C. Le and C. Bernier, AvailableComparison and Evaluation of Industrial Wireless Sensor Network Standards ISA100.11a and WirelessHARTDesigning a ZigBee-ready IEEE 802.15.4-compliant radio transceiver RFDesign Magazine http://rfdesign.comIEEE Standard for Local and metropolitan area networks--Part 15.4: Low-Rate Wireless Personal Area Networks (LR-WPANs) Amendment 1: MAC sublayerAn ultra low power 130nm CMOS direct conversion transceiver for IEEE802.15.4Bandpass sampling Rx system design issues and architecture comparison for low power RF standards Solid-State Circuits, Chapitre 5. Bibliographie générale 1.1. Références bibliographique citées [1] Zigbee Alliance Consorsium Radio Frequency Integrated Circuits Symposium Circuits and Systems (ISCAS Proceedings of 2010 IEEE International Symposium onInternational Technology Roadmap For Semiconductors (I.T.R.S), pp.42-504, 1997.

A. Matsuzawa, RF-SoC-expectations and required conditions Microwave Theory and Techniques, IEEE Transactions on, vol.50, pp.245-253, 2002.

J. L. Jiménez, AMS and RF technology roadmap Available, 2004.

J. Borremans, A Bondpad-Size Narrowband LNA for Digital CMOS, 2007 IEEE Radio Frequency Integrated Circuits (RFIC) Symposium, pp.677-680, 2007.
DOI : 10.1109/RFIC.2007.380973

J. Borremans, A Fully Integrated 7.3 kV HBM ESD-Protected Transformer- Based 4.5–6 GHz CMOS LNA Solid-State Circuits, IEEE Journal, vol.44, pp.344-353, 2009.

W. Chuan, A Wideband Predictive Double-Pi Equivalent-Circuit Model for On-Chip Spiral Inductors, Electron Devices IEEE Transactions on, vol.56, pp.609-619, 2009.

W. Da-ke, A Low-Voltage and Low-Power CMOS LNA Using Forward- Body-Bias NMOS at 5GHz," in Solid-State and Integrated Circuit Technology, ICSICT '06. 8th International Conference on, pp.1658-1660, 2006.

B. D. Tellegen, The Gyrator : A New Electric Network Element, Phillips Research Reports, vol.3, pp.81-101, 1949.

A. Thanachayanont and A. Payne, VHF CMOS integrated active inductor, Electronics Letters, vol.32, issue.11, pp.999-1000, 1996.
DOI : 10.1049/el:19960669

H. Chao-chih, Improved quality-factor of 0.18-/spl mu/m CMOS active inductor by a feedback resistance design Microwave and Wireless Components Letters, pp.467-469, 2002.

M. M. Reja, A CMOS 2.0-11.2 GHz UWB LNA using active inductor circuit, Circuits and Systems, pp.2266-2269, 2008.

W. Zhuo, Programmable low noise amplifier with active-inductor load, ISCAS '98. Proceedings of the 1998 IEEE International Symposium on Circuits and Systems (Cat. No.98CH36187), pp.365-368, 1998.
DOI : 10.1109/ISCAS.1998.698858

L. L. Chun, 4-GHz CMOS Tunable Image-Rejection Low-Noise Amplifier with Active Inductor, Circuits and Systems APCCAS 2006. IEEE Asia Pacific Conference on, pp.1679-1682, 2006.

A. Sunca, A Wide Tunable Bandpass Filter Design Based on CMOS Active Inductor, Ph.D. Research in Microelectronics and Electronics (PRIME), 2012 8th Conference on, pp.1-4, 2012.

A. Thanachayanont, A 1.5-V high-Q CMOS active inductor for IF/RF wireless applications, IEEE APCCAS 2000. 2000 IEEE Asia-Pacific Conference on Circuits and Systems. Electronic Communication Systems. (Cat. No.00EX394), pp.654-657, 2000.
DOI : 10.1109/APCCAS.2000.913605

L. Chun-lee, Compact, High-Q, and Low-Current Dissipation CMOS Differential Active Inductor Microwave and Wireless Components Letters, IEEE, vol.18, pp.683-685, 2008.

