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INTRODUCTION

Between-subject variability is a prominent effect in many fields of medical
imaging, and particularly in brain imaging. While part of this variability can
be viewed as normal fluctuations within a population or across repeated mea-
surements, and can be considered as an effect of interest for diagnosis problems,
part of it may be a confound, related to scanner instabilities, experimental is-
sues, or acquisition artifacts. Such confounding factors can be much larger than
the effects of interest: for instance, in functional neuroimaging, the variabil-
ity related to acquisition issues (motion, defective experimental setup, scanner
spikes) can mask the true effect of interest, which is the variability in brain func-
tional organization related to diseases, psychological or genetic factors. This can
undermine the statistical procedures used in group studies as the latter assume
that the cohorts are composed of homogeneous samples with anatomical or
functional features clustered around a central mode. As the high-dimensional
context prevents manual data screening, some outlier detection methods have to
be used to provide an automated decision on subjects inclusion. Yet, it remains
unclear whether or not outliers should be removed, and, if so, what tolerance to
choose. Alternatively, several outlier-resistant methods has been proposed for
statistical inference in neuroimaging, although they are still not widely used.
Beyond outlier-resistance, such robust methods seem better adapted to real
world data since they also compensate for inexact hypotheses (e.g. data nor-
mality, homogeneous dataset). Another —partially related— problem is that the
lack of stability and of sensitivity of current voxel-based analysis schemes may
lead to non-reproducible results.

In this thesis, we first develop statistically-controlled outlier detection proce-
dures especially designed for neuroimaging data: We propose a regularized ver-
sion of a robust covariance estimator so as it can be used under high-dimensional
settings. We compare several regularization schemes and conclude that random
projections offer the best compromise. We also present non-parametric outlier
detection procedures and show that their accuracy stands high. However, their
use is limited in practice because they do not provide a statistical control on
outlier detection. We use them as an explanatory tool that provides insight
about the data statistical structure. As a second contribution, we propose a
new approach —Randomized Parcellation Based Inference (RPBI)- to overcome
the lack of reproducibility of standard methods. We stabilize parcel-based anal-
ysis by considering several independent analyzes that we aggregate together
to obtain a final consensus. The method also conveys more sensitivity than
state-of-the-art methods, as demonstrated by experiments on synthetic and real
datasets. In our third contribution, we apply robust regression to neuroimaging
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studies, hereby extending some previous work of another group. We focus on
large-scale studies that involve cohorts of more than 100 subjects. On both
simulated and real data, we show that the use of robust regression improves
the sensitivity of the analysis. We also provide evidence of the importance of
being robust to deviations from the model assumptions even after careful outlier
detection has been performed. We finally combine robust regression with RPBI
to obtain even more sensitive statistical tests.

Organization of the manuscript

Chapter 1 introduces functional magnetic resonance imaging (fMRI). After a
short technical description of image acquisition, we present how these can
be used to understand brain function. We describe the complete data
processing framework that starts with raw MRI images of independent
subjects and ends with group-level maps that are interpreted by neurosci-
entists. We give more details on statistical analysis of the images as the
complexity of the latter since this defines the setting of our contributions.
Chapter 1 is the opportunity to introduce the problematic of this thesis,
in which robust and high-dimensional procedures are investigated and de-
veloped in order to improve the sensitivity of neuroimaging analyzes: We
explain how deviations from the model assumptions can cause the sta-
tistical procedures to break down and discuss some solution in order to
address this problem when high-dimensional data are considered.

Chapter 2 gives the theoretical background used in the sequel. It includes ba-
sics about hypothesis testing, introduces the multiple comparisons prob-
lem and discusses permutation testing. Then, methods that are specific
to neuroimaging data analysis are introduced. A section of the chap-
ter is dedicated to covariance estimation (including robust estimation),
as we develop a regularized version of a robust covariance estimator in
chapter 3. We therefore include some explanations about various penal-
ization options. The last section of chapter 2 provides an overview of
non-parametric statistics algorithms and procedures that are used within
this thesis. Some of these techniques are employed for the sake of syn-
thetic data generation, for validation purpose or as alternative methods
that we compare against ours.

Chapter 3 deals with outlier detection. We modify the classical Minimum Co-
variance Determinant estimator by adding a regularization term, that en-
sures that the estimation is well-posed in high-dimensional settings and in
the presence of many outliers. We demonstrate on functional neuroimag-
ing datasets that outlier detection can be performed with small sample
sizes and improves group studies, even in situations where the number
of dimensions of the data exceeds the number of observations. We also
demonstrate that non-parametric outlier detection procedures have a high
accuracy in outlier detection tasks. We propose an efficient procedure to
summarize the necessary information about the data structure so that the
practitioner can find how many observations to discard.

Chapter 4 introduces a new approach —Randomized Parcellation Based Anal-
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ysis (RPBI)— to overcome the limitations of standard neuroimaging group
analysis methods, in which active voxels are detected according to a con-
sensus on several random parcellations of the brain images, while a per-
mutation test controls the false positive risk. Both on synthetic and real
data, this approach shows higher sensitivity, better accuracy and higher
reproducibility than state-of-the-art methods. In a neuroimaging-genetic
application, we find that it succeeds in detecting a significant association
between a genetic variant next to the COMT gene and the BOLD signal
in the left thalamus for a functional Magnetic Resonance Imaging contrast
associated with incorrect responses of the subjects from a Stop Signal Task
protocol.

Chapter 5 investigates the use of robust regression for neuroimaging analyzes,
with an emphasis on large-scale studies. While small-sample size studies
can hardly be proved to deviate from standard hypotheses (such as the
normality of the residuals) due to the low degrees of freedom of the sta-
tistical model, large-scale studies (e.g. on more than 100 subjects) give
a different picture and encourage the practitioner to use finer models to
perform statistical inference. We demonstrate the benefits of robust re-
gression as a tool for analyzing large neuroimaging cohorts. Our first
contribution is to design an analytic test based on robust parameters es-
timates; this procedure makes it possible to forgo permutation testing
and thus to perform whole brain analysis in a reasonable time. Then we
demonstrate that robust regression yields sensitivity improvements in two
real data examples on 392 and 1502 subjects. We finally show that robust
regression can be combined with randomized parcellation based analysis
to improve whole-brain tests sensitivity.
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1322 SPM . ... ... 28
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1.1 Imaging the brain with Magnetic Resonance
Imaging

1.1.1 Magnetic Resonance Imaging

Magnetic Resonance Imaging (MRI) is a medical imaging technique that is
used to observe specific types of tissues in a non-invasive fashion. The first MRI
image was acquired in 1976 by Damadian et al. [18], but the technique was
approved for clinical use almost ten years later [33]. Regarding brain imaging,
MRI was then mainly used to diagnosis neurological disorders such as atrophies
related to epilepsy, cancerous tumors, or Alzheimer disease [8]. In the early
90’s, MRI started to be used to study brain function [48], giving birth to a
new domain called functional MRI. It has a good spatial resolution, close to
the millimeter. Some alternative functional brain imaging techniques are (i)
Magnetoencephalography (MEG) that has a temporal resolution of 1 ms, but a
poor spatial resolution (more than 1 cm) ; (i) transcranial magnetic simulation
(TMS) and Positron Emission Tomography (PET) that have characteristics
equivalent to MRI but are invasive methods ; (i1i) optical imaging, that has
both a better temporal and spatial resolution than MRI but is only available
on animals. Functional MRI is a useful technique for human brain imaging
because of its non-invasiveness. Besides, it offers a good compromise between
temporal and spatial resolution while providing a full brain coverage. A good
spatial resolution is obviously useful to observe the brain with enough details
while a good temporal resolution is especially useful to functional neuroimaging
(see next section).

1.1.2 Short overview of MR images acquisition

1.1.2.1 Magnetization

Most of the atoms that constitute the human body (including the brain) have
nuclear magnetic resonance (NMR) properties: they behave like small magnets
that spin around there axis and thus have a magnetic momentum. When placed
into a constant magnetic field, they start precessing around parallel axes in a
gyroscopic motion with varying angle and frequency (the atoms are magnetized).
At the equilibrium, there exist two states for the atoms at this stage: the parallel
state (with a lower energy level) and the antiparallel state (higher energy level).
As the strength of the magnetic field increases (unit: Tesla, T), more and more
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atoms are in the parallel state. The difference of the numbers of atoms in
parallel and antiparallel state is summarized by a vector that represents the sum
of the magnetic momenta of all atoms, the net magnetization. It is of crucial
importance regarding MRI as its norm directly influences an upper bound on the
MR signal that can be captured in the sequel. Thus, 7T scanners provide better
quality images (in term of signal-to-noise ratio) than 3T scanners, although the
latter are still the current standard in neuroimaging. An important fact is that
the precessing frequency of the atoms (called the Larmor frequency) depends
linearly on the magnetic field strength.

1.1.2.2 Excitation and relaxation

In MR image acquisition, the ezcitation step follows the magnetization step. It
consists in using radio-frequency pulse at the resonance frequency of the magne-
tized atoms so that the net magnetization oscillates between the value obtained
at the equilibrium and its opposite. The exact value depends on the time of
the excitation and can be computed exactly for a given type of targeted atoms.
Another important effect of excitation is that atoms of the same type (e.g. hy-
drogen nuclei) precess in-phase once excited (i.e. not only do they have the same
precessing frequency, but their magnetic momenta are aligned). Each type of
atom has its own resonance frequency, that also depends on the magnetic field
in which they are placed. MRI targets hydrogen nuclei as the human body is
mostly composed of them. Once their magnetization stops, they come back to
their original magnetized state (relazation), delivering back the absorbed energy
(i-e. the net magnetization recovers). The amount of released energy is captured
by the scanner reception coils and corresponds to the MR signal. There are two
main components in the MR signal: (i) The recovery that correspond to the net
magnetization returning to its original state (the T1 recovery); (ii) The phase
decay that corresponds to the atoms’ phase loosing their coherence due to small
magnetic interactions between the nuclei of the system (the T2 decay). Local
inhomogeneities in the magnetic field add a supplementary effect that modify
the phase decay. T2" decay is similar to T2 decay, but takes the latter effect
into account. Depending on the nature of the observed features, T1-, T2-, or
T2"-weighted images are used.

1.1.2.3 Echo-planar imaging

In order to localize where the energy release comes from (i.e. map the MR signal
with spatial locations), magnetic field gradients are applied in three orthogonal
directions. We have mentioned that the precessing speed of the magnetized
nuclei depends on the strength of the magnetic field they are placed into. By
choosing the strength of the gradients properly, one can define a one-to-one
correspondence between a spatial volume and the MR signal it generates. In
practice, MRI images are acquired as sequences of two-dimensional slices: This
technique is called echo-planar imaging. Depending on the spatio-temporal
configuration of the gradients (the acquisition sequence), a whole brain volume
can be imaged according to various schemes. Modifying the acquisition sequence
can help correcting some artifacts that are due for instance to motion (see
section 1.2.2.2) but the details of the realization of acquisition sequences is
beyond the scope of this thesis. We refer the reader to the excellent book by S.
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Figure 1.1: 3T structural (T1-weighted) im-
age. Gray matter is clearly visible on the brain
and cerebellum contours and in some part of
the middle-brain. White matter is in light gray.
Cerebrospinal fluid is in dark black between the
brain and the skull. One can note the high reso-
lution (1mm) as compared to the EPI sequence
shown in Figure 1.3.

A. Huettel [41].

1.1.3 Structural MRI

Structural MRI provides the so-called anatomical images on which one can
observe the different tissues that constitute the brain (see Figure 1.1). Gray
matter corresponds to the synapses (i.e. heads) and neuron bodies of the billions
neurons that are implanted all around the brain (and in some inner nuclei as
well). The gray matter is a layer of 2-3mm thickness (depending on the location)
that is also called cortez. The azons (kind of ramified stems) of the neurons
dive into the depth of the brain and constitute the white matter, as they are
covered with white myelin. The brain is surrounded by the cerebrospinal fluid
(CSF), which separates it from the skull. All these anatomical items can be
observed on Figure 1.1. Structural images can be used in longitudinal studies,
where the evolution of an individual’s brain is observed over a long period of
time (up to several years) in several scans. They are also used for diagnosis of
epilepsy, or localize cancerous tumors.

1.1.4 Utility to neurosciences

Before the first brain imaging techniques arose, human brain anatomy could only
be investigated ex vivo, and brain function could only be observed indirectly
by comparing e.g. stroke patients with healthy subjects. In the absence of
better experimental protocols, only limited scientific results could be obtained.
Most of the actual knowledge about the brain was developed from invasive
experimentations on animals, such as electrophysiology on primates [1, 68] or
rodents [34]. With the emergence of imaging techniques, and especially non-
invasive ones, cohorts of human subjects have been constructed in order to
study specific aspects of brain structure or function.

1.2 Analysis of functional MRI data

Cognitive functional neurosciences observe differences of brain activity under
varying experimental conditions. The differences can be observed at various
time scales, and by various means, including brain imaging. The latter case
correspond to functional neuroimaging; which is probably the most powerful and
promising technique for cognitive neuroscience [56]. In this work, we focus on
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functional neuroimaging. We have seen that whereas T1-weighted MRI creates
neat anatomical images, other types of images can be obtained using alternative
properties of the MR signal (e.g. T2- and T2"-weighted images).

1.2.1 Event-related MRI

1.2.1.1 The BOLD signal

At rest, the oxygen of the blood that comes to the brain is consumed, which
transforms the incoming hemoglobin into deoxygenated hemoglobin ; when a
cognitive task is performed, we observe an overcompensation of blood flow
up to the neurons, resulting in a decrease of the proportion of deoxygenated
hemoglobin [60]. This decrease is called the blood-ozygen-level dependent (BOLD)
response. It is observable on T2 -weighted MRI images. It is interpreted as a
correlate of neurons synaptic activity [7], and therefore occur into the gray mat-
ter as we have seen is corresponds to the neurons’ synapses. In practice, the
BOLD response is occurring with a delay, and the corresponding BOLD signal
as captured by MRI has its specific pattern, defined by the Haemodynamic Re-
sponse Function (HRF) illustrated in Figure 1.2. Most of the models used in
practice consider a canonical HRF [35], although the BOLD response slightly
varies according to individuals and brain location [39, 3]. This thesis specifi-
cally considers BOLD functional MRI [48, 61] (i.e. functional MRI based on the
BOLD signal), although we use the more general name functional MRI (fMRI)
in the sequel.

1.2.1.2 Experimental setup

Functional MRI based on BOLD signal offers a good compromise between the
resolution of the images and the acquisition time, hereby providing some mea-
surements of relevant variations in the brain state across experimental condi-
tions. A particular case of functional MRI is resting state fMRI, where sponta-
neous activations patterns are investigated. The main difficulty of resting state
MRI is that there is no controlled event that can be associated with signal vari-
ations, i.e. there is no difference between brain activity and noise in terms of
effect size. This thesis only considers event-related fMRI, that consists in the
observations of BOLD signal variations in response to timed experimental events
such as finger-tipping, sounds listening, or viewing faces. Simple cognitive tasks
are thus performed by a subject into the MRI scanner while the BOLD signal
fluctuations are recorded as T2"-weighted images sequences. Every confounding
parameter is controlled so that only the performance of the task is supposed to
create the measured BOLD signal fluctuations (e.g. the subject can be asked to
close his eyes while performing a listening task, in order to be sure that no spu-
rious visual event would pollute its mental state). More complex confounding
factors such as breathing or heart beat can be recorded too and used in image
preprocessings (see section 1.2.2.2. The ultimate goal of functional MRI is to be
able to match the mental state of subjects with their behavior, their clinical sta-
tus (diseased or not) and some genetic variable that could cause the observed
difference. There is therefore a need to define population standards as refer-
ence/control measures. In neuroscience, they take the form of population-level
brain maps that result from a two-stage statistical analysis. This is based on an

15



Introduction to fMRI studies

Figure 1.2: Canonical haemodynamic response func-
tion as defined by Glover [35]. It corresponds to the
timed BOLD response relative to a discrete event occurring
at "time = 0". A peak occurs approximately 5 seconds after
the event. Between 10 seconds and 15 seconds from the orig-
inal event, an undershoot of the BOLD response is observed.
The HRF is taken into account in event-related designs via
a convolution with the design matrix (see section 1.2.2.4).

BOLD response (arbitrary scale)
T T T T

10 15 20 25 30
Time (s)

o
v

intra-subject analysis, the results of which are embedded in a subsequent inter-
subject analysis. The next sections describe the standard statistical framework
associated with fMRI neuroimaging studies.

1.2.2 Intra-subject (or first-level) analysis

1.2.2.1 Input images and their characteristics

The raw functional images coming out from the scanner are organized as 4D
volumes, i.e. a set of voxel time courses arranged in a 3D array. Each volume
represents the BOLD signal at a precise time stamp. The sampling rate of the
time serie lies between one and three seconds, instead of about ten minutes for
the acquisition of an anatomical image. This comes at the cost of a poorer res-
olution: 2-3 mm versus less than 1 mm. An example of fMRI sequence is given
in Figure 1.3. At the 3T resolution, each fMRI volume is a grid of ~ 200, 000
voxels, that can be masked to focus the analysis to the voxels that actually
are part of the brain (~ 60,000 voxels). The most important characteristic of
functional MRI images is their signal-to-noise ratio, that is the relative strength
of a signal compared with other sources of variability in the data. For an effect
to be detected, the amplitude of the task-related BOLD signal has to be larger
than that of non-task-related variability, the so-called noise. Noise can come
from Magnetic Resonance Imaging itself, independently of brain imaging. This
includes thermal noise (noise related to temperature changes within the scan-
ner electronics or the imaged object) and system noise (variations due to the
imaging hardware, e.g. slow changes in voxel intensity over time known as scan-
ner drift). In functional neuroimaging, additional noise sources are observed:
motion artifacts and physiological noise. Motion artifacts can be reduced when
preprocessing the data (see next section), while physiological noise reflects nat-
ural variations in the regional brain blood flow level related to cardiac rhythm
fluctuations arousal. It is important to notice that the subject images include
some variability across trials that can be of two orders: task-related variabil-
ity and non-task-related variability. The first one is a variability in terms of
direct performance of the task (varying time response, accommodation to the
task), while the second one comes from differences of mental state that can oc-
cur across trials (e.g. fluctuations of attention, tiredness or pain). There exist
specific methods to accommodate or prevent these variability sources, although
the inter-subject variability is much more of an issue regarding reproducibility
of the results (see next section).
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Figure 1.3: A BOLD fMRI sequence. Small changes between images cannot be observed by
eye. Only statistical analysis can reveal significant changes and relate them to the experimental
conditions. The data have already been preprocessed.

1.2.2.2 Image preprocessing

There are some corrections that need to be applied to raw functional MRI se-
quences prior to data analysis. First, raw images can contain artifacts, defined as
"features appearing in an image that are not present in the original object" [22].
Second, some processing is necessary to improve the quality of the images and
improve subsequent analysis. Just as a photographer would apply corrections,
filters and magnify raw photographs, the signal-to-noise ratio of the raw MRI
images can be improved by a set, of specific processing. This section introduces
the most common artifacts and distortions but do not systematically explain
how these can be corrected, for most of them involve a lot of technical details
that are beyond the scope of this manuscript.
Artifacts and distortions can be categorized into three groups:

Scanner-related artifacts/distortions are of various types and result from
hardware failures or imprecision. Scanner inhomogeneities [42] is the most
famous example of scanner-related artifact, they are due to the difficulty
to maintain perfectly stable and homogeneous high magnetic fields within
the scanner. The constant magnetic field as well as the gradient magnetic
fields (see section 1.1.2 are subject to inhomogeneities [62]. Radiofre-
quences used at the excitation time also yield artifacts: They may also be
inhomogeneous and they are sensitive to interferences with the neighbor-
ing hardware (e.g. monitors or computers) [19].

Signal-processing artifacts/distortions [11] depends on the acquisition scheme.
In echo-planar imaging (see section 1.1.2), slice-timing correction [74] is
intended to drop the discrepancies that come from the fact that different
slices of each volume are imaged at a different times (with differences of
the order of the second) and would therefore correspond to different re-
sponse levels. Partial volume artifacts correspond to the disappearance of
an object because it is smaller than the size of an image voxel [84]. Chem-
ical shift artifacts and magnetic susceptibility artifacts come from the fact
that the resonance frequency of the hydrogen nuclei varies slightly accord-
ing to the type of tissue on which they are [49]. As a result, spurious layers
can appear at the interface of different tissues. Ringing artifacts [64] are
caused by the Gibbs phenomenon, which occurs at the image discontinu-
ous intensity regions. That phenomenon was first describe in the context
of Fourier analysis, which we think is a good idea to read about in order
to understand the corresponding MRI artifact into details[36].

Patient-related artifacts/distortions are caused by the imaged subject. Mo-
tion correction [30] is one of the most important preprocessing steps to
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take into account potential movements of the subject. Some of these
movements are related to breathing or heart beat, while some are mere
movements that are due to the difficulty for the subject to remain steady
during the whole acquisition. To correct for subject motion, the volumes
are registered to a reference slice in order to improve the spatial correspon-
dence between voxels. Ideally, there should be a perfect correspondence,
but this is not the case in practice since motion cinetics is only approxi-
mated and does not accommodate non-rigid deformations related to field
inhomogeneities [93, 30]. One common practice is to register functional
images to an anatomical image of the subject. This is necessary to re-
late function to anatomical structures and it is a first step towards the
spatial normalization [27] of the images (i.e. registration to a reference
stereotaxic space and scaling of the brain size). Spatial normalization is
presented in the next subsection, as it is a key point to group analysis [46].
There are other types of patient-related artifacts than motion. Ferromag-
netic medical devices or make-up can create metal artifacts because they
locally distort the magnetic field [54]. Finally, liquid flows within the hu-
man body (e.g. blood flow) also alter local magnetic fields and may yield
artifacts [20].

It is possible to apply a Fourier transform to a voxel’s time course in order to
obtain a frequency-domain representation of that time course. In this domain,
one can easily observe a large power at the frequencies corresponding to the task-
related events, while some fluctuations correspond to noise frequencies. Thus,
one can identify low- and high-pass filters that can be applied to the original
image in order to improve the signal-to-noise ratio. Such a filtering is called
temporal filtering. Spatial filtering is also a standard preprocessing: it is used
to spatially smooth the images in order to maximize to signal-to-noise ratio. In
practice, a Gaussian filter is applied to the images, where the smoothing extent is
controlled by the bandwidth of the filter. The matched filter theorem [92] states
that the optimal bandwidth corresponds to the size of the observed effect. The
pros and cons of smoothing are discussed in chapter 2.

1.2.2.3 Spatial normalization

Although optional in intra-subject studies, spatial normalization makes it pos-
sible to use the subject image in inter-subject analyzes. The images of one
subject are registered within the same stereotaxic space. The most famous one
is the Talairach space [81], that was defined from a set of anatomical landmarks
of one particular brain. Importantly, these landmarks were chosen by Jean Ta-
lairach as being the most reproducible ones across individuals. The Montreal
Neurological Institute (MNI) derived a more stable template by registering and
averaging the structural brain images of more than one hundred subjects [23].
The procedure to register one brain image to the template is done in four steps:
(i) a translation so that the point at the middle of the anterior commisure is at
the origin of the stereotaxic space ; (ii) a rotation so that the inter-hemispheric
plane is orthogonal to the y axis (with positive values of the z axis corresponding
to the top of the skull) ; (i) a rotation so that the middle point of the posterior
commisure lies on the x axis ; (iv) a scaling of the brain according to others spe-
cific anatomical landmarks so that the brain as a normalized size. There exist
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Figure 1.4: Contrast maps associated with a computation task (axial cut, z maps). The
arithmetic operations were presented as written instructions. (a) The activation map associated
with the complete computation task; (b) The activation map associated with sentence reading ;
(c) The contrast map associated with the difference between the complete computation task and
sentence reading.

a lot of registration algorithms that can register brain images to a pre-defined
template (see for example [79] for a review). Some of them require user inter-
vention [53], some others use non-rigid transformations [46], other approaches
use surface-based landmarks [25] or high-level landmarks such as sulci [15].

1.2.2.4 Contrasts estimation

As we already mentioned, the goal of functional MRI is to capture (and explain)
task-specific brain activity patterns. These can be observed as differences be-
tween two experimental conditions. For example, a computation task not only
involves brain networks that are specific to arithmetic operations, but also ac-
tivates the visual or auditory network (depending on how the stimuli are pre-
sented to the subject, see Figure 1.4). Thus, brain activity patterns related to
computation are observed as the difference between a computation task and a
visualization (or listening) task, as illustrated in Figure 1.4. In a functional MRI
protocol, the subjects involved generally perform several cognitive tasks, that
need to be combined in order to yield interpretable activity maps, the so-called
contrast maps.

Formally, the first step towards contrast maps estimation is to relate the

experimental events with the subject’s time course images with a General Linear
Model (GLM) [29]:

Y:X16+61. (11)

Y is a (¢t x v) matrix that encodes the ¢ images of the time course of v
voxels each (note that a subject-specific brain mask is generally applied to the
images in order to reduce the number of voxels). 3 is the (m x v) coefficients
matrix that has to be estimated. X is the design matriz of shape (¢t x m)
that encodes the m experimental conditions (e.g. binary variates that indicate
the presence or the absence of an experimental event such as "sound heard"
or "button pressed"). The design matrix is convolved with the Haemodynamic
Response Function (HRF) filter (see Figure 1.5) that relates the synaptic activ-
ity that causes the BOLD response to the observed blood flow variations. €; is
a t x v noise model, with € ~ N(0,0°V;), where €, is the vector that
corresponds to the ith column of e€;. A first step is to fit the linear model of
Equation 1.1, yielding estimates of the model coefficients B and the noise scale

19



Introduction to fMRI studies

N
S

60

scan number

scan number
® »
S S
BOLD response (arbitrary scale)

S g Q& & 1 1 : :

S S & & 10 15 20 25 30

£ S S 2 .

S S S 5 Time (s)
8

)
«

Figure 1.5: Design matrix and Haemodynamic Response Function (HRF). The design
matrix (left) encodes the experimental conditions and their occurrence over time. The HRF helps
taking into account the neurons response delay and the spontaneous variations of the BOLD signal.
It is integrated to the design matrix via a convolution.

