nature Nanotechnology, vol.27, issue.5, pp.270-274, 2008.
DOI : 10.1038/nnano.2008.83

M. F. El-kady, V. Strong, S. Dubin, and R. B. Kaner, Laser Scribing of High-Performance and Flexible Graphene-Based Electrochemical Capacitors, Science, vol.335, issue.6074, pp.1326-1356, 2012.
DOI : 10.1126/science.1216744

K. S. Novoselov, V. I. Fal-'ko, L. Colombo, P. R. Gellert, M. G. Schwab et al., A roadmap for graphene, Nature, vol.335, issue.7419, pp.192-200, 1038.
DOI : 10.1038/nature11458

P. Wallace, The Band Theory of Graphite, Physical Review, vol.71, issue.9, pp.622-634, 1947.
DOI : 10.1103/PhysRev.71.622

R. E. Peierls, Quelques proprietes typiques des corpses solides, Ann. I. H. Poincare, vol.5, pp.177-222, 1935.

J. Mcclure, Band Structure of Graphite and de Haas-van Alphen Effect, Physical Review, vol.108, issue.3, pp.612-618, 1957.
DOI : 10.1103/PhysRev.108.612

J. Slonczewski and P. Weiss, Band Structure of Graphite, Physical Review, vol.109, issue.2, pp.272-279, 1958.
DOI : 10.1103/PhysRev.109.272

S. Reich, J. Maultzsch, C. Thomsen, and P. Ordejón, Tight-binding description of graphene, Physical Review B, vol.66, issue.3, pp.35-412, 2002.
DOI : 10.1103/PhysRevB.66.035412

A. Castro-neto, F. Guinea, N. Peres, K. Novoselov, and A. Geim, The electronic properties of graphene, Reviews of Modern Physics, vol.81, issue.1, pp.109-162, 2009.
DOI : 10.1103/RevModPhys.81.109

V. Ariel and A. Natan, Electron Effective Mass in Graphene " , arXiv pre-print, p. 1206, 2012.

T. Fang, A. Konar, H. Xing, and D. Jena, Carrier statistics and quantum capacitance of graphene sheets and ribbons, Applied Physics Letters, vol.91, issue.9, 2007.
DOI : 10.1063/1.2776887

A. Fasolino, J. H. Los, and M. I. Katsnelson, Intrinsic ripples in graphene, Nature Materials, vol.97, issue.11, pp.858-61, 1038.
DOI : 10.1038/nmat2011

D. Reddy, L. F. Register, G. D. Carpenter, and S. K. Banerjee, Graphene field-effect transistors, Journal of Physics D: Applied Physics, vol.4545, issue.11, pp.19-501, 2012.
DOI : 10.1088/0022-3727/45/1/019501

K. D. Holland, N. Paydavosi, N. Neophytou, D. Kienle, and M. Vaidyanathan, RF Performance Limits and Operating Physics Arising From the Lack of a Bandgap in Graphene Transistors, IEEE Transactions on Nanotechnology, vol.12, issue.4, pp.566-577, 2013.
DOI : 10.1109/TNANO.2013.2260351

K. Wakabayashi, M. Fujita, H. Ajiki, and M. Sigrist, Electronic and magnetic properties of nanographite ribbons, Physical Review B, vol.59, issue.12, pp.8271-8282, 1999.
DOI : 10.1103/PhysRevB.59.8271

M. Han, B. Ozyilmaz, Y. Zhang, and P. Kim, Energy Band-Gap Engineering of Graphene Nanoribbons, Physical Review Letters, vol.98, issue.20, pp.206-805, 2007.
DOI : 10.1103/PhysRevLett.98.206805

P. Gallagher, K. Todd, and D. Goldhaber-gordon, Disorder-induced gap behavior in graphene nanoribbons, Physical Review B, vol.81, issue.11, pp.115-409, 2010.
DOI : 10.1103/PhysRevB.81.115409

M. Y. Han, J. C. Brant, and P. Kim, Electron Transport in Disordered Graphene Nanoribbons, Physical Review Letters, vol.104, issue.5
DOI : 10.1103/PhysRevLett.104.056801

A. Pieper, G. Schubert, G. Wellein, and H. Fehske, Effects of disorder and contacts on transport through graphene nanoribbons, Physical Review B, vol.88, issue.19, 2013.
DOI : 10.1103/PhysRevB.88.195409

Y. Yang and R. Murali, Impact of Size Effect on Graphene Nanoribbon Transport, IEEE Electron Device Letters, vol.31, issue.3, pp.237-239, 2009.
DOI : 10.1109/LED.2009.2039915

O. Habibpour, J. Vukusic, and J. Stake, A 30-GHz Integrated Subharmonic Mixer Based on a Multichannel Graphene FET, IEEE Transactions on Microwave Theory and Techniques, vol.61, issue.2, pp.841-847
DOI : 10.1109/TMTT.2012.2236434

N. Meng, J. F. Fernandez, D. Vignaud, G. Dambrine, and H. Happy, Fabrication and Characterization of an Epitaxial Graphene Nanoribbon-Based Field-Effect Transistor, IEEE Transactions on Electron Devices, vol.58, issue.6, pp.1594-1596, 2011.
DOI : 10.1109/TED.2011.2119486

URL : https://hal.archives-ouvertes.fr/hal-00603002

K. Yan, H. Peng, Y. Zhou, H. Li, and Z. Liu, Formation of Bilayer Bernal Graphene: Layer-by-Layer Epitaxy via Chemical Vapor Deposition, Nano Letters, vol.11, issue.3, pp.1106-1116, 1021.
DOI : 10.1021/nl104000b

