E. De, S. Plasmoniques, .. Fdtd-2d-et-3d, /. Au, and .. Air, 67 a. Transition d'une interface double Silice/Au/Air vers une interface triple Silice/Au/Polymère/Air . 67 b. Transition d'un guide DLSPP monomode vers une interface double Silice, p.75
URL : https://hal.archives-ouvertes.fr/jpa-00215778

F. , E. Decalage, and L. De, 109 a. Décalage par une paire de modulateurs acousto-optiques, ., p.110

I. Annexe, Equation aux valeurs propres du solveur de mode ? Equations de Maxwell pour un milieu homogène

. Exemple, Zone 1 [151] [152] [153]

. Or-le-champ-Étant-unique-le-long-de-la-frontière, la dérivée selon y est égale de part et d'autre de la frontière et peut être écrite à partir d'une différence centrée

V. Annexe, Condition de stabilité numérique du code FDTD Pour assurer la stabilité numérique et éviter que le code FDTD ne diverge, certaines conditions sur les pas temporels et spatiaux doivent être respectées. Tout d'abord, pour conserver un échantillonnage suffisamment fin, les pas spatiaux sont rarement choisis supérieurs à 1

. De-la-même-manière, les équations [71] et [72] qui correspondent également à Maxwell-Ampère respectivement suivant y et z conduisent à, 0195.

R. and .. J. Anker, Biosensing with plasmonic nanosensors, Nat. Mat, vol.7, pp.442-453, 2008.

D. K. Gramotnev and S. I. Bozhevolnyi, Plasmonics beyond the diffraction limit, Nature Photonics, vol.89, issue.2, pp.83-91, 2010.
DOI : 10.1038/nphoton.2009.282

J. A. Schuller, Plasmonics for extreme light concentration and manipulation, Nature Materials, vol.91, issue.3, pp.193-204, 2010.
DOI : 10.1038/nmat2630

R. W. Wood, Diffraction gratings with controlled groove form and abnormal distribution of intensity, pp.310-317, 1912.

L. Rayleigh, Note on the remarkable case of diffraction spectra described by Prof, pp.60-65, 1907.

R. H. Ritchie, Plasma Losses by Fast Electrons in Thin Films, Physical Review, vol.106, issue.5, 1957.
DOI : 10.1103/PhysRev.106.874

R. H. Ritchie, E. T. Arakawa, J. J. Cowan, and R. N. Hamm, Surface-Plasmon Resonance Effect in Grating Diffraction, Physical Review Letters, vol.21, issue.22, pp.1530-1533, 1968.
DOI : 10.1103/PhysRevLett.21.1530

A. Otto, Excitation of non radiative surface plasma waves in silver by the method of frustrated total reflection, Zeitchrift für physik 216, pp.398-410, 1968.

E. Kretschmann and H. Raether, Notizen: Radiative Decay of Non Radiative Surface Plasmons Excited by Light, Zeitschrift f??r Naturforschung A, vol.23, issue.12, 1968.
DOI : 10.1515/zna-1968-1247

M. Fleischmann, P. J. Hendra, and A. J. Mcquillan, Raman spectra of pyridine adsorbed at a silver electrode, Chemical Physics Letters, vol.26, issue.2, pp.163-166, 1974.
DOI : 10.1016/0009-2614(74)85388-1

S. Nie and S. R. Emory, Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering, Science, vol.275, issue.5303, pp.1102-1106, 1997.
DOI : 10.1126/science.275.5303.1102

J. Homola, Surface Plasmon Resonance Sensors for Detection of Chemical and Biological Species, Chemical Reviews, vol.108, issue.2, pp.462-493, 2008.
DOI : 10.1021/cr068107d

J. and D. Torres, Nano-antennes plasmoniques pour la biophotonique, Photoniques 65, pp.37-41, 2013.

A. Bouhelier and G. Wiederrecht, Surface plasmon rainbow jets, Optics Letters, vol.30, issue.8, pp.884-886, 2005.
DOI : 10.1364/OL.30.000884