6. The differences between experimental conditions arise when testing for the
statistical significance of the estimated model coefficients: one uses a contrast
vector ¢ to perform a statistical test on a combination of variates rather than a
simple test on one single coefficient. For instance, let us assume than the first
column of the design matrix corresponds to viewing letters on a screen while
the second column corresponds to performing a computation task from visually
presented stimuli. To obtain the contrast map corresponding to the specific ac-
tivity pattern of performing an arithmetic operation, we compute the F-statistic
at the ith voxel:

p = TrePeaBlyc) (1.2)
"eTr(cT(X]ViXy) " te)’ '

with ¢ = (—1,1,0,...). The F-statistic measures the signal-to-noise ratio.
A t-statistic can be obtained in the same fashion. A common practice is to
convert, the test statistics into z-values (i.e. a normalized statistic). Such deci-
sion statistics reflect an effect size, that has to be compared to what would be
obtained by chance (i.e. if no effect were present). Rather than the size of an
effect, neuroscientists are concerned with its significance®, which is measured
by a conversion of F- or t-statistics into p-values. The theoretical decision of
the distribution statistics varies according to the number of covariables in the
design matrix, m. The quantity t — m is called the degrees of freedom of the
model and should be greater than 1.

1.2.3 Inter-subject (or second-level) analysis

Group comparisons is one of the most powerful scientific approach to assess
the effect of a given feature on brain function. Indeed, pattern variations in the
activation maps of several subjects can be associated with an external variate. If
groups can be defined according to that variate, it is easy to perform statistical
tests that confirm the source of the pattern variations. The more subjects, the
more powerful is the method. Inter-subjects (or second-level) analysis aim at
uncovering such relationships between imaging features and various types of
other variates, that can be discrete or continuous.

T Although this practice might not be the only relevant practice regarding the analysis of
biological data, as discussed in [58].
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Figure 1.6: Contrast maps associated with a motor task in different subjects (sagittal cut,
z maps, [left-right] contrast). The contrast maps are all different, although similar activations
are observed. Spatial smoothing is the most straightforward response in order to improve the
between-subject correspondence (not applied here).

1.2.3.1 Variability of neuroimaging data

Two types of variability can be distinguished between subjects: the anatomical
variability [32] and the functional variability [67].

Anatomical variability corresponds to a variation of brain size, shape, fold-
ing and structure across subjects. A better between-subject correspon-
dence is attained by considering surface-based registration of the subject
anatomical images [25] (see section 1.2.2.3). The residual variability is
commonly considered to be as large as lcm. Smoothing the images or
considering local signal averages as images descriptors improves again the
anatomical correspondence but results in a loss of statistical power for the
subsequent functional analysis and the amount of smoothing needs to be
adapted to the analysis method (see for instance [92]).

Functional variability corresponds to between-subject variations in the per-
formance of a given cognitive task. It has been shown that various cogni-
tive strategies could lead to the same result, as in the well-known reading
task example, where a subject can read a word by recognizing it as a
whole, or by considering its constitutive letters one after each other [13].
In both cases, the task is performed correctly, but the existence of alter-
native strategies is reflected on fMRI contrast maps by distinct activation
patterns, as illustrated in Figure 1.6. Without being so extreme, small
differences can arise between subjects, especially when complex tasks are
performed. As a result, inter-subject analysis require fine-tuned statistical
procedures that model various levels of variance [90, 70].

Surface-based analyzes increase the inter-subject overlap of active regions
and are more sensitive [85], but it is probably only because they reduce the
anatomical variability.

1.2.3.2 Statistical inference at the population level

Let us assume that we have the contrast images of several subjects, and that
these images correspond to the same underlying task. Second-level analyzes, or
group studies aim at finding relationships between imaging features (the tar-
gets) and non-imaging variates (the covariates), conditionally to other optional
variates (the confounds). Here again, a linear model is considered:

B = XQ"Y + €2, (13)
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where X is the second-level design matrix (that encodes the covariates and
the confounds), « is the matrix of the model coefficients, B is a n x v matrix
corresponding to first-level analysis maps of n subjects, that contain v voxels
each. By combining equations 1.1 and 1.3, we obtain the so-called mized effects
model (MFX), in which two levels of variance are used (€; and €3):

Y:X1X27+X162+€1. (14)

Equation 1.4 models the fact that a subject response matches a population-
level pattern (which varies according to €2) modulated by some subject-specific
variations (as modeled by €1). To solve equation 1.4, a two-stage procedure
called the summary statistic procedure [40] is generally used: The maps that
are used in for the second-level analysis (equation 1.3) are the contrast maps,
the ¢-values maps, or any kind of maps that carry information from the first-
level analysis (see section 1.2.2.4 and equation 1.1). In general, the contrast
maps are used (i.e. the maps corresponding to a linear combination of the
coefficients ,5') One also retains the subject-specific variance information from
the first-level analysis — namely 6 —, although it can be replaced by a common
estimate for all subjects, yielding the random effects model (RFX). Statistical
tests are then conducted in order to quantify the strength of the associations
and eventually perform inference at the population level. The tests are similar
to those presented for the first-level analysis (section 1.2.2.4). Section 2.1 of
chapter 2 reviews the state-of-the-art methods for group analysis.

The simplest kind of group analysis is to test if the mean signal across sub-
jects is significantly non-null. This corresponds to taking a constant variate (the
intercept) as the unique covariate. A significant effect at a particular location
indicates an average group-level activation of the brain at that location when
the underlying functional task is performed. Statistical inference can be done
with other types of brain images, for instance with gray matter probability maps
as in Vozel Based Morphometry (VBM) [2] (see the experiment of chapter 3,
Figure 3.18): gray matter probability maps are computed with a segmentation
algorithm (see [12] for a review); left and right hemispheres are averaged so as
to obtain symmetric maps; the images are spatially normalized and smoothed
so as to improve between-subject correspondences; finally a statistical analysis
is performed in the same fashion than in functional MRI analysis.

1.2.3.3 Application to cognitive neuroscience

Most of the neuroimaging studies are performed on groups of 10 to 50 subjects.
Thirion et al. [82] showed that 20 was a prerequisite for the results to be re-
producible. In some particular cases, mainly clinical studies of rare diseases,
less than 10 subjects are involved. For 15 years, neuroscientists have tried to
map the brain regions with functional tasks by performing group analysis on
the intercept (as described above), resulting in high-level brain function atlases
that recall the phrenologists work — although more complex —, with for instance
temporal regions associated with auditory tasks [37, 5, 94], or occipital regions
with visual tasks [21, 78]. At Neurospin imaging center, a functional MRI pro-
tocol has been created as a routine experiment to map the main global cognitive
brain functions [66]. Overall, a large number of increasingly complex functional
tasks have been associated with various brain locations, e.g. reaction to au-
tobiographical events [10] or violation of social norms [6]. We also remark a
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growth in the average size of the studies, as images are easier to acquire. The
trend is actually more oriented towards the analysis of brain networks, which
seems to be a more realistic approach to understand the brain deep functions
(see e.g. [86]). Indeed, there are pieces of evidence against the validity of the
phrenologists model [76]. Yet, regular group analyzes studies are still relevant,
especially when subject-specific covariates are considered. Such variates can be
used as diagnosis indicators regarding the prevention of disease (e.g. [77, 51]) or
risky behaviors [50, 59]. The next section gives examples of such studies.

1.2.3.4 Neuroimaging genetic studies

Neuroimaging genetic studies are a particular kind of neuroimaging study that
involves genetic variates in their design matrix (see for instance [16, 9]). Most of
the time, these variates encode the variations of a nucleotide at a specific loca-
tion in the ADN, a so-called Single Nucleotide Polymorphism (SNP) [55]. The
inclusion of SNP(s) in the design often creates imbalanced classes or ill-posed
designs as some genetic variations only occur in a few portion of the population
(sometimes less than 5). SNPs are therefore associated with complex statistical
structures for which no universal model exists. The major difficulty related to
SNPs is that there are up to millions of them in the whole human genome [72],
resulting in as many potential variates of interest to be included in neuroimag-
ing experiments. Genome Wide Associations Studies (GWAs) [80, 17] are es-
pecially designed for the purpose of screening the whole genome in search of a
significant association between brain images phenotypes and candidate genetic
variates (genes or SNPs). The more SNPs are tested, the higher the probability
there is that one of them would be found to have a significant correlation with
neuroimaging features. This is the multiple comparisons problem well known
to statisticians and discussed in further details in chapter 2. Neuroimaging ge-
netic studies are especially subject to multiple comparisons problems because
the dimension of the genetic data is multiplied by the dimension of the brain
images (up to tenth thousands of voxels). In most of specialized journals, any
publication involving genetic variates is considered to have significant results
if these have an uncorrected p-value of 1078 at most? for one single pheno-
type [4]. To reduce the dimension of genetic data, experts in genetics build
a prior knowledge about the genome that helps targeting some specific asso-
ciations between SNPs and brain characteristics, but they mainly do it at the
gene scale. At best, a few dozen of SNPs are subject to analysis. Vounou
et al. [88] propose a classification of neuroimaging genetic studies into four
groups: brain-wide, candidate-gene association (BW-CGA) studies; candidate
phenotype—genome-wide association (CP-GWA) studies; candidate phenotype—
candidate gene association (CP-CGA) studies; and brain-wide, genome-wide
association (BW-GWA) studies. Several examples of BW-CGA studies can be
found in chapter 4. GWAs that me mentioned above encompass CP—-GWA and
BW-GWA studies.

1.2.4 Main difficulties encountered in neuroimaging group
studies

2Corrected for multiple comparisons according to the non-genetic variates.
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1.2.4.1 Outliers and their influence

Medical image acquisitions are prone to a wide variety of errors such as scanner
instabilities, acquisition artifacts, or issues in the underlying bio-medical experi-
mental protocol. In addition, due to the high variability observed in populations
of interest, these datasets may also contain uncommon, yet technically correct,
observations. Manual screening of the images is often performed in order to
discard the observations that can potentially drive out subsequent analysis of
the data, the so-called outliers. Such a quality-check is also required to ensure
that the dataset meets some technical prerequisites, such as design balance, uni-
modal data, Gaussian distribution of the data or homogeneous variability. As
the number of design factors and image descriptors improves, manual screen-
ing is no longer possible, and automated tools have to be used. Unfortunately,
these tools needs to be parametrized according to a prior knowledge about the
dataset statistical structure, that is not known in practice. It is difficult to
measure the influence of outliers on the results of a neuroimaging study. First,
there is no formal definition of what an outlier is, and it is therefore impos-
sible to compare the results obtained with and without the inclusion of those
in experiments performed on real data. Second, outliers may in fact reflect a
particular, seldom property of the statistical structure of the whole dataset [71]
(e.g. a tiny cluster of similar outliers corresponding to a population caste),
which suggests considering another model rather than discarding observations.
Third, some observations may be outliers according to a limited number of their
features, and still contribute to improving the statistical power of the analysis
in some brain regions. However, the literature (including our work) reports
some examples of neuroimaging studies that were performed in a non-robust
and a robust version, and for which the results were extremely different in both
cases [31, 89, 63]. These examples do not give an universal solution to control
the influence of potential outliers, but they clearly point out its danger.

Chapter 3 deals with the detection of multivariate outliers in neuroimaging
datasets and mainly targets clinical studies where subjects inclusion plays an
important role. However, one has to remain aware that the potential presence
of outliers is not the only reason why robust procedures are needed and outlier
detection therefore only addresses a limited part of the much more general
problem discussed in the previous Subsection.

1.2.4.2 Data scarcity and lack of reproducibility

Due to the difficulty of acquiring good quality functional images, most of the
neuroimaging are limited to a few dozens of subjects. Regarding the large num-
ber of images descriptors, such high-dimensional studies are hindered by the
large estimation variance and no subtle effect can be investigated (i.e. the sta-
tistical power is poor). In order to perform neuroimaging genetic studies, large
cohorts of more than 1000 subjects start to emerge as part of major projects (e.g.
Imagen [73], Human Connectom Project [87], ADNI [43]). From a theoretical
point of view, it seems however than more subjects (10 to 100 times more) would
be needed in order to reproduce neuroimaging genetic findings [80], especially
regarding genome-wide association studies.

Before the statistical regime mentioned above is reached, methods that re-
duce the variability of the studies results are necessary. This variability may
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come from the presence of abnormal data (see the next paragraph about out-
liers). Robust statistical procedures can be used to drop that source of vari-
ability. Some statistical variability is yet unavoidable but can be reduced by
using appropriate methods. Chapter 4 introduces a method for neuroimaging
group analysis that has the property of being more stable than the state-of-the-
art methods, i.e. we observe a drop in the variability of the results of a same
analysis performed on random subgroups of the same cohort. Our method more-
over comes with increased sensitivity, which affords a more powerful statistical
inference and the detection of more subtle effects.

1.2.4.3 Data quality is hard to control

A standard assumption in univariate voxel-wise analyzes is that the data are
Gaussian distributed. Figure 1.7 demonstrates that this assumption does al-
most never holds by showing the histogram of the Shapiro-Wilk Gaussianity
test applied to [Angry faces viewing - Control] fMRI contrast images and gray
matter probability maps of 1500 subjects. Similar results (not shown) were
obtained with parcel-level images descriptors, for brain parcellations with 100,
1000 and 10000 parcels. The skewness and the kurtosis of the voxels across
subjects are shown in Figure 1.8 for fMRI data and in Figure 1.9 for gray mat-
ter intensity maps. In both cases, almost all voxels have skewness and kurtosis
values that do not correspond to Gaussian distributed data (only such values
are colored). We observe smooth regionalized patterns, which suggests that the
statistical properties of neighboring voxels are similar. We also see a spatial cor-
respondence between skewness and kurtosis. The pattern does not correspond
yet to the group-level activation pattern (not shown). Strong positive values of
the skewness are observed on the brain contours for gray matter density maps,
and strong negative values lie in deep brain structures. The former correspond
to high-variability regions (we have seen that the folding structure is highly
variable) where only a few subjects may actually have gray matter, while the
latter correspond to the opposite situation where only a few subjects —probably
outliers— do not have a gray matter probability of 1 at the corresponding lo-
cations. Thirion et al. [82] also demonstrated that the Gaussianity assumption
was not always enforced. Kherif et al. [45] stresses the importance of good choice
of model and discuss the homogeneity assumption.

The literature about robust statistics provides several techniques and tools
to perform reliable statistical inference on datasets that do not fulfill the model
assumptions, potentially because of a contamination with outliers. Thus, ro-
bust regression is a useful tool regarding neuroimaging studies, especially when
complex designs are involved (e.g. neuroimaging genetic studies) or when large
cohorts are studied. Chapter 5 demonstrates this statement and quantifies the
sensitivity improvements brought by robust regression.

1.3 Some neuroimaging and data-analysis soft-
wares
We focus on the softwares that have been used in this thesis, which are mostly

Python packages for neuroimaging data analysis and handling. The Image Pro-
cessing subsection introduces the three main neuroimaging softwares. Although
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Figure 1.7: Negative logigp-values of a voxel-wise Shapiro-Wilk Gaussianity test for (a)
fMRI contrast images; (b) gray matter probability maps. The histograms clearly demon-
strate that the data are not Gaussian distributed, although this assumption is often made in practice.
Considering signal averages within parcels does not help.
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Figure 1.8: Skewness (first row) and kurtosis (second row) across the fMRI contrast
maps of 1500 subjects. Positive and negative values of the skewness appear separated. Voxels
with the highest kurtosis values seem to be organized in clusters that spatially match regions with
the highest absolute skewness values. Such observations suggest local homogeneities in statistical
structure. However, nothing seems to explain the observed patterns.
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Figure 1.9: Skewness (first row) and kurtosis (second row) across the gray matter prob-
ability maps of 1500 subjects. Positive values of the skewness statistic correspond to the brain
contours, while deeper brain regions corresponding to white matter have strong negative skewness
values. The latter regions are also associated with strong kurtosis values. Unlike in Figure 1.8, the
patterns observed in this examples seem to be well explained by the brain anatomical organization.
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Figure 1.10: Data visualization with
Mayavi. Activations obtained in a
surface-based analysis are embedded in a
three-dimensional space and matched to
the activations obtained in the correspond-
ing volume-based analysis.
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they all can perform visualization and statistical analysis as well as image pro-
cessing, their source-code cannot be edited as easily as Python packages, re-
sulting in a less practical use for methodological research. The three softwares
however implements specific methods and treatments that are sometimes not
available elsewhere.

1.3.1 Visualization

1.3.1.1 Anatomist

Anatomist [14] is a viewer written in C++. It can interpret Python code, but
we use it for its simple graphical interface. We particularly appreciate how it is
easy to dynamically change the color map of one or several images and adjust
their bounds. Basics operations such as superimposing images or synchronizing
the view of independent windows are very handy when one wants to look at
the results of any neuroimaging algorithm, the drawback being that they are
difficult to reproduce.

1.3.1.2 Mayavi

Images vizualisations can be embedded in Python scripts through calls to the
Mayavi [69] Python package routines (output example given at Figure 1.10).
Although not specifically designed for neuroimaging, Mayavi suits the neuro-
scientists needs as few code lines can generate and interactive 3D rendering,
providing real-time viewing of the analysis results. However, obtaining fine-
tuned visualizations requires a good understanding of Mayavi data structures
and API. As a result, its use remains limited to specific cases where complex
visualizations are needed.

1.3.2 Image processing
1.3.2.1 Freesurfer

The Freesurfer software [24], from Harvard University, is mainly famous for its
robust and good quality reconstruction pipeline: input raw anatomical images
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are preprocessed, registered, resampled, segmented, and a reconstruction of the
surface is computed. Specific neuroimaging algorithms can be chained with the
reconstruction pipeline (e.g. fibers reconstruction). Other softwares such as
Brainvisa or Caret have a similar reconstruction pipeline, but their use is less
standard in the community. Freesurfer also provides good quality preprocess-
ings. In particular, it implements Boundary-Based Registration (BBR), which
yields a better quality registration, and hence improves the overall quality of
the preprocessings.

1.3.2.2 SPM

Statistical Parametric Mapping (SPM) is a software that is designed to find local
changes in the brain activity under specific experimental conditions from brain
images [26, 28]. SPM can perform preprocessing and first-level analysis as well
as second-level analysis. It is particularly useful to estimate contrast images in
experiments involving several contrast and more generally to deal with design
matrices. The dependency on Matlab is a drawback. All the brain images used
in this thesis were preprocessed with SPM8 (see section 1.4 about the Imagen
database).

1.3.3 Note on all-in-one softwares

The two softwares presented above look more like meta-softwares that encom-
pass various methods and that are used to distribute new ones. Another impor-
tant one is FSL (FMRIB Software Library) [44, 91, 75], from Oxford University.
For each of these softwares, a default behavior is set up so that one can run an
entire analysis without needing to choose any detailed parameter, but this fea-
ture is also the software’s weakness as the default framework may change across
versions and yield results that are version-dependent. Interestingly, indication
of the software version may be as important in a research report as the detailed
description of the analysis framework.

1.3.4 Statistical analysis
1.3.4.1 Scikit-learn

Scikit-learn [65] is an open source machine learning Python package in which a
particular emphasis is put on high-dimensional data analysis. Its development
originated from the Inria Parietal team. Scikit-learn is useful in neuroimaging
since a lot of standard algorithms such as clustering, model fitting or data
transformation can be used "out of the box" before more specific algorithms
are applied. Indeed, only well-known algorithms are available in Scikit-learn,
i.e. algorithms for which the code can be understood and maintained by a
sufficient number of people. This ensures the long-term support of the project
as well as its quality, but limits the application scope of the package, that needs
to be combined with more specific packages regarding neuroimaging-specific
applications.
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1.3.4.2 Statsmodels

Fine-tuned statistical analysis can be performed with the Statsmodels® Python
package. Unlike Scikit-learn, statsmodels implements an impressive number of
statistical tests and estimators, including specific variants that seem to have a
poor practical interest. The Statsmodels package is yet advantageously com-
bined with neuroimaging-oriented packages to explore new analysis techniques
(e.g. robust regression in group analysis or covariance estimation for outlier
detection).

1.3.4.3 Nipy / Nilearn

Data treatments that are specific to neuroimaging are available as parts of
the Nipy [57] Python software, or its (still young but promising) alternative
Nilearn*. Nipy also provides algorithms to perform preprocessings. As open-
source softwares written in Python, Nipy and Nilearn are very helpful to the
researcher as their code serves as a basis to investigate new methodological tools.
These tools can thus directly be shared as routines that have limited dependence
on the original code base.

1.4 The Imagen database

This thesis uses the data from the Imagen database. Imagen is a European
multicentric study involving adolescents [73]. It contains a large functional neu-
roimaging database with fMRI associated with 99 different contrast images for
4 protocols in more than 2000 subjects, who gave informed signed consent.
Regarding the functional neuroimaging data, we notably used the faces pro-
tocol [38] and its [angry faces - control] contrast, i.e. the difference between
watching angry faces and non-biological stimuli (concentric circles). We also
use the Stop Signal Task (SST) protocol [52], with the activation during a [go
wrong/ event, i.e. when the subject pushes the wrong button. Images from the
Modified Incentive Delay (MID) protocol [47] were also used.

Eight different 3T scanners from multiple manufacturers (GE, Siemens, Philips)
were used to acquire the data. Standard preprocessing, including slice timing
correction, spike and motion correction, temporal detrending (functional data),
and spatial normalization (anatomical and functional data), were performed
using the SPMS8 software and its default parameters; functional images were re-
sampled at 3mm resolution. All images were warped in the MNI152 coordinate
space using a study-specific template. Obvious outliers detected using simple
rules such as large registration or segmentation errors or very large motion pa-
rameters were removed after this step. BOLD time series was recorded using
Echo-Planar Imaging, with TR = 2200 ms, TE = 30 ms, flip angle = 75° and spa-
tial resolution 3mm X 3mm x 3mm. Gaussian smoothing at 5Smm-FWHM was
finally added®. Contrasts were obtained using a standard linear model, based on
the convolution of the time course of the experimental conditions with the canon-
ical haemodynamic response function, together with standard high-pass filtering

Shttp://statsmodels.sourceforge.net/.

4pttp://nilearn.github. io.

5Smoothing is only applied in the first-level analysis in order to improve the sensitivity of
the first-level analysis that yields the contrast maps.
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(period = 120s) and temporally auto-regressive noise model. The estimation of
the first-level was carried out using the SPMS8 software. T1-weighted MPRAGE
anatomical images were acquired with spatial resolution Imm x 1mm X lmm,
and gray matter probability maps were available for 1986 subjects as outputs of
the SPM8 "New Segmentation" algorithm applied to the anatomical images. A
mask of the gray matter was built by averaging and thresholding the individual
gray matter probability maps. More details about data preprocessing can be
found in [83]. Genotyping was performed genome-wide using Illumina Quad 610
and 660 chips, yielding approximately 600,000 autosomic SNPs. 477,215 SNPs
are common to the two chips and pass plink standard parameters (Minor Allele
Frequency > 0.05, Hardy-Weinberg Equilibrium P < 0.001, missing rate per
SNP < 0.05).
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This chapter introduces the main theoretical tools that are used in the sequel
of the manuscript. We have seen in chapter 1 that statistical tests are the
basis of functional studies as these try to uncover differences in brain activity
across varying experimental conditions. Section 2.1 gives a formal description
of hypothesis testing and its applications to neuroimaging. Then we discuss
covariance estimation in section 2.2 as it is an essential ingredient in many
statistical models used within this thesis (e.g. outlier detection 3 or F-tests
on the coefficients estimated in a linear regression framework). We present the
main concepts and tools of non-parametric statistics within the last section of
this chapter. These are used throughout this thesis for various purpose such
as building sampling schemes, computing consensus statistics or approximating
statistical structure with no prior knowledge.

2.1 Hypothesis testing

2.1.1 Inferential statistics

As soon as practical applications are concerned, theoretically-grounded descrip-
tive statistics or models are subject to interpretation by domain experts. Hy-
pothesis testing is a sub-domain of applied statistics that encompasses every
rule, procedure or technique aiming at turning statistical measures performed
on data into practical decisions while taking into account the probability of po-
tential errors. One important role of hypothesis testing is thus to limit subjective
interpretation by providing means of quantifying decision errors.

In practice, experts observe a phenomenon occurring under precise experimental
conditions that they design for this purpose, and they wonder if the observa-
tion of the phenomenon could have happened by chance (the null hypothesis).
If so, they conclude that their observation is not related to the experimental
conditions, or at least not specifically: We say that the null hypothesis cannot
be rejected. If not, that is the phenomenon has much greater chance to be
observed under the specific experimental conditions, the conclusion is therefore
that the phenomenon is not a spurious observation reveals a true effect and we
say that experts reject the null hypothesis.

2.1.1.1 Formal description

If we consider the "observed phenomenon" of the previous paragraph as a ran-
dom variable X, we denote Hy x the distribution of X under no specific ex-
perimental conditions (i.e. the null hypothesis), while H; is the distribution
of X under those (i.e. the alternative hypothesis). Thus, the experts’ concern
would be to test whether Hy or Hy is more likely (we omit the X index when
no confusion is possible). However, only one measurement of X, say X (w), is
performed in general and the question boils down to determining whether X (w)
can be considered as a regular measurement of X with respect to Hy or whether
there this measurement is so exceptional that it obviously corresponds to Hj.
The more the measurement seems exceptional, the more one is convinced that
H; is likely.

n the sequel, we use the term accept (resp. acceptance) as a misnomer for fail to reject
(resp. failure to reject).
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Accept Reject
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One generally considers the likelihoods of X (w) under Hy and Hj, respec-
tively L(Ho|X (w)) and L(H:|X(w)). The ratio A(X(w)) = 7P} is a
realization of another random variable that represents the trade-off between the
probabilities of X (w) to be observed under Hy or H;. The final decision on
accepting/rejecting the null hypothesis can therefore be made according to the
value of A(X(w)). It is possible to control the confidence with the which we
accept/reject the null hypothesis with a parameter 0 < a < 1: Let us define
n so that P(A(X) < n|Hp) = «. Then the null hypothesis should be rejected
if A(X(w)) < n. According to Neyman-Pearson lemma, this testing proce-
dure yields the most discriminative power over the set of all potential tests.
Equivalently to the Neyman-Pearson procedure, if ¢p s is the § quantile of the
distribution D, then the null hypothesis should be rejected (with 100(1—a)% of
error) if X (w) > qu,,1—o (see Figure 2.1). Indeed, P(X > qp,1-o|Ho) =1 —c.
P(X > X (w)|Hp) is called the p-value associated with the observation of X (w)
under the null hypothesis. Decision about accepting/rejecting the null hypoth-
esis can be made directly from the p-value. More detailed information about
hypothesis testing can be found in [30].