L. Liu, H. Zhou, R. Cheng, W. J. Yu, Y. Liu et al., High-Yield Chemical Vapor Deposition Growth of High-Quality Large-Area AB-Stacked Bilayer Graphene, ACS Nano, vol.6, issue.9, pp.8241-8250, 1021.
DOI : 10.1021/nn302918x

F. Xia, D. B. Farmer, Y. Lin, and P. Avouris, Graphene Field-Effect Transistors with High On/Off Current Ratio and Large Transport Band Gap at Room Temperature, Nano Letters, vol.10, issue.2, pp.715-723
DOI : 10.1021/nl9039636

L. Novoselov and . Ponomarenko, Field-effect tunneling transistor based on vertical graphene heterostructures, Science, vol.335, issue.6071, pp.947-50

M. C. Mehr and . Lemme, A graphene-based hot electron transistor, Nano letters, vol.13, issue.4, pp.1435-1444, 2013.

. Wang, Vertical graphene-base hot-electron transistor, Nano letters, vol.13, issue.6, pp.2370-2375, 2013.

W. Mehr, J. Dabrowski, J. C. Scheytt, G. Lippert, Y. Xie et al., Vertical Graphene Base Transistor, IEEE Electron Device Letters, vol.33, issue.5, pp.691-693, 2012.
DOI : 10.1109/LED.2012.2189193

H. Hsu and L. , Modeling graphene layers and single-walled carbon nanotubes with regularized ?-function potentials, Physical Review B, vol.72, issue.15, pp.155-413, 2005.

A. K. Geim and K. S. Novoselov, The rise of graphene, Nature materials, vol.6, issue.3, pp.183-91, 1038.
DOI : 10.1142/9789814287005_0002

Y. Son, M. L. Cohen, and S. G. Louie, Energy Gaps in Graphene Nanoribbons, Physical Review Letters, vol.97, issue.21, pp.216-803, 2006.
DOI : 10.1103/PhysRevLett.97.216803

V. Barone, O. Hod, and G. E. Scuseria, Electronic Structure and Stability of Semiconducting Graphene Nanoribbons, Nano Letters, vol.6, issue.12, pp.2748-54, 2006.
DOI : 10.1021/nl0617033

G. Fiori and G. Iannaccone, Simulation of Graphene Nanoribbon Field-Effect Transistors, IEEE Electron Device Letters, vol.28, issue.8, pp.760-762, 2007.
DOI : 10.1109/LED.2007.901680

Y. Hancock, A. Uppstu, K. Saloriutta, A. Harju, and M. J. Puska, Generalized tightbinding transport model for graphene nanoribbon-based systems, Physical Review B, vol.81, issue.24, pp.3-8, 2010.

Y. Ouyang, Y. Yoon, J. K. Fodor, and J. Guo, Comparison of performance limits for carbon nanoribbon and carbon nanotube transistors, Applied Physics Letters, vol.89, issue.20, pp.203-107, 2006.
DOI : 10.1063/1.2387876

G. Liang, N. Neophytou, D. E. Nikonov, and M. S. Lundstrom, Performance Projections for Ballistic Graphene Nanoribbon Field-Effect Transistors, IEEE Transactions on Electron Devices, vol.54, issue.4, pp.677-682, 2007.
DOI : 10.1109/TED.2007.891872

P. Zhao, M. Choudhury, K. Mohanram, and J. Guo, Computational model of edge effects in graphene nanoribbon transistors, Nano Research, vol.55, issue.5, 2008.
DOI : 10.1007/s12274-008-8039-y

V. Ryzhii, M. Ryzhii, A. Satou, and T. Otsuji, Current-voltage characteristics of a graphene-nanoribbon field-effect transistor, Journal of Applied Physics, vol.103, issue.9, pp.94-510, 2008.
DOI : 10.1063/1.2917284

A. Khakifirooz, O. M. Nayfeh, and D. Antoniadis, A Simple Semiempirical Short-Channel MOSFET Current–Voltage Model Continuous Across All Regions of Operation and Employing Only Physical Parameters, IEEE Transactions on Electron Devices, vol.56, issue.8, pp.1674-1680, 2009.
DOI : 10.1109/TED.2009.2024022

I. Meric, M. Y. Han, A. F. Young, B. Ozyilmaz, P. Kim et al., Current saturation in zero-bandgap, top-gated graphene field-effect transistors, Nature Nanotechnology, vol.97, issue.11, pp.654-663, 2008.
DOI : 10.1038/nnano.2008.268

H. Wang, A. Hsu, J. Kong, D. A. Antoniadis, and T. Palacios, Compact Virtual-Source Current–Voltage Model for Top- and Back-Gated Graphene Field-Effect Transistors, IEEE Transactions on Electron Devices, vol.58, issue.5, pp.1523-1533, 2011.
DOI : 10.1109/TED.2011.2118759

E. Mucciolo, A. C. Neto, and C. Lewenkopf, Conductance quantization and transport gaps in disordered graphene nanoribbons, Physical Review B, vol.79, issue.7, pp.75-407
DOI : 10.1103/PhysRevB.79.075407

K. Ganapathi, Y. Yoon, M. Lundstrom, and S. Salahuddin, Ballistic <formula formulatype="inline"><tex Notation="TeX">$I$</tex></formula>&#x2013; <formula formulatype="inline"><tex Notation="TeX">$V$</tex></formula> Characteristics of Short-Channel Graphene Field-Effect Transistors: Analysis and Optimization for Analog and RF Applications, IEEE Transactions on Electron Devices, vol.60, issue.3, pp.958-964, 2013.
DOI : 10.1109/TED.2013.2238236

D. Mencarelli, T. Rozzi, and L. Pierantoni, Scattering matrix approach to multichannel transport in many lead graphene nanoribbons, Nanotechnology, vol.21, issue.15, pp.155-7010957, 2010.
DOI : 10.1088/0957-4484/21/15/155701

D. Mencarelli, L. Pierantoni, and T. Rozzi, Graphene modeling by TLM approach, 2012 IEEE/MTT-S International Microwave Symposium Digest, pp.1-3, 2012.
DOI : 10.1109/MWSYM.2012.6259782

X. Yang, G. Fiori, G. Iannaccone, and K. Mohanram, Semi-analytical Model for Schottkybarrier Carbon Nanotube and Graphene Nanoribbon Transistors, Proceedings of the 20th symposium on Great lakes symposium on VLSI, pp.233-238, 2010.