J. Grandidier, Gain-Assisted Propagation in a Plasmonic Waveguide at Telecom Wavelength, Nano Letters, vol.9, issue.8, pp.2935-2939, 2009.
DOI : 10.1021/nl901314u

URL : https://hal.archives-ouvertes.fr/hal-00472376

W. Cao, T. Huang, X. Xu, and H. E. Elsayed-ali, Localized surface plasmon resonance of single silver nanoparticles studied by dark-field optical microscopy and spectroscopy, Journal of Applied Physics, vol.109, issue.3, p.34310, 2011.
DOI : 10.1063/1.3544349

R. Charbonneau, P. Berini, E. Berolo, and E. Lisicka-shrzek, Experimental observation of plasmon???polariton waves supported by a thin metal film of finite width, Optics Letters, vol.25, issue.11, pp.844-846, 2000.
DOI : 10.1364/OL.25.000844

J. Gosciniak, Fiber-coupled dielectric-loaded plasmonic waveguides, Opt. Exp, pp.5314-5319, 2010.
DOI : 10.1364/oe.18.005314

H. A. Atwater, The Promise of Plasmonics, Scientific American, vol.296, issue.4, pp.56-63, 2007.
DOI : 10.1038/scientificamerican0407-56

H. A. Atwater and A. Polman, Plasmonics for improved photovoltaic devices, Nature Materials, vol.14, issue.3, pp.205-213, 2010.
DOI : 10.1038/nmat2629

S. Wunderlich and U. Peschel, Plasmonic enhancement of second harmonic generation on metal coated nanoparticles, Optics Express, vol.21, issue.16, pp.18611-18623, 2013.
DOI : 10.1364/OE.21.018611

T. W. Ebbesen, Extraordinary optical transmission through sub-wavelength hole arrays, Nature, vol.391, issue.6668, pp.667-669, 1998.
DOI : 10.1038/35570

J. B. Pendry, Negative Refraction Makes a Perfect Lens, Physical Review Letters, vol.85, issue.18, pp.3966-3969, 2000.
DOI : 10.1103/PhysRevLett.85.3966

L. R. Hirsch, Nanoshell-mediated near-infrared thermal therapy of tumors under magnetic resonance guidance, Proceedings of the National Academy of Sciences, vol.100, issue.23, pp.13549-13554, 2003.
DOI : 10.1073/pnas.2232479100

E. Y. Lukianova-hleb, M. B. Mutonga, and D. O. Lapotko, Cell-Specific Multifunctional Processing of Heterogeneous Cell Systems in a Single Laser Pulse Treatment, ACS Nano, vol.6, issue.12, pp.10973-10981, 2012.
DOI : 10.1021/nn3045243

R. Zia, J. A. Schuller, A. Chandran, and M. Brongersma, Plasmonics: the next chip-scale technology, Materials Today, vol.9, issue.7-8, pp.7-8, 2006.
DOI : 10.1016/S1369-7021(06)71572-3

J. Takahara, Guiding of a one-dimensional optical beam with nanometer diameter, Optics Letters, vol.22, issue.7, pp.475-477, 1997.
DOI : 10.1364/OL.22.000475

E. Ozbay, Plasmonics: Merging Photonics and Electronics at Nanoscale Dimensions, Science, vol.311, issue.5758, pp.189-193, 2006.
DOI : 10.1126/science.1114849

T. W. Ebbesen, C. Genet, and S. I. Bozhevolnyi, Surface-plasmon circuitry, Physics Today, vol.61, issue.5, pp.44-50, 2008.
DOI : 10.1063/1.2930735

URL : https://hal.archives-ouvertes.fr/hal-00350856

T. Holmgaard, Design and Characterization of Dielectric-Loaded Plasmonic Directional Couplers, Journal of Lightwave Technology, vol.27, issue.24, p.24, 2009.
DOI : 10.1109/JLT.2009.2031654

