@. R. Peer-reviewed-conference-papers, B. Prevost, B. Romain, O. Mory, R. Lucidarme et al., Registration of 3D+T Abdominal Perfusion CT Images via Co-Segmentation, International Conference on Medical Image Computing and Computer Assisted Intervention, 2013.

@. R. Prevost, B. Mory, R. Cuingnet, L. D. Cohen, and R. Ardon, Incorporating Shape Variability in Image Segmentation via Implicit Template Deformation, International Conference on Medical Image Computing and Computer Assisted Intervention, 2013.
DOI : 10.1007/978-3-642-40760-4_11

URL : https://hal.archives-ouvertes.fr/hal-00906312

@. R. Gauriau, R. Cuingnet, R. Prevost, B. Mory, R. Ardon et al., A Generic, Robust and Fully-Automatic Workflow for 3D CT Liver Segmentation, 5th International MICCAI Workshop on Abdominal Imaging: Computational and Clinical Applications (MICCAI ABDI 2013
DOI : 10.1007/978-3-642-41083-3_27

URL : https://hal.archives-ouvertes.fr/hal-00917847

@. R. Prevost, R. Cuingnet, B. Mory, J. Correas, L. D. Cohen et al., Joint Co-segmentation and Registration of 3D Ultrasound Images, Information Processing in Medical Imaging, 2013.
DOI : 10.1007/978-3-642-38868-2_23

@. R. Cuingnet, O. Somphone, B. Mory, R. Prevost, M. Yaqub et al., Where is my baby? A fast fetal head auto-alignment in 3D-ultrasound, 2013 IEEE 10th International Symposium on Biomedical Imaging, 2013.
DOI : 10.1109/ISBI.2013.6556588

URL : https://hal.archives-ouvertes.fr/hal-00925294

@. R. Cuingnet, R. Prevost, B. Mory, D. Lesage, L. D. Cohen et al., Automatic Detection and Segmentation of Kidneys in 3D CT Images Using Random Forests, International Conference on Medical Image Computing and Computer Assisted Intervention, 2012.
DOI : 10.1007/978-3-642-33454-2_9

URL : https://hal.archives-ouvertes.fr/hal-00779698

@. B. Mory, O. Somphone, R. Prevost, and R. Ardon, Real-Time 3D Image Segmentation by User-Constrained Template Deformation, International Conference on Medical Image Computing and Computer Assisted Intervention, 2012.
DOI : 10.1007/978-3-642-33415-3_69

URL : https://hal.archives-ouvertes.fr/hal-00779423

@. R. Prevost, B. Mory, J. Correas, L. D. Cohen, and R. Ardon, Kidney detection and realtime segmentation in 3D contrast-enhanced ultrasound images, IEEE International Symposium on Biomedical Imaging, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00702609

@. G. Pizaine, R. Prevost, E. Angelini, I. Bloch, and S. Makram-ebeid, Segmentation-free and multiscale-free extraction of medial information using Gradient Vector Flow, IEEE International Symposium on Biomedical Imaging, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00722958

@. R. Prevost, L. D. Cohen, J. Correas, and R. Ardon, Automatic detection and segmentation of renal lesions in 3D contrast-enhanced ultrasound images, Medical Imaging 2012: Image Processing, 2012.
DOI : 10.1117/12.911103

URL : https://hal.archives-ouvertes.fr/hal-00703131

@. B. Mory, O. Somphone, R. Prevost, and R. Ardon, Template Deformation with User Constraints for Live 3D Interactive Surface Extraction, MICCAI 2011 Workshop on Mesh Processing in Medical Image Analysis (MICCAI Meshmed, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00649603

@. R. Book-chapters, B. Prevost, R. Mory, J. Cuingnet, L. D. Correas et al., Kidney Detection and Segmentation in Contrast-Enhanced Ultrasound 3D Images". Abdomen and Thoracic Imaging -An Engineering and Clinical Perspective, Fast Solver for Some Computational Imaging Problems: A Regularized Weighted Least-Squares Approach, 2013.

@. R. Patents, C. Prevost, B. Dufour, R. Mory, and . Ardon, Segmentation of a large object from multiple 3D partial views". European Application, 2012.

@. R. Prevost, B. Mory, and R. Ardon, Coupled segmentation in 3D conventional ultrasound and contrast-enhanced ultrasound images". European Application, 2012.

R. Adams and L. Bischof, Seeded region growing. Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol.16, issue.6, pp.641-647, 1994.

T. Albrecht, Guidelines for the Use of Contrast Agents in Ultrasound - January 2004, Ultraschall in der Medizin, vol.25, issue.4, pp.249-256, 2004.
DOI : 10.1055/s-2004-813245

J. E. Aldrich, Basic physics of ultrasound imaging, Critical Care Medicine, vol.35, issue.Suppl, pp.131-137, 2007.
DOI : 10.1097/01.CCM.0000260624.99430.22

L. Ambrosio and V. M. Tortorelli, Approximation of functional depending on jumps by elliptic functional via t-convergence, Communications on Pure and Applied Mathematics, vol.17, issue.8, pp.43-999, 1990.
DOI : 10.1002/cpa.3160430805

J. H. An and Y. Chen, Region based image segmentation using a modified mumfordshah algorithm, SSVM, pp.733-742, 2007.

N. Aronszajn, Theory of reproducing kernels, Transactions of the American Mathematical Society, vol.68, issue.3, pp.337-404, 1950.
DOI : 10.1090/S0002-9947-1950-0051437-7

V. Arsigny, O. Commowick, X. Pennec, and N. Ayache, A Log-Euclidean Framework for Statistics on Diffeomorphisms, Medical Image Computing and Computer-Assisted Intervention?MICCAI 2006, pp.924-931, 2006.
DOI : 10.1007/11866565_113

URL : https://hal.archives-ouvertes.fr/inria-00615594

V. Arsigny, O. Commowick, X. Pennec, and N. Ayache, A Log-Euclidean Polyaffine Framework for Locally Rigid or Affine Registration, Biomedical Image Registration, pp.120-127, 2006.
DOI : 10.1007/11784012_15

URL : https://hal.archives-ouvertes.fr/inria-00615607

V. Arsigny, X. Pennec, and N. Ayache, Polyrigid and polyaffine transformations: A novel geometrical tool to deal with non-rigid deformations ??? Application to the registration of histological slices, Medical Image Analysis, vol.9, issue.6, pp.507-523, 2005.
DOI : 10.1016/j.media.2005.04.001

URL : https://hal.archives-ouvertes.fr/inria-00615665

J. Ashburner, A fast diffeomorphic image registration algorithm, NeuroImage, vol.38, issue.1, pp.95-113, 2007.
DOI : 10.1016/j.neuroimage.2007.07.007

G. Aubert, M. Barlaud, O. Faugeras, and S. Jehan-besson, Image Segmentation Using Active Contours: Calculus of Variations or Shape Gradients?, SIAM Journal on Applied Mathematics, vol.63, issue.6, pp.2128-2154, 2003.
DOI : 10.1137/S0036139902408928

URL : https://hal.archives-ouvertes.fr/inria-00072105

J. Bakker, M. Olree, R. Kaatee, E. E. De-lange, K. G. Moons et al., Renal Volume Measurements: Accuracy and Repeatability of US Compared with That of MR Imaging, Radiology, vol.211, issue.3, pp.211-623, 1999.
DOI : 10.1148/radiology.211.3.r99jn19623

D. Ballard, Generalizing the Hough transform to detect arbitrary shapes, Pattern Recognition, vol.13, issue.2, pp.111-133, 1981.
DOI : 10.1016/0031-3203(81)90009-1

C. Bauer, T. Pock, E. Sorantin, H. Bischof, and R. Beichel, Segmentation of interwoven 3d tubular tree structures utilizing shape priors and graph cuts, Medical Image Analysis, vol.14, issue.2, pp.172-184, 2010.
DOI : 10.1016/j.media.2009.11.003

M. F. Beg, M. I. Miller, A. Trouvé, and L. Younes, Computing Large Deformation Metric Mappings via Geodesic Flows of Diffeomorphisms, International Journal of Computer Vision, vol.61, issue.2, pp.61-139, 2005.
DOI : 10.1023/B:VISI.0000043755.93987.aa

P. Besl and N. Mckay, A method for registration of 3D shapes. Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol.14, issue.145, pp.239-256, 1992.