A. Rahman, S. Datta, and M. Lundstrom, Theory of ballistic nanotransistors, IEEE Transactions on Electron Devices, vol.50, issue.9, pp.1853-1864, 2003.
DOI : 10.1109/TED.2003.815366

R. Landauer, Spatial variation of currents and fields due to localized scatterers in metallic conduction, IBM Journal of Research and Development, vol.32, issue.3, pp.306-316, 1988.
DOI : 10.1147/rd.323.0306

K. Natori, Ballistic metal???oxide???semiconductor field effect transistor, Journal of Applied Physics, vol.76, issue.8, p.4879, 1994.
DOI : 10.1063/1.357263

D. Jiménez, A current???voltage model for Schottky-barrier graphene-based transistors, Nanotechnology, vol.19, issue.34, pp.345-204, 2008.
DOI : 10.1088/0957-4484/19/34/345204

G. S. Kliros, Gate capacitance modeling and width-dependent performance of graphene nanoribbon transistors, Microelectronic Engineering, vol.112, 2013.
DOI : 10.1016/j.mee.2013.04.011

V. Ryzhii, M. Ryzhii, A. Satou, T. Otsuji, and V. Mitin, Analytical device model for graphene bilayer field-effect transistors using weak nonlocality approximation, Journal of Applied Physics, vol.109, issue.6, pp.64-508, 2011.
DOI : 10.1063/1.3560921

F. Schwierz, Graphene transistors, Nature Nanotechnology, vol.36, issue.7, pp.487-496, 2010.
DOI : 10.1038/nnano.2010.89

S. Thiele and F. Schwierz, Modeling of the steady state characteristics of large-area graphene field-effect transistors, Journal of Applied Physics, vol.110, issue.3, pp.34-506, 2011.
DOI : 10.1063/1.3606583

J. G. Champlain, A first principles theoretical examination of graphene-based field effect transistors, Journal of Applied Physics, vol.109, issue.8, 2011.
DOI : 10.1063/1.3573517

V. Ryzhii, M. Ryzhii, A. Satou, T. Otsuji, and N. Kirova, Device model for graphene bilayer field-effect transistor, Journal of Applied Physics, vol.105, issue.10, pp.104-510, 2009.
DOI : 10.1063/1.3131686

G. I. Zebrev, A. A. Tselykovskiy, and V. O. Turin, Physics-based compact modeling of double-gate graphene field-effect transistor operation, 2012 28th International Conference on Microelectronics Proceedings, 2012.
DOI : 10.1109/MIEL.2012.6222843

I. Umoh and T. Kazmierski, VHDL-AMS model of a dual gate graphene FET, Specification and Design Languages (FDL), pp.1-5, 2011.

I. J. Umoh, T. J. Kazmierski, and B. M. , A Dual-Gate Graphene FET Model for Circuit Simulation&#x2014;SPICE Implementation, IEEE Transactions on Nanotechnology, vol.12, issue.3, pp.427-435, 2013.
DOI : 10.1109/TNANO.2013.2253490

K. N. Parrish, M. E. Ramón, S. K. Banerjee, and D. Akinwande, A Compact Model for Graphene FETs for Linear and Non-linear Circuits, pp.75-78, 2012.

W. Liu, MOSFET Models for SPICE Simulation: Including BSIM3v3 and BSIM4, p.600, 2011.
DOI : 10.1109/9780470547182

K. N. Parrish and D. Akinwande, Impact of contact resistance on the transconductance and linearity of graphene transistors, Applied Physics Letters, vol.98, issue.18, pp.183-505, 2011.
DOI : 10.1063/1.3582613

I. R. Committee, International Technology Roadmap for Semiconductors -Interconnects, Semiconductor Industry Association, 2011.

F. Xia, V. Lin, Y. Wu, and P. Avouris, The origins and limits of metal???graphene junction resistance, Nature Nanotechnology, vol.5, issue.3, pp.179-84, 2011.
DOI : 10.1038/nnano.2011.6

K. L. Grosse, M. Bae, F. Lian, E. Pop, and W. P. King, Nanoscale Joule heating, Peltier cooling and current crowding at graphene???metal contacts, Nature Nanotechnology, vol.97, issue.5, pp.287-90, 2011.
DOI : 10.1038/nnano.2011.39

K. Nagashio, T. Nishimura, K. Kita, and A. Toriumi, Contact resistivity and current flow path at metal/graphene contact, Applied Physics Letters, vol.97, issue.14, pp.143-514, 2010.
DOI : 10.1063/1.3491804

A. D. Franklin, S. Han, A. A. Bol, and V. Perebeinos, Double Contacts for Improved Performance of Graphene Transistors, IEEE Electron Device Letters, vol.33, issue.1, pp.4-6, 2011.
DOI : 10.1109/LED.2011.2173154

C. Malec and D. Davidovi´cdavidovi´c, Electronic properties of Au-graphene contacts, Physical Review B, vol.84, issue.3, pp.4-7, 2011.
DOI : 10.1103/PhysRevB.84.033407

R. S. Kiselev, D. K. Ross, P. M. Gaskill, R. C. Campbell, K. Fitch et al., Ultra-low resistance ohmic contacts in graphene field effect transistors, Applied Physics Letters, vol.100, issue.20, pp.203-512, 2012.