URL : https://hal.archives-ouvertes.fr/hal-00472383

A. V. Krasavin and A. V. Zayats, Three-dimensional numerical modeling of photonic integration with dielectric-loaded SPP waveguides, Physical Review B, vol.78, issue.4, p.45425, 2008.
DOI : 10.1103/PhysRevB.78.045425

A. Boltasseva, S. I. Bozhevolnyi, T. Nikolajsen, and K. Leosson, Compact Bragg gratings for long-range surface plasmon polaritons, Journal of Lightwave Technology, vol.24, issue.2, pp.5521-5528, 2006.
DOI : 10.1109/JLT.2005.862470

M. Sandtke and L. Kuipers, Slow guided surface plasmons at telecom frequencies, Nature Photonics, vol.3, issue.10, pp.573-576, 2007.
DOI : 10.1038/nphoton.2007.174

T. Holmgaard, Wavelength selection by dielectric-loaded plasmonic components, Applied Physics Letters, vol.94, issue.5, p.51111, 2009.
DOI : 10.1063/1.3078235

URL : https://hal.archives-ouvertes.fr/hal-00472384

S. I. Bozhevolnyi, Channel plasmon subwavelength waveguide components including interferometers and ring resonators, Nature, vol.85, issue.7083, pp.508-511, 2006.
DOI : 10.1038/nature04594

V. S. Volkov, Wavelength Selective Nanophotonic Components Utilizing Channel Plasmon Polaritons, Nano Letters, vol.7, issue.4, pp.880-884, 2007.
DOI : 10.1021/nl070209b

M. I. Stockman, Spasers explained, Nature Photonics, vol.86, issue.6, pp.327-329, 2008.
DOI : 10.1038/nphoton.2008.85

M. T. Hill, Lasing in metallic-coated nanocavities, Nature Photonics, vol.59, issue.10, pp.589-597, 2007.
DOI : 10.1038/nphoton.2007.171

R. F. Oulton, Plasmon lasers at deep subwavelength scale, Nature, vol.12, issue.7264, pp.629-632, 2010.
DOI : 10.1038/nature08364

M. Ambati, Observation of Stimulated Emission of Surface Plasmon Polaritons, Nano Letters, vol.8, issue.11, pp.3998-4001, 2008.
DOI : 10.1021/nl802603r

M. T. Hill, Lasing in metal-insulator-metal sub-wavelength plasmonic waveguides, Optics Express, vol.17, issue.13, pp.11107-11112, 2009.
DOI : 10.1364/OE.17.011107

R. M. Dickson and L. A. Lyon, Unidirectional Plasmon Propagation in Metallic Nanowires, The Journal of Physical Chemistry B, vol.104, issue.26, pp.6095-6098, 2000.
DOI : 10.1021/jp001435b

M. Quinten, A. Leitner, J. R. Krenn, and F. R. Aussenegg, Electromagnetic energy transport via linear chains of silver nanoparticles, Optics Letters, vol.23, issue.17, pp.1331-1333, 1998.
DOI : 10.1364/OL.23.001331

S. A. Maier, Plasmonics-A Route to Nanoscale Optical Devices, Advanced Materials, vol.13, issue.19, pp.1501-1505, 2001.
DOI : 10.1002/1521-4095(200110)13:19<1501::AID-ADMA1501>3.0.CO;2-Z

P. Berini, Plasmon-polariton waves guided by thin lossy metal films of finite width: Bound modes of asymmetric structures, Physical Review B, vol.63, issue.12, p.125417, 2001.
DOI : 10.1103/PhysRevB.63.125417

R. Zia, M. D. Selker, and M. L. Brongersma, Leaky and bound modes of surface plasmon waveguides, Physical Review B, vol.71, issue.16, p.165431, 2005.
DOI : 10.1103/PhysRevB.71.165431