K. Beyer, J. Goldstein, R. Ramakrishnan, and U. Shaft, When Is ???Nearest Neighbor??? Meaningful?, Database Theory ? ICDT'99, pp.217-235, 1999.
DOI : 10.1007/3-540-49257-7_15

J. C. Bezdek, Pattern recognition with fuzzy objective function algorithms, 1981.
DOI : 10.1007/978-1-4757-0450-1

M. Bhushan, J. Schnabel, L. Risser, M. Heinrich, J. Brady et al., Motion correction and parameter estimation in DCE-MRI sequences: application to colorectal cancer, Proceedings of MICCAI 2011, pp.476-483, 2011.

A. Blake and M. Isard, Active shape models, p.37, 1998.
DOI : 10.1007/978-1-4471-1555-7_2

M. Blomley and D. Cosgrove, Microbubble echo-enhancers: a new direction for ultrasound?, The Lancet, vol.349, issue.9069, pp.1855-1856, 1997.
DOI : 10.1016/S0140-6736(05)63872-X

B. Booth, V. Patel, E. Lou, L. Le, and X. Li, Towards Medical Ultrasound Image Segmentation with Limited Prior Knowledge, 2006 IEEE 12th Digital Signal Processing Workshop & 4th IEEE Signal Processing Education Workshop, pp.4-488, 2006.
DOI : 10.1109/DSPWS.2006.265472

L. Bottou, Online learning and stochastic approximations. On-line learning in neural networks, p.140, 1998.

Y. Boykov and V. Kolmogorov, An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision. Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol.26, issue.9, pp.1124-1137, 2004.

Y. Boykov and O. Veksler, Graph Cuts in Vision and Graphics: Theories and Applications, Handbook of mathematical models in computer vision, pp.79-96, 2006.
DOI : 10.1007/0-387-28831-7_5

Y. Boykov, O. Veksler, and R. Zabih, Fast approximate energy minimization via graph cuts. Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol.23, issue.11, pp.1222-1239, 2001.

Y. Y. Boykov and M. Jolly, Interactive graph cuts for optimal boundary & region segmentation of objects in nd images, Computer Vision Proceedings. Eighth IEEE International Conference on, pp.105-112, 2001.

L. Breiman, Bagging predictors, Machine Learning, vol.10, issue.2, pp.123-140, 1996.
DOI : 10.1007/BF00058655

L. Breiman, Random forests, Machine Learning, vol.45, issue.1, pp.5-32, 2001.
DOI : 10.1023/A:1010933404324

P. Brigger, J. Hoeg, and M. Unser, B-spline snakes: a flexible tool for parametric contour detection, IEEE Transactions on Image Processing, vol.9, issue.9, pp.1484-1496, 2000.
DOI : 10.1109/83.862624

R. Brunelli, Template matching techniques in computer vision: theory and practice, p.106, 2009.
DOI : 10.1002/9780470744055

P. Burns, Overview of echo-enhanced vascular ultrasound imaging for clinical diagnosis in neurosonology, Journal of neuroimaging: official journal of the American Society of Neuroimaging, vol.7, pp.2-207, 1997.

T. M. Buzug, Computed Tomography, p.201, 2008.
DOI : 10.1007/978-3-540-74658-4_16

M. Cabezas, A. Oliver, X. Lladó, J. Freixenet, and M. Bach-cuadra, A review of atlas-based segmentation for magnetic resonance brain images. Computer methods and programs in biomedicine, pp.158-177, 2011.

M. J. Cardoso, G. Winston, M. Modat, S. Keihaninejad, J. Duncan et al., Geodesic Shape-Based Averaging, Medical Image Computing and Computer-Assisted Intervention?MICCAI 2012, pp.26-33, 2012.
DOI : 10.1007/978-3-642-33454-2_4

V. Caselles, R. Kimmel, and G. Sapiro, Geodesic active contours, Proceedings of IEEE International Conference on Computer Vision, pp.61-79, 1997.
DOI : 10.1109/ICCV.1995.466871

A. Chambolle and T. Pock, A First-Order Primal-Dual Algorithm for Convex Problems with??Applications to Imaging, Journal of Mathematical Imaging and Vision, vol.60, issue.5, pp.120-145, 2011.
DOI : 10.1007/s10851-010-0251-1

URL : https://hal.archives-ouvertes.fr/hal-00490826

T. Chan and L. Vese, Active contours without edges, IEEE Transactions on Image Processing, vol.10, issue.2, pp.266-77, 2001.
DOI : 10.1109/83.902291

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.2.1828

T. F. Chan and L. A. Vese, A level set algorithm for minimizing the Mumford-Shah functional in image processing, Proceedings IEEE Workshop on Variational and Level Set Methods in Computer Vision, pp.161-168, 2001.
DOI : 10.1109/VLSM.2001.938895

G. Charpiat, P. Maurel, J. Pons, R. Keriven, and O. Faugeras, Generalized Gradients: Priors on Minimization Flows, International Journal of Computer Vision, vol.80, issue.3, pp.325-344, 2007.
DOI : 10.1007/s11263-006-9966-2

URL : https://hal.archives-ouvertes.fr/hal-01117529

C. Chefd-'hotel, G. Hermosillo, and O. Faugeras, Flows of diffeomorphisms for multimodal image registration, Biomedical Imaging Proceedings. 2002 IEEE International Symposium on, pp.753-756, 2002.

G. E. Christensen, R. D. Rabbitt, and M. I. Miller, Deformable templates using large deformation kinematics, IEEE Transactions on Image Processing, vol.5, issue.10, pp.1435-1447, 1996.
DOI : 10.1109/83.536892

L. D. Cohen and I. Cohen, Finite-element methods for active contour models and balloons for 2-D and 3-D images. Pattern Analysis and Machine Intelligence, IEEE Transactions on, issue.11, pp.15-1131, 1993.

L. D. Cohen and R. Kimmel, Global minimum for active contour models: a minimal path approach, Proceedings CVPR IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp.57-78, 1997.
DOI : 10.1109/CVPR.1996.517144

O. Commowick and G. Malandain, Efficient Selection of the Most Similar Image in a Database for Critical Structures Segmentation, Medical Image Computing and Computer- Assisted Intervention?MICCAI, pp.203-210, 2007.
DOI : 10.1007/978-3-540-75759-7_25

URL : https://hal.archives-ouvertes.fr/inria-00616045

P. Comon, Independent component analysis, a new concept? Signal processing, pp.287-314, 1994.

T. F. Cootes, G. J. Edwards, and C. J. Taylor, Active appearance models. Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol.23, issue.156, pp.681-685, 2001.