J. T. Smith, A. D. Franklin, D. B. Farmer, and C. D. Dimitrakopoulos, Reducing Contact Resistance in Graphene Devices through Contact Area Patterning, ACS Nano, vol.7, issue.4, 2013.
DOI : 10.1021/nn400671z

C. Malec, B. Elkus, and D. Davidovi´cdavidovi´c, Vacuum-annealed Cu contacts for graphene electronics, Solid State Communications, vol.151, issue.23, pp.1791-1793, 2011.
DOI : 10.1016/j.ssc.2011.08.025

B. Huard, N. Stander, J. Sulpizio, and D. Goldhaber-gordon, Evidence of the role of contacts on the observed electron-hole asymmetry in graphene, Physical Review B, vol.78, issue.12, 2008.
DOI : 10.1103/PhysRevB.78.121402

URL : https://hal.archives-ouvertes.fr/hal-00520826

P. Tsang and . Avouris, Chemical doping and electron-hole conduction asymmetry in graphene devices, Nano letters, vol.9, issue.1, pp.388-92, 2009.

T. Mueller, F. Xia, M. Freitag, J. Tsang, and P. Avouris, Role of contacts in graphene transistors: A scanning photocurrent study, Physical Review B, vol.79, issue.24, pp.245-430, 2009.
DOI : 10.1103/PhysRevB.79.245430

B. Huard, J. Sulpizio, N. Stander, K. Todd, B. Yang et al., Transport Measurements Across a Tunable Potential Barrier in Graphene, Physical Review Letters, vol.98, issue.23, pp.8-11, 2007.
DOI : 10.1103/PhysRevLett.98.236803

URL : https://hal.archives-ouvertes.fr/hal-00520827

G. Giovannetti, P. Khomyakov, G. Brocks, V. Karpan, J. Van-den et al., Doping Graphene with Metal Contacts, Physical Review Letters, vol.101, issue.2, pp.26-803, 2008.
DOI : 10.1103/PhysRevLett.101.026803

URL : http://arxiv.org/abs/0802.2267

P. Khomyakov, G. Giovannetti, P. Rusu, G. Brocks, J. Van-den et al., First-principles study of the interaction and charge transfer between graphene and metals, Physical Review B, vol.79, issue.19, pp.195-425, 2009.
DOI : 10.1103/PhysRevB.79.195425

G. Kotliar, S. Savrasov, K. Haule, V. Oudovenko, O. Parcollet et al., Electronic structure calculations with dynamical mean-field theory, Reviews of Modern Physics, vol.78, issue.3, pp.865-951, 2006.
DOI : 10.1103/RevModPhys.78.865

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.475.7032

C. Gong, G. Lee, B. Shan, E. M. Vogel, R. M. Wallace et al., First-principles study of metal???graphene interfaces, Journal of Applied Physics, vol.108, issue.12, pp.123-711, 2010.
DOI : 10.1063/1.3524232

J. Ss-lawi´nskalawi´nska, P. Dabrowski, and I. Zasada, Doping of graphene by a Au(111) substrate: Calculation strategy within the local density approximation and a semiempirical van der Waals approach, Physical Review B, vol.83, issue.24, pp.245-429, 2011.

J. Granatier, P. Lazar, M. Otyepka, and P. Hobza, The Nature of the Binding of Au, Ag, and Pd to Benzene, Coronene, and Graphene: From Benchmark CCSD(T) Calculations to Plane-Wave DFT Calculations, Journal of Chemical Theory and Computation, vol.7, issue.11, pp.3743-3755, 1021.
DOI : 10.1021/ct200625h

K. Nagashio and A. Toriumi, Density-of-States Limited Contact Resistance in Graphene Field-Effect Transistors, Japanese Journal of Applied Physics, vol.50, issue.108, 2011.

S. Barraza-lopez, M. Vanevi´cvanevi´c, M. Kindermann, and M. Y. Chou, Effects of Metallic Contacts on Electron Transport through Graphene, Physical Review Letters, vol.104, issue.7
DOI : 10.1103/PhysRevLett.104.076807

P. Khomyakov, A. Starikov, G. Brocks, and P. Kelly, Nonlinear screening of charges induced in graphene by metal contacts, Physical Review B, vol.82, issue.11, pp.115-437, 2010.
DOI : 10.1103/PhysRevB.82.115437

R. Nouchi and K. Tanigaki, Empirical Modeling of Metal-Contact Effects on Graphene Field-Effect Transistors, Japanese Journal of Applied Physics, vol.50, issue.109, 2011.

Z. Chen and J. Appenzeller, Gate modulation of graphene contacts ? on the scaling of graphene FETs, VLSI Technology, pp.128-129, 2009.