G. F. Szczepkowski and . Ronan, Negative resistance generation in degenerated gyrator, Royal Irish Academy Colloquium on Emerging Trends in Wireless Communications, 2008.

A. Thanachayanont and S. S. Ngow, Low voltage high Q VHF CMOS transistor-only active inductor, The 2002 45th Midwest Symposium on Circuits and Systems, 2002. MWSCAS-2002., pp.552-555, 2002.
DOI : 10.1109/MWSCAS.2002.1187096

H. Xiao and R. Schaumann, A 5.4-GHz high-Q tunable active-inductor bandpass filter in standard digital CMOS technology, Analog Integrated Circuits and Signal Processing, vol.39, issue.12, pp.1-9, 2007.
DOI : 10.1007/s10470-007-9040-1

URL : https://hal.archives-ouvertes.fr/hal-00903153

S. Vema-krishnamurthy, Noise-Cancelling CMOS Active Inductor and Its Application in RF Band-Pass Filter Design, International Journal of Microwave Science and Technology, vol.840, issue.2, 2010.
DOI : 10.1109/JSSC.2008.920335

G. Szczepkowski and R. Farrell, Noise and dynamic range of CMOS degenerated active inductor resonators, 2009 European Conference on Circuit Theory and Design, pp.595-598, 2009.
DOI : 10.1109/ECCTD.2009.5275052

A. A. Abidi, Noise in active resonators and the available dynamic range Circuits and Systems I: Fundamental Theory and Applications, IEEE Transactions on, vol.39, pp.296-299, 1992.

L. Chun-lee, CMOS Active Inductor Linearity Improvement Using Feed- Forward Current Source Technique Microwave Theory and Techniques, IEEE Transactions on, vol.57, pp.1915-1924, 2009.

W. Sansen, Distortion in elementary transistor circuits Circuits and Systems II: Analog and Digital Signal Processing, IEEE Transactions on, vol.46, pp.315-325, 1999.

F. Bruccoleri, Wide-band CMOS low-noise amplifier exploiting thermal noise canceling Solid-State Circuits, IEEE Journal, vol.39, pp.275-282, 2004.

I. R. Chamas and S. Raman, Analysis, Design, and <formula formulatype="inline"> <tex Notation="TeX">$X$</tex></formula>-Band Implementation of a Self-Biased Active Feedback <formula formulatype="inline"><tex Notation="TeX">$G_{m}$</tex> </formula>-Boosted Common-Gate CMOS LNA, IEEE Transactions on Microwave Theory and Techniques, vol.57, issue.3, pp.542-551, 2009.
DOI : 10.1109/TMTT.2009.2013297

A. Madan, Fully Integrated Switch-LNA Front-End IC Design in CMOS: A Systematic Approach for WLAN Solid-State Circuits, IEEE Journal, vol.46, pp.2613-2622, 2011.

. Trung-kien, CMOS low noise amplifier design optimization technique, The 2004 47th Midwest Symposium on Circuits and Systems, 2004. MWSCAS '04., 2004.
DOI : 10.1109/MWSCAS.2004.1353928

P. J. Gray, S. H. Lewis, and R. G. Meyer, Analysis And Design Of Analog Integrated Circuits, 2001.

B. G. Perumana, Resistive-Feedback CMOS Low-Noise Amplifiers for Multiband Applications, IEEE Transactions on Microwave Theory and Techniques, vol.56, issue.5, pp.1218-1225, 2008.
DOI : 10.1109/TMTT.2008.920181

H. Darabi and A. A. Abidi, A 4.5-mW 900-MHz CMOS receiver for wireless paging, IEEE Journal of Solid-State Circuits, vol.35, issue.8, pp.1085-1096, 2000.
DOI : 10.1109/4.859497

M. S. Vidojkovic, J. Van-der-tang, P. Baltus, and A. , A broadband, inductorless LNA for multi-standard aplications, 2007 18th European Conference on Circuit Theory and Design, pp.260-263, 2007.
DOI : 10.1109/ECCTD.2007.4529586

J. Borremans, Low-Area Active-Feedback Low-Noise Amplifier Design in Scaled Digital CMOS, IEEE Journal of Solid-State Circuits, vol.43, issue.11, pp.2422-2433, 2008.
DOI : 10.1109/JSSC.2008.2005434

A. Bevilacqua, Design of broadband inductorless LNAs in ultra-scaled CMOS technologies, 2008 IEEE International Symposium on Circuits and Systems, pp.1300-1303, 2008.
DOI : 10.1109/ISCAS.2008.4541664

R. Ramzan, A 1.4V 25mW inductorless wideband LNA in 0.13mum CMOS, IEEE International Solid-State Circuits Conference, 2007.