T. F. Cootes, C. J. Taylor, D. H. Cooper, and J. Graham, Active Shape Models-Their Training and Application, Computer Vision and Image Understanding, vol.61, issue.1, pp.38-59, 1995.
DOI : 10.1006/cviu.1995.1004

URL : https://www.escholar.manchester.ac.uk/api/datastream?publicationPid=uk-ac-man-scw:1d1862&datastreamId=POST-PEER-REVIEW-PUBLISHERS.PDF

C. Cortes and V. Vapnik, Support-vector networks, Machine Learning, vol.1, issue.3, pp.273-297, 1995.
DOI : 10.1007/BF00994018

D. Cosgrove, Developments in ultrasound, Imaging, vol.18, issue.2, pp.82-201, 2006.
DOI : 10.1259/imaging/67649950

D. Cosgrove, M. Blomley, V. Jayaram, and P. Nihoyannopoulos, Echo-Enhancing (Contrast) Agents, Ultrasound Quarterly, vol.14, issue.2, pp.66-207, 1998.
DOI : 10.1097/00013644-199806000-00002

C. Couprie, L. Grady, L. Najman, and H. Talbot, Power watershed: A unifying graph-based optimization framework. Pattern Analysis and Machine Intelligence, IEEE Transactions on, issue.7, pp.33-1384, 2011.

T. Cover and P. Hart, Nearest neighbor pattern classification. Information Theory, IEEE Transactions on, vol.13, issue.1, pp.21-27, 1967.

D. Cremers, T. Kohlberger, and C. Schnorr, Shape statistics in kernel space for variational image segmentation, Pattern Recognition, vol.36, issue.9, pp.1929-1943, 2003.
DOI : 10.1016/S0031-3203(03)00056-6

D. Cremers, M. Rousson, and R. Deriche, A Review of Statistical Approaches to Level Set Segmentation: Integrating Color, Texture, Motion and Shape, International Journal of Computer Vision, vol.18, issue.9, pp.195-215, 2007.
DOI : 10.1007/s11263-006-8711-1

D. Cremers and S. Soatto, A pseudo-distance for shape priors in level set segmentation, 2nd IEEE workshop on variational, geometric and level set methods in computer vision, pp.169-176, 2003.

D. Cremers, N. Sochen, and C. Schnörr, Towards Recognition-Based Variational Segmentation Using Shape Priors and Dynamic Labeling, Scale Space Methods in Computer Vision, pp.388-400, 2003.
DOI : 10.1007/3-540-44935-3_27

A. Criminisi and J. Shotton, Decision Forests for Computer Vision and Medical Image Analysis, p.22, 2013.
DOI : 10.1007/978-1-4471-4929-3

A. Criminisi, J. Shotton, and S. Bucciarelli, Decision forests with long-range spatial context for organ localization in ct volumes, MICCAI Workshop on Probabilistic Models for Medical Image Analysis, p.82, 2009.

A. Criminisi, J. Shotton, and E. Konukoglu, Decision Forests: A Unified Framework for Classification, Regression, Density Estimation, Manifold Learning and Semi-Supervised Learning, Foundations and Trends?? in Computer Graphics and Vision, vol.7, issue.2-3, p.84, 2011.
DOI : 10.1561/0600000035

A. Criminisi, J. Shotton, D. Robertson, and E. Konukoglu, Regression Forests for Efficient Anatomy Detection and Localization in CT Studies, MICCAI Workshop on Medical Computer Vision, pp.106-123, 2011.
DOI : 10.1007/978-3-642-18421-5_11

R. Cuingnet, R. Prevost, D. Lesage, L. D. Cohen, B. Mory et al., Automatic Detection and Segmentation of Kidneys in 3D CT Images Using Random Forests, MICCAI, pp.66-74, 2012.
DOI : 10.1007/978-3-642-33454-2_9

URL : https://hal.archives-ouvertes.fr/hal-00779698

A. P. Dempster, N. M. Laird, and D. B. Rubin, Maximum likelihood from incomplete data via the EM algorithm, Journal of the Royal Statistical Society. Series B (Methodological), pp.1-38, 1977.

T. Dietenbeck, M. Alessandrini, D. Barbosa, J. D-'hooge, D. Friboulet et al., Detection of the whole myocardium in 2D-echocardiography for multiple orientations using a geometrically constrained level-set, Medical Image Analysis, vol.16, issue.2, pp.386-401, 2012.
DOI : 10.1016/j.media.2011.10.003

URL : https://hal.archives-ouvertes.fr/hal-00796887

P. Dollar, P. Welinder, and P. Perona, Cascaded pose regression, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, pp.1078-85, 2010.
DOI : 10.1109/CVPR.2010.5540094

P. Dupuis, U. Grenander, and M. I. Miller, Variational problems on flows of diffeomorphisms for image matching, Quarterly of Applied Mathematics, vol.56, issue.3, p.70, 1998.
DOI : 10.1090/qam/1632326

S. Durrleman, Statistical models of currents for measuring the variability of anatomical curves, surfaces and their evolution, These de sciences, p.137, 2010.
URL : https://hal.archives-ouvertes.fr/tel-00631382

O. Ecabert, J. Peters, H. Schramm, C. Lorenz, J. Von-berg et al., Automatic Model-Based Segmentation of the Heart in CT Images, IEEE Transactions on Medical Imaging, vol.27, issue.9, pp.1189-201, 2008.
DOI : 10.1109/TMI.2008.918330

R. R. Edelman, J. R. Hesselink, and M. B. Zlatkin, Clinical magnetic resonance imaging, p.201, 1996.

A. El-baz, R. Fahmi, S. Yuksel, A. Farag, W. Miller et al., A New CAD System for the Evaluation of Kidney Diseases Using DCE-MRI, Proceedings of MICCAI 2006, pp.446-453, 2006.
DOI : 10.1007/11866763_55

M. K. Feldman, S. Katyal, and M. S. Blackwood, US Artifacts, RadioGraphics, vol.29, issue.4, pp.1179-1189, 2009.
DOI : 10.1148/rg.294085199

P. F. Felzenszwalb and D. P. Huttenlocher, Efficient belief propagation for early vision, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004., pp.41-54, 2006.
DOI : 10.1109/CVPR.2004.1315041

M. Fenchel, S. Thesen, and A. Schilling, Automatic Labeling of Anatomical Structures in MR FastView Images Using a Statistical Atlas, MICCAI, pp.576-584, 2008.
DOI : 10.1007/978-3-540-85988-8_69

A. Fenster, D. Downey, and H. Cardinal, Three-dimensional ultrasound imaging, Physics in Medicine and Biology, vol.46, issue.5, pp.67-204, 2001.
DOI : 10.1088/0031-9155/46/5/201

R. A. Fisher, The Goodness of Fit of Regression Formulae, and the Distribution of Regression Coefficients, Journal of the Royal Statistical Society, vol.85, issue.4, pp.597-612, 1922.
DOI : 10.2307/2341124

L. R. Ford and D. R. Fulkerson, Maximal flow through a network, Journal canadien de math??matiques, vol.8, issue.0, pp.399-404, 1956.
DOI : 10.4153/CJM-1956-045-5

Y. Freund and R. E. Schapire, A desicion-theoretic generalization of on-line learning and an application to boosting, Computational learning theory, pp.23-37, 1995.
DOI : 10.1007/3-540-59119-2_166

K. Fukunaga and L. Hostetler, The estimation of the gradient of a density function, with applications in pattern recognition. Information Theory, IEEE Transactions on, vol.21, issue.1, pp.32-40, 1975.

A. Gasnier, Validation of Quantitative 3D Ultrasound for the Assessment and Follow-Up of Tumor Radiofrequency Ablation, p.201, 2010.