When n several measurements {X(w1),..., X(w,)} of X are made under the
same specific experimental conditions, one can consider a transformation of the
multiple measures into a summary test statistic T(X (w1), ..., X (wy)) (e.g. the
mean of the measurements). The value of that test statistic is the realization
of a new random variable that can be compared to its null distribution Hy 1
following the framework described above. The choice of T is crucial as the qual-
ity of the final decision will highly depend upon it. A sufficient statistic is a
statistic that contains as much information as the whole sample with respect
to the testing procedure that is applied. Ideally, the chosen statistic (i) must
be sufficient; (i) its null distribution should be known, or at least estimable
(see section 2.1.3); (#44) it must respect some practical criteria such as compu-
tation cost, interpretability, or theoretical validity under the practical problem
constraints (e.g. minimum number of observations required). In neuroimaging,
the F-statistic presented in section 1.2.2.4 is used. A review of the main test-
ing procedures can be found in the same textbook than cited in the previous
section [30].
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2.1.1.2 Measuring the quality of a test

The ability of a statistical test to guaranty the 100a% bound on the false null
hypothesis rejections if called the specificity of the test, or the Type I error
control, while its ability to reject the null hypothesis when it actually should
is called the sensitivity, or Type II error control. Sensitivity can be thought
of as the discriminative power offered by the test, which is equivalent to the
area under Hy r on the interval [q g, 1—q); +00[. The larger the area, the more
sensitive is the test.

Sensitivity, specificity, precision, recall, accuracy. The final binary de-
cision that comes out from a statistical test yield two types of errors (type I —
wrong rejection of Hp, and type II — wrong acceptance of Hy) and two types
of correct outcomes (correct acceptance or rejection of Hp). The terms True
Positive (TP), False Positive (FP), True Negative (TN) and False Negative are
employed for correct rejection, uncorrect rejection, correct acceptance, uncorrect
acceptance of Hy, respectively. Considering a decision procedure that performs
several tests on different experimental conditions or observations, the precision
of that procedure is defined as TP / (TP + FP), and is the probability that the
detection of an "unordinary phenomenon" in one given test is actually relevant.
In the same fashion, the recall is defined as TP / (TP + FN) and is the prob-
ability that a relevant "unordinary phenomenon" is actually detected by the
procedure. Finally, the accuracy of the procedure if defined as (TP + TN) /
(TP + TN + FP + FN) and measures the overall performance of the procedure,
i.e. how close it is to the ideal procedure. Another widely used measure is the
False Discovery Rate (FDR) that corresponds to "1 — precision".

Graphical methods. Regarding practical applications, it is important to
choose the right « threshold so as to guaranty a given specificity /sensitivity
or precision/recall trade-off. The Receiver Operating Characteristic (ROC)
curve [20] (see for instance Figure 3.9) plots the paired values of specificity
and sensitivity for a range of « potential values. Thus, the ROC curve corre-
sponding to a test with random decision about the rejection or acceptance of the
null hypothesis would be the identity line (f(z) = «,Vz € [0,1]). The area un-
der the ROC curve can be seen as a measure of the testing procedure accuracy.
Similarly, the precision-recall curve [42] plots the paired precision and recall
values associated with various a. Unlike sensitivity and specificity, there is no
smooth variation of the precision and recall values together with a. Therefore,
there is not straightforward interpretation of the precision-recall curve in terms
of area under the curve. One has to fix the parameter « in order to obtain a
precision (resp. recall) level that correspond to an acceptable associated recall
(resp. precision).

Graphical methods are often used to compare testing procedures and methods:
The curves corresponding to several methods are displayed on the same plot, and
one can easily see if one method dominates the others, at least in a given regime
of type I error control. Another appreciated property of graphical methods is
that they can be built directly from any test statistic, without turning it into
p-values. « is indeed an hidden parameter that can be replaced by any varying
threshold.
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2.1.2 Challenges in neuroimaging

Neuroimaging group analyzes are used to relate inter-subject signal differences
observed in brain imaging with behavioral or genetic variables and to assess risks
factors of brain diseases. There is therefore a major interest in being able to
point out significant differences of brain activity occurring between varying ex-
perimental conditions. The major difficulty with neuroimaging studies lies in the
inter-subject variability of brain shape and vasculature. In functional studies, a
task-related variability of subject performance is also observed. The standard
analytic approach is to register and normalize the data in a common reference
space. However a perfect voxel-to-voxel correspondence cannot be attained, and
the impact of anatomical variability is tentatively reduced by smoothing [14].
This problem holds for voxel-based statistical tests and multivariate methods
that consider the similarity between brain images. In the absence of ground
truth, choosing the best procedure to analyze the data is a challenging problem.
Practitioners as well as methodologists tend to prefer models that maximize
the sensitivity of a test under a given control for false detections. While this
significance level is arbitrary, the level of sensitivity conditional to this control
is indeed informative on the appropriateness of a model. As mentioned in chap-
ter 1, the reference approach in neuroimaging is to fit and test a model at each
voxel (univariate voxel wise method) that can be written as follows:

B = X2’7 + €o, (21)

where X is a design matrix (that encodes the covariates and the confounds),
~ is the matrix of the model coefficients, B is a n X v matrix corresponding to
the maps of n subjects, that contain v voxels each. We test the null hypothesis
Hy : v =0. As mentioned in [1], an appropriate test statistic for the two-tailed
test is the square of the correlation coefficient between B and X, T%, that can
be compared to its theoretical distribution. If the design matrix X has only one
column, 7% is equivalent to the F-statistic that we described in chapter 1. For
technical reasons, we consider r% throughout the whole section instead of the
standard F' used in neuroimaging. This both simplify the notations and make
them consistent with that of [15] in case the reader refers to it. The theoretical
results that follow can be readily extended to the case where X, has several
colums and a contrast ¢ has to be used.

2.1.2.1 Multiple comparisons

A major problem with the testing procedure is that the large number of tests per-
formed yields a multiple comparison problem. The sensitivity of a statistical test
guarantees that false rejections will not happen too often, e.g. « = 5% times.
But actually, when a lot of tests are performed, say m tests, the probability of re-
jecting at least one true null hypothesis out of m is equal to 1—(1—«a)™ ~ 1—am
if am < 1 (see Figure 2.2). The expected number of false detections is am. In
neuroimaging voxel-level analysis, it is common to have m > 40,000. This has
a strong impact on the actual specificity of the detections. Yet, the statistical
significance of the voxel intensity test can be corrected with various statistical
procedures.

Bonferroni correction consists in adjusting the significance threshold by di-
viding it by the number of tests performed (m). As a result, the probability
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of rejecting at least one true null hypothesis is close to «. This approach is
known to be too conservative, especially when non-independent tests are in-
volved, which is the case of neighboring voxels in neuroimaging. Bonferroni
correction yields an approximation of P(FP > 0). Any correction of the speci-
ficity that controls this quantity is called a Family Wise Error Rate (FWER)
correction. The False Detection Rate is also employed as a solution to deal with
multiple comparisons. It is defined as E[FP / (TP + FP)] with the convention
that FDR = 0 when (TP + FP) = 0. More correction procedures specific to
neuroimaging have been proposed in the literature. A good compromise be-
tween computation cost and sensitivity can be found in analytic corrections
based on Random Field Theory (RFT), in which the smoothness of the images
is estimated [59]. However, this approach requires both high threshold and data
smoothness to be really effective [22].

2.1.2.2 Test dependence

Spatial models try to overcome the lack of correspondence between individual
images at the voxel level. The most straightforward and widely used technique
consists in smoothing the data to increase the overlap between subject-specific
activated regions [60]. The main drawback is that the tests performed at the
voxel level are not independent anymore. Under those conditions, correction
procedures that control the FWER have been shown to be a bit more conserva-
tive?. In the literature, several approaches propose more elaborate techniques
to model the noise in neuroimaging, like Markov Random Fields [37], wavelets
decomposition [56], spatial decomposition or topographic methods [17, 12] and
anatomically informed model [26]. These techniques are not widely used prob-
ably because they are computationally costly and not always well-suited to
analysis of a group of subjects. A popular approach consists in working with
subject-specific Regions of Interest (ROIs), that can be defined in a way that
accommodates inter-subject variability [36] (see Chapter 4).

2.1.3 Permutations testing

Going back to model 2.1, the theoretical distribution of the test statistic 7%
may only be known under particular assumptions that may be be violated in

2http://jpktd.blogspot.fr/2013/04/multiple-testing-p-value-corrections-in.
html.
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Figure 2.3: Permutation testing. Un-
der symmetry assumption, the empiri-
cal distribution of the decision statis-
tic (their histogram, in red) stays the
same when the data distribution is ran-
— domly flipped with respect to 0 by swap-
ping signs (blue shaded histograms).
Here, 10 such random swaps have been
performed and the corresponding new
histograms have been superimposed in
background. In average, one rovers
the reference distribution. As a result,
is is possible to generate 2™ artificial
datasets from the original data while
preserving the statistics distribution un-
der the null.

Histogram under random signs swap
[ Reference empirical histogram

practice. The specificity of the test is then impacted. Alternatively, one may
want to use a specific test statistic, the theoretical distribution of which is not
known under the null hypothesis. This is likely to happen for computational
reasons for instance. The Monte-Carlo method [33] can be used to empirically
approximate the unknown distribution: N artificial datasets are created on the
model of the original data under the null hypothesis, so that N realizations of
the test statistic are observed. However, it is difficult to reproduce the real-data
problem with simulations. Permutation testing can be seen as a way to build
the unknown Hj distribution from the observed data. Those are transformed
in such a way the decision statistics’ distribution remains the same under the
null hypothesis, while the tested effect is removed in the process. For instance,
under the assumption v = 0, equation 2.1 boils down to B = €;. Randomly
swapping the sign of the data b; does not change the distribution of the entire
vector B and one can therefore generate N = 2™ artificial datasets from which
the null hypothesis of the statistic can be drawn (see Figure 2.3). Computing
the test statistic of these 2" datasets yields an approximation of Hy. Another
standard permutation scheme is to shuffle the observations b; while keeping the
features fixed. This scheme is used by Freedman & Lane [15]: They denote 7
a permutation of the set of indices {1,...,n}. When used as a lowerscript, 7
refers to a variable computed using a transformed (i.e. permuted) dataset, while
7 as an upperscript means that the upperscripted variable is itself permuted.
Thus, the usual test statistic 7"% becomes

2 _ (Z?:l BZ?TX21)2

when computed on a m-permuted dataset. The p-value associated with that test
is P(r2 > r?).

r

2.1.3.1 Permutation schemes

The design of the permutation scheme is crucial when confounding variables
(i.e. variables that are fitted but not tested) are included in the model. More
precisely, the transformation that is applied to the data must preserves the
statistical structure between the observations and the confounding variables,
while it breaks that between the observations and the target variables. However,
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one also has to take into account a potential correlation between the confounding
variables and the target variables. Let us consider the following linear model:

Y =XpB+Zate. (2.2)

The observations in Y are not exchangeable under Hj because they include
some portion of variability explained by Z. A valid permutation test must
takes this into account as the power of the associated test may indeed depend
on the permutation scheme [1]. However, the difference is significant only for
small sample size or when the design matrix is low rank or ill-conditioned. Note
that this is likely to be the case in neuroimaging genetic studies. According
to Anderson & Robison’s work [1], only the permutation scheme proposed by
Freedman & Lane [15] provides an exact test. They consider (i) the relationship
between Y and Z: Y = Za + Ry |z ; (ii) the relationship between X and Z:
X = Zv + Rx|z, and they define the test statistic of no relationship between
Y and X, beyond their potential shared correlation with Z:

2
(Z:;l RY|Z1'RX‘Z¢>
- Z?:l R%’|Zj Z?:l R.2X|qu 7

Then, the permuted statistic associated with the model 2.2 would be:

7,2

2
(S0 - Zan)Rxz)
Z?:1(Y7r - Za,r)% Z?:l R?X‘|Zi ,

but since a and Ry |z are not known in practice, Freedman & Lane proposed to
replace them by their least-squares estimates a = > | Y;Z;/ > Z? and Ry |z,
yielding Y (r) = Za + R“Y‘Z and the test statistic under permutation:

2 =

2
(Z?:l(Yw(F) - Za'w(F))iRX\Zi)
i1 (Yar) = Zan(r); Xoimy Rz
where a,r(F) = Z?:l YTK'(F)IZZ/ Z:‘L:l Zz2
An interesting point of that permutation scheme is that splitting the design

matrix into testing covariates (X) and confounds (Z) can reduce the computa-
tion time because the effect of the confounds is computed once and for all.

"2 =

2.1.3.2 Cluster-size inference

A widely used method is a test on clusters size, which aims to detect spatially ex-
tended effects [43, 18, 40]. The statistical significance of the size of an activation
cluster can be obtained with theoretical corrections based on the RFT [61, 22]
or with a permutation test [13, 23, 35]. Cluster-size tests tend to be more
sensitive than voxel- intensity test, especially when the signal is spatially ex-
tended [34, 16, 41] at the expense of a strong statistical control on all the voxels
within such clusters. This approach however suffers from several drawbacks.
First, such a procedure is intrinsically unstable and its result depends strongly
on an arbitrary cluster-forming threshold [16]. Second, the correlation between
neighboring voxels varies across brain images, which makes detection difficult
where the local smoothness is low. Combining permutations and RFT to adjust
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for spatially-varying smoothness leads to more sensitive procedures [22, 47]. A
more complete discussion of the limitations and comparisons of these techniques
can be found in [39, 34].

2.1.3.3 TFCE

The threshold-free cluster enhancement (TFCE) addresses the issue of selecting
a cluster-forming threshold for cluster-size inference, by avoiding the choice of
an explicit, fixed threshold [53, 47]. It however leads to other arbitrary choices
such as integration step and two parameters involved in the TFCE statistic.
More generally, tests that combine cluster size and voxel intensity have been
proposed [41, 21]. To get p-values maps, the TFCE statistic needs to be tested
with a permutation test. The FSL software provides an implementation of the
method. A Python version was implemented during this thesis in order to easily
plug the method with existing permutation testing frameworks available in the
Parietal team code base.
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2.2 Covariance estimation

2.2.1 Introduction and relevance to neuroimaging

Let us assume that empirical observations are seen as realizations of a p-dimen-
sional random variable X. Under the further assumption that X is distributed
according to a unimodal distribution, it is possible to define the location and
the covariance of the population described by X. These quantities are the
first and the second statistical moments of the distribution of X and can be
considered as the best first (resp. second) order approximations of it. The
location and the covariance matrix of a population convey a lot of information
about the statistical structure of the data. In neuroimaging, they turn out to be
useful in various applications such as study of the brain connectivity (especially
in resting state studies), outlier detection, or estimation of a General Linear
Model (GLM). Most of these applications actually need a good estimate of the
inverse covariance matrix, called the precision matriz.

The limited number of observations available in practice is called a sample:
X, ={z1,...,x,}, in which each z; (i € {1,...,n}) a p-dimensional vector
describing one observation. Under the assumption that X follows a multivariate
Gaussian distribution, empirical maximum-likelihood (sample) estimates of the
location p and covariance X can be obtained from the well-known formulas:

1
lln = 7X71—17
n
~ 1 . N
X, = E(Xn - Nn)T(Xn — fin).
(fr, ﬁ]n) is indeed the maximum likelihood estimate solution of the following
estimation problem:

- : 1o _
(ftn, Bn) = argmin <log 1+ = (=)= (i - u)), (2.3)
M,

i=1

2.2.2 Regularization

Unfortunately, the eigenvalues of the real population covariance matrix ¥ are
only poorly approximated by those of X,,, especially as the p/n ratio increases.
This is likely to occur in neuroimaging as the number of image descriptors
(the image voxels, usual p) is often above 40,000, for 2,000 subjects at most,
causing the smallest (resp. largest) eigenvalue of 33, to be biased downwards
(resp. upwards). We reduce this effect by considering signal averages within
pre-defined parcels and thus obtain values of p between 100 and 1000. 3,
can still be ill-conditioned yet. We completely correct the artifact by adding a
penalization term to the problem 2.3:

. 1 <&
(.7, S0 ) = axgmin (log S+ Y TS )+ AJ<2>), (2.4)
n,X

=1

where J is a convex function, such as a matrix norm and X is a scalar that
controls the amount of penalization. The resulting sample estimate is called
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a regularized estimate. This avoids large differences between the smallest and
the largest eigenvalue of the covariance matrix estimate, but introduces some
bias in the estimation. The main challenge associated with covariance matrix
regularization is thus to choose the right amount of regularization (i.e. the
right \) to obtain the best compromise between (i) a good estimation of the
covariance matrix eigenvalues (especially useful when the goal is in fact the
estimation of the precision matrix via inversion of the covariance estimate), and
(ii) a limited loss of precision regarding the estimation of the specific structure
of the target X (i.e. approximating 3 with a diagonal matrix may yield a good
approximation in terms of eigenvalues, but the structure encoded by the off-
diagonal coefficients of ¥ would be lost). The choice of the imposed structure
potentially plays an important role. For instance, not all matrices can be well
approximated by a diagonal matrix. We limit ourselves to diagonal structure in
our applications, as the associated computations may be way less complex and
time-consuming.

2.2.2.1 /5 regularization

{5 regularization corresponds to taking J(X) = tr(¥~!) in Equation 2.4:

(Bn,eys Xin0,) = argmin <log b3
©,X

Lo (2.5)
+ Z(mi — )= (@ — ) + /\tr(21)>,

The resulting covariance matrix is biased toward a spherical covariance matrix.
This bias correspond to an underlying assumption of isotropy. The main ad-
vantage of {5 regularization is that the solution of the problem 2.5 is explicitly

. & xX'x, N x'1 .

given by: ¥, ., = =2== + Al and fi, ¢, = =»=. Thus, problem 2.5 is fast to
solve for a fixed A\ and available computing time/facilities can be instead used
to perform parameter selection (i.e. to choose the "optimal" \). Much of the
effort is therefore spent on choosing the A that yields the most sensitivity in the

subsequent analysis [19].

2.2.2.2 /; regularization

The penalized-likelihood problem corresponding to ¢; regularization is the fol-
lowing:

I . RS -
(u’n,fzvzn,@) = arggln (log |E|+E Z(wi_p‘)TE l(wi_u)+>‘||20ff>v (2.6)
g i=1

where the /1 penalty [[Allog = >_,; |ai;| corresponds to the ¢; norm of the
off-diagonal coefficients of the matrix A (note that this is not a matrix norm).
The solution of this problem is known to have a sparse inverse [54]. This spar-
sity property is useful for interpretation of the solution in terms of graphical
models. For instance in the functional neuroimaging context, not all brain re-
gions are statistically related to each other [55]. The choice of the regularization
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Figure 2.4: Regularization parameter selec-
tion and associated negative log-likelihood.
Various choices for the ¢; and ¢5 regularization pa-
rameter are considered. We observe that the neg-
ative log-likelihood reaches optimal values that do
not correspond between the two different regular-
izations. The values yielded by Ledoit-Wolf and
OAS formulas are reported. They are close to the
¢ regularization optimal shrinkage.

Error: negative log-likelihood on test data
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Regularizaton parameter: shrinkage coefficient

parameter A is particularly important, as the estimate is very sensitive to this
value. When A\ — oo this converges to a diagonal matrix. Figure 2.4 shows the
variations of the negative log-likelihood according to .

2.2.2.3 Ledoit-Wolf estimation

Ledoit & Wolf [27] employ convex shrinkage in order to correct the eigenvalues
discrepancies between the empirical covariance matrix (2n) and the population
covariance matrix (3). Thus, they build a new covariance sample estimate from
a convex combination between the sample empirical covariance matrix 3, and

a structured estimator M. A classical choice is M = %Id, and we denote

f)n’M’p the estimate given by (1 — p)f)n + pM , where 0 < p < 1. Ledoit & Wolf
consider as a criterion the Frobenius norm, ||A|% = Tr(ATA)/p so their oracle
solution for the choice of p is:

px = argminE {||2n,M,p — EH%} .
p

In [27], a closed-form solution is proposed as an approximation of px:

iy izl — 3|

n2 [Tr(ﬁlgl) — sz;ﬁn)] ’

pLw = min

yielding the corresponding covariance estimate:

zA:n,M,LVV = 2H,M1PLW
Equivalent results were derived for various choices of M and a better approx-
imation of p exists under the assumption that data are Gaussian-distributed.
The work of [4] refines the latter result with the Oracle Approzimating Shrinkage
(OAS) estimate:

poAs = min

but ﬁ)n Mm,Lw is more used in practice because the Gaussian-distributed data
assumption is hard to verify.
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Ledoit & Wolf investigated non-linear approximation for high-dimensional
covariance matrices [28, 29], but the resulting estimates require a much larger
computation time and implementation efforts that are not justified in practical
applications, which limits the usefulness of this approach.

2.2.2.4 Parameter selection with cross validation

The choice of the regularization parameter A is crucial as it represents a trade-off
between bias and variance. The use of a biased estimate in the context of statis-
tical inference yields poorly sensitive results while too much variance potentially
makes the statistical algorithms unstable (e.g. the inversion of a rank-deficient
covariance matrix fails). There is of course no general solution to that problem
and the optimal choice actually depends on the data and the targeted applica-
tion. Empirical methods based on dataset splitting are therefore useful. Most of
them consist in estimating a parameter on part of the available data, while the
likelihood of the learned parameter is then computed on another(others) part(s)
of the data. These are cross-validation methods. More specifically, k-fold cross
validation starts with splitting the whole dataset into k disjoint parts of (almost)
equivalent size. We then define a training set as the whole data set from which
one of the splits (the test set) is taken out. A range of potential values for the
A parameter are considered, each one yielding a covariance estimate (we omit
the role of location estimate for the clarity of the explanation) that can be used
to compute the likelihood of the test data. Repeating the same procedure again
for each of the k training sets possibilities finally results in k test set likelihood
values associated with each considered value of A. Those can be averaged ac-
cording to the X value and the A associated with the largest average likelihood is
take as the k-fold cross validation estimate of the A parameter. For large enough
values of k, this estimate is stable enough and does not require bootstrapping
(see Section 2.3.1). The special case k = n — 1 is called leave-one-out (cross
validation). The most used schemes are 3-, 5- and 10-fold cross validation. To
date, cross validation is the only reliable method in practice to estimate the £
regularization parameter (see Scikit-learn documentation and examples?).

2.2.3 Robust estimation

Covariance estimation is only relevant in the case of unimodal data, and the
more specific assumption that data are Gaussian distributed is often made.
Slight departures from Gaussianity weakly affect most of the estimators pre-
sented above, but the situation becomes more critical when the hypothesis is
strongly violated, for instance when strong outliers are present or when there is
a strong asymmetry in the data distribution. The first assumption of unimodal
data is more important because its violation strongly affects covariance estima-
tion, as illustrated in Figure 2.5. The finite-sample breakdown value 6;(5’, X,)
of an estimator S at the dataset X, is the smallest amount of contamination
that can have an arbitrarily large effect on S [8, 25]:

* (& . m &0 v Q
En(SaXn)EH}rILn EQNSUP 1S(Xnm) = S(Xy)|| =00 p,
X77/"’77/

3http://scikit-learn.org.
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— covariance estimator
— robust covariance estimator

Figure 2.5: Robust vs. non-robust
covariance estimation. If several
, modes are present in the data, non-

robust covariance estimation breaks
down. Here, the empirical sample co-
variance estimate (in blue) makes no

sense, while the robust estimate (in
green) correctly captures the shape of
. the main mode.

where X, ,,, is a dataset obtained by replacing m observations of X,, by arbi-

trary points. Then, the breakdown point of the estimator S at the dataset X,
is defined as lim € (S, X,,).
n—-+oo

Another useful tool in robust statistics is the influence function of an estimator.
It measures the stability of an estimator, i.e. how well the estimator preserves
its properties (e.g. unbiasedness, consistency) under small deviation from the
model assumptions. In order to define the influence function, we need to rewrite
any covariance estimator S at the dataset X, as a function of the sample em-

pirical distribution function, F,(z) = L 3" | 1y, .,y and we take F = lim F,.
n—roo

Finally, 0, is the pointmass 1 at . The influence function IF(z, X,,, S) of an

estimator S at the dataset X, = {x1,...,2,} and the observation z € R is
then [24]:

IF(z, X,,8) = lim S((1—s)F +s8,) — S(F)

s—0 S

2.2.3.1 Projection pursuit

Robust estimation of covariance can be done by first removing spurious (group
of) observations with ad hoc techniques, and then using a non-robust estimate.
Projection pursuit methods are a family of methods that project the data into
some well chosen subspaces in which the data statistical structure appears more
clearly. They are simple to understand and they rapidly provide interpretable
results. Thus, projection pursuit is more a diagnosis technique than an estima-
tion procedure and we only included them in our survey about robust procedures
because they are fairly used in practice [57].

The simpler example of projection is the so-called random projections pro-
cedure. For example, it may be easier to separate two clusters of observations
when the data are projected on a line [31]. Performing several random pro-
jections in order to have different views on the data may be a efficient way of
rapidly investigating the basic structure of the data (and discard outliers). The
latter can be explored with more clever projections. For example, Filzmoser et
al. [11] performs outlier detection and covariance estimation by considering only
2p directions of a p-dimensional space. The choice of the directions is based on
maximization of the data kurtosis. The most famous dimension reduction tech-
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nique that can be used to select projection spaces is the Principal Component
Analysis (PCA). PCA aims at finding the directions (the principal components
that maximize the variance of the data, when those are projected on it. Tech-
nically, PCA consists in finding the eigenvalues and eigenvectors of the data
empirical covariance matrix X T X, but this estimate is typically poor in the
presence of outliers. Covariance estimation and PCA are thus clearly related.
Some estimation techniques as the repeated median [51] build robust location
and/or covariance estimates by considering the p features describing the data
one by one, but they ignore the potential correlations between the features and
therefore may provide biased estimates.