J. Weeber, Near-field observation of surface plasmon polariton propagation on thin metal stripes, Physical Review B, vol.64, issue.4, p.45411, 2000.
DOI : 10.1103/PhysRevB.64.045411

URL : https://hal.archives-ouvertes.fr/hal-00472593

R. Charbonneau, N. Lahoud, G. Mattiussi, and P. Berini, Demonstration of integrated optics elements based on long-ranging surface plasmon polaritons, Optics Express, vol.13, issue.3, pp.977-984, 2005.
DOI : 10.1364/OPEX.13.000977

P. Berini, Plasmon-polariton waves guided by thin lossy metal films of finite width: Bound modes of symmetric structures, Physical Review B, vol.61, issue.15, p.15, 2000.
DOI : 10.1103/PhysRevB.61.10484

D. F. Pile, Two-dimensionally localized modes of a nanoscale gap plasmon waveguide, Applied Physics Letters, vol.87, issue.26, p.261114, 2005.
DOI : 10.1063/1.2149971

G. Veronis and S. Fan, Guided subwavelength plasmonic mode supported by a slot in a thin metal film, Optics Letters, vol.30, issue.24, pp.3359-3361, 2005.
DOI : 10.1364/OL.30.003359

L. Liu, Z. Han, and S. He, Novel surface plasmon waveguide for high integration, Optics Express, vol.13, issue.17, pp.6645-6650, 2005.
DOI : 10.1364/OPEX.13.006645

D. K. Gramotnev and D. F. Pile, Single-mode subwavelength waveguide with channel plasmon-polaritons in triangular grooves on a metal surface, Applied Physics Letters, vol.85, issue.26, p.6323, 2004.
DOI : 10.1063/1.1839283

S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, and T. W. Ebbesen, Channel Plasmon-Polariton Guiding by Subwavelength Metal Grooves, Physical Review Letters, vol.95, issue.4, p.46802, 2005.
DOI : 10.1103/PhysRevLett.95.046802

D. F. Pile, Theoretical and experimental investigation of strongly localized plasmons on triangular metal wedges for subwavelength waveguiding, Applied Physics Letters, vol.87, issue.6, p.61106, 2005.
DOI : 10.1063/1.1991990

R. F. Oulton, A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation, pp.496-500, 2008.

B. Steinberger, Dielectric stripes on gold as surface plasmon waveguides, Applied Physics Letters, vol.88, issue.9, p.94104, 2006.
DOI : 10.1063/1.2180448

T. Holmgaard and S. I. Bozhevolnyi, Theoretical analysis of dielectric-loaded surface plasmon-polariton waveguides, Physical Review B, vol.75, issue.24, p.245405, 2007.
DOI : 10.1103/PhysRevB.75.245405

T. Holmgaard, S. I. Bozhevolnyi, L. Markey, and A. Dereux, Dielectric-loaded surface plasmon-polariton waveguides at telecommunication wavelengths: Excitation and characterization, Applied Physics Letters, vol.92, issue.1, p.11124, 2008.
DOI : 10.1063/1.2825588

URL : https://hal.archives-ouvertes.fr/hal-00472379

J. Gosciniak and S. I. Bozhevolnyi, Performance of thermo-optic components based on dielectric-loaded surface plasmon polariton waveguides, Scientific Reports, vol.7, p.1803, 2013.
DOI : 10.1038/srep01803

A. V. Krasavin and A. V. Zayats, Electro-optic switching element for dielectric-loaded surface plasmon polariton waveguides, Applied Physics Letters, vol.97, issue.4, p.41107, 2010.
DOI : 10.1063/1.3464552

M. Kauranen, A. V. Zayats, and N. Plasmonics, Nonlinear plasmonics, Nature Photonics, vol.108, issue.11, pp.737-748, 2012.
DOI : 10.1038/nphoton.2012.244

T. Holmgaard, J. Gosciniak, and S. I. Bozhevolnyi, Long-range dielectric-loaded surface plasmon-polariton waveguides, Opt. Exp, pp.23009-23015, 2010.