A. Gasnier, R. Ardon, C. Ciofolo-veit, E. Leen, and J. Correas, Assessing tumour vascularity with 3D contrast-enhanced ultrasound: A new semi-automated segmentation framework, 2010 IEEE International Symposium on Biomedical Imaging: From Nano to Macro, pp.300-303, 2010.
DOI : 10.1109/ISBI.2010.5490351

URL : https://hal.archives-ouvertes.fr/hal-00508785

R. Gauriau, R. Cuingnet, R. Prevost, B. Mory, R. Ardon et al., A Generic, Robust and Fully-Automatic Workflow for 3D CT Liver Segmentation, MICCAI Workshop on Abdominal Imaging, p.180, 2013.
DOI : 10.1007/978-3-642-41083-3_27

URL : https://hal.archives-ouvertes.fr/hal-00917847

B. Georgescu, X. Zhou, D. Comaniciu, and A. Gupta, Database-Guided Segmentation of Anatomical Structures with Complex Appearance, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05), pp.429-465, 2005.
DOI : 10.1109/CVPR.2005.119

B. Glocker, O. Pauly, E. Konukoglu, and A. Criminisi, Joint Classification-Regression Forests for Spatially Structured Multi-object Segmentation, ECCV, pp.870-81, 2012.
DOI : 10.1007/978-3-642-33765-9_62

L. Grady, Random walks for image segmentation. Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol.28, issue.11, pp.1768-1783, 2006.

L. Grady and C. V. Alvino, The Piecewise Smooth Mumford–Shah Functional on an Arbitrary Graph, IEEE Transactions on Image Processing, vol.18, issue.11, pp.2547-2561, 2009.
DOI : 10.1109/TIP.2009.2028258

N. Guil and E. Zapata, Lower order circle and ellipse Hough transform, Pattern Recognition, vol.30, issue.10, pp.1729-1744, 1997.
DOI : 10.1016/S0031-3203(96)00191-4

D. Han, J. Bayouth, Q. Song, A. Taurani, M. Sonka et al., Globally Optimal Tumor Segmentation in PET-CT Images: A Graph-Based Co-segmentation Method, IPMI, pp.245-56, 2011.
DOI : 10.1007/978-3-642-22092-0_21

G. L. Hart, C. Zach, and M. Niethammer, An optimal control approach for deformable registration, 2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, pp.9-16, 2009.
DOI : 10.1109/CVPRW.2009.5204344

C. Harvey, J. Pilcher, R. Eckersley, M. Blomley, and D. Cosgrove, Advances in Ultrasound, Clinical Radiology, vol.57, issue.3, pp.157-177, 2002.
DOI : 10.1053/crad.2001.0918

T. Hastie, R. Tibshirani, and J. J. Friedman, The elements of statistical learning, p.20, 2001.

R. A. Heckemann, J. V. Hajnal, P. Aljabar, D. Rueckert, and A. Hammers, Automatic anatomical brain MRI segmentation combining label propagation and decision fusion, NeuroImage, vol.33, issue.1, pp.115-126, 2006.
DOI : 10.1016/j.neuroimage.2006.05.061

T. Heimann and H. Meinzer, Statistical shape models for 3D medical image segmentation: A review, Medical Image Analysis, vol.13, issue.4, pp.543-135, 2009.
DOI : 10.1016/j.media.2009.05.004

D. S. Hochbaum and V. Singh, An efficient algorithm for Co-segmentation, 2009 IEEE 12th International Conference on Computer Vision, pp.269-276, 2009.
DOI : 10.1109/ICCV.2009.5459261

D. Hosmer and S. Lemeshow, Applied logistic regression, Wiley Series in Probability and mathematical statistics. Applied Probability and Statistics, p.20, 1989.
DOI : 10.1002/0471722146

P. Hsu, R. Prager, A. Gee, and G. Treece, Real-Time Freehand 3D Ultrasound Calibration, Ultrasound in Medicine & Biology, vol.34, issue.2, pp.239-251, 2008.
DOI : 10.1016/j.ultrasmedbio.2007.07.020

X. Huang, Z. Li, and D. Metaxas, Learning Coupled Prior Shape and Appearance Models for Segmentation, Medical Image Computing and Computer-Assisted Intervention ? MICCAI, pp.60-69, 2004.
DOI : 10.1007/978-3-540-30135-6_8

X. Huang and D. Metaxas, Metamorphs: Deformable Shape and Appearance Models, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.30, issue.8, pp.1444-1459, 2008.
DOI : 10.1109/TPAMI.2007.70795

J. Iglesias, E. Konukoglu, A. Montillo, Z. Tu, and A. Criminisi, Combining Generative and Discriminative Models for Semantic Segmentation of CT Scans via Active Learning, IPMI, pp.25-36, 2011.
DOI : 10.1007/978-3-642-22092-0_3

I. T. Jolliffe, Principal component analysis, p.140, 1986.
DOI : 10.1007/978-1-4757-1904-8

S. Joshi, Unbiased diffeomorphic atlas construction for computational anatomy, NeuroImage, vol.23, issue.136, pp.151-193, 2004.
DOI : 10.1016/j.neuroimage.2004.07.068

A. Kambadakone and D. Sahani, Body perfusion CT: technique, clinical applications, and advances. Radiologic clinics of North America, pp.161-178, 2009.

H. Karcher, Riemannian center of mass and mollifier smoothing, Communications on Pure and Applied Mathematics, vol.3, issue.5, pp.509-541, 1977.
DOI : 10.1002/cpa.3160300502

M. Kass, A. Witkin, and D. Terzopoulos, Snakes: Active contour models, International Journal of Computer Vision, vol.5, issue.6035, pp.321-331, 1988.
DOI : 10.1007/BF00133570

A. Katsamanis, G. Papandreou, and P. Maragos, Face active appearance modeling and speech acoustic information to recover articulation. Audio, Speech, and Language Processing, IEEE Transactions on, vol.17, issue.3, pp.411-422, 2009.

F. Khalifa, A. Elnakib, G. Beache, G. Gimelöarb, M. El-ghar et al., 3D Kidney Segmentation from CT Images Using a Level Set Approach Guided by a Novel Stochastic Speed Function, MICCAI, pp.587-94, 2011.
DOI : 10.1023/A:1007958904918

A. R. Khan, L. Wang, and M. F. Beg, FreeSurfer-initiated fully-automated subcortical brain segmentation in MRI using Large Deformation Diffeomorphic Metric Mapping, NeuroImage, vol.41, issue.3, pp.41-735, 2008.
DOI : 10.1016/j.neuroimage.2008.03.024

S. Kichenassamy, A. Kumar, P. Olver, A. Tannenbaum, and A. Yezzi, Gradient flows and geometric active contour models, Proceedings of IEEE International Conference on Computer Vision, pp.810-815, 1995.
DOI : 10.1109/ICCV.1995.466855

URL : https://hal.archives-ouvertes.fr/hal-00002665

R. Kimmel and A. M. Bruckstein, Regularized Laplacian zero crossings as optimal edge integrators, International Journal of Computer Vision, vol.53, issue.3, pp.225-243, 2003.
DOI : 10.1023/A:1023030907417

A. Kissi, S. Cormier, L. Pourcelot, A. Bleuzen, and E. Tranquart, Contrast enhanced ultrasound image segmentation based on fuzzy competitive clustering and anisotropic diffusion, The 26th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp.1613-1615, 2004.
DOI : 10.1109/IEMBS.2004.1403489

H. Knutsson and C. Westin, Normalized and differential convolution, Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, pp.515-523, 1993.
DOI : 10.1109/CVPR.1993.341081

T. Koh, C. Thng, S. Hartono, P. Lee, S. Choo et al., Dynamic contrast-enhanced CT imaging of hepatocellular carcinoma in cirrhosis: feasibility of a prolonged dual-phase imaging protocol with tracer kinetics modeling, European Radiology, vol.75, issue.5, pp.1184-1196, 2009.
DOI : 10.1007/s00330-008-1252-y

N. Komodakis, N. Paragios, and G. Tziritas, MRF energy minimization and beyond via dual decomposition. Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol.33, issue.3, pp.531-552, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00856311

P. Kontschieder, S. Bulò, A. Criminisi, P. Kohli, M. Pelillo et al., Contextsensitive decision forests for object detection, Proceedings of NIPS, pp.440-448, 2012.