2.2.3.2 Me-estimators

Assuming centered data, a M-estimate of covariance [32] is defined as the solu-
tion S,, of:

n
S = %Zp(x;rs_lxi)xix;r,

i=1
where (i) p : s — u(s) is non negative, non increasing, and continuous for
s > 0; (ii) p' is bounded by a scalar K; (iii) p’ is non decreasing, and strictly
increasing in the interval where p’(s) < K. M-estimators include maximum
likelihood estimation as a special case, but their interest is to use a function
p that dampens the influence of observations deviating from the population
pattern (assuming once again unimodal data).

Interesting results about M-estimates are given by Huber [24]. The most
important seems to be that their influence function is proportional to p’. Thus,
the choice of p gives control on the stability of the estimate. The breakdown
point of M-estimates depends on the choice of p as well, but does not reach
0.5 (its maximal theoretical value). The main limitation regarding the use of
M -estimators of covariance is that there is no converging algorithm to compute
them. According to Huber, existing algorithms give good practical solutions[24]
but they remain slow since they alternatively estimate the location (that is not
zero in practice) and covariance of the data. We consider M-estimates in the
context of regression in Chapter 3.

2.2.3.3 MCD

The state-of-the-art high breakdown point robust covariance estimator for mul-
tidimensional Gaussian data is Rousseeuw’s Minimum Covariance Determinant
(MCD) estimator [45]. Given a dataset with n p-dimensional observations,
X € R"*P, MCD aims at finding h observations considered as inliers, by mini-
mizing the determinant of their scatter matrix. We refer to these observations
as the support of the MCD.

The core procedure commonly used to compute the MCD estimate of the co-
variance of a population is given in Algorithm 1. It consists of alternatively
choosing a subset X of h observations to minimize a Mahalanobis distance,
and updating the covariance matrix b)) g used to compute the Mahalanobis dis-
tance. |2 o] decreases at each update of X . Standard algorithms such as
the Fast-MCD algorithm [46] perform this simple procedure several times from
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Algorithm 1 MCD estimation algorithm

L. Select h observations (call the corresponding dataset Xp);
Compute the empirical covariance ¥y and mean fig;

Compute the Mahalanobis distances di‘Hle(mi), 1=1.m;

Select the h observations having the smallest Mahalanobis distance;
Update X and repeat steps 2 to 5 until |Xg| no longer decreases.

CUp W

different initial subsets X g and retain only the solution with the minimal de-
terminant. The MCD can be understood as an alternated optimization of the
following problem:

. ' 1 B
(i, ) = avgin (10g 2]+ Y (o~ 0= - (2)
w2, H icH

2.3 Non-parametric statistics

This section gives an overview of several well-known non-parametric algorithms
that can be used for unsupervised tasks. We first present sampling schemes that
we often use to build subsets of observations that have a statistical structure
close than that of the original sample. We need such subsets when performing
for instance Monte-Carlo simulations or random projections. We then describe
various algorithms suited to the study of multimodal datasets for which the
number of modes is often unknown and difficult to estimate, especially under
high-dimensional settings. They can sometimes be used to extract Gaussian
components from complex population structures.

2.3.1 Sampling schemes

Monte-Carlo simulations, permutation testing and the bootstrap method [10]
consist in generating several artificial datasets by randomly drawing n observa-
tion with replacement from a dataset X,,. The estimation of a statistic can be
performed on each bootstrap dataset so as to obtain a distribution of the esti-
mate. The mean (or the median) of the distribution is taken as the bootstrap
covariance estimate of the dataset, and is therefore stable with regard to slight
changes in X, (see the definition of stability in section 2.2.3). Bagging [3] is
very similar to bootstrap, with the only difference that the artificial samples
may contain less than n observations. This results in a loss of efficiency for the
estimates but their computation is faster. When the Gaussian-distributed data
assumption does not hold, standard statistical procedures may be inaccurate.
In particular, the sensitivity of most testing procedures is controlled under the
Normal assumption. Boosting [48] can be employed in that context: Several
testing procedures are used and a final consensus (or vote) is made to come to
a final decision. By combining several weakly performing procedures, it is thus
possible to obtain a powerful one.

It is important to note that robustness and stability are easily confused.
Robustness implies a certain amount of stability (see the definition of the influ-
ence function in section 2.2.3) but stable does not mean robust. Bootstrap and
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\

Figure 2.6: Kernel density estimation with the Parzen-Rozenblatt estimator. Each blue
point on the axis has a smooth contribution (red dashed lines). The sum of all the contribution yields
a smooth density function (in blue). The choice of the kernel defines the shape of the contributions,
while the bandwidth parameter controls for their width.

ensemble methods provides stable estimates because they avoid to choose an
estimate that deviates too much from the average estimate obtained for slightly
different datasets. They are not robust per se because a gross outlier could
completely shift the bootstrap distribution of an estimate, and, in turns, result
in a bad bootstrap estimate.

2.3.2 Density estimation

Let X, = {z1,...,2,} be a sample of n observations. We make the assump-
tion that those observations are realizations of a random variable X. Density
estimation relates to the estimation of the distribution of X, usually from the
observed sample X,,. A simple example of density estimation is the cumulative
density function of X: F,(x) = > 1" 11, <»). In order to estimate the density
function D,, and not its cumulative, we can put

D (z) ZZ%ﬂ{wd}, (2.8)

=1

where h is a parameter (the bandwidth) that may be chosen by cross-validation

so as to offer a good compromise between a noisy (i.e. too much variance) and a

flat (i.e. too much bias) estimation. Figure 2.6 provides an illustrative example

of Parzen-Rozenblatt density estimation. Equation 2.8 can be generalized to

the multidimensional case by rewriting it with a kernel K, which is an even,
. . . . — 00

non-negative function verifying | oo K(u)du =1

Dy () :gK (””}Z“) (2.9)

According to the kernel K, the estimation may also be smoother than the
usual histogram. The parameters of the kernel are once again chosen by cross-
validation in most cases. Equation 2.9 correspond to Parzen-Rosenblatt win-
dow estimation [38, 44], where the kernel intuitively defines a neighborhood
around each observation. The most famous kernel is the Gaussian kernel:

K(u) = \/%e*%’f. If d-dimensional Gaussian distributed data are considered,

the optimal bandwidth for the Gaussian kernel has a theoretical expression [52]:
1

h = (%) d+4, where & is the coordinate-wise standard deviation of the

n samples. This formula can be used as a relatively good approximation of h
when the approximated distribution is "as smooth as a Gaussian" and can serve
as a basis for multivariate estimation as well.
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Algorithm 2 Expectation-Maximization algorithm (for Gaussian mixture)

Define: k: number of components in the model;

X ={xy,...,x,} the set of n p-dimensional observations;

Z ={z,...,zn} the vector of latent variables that encode the k components,
such as @;|(z; = j) ~ Np(pj,0)V(4,5) € {1,...,n} x {1,...,k};

T ={m,..., 7} represents the weights of the components, and Z?Zl 7 =1

L(6; X, Z) is the likelihood function, where 8 = (7, pu1,..., g, 01,...,0%)
is the quantity to be estimated by the algorithm.
Init: e = 1072, (©) = random values

repeat
Q(616Y) = E[log L(0; X, Z)] (Expectation step)
60+ = argmax Q(6(0) (Maximization step)
t—t+1 ?

until [L(OW: X, Z) - L0V, X, Z)| < e

0« 6"

2.3.3 Gaussian Mixture Models

A special case of non-Gaussian distributed dataset is a dataset that combines
several Normal populations (called components) having different locations and /or
covariance parameters. Note that any distribution can be approximated by com-
bining a finite number of Gaussian distributions with different locations and/or
covariances parameters. The associated unsupervised learning challenge is to
estimate the number of components, their parameters and their weights (in the
case of unbalanced classes). For a fixed number of components, an Ezpectation-
Mazimization (EM) algorithm can be used for adjusting the parameters and
weights of the components. Algorithm 2 details the EM algorithm*. Estimation
of the number of classes is typically performed by cross-validation or by using
the BIC criterion [50]. Estimation of a Gaussian Mixture Model parameters
can be challenging in high-dimension because the likelihood function requires
the inversion of the covariance matrix associated with each component. If the
number of observations within one component is too small with respect to the
number of data descriptors, the covariance matrix may be ill-conditioned or
non-invertible. We refer to section 2.2 for a more complete description of the
resulting computation issues.

Once a mixture model has been estimated, it can be used for various purposes
such as density estimation or statistical inference. Gaussian mixture models are
also useful to generate synthetic data that have a complex statistical structure.
This techniques has been used several times in this thesis. For instance, outliers
can easily be simulated by contaminating Gaussian distributed data with obser-
vations drawn from a wider Gaussian distribution. Another standard example
is the generation of sub-Gaussian data, a problem for which no simple distri-
bution is adapted whereas Student or Laplace distributions are super-Gaussian
(i.e. "peaked" data). Figure 2.7 gives an illustration of the differences between
"peaked" or "wide" distributions.

4source: http://en.wikipedia.org/wiki/Expectation-maximization_algorithm.
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— Mo . e . .
X X Figure 2.7: Distributions with vari-

Gaussian mixture component ous widths. The standard Normal dis-

— Gaussian mixture tribution with zero location and unit
—— Student distribution variance is the most common distribu-

tion (in blue), but it is sometimes useful
to consider wider or narrower distribu-
tion in simulations for real-data appli-
cation. Here, we obtain a wide distribu-
tion (in red) by a mixture of two Gaus-
sians with different location parameters
(in shaded blue). A Student distribu-
tion (in green) is more "peaked" than a
Gaussian.

2.3.4 Support Vector Machines

Support Vector Machines (SVMs) are mainly classification tools. The well-
known linear SVM algorithm was originally designed to estimate the optimal
separating hyperplane between two linearly separable classes, that is the hyper-
plane that can classify new data with the smaller error rate [2]. The simplest
formulation of the SVM is:

! 9
mins v

s.t. yi(wwi — b) >1 Vie {1, - ,n},

where y; is the label of the observation i (-1 or 1 in this illustrative two-classes ex-
ample). w and b are the slope and the intercept of the separating hyperplane.
SVMs have been extended to the case of non-separable classes (soft-margin
SVMs) [5], with parameters (&;,i € {1,...,n}) that control the trade-off be-
tween the classification error of the training sample and the classification error
that would be observed on new samples (from the same distribution):

N I O =
g}g}){szll +C;£i}
st yi(we; —b)—&>1, &>0 Vie{l,...,n},

A very useful property of SVMs is that they can also handle the case of non-
linear data (as in Figure 2.8), multiple classes and high-dimensional feature
space. A lot of applications of SVMs go beyond the standard classification task
and there are been various attempts to perform inference from SVMs. An inter-
esting example is the One-Class SVM [49] that was inspired from regular SVMs
but which is restricted to the robust estimation of one single class contours
(or frontier): application to (semi-supervised) outlier detection have been per-
formed in many research fields [7, 6, 58, 62]. Support Vector Regression (SVR)
is a regression algorithm based on SVMs [9].
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3.1 Outliers in neuroimaging

3.1.1 Provenance and influence

Medical image acquisitions are prone to a wide variety of errors such as scan-
ner instabilities, acquisition artifacts, or issues in the underlying bio-medical
experimental protocol. In addition, due to the high variability observed in pop-
ulations of interest, these datasets may also contain uncommon, yet technically
correct, observations. In both cases, images deviating from normality are called
outliers. Outliers may be numerous, especially in neuroimaging, where the
between-subjects variability of anatomical and functional features is very high
and images can have a low signal-to-noise ratio. The inclusion of overly noisy
or aberrant images in medical datasets typically results in additional analysis
and interpretation challenges. In particular, outliers have been show to have
a dramatic influence in standard statistical procedures such as Ordinary Least
Squares regression [19, 44], clustering [9, 15], manifold learning [57] or neu-
roimaging group analyzes [25, 32]. Figures 3.1 and 3.2 illustrate this on an
example dataset on the which a linear regression and a principal component
analysis are performed. In both cases, there is a clear discrepancy between the
results obtained on a clean dataset and the results obtained on a contaminated
dataset.

Figure 3.3 shows the results of a one-sample F-test performed on a dataset
including 100 inliers subjects and 20 strong outliers. The same analysis was
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also performed on the same dataset after outliers removal. Results of both
analyzes were compared to a group analysis performed on 1414 inliers subjects’.
Activation in the left Globus Pallidus was missed in the contaminated set, but
was detected after outlier removal. Also, activation in the right occipital cortex
was only found from the latter dataset. Although it was obtained from less
subjects (resulting in a statistical power loss), the group activation pattern
for the “cleaned” group better reflects the activity pattern of the whole dataset,
showing a stronger effect in every activated regions than the group map obtained
from the contaminated set.

3.1.2 Common practices in neuroimaging

An intrinsic difficulty of outlier detection in medical imaging lies in the lack
of formal definition for abnormal data; in particular, no generative model for
outliers might be sufficient to model the variety of situations where such data
are observed in practice. Moreover, in high-dimensional settings, i.e. when the
number of observations is less than five times the number of data descriptors (or
features) [16], the problem of outlier detection is ill-posed since it becomes very
difficult to characterize deviations from normality. From a practical perspective,
manual outlier detection is impossible in such a situation. Current methods
dealing with outliers in a high-dimensional context are essentially univariate
methods, i.e. they consider different dimensions one by one [39, 58]. These
methods may fail to tag as outliers observations that are deviant with respect
to a combination of several of their characteristics, but for which each descrip-
tor considered individually does not reveal deviation from normality. Medical
imaging data, and in particular neuroimaging data, are high dimensional, the
underlying dimension being the number of degrees of freedom in their variance,

IThe details about how we could tag subjects as in- or outliers can be found throughout
this chapter.

63



Outlier detection and deviation from Normality

=0 405

wapt>o [

(z = 3mm, y = —4mm, z = —25mm) cut. (z = 20mm, y = 19mm, z = —5mm) cut.

Figure 3.3: Illustration of the benefit of removing outliers. Group activity map (two-sided
test for a null intercept hypothesis 8 = 0, rejected at P < 0.05 level, family-wise corrected) for
the angry faces viewing task of the Imagen database (see section 1.4 in chapter 1) on (%) a reduced
dataset containing 100 inlier subjects and the 20 strongest outlier subjects, (ii) the same dataset
with outliers removed according to RMCD-{5 method, (%i7) the full dataset with outliers removed
according to RMCD-/¢2 method. The results of the second row, obtained after removal of the outliers,
are closer to the full dataset group analysis than the results of the first row. This illustrates the
adverse consequences of including outliers in group-level inference.

which can be of the order of the number of image voxels. This is typically much
larger than the number of available samples, although parcel-level representa-
tions (thanks to parcellations and local signal averaging) reduce this issue and
are therefore systematically used in our work. In functional MRI studies, neu-
roscientists often screen the data manually (see e.g. [40]), because of the lack of
an adapted outlier detection framework. The criteria for discarding data are not
always quantitatively defined. For instance, images may be discarded if, upon
visual inspection, they do not reflect the expected brain activation pattern (e.g.
in a so called contrast map). Such a process is tedious and unreliable, but most
importantly it makes the statistical analysis of the group data invalid for that
pattern —as it implies that the variance of this pattern will be underestimated.
While the robust statistics literature generally considers that problems with a
number of dimensions comparable to the number of observations cannot be ad-
dressed in model-based approaches, we investigate whether outlier detection is
still possible in that setting. We consider both parametric and non-parametric
approaches and discuss their pros and cons regarding practical application in
neuroimaging. However, we insist on the fact that outlier detection cannot
be substituted to the use of robust statistical inference in neuroimaging. Ex-
periments in chapter 5 demonstrate that the combination of both techniques
improves sensitivity as (i) a perfect outlier detection cannot be attained, espe-
cially under high-dimensional settings ; (i) there are other sources for deviation
from the model assumptions than the mere presence of gross outliers.
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3.2 Covariance-based outlier detection

This section deals with covariance-based outlier detection methods, in which the
covariance matrix of the population is estimated and then used to compute an
outlier score for each observation. Using a covariance estimate relies on the as-
sumption that regular observations, called the inliers, are Gaussian distributed,
and that outliers are characterized by some distance to the standard model.

3.2.1 State-of-the-art

Assuming a high-dimensional Gaussian model, an observation x; € RP within
a set X can be characterized as outlier whenever it has a large Mahalanobis
distance to the mean of the data distribution, defined as @, s (zi) = (®; —
1) S (x;—p), p and X being respectively the dataset location and covariance.
Crucially, robust estimators of location and covariance must be used to compute
these distances [8, 38].

3.2.1.1 Minimum Covariance Determinant

The state-of-the-art robust covariance estimator for multidimensional Gaussian
data is Rousseeuw’s Minimum Covariance Determinant (MCD) estimator [43],
presented in chapter 2. Given a dataset with n p-dimensional observations, X €
R™ P MCD aims at finding h observations considered as inliers, by minimizing
the determinant of their scatter matrix. We refer to these observations as the
support of the MCD. We recall the alternated optimization problem associated
with the MCD:

(H, fun, Xy,) = argmin <log |3
w3 H

f e W e ).

i€H

(3.1)

The limitations of the MCD come from the fact that the scatter matrix must
be full rank, as it is used to define a Mahalanobis distance. As a consequence,
h must be greater than hpy, = "+§+1: the MCD cannot learn the inlier dis-
tribution if there are less than hy;, inliers. In high-dimensional settings, as %
becomes large, hyi, increases and outliers are potentially included in the co-
variance estimation if there are more than "_g_l of them. When p =n —1, the
MCD estimator is equivalent to the unbiased maximum likelihood estimator,
which is not robust. Finally, if p > n, the MCD estimator is not defined. In
practice, the MCD is not recommended when £ > 0.2. To address these issues
we propose to use half of the observations in the support (h = %) and compen-
sate the shortage of data for covariance estimation with regularization, referred
to as Regularized MCD in the remainder of the text.

Gaussian Mixture Models (GMM, see section 2.3.3) suffer from the same
limitations than the MCD in high-dimension as the algorithm that is used to fit
GMM require the estimation and the inversion of one covariance per component.
Regularized versions of GMM exist [59, 52] but the associated algorithms require

to estimate as many regularization parameters than there are components in the

65



Outlier detection and deviation from Normality

model, which increases a lot the complexity of the procedure. To our knowledge,
no practical solution has been developed yet for this promising tool.

3.2.1.2 Distribution of robust Mahalanobis distance

A crucial part of covariance-based outlier detection is the derivation of a thresh-
old on the Mahalanobis distances that helps performing a statistically con-
trolled decision at the 7 type I error maximum level. For any random variable
X ~ N(w, ), it is a well known result that d?, 5(X) ~ x;. Similar result
exists for the distribution of di 5(X), and [18] derived a theoretical formula
approaching the distribution of the MCD-based Mahalanobis distances for the
observations that were not part of the MCD’s support (the one within are dis-
tributed according to [18]). But since the latter approximation only holds for
large sample sizes, performing Monte-Carlo simulations remains the reference
method to assess the distribution of d%h ﬁ)h(X): Considering a n x p dataset
on which outlier detection has to be performed, the MCD covariance estimate
ﬁ)h can be used to generate Gaussian distributed data from which a new ﬁ]h
can be estimated, together with the distribution of the ensuing Mahalanobis
distances. Repeating this scheme several times, we obtain a tabulation of the
MCD Mahalanobis distance distribution function under the current setting. We
verified that this procedure was more accurate than the small-sample correction
proposed by Pison et al. [41].

3.2.2 Regularized Minimum Covariance Determinant

We first investigate outlier detection with estimators resulting from a penal-
ized version of the likelihood in Equation 3.1. This corresponds to replacing the
step 2 of the MCD Algorithm 1 by a penalized maximum-likelihood estimate of
the covariance matrix.

3.2.2.1 RMCD-/,

We consider ¢ regularization (or ridge regularization): let A € RT be the
amount of regularization, and 3, |H the covariance estimate of a n x p dataset
X g that maximizes the penalized negative log-likelihood:

(fir, Be|H) = argmin <log 1T+ ATr 2!
©,x

. (3.2)

S e W e ).

i€H

yielding 3, |H = % + Al and 4. |H = % We denote the corresponding
estimator RMCD-/¢5. The covariance estimate is biased toward a spherical co-
variance matrix. This bias corresponds to an underlying assumption of isotropy.
If the inlier distribution strongly violates this prior, the bias may introduce out-
liers in the estimator’s support.

66



Outlier detection and deviation from Normality

3.2.2.2 RMCD-/;

We build another regularized version of the MCD using the ¢; penalty || Alog =
2 _ixj laij| that corresponds to the /1 norm of the off-diagonal coefficients of
the matrix A (note that this is not a matrix norm) in the expression of the
penalized negative log-likelihood at step 2 of Algorithm 1:

(e S0, ) = axganin (1og IS4+ AIZ o
. (3.3)

+ % D (i —p)"S (@ - u))-

i€eH

We denote the corresponding estimator RMCD-¢;. The solution of the prob-
lem 3.3 is known to have a sparse inverse [53]. This sparsity property is useful for
interpretation of the solution in terms of graphical models. For instance in the
functional neuroimaging context, not all brain regions are statistically related
to each other [55]. Since no closed form solution exists for the problem (3.3),
we use the GLasso algorithm [14], implemented in the scikit-learn package [36].

3.2.2.3 Setting the regularization parameter (\)

For RMCD-¢; and RMCD-/;, the A parameter has to be chosen carefully to
obtain the right trade-off between ensuring the invertibility of the estimated
covariance matrix and not introducing too much bias in the estimator. If A =0
we recover the MCD estimator and its limitations. On the contrary, if A is very
large, the data structure is not taken into account since the distance becomes
then the Euclidean distance to the data mean. We report here three strategies
that we investigated to set the shrinkage parameter:

i) The first strategy is based on likelihood maximization under the Gaussian
distribution model for the inliers. Starting with an initial guess for A = nipTr(ﬁ)

where ¥ is the unbiased empirical covariance matrix of the whole dataset, we
isolate an uncontaminated set of § observations that correspond to the RMCD’s
support. Let A = %Tr(flpure), where f]pure is the empirical covariance matrix
of the uncontaminated dataset. We choose § so that it maximizes the ten-fold
cross-validated log-likelihood of the uncontaminated dataset. Since we use cross-
validation, we refer to the ¢>-regularized version of the MCD by RMCD-lz(cy-
We also used this strategy for the choice of the RMCD-/¢; shrinkage parameter,
since the subsequent strategies are not adapted to the ¢ case.

The two other strategies are based on convex shrinkage, where the estimated
covariance matrix can be expressed as (1 — )3 + %Tr(ﬁ])[. it) O. Ledoit
and M. Wolf [31] derived a closed formula for the shrinkage coefficient o that
gives the optimal solution in terms of Mean Squared Error (MSE) between
the real covariance matrix to be estimated and the shrunk covariance matrix
(see section 2.2.2.3). idii) In a recent work, Chen et al. [7] derived another
closed formula that gives a smaller MSE than Ledoit-Wolf formula under the
assumption that the data are Gaussian distributed. They called it the Oracle
Approzimating Shrinkage estimator (OAS) (see section 2.2.2.3). We adapt these
results to set the regularization parameter of our MCD /¢5-regularized version
by taking A = I)(%;*)Tr(ﬁ) for a* obtained by Ledoit-Wolf and OAS formulas
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applied to the uncontaminated set, respectively yielding estimators that we refer
to as RMCD-{y (1) and RMCD-{3 (46 estimators.

Outlier detection with RMCD-f3(cy) and RMCD-£3(545) systematically yield
an accuracy lower than or equal to RMCD-/3(1,,). This is explained by the addi-
tional hypothesis required by OAS and cross-validation with respect to Ledoit-
Wolf approach, and by the suboptimal cross-validation scheme. This finding
suggests that the cross-validated likelihood may not be optimal as a criterion
for choosing the RMCD-/;’s shrinkage parameter and that we do not know how
to set this parameter in practice. In the sequel, we restrict ourselves to using
RMCD-£3(1y) that we refer to as RMCD-/5.

3.2.2.4 RMCD-RP

Another way to regularize the MCD estimator in a high-dimensional context
is to run it on datasets of reduced dimensionality via random projections as
illustrated in Figure 3.4. This dimensionality reduction is done by projecting
to a randomly selected subspace of dimension k < p. Outlier detection can be
performed with the MCD on the projected data if k/n ratio is small enough.
Since the choice of the projection subspace is crucial for detection accuracy,
the procedure has to be repeated several times in order not to miss the most
discriminating subspaces. In our experiments, the results of the detections were
averaged using the geometric mean of the p-values obtained in the different
projections.

Setting the subspace dimension The choice of the dimension k of the
projection subspace is crucial. A too small value of k results in a large loss of
information during the projection step and thus raises the issues encountered
with the univariate method. On the other hand, for large values of k, the
geometry is preserved but the method might suffer the same issues as the MCD,
even though the dimensionality reduction should make RMCD-RP more robust.
We performed several outlier detection experiments with various choices for the
value of k between p/10 and p. Our observation was that taking k = p/5 was
a good trade-off (see Figure 3.5). This choice furthermore ensures that the
RMCD-RP-based outlier detection method will be applicable for p/n ratios up
to 1, since the underlying MCD-based outlier detections take place in a context
where the MCD is computationally stable (k/n < 0.2).
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Figure 3.5: Influence of the pro-
jection subspace dimension on
RMCD-RP’s accuracy (as mea-
sured by AUC curves, see sec-
tion 3.4.2.1). Outlier detections per-
formed with various values for the pro-
jection subspaces dimension in RMCD-
RP. Details about the experimental set-
tings are discussed in section 3.4.2.1.
Variance outliers (p = 100, condition
number = 100, a = 1.15, v = 20%).
k = p/5 seems a reasonable choice (cor-
responding here to k = 10) for a various
set of experimental settings.
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Setting the number of projections While too many random projections is
computationally costly for a limited gain, too few projections may miss a good
angle of the dataset. Outlier detection experiments convinced us that a number
of projections equal to the number of dimensions is enough to explore the whole
working space while being computationally tractable: further increase of this
parameter does not improve the performance of the RMCD-RP method.