D. Berdebes, T. Low, Y. Sui, J. Appenzeller, and M. S. Lundstrom, Substrate Gating of Contact Resistance in Graphene Transistors, IEEE Transactions on Electron Devices, vol.58, issue.11, pp.3925-3932, 2011.
DOI : 10.1109/TED.2011.2163800

A. D. Franklin, S. Han, A. A. Bol, and W. Haensch, Effects of Nanoscale Contacts to Graphene, IEEE Electron Device Letters, vol.32, issue.8, pp.1035-1037, 2011.
DOI : 10.1109/LED.2011.2158058

H. Berger, Models for contacts to planar devices, Solid-State Electronics, pp.145-1580038
DOI : 10.1016/0038-1101(72)90048-2

C. Lan, P. Srisungsitthisunti, P. B. Amama, T. S. Fisher, X. Xu et al., Measurement of metal/carbon nanotube contact resistance by adjusting contact length using laser ablation, Nanotechnology, vol.19, issue.12, pp.125-703, 2008.
DOI : 10.1088/0957-4484/19/12/125703

C. Lan, D. N. Zakharov, and R. G. Reifenberger, Determining the optimal contact length for a metal/multiwalled carbon nanotube interconnect, Applied Physics Letters, vol.92, issue.21, pp.213-112, 2008.
DOI : 10.1063/1.2931081

K. Nagashio, T. Moriyama, R. Ifuku, T. Yamashita, T. Nishimura et al., Is graphene contacting with metal still graphene?, 2011 International Electron Devices Meeting, pp.27-30, 2011.
DOI : 10.1109/IEDM.2011.6131475

W. Shockley, A. Goetzberger, and R. Scarlett, Research and Investigation of Inverse Epitaxial UHF Power Transistors, Tech. Rep, 1964.

D. Janes and K. Webb, Error analysis leading to design criteria for transmission line model characterization of ohmic contacts, IEEE Transactions on Electron Devices, vol.48, issue.4, pp.758-766, 2001.

L. Gutai, Statistical modeling of transmission line model test structures. I. The effect of inhomogeneities on the extracted contact parameters, IEEE Transactions on Electron Devices, vol.37, issue.11, pp.2350-2360, 1990.
DOI : 10.1109/16.62287

G. S. Marlow and M. B. Das, The effects of contact size and non-zero metal resistance on the determination of specific contact resistance, Solid-State Electronics, vol.25, issue.2, pp.91-940038
DOI : 10.1016/0038-1101(82)90036-3

M. Dragoman, D. Dragoman, G. Deligiorgis, G. Konstantinidis, D. Neculoiu et al., Current oscillations in a wide graphene sheet, Journal of Applied Physics, vol.106, issue.4, p.312, 2009.
DOI : 10.1063/1.3208061

G. Deligeorgis, M. Dragoman, D. Neculoiu, D. Dragoman, G. Konstantinidis et al., Microwave propagation in graphene, Applied Physics Letters, vol.95, issue.7, pp.73-107, 2009.
DOI : 10.1063/1.3202413

]. A. Rahman, S. Datta, and M. Lundstrom, Theory of ballistic nanotransistors, IEEE Transactions on Electron Devices, vol.50, issue.9, pp.1853-1864, 2003.
DOI : 10.1109/TED.2003.815366

A. S. Mayorov, R. V. Gorbachev, S. V. Morozov, L. Britnell, R. Jalil et al., Micrometer-Scale Ballistic Transport in Encapsulated Graphene at Room Temperature, Nano Letters, vol.11, issue.6, pp.2396-2405, 2011.
DOI : 10.1021/nl200758b

Y. Wu, V. Lin, T. Low, F. Xia, and P. Avouris, Quantum Behavior of Graphene Transistors near the Scaling Limit, Nano Letters, vol.12, issue.3, pp.1417-1440, 1021.
DOI : 10.1021/nl204088b

J. Chauhan, L. Liu, Y. Lu, and J. Guo, A computational study of high-frequency behavior of graphene field-effect transistors, Journal of Applied Physics, vol.111, issue.9, pp.94-313, 2012.
DOI : 10.1063/1.4712323

J. G. Champlain, On the use of the term ???ambipolar???, Applied Physics Letters, vol.99, issue.12
DOI : 10.1063/1.3641898

A. Khakifirooz, O. M. Nayfeh, and D. Antoniadis, A Simple Semiempirical Short-Channel MOSFET Current&#x2013;Voltage Model Continuous Across All Regions of Operation and Employing Only Physical Parameters, IEEE Transactions on Electron Devices, vol.56, issue.8, pp.1674-1680, 2009.
DOI : 10.1109/TED.2009.2024022

H. Wang, A. Hsu, J. Kong, D. A. Antoniadis, and T. Palacios, Compact Virtual-Source Current&#x2013;Voltage Model for Top- and Back-Gated Graphene Field-Effect Transistors, IEEE Transactions on Electron Devices, vol.58, issue.5, pp.1523-1533, 2011.
DOI : 10.1109/TED.2011.2118759

G. Vincenzi, G. Deligeorgis, F. Coccetti, M. Dragoman, L. Pierantoni et al., Extending ballistic graphene FET lumped element models to diffusive devices, Solid-State Electronics, vol.76, pp.8-12, 2012.
DOI : 10.1016/j.sse.2012.06.004

URL : https://hal.archives-ouvertes.fr/hal-00718929

S. Datta, Electronic Transport in Mesoscopic Systems, 1995.

G. Liang, N. Neophytou, D. E. Nikonov, and M. S. Lundstrom, Performance Projections for Ballistic Graphene Nanoribbon Field-Effect Transistors, IEEE Transactions on Electron Devices, vol.54, issue.4, pp.677-682, 2007.
DOI : 10.1109/TED.2007.891872

T. Fang, A. Konar, H. Xing, and D. Jena, Carrier statistics and quantum capacitance of graphene sheets and ribbons, Applied Physics Letters, vol.91, issue.9, 2007.
DOI : 10.1063/1.2776887