K. Kwan and E. Matsumoto, Radiofrequency ablation and cryoablation of renal tumours, Current Oncology, vol.14, issue.34, p.77, 2007.

M. Leventon, W. Grimson, and O. Faugeras, Statistical shape influence in geodesic active contours, Proceedings of CVPR 2000, pp.316-323, 2000.

M. E. Leventon, O. Faugeras, W. E. Grimson, I. Wells, and W. M. , Level set based segmentation with intensity and curvature priors, Mathematical Methods in Biomedical Image Analysis Proceedings. IEEE Workshop on, pp.4-11, 2000.

S. Z. Li, Markov random field modeling in image analysis, p.27, 2009.
DOI : 10.1007/978-4-431-67044-5

X. Li, X. Chen, J. Yao, X. Zhang, and J. Tian, Renal Cortex Segmentation Using Optimal Surface Search with Novel Graph Construction, MICCAI, pp.387-94, 2011.
DOI : 10.1109/TITB.2008.926395

Z. Li, M. Caan, M. Ziech, J. Stoker, L. Van-vliet et al., 3D Non-rigid Motion Correction of Free-Breathing Abdominal DCE-MRI Data, Abdominal Imaging. Computational and Clinical Applications, pp.44-50, 2012.
DOI : 10.1007/978-3-642-28557-8_6

P. Lindblad and H. Adami, Kidney cancer, 2002.

J. S. Lindholt and P. Norman, Screening for abdominal aortic aneurysm reduces overall mortality in men. A meta-analysis of the mid-and long-term effects of screening for abdominal aortic aneurysms. European journal of vascular and endovascular surgery: the official journal of the European Society for Vascular Surgery, pp.167-167, 2008.

J. R. Lindner, Microbubbles in medical imaging: current applications and future directions, Nature Reviews Drug Discovery, vol.44, issue.6, pp.527-533, 2004.
DOI : 10.1038/nrd1417

M. Linguraru, J. Yao, R. Gautam, J. Peterson, Z. Li et al., Renal tumor quantification and classification in contrast-enhanced abdominal CT, Pattern Recognition, vol.42, issue.6, pp.42-1149, 2009.
DOI : 10.1016/j.patcog.2008.09.018

A. Long, L. Rouet, J. S. Lindholt, and E. Allaire, Measuring the Maximum Diameter of Native Abdominal Aortic Aneurysms: Review and Critical Analysis, European Journal of Vascular and Endovascular Surgery, vol.43, issue.5, pp.515-524, 2012.
DOI : 10.1016/j.ejvs.2012.01.018

URL : https://hal.archives-ouvertes.fr/hal-00779862

W. E. Lorensen and H. E. Cline, Marching cubes: A high resolution 3D surface construction algorithm, ACM SIGGRAPH Computer Graphics, vol.21, issue.4, pp.163-169, 1987.
DOI : 10.1145/37402.37422

C. Lu and J. Duncan, A coupled segmentation and registration framework for medical image analysis using robust point matching and active shape model, 2012 IEEE Workshop on Mathematical Methods in Biomedical Image Analysis, pp.129-165, 2012.
DOI : 10.1109/MMBIA.2012.6164742

M. Ma, M. Stralen, J. Reiber, J. Bosch, and B. Lelieveldt, Left Ventricle Segmentation from Contrast Enhanced Fast Rotating Ultrasound Images Using Three Dimensional Active Shape Models, Proceedings of FIMH 2009, pp.295-302, 2009.
DOI : 10.1007/BF01386390

J. Macqueen, Some methods for classification and analysis of multivariate observations, Proceedings of the fifth Berkeley symposium on mathematical statistics and probability, pp.281-297, 1967.

R. Malladi and J. A. Sethian, A real-time algorithm for medical shape recovery, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271), pp.304-310, 1998.
DOI : 10.1109/ICCV.1998.710735

D. W. Marquardt, An Algorithm for Least-Squares Estimation of Nonlinear Parameters, Journal of the Society for Industrial and Applied Mathematics, vol.11, issue.2, pp.431-441, 1963.
DOI : 10.1137/0111030

M. Martin-fernandez and C. Alberola-lopez, An approach for contour detection of human kidneys from ultrasound images using Markov random fields and active contours, MedIA, vol.9, issue.1, pp.1-23, 2005.

Y. Matsuyama, The ??-EM algorithm: surrogate likelihood maximization using ??-logarithmic information measures, IEEE Transactions on Information Theory, vol.49, issue.3, pp.692-706, 2003.
DOI : 10.1109/TIT.2002.808105

T. Mcinerney and D. Terzopoulos, Deformable models in medical image analysis: a survey, Medical Image Analysis, vol.1, issue.2, pp.91-108, 1996.
DOI : 10.1016/S1361-8415(96)80007-7

R. A. Mclaughlin, Randomized Hough Transform: Improved ellipse detection with comparison, Pattern Recognition Letters, vol.19, issue.3-4, pp.299-305, 1998.
DOI : 10.1016/S0167-8655(98)00010-5

C. S. Mendoza, X. Kang, N. Safdar, E. Myers, C. A. Peters et al., Kidney segmentation in ultrasound via genetic initialization and Active Shape Models with rotation correction, 2013 IEEE 10th International Symposium on Biomedical Imaging, p.100, 2013.
DOI : 10.1109/ISBI.2013.6556414

X. Meng and D. B. Rubin, Maximum likelihood estimation via the ECM algorithm: A general framework, Biometrika, vol.80, issue.2, pp.267-278, 1993.
DOI : 10.1093/biomet/80.2.267

S. C. Mitchell, J. G. Bosch, B. P. Lelieveldt, R. J. Van-der-geest, J. H. Reiber et al., 3-D active appearance models: segmentation of cardiac MR and ultrasound images, IEEE Transactions on Medical Imaging, vol.21, issue.9, pp.1167-1178, 2002.
DOI : 10.1109/TMI.2002.804425

J. Montagnat, H. Delingette, and N. Ayache, A review of deformable surfaces: topology, geometry and deformation, Image and Vision Computing, vol.19, issue.14, pp.1023-1040, 2001.
DOI : 10.1016/S0262-8856(01)00064-6

URL : https://hal.archives-ouvertes.fr/inria-00615110

A. Montillo, J. Shotton, J. Winn, J. Iglesias, D. Metaxas et al., Entangled Decision Forests and Their Application for Semantic Segmentation of CT Images, Proceedings of IPMI, pp.184-96, 2011.
DOI : 10.1007/978-3-642-22092-0_16

B. Mory and L. Sti, Interactive Segmentation of 3D Medical Images with Implicit Surfaces, pp.52-53, 2011.

B. Mory and R. Ardon, Fuzzy Region Competition: A Convex Two-Phase Segmentation Framework, Scale Space and Variational Methods in Computer Vision, pp.214-226, 2007.
DOI : 10.1007/978-3-540-72823-8_19

URL : https://hal.archives-ouvertes.fr/hal-00352031

B. Mory, O. Somphone, R. Prevost, and R. Ardon, Real-Time 3D Image Segmentation by User-Constrained Template Deformation, MICCAI, pp.561-569, 2012.
DOI : 10.1007/978-3-642-33415-3_69