3.2.2.5 Statistical decision from Mahalanobis distances

Monte-Carlo simulations can be applied to assess RMCD-/5’s Mahalanobis dis-
tances distribution, in the same fashion as discussed in subsubsection 3.2.1.2.
We adapted it to RMCD-RP in the following manner:

1. We tabulate the distribution Fx, of the MCD-based Mahalanobis distance
under n X k settings (k is the dimension of the projection subspaces);

2. We take 7/p as the new accepted error level as the number of random
projections is equal to p;

3. Taking d* = F)}:(l — 7/p), define every observations with Mahalanobis
distance greater than d* in at least one subspace as outlier.

Despite the approximation made at step 2 of the previous procedure, Fig-
ure 3.6 shows the proportion of type I errors made by the RMCD-RP for a
desired theoretical value of 7 = 0.05 under various p/n settings. The final
decision is a bit conservative but still relevant.
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Figure 3.6: Statistical control of outlier detection from the Mahalanobis distances of
robust covariance estimators. Proportion of detected outliers on a clean Gaussian distributed
dataset at P < 0.05 uncorrected. (a) x(X) = 1. (b) x(X) = 1000. Type I error rate of RMCD-£5
and RMCD-RP is close to the nominal value of 0.05 uncorrected chosen in this example.
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3.3 Non-parametric outlier detection

Medical imaging data is not necessarily well described by a Gaussian distribu-
tion. Thus it might be profitable to seek decision rules not based on Mahalanobis
distances to screen deviant data. So far, applications of density-based outlier
detection methods in neuroimaging have been mostly restricted to the detection
of pathological observations, such as patients amongst healthy individuals or tu-
mors detection. These applications involve example cases or at least some input
from the practitioner and therefore fall into the category of (semi-)supervised
problems. Here, we consider an unsupervised task because we have no prior
knowledge on the form nor the number of outliers.

3.3.1 Density-based outlier detection

Assuming that we have a density model associated with the observations space,
outliers can be defined as observations lying in low density region. This def-
inition is the ground for density-based outlier detection. Density models are
generally defined from distances to the neighboring observations [3, 6, 35, 12]:
The (average) distance of an observation to its nearest neighbors is converted
into a score, according to the which it can be decided whether the observation is
an outlier or not. Alternative methods use angles [30] or rules [13] to compute
outlier scores. Distance-based outlier (DB-outlier) [26] and local outlier factor
(LOF) |6] are the most used non-parametric outlier detection methods; their
scores are based on the distances to the k-nearest neighbors. These methods
have been declined in many variants [2, 4, 27, 37, 42, 21, 22, 50, 51]. They have
been merged in the local distance-based outlier detection approach (LDOF) [60],
with variants for high-dimensional data [56, 28]. The weakness of density-based
outlier detection algorithms is that their associated scores are not interpretable
and cannot be readily converted into decision statistics [29]. Most of the meth-
ods require arbitrary choices and involve transformations of the k-nearest neigh-
bors distance such that the resulting score is not interpretable anymore. In our
work, we perform density-based outlier detection with standard machine learn-
ing algorithms that behave well in high dimension. These algorithms estimate
density models instead of mere scores. One can then directly compute new
scores for novel observations (nowvelty detection) and transform the model with
algebraic manipulations (e.g. one can filter the density model with trace norm
penalization in order to identify outliers, see section 3.3.3).

3.3.2 One-Class SVM

We first consider unsupervised outlier detection with the One-Class SVM (see
section 2.3.4). This choice was originally motivated by the fact that other ro-
bust, high-dimensional, non-parametric tools such as Robust PCA [20] or Local
Component Analysis [45] had not yet been considered in practical applications.
The One-Class SVM novelty detection algorithm [46] is a clustering algorithm
that relies on a thresholded Parzen windows density estimator (see section 2.3.4)
to define a frontier around a population from a set of representative observa-
tions. It is not limited by any prior shape of the separation between in- and
outlying observations. Mourao-Miranda et al. [33] showed that the One-Class
SVM can be trained to detect patients, provided an initial cohort of healthy
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subjects is available. Let us remind that the One-Class SVM algorithm solves
the following quadratic program:

2
—N g 4
€FEGR,LPGMH w|*+ - Z& (3-4)

subject to  (w-®(x;)) >p—&, & >0 (3.5)

where @ is a feature map RP — F verifying K (x,y) = ®(x)  ®(y) for any obser-
vations x, y € R?P and a given kernel K. The One-Class SVM algorithm needs
to be trained on observations that are representative of the whole population so
that the learned frontier generalizes well to new subjects. This corresponds to
a supervised setting.

Outlier detection is an unsupervised problem. The important parameter of
the One-Class SVM is the margin parameter v, which is both an upper bound
on the proportion of observations that lie outside the frontier learned by the
algorithm and a lower bound on the number of support vectors of the model [46].
In our experiments on simulated data, we set v to the amount of contamination
(i-e. the proportion of outliers in the dataset). Note that this choice favors the
One-Class SVM compared to methods that ignore the ratio of outliers. For real
data experiments, we set v = 0.5 as we work with at most 50% contamination.
We use a Radial Basis Function (RBF) kernel and select its inverse bandwidth
o with an heuristic inspired by [48]: o = %21, where A is the 10" percentile
of the pairwise distances histogram of the observations. We verified that this
heuristic is close to the optimum parameter on simulations, although the results
are not very sensitive to mild variations of o around this value. We use the
distance to the frontier as an outlier score on which we need to set a manual
threshold in order to take a decision.

3.3.3 Local Component Analysis (LCA)
3.3.3.1 Description

Local Component Analysis is another extension of Parzen windows density es-
timation where the isotropic assumption inherent in most kernels is relaxed to
anisotropic covariance parameters. The 6 parameter of the kernel hence becomes
the local data covariance matrix 3, which we estimate using a leave-one-out
cross-validation scheme as in [45]:

¥ —argmln Zlog |E| 27T 5Zexp <—de (x )) . (3.6)

i=1 J#i

3.3.3.2 Setting LCA’s regularization parameter

In Leroux et al.’s paper [45], an internal regularization term is used to ensure
LCA computation stability. The proposed default value is set to A = 1074,
without further discussion about the influence nor the choice of this parameter.
In our work, we choose A so that it models properly the central mode of the data.
Since outliers may have a large influence on the observed variance of the dataset
along some dimensions, we use a robust heuristic: we select the 50% most
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for non-parametric outlier detection, yield-
ing the A function. Soft thresholding is
the only convex transformation amongst the
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- yields more stability to the results.

output signal
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concentrated observations according to a Parzen windows density estimation,
compute the Ledoit-Wolf [31] coefficient shrinkage « from this subsample, and
set A = ;2. Leroux et al. mentioned outlier detection as a potential application

of LCA, but no further investigation has been performed to our knowledge.

3.3.3.3 Building an interactive outlier detection framework.

We propose an efficient procedure to summarize the necessary information about
the data structure so that the practitioner can find how many observations to
discard: Within the LCA computation, proximity measures of each observation
from another are computed as k;; = exp (—3(z; — z;)'%* ! (z; — z;)), thus
providing a kernel-based representation of the data as a symmetric positive def-
inite matrix K = (k;;); jeq1..n)2, that summarizes the whole data set structure.
Let K = UDUT, where U and D are the matrix of the eigenvectors and
diagonal matrix of eigenvalues (0;,7 € [1..n]) of K. Let Ds be the diagonal
matrix obtained by shrinking the elements of D by a factor 6 > 0 like in [57]:
Ds(iyi) = 1 — % it 0; > §, Ds(i,4) = 0 otherwise. This transformation is
called a soft thresholding (see Figure 3.7). Dy yields a shrunk density estimate
at each observation gs(z;) = eiTUD,;UTe, where e; is a vector whose entries
are 0 except its i-th element which is 1 and e is a vector of ones; note that the
normalization constant is omitted as it plays no role in our analysis. We finally
define A(x;) = ming{d : gs(z;) < 0.5}, which associates each observation with
the minimal shrinkage value § that —almost— cancels it. A can be further used
to identify different levels of homogeneity amongst the data. Typically, outliers
would correspond to a group of observations that vanish with the smallest values
of §, whereas larger ¢ also trim off regular observations as in Figure 3.14.

We define the disappearance function, a ranked version of A, as: A,k (i) =
A(Z4)im, where A(x;);.y, is the i-th order value of A(x;). Working with simulated
datasets and various values of p, p/n ratios and contamination amount v, we
observe that the first knee in the plot of A,k provides a reliable estimation of
the number of outliers in the dataset, while no such estimation can be made from
the LCA’s ranked density function grank(i) = g(2;)in, where g(z;) = ~el Ke
and Z is a normalization factor. As we will show in section 3.4, A,.,k better
characterizes data structure than gyank.
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Figure 3.8: Simulated data. Three different ways to generate multivariate outliers for Gaus-
sian data (p = 2). (a) Variance outliers (a = 3). (b) Multi-modal outliers (b = 3). (c)
Multivariate outliers (¢ = 5). The contamination rate is 25%.

3.4 Applying outlier detection to neuroimaging

3.4.1 Synthetic data

3.4.1.1 Outlier models

Normal population hypothesis. We first stick to the standard hypothesis
that neuroimaging data are Gaussian distributed. Since the methods we con-
sider are location invariant, we can make the assumption that the inliers are
centered (pu = 0) without loss of generality. Let 3 be the covariance matrix
for the inliers. Let u, and X, be the location and covariance matrix for the
outliers. We simulate three outliers types using mixture models (see Figure 3.8):
Variance outliers are obtained by setting ¥, = a3, a > 1 and p, = 0. This
situation models signal normalization issues or aberrant data, where the amount
of variance in outlier observations is abnormally large.

Multimodal outliers are obtained by setting 3, = ¥ and p, = bl. This
simulates the study of an heterogeneous population. Thus, we do not have
outliers strictly speaking.

Multivariate outliers are obtained by setting p, = 0, X, = Z4comax(X) aa
where a is a p-dimensional vector drawn from a N (0, I') distribution. This model
simulates outliers as sets of points having potentially abnormally high values in
some random direction.

In each case, we relied on the theoretical result d? 2:(X) ~ Xp to generate the
outlier observations in such a way that with a probablhty of 99%, they do not
fall in the inliers support. This was done to ensure that we can distinguish
between in- and outliers if we know the real covariance matrix of the former.

T

Deviation from Gaussian distribution. Real-world data, and in particu-
lar, medical imaging data, are often not Gaussian distributed [11, 24, 54]. Yet,
in absence of a better model, assuming that the observations are Gaussian dis-
tributed is a very popular choice in many fields of applied statistics and within
the neuroimaging community, as it amounts to reducing data models to the
specification of location and covariance parameters. In order to address devia-
tions from normality, we simulate neuroimaging real data as data coming from
a mixture of m Gaussian distributions, the modes of which are randomly drawn
from a A(O, B I) distribution. The § parameter controls the expected distance
between the modes. Each component of the model is affected by a given number
of variance outliers (a = 1.15, see section 3.4.1.1). We choose the § parameter
in such a way that the different components overlap. We also consider Student
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distributed data as a non-Gaussian data distribution (the strength of the devi-
ation is again controlled with a distribution parameter). In both cases (mixture
of Gaussian distributions or Student distributed data), we generated outliers
so that they do not lie within the 99% support of the inliers. To quantify the
deviation from Gaussianity of our simulated dataset, we look at the distribution
of the p-values of a thousand normality tests (Shapiro test [49]) performed on
random one-dimensional projections of the data, and consider how frequently
these p-values are below .05.

3.4.1.2 Success metrics.

For a given outlier model and a fixed p/n ratio, we call an ezperiment 100
outlier detection runs, using a predetermined outlier detection method. We
average the results of these runs to build a unique ROC curve [61] per method,
and the Area Under the Curve (AUC) [17] is computed. AUC values obtained
for various p/n ratios provide a measure of each method’s accuracy for outlier
detection. Figure 3.9 is an illustrative example showing how we construct the
curves that we present in the sequel.

3.4.1.3 Results

All our results are given for a number of features p equal to 100, similar to
the real setting (p = 113, see section 3.4.2). They hold for greater or lower
dimensions (data not shown), although small dimensions are of no interest and
computation time becomes a burden for very high dimensions. When reporting
results, we denote by oracle the best possible decision, knowing the generative
model for inliers and outliers.

Variance outliers. As illustrated in Figure 3.10, we observe a significant drop
of the MCD accuracy as p/n increases. The MCD /;- and ¢y-regularized versions
always give an accuracy above 0.9, RMCD-/¢; performing a bit better. RMCD-
RP does not perform well. RMCD-¢; and RMCD-/5 performance show that the
regularization parameter selection is adapted to our problem, i.e. that we do
not introduce too much bias by regularizing the covariance estimate. Indeed,
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Figure 3.10: Synthetic data, vari-
ance outliers. AUC for various out-
lier detection methods in the case of
variance outliers (p = 100, ~(X) =
100, a = 1.15, v = 40%). ¢1- and {a-
regularized versions of the MCD out-
perform by far the standard MCD,
benefiting from the isotropic distri-
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both methods achieve almost perfect outlier detection performance for all values
of the covariance matrix condition number.

On both Gaussian and Student distributed data, the accuracy of outlier
detection with LCA dominates the accuracy of the other methods, although all
density-based methods perform well with an AUC above 0.9 (not shown).

Multimodal outliers. When dealing with multimodal outliers, we observe
the expected drop of the MCD accuracy. This demonstrates empirically MCD’s
theoretical limitations. All the regularized versions of the MCD estimator
yielded a perfect outlier detection accuracy, even for p/n > 1. Shortening
the distance between the modes only impacted the performance of the RMCD-
RP-based method, especially when the amount of contamination was high, as
shown in Table 3.2: When projecting to a k-dimensional subspace, the expected
distance between two observations decreases by a factor /k/n [23] so there
is a weaker chance to randomly draw a subspace which preserves the separa-
bility between the two modes. Finally, the One-Class SVM is not adapted to
this outliers model because it considers every densely populated region as com-
posed of inliers. In the presence of several clusters, the One-Class SVM and
any density-based method would only detect outliers as abnormal subjects with
respect to their closest cluster. This does not correspond to our assumptions of
a single main cluster containing inliers, which is anyway debatable as regards
neuroimaging data.

p/n | 0.1 0.5 0.8 1.0
LCA 0.99 £0.0017 | 0.99 +0.0054 [ 0.99 £0.0080 [ 0.98 +0.0078
Parzen 0.98 +0.0043 [ 0.98 +0.0103 [ 0.98 £0.0091 | 0.96 +0.0094
Parzen,, 0.99 +0.0022 | 0.97 +0.0055 | 0.97 £0.0082 | 0.97 +0.0095

One-Class SVM 0.99 £0.0037 | 0.91 £0.0296 | 0.77 £0.0795 | 0.64 £0.0593

One-Class SVMy, || 0.99 £0.0022 | 0.96 £0.0061 | 0.97 £0.0095 | 0.97 +0.0104

RMCD 0.99 £0.0023 | 0.95 £0.0055 | 0.97 £0.0083 | 0.97 £0.0090

Table 3.1: Density-based outlier detection methods and variance outliers. AUC values of
the different outlier detection methods confronted with variance outliers (Gaussian distributed data,
p =100, v = 0.4, k(%) = 1000, o = 1.15).
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Multivariate outliers. Provided the outliers are strong enough (i.e. ¢ > 10),
the MCD estimator is well adapted to the case of multivariate outliers for
p/n < 0.2, since its AUC is almost always above 0.9. Yet, the latter drops
as the p/n ratio increases. Since RMCD-¢; and -/ have stable performance,
they outperform the MCD for large p/n values. In-between, depending on the
condition number of the inliers covariance matrix and on the amount of contam-
ination, the relative performance may vary in favor of one method or another.
Figure 3.11 gives a general picture of the results obtained with the different
methods confronted with multivariate outliers. For ¢ < 10, none of the methods
can distinguish between in- and outliers and the AUC of each method increases
with ¢, the strongest outliers being detected first. Even though the regulariza-
tion parameter selection was adapted in the case of variance outliers, RMCD-¢;
and RMCD-/¢5 confuse in- and outliers when confronted with multivariate out-
liers, because of the difficulty to choose an adapted regularization parameter in
that case: the most concentrated set of observations depends on a prior knowl-
edge about the shape of the global data set. The (R)MCD support is thus
difficult to define, and so is the (R)MCD.

Covariance matrix condition number. Because regularized estimators of
covariance are biased toward a spherical covariance model, we evaluate the meth-
ods performance for inliers covariance matrix having a condition number k(%)
comprised between 1 and 10,000. With multivariate and variance outliers, we
observe an improved accuracy for RMCD-¢;, RMCD-/5 and density-based meth-
ods when the condition number is small. MCD is not affected by this parame-
ter. Unlike RMCD-¢;, RMCD-{5 and RMCD-RP, OCSVM and Parzen methods

[ p/n i 0.1 [ 0.4 [ 0.6 [ 0.8 [ . |
MCD 1. +0.008 | 1. +0.065 | 0.8 +0.052 | 0.65 +£0.058 | 0.55 +£0.067
RMCD-RP 1. +0.008 | 0.98 +£0.035 | 0.95 +£0.031 | 0.90 £0.056 | 0.8 +0.057
One-Class SVM 0.76 £0.009 | 0.76 £0.020 | 0.76 £0.016 | 0.75 £0.025 | 0.76 £0.028
RMCD-¢; / RMCD-¢; || 1. +0. 1. +0. 1. 0. 1. 0. 1.

Table 3.2: Synthetic data, multimodal outliers. AUC for MCD and RMCD-RP confronted
with multimodal outliers (p = 100, b = 3, k(X) = 10, v = 30%). MCD breaks down for p/n > 0.4,
which is the theoretical breakdown point. RMCD-RP’s AUC stays above 0.8, which indicates good
performance although it decreases when p/n increases. Other regularized methods achieve perfect
outlier detection (AUC= 1) and the One-Class SVM’s AUC remains constant at a low level.
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Figure 3.12: Synthetic data, multivariate outliers. AUC for various outlier detection methods
in the case of multivariate outliers (p = 100, x(X) = {1, 10, 100, 1000}, ¢ = 10, v = 20%). A small
condition number give advantage to the RMCD-¢; and -¢2 methods, as well as the OCSVM. For
k(X) > 100, all RMCD approaches perform similarly.

break down when x(X) > 1000 (see Table 3.1). In the latter case, one has to
whiten the data previously to using One-Class SVM and Parzen. The main
advantage of LCA is that such a transformation is part of the algorithm.

The inliers covariance matrix condition number has the most influence when
multivariate outliers are considered. In that case, all methods have poor per-
formance. This phenomenon is depicted in Figure 3.12.

Contamination rate. Outlier detection accuracy remains similar for each
method and amount of contamination, except for the RMCD-RP method that
is very sensitive to the number of outliers when these are of the multimodal type
(see Table 3.3).

Sparsity coefficient. As the ¢; regularization is known to benefit from the
sparsity of the original inliers precision matrix, we also look at this parameter’s
influence. Sparsity of the precision matrix does not have a strong influence on

[ p/n ] 0.1 [ 0.4 [ 0.6 [ 0.8 [ L
v =20% 1. +0 1. +£0.005 1. +0.008 0.99 +0.019 0.98 +0.027
v = 30% 1. +0 0.98 £0.023 0.95 £0.051 0.90 +0.104 0.8 4+0.187
v = 40% 0.65 +0.198 0.6 =£0.164 0.59 £0.075 0.55 +0.063 0.58 +0.084
Table 3.3: Influence of the amount of contamination on outlier detection.We observe a

drop of the RMCD-RP-based outlier detection method AUC with the amount of contamination ~.
Multimodal outliers (p = 100, b = 3, k(X) = 10).
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Figure 3.13: Outlier detection in the non-Gaussian inliers case. AUC curves of the methods
on datasets generated by a mixture of Gaussian distributions. Observations were equally distributed
between the components. v = 0.4. (a) Mild deviation from normality. m =4, 8 = 1.1. RMCD-
Lo AUC is stable for large p/n ratios but is roughly 0.1 below RMCD-RP and One-Class SVM AUC.
RMCD-RP has the best accuracy. (b) Strong deviation from normality. m = 4, 8 = 0.7. The
different modes are observable in two- or one-dimensional projections of the data. RMCD-/{2’s
performance is poor compared to OCSVM and RMCD-RP.

the methods AUC: only the RMCD-¢; has a slightly improved AUC when the
inverse covariance is very sparse. Yet, RMCD-/; is not more accurate than
RMCD-/¢5, so we did not report the results for RMCD-/; in the sequel.

Non-Gaussian models. Under deviations from normality, RMCD-RP and
One-Class SVM outperform RMCD-/5, as shown in Figure 3.13. RMCD-/; re-
sults are not reported since RMCD-/; always yields better performance. All
methods but MCD have similar and stable performance for p/n > 0.4. Interest-
ingly, all methods have an AUC close to 1 for p/n < 0.1, which justifies the use
of MCD on the complete database to build a reference labeling in our real-data
experiments. A stronger deviation from normality yields poorer performance
as well as a larger variability of the outlier detection accuracy. RMCD-RP re-
mains the best method for detecting outliers with an AUC above 0.85. MCD
and RMCD-/5 still achieve almost perfect outlier detection for p/n < 0.1 with
an AUC close to 1. RMCD-RP performance is explained by the fact that in
high-dimension, the distribution of randomly projected observations is closer to
normal than the original data [10]. Therefore, applying the MCD on projected
data yields a more accurate detection since the outlier detection threshold can
be set exactly.

Experiments on synthetic data give an overview of the relative performance
of the various outlier detection methods that we consider in this work. The
accuracy of density-based methods is generally higher than that of covariance-
based methods, but RMCD-RP behaves well even when the model assumptions
are not met or when the data dimensionality is high. RMCD-RP comes with
a statistical control on outlier discarding, which makes it a good compromise
overall. Its only weakness is that it is sensitive to the amount of contamination,
unlike the other methods.

Interactive outlier detection procedure We verified with extensive sim-
ulations that the first knee of the disappearance function directly provides an
estimate of the number of outliers. Figure 3.14 illustrates this statement. This
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result holds for various p, p/n and « values, even though the decision showed
to be a bit conservative. This behavior is yet required to guarantee a low false
detections rate on heavy tailed distributions such as the Student distribution.
Figure 3.19 shows that our procedure does not encourage discarding observa-
tions when applied to pure Student distributed data.

3.4.2 Real data

3.4.2.1 Data and validation procedure

Functional data. We work with four different types of contrasts images from
the Imagen database (see section 1.4) that show brain regions implied in simple
cognitive tasks:

e an auditory task as opposed to a visual task;

e a left motor task as opposed to a right motor task;

e a computation task as opposed to a sentences reading task;
e an angry faces viewing task.

For outlier detection, we extracted 113 features by computing on each contrast
image the average activation intensity value from 113 regions of interest. These
regions were given by the Harvard-Oxford cortical and sub-cortical structural
atlases?. We removed the regions covering more than 1% of the whole brain
volume, because the mean signal within such large regions does not summarize
the functional signal well. We removed the effect of gender, handedness and
acquisition center by using a robust regression based on M-estimators [19], using
the scikit.statsmodels Python package [47] implementation. We then performed
an initial outlier detection at a p-value P < 0.1 family-wise corrected, including
all subjects (n > 1500). With such a small £ value, a statistically controlled
outlier detection can be achieved using the MCD estimate. The outlier list
obtained from this first outlier detection was then held as a reference labeling
for further outlier detection experiments performed on reduced sample sizes,
using MCD and all the Regularized MCD estimators. Note that for very small
samples, we could not use the MCD-based outlier detection method. The outlier
lists were compared to the reference labeling and ROC curves were constructed.
For each sample size, we repeated the detection 10 times with 10 different,
randomly selected samples.

2http://www.cma.mgh.harvard.edu/fsl_atlas.html
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Figure 3.15: Outlier detection on
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Voxel-Based Morphometry (VBM). We use the gray matter probability
maps available in the Imagen database. We use 120 regions of interest defined
as 4mm-radius balls centered around locations of highly variable gray matter
probability value trough subjects: we used the watershed algorithm [34] to
segment, the voxel-wise variability map into homogeneous regions, and the signal
peak locations of the 120 regions of highest mean signal were retained as regions
of interest. We limited the number of regions to 120 in order to keep an accurate
statistical control of outlier detection with the full dataset. However, the choice
and the size of the regions as well as the different type of data used in this
second experiment should demonstrate how well regularized covariance-based
outlier detection methods generalize to different contexts encountered in medical
imaging. For the sake of completeness, we also tried outlier detection using the
Harvard-Oxford atlas regions of interest on the gray matter probability maps.

3.4.2.2 Results

Figure 3.15 shows the outlier detection performance obtained on a dataset con-
structed from an fMRI contrast reflecting the brain activity related to angry
faces viewing. The RMCD-RP method’s curve dominates the others methods’
curves for p/n > 0.2. RMCD-/¢5’s accuracy is always above 0.9 while MCD-based
outlier detection breaks down when p/n becomes large. Results obtained with-
out removing the effect of gender, handedness and acquisition center are similar
to our first results, although the difference between RMCD-RP and RMCD-/¢;
is a bit larger (not shown). Results obtained with others functional contrasts
are similar to those of Figure 3.15. This suggests that the general structure of
observations distribution does not depend on the contrast.

Regarding Density-based outlier detection, Figure 3.16 shows the accuracy
of the different methods on a real neuroimaging dataset, using a contrast related
to the perception of angry versus neutral faces. All methods perform well with
an AUC above 0.8. Yet, LCA achieves the highest accuracy, which remains
above 0.95 for all p/n ratios. Whitening the data prior to outlier detection with
One-Class SVM or Parzen density estimation is relevant since it increases the
accuracy of the latter methods by roughly 0.1. Similar results were obtained in
five other functional contrasts.

