}. Sur-un-tronçon-du-conduit, Des mesures ontétéontété réalisées en plaçant un diaphragme dans ce tronçon. Les résultats ont permis d'´ etudier l'influence de certains paramètres, tels la présence d'unécoulementunécoulement, la vitesse de l'´ ecoulement et la présence ou non d'un chanfrein . Les mesures ont montré que le diaphragme seul présente des propriétés passives symétriques (Figure 6.6 et Figure 6.7) La présence de l'´ ecoulement modifie ces résultats (Figure 6.8 et Figure 6.9), ce qui s'explique par la convection des ondes acoustiques par l'´ ecoulement, Ce chapitre a présenté le banc de mesure développé au sein du laboratoire permettant de déterminer les propriétés acoustiques dites passives Lorsque la vitesse d'´ ecoulement augmente, les niveaux de pressions rayonnés en aval augmentent (Figure 6.13), ce qui est en accord avec les résultats de Nelson [49] qui montrent que la pression propagée pour le mode plan est proportionnellèproportionnellè a U 4

. Enfin, optique de réduire les nuisances acoustiques, les mesures ont montré qu'ií etait préférable de chanfreiner le diaphragme, la puissance rayonnéé etant alors légérement plus faible. Des calculs ontétéontété réalisés pour deux configurations de mesures (diaphragme avec et sans chanfrein, en utilisant la méthode de calcul développée au chapitre 4

. Néanmoins, Ceci est en partie dû au fait que les résultats sont très oscillants, les calculs du champs source n'´ etant réalisé qu'une seule fois. Une voie d'amélioration serait de réaliser plusieurs calculs du champ source CFD pour les moyenner et lisser les résultats finaux. Unedeuxì eme voie d'amélioration serait de réaliser un calcul tridimensionnel complet, qui pourrait permettre d'obtenir des résultats sensiblements plus précis

. Ceci, Néanmoins, en pratique le champ source est obtenu par un calcul CFD incompressible Dans le cas d'unécoulement unécoulement en conduite, le calcul du terme dipolairè a partir de la pression pariétale incompressible aboutitàaboutità desécartsdesécarts notables des niveaux de pression. Durant ce travail de thèse, une méthode innovante a ´ eté développée visantàvisantà réunir les avantages de chaque méthode

M. Abom, H. Boden, and J. Lavrentejv, Source characterisation of fans using acoustic 2-ports models, Proceedings of Fan noise 92, pp.359-364, 1992.

E. Achenbach, Distribution of local pressure and skin friction around a circular cylinder in crow-flow up to re = 5.10 6, Journal of Fluid Physics, vol.34, pp.625-639, 1968.

C. Bailly and C. Bogey, Contributions of Computational Aeroacoustics to Jet Noise Research and Prediction, International Journal of Computational Fluid Dynamics, vol.88, issue.6, pp.481-491, 2004.
DOI : 10.1016/S0022-460X(86)80170-5

C. Bailly, C. Bogey, and X. Gloerfelt, Some useful hybrid approaches for predicting aerodynamic noise, Comptes Rendus M??canique, vol.333, issue.9, pp.666-675, 2005.
DOI : 10.1016/j.crme.2005.07.006

G. K. Batchelor, An introduction to fluid dinamycs, 1981.

J. Berland, C. Bogey, O. Marsden, and C. Bailly, High-order, low dispersive and low dissipative explicit schemes for multiple-scale and boundary problems, Journal of Computational Physics, vol.224, issue.2, pp.637-662, 2007.
DOI : 10.1016/j.jcp.2006.10.017

S. Bloor, The transition to turbulence in the wake of a circular cylinder, Journal of Fluid Mechanics, vol.11, issue.02, pp.290-304, 1964.
DOI : 10.1143/JPSJ.11.702

B. Cantwell and D. Coles, An experimental study of entrainment and transport in the turbulent near wake of a circular cylinder, Journal of Fluid Mechanics, vol.18, issue.-1, pp.321-374, 1983.
DOI : 10.1017/S0022112072000679

S. Caro, Y. Detandt, and J. Manera, Validation of a New Hybrid CAA Strategy and Application to the Noise Generated by a Flap in a Simplified HVAC Duct, 15th AIAA/CEAS Aeroacoustics Conference (30th AIAA Aeroacoustics Conference), 2008.
DOI : 10.2514/6.2009-3352

L. Casarsa and P. Giannattasio, Three-dimensionnal features of the turbulent flow through a planar sudden expansion, Physics of Fluids, vol.20, 2008.