J. Chen, Z. Li, S. Yue, and Q. Gong, Hybrid long-range surface plasmon-polariton modes with tight field confinement guided by asymmetrical waveguides, Optics Express, vol.17, issue.26, pp.23603-23609, 2009.
DOI : 10.1364/OE.17.023603

J. R. Sambles, G. W. Bradbery, and F. Z. Yang, Optical excitation of surface plasmons: An introduction, Contemporary Physics, vol.35, issue.3, pp.173-183, 1991.
DOI : 10.1103/PhysRevLett.64.784

A. D. Rakic, A. B. Djurisic, J. M. Elazar, and M. L. Majewski, Optical properties of metallic films for vertical-cavity optoelectronic devices, Applied Optics, vol.37, issue.22, pp.5271-5283, 1998.
DOI : 10.1364/AO.37.005271

G. P. Motulevich and A. A. Shubin, Influence of Fermi Surface Shape in Gold on the Optical Constants and Hall Effect, Zh. Eksp.Teor. Fiz, vol.47, p.840, 1964.

M. L. Theye, Investigation of the Optical Properties of Au by Means of Thin Semitransparent Films, Physical Review B, vol.2, issue.8, p.3060, 1970.
DOI : 10.1103/PhysRevB.2.3060

P. B. Johnson and R. W. Christy, Optical Constants of the Noble Metals, Physical Review B, vol.6, issue.12, pp.4370-4379, 1972.
DOI : 10.1103/PhysRevB.6.4370

J. H. Weaver, C. Krafka, D. W. Lynch, and E. E. Koch, Optical properties of metals, Applied Optics, vol.20, issue.7, pp.1124-1125, 1981.
DOI : 10.1364/AO.20.1124_1

E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985.

J. J. Burke, G. I. Stegeman, and T. Tamir, Surface-polariton-like waves guided by thin, lossy metal films, Physical Review B, vol.33, issue.8, pp.5186-5201, 1986.
DOI : 10.1103/PhysRevB.33.5186

E. N. Economou, Surface Plasmons in Thin Films, Physical Review, vol.182, issue.2, pp.539-554, 1969.
DOI : 10.1103/PhysRev.182.539

B. Prade, J. Y. Vinet, and A. Mysyrowics, Guided optical waves in planar heterostructures with negative dielectric constant, Physical Review B, vol.44, issue.24, p.244, 1991.
DOI : 10.1103/PhysRevB.44.13556

D. Marcuse, Theory of dielectric optical waveguides, 1974.

K. S. Chiang, Review of numerical and approximate methods for the modal analysis of general optical dielectric waveguides, Optical and Quantum Electronics, vol.139, issue.3, pp.113-134, 1994.
DOI : 10.1007/BF00384667

C. Vassallo, 1993-1995 optical mode solvers, Optical and Quantum Electron, pp.95-114, 1997.

A. B. Fallahkhair, K. S. Li, and T. E. Murphy, Vector Finite Difference Modesolver for Anisotropic Dielectric Waveguides, Journal of Lightwave Technology, vol.26, issue.11, pp.1423-1431, 2008.
DOI : 10.1109/JLT.2008.923643

M. S. Stern, Semivectorial polarized finite difference method for optical waveguides with arbitrary index profiles, Proc. Inst. Elect. Eng, vol.135, pp.56-63, 1988.

K. Bierwirth, N. Schulz, and F. Arndt, Finite-Difference Analysis of Rectangular Dielectric Waveguide Structures, IEEE Transactions on Microwave Theory and Techniques, vol.34, issue.11, pp.1104-1113, 1986.
DOI : 10.1109/TMTT.1986.1133506

P. Lüsse, Analysis of vectorial mode fields in optical waveguides by a new finite difference method, Journal of Lightwave Technology, vol.12, issue.3, pp.487-494, 1994.
DOI : 10.1109/50.285331

S. C. Eisenstat, M. C. Gursky, M. H. Schultz, and A. H. Sherman, Yale sparse matrix package II ? The nonsymmetric codes, Research Report, vol.114, 1977.