Figure 3.17 shows activity maps (thresholded at P < 0.01 family-wise cor-
rected) of out- and inliers subjects in a plot of the first two components of
a Principal Components Analysis performed on the full, outlier-free data set.
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Figure 3.16: Outlier detection accuracy of
non-parametric density estimation algo-
rithms, represented by their AUC (real
data). LCA outperforms both Parzen density
estimation and One-Class SVM, even applied on
whitened data. RMCD parametric method has
the same accuracy than the latter. LCA seems
to be sensitive to the p/n ratio as its perfor-
mance decreases with this ratio.
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Outlier observations were projected to the same low-dimensional space. Out-
liers found by RMCD-/s-based method stand far from the central cluster, which
illustrates the accuracy of the method. State-of-the-art MCD finds only three
outliers. It is clear from the figure that some observations should be tagged as
abnormal because the global activation pattern deviates from the standard ones
(e.g. too much activity for subjects (a), (b) and (c)). Yet manual screening
may not be sufficient to detect some subtleties in the pattern differences. For
instance, the dissimilarity between subjects (d) and (e) (both were yet in the
RMCD-RP support) is not apparent in the low-dimensional projection. Note
that some outliers seem to fall amongst inliers due to an artifact of projection
since the original data lie in a 100-dimensional space. Indeed, only 70% of the
variance is fit by the first two components.

Voxel-Based Morphometry Figure 3.18 gives the outlier detection accu-
racy of the RMCD-/5, RMCD-RP, MCD and OCSVM methods on gray matter
probability maps. Despite the use of a different imaging modality and ROI
selection procedure, the relative performance of the methods is very similar to
the performance obtained in our experiment with functional data. The num-
ber of outliers is much smaller in the reference labeling (~ 3%). The MCD
drops faster and breaks down for p/n > 0.5. The variability of all methods
but RMCD-RP is much larger, which may be related to the deviation from the
Gaussian distribution hypothesis that can be observed in the PCA plot given
in Figure 3.18.

Using the Harvard-Oxford atlas’s regions of interest mean signal as a de-
scriptive feature of the gray matter images, we obtained similar results, con-
firming the RMCD-RP’s more accurate performance for outlier detection on
real datasets (not shown).

Interactive outlier detection procedure Figure 3.20 gives the spectrum of
real neuroimaging datasets as obtained from LCA-learned density transforma-
tions. Knees can be easily identified in this curve, indicating that two or more
relevant groups of observations are present. This observation rank property
could not be inferred from the standard decision function. It is noticeable that
many observations (about half of the dataset) seem to be suggested as outliers,
while looking at a standard bidimensional PCA plot (not shown) would have
suggested a much lower number.
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Figure 3.17: Neuroimaging data projection on the space spanned by the two principal
components of the full, cleaned dataset. Observations tagged as outliers by the RMCD-RP
method are indeed outliers at least along the two first PCA components. MCD-based outlier detec-
tion method only finds three outliers and misses strong ones. This figure illustrates the difficulty of
manual outlier detection: the deviation from normality can result in unusual patterns that are not
easily compared to the others.
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Figure 3.18: Outlier detection on voxel-based morphometry data. Outlier detection accu-
racy of the RMCD-/¢2, RMCD-RP, MCD and OCSVM methods on gray matter probability maps and
representation of the corresponding dataset. (a) The relative performance is very similar to the per-
formance obtained with functional data, although MCD drops faster. RMCD-RP still outperforms
with an AUC above 0.95. (b) Projection of the dataset according to the first two components of a
PCA decomposition. Outliers (in red) and inliers (in black) of the reference labeling are represented.
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3.5 Discussion

3.5.1 RMCD-RP is robust to non-Gaussian distributions

As most outlier-detection procedures, the RMCD-RP’s accuracy slightly drops
as p/n increases. Yet, except for extreme cases such as multivariate outliers and
large condition number or multimodal outliers and large amount of contamina-
tion, the method’s AUC is higher than 0.8, which makes it attractive in practice.
Importantly, RMCD-RP was shown to have the best accuracy for non-Gaussian
distributed data sets (see 3.4.1.3) under mild or strong deviation from normality.
While the performance of RMCD-¢5 breaks with stronger deviations from nor-
mality, RMCD-RP performances dominates with a gain in AUC of 0.2 or more in
non-Gaussian settings. In medical imaging settings, RMCD-RP can be consid-
ered as useful, due to its robustness to deviations from normality. A procedure
for the explicit control of false detections with RMCD-RP is presented in sec-
tion 3.2.2.5. We showed in section 3.4.1.3 that using regularized versions of the
MCD was relevant to detect outliers in practice, as the neuroimaging datasets
that we used appeared to be non-Gaussian distributed. The RMCD-RP esti-
mator is particularly adapted to that context (see Figure 3.13 and Figure 3.18)
since the actual outlier detection is made on projected subspaces that appear
more Gaussian than in the native space. This is a straightforward consequence
of the Central Limit Theorem. Even on small datasets (p/n > 0.2), RMCD-
RP outlier detection method can detect outliers that would not be detected by
hand.

3.5.2 LCA is a powerful density-based method

Outlier detection with Local Component Analysis (LCA) achieves higher ac-
curacy than state-of-the-art methods, including covariance-based ones. Only
RMCD-RP offers comparable performance. This was shown for various p/n
settings on both Gaussian and Student distributed data contaminated with up
to 40% outliers. Real data experiments showed that LCA accuracy is gener-
ally above 0.9, although it seems to slightly decrease in high-dimension. Our
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Figure 3.21: Pairwise Euclidean (L) distance
between observations. The shape of the dis-
tribution does not change with Lj (k < 1) dis-
tances, indicating that the observations of [1] are
not worth to consider in neuroimaging. There-
fore, non-parametric outlier detection algorithms
can trustworthy rely on observations pairwise Eu-
clidean distances (we confirmed this statement by
experiments for which we do not show the results).
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choice of the LCA regularization parameter seemed to be optimal in that re-
gard and our experiments demonstrated that LCA should be preferred to other
non-parametric methods. Because it uses an internal cross-validation scheme,
LCA adapts to the data local structure and comes with a natural kernel-based
representation of the data, on which we apply a soft thresholding operation.
Formally, we apply a trace norm penalization to capture the information car-
ried in the kernel matrix which reveals important features on the structure of the
data [57]. As this penalization is the convex relaxation of principal components
analysis-based truncation of the kernel matrix, it results in a stable criterion.
We used it to characterize the difference between outliers and inliers in a robust
procedure. This is meant to provide practitioners a faithful representation of
possible inhomogeneities in the population under study. We verified on sev-
eral simulated and real functional neuroimaging datasets that this heuristic to
chose the regularization of LCA does not yield spurious outlier detections. An
attractive generalization of the LCA approach for high-dimensional settings is
a mixed model, in which some dimensions are simply modeled as a Gaussian,
while others are modeled through equation (3.6) [45].

3.5.3 L, distances

The classical euclidean distance (i.e. the Lo distance) may not be optimal
to describe high-dimensional datasets as the distribution of the pairwise dis-
tances between the observations becomes tighter as the number of features p
gets large [5]. Aggarwal et al. [1] showed that Lj norms with k£ < 1 improve
the contrast between the pairwise distances, thus improving the accuracy of the
algorithms that rely on it. Figure 3.21 shows the histogram of the pairwise Lo
distances. On fMRI and structural data, we do not observe any change of the
distribution when considering Lj, distances with k¥ < 1. We do neither observe
any change in the accuracy of outlier detection with Parzen density estimator
(not shown).

3.5.4 Statistical control of outlier detection

Non-parametric methods, in particular LCA, have good outlier detection accu-
racy and do not require a lot of computation time. They furthermore do not
rely on distributional assumptions, but at the expense of explicit statistical con-
trol. Covariance-based outlier detection methods can be used instead so as to
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obtain a statistical control on outlier detection. This feature is of broad interest
when considering studies replications since no ad hoc choice on the proportion of
subjects to discard is needed. Depending on the application and the number of
available data, the practitioner may use RMCD-RP or LCA to perform outlier
detection. Would LCA be chosen, our interactive outlier detection procedure
helps setting up an interpretable outlier detection threshold that depends on
the data statistical structure.
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Neuroimaging group analysis are used to relate inter-subject signal differ-
ences observed in brain imaging with behavioral or genetic variables and to
assess risks factors of brain diseases. The lack of stability and of sensitivity
of current voxel-based analysis schemes may however lead to non-reproducible
results. We introduce a new approach to overcome the limitations of standard
methods, in which active voxels are detected according to a consensus on sev-
eral random parcellations of the brain images, while a permutation test controls
the false positive risk. Both on synthetic and real data, this approach shows
higher sensitivity, better accuracy and higher reproducibility than state-of-the-
art methods. In a neuroimaging-genetic application, we find that it succeeds in
detecting a significant association between a genetic variant next to the COMT
gene and the BOLD signal in the left thalamus for a functional Magnetic Reso-
nance Imaging contrast associated with incorrect responses of the subjects from
a Stop Signal Task protocol.

4.1 Brain parcellations

4.1.1 Spatial models for group analysis in neuroimaging

Spatial models try to overcome the lack of correspondence between individual
images at the voxel level. The most straightforward and widely used tech-
nique consists in smoothing the data to increase the overlap between subject-
specific activated regions [34]. In the literature, several approaches propose more
elaborate techniques to model the noise in neuroimaging, like Markov Random
Fields [19], wavelets decomposition [31], spatial decomposition or topographic
methods [8, 6] and anatomically informed models [14]. These techniques are not
widely used probably because they are computationally costly and not always
well-suited for analysis of a group of subjects. A popular approach consists in
working with subject-specific Regions of Interest (ROIs), that can be defined
in a way that accommodates inter-subject variability [18]. The main limitation
of such an approach [2] is that there is no widely accepted standard for par-
titioning the brain, especially for the neocortex. Data-driven parcellation was
proposed by Thirion et al. [27] to overcome this limitation: they improve the
sensitivity of random effect analysis by considering adaptative parcels that vary
across subjects to better fit the fMRI signal.

4.1.1.1 The randomized parcellation approach

The parcellation model [27] has several advantages: (i) it is a simple and easily
interpretable method, (i) by reducing the number of descriptors, it alleviates
the multiple comparisons problem, and (74) the choice of the parcellation algo-
rithm can lead to parcels adapted to the local smoothness. But parcellations,
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when considered as spatial functions, highly depend on the data used to con-
struct them and the choice of the number of parcels. In general, a parcellation
defined in a given context might not be a good descriptor in a slightly different
context, or may generalize poorly to new subjects. This implies a lack of re-
producibility of the results across subgroups, as illustrated latter in Figure 4.7.
The weakness of this approach is the large impact of a parcellation scheme that
cannot be optimized easily for the sake of statistical inference; it may thus fail
to detect effects in poorly segmented regions. We propose to solve this issue by
using several randomized parcellations [30, 3] generated using resampling meth-
ods (bootstrap) and average the corresponding statistical decisions. Replacing
an estimator such as parcel-level inference by a mean of bootstrap estimates
is known to stabilize it; a fortunate consequence is that the reproducibility of
the results (across subgroups of subjects) is improved. Formally, this can be
understood as handling the parcellation as a hidden variable that needs to be
integrated out in order to obtain the posterior distribution of statistics values.
The final decision is taken with regard to the stability of the detection of a
voxel [16, 1] across parcellations, compared to the null hypothesis distribution
obtained by a permutation test.

4.1.1.2 A multivariate problem : the detection of outliers

The benefits of the randomized parcellation approach can also be observed in
multivariate analysis procedures, such as predictive modeling [30] or outliers
detection. In this work, we focus on the latter: neuroimaging datasets often
contain atypical observations; such outliers can result from acquisition-related
issues [12], bad image processing [35], or they can merely be extreme examples
of the high variability observed in the population. Because of the high dimen-
sionality of neuroimaging data, screening the data is very time consuming, and
becomes prohibitive with large cohort studies. Covariance-based outlier detec-
tion methods have been proposed to perform statistically-controlled inclusion
of subjects in neuroimaging studies [9] (see chapter 3) and yield a good detec-
tion accuracy. These methods rely on prior reduction of the data dimension
which is obtained by taking signal averages within predefined brain parcels. As
a consequence, the results depend on a fixed brain parcellation and are unstable.
Randomization might thus improve the procedure.

4.1.2 Construction of variable parcellations

An important prerequisite for our approach is to generate several parcellations
that are different enough from each other to guarantee that the analysis con-
ducted with each of these parcellations represents correctly the set of regions
that display some activation for the effect considered. One way to achieve this
is to take bootstrap samples of subjects and apply Ward’s clustering algorithm
to their contrast maps in order to build brain parcellations that best summarize
the data subsamples, i.e. so that the parcel-level mean signal summarizes the
signal within each parcel, in each subject. If enough subjects are used, all the
parcellations offer a good representation of the whole dataset. It is important
that the bootstrap scheme generates parcellations with enough entropy [30].
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Figure 4.1: Hierarchical clustering. At each step, two clusters are merged so as to minimize the
variance within the resulting cluster. The binary tree that represents the consecutive merges has to
be cut according the a given number of desired clusters. In this example, the clustering algorithm
was applied to only one subject’s image.

4.1.2.1 Ward’s clustering algorithm

Ward’s clustering algorithm [33] is a particular case of hierarchical agglomer-
ative clustering algorithm [13]: Starting with as many (singletons) clusters as
observations, two clusters are merged at each step of the algorithm, until only
one cluster containing all the observations remains. The history of the merges
is kept in the form of a tree that has to be cut according to an expected number
of clusters. Various criteria exist to decide which clusters should be merged
at each step, yielding as many variants of the algorithm. Ward’s clustering is
one of those, in which the criterion for merging two clusters is that the intra-
cluster variance of the resulting cluster should be minimal (as compared to the
intra-cluster variance of other clusters resulting from potential merges). The
main advantage associated with Ward’s criterion is that variance minimization
ensures that the mean is a good representation of the data.

Formally, let Y = {y1,...,yp} € R"*P be a set of n fMRI volumes described
by p voxels each. For two clusters of voxels ¢ and ¢/, we define the distance:
lell]

A(e,d) = 7|C\ p

Y )e = (Y)er|I3, (4.1)
where (Y),. = ﬁ djce y/. For each partition C = {cy,...,cx} of the set of
voxels Y (i.e. Ueec =Y and ¢; Ne¢j = 0V(c;,¢;) € C?), we note C* the set of
all pairs of clusters that share at least one neighboring voxel. Ward’s clustering
algorithm starts with an initial partition of p clusters C' = {{y1},...,{yp}} that
correspond to one singleton cluster per voxel. At each iteration, we merge the
two clusters ¢; and ¢; of C* that minimize the distance A:

(ciyey) = (arg;nic{l A(e, ). (4.2)
c,c')eC*

The spatial constraint comes from the fact that we restrict the solution of the
minimization criterion to C*. When constructing a K-parcellations, the al-
gorithm stops when card(C') = K. In section 4.2.2.2, we use various Ward’s
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clustering schemes that simply correspond to different choices for Y.

We rely on the implementation of Ward’s clustering that is available in the
Scikit-learn Python package [20]. This implementation is a structured version of
the algorithm that takes into account the topological structure between the sam-
ples (the connectivity). In neuroimaging, the connectivity is typically defined
from the data mask. Figure 4.1 illustrates the application of Ward’s clustering
applied to fMRI images.

4.1.2.2 Influence of the sample size

The variability and quality of the parcellations are directly related to the vari-
ability and number of the images on which they are built. If few subjects are
used, the benefit of taking the data structure into account is hindered. Con-
versely, if all the subjects are used, the parcellations may be very similar, due
to the deterministic clustering algorithm. Obtaining variable parcellations is
crucial (see next section), but the shape of the parcels is expected to match the
anatomical organization of the brain. Thus, the number of subjects involved in
the construction of the parcellations acts as a trading parameter between two
crucial characteristics of the set of parcellations. Drawing a fixed number of
subjects with replacement (i.e. bagging, see chapter 2) reduces the impact of
that parameter, and alleviate the reliance on it.

Table 4.1 reports the evolution of both the variability of the parcellations
and their averaged parcels spatial spread with the number of subjects. The
variability of the parcellations is measured for each pair of parcellation as their
adjusted mutual information [32]. The spatial spread of a parcel is measured as
the mean of the variance of the parcel’s voxels coordinates along each axis. In
a first case, we select the subjects without replacement, leading to the extreme
case where all the parcellations are the same (for parcellations built from the
whole set of available images). In a second case, we draw the subjects with
replacement to be sure that we obtain variable parcellations whatever the num-
ber of subject drawn. One should however include enough subjects in order to
have population-representative parcels. When all the subjects are used, bag-

Subsample
size
(over 20) 1 ) 10 15 20
replacement - X v X v X v X v
Adjusted
mutual in-  0.40 0.55 0.54 0.64 0.60 0.69 0.62 1 0.65
formation
(£0.00) (£0.02) (+0.03) (40.02) (40.02) (£0.01) (+0.03)  (0) (£ 0.01)
Spatial
spread
(mm) 120.5 115.7 1184 114.3 1149 114.3 114.0 113.7 116.4
(£11.6) (+£5.0) (£6.1) (£2.2) (£24) (+£2.6) (+2.7) (0) (£3.1)

Table 4.1: Variability of the parcellation and spatial extent of the parcels according to
the number of subjects involved in the construction of the parcellations. Drawing the
subjects with replacement helps obtaining variable parcels while ensuring a good amount of spatial
regularization. Typically, one can perform a bootstrap subsampling of the subjects (i.e. drawing n
subjects amongst n with replacement) as a default choice.
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ging becomes bootstrapping (i.e. randomly drawing n subjects amongst n with
replacement, see section 2.3.1): We advocate the use of this sampling procedure
to build randomized parcellations.

4.1.2.3 Setting the number of parcels

We determined empirically that using 1000 parcels is a good trade-off between
accurate parcellations and dimension reduction. This choice leads to using an
average of 50 voxels per parcel, which seems relevant to describe the activation
clusters given the typical inter-subjects variability. Note that this number of
parcels is far from standard brain atlases with, at best, two hundred ROIs,
suggesting that current atlases are not well-suited for such studies (see e.g. [29]).
Figure 4.2 shows the size and compactness of the parcels for parcellations of 100
parcels obtained with Ward’s clustering algorithm on real {MRI data.

4.2 Randomized Parcellation Based Inference

4.2.1 Method description

Randomized parcellation based inference (RPBI) performs several standard an-
alyzes based on different parcellations and aggregates the corresponding statis-
tical decisions. Let P be a finite set of parcellations, and V be the set of voxels
under consideration. Given a voxel v and a parcellation P, the parcel-based
thresholding function 6, is defined as:

Lif F(®p(v) >t

0 otherwise (4.3)

Gt (’U7 P) = {

where ®p : V' — P is a mapping function that associates each voxel with a

parcel from the parcellation P (Vv € P, ®p(v) = P®). For a predefined test,

F returns the F-statistic associated with the average signal of a given parcel.

Finally, the aggregating statistic at a voxel v is given by the counting function
Cti

Ci(v,P) = > O4(v, P). (4.4)

pPeP

C¢(v, P) represents the number of times the voxel v was part of a parcel as-

sociated with a statistical value larger than t across the folds of the analysis

conducted on the set P of parcellations. We set the parameter ¢ to ensure a
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Bonferroni-corrected control at p < 0.1 ! in each of the parcel-level analyzes.
In practice, the results are weakly sensitive to mild variations of ¢. In order
to assess the significance of the counting statistic at each voxel, we perform a
permutation test, i.e. we tabulate the distribution of C;(v, P) under the null hy-
pothesis that there is no significant correlation between the voxels’ mean signal
and the target variable. As a result, we get a voxel-wise p-values map similar
to a standard group analysis map (see Figure 4.3). We obtain family-wise error
control by tabulating the maximal value across voxels in the permutation pro-
cedure. The 6, function of Equation 4.3 can be replaced by any function that is
convex with respect to ¢. In particular, the natural choice 6;(v, P) = F(®p(v))
yields similar results (not shown in the paper) but its computation requires
much more memory since the v — 6;(v, P) mapping and bootstrap averages
are no longer sparse. We discuss the pivotality properties of the statistic in the
discussion section of this chapter (4.3.4).

Spatial models try to address the problem of imperfect voxel-to-voxel cor-
respondence after co-registration of the subjects in the same reference space.
Our approach is clearly related to anisotropic smoothing [24], in the sense that
obtained parcels are not spherical and in the aggregation of the signals of voxels
in a given parcel, certain directions are preferred. Unlike smoothing or spatial
modeling applied as a preprocessing, our statistical inference embeds the spatial
modeling in the analysis and decreases the number of tests and their dependen-
cies. In addition to the expected increase of sensitivity, the randomization of
the parcellations ensures a better reproducibility of the results, unlike inference
on one fixed parcellation.

4.2.2 Comparison with state-of-the-art methods

4.2.2.1 Simulations

Description. We simulate fMRI contrast images as volumes of shape 40 x 40 x
40 voxels. Each contrast image contains a simulated 4 x 4 x 4 activation patch
at a given location, with a spatial jitter following a three-dimensional N(0, I3)
distribution (coordinates of the jitter are rounded to the nearest integers). The
strength of the activation is set so that the signal to noise ratio (SNR) peaks at
2 in the most associated voxel. The background noise is drawn from a N(0, 1)
distribution, Gaussian-smoothed at o,ise isotropic and normalized by its global
empirical standard deviation. After superimposing noise and signal images, we
optionally smooth at 0,05 = 2.12 voxels isotropic, corresponding to a 5 voxels
Full Width at Half Maximum (FWHM). Voxels with a probability above 0.1
to be active in a large sample test are considered as part of the ground truth.
Ten subsamples of 20 images are drawn to perform analyzes. Each time, RPBI
was conducted with one hundred 1000-parcellations built from a bootstrapped
selection of the 20 images involved.

For each of the 10 groups, we expect to obtain a p-values map that shows a
significant effect at the mean location of generated artificial activations in the
contrast images.

We investigate the ability of four methods to actually recover the region of
activation:

'We determine this value empirically to obtain a well-behaved null distribution of the
counting statistic. With 1 target and 1,000 parcels, it corresponds to a raw p-value < 10~%.
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(i) voxel-level group analysis, which is the standard method in neuroimaging;

(ii) cluster-size group analysis — introduced in chapter 2, section 2.1.3.2, which
is know to be more sensitive than voxel-intensity group analysis [17, 7, 21];

(#1i) threshold-free cluster enhancement (TFCE) [23] — introduced in chapter 2,
section 2.1.3.3;

(iv) RPBI, which is our contribution.

We control the specificity of each procedure by permutation testing. In order
to ensure an accurate type 1 error control, we generate 400 sets of 20 images
with no activation (i.e. the images are only noise with opese = 1, and SNR =
0). We evaluate the false positive rate at voxel level for RPBI.

Results. Table 4.2 gives the number of times a significant effect was reported
according to the different methods. RPBI always achieves more or as many
detections as the other approaches. Since the specificity of the detections is
controlled for all the methods at 5%, corrected for multiple comparisons, the
results indicates that RPBI is more sensitive. Voxel-intensity group analysis is
the only method that benefits from a posteriori smoothing, while spatial meth-
ods (cluster-level, TFCE, RPBI) lose accuracy when the images are smoothed.
This is in agreement with the theory and the results of [34]. Figure 4.4 shows
that detections made by spatial methods (cluster-size group analysis, TFCE
and RPBI) does not come with wrongly reported effects in voxels close to the
actual effect location. That would be the case for a method that simply extends
a recovered effect to the neighboring voxels and would wrongly be thought
to be more sensitive because it points out more voxels. RPBI offers the best
precision-recall compromise as its precision-recall curve dominates in Figure 4.4.
The shape of the curves for the cluster-size method illustrates the problem of
the cluster-forming threshold: most voxels do not pass the threshold and then
were discarded by the method, leading to a precision equal to zero. The cluster-
forming threshold directly acts on the recovery capability of the method, but
lowering the threshold does not increase the sensitivity of this approach in gen-
eral. By integrating over multiple thresholds, the TFCE partially addresses this
issue. When no signal is put in the data (SNR = 0), RPBI reports an activation
37 times over 400 at P < 0.1 FWER corrected, 20 times at P < 0.05 FWER
corrected, and 4 times at P < 0.01 FWER corrected. In all cases, it corresponds
to the nominal type I error rate.

4.2.2.2 Real data

Random effects analysis. In this experiment, we work with an [angry faces
- control] fMRI contrast. 1567 subjects were available after removal of the sub-
jects with too many missing data and/or bad/missing covariables. After stan-
dard preprocessing of the images, including registration of the subjects onto the
same template, we test each voxel for a zero mean across the 1567 subjects with
an OLS regression, including handedness and gender as covariables, yielding a
reference voxel-wise p-values map. We threshold this map in order to keep 5%
of the most active voxels (corresponding to —log,, P > 77.5), and we consider
it as the ground truth. Since we use a voxel based threshold, the ground truth
may be biased to voxel-level statistics (thus disadvantaging our method).
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Figure 4.4: Simulated data. Precision-recall curves for various analysis methods across 10 random
subsamples containing 20 subjects. SNR = 2 and noise spatial smoothness: (a) onoise = 0, (b)
Onoise = 1. The curves are obtained by thresholding the statistics brain maps at various levels,
yielding as many precision-recall points.