URL : https://hal.archives-ouvertes.fr/hal-00779423

D. Mumford and J. Shah, Optimal approximations by piecewise smooth functions and associated variational problems, Communications on Pure and Applied Mathematics, vol.3, issue.5, pp.577-685, 1989.
DOI : 10.1002/cpa.3160420503

URL : http://nrs.harvard.edu/urn-3:HUL.InstRepos:3637121

R. M. Neal and G. E. Hinton, A View of the Em Algorithm that Justifies Incremental, Sparse, and other Variants, Learning in graphical models, pp.355-368, 1998.
DOI : 10.1007/978-94-011-5014-9_12

J. A. Noble and D. Boukerroui, Ultrasound image segmentation: a survey, IEEE Transactions on Medical Imaging, vol.25, issue.8, pp.987-1010, 2006.
DOI : 10.1109/TMI.2006.877092

URL : https://hal.archives-ouvertes.fr/hal-00338658

J. Nocedal and S. J. Wright, Numerical optimization, p.53, 1999.
DOI : 10.1007/b98874

R. Nock and F. Nielsen, Statistical region merging. Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol.26, issue.11, pp.1452-1458, 2004.

O. Neill, W. C. Robbin, M. L. Bae, K. T. Grantham, J. J. Chapman et al., Sonographic assessment of the severity and progression of autosomal dominant polycystic kidney disease: the consortium of renal imaging studies, 2005.

N. Otsu, A Threshold Selection Method from Gray-Level Histograms, IEEE Transactions on Systems, Man, and Cybernetics, vol.9, issue.1, pp.285-296, 1975.
DOI : 10.1109/TSMC.1979.4310076

O. Pauly, B. Glocker, A. Criminisi, D. Mateus, A. Möller et al., Fast Multiple Organ Detection and Localization in Whole-Body MR Dixon Sequences, MICCAI, pp.239-286, 2011.
DOI : 10.1016/0031-3203(95)00067-4

N. Payet and S. Todorovic, 2-Random Forest Random Field, Proceedings of NIPS 2010, p.101, 2010.

P. Perez, Markov random fields and images, CWI quarterly, vol.11, issue.4, pp.413-437, 1998.

T. Pock, D. Cremers, H. Bischof, and A. Chambolle, An algorithm for minimizing the Mumford-Shah functional, 2009 IEEE 12th International Conference on Computer Vision, pp.1133-1140, 2009.
DOI : 10.1109/ICCV.2009.5459348

K. Pohl, J. Fisher, W. Grimson, R. Kikinis, and W. Wells, A Bayesian model for joint segmentation and registration, NeuroImage, vol.31, issue.1, pp.31-228, 2006.
DOI : 10.1016/j.neuroimage.2005.11.044

T. Poon and R. Rohling, Comparison of calibration methods for spatial tracking of a 3D ultrasound probe, Ultrasound in medicine & biology, issue.8, pp.31-1095, 2005.

R. Prevost, L. Cohen, J. Correas, and R. Ardon, Automatic detection and segmentation of renal lesions in 3D contrast-enhanced ultrasound images, Medical Imaging 2012: Image Processing, pp.83141-83142, 2012.
DOI : 10.1117/12.911103

URL : https://hal.archives-ouvertes.fr/hal-00703131

R. Prevost, R. Cuingnet, B. Mory, L. D. Cohen, and R. Ardon, Incorporating Shape Variability in Image Segmentation via Implicit Template Deformation, MICCAI, volume to appear of LNCS, p.135, 2013.
DOI : 10.1007/978-3-642-40760-4_11

URL : https://hal.archives-ouvertes.fr/hal-00906312

R. Prevost, R. Cuingnet, B. Mory, J. Correas, L. D. Cohen et al., Joint Co-segmentation and Registration of 3D Ultrasound Images, Information Processing in Medical Imaging, pp.268-279, 2013.
DOI : 10.1007/978-3-642-38868-2_23

R. Prevost, B. Mory, and R. Ardon, Coupled segmentation in 3D conventional ultrasound and contrast-enhanced ultrasound images. European Patent Application 12306033, p.115, 2012.

R. Prevost, B. Mory, J. Correas, L. D. Cohen, and R. Ardon, Kidney detection and real-time segmentation in 3D contrast-enhanced ultrasound images, 2012 9th IEEE International Symposium on Biomedical Imaging (ISBI), pp.1559-62, 2012.
DOI : 10.1109/ISBI.2012.6235871

URL : https://hal.archives-ouvertes.fr/hal-00702609

R. Prevost, B. Romain, R. Cuingnet, B. Mory, L. Rouet et al., Registration of Free-Breathing 3D+t Abdominal Perfusion CT Images via Co-segmentation, MICCAI, volume to appear of LNCS, p.122, 2013.
DOI : 10.1007/978-3-642-40763-5_13

URL : https://hal.archives-ouvertes.fr/hal-00906317

X. Qin, Z. Cong, L. V. Halig, and B. Fei, Automatic segmentation of right ventricle on ultrasound images using sparse matrix transform and level set, Medical Imaging 2013: Image Processing, p.175, 2013.
DOI : 10.1117/12.2006490

J. R. Quinlan, Induction of decision trees, Machine Learning, vol.1, issue.1, pp.81-106, 1986.
DOI : 10.1007/BF00116251

K. B. Raja, M. Madheswaran, and K. Thyagarajah, A general segmentation scheme for contouring kidney region in ultrasound kidney images using improved higher order spline interpolation, International Journal of Biological and Medical Sciences, vol.2, issue.2, pp.81-89, 2007.

T. Riklin-raviv, N. Sochen, and N. Kiryati, Shape-Based Mutual Segmentation, International Journal of Computer Vision, vol.18, issue.9, pp.231-245, 2008.
DOI : 10.1007/s11263-007-0115-3

B. Romain, V. Letort, O. Lucidarme, F. Buc, and L. Rouet, Registration of Free-Breathing Abdominal 3D Contrast-Enhanced CT, MICCAI Workshop on Abdominal Imaging, pp.274-282, 2012.
DOI : 10.1007/978-3-642-33612-6_29

URL : https://hal.archives-ouvertes.fr/hal-00780707

J. Rose, C. Revol-muller, M. Almajdub, E. Chereul, and C. Odet, Shape Prior Integrated in an Automated 3D Region Growing Method, 2007 IEEE International Conference on Image Processing, pp.53-79, 2007.
DOI : 10.1109/ICIP.2007.4378889

F. Rosenblatt, The perceptron: A probabilistic model for information storage and organization in the brain., Psychological Review, vol.65, issue.6, pp.386-407, 1958.
DOI : 10.1037/h0042519

C. Rother, V. Kolmogorov, and A. Blake, "GrabCut", ACM Transactions on Graphics, vol.23, issue.3, pp.309-314, 2004.
DOI : 10.1145/1015706.1015720

M. Rousson and N. Paragios, Shape Priors for Level Set Representations, Proceedings of ECCV 2002, pp.416-418, 2002.
DOI : 10.1007/3-540-47967-8_6

M. Rousson, N. Paragios, and R. Deriche, Implicit Active Shape Models for 3D Segmentation in MR Imaging, Medical Image Computing and Computer-Assisted Intervention? MICCAI, pp.209-216, 2004.
DOI : 10.1007/978-3-540-30135-6_26

J. C. Rubio, J. Serrat, A. López, and N. Paragios, Unsupervised co-segmentation through region matching, 2012 IEEE Conference on Computer Vision and Pattern Recognition, pp.749-756, 2012.
DOI : 10.1109/CVPR.2012.6247745