D. C. Sorencen, -Step Arnoldi Method, SIAM Journal on Matrix Analysis and Applications, vol.13, issue.1, pp.357-385, 1992.
DOI : 10.1137/0613025

V. Volkov, Long-range dielectric-loaded surface plasmon polariton waveguides operating at telecommunication wavelengths, Optics Letters, vol.36, issue.21, pp.4278-4280, 2011.
DOI : 10.1364/OL.36.004278

A. Taflove and S. C. Hagness, Computational electrodynamics: the Finite-Difference Time-Domain method, 2000.

J. L. Young and R. O. Nelson, A summary and systematic analysis of FDTD algorithms for linearly dispersive media, IEEE Antennas and Propagation Mag, pp.61-126, 2001.

E. A. Ash and G. Nicholls, Super-resolution Aperture Scanning Microscope, Nature, vol.6, issue.5357, p.510, 1972.
DOI : 10.1038/237510a0

D. W. Pohl, W. Denk, and M. Lanz, Optical stethoscopy: Image recording with resolution ??/20, Applied Physics Letters, vol.44, issue.7, p.651, 1984.
DOI : 10.1063/1.94865

U. Dürig, D. W. Pohl, and F. Rohner, Near???field optical???scanning microscopy, Journal of Applied Physics, vol.59, issue.10, p.3318, 1986.
DOI : 10.1063/1.336848

H. Gilles, S. Girard, M. Laroche, and A. Belarouci, Near-field amplitude and phase measurements using heterodyne optical feedback on solid-state lasers, Optics Letters, vol.33, issue.1, pp.1-3, 2008.
DOI : 10.1364/OL.33.000001

URL : https://hal.archives-ouvertes.fr/cea-00374432

H. Heinzelmann and D. W. , Scanning near-field microscopy, pp.89-101, 1994.
URL : https://hal.archives-ouvertes.fr/hal-00099493

G. Binnig, H. Rohrer, C. Gerber, and E. Weibel, Surface Studies by Scanning Tunneling Microscopy, Physical Review Letters, vol.49, issue.1, pp.57-61, 1982.
DOI : 10.1103/PhysRevLett.49.57

G. Binnig, H. Rohrer, C. Gerber, and E. Weibel, Tunneling through a controllable vacuum gap, Applied Physics Letters, vol.40, issue.2, 1982.
DOI : 10.1063/1.92999

R. C. Reddick, New form of scanning optical microscopy, Physical Review B, vol.39, issue.1, 1989.
DOI : 10.1103/PhysRevB.39.767

A. J. Meixner, M. A. Bopp, and G. Tarrach, Direct measurement of standing evanescent waves with PSTM, Appl. Opt, vol.33, p.34, 1994.

G. A. Valaskovic, M. Holton, and G. H. Morrison, Parameter control, characterization, and optimization in the fabrication of optical fiber near-field probes, Applied Optics, vol.34, issue.7, pp.1215-1228, 1995.
DOI : 10.1364/AO.34.001215

D. W. Pohl, U. C. Fischer, and U. T. Dürig, Scanning near-field optical microscopy (SNOM), Journal of Microscopy, vol.3, issue.152, pp.853-861, 1988.

F. Zenhausern, Y. Martin, and H. K. Wickramasinghe, Scanning Interferometric Apertureless Microscopy: Optical Imaging at 10 Angstrom Resolution, Science, vol.269, issue.5227, pp.1083-1085, 1995.
DOI : 10.1126/science.269.5227.1083

S. Shinohara, A. Mochizuki, H. Yoshida, and M. Sumi, Laser Doppler velicometer using the sef-mixing effect of a semiconductor laser diode, Appl. Opt, vol.25, p.9, 1986.