W. Cherdron, F. Durst, and J. H. Withelaw, Asymmetric flows and instabilities in symmetric ducts with sudden expansions, Journal of Fluid Mechanics, vol.18, issue.01, pp.13-31, 1978.
DOI : 10.1016/0376-0421(75)90013-5

D. G. Crighton, A. Dowling, J. E. Williams, M. Heckl, and F. G. Leppington, Moderne methods in analytical acoustics : Lectures notes, 1992.

N. Curle, The Influence of Solid Boundaries upon Aerodynamic Sound, Proc. R. Soc, pp.505-514, 1955.
DOI : 10.1098/rspa.1955.0191

L. Khezzar, S. R. De-zilwa, and J. H. Whittelaw, Flows through plane sudden expansions Acoustic radiation from a turbulent fluid containing foreign bodies, Int Jr. Numerical Methods in Fluids Proceedings of the Royal Society, vol.32, pp.313-329129, 1960.

F. Durst, A. Melling, and J. H. Whitelaw, Low Reynolds number flow over a plane symmetric sudden expansion, Journal of Fluid Mechanics, vol.4, issue.01, pp.111-128, 1974.
DOI : 10.1002/aic.690180405

F. Durst, J. C. Pereira, and C. Tropea, The plane Symmetric sudden-expansion flow at low Reynolds numbers, Journal of Fluid Mechanics, vol.84, issue.-1, pp.567-581, 1993.
DOI : 10.1016/0045-7825(79)90034-3

M. Escudier, P. J. Oliveira, and R. J. Poole, Turbulent flow through a plane sudden expansion of modest aspect ratio, Physics of Fluids, vol.14, issue.10, pp.3641-3654, 2002.
DOI : 10.1063/1.1504711

R. M. Fearn, T. Mullin, and K. A. Cliffe, Nonlinear flow phenomena in a symmetric sudden expansion, Journal of Fluid Mechanics, vol.84, issue.-1, pp.595-608, 1990.
DOI : 10.1017/S0022112074002035

J. Ffowcs-williams and D. L. Hawkings, The influence of solid boundaries upon aerodynamic sound, Pro.Roy.Soc, A, vol.231, pp.505-514, 1969.

S. T. Fleischmann and D. W. Sallet, Vortex shedding from cylinders and the resulting unsteady forces and flow phenomenon. Shock and Vibration Digest, pp.9-22, 1981.

J. B. Freund, Direct numerical simulation of the noise from a mach 0.9 jet. Joint Fluids Engineering Conference, 1999.

J. B. Freund, Noise sources in a low-Reynolds-number turbulent jet at Mach 0.9, Journal of Fluid Mechanics, vol.438, pp.277-305, 2001.
DOI : 10.1017/S0022112001004414

J. B. Freund, S. A. Lele, and P. Moin, Direct numerical simulation of a mach number 1.92 turbulent jet and its sound field, pp.2023-2031, 2000.

R. J. Gibert, Etudes des fluctuations de pression dans les circuits parcourus par des fludies, 1976.

X. Gloerfelt and P. Lafon, Direct computation of the noise induced by a turbulent flow through a diaphragm in a duct at low Mach number, Computers & Fluids, vol.37, issue.4, pp.388-401, 2008.
DOI : 10.1016/j.compfluid.2007.02.004

URL : https://hal.archives-ouvertes.fr/hal-00086938

X. Gloerfelt, F. Perot, C. Bailly, and D. Juve, Flow-induced cylinder noise formulated as a diffraction problem for low Mach numbers, Journal of Sound and Vibration, vol.287, issue.1-2, pp.129-151, 2005.
DOI : 10.1016/j.jsv.2004.10.047

C. Guilloud, P. Martinez-lera, C. Zacharopoulos, and C. Schram, Optimization of hybrid aeroacoustic computations of an industrial confined flow through mesh coarseting techniques