S. Datta, Quantum Transport: from Atom to Transistor, 2005.
DOI : 10.1017/CBO9781139164313

I. Meric, M. Y. Han, A. F. Young, B. Ozyilmaz, P. Kim et al., Current saturation in zero-bandgap, top-gated graphene field-effect transistors, Nature Nanotechnology, vol.97, issue.11, pp.654-663, 2008.
DOI : 10.1038/nnano.2008.268

J. Martin, A. Bournel, and P. Dollfus, On the Ballistic Transport in Nanometer-Scaled DG MOSFETs, IEEE Transactions on Electron Devices, vol.51, issue.7, pp.1148-1155
DOI : 10.1109/TED.2004.829904

P. Palestri, D. Esseni, S. Eminente, C. Fiegna, E. Sangiorgi et al., Understanding Quasi-Ballistic Transport in Nano-MOSFETs: Part I???Scattering in the Channel and in the Drain, IEEE Transactions on Electron Devices, vol.52, issue.12, pp.2727-2735, 2005.
DOI : 10.1109/TED.2005.859593

A. Lochtefeld and D. Antoniadis, On experimental determination of carrier velocity in deeply scaled NMOS: how close to the thermal limit?, IEEE Electron Device Letters, vol.22, issue.2, pp.95-97
DOI : 10.1109/55.902843

M. I. Katsnelson and . Geim, Electron scattering on microscopic corrugations in graphene, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.438, issue.7065, pp.195-204, 2008.
DOI : 10.1038/nature04235

W. Zhu, V. Perebeinos, M. Freitag, and P. Avouris, Carrier scattering, mobilities, and electrostatic potential in monolayer, bilayer, and trilayer graphene, Physical Review B, vol.80, issue.23, pp.1-8, 2009.
DOI : 10.1103/PhysRevB.80.235402

P. Stormer and . Kim, Measurement of Scattering Rate and Minimum Conductivity in Graphene, Physical Review Letters, vol.99, issue.24, pp.246-803, 2007.

C. Jeong, D. A. Antoniadis, and M. S. Lundstrom, On Backscattering and Mobility in Nanoscale Silicon MOSFETs, IEEE Transactions on Electron Devices, vol.56, issue.11, pp.2762-2769, 2009.
DOI : 10.1109/TED.2009.2030844

Y. Wu, D. B. Farmer, W. Zhu, S. Han, C. D. Dimitrakopoulos et al., Three-Terminal Graphene Negative Differential Resistance Devices, ACS Nano, vol.6, issue.3, pp.2610-2616, 1021.
DOI : 10.1021/nn205106z

K. N. Parrish, M. E. Ramón, S. K. Banerjee, and D. Akinwande, A Compact Model for Graphene FETs for Linear and Non-linear Circuits, pp.75-78, 2012.

G. Fiori and G. Iannaccone, Simulation of Graphene Nanoribbon Field-Effect Transistors, IEEE Electron Device Letters, vol.28, issue.8, pp.760-762, 2007.
DOI : 10.1109/LED.2007.901680

C. Canali, G. Majni, R. Minder, and G. Ottaviani, Electron and hole drift velocity measurements in silicon and their empirical relation to electric field and temperature, IEEE Transactions on Electron Devices, vol.22, issue.11, pp.1045-1047, 1109.
DOI : 10.1109/T-ED.1975.18267

S. A. Thiele, J. A. Schaefer, and F. Schwierz, Modeling of graphene metal-oxide-semiconductor field-effect transistors with gapless large-area graphene channels, Journal of Applied Physics, vol.107, issue.9, pp.94-505, 2010.
DOI : 10.1063/1.3357398

S. Thiele and F. Schwierz, Modeling of the steady state characteristics of large-area graphene field-effect transistors, Journal of Applied Physics, vol.110, issue.3, pp.34-506, 2011.
DOI : 10.1063/1.3606583

I. J. Umoh, T. J. Kazmierski, and B. M. , A Dual-Gate Graphene FET Model for Circuit Simulation&#x2014;SPICE Implementation, IEEE Transactions on Nanotechnology, vol.12, issue.3, pp.427-435, 2013.
DOI : 10.1109/TNANO.2013.2253490

W. Liu, MOSFET Models for SPICE Simulation: Including BSIM3v3 and BSIM4, p.600, 2011.
DOI : 10.1109/9780470547182

K. Wu, A. Jenkins, D. B. Valdes-garcia, Y. Farmer, A. Zhu et al., State-of-the-Art Graphene High-Frequency Electronics, Nano Letters, vol.12, issue.6, pp.3062-3069, 2012.
DOI : 10.1021/nl300904k

R. S. Kiselev, D. K. Ross, P. M. Gaskill, R. C. Campbell, K. Fitch et al., Ultra-low resistance ohmic contacts in graphene field effect transistors, Applied Physics Letters, vol.100, issue.20, pp.203-512, 2012.

F. Xia, V. Lin, Y. Wu, and P. Avouris, The origins and limits of metal???graphene junction resistance, Nature Nanotechnology, vol.5, issue.3, pp.179-84, 2011.
DOI : 10.1038/nnano.2011.6

D. Berdebes, T. Low, Y. Sui, J. Appenzeller, and M. S. Lundstrom, Substrate Gating of Contact Resistance in Graphene Transistors, IEEE Transactions on Electron Devices, vol.58, issue.11, pp.3925-3932, 2011.
DOI : 10.1109/TED.2011.2163800

S. Moon, K. Jung, K. Park, H. J. Kim, C. Lee et al., Intrinsic high-frequency characteristics of graphene layers, New Journal of Physics, vol.12, issue.11, pp.113-144, 2010.
DOI : 10.1088/1367-2630/12/11/113031