S. B. Wang, Design of a Sub-mW 960-MHz UWB CMOS LNA, IEEE Journal of Solid-State Circuits, vol.41, issue.11, pp.2449-2456, 2006.
DOI : 10.1109/JSSC.2006.883321

W. Sanghyun, A 3.6 mW differential common-gate CMOS LNA with positivenegative feedback, IEEE International Solid-State Circuits Conference, 2009.

A. Liscidini, Analysis and Design of Configurable LNAs in Feedback Common-Gate Topologies, IEEE Transactions on Circuits and Systems II: Express Briefs, vol.55, issue.8, pp.733-737, 2008.
DOI : 10.1109/TCSII.2008.922431

S. A. Saleh, A low-power differential common-gate LNA, 2008 51st Midwest Symposium on Circuits and Systems, pp.137-140, 2008.
DOI : 10.1109/MWSCAS.2008.4616755

W. Hongrui, A Wideband Inductorless LNA With Local Feedback and Noise Cancelling for Low-Power Low-Voltage Applications, IEEE Transactions on Circuits and Systems I: Regular Papers, vol.57, issue.8, 2010.
DOI : 10.1109/TCSI.2010.2042997

L. Xiaoyong, Gm-boosted' common-gate LNA and differential colpitts VCO/QVCO in 0.18-mum CMOS, Ieee Journal of Solid-State Circuits, vol.40, 2005.

A. Amer, A Low-Power Wideband CMOS LNA for WiMAX, IEEE Transactions on Circuits and Systems II: Express Briefs, vol.54, issue.1, pp.4-8, 2007.
DOI : 10.1109/TCSII.2006.884113

M. Pui-in, An open-source-input, ultra-wideband LNA with mixed-voltage ESD protection for full-band (170-to-1700 MHz) mobile TV tuners, 2008 IEEE International Symposium on Circuits and Systems, 2008.
DOI : 10.1109/ISCAS.2008.4541506

H. Ali and K. Sharaf, Noise cancellation techniques in multi-standard low noise amplifiers, 2007 Internatonal Conference on Microelectronics, 2008.
DOI : 10.1109/ICM.2007.4497699

R. Harjani and L. Cai, Inductorless design of wireless CMOS frontends, 7th International Conference on Asic, Vols 1 and 2, Proceedings, pp.1367-1370, 2007.

Y. Cui, On the Excess Noise Factors and Noise Parameter Equations for RF CMOS, 2007 Topical Meeting on Silicon Monolithic Integrated Circuits in RF Systems, pp.40-43, 2007.
DOI : 10.1109/SMIC.2007.322764

K. Allidina and M. N. , A 1V CMOS LNA for low power ultra-wideband systems, 2008 15th IEEE International Conference on Electronics, Circuits and Systems, 2008.
DOI : 10.1109/ICECS.2008.4674817

J. Liu, 0.5???V ultra-low power wideband LNA with forward body bias technique, Electronics Letters, vol.45, issue.6, pp.289-290, 2009.
DOI : 10.1049/el.2009.3150

URL : https://hal.archives-ouvertes.fr/in2p3-00169733

R. M. Mak, A 0.46mm<sup>2</sup> 4dB-NF unified receiver front-end for full-band mobile TV in 65nm CMOS, 2011 IEEE International Solid-State Circuits Conference, 2011.
DOI : 10.1109/ISSCC.2011.5746269

J. Rollett, Stability and Power-Gain Invariants of Linear Twoports, IRE Transactions on, vol.9, pp.29-32, 1962.

R. D. Middlebrook, Measurement of loop gain in feedback systems???, International Journal of Electronics, vol.14, issue.4, pp.485-512, 1975.
DOI : 10.1080/00207217508920421

A. Technologies, Fundamentals of RF and Microwave Noise Figure Measurements, Agilent Application Note, vol.571, pp.12-13, 2010.