Our objective is to retrieve the population’s reference activity pattern on sub-
samples of 20 randomly drawn subjects and compare the performance of several
methods in this problem. Because of the reduced number of subjects used, we
cannot expect to retrieve the same activation map as in the full-sample analysis
due to a loss in statistical power. We therefore measure the sensitivity and we
build precision-recall curves to assess the performance of the methods. We per-
form our experiment on 10 different subsamples and we use the same analysis
methods as the previous experiment. We propose to observe the behavior of our
method with the use of parcellations of different kinds. We perform analysis of
the 10 different subsamples with the following parcellation schemes:

(i) RPBI (sh. parcels) with parcellations built on bootstrapped subsamples of
150 images amongst the 1567 images corresponding to the fMRI contrast
under study;

(i) RPBI (alt. parcels) with shared parcellations built on images correspond-
ing to another, independent fMRI contrast;

(iii) RPBI (rand. parcels) with shared parcellations built on smooth Gaussian
noise (FWHM = 2 voxels);

We also assess the stability of all these methods by counting how many times
each voxel was associated with a significant effect across subgroups. We present

Onoise 0 1 2
post-smoothing X v X v X v
Voxel-intensity 3 10 3 4 3 2
Cluster-size 9 10 6 3 1 0
TFCE 10 10 ) 2 2 1
RPBI 10 10 7 4 4 2

Table 4.2: Simulated data. Frequency (over 10 simulations) of significant effect reporting accord-
ing to the analysis methods (peak SNR = 2; significance threshold at P < 0.05 corrected). For
several values of opnoise used to smooth the white noise, the left column report detection without
post-smoothing and right column with standard post-smoothing with FWHM = 5 voxels. RPBI
reports more frequently some effects, which shows that the method is more sensitive. Generally, a
posteriori smoothing undermines the spatial methods’ performance.
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Figure 4.5: Real fMRI data. Evaluation of the performances for various analysis methods across
10 random subsamples containing 20 subjects. (a) Sensitivity improvement relative to cluster-size
under control of the specificity at 5% FWER. (b) Precision-recall curves built with a pseudo ground
truth where 5% of the most active voxels across 1567 subjects are kept. RPBI achieves the best
sensitivity improvement and shows a good recall rate at FDR=5%.

the inverted cumulative normalized histogram of that count for each method,
restricting our attention to the voxels that were reported at least once. A
method is considered to be more stable than another if the same voxels appear
more often, that is if its histogram shows many high values.

Neuroimaging-genetic study. The aim of this experiment is to show that
RPBI has the potential to uncover new relationships between neuroimaging
and genetics. We consider an fMRI contrast corresponding to events where
subjects make motor response errors ([go wrong] fMRI contrast from a Stop
Task Signal) and its associations with Single-Nucleotide Polymorphisms (SNPs)
in the COMT gene. This gene codes for the Catechol-O-methyltransferase, an
enzyme that catalyzes transfer of neurotransmitters like dopamine, epinephrine
and norepinephrine, making it one of the most studied genes in relation to
brain. Subjects with too many missing voxels in the brain mask or with bad
task performance were discarded. Regarding genetic variants, we keep only 27
SNPs in the COMT gene (£20kb) that pass plink standard parameters (Minor
Allele Frequency < 0.05, Hardy-Weinberg Equilibrium P < 0.001, missing rate
per SNP < 0.05). Age, sex, handedness and acquisition center were included
in the model as confounding variables. Remaining missing data were replaced
by the median over the subjects for the corresponding variables. After those
filtering steps, our experiment involves 1,372 subjects.

For each of the 27 SNPs, we perform a massively univariate voxel-wise anal-
ysis with the algorithm presented in [4], including cluster-size analysis [11],
and RPBI through 100 different Ward’s 1000-parcellations; 10,000 permuta-
tions were performed to assess statistical significance with a good degree of
confidence.

Results. Figure 4.5a shows the sensitivity improvement relative to cluster-size
for various analysis methods under control for false detections at 5% FWER.
Cluster-size was taken as the reference because it is the method that yields the
most sensitivity amongst state-of-the-art methods to which we compare RPBI
to. RPBI achieves the best sensitivity improvement, and RPBI with shared,
alternative or random parcels are always more sensitive than TFCE. Voxel-level
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group analysis yields poor performance while cluster-size analysis is comparable
to TFCE. These gains in sensitivity should be linked with a measure of accuracy
(see section 4.2.2.2). In our experiments, to estimate a method’s accuracy, we
construct precision-recall curves by reporting the proportion of true positives in
the detections (precision = 1 — False Discovery Rate, FDR, see section 2.1.1.2)
for different levels of recovery of the ground truth (the recall is the proportion
of true positives among detections). The curves have to be read vertically: at
a fixed level of precision, the best method is the one with the highest recall
(ie. less false negatives). In practice, it is standard to choose a FDR at 5%.
Precision-recall analysis constitute an alternative to ROC analysis that is better
suited to unbalanced classes [5].

Figure 4.5b shows the precision-recall curves associated with the performance
of the methods under comparison. For acceptable levels of precision, RPBI
outperforms other methods when we use parcellations that have been built on
the contrast under study. RPBI with alternative or random parcels yields poor
recovery although these approaches are based on the randomized parcellation
scheme. This demonstrates that the sensitivity is not a sufficient criterion and
that the choice of parcellations plays an important role in the success of RPBI.
Unlike simulations, real data may contain outliers, which reduce the effectiveness
of all the presented methods. One benefit of RPBI with shared parcels is that the
impact of a bad observation is lowered, because the fitness of the parcellations
no longer depends on the analyzed data but similar data in greater quantity.
This requires other data from a similar protocol, but Figure 4.5b shows that
this approach outperforms other methods in terms of recall.

The lack of reproducibility of group studies is a well-known issue [26, 28], but
it can be improved if better models are used. RPBI has better reproducibility
than the other methods, as shown in Figure 4.7. The histogram of the RPBI
method dominates, which means that significant effects were reported more
often at the same location (i.e. the same voxel) across subgroups when using
RPBI than when using the other methods. For RPBI with shared parcels, it is
even more pronounced and this is explained by the fact that parcellations are
shared across subgroups, which is another advantage to this method. In general,
the same activation peaks arises from the cluster-size, the TFCE and the RPBI
maps (see Figure 4.6). The TFCE slightly improves the results of cluster-size
and provides voxel-level information. As is can be seen in Figure 4.6, the map
returned by RPBI better matches the patterns of the reference map and is
less scattered. Voxel-based group analysis clearly fails to detect some of the
activation peaks.

The SNP rs917478 yields the strongest correlation with the phenotypes and
lies in an intronic region of ARVCF. The number of subjects in each genotype
group is balanced: 523 homozygous with major allele, 663 heterozygous and 186
homozygous with minor allele. For RPBI, 31 voxels (resp. 81) are significantly
associated with that SNP at P < 0.05 corrected (resp. P < 0.1) in the left
thalamus, a region involved in sensory-motor cognitive tasks. The association
peak has a p-value of 0.016 FWER corrected. Cluster-size inference finds this
effect but with a higher p-value (P = 0.046). Voxel-based inference does not
find any significant effect. A significant association for rs917479 is only reported
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by RPBI; The Figure 4.8 shows that this SNP is in high linkage disequilibrium
(LD) with rs917478 (D’ = 0.98 and R? = 0.96). Those SNPs are also in LD with
rs9306235 and rs9332377 in COMT, the targeted gene for this study. Figure 4.8
shows the thresholded p-values maps obtained with RPBI with rs917478. The
ARVCF gene has already been found to be associated with intermediate brain
phenotypes and neurocognitive error tests in a study about schizophrenia [22].
We applied our method on this gene, for which we have 33 SNPs, and did not
find any effect except from rs917478 and SNPs in LD with it.

4.2.2.3 Outlier detection

We finally apply the concept of randomized parcellations to outlier detection.
We work with a cohort of 1886 fMRI contrast images. In a first step, we
randomly select 300 subjects and summarize the dataset by computing a 500-
parcellation (obtained by Ward’s) and averaging signal over each parcel. We
perform a reference outlier detection on this dataset with a regularized version
of a robust covariance estimator RMCD-RP [9]. This outlier detection algorithm
consists in fitting robust covariance estimators to random data projections. For
the outliers detection we use the average of the Mahalanobis distances of the
observations to the population mean in every projection subspace. In a second
step, we perform outlier detections with RMCD-RP on random subsamples :
We randomly draw a subsample of n subjects and perform 100 outlier detec-
tions with RMCD-RP on 100 different p-dimensional representations of the data
defined by 100 Ward’s p-parcellations built on 300 bootstrapped subjects from
the whole cohort. Following the model of RPBI, we report how many times each
subject was reported as an outlier through these 100 outlier detections and we
use that number as an outlier score. We hence construct two Receiver Oper-
ating Characteristic (ROC) curves [10]: one for randomized parcellations-based
(RPB) outlier detection and the other as the average ROC curve of the 100 inner
outlier detections used to obtain the RPB outlier detection. Finally, we report
the rate of correct detections when 5% of false detections are accepted, to control
the sensitivity of this test when wrongly rejecting few non-outlier data. These
statistics make it possible to easily measure the accuracy improvement of RPB
outlier detection across several experiments performed with different subsamples
of n subjects (keeping the same reference decision obtained at the first step). In
our experiment, we choose to work with p = 100 and n = {80, 100, 200, 300, 400},
yielding p/n configurations that correspond to various problem difficulty. For
a fixed (n,p) couple, we run the experiment on 50 different subsamples and we
present the rate of correct detections in a box-plot.

Figure 4.8: Association study between 27 SNPs from the COMT gene and fMRI contrast
phenotypes. Corrected p-values map (thresholded at P < 0.1) obtained with RPBI for rs917478,
the SNP with the strongest reported effect.
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Randomized Parcellation-Based outlier detection

Results. Figure 4.9 illustrates the accuracy of RPB outlier detection as com-
pared to standard outlier detection performed on data issued from a single
parcellation. We present the rate of correct detections when 5% false detections
is accepted. Since the experiment is conducted on 50 subsamples of n subjects,
we present the results for various values of n (n € {80,100, 200, 300, 400}) with
box-plots. For a large number of subjects (low-dimensional settings: n < p)
RPB outlier detection performs slightly better than standard outlier detection,
while in high-dimensional settings (p > n) it clearly outperforms the classical
approach. Relative results are the same when allowing for any proportion of
false detection comprised between 0% and 10%.

4.3 Discussion

4.3.1 Influence of smoothing and images properties

Our first experiment shows that RPBI performance drops when additional
smoothing of the images if performed. Unlike voxel-intensity analysis, cluster-
size analysis, TFCE and RPBI, which are spatial methods, suffer from data
smoothing. In the presence of smooth noise, this experiment also shows that
RPBI outperforms other methods. Our experiment on real data shows that
RPBI can recover activations clusters of various size and shape, as can be seen
on the effects maps reported in Figure 4.6. Yet, the use of parcels clearly helps
focusing on activations with a spatial extent of the order of the average parcel
size. Cluster-size group analysis also focuses more easily on some activations
with a given size, according to internal parameters such as the cluster forming
threshold or an optional data smoothing. TFCE is designed to address this issue
and clearly enhances the results of the cluster-size inference.

4.3.2 Sensitivity and reproducibility

Usually, the sensitivity of a procedure is compared under a given control for
false positives. Under this criterion, RPBI outperforms voxel- intensity, cluster-
size analysis and TFCE (Figure 4.5). By aggregating 100 x 1000 measure-
ments, RPBI drastically reduces the multiple comparisons problem and sta-
bilizes parcel-based statistics. Neuroimaging studies are subject to a lack of
reproducibility and using the most sensitive procedure does not guarantee to
unveil reproducible results [26, 28]. By nature, the randomization of the par-
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cellations ensures a good stability of the procedure. Experiments on real data
show the gain in terms of reproducibility of RPBI compared to other methods
when the subset of subjects changes (Figure 5). RPBI with shared parcels has
a better recovery and yields results that are more reproducible across various
analysis settings.

Randomized parcellation can be applied to various neuroimaging tasks. How-
ever, sensitivity improvement is not straightforward and may depend on problem-
specific settings. In particular, our experiment about outlier detection suggests
that multivariate statistical algorithms require a more subtle use of randomized
parcellation in order to get significant sensitivity improvement.

4.3.3 Computational aspects

The procedure is separated in two distinct steps: (i) the generation of the 100
Ward K-parcellations and extraction of the signal means, then (73) the statisti-
cal inference. The generation of parcellations is optional (parcellations can be
replaced by precomputed ones), but Ward’s hierarchical clustering algorithm is
fast and this step takes only few minutes on a desktop computer for 100 parcel-
lations. The second step involves a permutation test. Our implementation fits
a Massively Univariate Linear Model [25, 4] in an optimized version adapted
to permutation testing and our application. As a result, in our experiments
with 20 subjects and 10,000 permutations, the statistical inference takes only 1
minutes X cores, i.e. 5 seconds on a 12-core computer. The total computation
time thus amounts to a few minutes on a desktop computer and is limited by
the construction of the parcellations. Asymptotically, the computation time
increases linearly with the number of subjects and the number of variables to
test, which is a desirable property to scale to larger problem like neuroimaging-
genetic studies.

4.3.4 Pivotality of the counting statistic

An important question is whether the counting statistic introduced in Eq. 4.3
is a valid statistic to detect activated voxels. One essential criterion for this
is to check the pivotality, i.e. the convergence —under the null hypothesis— of
the statistic distribution toward a law that is invariant under data distribution
parameters. In the present case, the main deviation from pivotality could result
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Figure 4.10: Impact of the parcel size on the distribution of the second-level one-sample
t statistic (a) and of the mean value (b). While there is an obvious effect on the mean, there
is no conspicuous effect on the t distribution.

104



Randomized Parcellation Based Inference

from a distribution of (extreme) statistical values that depends on the parcel
size: large parcels would represent fMRI signal averaged over larger domains,
and thus would get typically lower values. This is indeed typically the case for
the mean statistic (see Figure 4.10, (b)); however, we show for instance that
the t statistic used in Section 4.2.2.2 is very weakly influenced by the parcel
size: we repeated the experiment described in section 4.2.2.2, i.e. computing
the t statistic on parcels obtained by Ward’s algorithm, based on 100 random
batches of 20 subjects, after permutation by random sign swap. We tabulate
the t distribution according to the parcel size by using 10 size bins. The result,
shown in Figure 4.10, (a), is that the effect, if any, is not detectable by visual
inspection.

To test more precisely the independence on the t distribution with respect to
the parcel size, we tested the equality of the mean, median and variance of the
size-specific distributions using the One-way (mean), Kruskal (median), Bartlett
(variance), Levene (variance) and Fligner (variance) tests as implemented in the
SciPy library?. All the tests are performed on the 10 bins jointly. We obtain
the following p-values: Oneway, P = 0.36 ; Kruskal, P = 0.27 ; Bartlett:
P = 0.95; Levene: P = 0.016; Fligner: P = 0.06. This means that there is
only a small effect on the variance, as reported by the Levene test, that is more
sensitive than Fligner (which is non-parametric) and Bartlett, which assumes
Gaussian distributions. However this effect is very small, and has no obvious
consequence on the number of peak values of the statistic; in particular, we do
not observe monotonic trends with size. Note that the small effect fades out
when using larger number of subjects (here, only n = 20 subjects per groups
were used). Finally, we did not find any significant correlation between the
number of detections above a given threshold (using uncorrected p-values of
1072,1073,10%) and the parcel size.

As a conclusion, the effect of parcel size is too small to jeopardize the use-
fulness of the counting statistic.

2 http://www.scipy.org/
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Figure 4.11: (a) Sensitivity improvement relative to cluster-size under control of the specificity at
5% FWER. (b) Inverse cumulative histograms of the relative number of voxels that were reported
as significant several times through the 10 subsamples (P < 0.05 FWER corrected), on a [angry
faces - control] fMRI contrast from the faces protocol. RPBI with geometric parcellations yields
poor sensitivity and poor reproducibility.
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Figure 4.12: Real fMRI data — RPBI with geometric parcellations. Evaluation of the per-
formances for various analysis methods across 10 random subsamples containing 20 subjects, on a
[angry faces - control] fTMRI contrast from the faces protocol. Precision-recall curves built with a
pseudo ground truth where 5% of the most active voxels across 1430 subjects are kept. RPBI with
geometric parcellations has poorer performance than RPBI with Ward’s clustering parcellations.

4.3.5 Geometric parcellations

We run experiment on real data with parcellations coming from a geometric
parcellation approach. We built parcellations of 1000 parcels with the K-means
clustering algorithm [15] (using random initializations) on the 3D coordinates
of a brain mask voxels. Geometric parcellations yield more regular parcels
than those obtained by performing a Ward’s clustering algorithm on simulated
and real data. Geometric parcellations lose the anisotropic effect of Ward’s
parcellations. In practical terms, they do not give good results, as compared to
RPBI with Ward’s clustering.
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Contributions

[1] Fritsch, V., Da Mota, B., Varoquaux, G., Frouin, V., Loth, E., Poline, J.B.,
Thirion, B., et al.: Robust group-level inference in neuroimaging genetic studies.
In: Pattern Recognition in Neuroimaging (2013)

[2] Fritsch, V., Da Mota, B., Varoquaux, G., Frouin, V., Loth, E.; Poline, J.B.,
Thirion, B., et al.: Robust regression for large-scale neuroimaging studies. in prepa-
ration (2014)

The multi-subject brain imaging datasets used in neuroimaging group stud-
ies have a complex statistical structure, including local and long range correla-
tions, non-stationarity of the statistical properties and the presence of artifacts.
While small-sample size studies can hardly be proved to deviate from standard
hypotheses (such as the normality of the residuals) due to the low degrees of
freedom of the statistical model, large-scale studies (e.g. on more than 100 sub-
jects) give a different picture and encourage the practitioner to use finer models
to perform statistical inference. In this work, we demonstrate the benefits of
robust regression as a tool for analyzing large neuroimaging cohorts. Our first
contribution is to design an analytic test based on robust parameters estimates;
this procedure makes it possible to forgo permutation testing and thus to per-
form whole brain analysis in a reasonable time. Then we demonstrate that
robust regression yields sensitivity improvements in two real data examples on
392 and 1502 subjects. We finally show that robust regression can be combined
with more complex analysis techniques to improve whole-brain tests sensitivity.

5.1 Robust regression in neuroimaging

5.1.1 Linear model and statistical inference

We consider the linear model defined in chapter 1:

B = X5 + €9, (5.1)

where B (the target feature) is a set of n samples of an imaging feature
(corresponding to n subjects typically), X5 is a n x p matrix of p variates
describing the same n samples, and € is some noise. Some columns of X,
may correspond to variates of no interest, also called confounds, while the other
columns correspond to explanatory variates, i.e. variates for the which we want
to perform a statistical test in order to know if they have an influence on the
target variate B. The purpose of linear regression is to estimate the unknown
coefficients v and this is generally done using Ordinary Least Squares (OLS)
regression, which intends to minimize the sum of the squared residuals of the
fitted model:

AoLs = argmin||B — Xy|?. (5.2)
¥

In neuroimaging, the most famous analysis method is a vozel-wise inference,
that consists in fitting the model (5.1) independently at each voxel (assuming
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that the images involved in the study have been registered prior to analysis, an
assumption that we systematically rely on in this work) by using (5.2). To reduce
the number of statistical tests as well as the impact of registration mismatch,
analysis methods based on regions of interest have been developed: Signal aver-
ages within predefined regions-of-interest are taken as descriptors instead of the
voxel-wise signal. If the regions of interest are defined by a brain parcellation,
we call the corresponding analysis a parcel-based analysis. The model (5.1) is
fit at the parcel level or at the voxel level in the same way, i.e. using (5.2).
The coefficients 4oLs are tested for non-zero significance and one p-value per
descriptor is computed, yielding a statistical parametric map. Such maps show
what regions of the brain the target variates are associated with.

Statistics ensure that qops is the maximum likelihood estimate of -+ for
Gaussian-distributed noise (e3), but this assumption does not hold for neu-
roimaging data (see section 1.2.4.3). Corrupted data and observations that
deviate from the population-representative pattern potentially introduce some
bias in the parameter estimate. We call these unusual observations outliers. For-
mally, outliers have large residual values that contribute to increasing the OLS
criterion presented in equation 5.2, resulting in a poor estimation of . But as
we mentioned in chapter 1, outliers alone are not responsible for deviations from
the models used in practice. In fact, it is very likely that high-dimensional neu-
roimaging data have a complex structure that is unknown, and that the models
try to approximate. That said, we consider that presence of outliers and mere
deviation from the model are two phenomena that are hardly distinguishable in
practice. We therefore consider that valid and reproducible statistical inference
can be performed in the presence of any kind of deviation thanks to robust sta-
tistical procedures. This chapter demonstrates this statement and shows that
robust procedures yield more sensitivity in the analysis.

5.1.2 Large cohorts and the need for robust tools

If standard hypotheses about the statistical structure of the data cannot be
easily rejected and do not require to be fixed when 10 to 20 subjects are in-
cluded in a neuroimaging experiment, significant departure may be observable
when more than 100 subjects are considered. Consequently, we can expect a
much better model of the data, hence some gains in sensitivity if we can use
a model that relaxes these common hypotheses. This use case is gaining some
importance cohorts that are now emerging (ADNI [10], IMAGEN [20], Human
Connectome [22] cohorts). This implies getting rid of the standard, caricat-
ural assumptions like Gaussian-distributed data, or homoscedastic noise (see
section 1.2.4.3. One precursive step towards that direction was proposed by
Wager [23]: Going back to the simplest analysis scheme, the massively uni-
variate voxel-wise inference, Wager suggested to replace the standard ordinary
least, squares regression by a robust regression (Huber regression [9]), which
has the advantage of (i) relying on weak structural assumptions (symmetric,
unimodal data) and (ii) being robust to outliers. Wager’s work successfully
showed sensitivity improvements for both inter- and intra-subject analyzes, as
well as stability regarding the presence of outliers. But this work was limited
to the consideration of small groups of subjects (< 20) and only the "outlier-
resistant" property of the method seems to have had an impact on the commu-
nity [17, 15, 14, 11, 1].
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5.1.3 Robust regression algorithms

5.1.3.1 A short review

Many robust regression settings have been proposed in the statistical literature.
Least Absolute Deviation (LAD) regression (or ¢ regression) [4] minimizes the
sum of the absolute value of the model residuals. ¢; regression estimate is hard
to compute in practice and it can break down in the presence of atypical values
in the model design matrix (leverage points) [19]. Any regression estimate that
minimizes the sum of a given function of the residuals without rescaling them
by their variance suffer from the same problem [9]. Indeed, the residual value
of an observation is proportional to the absolute deviation of the observation to
the data mean. As a result, leverage points attract the regression hyperplane.
The repeated median algorithm [21] is a regression algorithm that targets a
high level of outlier resistance, namely up to 50% amount of contamination
(a property known as high-breakdown point). It is computationally costly and
the resulting estimate is not affinely equivariant. The Least Median of Squares
(LMS) [7] and Least Trimmed Squares (LTS) [18] estimates also have a high
breakdown point but can only be computed with algorithms that only provide
a local optimum. The efficiency in uncontaminated models remains poor. All of
the above-mentioned regression estimates are difficult to apply in the context of
high-dimensional neuroimaging problems. Support Vector Regression (SVR) can
use kernel representations of the data to deal with their dimensionality, but lacks
a direct conversion of the estimated regression coefficients into p-values. Huber’s
regression (presented in section 5.1.4) is the most convenient regression criterion
to date, as it offers a good compromise between interpretability, computational
cost, and robust (including robust to the statistical structure of the data and
outlier resistance). We present SVR and LTS in the next sections because we
think they are good examples of robust regression algorithms: LTS illustrates
the concept of high breakdown point while SVR is an example of robust non-
parametric algorithm.

5.1.3.2 Least Trimmed Squares regression

Some alternative regression criteria target a breakdown point of 50 %, i.e. there
goal is to ensure a correct estimation of the regression hyperplane under amounts
of contamination going up to 50 %. While this robustness property is crucial
regarding applications such as outlier detection or analysis of a high-dimensional
multimodal cohort, the use of high breakdown point regression criteria should
be limited to diagnosis purpose and is inefficient. Least Trimmed Squares (LTS)
regression [18] is the state-of-the-art high breakdown point robust regression:

h
2(7‘2)1':717 (53)

i=1
where (r?)i, = ((b; — X x2,,75)%),,, is the i ordered squared residual
and 1 < h < 5 sets up the breakdown point of the corresponding regression

estimate. The p-values associated with the statistical test on the estimated
model coefficients are obtained by a permutation test, which is another drawback
of the method.
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Figure 5.1: Huber’s p function. p is a parabola
that is continued by a line on its both ends. The
square part of the function smoothly downweights
the influence of the observations as they depart from
the regression hyperplane, yielding a fit (and a test-
ing framework) that accommodates to the data dis-
tribution. The linear part prevents the model to
be dragged by strong outliers as their influence is
bounded (see the flat part of p’). x : =z — zp'(z) —
p(x), is useful in algorithm 3.

5.1.3.3 Support Vector Regression

Support Vector Regression (SVR) is a regression algorithm that is derived from
the Support Vector Machine (SVM) classification algorithm already introduced
in chapter 2, section 2.3.4. It can be written as a convex minimization problem
and solved in the same fashion than the well-known SVM. Notably, not all the
observations are used to define the regression hyperplane, which makes the algo-
rithm robust to deviant observations. However, to the best of our knowledge, no
statistical test on the estimated model coefficients of SVR regression has been
derived so far, hence we need to resort to costly permutation tests.

5.1.4 Huber’s robust regression

5.1.4.1 Formulation

As the influence of outliers is accentuated by the square function in equation 5.2,
Huber [9] proposed to replace it by a function p that dampens the influence of
the outliers:

ARLM = argmin Z p ( 2= 2”%> . (5.4)
v

; g
=1

The dampening is non-linear and thus offers an interesting trade-off between
statistical efficiency at the Normal model and outlier resistance. o is the stan-
dard deviation of the residuals, and acts as a scaling factor to tune the non
linearity induced by p. A standard choice for p is

1.2 :
527, if |z < ¢,
€Tr) = 5-5
Ple) {c|x| — 12, if|z| >, (5:5)

with ¢ = 1.345 for 95% asymptotic efficiency on the standard normal distri-
bution. In this work, we only use this definition of p.

Fitting a linear model with the criterion (5.4) is equivalent to downweighting
the observations according to their residual value with respect to the true model.
Thus, beyond outlier resistance, a robust regression criterion ensures that the
fit does not depend on the data in the tails of the distribution. This is also the
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Algorithm 3 Iteratively Reweighted Least Squares

Require: X5, b, p.

Ensure: ¢ = 1078, W,q = oo, h(p) a normalization factor.
define function x : x — zp'(x) — p(z)
v+ (X7 X5)"'XTb

0® < Varlb; — >>0_, o, ;7]

b-—z’?7 T, Vi
02+ 3"y (71 ——— J) o?