C. Guilloud, C. Schram, and J. Golliard, Achieving Accurate and Efficient Prediction of HVAC Diaphragm Noise at Realistic Reynolds and Mach Numbers, 15th AIAA/CEAS Aeroacoustics Conference (30th AIAA Aeroacoustics Conference), p.15, 2009.
DOI : 10.2514/6.2009-3304

I. Harari, I. Patlashenko, and D. Givoli, Dirichlet-to-Neumann Maps for Unbounded Wave Guides, Journal of Computational Physics, vol.143, issue.1, pp.200-223, 1998.
DOI : 10.1006/jcph.1998.5960

G. C. Hofmans, R. J. Boot, P. P. Durrieu, Y. Auregan, and A. Hirschberg, Aeroacoustics response of a slit-shaped diaphragm in a pipe at low helmhotz number.1 : Quasi-steady results, Journal of sound and vibration, vol.244

T. J. Horvath, G. S. Jones, and P. C. Stainback, Coherent Shedding from a Circular Cylinder at Critical, Supercritical, and Transcritical Reynolds Numbers, SAE Technical Paper Series, 1986.
DOI : 10.4271/861768

M. S. Howe, Theroy of vortex sound, p.36

G. R. Kirchhoff, Towards a theory of light rays, Annalen der Physik und Chemie, vol.18, pp.663-695, 1883.

L. S. Kovasznay, Hot-Wire Investigation of the Wake behind Cylinders at Low Reynolds Numbers, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, vol.198, issue.1053, pp.174-190, 1949.
DOI : 10.1098/rspa.1949.0093

J. Lavrentejv, M. Abom, and H. Bodén, A measurement method for determining the source data of acoustic two-port sources, Journal of Sound and Vibration, vol.183, issue.3, pp.517-531, 1995.
DOI : 10.1006/jsvi.1995.0268

S. Léwy, Acoustique industrielle et aéroacoustique, Collectionacoustique SFA, Herm` es Science, 2001.

S. Léwy, C. Polacsek, and G. Leroy, Modélisation et simulation numérique des sources sonores et de leur rayonnement. TiréTiré? Tiré?A? a part, 2010.

C. Bogey, O. Mardsen, and C. Bailly, High-order curvilinear simulations of flows around non-cartesians bodies, Journal of Computational Acoustics, vol.13, pp.731-748, 2005.

O. Mardsen, C. Bogey, and C. Bailly, High-order curvilinear simulations of flows around non-cartesians bodies, AIAA Journal, vol.46, pp.874-883, 2008.

P. Martinez-lera, Modeling of aerodynamic noise production and flow-acoustic feedback for wall-bounded low mach number flows, 2010.

P. Martinez-lera and C. Schram, Correction techniques for the truncation of the source field in acoustic analogies, The Journal of the Acoustical Society of America, vol.124, issue.6, pp.3421-3429, 2008.
DOI : 10.1121/1.2999555

C. L. Morfey, Sound transmission and generation in ducts with flow, Journal of Sound and Vibration, vol.14, issue.1, pp.37-55, 1971.
DOI : 10.1016/0022-460X(71)90506-2

C. L. Morfey, S. V. Sorokin, and G. Gabard, The effects of viscosity on sound radiation near solid surfaces, Journal of Fluid Mechanics, vol.690, pp.441-460, 2012.
DOI : 10.1098/rspa.1955.0191

P. A. Nelson and C. L. Morfey, Aerodynamic sound production in low speed flow ducts, Journal of Sound and Vibration, vol.79, issue.2, pp.263-289, 1981.
DOI : 10.1016/0022-460X(81)90372-2

B. R. Noak, M. Konig, and H. Eckelmann, Three???dimensional stability analysis of the periodic flow around a circular cylinder, Physics of Fluids A: Fluid Dynamics, vol.5, issue.6, p.1279, 1994.
DOI : 10.1063/1.858616

A. Oberai, F. Ronaldkin, and T. Hughes, Computational procedures for determining structural-acoustic response due to hydrodynamic sources, Computer Methods in Applied Mechanics and Engineering, vol.190, issue.3-4, pp.345-361, 2000.
DOI : 10.1016/S0045-7825(00)00206-1

D. Obrist and L. Kleiser, The influence of spatial domain truncation on the prediction of acoustic far-fields. AIAA Paper -Aeroacoustics Conference and Exhibit, 13th), 2007. [53] M. Piellard. A hybrid mehod for computational AerAcoustics applied to confined geometries, 2008.