J. Borremans, Nonlinearity Analysis of Analog/RF Circuits Using Combined Multisine and Volterra Analysis, 2007 Design, Automation & Test in Europe Conference & Exhibition
DOI : 10.1109/DATE.2007.364601

S. N. Paech and M. Beer, Noise Figure Measurement without a Noise Source on a Vector Network Analyzer, 2010.

A. Tanabe, A low power LNA using miniature 3D inductor without area penalty of passive components, 2010 IEEE Radio Frequency Integrated Circuits Symposium, pp.315-318, 2010.
DOI : 10.1109/RFIC.2010.5477252

J. K. Ho, Ultra low cost advanced package solution -Cu via microstar CSP (CV-u*CSP) development, 2011 IEEE 13th Electronics Packaging Technology Conference, pp.369-373, 2011.
DOI : 10.1109/EPTC.2011.6184448

T. Tired and P. Andreani, Single-ended low noise multiband LNA with programmable integrated matching and high isolation switches, 2011 NORCHIP, pp.1-4, 2011.
DOI : 10.1109/NORCHP.2011.6126737

A. Mirzaei, A frequency translation technique for SAW-Less 3G receivers, VLSI Circuits, pp.280-281, 2009.

J. Borremans, A 40 nm CMOS 0.4&#x2013;6 GHz Receiver Resilient to Outof-Band Blockers Solid-State Circuits, IEEE Journal, vol.46, pp.1659-1671, 2011.

C. Andrews and A. C. Molnar, A passive-mixer-first receiver with basebandcontrolled RF impedance matching, &#x226A; 6dB NF, and &#x226B; 27dBm wideband IIP3, Solid-State Circuits Conference Digest of Technical Papers (ISSCC), pp.46-47, 2010.

Z. Ru, Digitally Enhanced Software-Defined Radio Receiver Robust to Out-of- Band Interference Solid-State Circuits, IEEE Journal, vol.44, pp.3359-3375, 2009.

C. Andrews and A. C. Molnar, Implications of Passive Mixer Transparency for Impedance Matching and Noise Figure in Passive Mixer-First Receivers Circuits and Systems I: Regular Papers, IEEE Transactions on, vol.57, pp.3092-3103, 2010.

C. Wu, A 2.2mW CMOS LNA for 6-8.5GHZ, Ieee International Symposium on Circuits and Systems, pp.1631-1634, 2010.
URL : https://hal.archives-ouvertes.fr/hal-01480183

L. Tsung-te and W. Chorng-kuang, A 0.9mW 0.01-1.4GHz wideband CMOS low noise amplifier for low-band ultra wideband applications, 2005 IEEE Asian Solid- State Circuits Conference, 2005.

S. C. Blaakmeer, Wideband Balun-LNA With Simultaneous Output Balancing, Noise-Canceling and Distortion-Canceling Solid-State Circuits, IEEE Journal, vol.43, pp.1341-1350, 2002.

F. Belmas, F. Hameau, and J. Fournier, A Low Power Inductorless LNA With Double Enhancement in 130 nm CMOS Solid-State Circuits, 1.2.2. Conférences, pp.1094-1103, 2012.

F. Belmas, F. Hameau, and J. Fournier, A 1.3mW 20dB gain low power inductorless LNA with 4dB Noise Figure for 2.45GHz ISM band, 2011 IEEE Radio Frequency Integrated Circuits Symposium, pp.1-4, 2011.
DOI : 10.1109/RFIC.2011.5940636

URL : https://hal.archives-ouvertes.fr/hal-01069255

F. Belmas, F. Hameau, and J. Fournier, A new method for performance control of a differential active inductor for low power 2.4GHz applications, 2010 IEEE International Conference on Integrated Circuit Design and Technology, pp.244-247
DOI : 10.1109/ICICDT.2010.5510245

URL : https://hal.archives-ouvertes.fr/hal-00604310

A. Annexe and G. Effets-de-second-ordre-sur-l-'impédance-d-'entrée-des-montages, 152 a. Cas du montage grille commune simple, p.152