P. Blake, P. D. Brimicombe, R. R. Nair, T. J. Booth, D. Jiang et al., Graphene-Based Liquid Crystal Device, Nano Letters, vol.8, issue.6, pp.1704-1712, 2008.
DOI : 10.1021/nl080649i

G. Deligeorgis, M. Dragoman, D. Neculoiu, D. Dragoman, G. Konstantinidis et al., Microwave propagation in graphene, Applied Physics Letters, vol.95, issue.7, pp.73-107, 2009.
DOI : 10.1063/1.3202413

M. Dragoman, D. Dragoman, G. Deligiorgis, G. Konstantinidis, D. Neculoiu et al., Current oscillations in a wide graphene sheet, Journal of Applied Physics, vol.106, issue.4, p.312, 2009.
DOI : 10.1063/1.3208061

K. Nagashio, T. Nishimura, K. Kita, and A. Toriumi, Contact resistivity and current flow path at metal/graphene contact, Applied Physics Letters, vol.97, issue.14, pp.143-514, 2010.
DOI : 10.1063/1.3491804

URL : http://arxiv.org/abs/1008.1826

Y. Wu, Y. Lin, A. Bol, K. Jenkins, F. Xia et al., High-frequency, scaled graphene transistors on diamond-like carbon, Nature, vol.5, issue.7341, pp.74-82, 2011.
DOI : 10.1038/nature09979

Z. Guo, R. Dong, P. S. Chakraborty, N. Lourenco, J. Palmer et al., Record Maximum Oscillation Frequency in C-Face Epitaxial Graphene Transistors, Nano Letters, vol.13, issue.3, pp.942-949, 2013.
DOI : 10.1021/nl303587r

URL : https://hal.archives-ouvertes.fr/hal-00911215

E. M. Colombo, R. S. Vogel, R. M. Ruoff, and . Wallace, The effect of chemical residues on the physical and electrical properties of chemical vapor deposited graphene transferred to SiO2, Applied Physics Letters, vol.99, issue.12, pp.122-108, 2011.

Y. Lin, C. Jin, J. Lee, S. Jen, K. Suenaga et al., Clean Transfer of Graphene for Isolation and Suspension, ACS Nano, vol.5, issue.3, pp.2362-2370, 1021.
DOI : 10.1021/nn200105j

C. Dervos and J. Michaelides, The effect of contact capacitance on current-voltage characteristics of stationary metal contacts, IEEE Transactions on Components, Packaging, and Manufacturing Technology: Part A, vol.21, issue.4, pp.530-540, 1998.
DOI : 10.1109/95.740045

C. Gong, G. Lee, B. Shan, E. M. Vogel, R. M. Wallace et al., First-principles study of metal???graphene interfaces, Journal of Applied Physics, vol.108, issue.12, pp.123-711, 2010.
DOI : 10.1063/1.3524232

I. Khrapach, F. Withers, T. H. Bointon, D. K. Polyushkin, W. L. Barnes et al., Novel Highly Conductive and Transparent Graphene-Based Conductors, Advanced materials, pp.2844-2853, 2012.
DOI : 10.1002/adma.201200489

C. I. Bright, Multilayer ITO coatings with high transparency and low sheet resistance, Optical Interference Coatings, pp.4-6, 2001.
DOI : 10.1364/OIC.2001.FC4

H. Lee, E. Kim, W. Lee, and J. Jung, RF transmission properties of graphene monolayers with width variation, physica status solidi (RRL) -Rapid Research Letters, pp.19-21, 2012.
DOI : 10.1002/pssr.201105378

A. D. Franklin, S. Han, A. A. Bol, and W. Haensch, Effects of Nanoscale Contacts to Graphene, IEEE Electron Device Letters, vol.32, issue.8, pp.1035-1037, 2011.
DOI : 10.1109/LED.2011.2158058

A. Dimitrakopoulos, P. Grill, K. A. Avouris, and . Jenkins, Wafer-scale graphene integrated circuit, Science, vol.332, issue.6035, pp.1294-1301, 2011.

O. Habibpour, J. Vukusic, and J. Stake, A 30-GHz Integrated Subharmonic Mixer Based on a Multichannel Graphene FET, IEEE Transactions on Microwave Theory and Techniques, vol.61, issue.2, pp.841-847
DOI : 10.1109/TMTT.2012.2236434

M. E. Mills, P. Townsend, D. Castillo, S. Martin, and A. Achen, Benzocyclobutene (DVS-BCB) polymer as an interlayer dielectric (ILD) material, Microelectronic Engineering, vol.33, issue.1-4, pp.327-334, 1997.
DOI : 10.1016/S0167-9317(96)00061-5

Y. Lin, C. Jin, J. Lee, S. Jen, K. Suenaga et al., Clean Transfer of Graphene for Isolation and Suspension, ACS Nano, vol.5, issue.3, pp.2362-2370, 1021.
DOI : 10.1021/nn200105j

C. Malec, B. Elkus, and D. Davidovi´cdavidovi´c, Vacuum-annealed Cu contacts for graphene electronics, Solid State Communications, vol.151, issue.23, pp.1791-1793, 2011.
DOI : 10.1016/j.ssc.2011.08.025

A. Hsu, H. Wang, K. K. Kim, J. Kong, and T. Palacios, Impact of Graphene Interface Quality on Contact Resistance and RF Device Performance, IEEE Electron Device Letters, vol.32, issue.8, pp.1008-1010, 2011.
DOI : 10.1109/LED.2011.2155024

R. N. Simons, Coplanar Waveguide Circuits, Components, and Systems, p.464, 2001.
DOI : 10.1002/0471224758

A. Djordjevic, V. Likar-smiljanic, and T. Sarkar, Wideband frequency-domain characterization of FR-4 and time-domain causality, IEEE Transactions on Electromagnetic Compatibility, vol.43, issue.4, pp.662-667, 2001.
DOI : 10.1109/15.974647