A. Powell, Theroy of vortex sound, pp.177-195, 1964.

A. Prasad and C. H. Williamson, The instability of the shear layer separating from a bluff body, Journal of Fluid Mechanics, vol.333, pp.375-402, 1997.
DOI : 10.1017/S0022112096004326

A. Roskho, Experiments on the flow past a circular cylinder at very high reynolds number, Journal of Fluid Mechanics, vol.10, pp.345-356, 1961.

P. Sagaut, IntroductionàIntroductionà la simulation des grandeséchellesgrandeséchelles pour lesécoulementslesécoulements de fluides incompressibles, 1998.

S. Sri-poernomo, Propagation acoustique dans les conduits?A?conduits? conduits?A? a parois traitées en présence d'´ ecoulement : modélisation par la méthode desélémentsdeséléments finis, 2008.

C. Schram, A boundary element extension of Curle's analogy for non-compact geometries at low-Mach numbers, Journal of Sound and Vibration, vol.322, issue.1-2, pp.264-281, 2009.
DOI : 10.1016/j.jsv.2008.11.011

C. Schram, A boundary element extension of Curle's analogy for non-compact geometries at low-Mach numbers, Journal of Sound and Vibration, vol.322, issue.1-2, pp.264-281, 2009.
DOI : 10.1016/j.jsv.2008.11.011

C. Schram, J. Antoine, and A. Hirschberg, Calculation of Sound Scattering Using Curle's Analogy for Non-Compact Bodies, 11th AIAA/CEAS Aeroacoustics Conference, p.2836, 2005.
DOI : 10.2514/6.2005-2836

C. Schram, P. Martinez-lera, and M. Tournour, Two-dimensional in-duct vortex leapfropping as a validation benchmark for internal aeroacoustics, pp.2836129-151, 2007.

A. Sitel, J. M. Ville, and F. Foucart, Multiload procedure to measure the acoustic scaterring matrix of a duct discontinuity for higher order mode propagation conditions, pp.2478-2490, 2006.

R. Snarski, Flow over yawed circular cylinders: Wall pressure spectra and flow regimes, Physics of Fluids, vol.16, issue.2, pp.344-359, 2004.
DOI : 10.1063/1.1627764

H. Trabelsi, Banc d'essai et procédure pour la caractérisation desélémentsdeséléments d'un SCA par un système

J. Utzmann, A. Birkefeld, and C. Munz, Bulding blocks for direct aeroacoustic simulations based on domain decompositions, 2008.
DOI : 10.2514/6.2008-3004

F. Van-herpe, D. G. Crighton, and P. Lafon, Noise generation by a turbulent flow in a duct obstructed by a diaphragm, CEAS/AIAA Joint Aeroacoustics Conference, 1995.

J. M. Ville and F. Foucart, Experimental setup for measurment of acosutic power dissipation in lined ducts for higher order modes propagation with air mean-flow conditions, pp.1742-1748, 2003.

M. Wang, Computational aeroacoustics, chap Aeroacoustic computation using large eddy simulation and acoustic analogy. Institute for Fluid dynamics, 2006.

M. Wang, S. Lele, and P. Moin, Computation of quadrupole noise using acoustic analogy, AIAA Journal, vol.34, issue.11, pp.2247-2254, 1996.
DOI : 10.2514/3.13387

M. Watrigant, C. Picard, E. Perrey-debain, and C. Prax, Formulation adaptée de l'analogie acoustique de lightill-curle en zone source. 19ème Congrès Français de Mécanique, 2009.

C. H. Williamson, Vortex Dynamics in the Cylinder Wake, Annual Review of Fluid Mechanics, vol.28, issue.1, pp.477-539, 1996.
DOI : 10.1146/annurev.fl.28.010196.002401