URL : https://hal.archives-ouvertes.fr/hal-00856291

D. Rueckert, A. Frangi, and J. Schnabel, Automatic Construction of 3D Statistical Deformation Models Using Non-rigid Registration, Proceedings of MICCAI 2001, pp.77-84, 2001.
DOI : 10.1007/3-540-45468-3_10

D. Rueckert, L. I. Sonoda, C. Hayes, D. L. Hill, M. O. Leach et al., Nonrigid registration using free-form deformations: application to breast MR images, IEEE Transactions on Medical Imaging, vol.18, issue.8, pp.18-712, 1999.
DOI : 10.1109/42.796284

C. Rumack, S. Wilson, and W. Charboneau, Diagnostic ultrasound, p.207, 2005.

K. Saddi, C. Chefd-'hotel, M. Rousson, and F. Cheriet, Region-Based Segmentation via Non-Rigid Template Matching, 2007 IEEE 11th International Conference on Computer Vision, pp.1-7, 2007.
DOI : 10.1109/ICCV.2007.4409152

R. Sance, M. Ledesma-carbayo, A. Lundervold, and A. Santos, Alignment of 3D DCE-MRI Abdominal Series for Optimal Quantification of Kidney Function, 2007 5th International Symposium on Image and Signal Processing and Analysis, pp.413-417, 2007.
DOI : 10.1109/ISPA.2007.4383729

S. Sandor and R. Leahy, Surface-based labeling of cortical anatomy using a deformable atlas, IEEE Transactions on Medical Imaging, vol.16, issue.1, pp.41-54, 1997.
DOI : 10.1109/42.552054

J. Sauvola and M. Pietikäinen, Adaptive document image binarization, Pattern Recognition, vol.33, issue.2, pp.225-236, 2000.
DOI : 10.1016/S0031-3203(99)00055-2

R. E. Schapire, The strength of weak learnability, Machine learning, vol.5, issue.2, pp.197-227, 1990.

A. Schick, M. Bauml, and R. Stiefelhagen, Improving foreground segmentations with probabilistic superpixel Markov random fields, 2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops, pp.27-31, 2012.
DOI : 10.1109/CVPRW.2012.6238923

T. Schmah, L. Risser, and F. Vialard, Left-Invariant Metrics for Diffeomorphic Image Registration with Spatially-Varying Regularisation, To appear in MICCAI 2013 Proceedings, p.179, 2013.
DOI : 10.1007/978-3-642-40811-3_26

URL : https://hal.archives-ouvertes.fr/hal-00869476

R. C. Semelka, P. Shoenut, J. Magro, C. M. Kroeker, M. A. Macmahon et al., Renal cancer staging: Comparison of contrast-enhanced CT and gadolinium-enhanced fat-suppressed spin-echo and gradient-echo MR imaging, Journal of Magnetic Resonance Imaging, vol.140, issue.4, pp.597-602, 1993.
DOI : 10.1002/jmri.1880030408

S. Setola, O. Catalano, F. Sandomenico, and A. Siani, Contrast-enhanced sonography of the kidney, Abdominal Imaging, vol.19, issue.Suppl 8, pp.21-28, 2007.
DOI : 10.1007/s00261-006-9001-7

M. Sezgin, Survey over image thresholding techniques and quantitative performance evaluation, Journal of Electronic imaging, vol.13, issue.1, pp.146-168, 2004.

J. Shawe-taylor and N. Cristianini, Kernel methods for pattern analysis, 2004.
DOI : 10.1017/CBO9780511809682

J. Shi and J. Malik, Normalized cuts and image segmentation. Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol.22, issue.8, pp.888-905, 2000.

S. Soatto and A. J. Yezzi, Deforming motion , shape average and the joint registration and segmentation of images. Computer Vision Eccv, Pt Iii, issue.3, pp.2352-2384, 2002.

O. Somphone, B. Mory, S. Makram-ebeid, and L. D. Cohen, Prior-based piecewisesmooth segmentation by template competitive deformation using partitions of unity, ECCV, p.45, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00438799

T. Song, V. Lee, H. Rusinek, S. Wong, and A. Laine, Integrated Four Dimensional Registration and Segmentation of Dynamic Renal MR Images, Proceedings of MICCAI 2006, pp.758-765, 2006.
DOI : 10.1007/11866763_93

S. P. Sourbron and D. L. Buckley, On the scope and interpretation of the Tofts models for DCE-MRI, Magnetic Resonance in Medicine, vol.181, issue.Suppl 1, pp.735-745, 2011.
DOI : 10.1002/mrm.22861

M. Spiegel, D. A. Hahn, V. Daum, J. Wasza, and J. Hornegger, Segmentation of kidneys using a new active shape model generation technique based on non-rigid image registration, Computerized Medical Imaging and Graphics, vol.33, issue.1, pp.29-39, 2009.
DOI : 10.1016/j.compmedimag.2008.10.002

C. A. Sugar and G. M. James, Finding the Number of Clusters in a Dataset, Journal of the American Statistical Association, vol.98, issue.463, pp.98-117, 2003.
DOI : 10.1198/016214503000000666

Y. Sun, M. Jolly, and J. Moura, Contrast-Invariant Registration of Cardiac and Renal MR Perfusion Images, Proceedings of MICCAI 2004, pp.903-910, 2004.
DOI : 10.1007/978-3-540-30135-6_110

G. Sundaramoorthi, A. Yezzi, and A. C. Mennucci, Sobolev Active Contours, International Journal of Computer Vision, vol.58, issue.2, pp.345-366, 2007.
DOI : 10.1007/s11263-006-0635-2

R. Sundberg, Maximum likelihood theory for incomplete data from an exponential family, Scandinavian Journal of Statistics, pp.49-58, 1974.

X. Tan, S. Chen, Z. Zhou, and F. Zhang, Face recognition from a single image per person: A survey, Pattern Recognition, vol.39, issue.9, pp.1725-1745, 2006.
DOI : 10.1016/j.patcog.2006.03.013

J. Thirion, Image matching as a diffusion process: an analogy with Maxwell's demons, Medical Image Analysis, vol.2, issue.3, pp.243-260, 1998.
DOI : 10.1016/S1361-8415(98)80022-4

P. S. Tofts, G. Brix, D. L. Buckley, and J. L. Evelhoch, Estimating kinetic parameters from dynamic contrast-enhanced t1-weighted MRI of a diffusable tracer: Standardized quantities and symbols, Journal of Magnetic Resonance Imaging, vol.10, issue.3, pp.223-232, 1999.
DOI : 10.1002/(SICI)1522-2586(199909)10:3<223::AID-JMRI2>3.0.CO;2-S

A. Toshev, A. Makadia, and K. Daniilidis, Shape-based object recognition in videos using 3D synthetic object models, 2009 IEEE Conference on Computer Vision and Pattern Recognition, pp.288-295, 2009.
DOI : 10.1109/CVPR.2009.5206803

G. Treece, A. Gee, R. Prager, C. Cash, and L. Berman, High-definition freehand 3-D ultrasound, Ultrasound in Medicine & Biology, vol.29, issue.4, pp.529-546, 2003.
DOI : 10.1016/S0301-5629(02)00735-4

B. Tsagaan, A. Shimizu, H. Kobatake, and K. Miyakawa, An Automated Segmentation Method of Kidney Using Statistical Information, MICCAI, pp.556-63, 2002.
DOI : 10.1007/3-540-45786-0_69

A. Tsai, Y. Jr, A. Wells, W. Tempany, C. Tucker et al., A shape-based approach to the segmentation of medical imagery using level sets, IEEE Transactions on Medical Imaging, vol.22, issue.2, pp.137-154, 2003.
DOI : 10.1109/TMI.2002.808355

Z. Tu and X. Bai, Auto-context and its application to high-level vision tasks and 3D brain image segmentation, IEEE TPAMI, vol.32, issue.3, pp.1744-57, 2010.