E. Lacot, R. Day, and F. Stoeckel, Laser optical feedback tomography, Optics Letters, vol.24, issue.11, pp.744-746, 1999.
DOI : 10.1364/OL.24.000744

P. Bharadwaj, A. Bouhelier, and L. Novotny, Electrical Excitation of Surface Plasmons, Physical Review Letters, vol.106, issue.22, p.226802, 2011.
DOI : 10.1103/PhysRevLett.106.226802

E. Kretschmann and H. Raether, Notizen: Radiative Decay of Non Radiative Surface Plasmons Excited by Light, Zeitschrift f??r Naturforschung A, vol.23, issue.12, 1968.
DOI : 10.1515/zna-1968-1247

A. Otto, Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection, Zeitschrift f??r Physik A Hadrons and nuclei, vol.216, issue.4, p.398, 1968.
DOI : 10.1007/BF01391532

R. H. Ritchie, E. T. Arakawa, J. J. Cowan, and R. N. Hamm, Surface-Plasmon Resonance Effect in Grating Diffraction, Physical Review Letters, vol.21, issue.22, pp.1530-1533, 1968.
DOI : 10.1103/PhysRevLett.21.1530

J. Moreland, A. Adams, and P. K. Hansma, Efficiency of light emission from surface plasmons, Physical Review B, vol.25, issue.4, pp.2297-2300, 1982.
DOI : 10.1103/PhysRevB.25.2297

R. M. Dickson and L. A. Lyon, Unidirectional Plasmon Propagation in Metallic Nanowires, The Journal of Physical Chemistry B, vol.104, issue.26, pp.6095-6098, 2000.
DOI : 10.1021/jp001435b

B. Hecht, Local Excitation, Scattering, and Interference of Surface Plasmons, Physical Review Letters, vol.77, issue.9, p.9, 1996.
DOI : 10.1103/PhysRevLett.77.1889

G. I. Stegeman, R. F. Wallis, and A. A. Maradudin, Excitation of surface polaritons by end-fire coupling, Optics Letters, vol.8, issue.7, pp.386-388, 1998.
DOI : 10.1364/OL.8.000386

G. Veronis and S. Fan, Theoretical investigation of compact couplers between dielectric slab waveguides and two-dimensional metal-dielectric-metal plasmonic waveguides, Optics Express, vol.15, issue.3, pp.1211-1221, 2007.
DOI : 10.1364/OE.15.001211

B. Lamprecht, Surface plasmon propagation in microscale metal stripes, Applied Physics Letters, vol.79, issue.1, 2001.
DOI : 10.1063/1.1380236

P. Guiset, Contrôle optique des cathodes froides à base de nanotubes de carbone pour les sources THz, thèse de doctorat de l'école polytechnique, spécialité Physique

X. Li, Integrated plasmonic semi-circular launcher for dielectric-loaded surface plasmon-polariton waveguide, Optics Express, vol.19, issue.7, pp.6541-6548, 2011.
DOI : 10.1364/OE.19.006541

Z. Liu, Focusing Surface Plasmons with a Plasmonic Lens, Nano Letters, vol.5, issue.9, pp.1726-1729, 2005.
DOI : 10.1021/nl051013j

G. M. Lerman, A. Yanai, and U. Levy, Demonstration of Nanofocusing by the use of Plasmonic Lens Illuminated with Radially Polarized Light, Nano Letters, vol.9, issue.5, pp.2139-2143, 2009.
DOI : 10.1021/nl900694r

P. Eaton and P. West, Atomic Force Microscopy, 2010.
DOI : 10.1093/acprof:oso/9780199570454.001.0001

URL : https://hal.archives-ouvertes.fr/hal-00356780

E. Bourillot, Analysis of photon-scanning tunneling microscope images of inhomogeneous samples: determination of the local refractive index of channel waveguides, Journal of the Optical Society of America A, vol.12, issue.1, pp.95-106, 1995.
DOI : 10.1364/JOSAA.12.000095

E. Betzig, P. L. Finn, and J. S. Weiner, Combined shear force and near???field scanning optical microscopy, Applied Physics Letters, vol.60, issue.20, p.20, 1992.
DOI : 10.1063/1.106940

R. Toledo-crow, P. C. Yang, Y. Chen, and M. , Vaez-Iravani, Near-field differential scanning optical microscope with atomic force regulation, Appl. Phys. Lett, vol.60, p.24, 1992.