A. Ghannam, C. Viallon, D. Bourrier, and T. Parra, Caracterisation Micro-onde de la resine epaisse SU8, Journées de Caractérisation Microondes et Matériaux, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00452485

H. Microsystems, Product Bulletin -Pi 2525, PI 2555 & PI 2574, HD MicroSystems, 2012.

G. Engen and C. Hoer, Thru-Reflect-Line: An Improved Technique for Calibrating the Dual Six-Port Automatic Network Analyzer, Microwave Theory and Techniques, pp.987-993, 2002.
DOI : 10.1109/TMTT.1979.1129778

. Duan, High-frequency self-aligned graphene transistors with transferred gate stacks, Proceedings of the National Academy of Sciences of the United States of America, vol.109, issue.29, pp.11-588, 2012.

Y. Wu, K. Jenkins, A. Valdes-garcia, D. B. Farmer, Y. Zhu et al., State-of-the-Art Graphene High-Frequency Electronics, Nano Letters, vol.12, issue.6, pp.3062-3069, 2012.
DOI : 10.1021/nl300904k

P. Wallace, The Band Theory of Graphite, Physical Review, vol.71, issue.9, pp.622-634, 1947.
DOI : 10.1103/PhysRev.71.622

C. Lee, X. Wei, J. W. Kysar, and J. , Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene, Science, vol.321, issue.5887, pp.385-393, 2008.
DOI : 10.1126/science.1157996

L. Tong, M. Mehregany, and L. G. , Mechanical properties of 3C silicon carbide, Applied Physics Letters, vol.60, issue.24, p.2992, 1992.
DOI : 10.1063/1.106786

K. Nakayama, K. Nakatani, S. Khamseh, M. Mori, and K. Maezawa, \Step Hall Measurement of InSb Films Grown on Si(111) Substrate Using InSb Bilayer, Japanese Journal of Applied Physics, vol.50, 2011.

S. Morozov, K. Novoselov, M. Katsnelson, F. Schedin, D. Elias et al., Giant Intrinsic Carrier Mobilities in Graphene and Its Bilayer, Physical Review Letters, vol.100, issue.1, pp.11-14, 2008.
DOI : 10.1103/PhysRevLett.100.016602

K. Novoselov, T. Watanabe, . K. Taniguchi, and . Geim, \Micrometerscale ballistic transport in encapsulated graphene at room temperature, Nano letters, vol.11, issue.6, pp.2396-2405, 2011.

K. Bolotin, K. Sikes, Z. Jiang, M. Klima, G. Fudenberg et al., Ultrahigh electron mobility in suspended graphene, Solid State Communications, vol.146, issue.9-10, pp.351-355, 2008.
DOI : 10.1016/j.ssc.2008.02.024

\. Guinea and . On, Charge Carrier Mobility in Suspended Graphene due to Flexural Phonons, Physical Review Letters, vol.105, issue.26, pp.266-601, 2010.

V. Umansky, M. Heiblum, Y. Levinson, J. Smet, J. et al., \MBE growth of ultra?low disorder 2DEG with mobility exceeding 35x106cm2/Vs, Journal of Crystal Growth, vol.311, issue.7, p.pp

Y. Nagai, Y. Mizuguchi, D. Murakami, and . Hobara, \Production of a 100?m?long high?quality graphene transparent conductive lm by roll?to?roll chemical vapor deposition and transfer process, Applied Physics Letters, vol.102, issue.2, pp.23-112, 2013.

G. Moddel, Z. Zhu, S. Grover, and S. Joshi, Ultrahigh speed graphene diode with reversible polarity, Solid State Communications, vol.152, issue.19, pp.1842-1845, 2012.
DOI : 10.1016/j.ssc.2012.06.013

K. Novoselov, T. Watanabe, . K. Taniguchi, and . Geim, \Micrometerscale ballistic transport in encapsulated graphene at room temperature, Nano letters, vol.11, issue.6, pp.2396-2405, 2011.

Y. Wu, V. Perebeinos, Y. Lin, T. Low, F. Xia et al., Quantum Behavior of Graphene Transistors near the Scaling Limit, Nano Letters, vol.12, issue.3, pp.1417-1440, 1021.
DOI : 10.1021/nl204088b

J. Chauhan, L. Liu, Y. Lu, and J. Guo, \A computational study of high?frequency behavior of graphene field?eect transistors, Journal of Applied Physics, vol.111, issue.9, pp.94-313, 2012.

G. Vincenzi, G. Deligeorgis, F. Coccetti, M. Dragoman, L. Pierantoni et al., Extending ballistic graphene FET lumped element models to diffusive devices, Solid-State Electronics, vol.76, pp.8-12, 2012.
DOI : 10.1016/j.sse.2012.06.004

URL : https://hal.archives-ouvertes.fr/hal-00718929

G. Fiori and G. Iannaccone, Simulation of Graphene Nanoribbon Field-Effect Transistors, IEEE Electron Device Letters, vol.28, issue.8, pp.760-762, 2007.
DOI : 10.1109/LED.2007.901680

I. Meric, M. Y. Han, A. F. Young, B. Ozyilmaz, P. Kim et al., Current saturation in zero-bandgap, top-gated graphene field-effect transistors, Nature Nanotechnology, vol.97, issue.11, pp.654-663, 2008.
DOI : 10.1038/nnano.2008.268

P. Avouris and K. A. Jenkins, \Wafer?scale graphene integrated circuit, Science, vol.332, issue.6035, pp.1294-1301, 2011.