7R 7
W« pf (7bi_zf:; S
while |[Wyq — Wl > € do
“Cﬂd ~ W

=S P xo. vy

0% ﬁ(m X (bz]i%”%) o2 (scale step)
p/(bi_zg'):l IZ{,j'Yj/”))

W «+ ( b, — §?=1 xgij’Yj/O' ie{1l..n}

Let 7 be the solution of XJ W X7 = X] Wb

(reweighting)

Y+ T
end while s s )2
oy (=) 30T p (0 =30 _1
cov(¥) = K= st s W
_ D Var[il)'(b'i—E?:l Z2; :Vj )]
L Gl T S

case for the p-values that are derived from the associated robust test, which is
presented in the sequel.

5.1.4.2 Algorithm

In practice, o is not known and has to be estimated while the model is being
fit, yielding a joint estimation challenge (i.e. one has to estimate 4 and & at
the same time. The Iteratively Reweighted Least Squares (IRLS), presented
as Algorithm 3, is often used to solve this problem. One important step to
ensure the convergence of the algorithm is the scale step, that correspond to
the update of 5. In the applied literature, a robust estimate of the residuals’
standard deviation is taken so as to update & (e.g. in [16, 3]|), but Huber
raises the point that no theoretical proof of the algorithm convergence has been
given in that setting and suggests a more complex update that guarantees the
algorithm convergence when a convex weighting function is used [9]. We use
a Python implementation of robust regression available in the statsmodels !
library, which we optimized for our application. The implementation strictly
follows Huber’s definition of the scale update step.

5.1.4.3 Significance testing

Huber [9] proposed to adapt the standard F-test to robust regression by consid-
ering a robust unbiased estimate of cov(%) (given at the end of Algorithm 3).
Such an analytic testing procedure is however crucial to us as the IRLS algo-
rithm costs too much to be considered with permutation testing. We dedicate

Thttp://statsmodels.sourceforge.net
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the next section to a validation of this testing procedure as it has never been
done to our knowledge.

5.2 Validation of the statistical procedure

5.2.1 Methods

5.2.1.1 Generative model

Before applying robust regression (RLM) to real data, we carry out an empirical
validation of the testing procedure associated with it, and compare it with
standard ordinary least squares regression (OLS). We use the following model
to generate n observations {yi,...,yn}:

Y = X3+ ase+ a(l, —ay)e, (5.6)

where X is a random (n x r) design matrix, 3 is the (r X p) matrix of the model
coefficients, € ~ N'(0,1d,,) models a Gaussian noise, a, is a n-dimensional vector
with coordinates drawn from a Bernoulli distribution B(1 —¢), and o > 1 is a
scalar. ¢ is thus the expected proportion of outliers in the generated dataset,
and « is a parameter that controls how strongly the outliers deviate from the
regular model. We set a to 5.

5.2.1.2 Control of the type I error rate

To verify that we can control the rate of type I error under the null hypothesis,
we set a column of 8 to 0 in model (5.6), say column j. For various values
of ¢, we fit both a standard and a robust linear model to a dataset generated
according to the obtained model, respectively yielding matrices of estimated
model coefficients BOLS and BRLM. Finally, we test the parameters correspond-
ing to the j-th column of BOLS and BRLM, that are associated with a null true
effect. The proportion of null rejection should thus be equal to or less than the
nominal test p-value. For instance, providing the testing procedures are unbi-
ased, it should happen in 5% cases that OLS/RLM reports a significant effect
at P < 0.05 uncorrected. We are also interested in lower thresholds (< 1073)
as we intend to work with corrected p-values.

5.2.1.3 Statistical power (type II error rate)

We show that in the presence of outliers, the statistical power of the robust test
is higher than that of the statistical power achieved by an F-test subsequent
to an OLS fit. The simulation framework is the same than in the previous
experiment, except that we do not set any column of 3 to 0, so we perform tests
on a variable that is known to have an effect. We construct Receiver Operating
Characteristic (ROC) curves [8] for RLM and OLS according to the true/false
acceptance/rejection of the null hypothesis (i.e. "no correlation exists between
the tested variable(s) and the fMRI signal values").

115



Robust regression in neuroimaging

n 0.07 i i i S i ; ; ;
g — OLS RLM — RLM,, g 6.0e.04F oLS RLM — RLM,,, |
I 0
v 0.061 T
g v
0
2 ¢ 5.0e-04
z 3
o >
< a
. . . . x
0.04 0.1 0.2 03 0.4 ° 4.0e-04 01 02 03 04
Contamination Contamination

Figure 5.2: Proportion of type I errors for OLS and RLM (for two different algorithms).
RLMecmp corresponds to robust regression as computed with the IRLS algorithm for which the scale
is estimated with a median absolute deviation. (a) Nominal rate at P < 0.05 uncorrected, estimated
on 10,000 independent tests performed under a null hypothesis. (b) Nominal rate at P < 5.0~ 4
uncorrected, estimated on 1,000,000 independent tests performed under a null hypothesis. The
experimental design involves 300 observations (n = 400), 1 tested variable and 10 confounding
variables. The error rate corresponds to the expected nominal rate with all methods.

5.2.2 Results

5.2.2.1 Control of the type I error rate

The control of type I error obtained with the testing procedures associated with
OLS and RLM is exact, as shown in Figure 5.2. This result hold for all number
of observations involved in the simulation (n). We also obtained the same per-
formance when confounding variables were included, and with multivariate test
(i.e. several columns of the design matrix were associated with null coefficients
and tested for a joint effect).

5.2.2.2 Control of the type II error rate

The ROC curves presented in Figure 5.3 illustrate the ability of the testing
procedures associated with OLS (resp. RLM) to detect a significantly non-null
effect in the presence of outliers. The latter potentially mislead OLS while
RLM keeps a good sensitivity, as defined by the trade-off between correct and
uncorrect null-hypothesis rejections. The curves may drop as more confounding
variables are included in the experimental design, but the relative performance
of both regression framework is preserved. Conversely, testing several variables
at a time increases the performance of the methods simultaneously. We also
give ROC curves that show the performance of Least Trimmed Squares (LTS)
regression in Figure 5.4. As expected, this algorithm behaves better than RLM
only in the case of an extremely strong contamination, namely 50 %, which does
not correspond to a realistic case in neuroimaging. Moreover, LTS consistency
at the regular model is poor and we will therefore not investigate further this
regression algorithm.

5.3 Application to neuroimaging data

5.3.1 Synthetic neuroimaging data

We measure the accuracy improvement yielded by robust regression by first ap-
plying it on synthetic neuroimaging data. We use a generative model that makes
it possible to compare the analysis results to a ground truth. The parameters
of the simulation are chosen to yield data that model real neuroimaging data
well.

116



Robust regression in neuroimaging

e Figure 5.3: Accuracy of standard and ro-
bust regression algorithms under vari-
ous amounts of contamination. Robust
regression and its associated testing proce-

0 4j,’ R OLS (10% outli'ers) | dure always achieve a better compromise be-
i e RLM (10% outliers) | tween type I and type II errors.
1 Pid — - OLS (20% outliers)
0.2k s RLM (20% outliers) |
f .7 OLS (30% outliers)
R RLM (30% outliers)
0.0k L I . . J
0.0 0.2 0.4 0.6 0.8 1.0

Percentage of correct non-null effect detection

Type Il error rate

10
r f —~ T T
L ’J— H_,_,Jf iy -
08 —'JF/_' P /f ka / JIJ—
- f " [ 7
osf /7 . f - f r
| / P ( i
| ( / J
ol B [/ B | -
“ — oLs [/ — oLs ‘ JI/ - — oLs
o L7 RLM /L RLM 7o RLM
e — [ — LTS e — LT
17 @ ws ||| (b (o) :
5 3z o 35 o5 To 05 37 3 0 35 To o 53 o &5 35 7o

Figure 5.4: Accuracy of Least Trimmed Squares (LTS) regression as compared to OLS
and RLM. (a) no contamination, (b) 30 % contamination, (¢) 50 % contamination. LTS only
outperforms for an amount of contamination that is equal to its breakdown point, i.e. 50 % con-
tamination (c). Such a case is not relevant in practice and one would therefore prefer RLM as a
robust tool. LTS consistency at the regular model is poor (a).

Data generation. We simulate fMRI contrast images as volumes of shape
40 x 40 x 40 voxels. Each contrast image contains a simulated 4 x 4 x 4 activa-
tion patch at a given location, with a spatial jitter following a three-dimensional
N(0, I3) distribution (coordinates of the jitter are rounded to the nearest inte-
gers). The strength of the activation is set so that the signal to noise ratio (SNR)
peaks at 2 in the most associated voxel. The background noise is drawn from a
N(0,1) distribution, Gaussian-smoothed at opeise iSotropic and normalized by
its global empirical standard deviation. After superimposing noise and signal
images, we optionally smooth at o6t = 2.12 voxels isotropic, corresponding to
a 5 voxels Full Width at Half Maximum (FWHM). Voxels with a probability
above 0.1 to be active in a large sample test are considered as part of the ground
truth. Ten subsamples (or groups) of 100 images are then generated and an-
alyzed. Each subsample was then contaminated by 15 % outliers, i.e. in each
group, we replace 15 observations by images for which the activation is located
at a random position in the image. All the others parameters stay the same as
for the generation of the 85 % valid observations.

Experiment. We perform two voxel-intensity based analyzes on each sub-
groups: the first using standard regression (OLS) and the second using robust
regression (RLM). For a given type of analysis, the output statistical maps cor-
responding to the ten groups are pooled together so as to obtain one single
statistical map that is thresholded according to a varying threshold. The var-
ious threshold levels are compared to the ground truth described above and
we summarize the results in a ROC curve. We present these curves for the
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experiment performed with and without smoothing.

Results. When outliers are present in the data, a deviation from the model
assumptions is likely to be observed. Robust regression can accommodate these
potential deviations and therefore yields more sensitive results than OLS re-
gression, as shown in Figure 5.5. Robust regression is yet consistent at the
regular model because its performance is similar to that of OLS regression (not
shown, since the curves are almost confunded). This agrees with the theory.
This simulation suggests that robust regression should be systematically used
in neuroimaging, because the quality of the data can hardly be checked, espe-
cially when large and complex cohorts are considered.

5.3.2 Real data

5.3.2.1 A gene-neuroimaging study

We apply robust regression to a gene-neuroimaging study examining gene x
environment (GxE) interaction effects on fMRI BOLD activity to angry faces
([6]) in a large sample of n = 392 subjects taken from the multi-centre study
IMAGEN [20]. Severe outliers due to motion or deformation artifacts as well as
those detected using a multivariate outlier procedure covering the whole brain,
were removed. All of the 392 available observations are thus considered as
correct upon manual quality check. The example illustrates the common hy-
pothesis that genetic effects on brain function (and behavior) may often only be
detected under certain environmental conditions [2]. Consequently, compared
to main effects models, tests of the GxE interaction term render the need for
sensitive neuroimaging ’endophenotypes’ all the more pertinent. The model
covariates were genotype, environmental risk (number of stressful life events,
SLE), sex, puberty development, study center and handedness. As in many
gene-neuroimaging studies we employed an unbalanced design, comparing 65
minor allele carriers of a common Single Nucleotide Polymorphism (SNP) in
the oxytocin receptor gene (rs2268494) to 327 major-allele homozygous. Our
aim is to compare the ability of standard and robust regression to uncover inter-
esting effects at a fixed specificity level, i.e. the sensitivity of both methods. We
construct 200 brain parcellations (from 100 to 2000 parcels by increment of 100,
and 10 brain parcellations per number of parcels) using Ward’s clustering [24]
on the contrast images of 300 bootstrapped subjects amongst the available 392.
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Each parcellation is used to convert the contrast images of the 392 subjects into
neuroimaging features by averaging the voxels signal within each parcel. For
each set of features, we conduct two analyzes: one with OLS and the other
with RLM. We report the number of significant effects found (P < 0.1 Bon-
ferroni corrected) divided by the number of parcels, which gives an estimate of
the method sensitivity under a given type I error control. We also perform a
voxel-wise Bonferroni-corrected analysis, using respectively standard and robust
regression.

5.3.2.2 Embedding robust regression into complex methods

Robust regression can straightforwardly be combined with more advanced anal-
ysis methods (TFCE or RPBI, see chapter 2). We demonstrate that such com-
binations actually yield more sensitivity than the standard, non-robust version
of the methods. We applied RPBI to the gene-neuroimaging study described in
the previous section. We generated 100 random parcellations with 1000 parcels
each, following the description given above. RPBI was performed twice: the
first time with a standard regression algorithm (RPBIprg), the second time
with a robust regression algorithm (RPBIgpMm).

As another example of the importance of using robust regression, contrast
images of 1364 subjects from the Imagen study were regressed against an impul-
sivity factor variable using Randomized Parcellation Based Inference. Covari-
ables such as handedness, acquisition center, sexe and age were included. The
task was a stop-signal task and the contrast corresponds to the [stop success
- stop fail] condition [12], where the stop success (resp. stop fail) condition
corresponds to the event where the subject managed (resp. failed) to inhibit its
response when asked to do so (i.e. not pressing a button when the first intention
was to press it but a stop signal occured). As above, 300 bootstrapped subjects
were used to build 100 different wards parcellations of 1000 parcels each.

5.3.2.3 Results

Gene-neuroimaging study Figure 5.6 shows that robust regression always
reports more significant activations than standard regression, whatever the num-
ber of parcels considered to reduce the data dimension. As the proportion of
reported significant activations stabilizes as soon as 500 parcels are used, Fig-
ure 5.6 moreover suggests the exact number of parcels does not have a strong
impact if enough are considered. This justifies to same extent our choice of
using parcellation-based analyzes with a fixed number (1000) of parcels.

Regarding voxel-level analyzes performed with OLS (resp. RLM), a signif-
icant association was reported in only one (resp. four) voxel(s) located in the
right (resp. left and right) ventral striatum. The results are relevant to the
study, as the ventral striatum plays a key role in the processing of positive and
negative reward signals, including anger expressions [13]. Robust regression im-
proves the original findings and interestingly uncover the symmetric activation
as well.

Five brain locations were reported as significantly associated with a non-
null effect when applying RPBIg1m to the gene-neuroimaging study of this real
data application. Only three of them were reported by RPBIgyg, as shown in
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Figure 5.7. The activation in the left amygdala (z = 7 mm slice) is larger and
more significant according to RPBIgm.

Neuroimaging study with behavioral features As shown in Figure 5.8, a
standard regression framework reports a significant effect of the impulsivity fac-
tor within the right hypothalamus (P < 0.1 Bonferroni corrected) while a robust
algorithm does not report anything. Further investigation on the data shows
that one subject is an outlier and influences OLS regression. As an illustration,
we focused on a single parcellation, and particularly on a parcel which overlaps
with the hypothalamus location. Figure 5.9 represents the corresponding data
in a scatter plot, and notably one subject having both a very low average signal
value and a high impulsivity score. We presented OLS and RLM regression lines
within the same scatter plot. The shift created by the outlier observation can be
observed for each individual parcellation, in the parcel that matches the right
hypothalamus at best. Renewing the experience without the outlier results in
the disappearance of the significant effect observed in the hypothalamus with
OLS.

5.4 Discussion

Huber’s robust regression can advantageously replace Ordinary Least Squares
regression in the context of a neuroimaging study. After ensuring that the
testing procedure associated with robust regression comes with an exact control
on the accepted errors, we showed that resistance to outliers yields a better
stability and, in turn, improves the sensitivity of the analyzes. These results
are confirmed on real neuroimaging data.

Robust regression and outlier detection Robust statistical tools are main-
ly used for their outlier-resistance properties. Equivalently, some studies do not
use robust tools because the data are previously quality checked and should
not contain any outlier. This step is relevant and we advocate performing it in
order to remove gross outliers and make the data more homogeneous. Outlier
detection algorithms [5] or Least Trimmed Squares regression [18] can be useful
for an automated diagnosis. However, the poor performance of LTS stresses
the fact that a robust fit does not simply boils down to discarding potential
outliers. Deviation from normality is actually a widespread phenomenon, that

120



Robust regression in neuroimaging

RPBIrLm

2.15

i

Figure 5.7: Voxel-level FWER-corrected p-values maps given by RPBloLs and RPBIgrLMm
on our gene-neuroimaging study (represented as negative logio p-values). Four brain regions
are associated with a significant non-null effect according to the robust version of RPBI, while only
two of them are reported by standard RPBI. The significant associations observed in the left and
right ventral striatum (third column, z = 7 mm) are particularly relevant to the study, as the
ventral striatum plays a key role in the processing of positive and negative reward signals, including

anger expressions.

Signal value

Impulsivity score

10

121

1.65
I

1.0

Figure 5.8: RPBI analy-
sis with standard regression
(OLS) and robust regres-
sion (RLM). RPBIoLs (left)
reports a significant effect for a
group of voxel within the right
hypothalamus while RPBIgrpMm
(right) does not report any sig-
nificant effect. The difference
is explained by the presence of
a gross outlier {details given in
Figure 5.9).

Figure 5.9: Relationship between the mean
| signal within a parcel centered at the
hypothalamus and the impulsivity factor
(1364 subjects). Covariables effect has been
removed from the two values. Regression lines
have been drawn on top of the data for standard
1 (OLS) and robust regression (RLM).



Robust regression in neuroimaging

is much more general than the contamination by outliers values, and that needs
to be taken into account in inferential procedures. More subtle deviations from
the model assumptions cannot be systematically detected, and robust tools still
turn out to be useful whatever the quality of input data, as our real data experi-
ments demonstrate. Indeed, more sensitivity is achieved by robust regression in
our neuroimaging genetic experiment, while we control for the specificity. The
experiment with behavioral factors also shows differences between a robust and
a non-robust fit, and further investigation reveals the presence of a multivariate
outlier that could not be detected with a mere quality check (the impulsivity
score of the main outlier is not an extreme value, but its conjunction with the
imaging phenotypes makes it an outlier).

Computation Unlike Support Vector Regression and other alternative robust
regression algorithms, Huber’s robust regression has the advantage that an an-
alytic procedure exist to test the estimated model coefficients. This reduces the
running time of the algorithm regarding neuroimaging applications, where the
ultimate goal is to find significant associations between experimental variables
and brain imaging phenotypes. We optimized the implementation of robust re-
gression so that we can perform voxel-level analyzes of a cohort of hundreds of
subjects in a few minutes on a desktop computer. A robust fit is yet 10 to 100
times slower than an OLS fit, which prevents RLM to be routinely used with
permutation testing, including in the scope of a more complex statistic such as
RPBIg1 M or robust cluster-size inference. We use a cluster of computers to run
the analyzes with RPBIgy .

Embedded robust regression Our experiments demonstrate that robust re-
gression can successfully be combined with state-of-the-art neuroimaging anal-
ysis method for an improved sensitivity. This approach, albeit more expensive
than more traditional inference schemes, is promising as the number of large
cohorts and neuroimaging genetic studies are growing. Those datasets have a
complex statistical structure and specific statistical procedures are therefore re-
quired to address this challenging problem. We focused on Randomized Parcel-
lation Based Inference because it outperforms the others state-of-the-art meth-
ods, but robust regression would be embedded in cluster-size inference of TFCE
as well.
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CONCLUSION

In this thesis, we have investigated how to improve neuroimaging studies with
the use of robust statistical methods. Our main aim is to ascertain that the
results of statistical inference procedures are (i) robust to the presence of ab-
normal observations; (ii) reproducible across studies; (iii) do not rely crucially
on model assumptions. Although these requirements are somewhat related,
they have to be considered in turn independently before global solutions can
be proposed. We therefore develop our contributions according to three main
directions:

Outlier detection. First, we have considered the automatic detection of ab-
normal data that potentially mislead the analysis procedures, the so-called out-
liers. In our experiment, we considered n observations that corresponds to the
brain images of n subjects, from which we reduce the dimension by consider-
ing local signal averages in p predefined parcels covering the whole brain. We
adapted a robust covariance estimator, the Minimum Covariance Determinant
(MCD) to high-dimensional settings (£ > 0.2) by regularizing it. Assuming
that the data are Gaussian-distributed, we showed that with such a covariance
estimator, it is possible to perform statistically-controlled multivariate outlier
detection upon consideration of the Mahalanobis distances of the observations.

Amongst various types of regularization, we observed that random projec-
tions (yielding the RMCD-RP estimator) are most suited to our applications:
this approach has the highest outlier detection accuracy when confronted to
various types of outliers, it is robust to deviations from the Normal model, it
keeps a high accuracy even when p > n. However, we found /5 regularization
useful as the corresponding covariance estimate (RMCD-{5) is faster to compute
and to set up (e.g. the choice of the regularization amount can be done with
a closed form formula). Non-parametric outlier detection procedures such as
One-Class SVM or Local Component Analysis (LCA) also have a high accuracy
but they do not come with a statistical control on subjects inclusion. Note that
the most powerful of them, LCA, can be used to build a representation of the
dataset that provides insight about its statistical structure.

Improving the reproducibility of neuroimaging studies. The number
of subjects included in neuroimaging studies is relatively low as compared to
the large number of image descriptors (more than 40,000 voxels) and potential
external variables (hundreds of behavioral variates, more than 100,000 genetics
variants). Thus, the datasets used in neuroimaging are poor representative of
the real data structure and with state-of-the-art methods, the results of the
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same analysis performed on two different samples from the same population
may vary a lot. The phenomenon is even worse across cohorts.

We proposed a new approach, Randomized Parcellation Based Analysis (RPBI),
to overcome the limitations of standard methods, in which active voxels are de-
tected according to a consensus on several random parcellations of the brain
images, while a permutation test controls the false positive risk. Thus, RPBI
stabilizes standard parcel-based analysis to obtain reproducible results, which is
a form of statistical robustness (namely robustness regarding the choice of the
input sample). Data-driven parcellations are obtained with Ward’s clustering
algorithm. Both on synthetic and real data, this approach shows higher sensi-
tivity, better accuracy and higher reproducibility than state-of-the-art methods.
These improvements are especially useful for large-scale studies, such as neu-
roimaging genetic studies, as groups with uneven cell sizes are compared through
complex designs.

Robustness to deviations from the model. Due to the complex statistical
structure of neuroimaging data, approximations are widely used to model neu-
roimaging datasets. For instance, a standard assumption is to assume that the
data are Gaussian-distributed. We demonstrated that such assumptions are not
verified in practice, especially when complex and unbalanced designs are con-
sidered (e.g. neuroimaging genetic studies). Also, outlier detection procedures
may not be very accurate, which is a potential source for even more deviation
of the data distribution from the assumed model. We therefore need to resort
to outlier-resistant statistical procedures for data analysis in order to guarantee
that the analysis is not driven out by discrepancies that exist between the real
data structure and the model considered by the practitioner.

We have considered robust regression for neuroimaging group studies. We
emphasized the analysis of large cohorts (more than 50 subjects) as small-sample
size problems were already considered in the literature. We performed a val-
idation of the analytic testing procedure associated with robust regression to
verify that it provides a correct control on the type I and II error rates. We
then showed on two real data experiments that robust regression yields more
sensitivity than state-of-the-art non-robust methods. Importantly, multivariate
outlier detection procedures were used as preprocessing prior to analysis. This is
a proof that robust procedures are still needed for the analysis of quality-checked
data.

A global methodology for robust results in neuroimaging

Our last contribution was to show that robust regression can be combined
with random parcellation based inference to obtain even more sensitive results.
Increased sensitivity is particularly vital for studies examining brain-behavior re-
lationships or gene-neuroimaging studies. We strongly recommend using RPBI
in combination with robust regression, therefore, we are currently working on an
efficient implementation of this framework. We also advise to perform a prelim-
inary outlier detection. This can be advantageously done with RMCD-RP, with
a precise control on subject exclusion, but we need to mention that the exact
number of removed subject plays only a limited role in practice. Gross outliers
can easily be detected with very conservative thresholds or with non-parametric
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outlier detection algorithms such as LCA, while a resistance to weak outliers in
ensured by the robust procedure used for the analysis.

An interesting observation is that all outlier detection methods (including
descriptive tools such as LCA) suggest that fMRI datasets contain more than
30% outliers. This may be due to the fact that fMRI is not a quantitative
method, but only relates activation patterns that need to be rescaled across
subjects. It would therefore be very sensitive to artifacts. A practical solution
could be to systematically work on t¢- or z-maps instead of contrast maps, al-
though this only partially addresses the problem (i.e. the scaling problem is
solved, but the sensitivity to artifacts remains).

Future directions

Each of the three point mentioned in the first paragraph of this conclusion
can be pushed further.

Outlier detection would benefit from a visualization tool that helps the prac-
titioner interpreting it. We observed that when £ > 1, diagonal covariance
models have a good accuracy. They are, in turn, more interpretable and
their decision function may be easier to represent in a human-readable
way.

Random parcellation based analysis may be improved by considering par-
cellations with variable number of parcels, or by changing the type of the
decision function used in the inner parcel-based analyzes. We plan to use
soft thresholding as it correspond to a convex transformation and would
therefore yields results that are more stable regarding the value of the
significance threshold t.

Robust regression suffers from the fact that a recursive algorithm (IRLS)
is used to fit it. We want to replace the IRLS algorithm by optimization
algorithms used in machine learning (e.g. Stochastic Gradient Descent [1])
in order to jointly minimize the coefficient of the robust linear model and
the corresponding scale parameter. We are mainly inspired by the recent
work of the Sierra Inria team that works on robust principal component
analysis and its implementation [4].

We also plan to investigate multivariate robust regression. Penalized
regression started recently to be used in genome-wide association stud-
ies [3, 2], but not in a robust version.

Software distribution

All the algorithms developed in this thesis were implemented in Python. RPBI
and robust regression are packaged into the Parietal team code base, and will
soon be released as open-source projects. Regarding outlier detection, the code
is also available in the Parietal team code base but still need to be cleaned be-
fore distribution because the actual implementation was developed for research
purpose and is not optimized. Our work on covariance estimation however re-
sulted in the implementation of the Minimum Covariance Determinant (MCD)
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estimator and Least Trimmed Squares (LTS) regression. They are respectively
available as a part of the Scikit-learn? [5] and Statsmodels® Python packages.
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