K. Karrai and R. D. Grober, Piezoelectric tip???sample distance control for near field optical microscopes, Applied Physics Letters, vol.66, issue.14, pp.1842-1844, 1994.
DOI : 10.1063/1.113340

M. Lalande, Etude d'un microscope optique en champ proche, 2012.

M. J. Rudd, A laser Doppler velocimeter employing the laser as a mixer-oscillator, Journal of Physics E: Scientific Instruments, vol.1, issue.7, pp.723-726, 1968.
DOI : 10.1088/0022-3735/1/7/305

S. Shinohara, A. Mochizuki, H. Yoshida, and M. Sumi, Laser Doppler velocimeter using the self-mixing effect of a semiconductor laser diode, Applied Optics, vol.25, issue.9, pp.1417-1419, 1986.
DOI : 10.1364/AO.25.001417

E. Lacot, R. Day, and F. Stoeckel, Laser optical feedback tomography, Optics Letters, vol.24, issue.11, pp.744-476, 1999.
DOI : 10.1364/OL.24.000744

E. Lacot, R. Day, and F. Stoeckel, Coherent laser detection by frequency-shifted optical feedback, Physical Review A, vol.64, issue.4, p.43815, 2001.
DOI : 10.1103/PhysRevA.64.043815

N. F. Van-hulst, F. B. Segerink, and ,. B. Bölger, High resolution imaging of dielectric surfaces with an evanescent field optical microscope, Optics Communications, vol.87, issue.5-6, pp.212-218, 1992.
DOI : 10.1016/0030-4018(92)90461-Y

K. Otsuka, Effects of external perturbations on LiNdP 4 O 12 lasers, IEEE J. Quantum Electron. QE, p.15, 1979.

L. Kervevan, Etude théorique et expérimentale de la rétro-injection optique sur les lasers à solide, Thèse de doctorat, 2006.

O. Hugon, E. Lacot, and F. Stoeckel, Submicrometric displacement and vibration measurement using optical feedback in a fibre laser, Fiber and integrated optics 22, pp.283-288, 2003.

M. Laroche, Doppler velocimetry using self-mixing effect in a short Er???Yb-doped phosphate glass fiber laser, Applied Physics B, vol.22, issue.5, pp.603-607, 2005.
DOI : 10.1007/s00340-005-1738-0

K. K. Wong and R. M. De-la-rue, Electro-optic-waveguide frequency translator in LiNbO_3 fabricated by proton exchange, Optics Letters, vol.7, issue.11, pp.546-548, 1982.
DOI : 10.1364/OL.7.000546

M. Laroche, Serrodyne optical frequency shifting for heterodyne self-mixing in a distributed-feedback fiber laser, Optics Letters, vol.33, issue.23, pp.2746-2748, 2008.
DOI : 10.1364/OL.33.002746

URL : https://hal.archives-ouvertes.fr/cea-00344373

L. Stern, Near field phase mapping exploiting intrinsic oscillations of aperture NSOM probe, Optics Express, vol.19, issue.13, pp.12014-12020, 2010.
DOI : 10.1364/OE.19.012014

Q. Li, M. T. Do, I. Ledoux-rak, and N. D. Lai, A novel concept for three-dimensional optical addressing by ultralow one-photon absorption method

M. T. Do, Submicrometer 3D structures fabrication enabled by one-photon absorption direct laser writing, Optics Express, vol.21, issue.18, pp.20964-20973, 2013.
DOI : 10.1364/OE.21.020964

URL : https://hal.archives-ouvertes.fr/hal-00857666