F. Ulupinar and R. Nevatia, Shape from contour: Straight homogeneous generalized cylinders and constant cross section generalized cylinders. Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol.17, issue.2, pp.120-135, 1995.

M. Vaillant, M. Miller, L. Younes, and A. Trouvé, Statistics on diffeomorphisms via tangent space representations, NeuroImage, vol.23, issue.1, pp.161-136, 2004.
DOI : 10.1016/j.neuroimage.2004.07.023

S. Van-aelst and P. Rousseeuw, Minimum volume ellipsoid, Wiley Interdisciplinary Reviews: Computational Statistics, vol.37, issue.1, pp.71-82, 2009.
DOI : 10.1002/wics.19

B. Van-ginneken, A. F. Frangi, J. J. Staal, B. M. Ter-haar-romeny, and M. A. Viergever, Active shape model segmentation with optimal features. medical Imaging, IEEE Transactions on, vol.21, issue.8, pp.924-933, 2002.

A. Vasilevskiy and K. Siddiqi, Flux maximizing geometric flows, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.24, issue.12, pp.1565-1578, 2002.
DOI : 10.1109/TPAMI.2002.1114849

T. Vercauteren, X. Pennec, A. Perchant, and N. Ayache, Diffeomorphic demons: Efficient non-parametric image registration, NeuroImage, vol.45, issue.1, p.70, 2008.
DOI : 10.1016/j.neuroimage.2008.10.040

URL : https://hal.archives-ouvertes.fr/inserm-00349600

F. Vialard, L. Risser, D. Rueckert, and C. J. Cotter, Diffeomorphic 3D Image Registration via Geodesic Shooting Using an Efficient Adjoint Calculation, International Journal of Computer Vision, vol.45, issue.1, pp.229-241, 2012.
DOI : 10.1007/s11263-011-0481-8

URL : https://hal.archives-ouvertes.fr/hal-00663389

S. Vicente, V. Kolmogorov, and C. Rother, Cosegmentation Revisited: Models and Optimization, Proceedings of ECCV, pp.465-79, 2010.
DOI : 10.1007/978-3-642-15552-9_34

URL : http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.330.6803

F. Wang and B. Vemuri, Simultaneous Registration and Segmentation of Anatomical Structures from Brain MRI, Proceedings of MICCAI, pp.17-25, 2005.
DOI : 10.1007/11566465_3

S. K. Warfield, K. H. Zou, and W. M. Wells, Simultaneous Truth and Performance Level Estimation (STAPLE): An Algorithm for the Validation of Image Segmentation, IEEE Transactions on Medical Imaging, vol.23, issue.7, pp.903-921, 2004.
DOI : 10.1109/TMI.2004.828354

W. Wein, S. Brunke, A. Khamene, M. R. Callstrom, and N. Navab, Automatic CTultrasound registration for diagnostic imaging and image-guided intervention, Medical image analysis, vol.12, issue.577, p.162, 2008.

F. Wilcoxon, Individual Comparisons by Ranking Methods, Biometrics Bulletin, vol.1, issue.6, pp.80-83, 1945.
DOI : 10.2307/3001968

R. Wolz, C. Chu, K. Misawa, K. Mori, and D. Rueckert, Multi-organ Abdominal CT Segmentation Using Hierarchically Weighted Subject-Specific Atlases, Medical Image Computing and Computer-Assisted Intervention?MICCAI 2012, pp.10-17, 2012.
DOI : 10.1007/978-3-642-33415-3_2

C. Wong, S. Lin, T. Ren, and N. Kwok, A survey on ellipse detection methods, 2012 IEEE International Symposium on Industrial Electronics, pp.1105-1110, 2012.
DOI : 10.1109/ISIE.2012.6237243

C. Wu and Y. Sun, Segmentation of kidney from ultrasound B-mode images with texture-based classification, Computer Methods and Programs in Biomedicine, vol.84, issue.2-3, pp.114-137, 2006.
DOI : 10.1016/j.cmpb.2006.09.009

P. Wyatt and J. Noble, MAP MRF Joint Segmentation and Registration, Proceedings of MICCAI, pp.580-587, 2002.
DOI : 10.1007/3-540-45786-0_72

J. Xie, Y. Jiang, and H. Tsui, Segmentation of kidney from ultrasound images based on texture and shape priors, IEEE TMI, vol.24, issue.1, pp.45-57, 2005.

J. Yang and J. S. Duncan, 3D image segmentation of deformable objects with joint shape-intensity prior models using level sets, Medical Image Analysis, vol.8, issue.3, pp.285-294, 2004.
DOI : 10.1016/j.media.2004.06.008

A. Yezzi, L. Zöllei, and T. Kapur, A variational framework for integrating segmentation and registration through active contours, Medical Image Analysis, vol.7, issue.2, pp.171-85, 2003.
DOI : 10.1016/S1361-8415(03)00004-5

A. J. Yezzi and S. Soatto, Deformotion: Deforming motion, shape average and the joint registration and approximation of structures in images, International Journal of Computer Vision, vol.53, issue.2, pp.153-167, 2003.
DOI : 10.1023/A:1023048024042

L. Younes, Shapes and diffeomorphisms, p.66, 2010.
DOI : 10.1007/978-3-642-12055-8

J. Yu, J. Tan, and Y. Wang, Ultrasound speckle reduction by a SUSAN-controlled anisotropic diffusion method, Pattern Recognition, vol.43, issue.9, pp.3083-3092, 2010.
DOI : 10.1016/j.patcog.2010.04.006

A. L. Yuille, P. W. Hallinan, and D. S. Cohen, Feature extraction from faces using deformable templates, International Journal of Computer Vision, vol.26, issue.6, pp.99-111, 1992.
DOI : 10.1007/BF00127169

V. Zagrodsky, V. Walimbe, C. Castro-pareja, J. X. Qin, J. Song et al., Registration-assisted segmentation of real-time 3D echocardiographic data using deformable models, Medical Imaging IEEE Transactions, issue.9, pp.24-1089, 2005.

Y. Zheng, A. Barbu, B. Georgescu, M. Scheuering, and D. Comaniciu, Four-Chamber Heart Modeling and Automatic Segmentation for 3-D Cardiac CT Volumes Using Marginal Space Learning and Steerable Features, IEEE Transactions on Medical Imaging, vol.27, issue.11, pp.27-1668, 2008.
DOI : 10.1109/TMI.2008.2004421

S. Zhou, B. Georgescu, X. Zhou, and D. Comaniciu, Image based regression using boosting method, ICCV, pp.541-589, 2005.

S. C. Zhu and A. Yuille, Region competition: Unifying snakes, region growing, and Bayes/MDL for multiband image segmentation. Pattern Analysis and Machine Intelligence, IEEE Transactions on, vol.18, issue.9, pp.884-900, 1996.

D. Zikic, B. Glocker, E. Konukoglu, A. Criminisi, C. Demiralp et al., Decision Forests for Tissue-Specific Segmentation of High-Grade Gliomas in Multi-channel MR, MICCAI, pp.369-76, 2012.
DOI : 10.1007/978-3-642-33454-2_46

F. Zöllner, R. Sance, P. Rogelj, M. Ledesma-carbayo, J. Rørvik et al., Assessment of 3D DCE-MRI of the kidneys using non-rigid image registration and segmentation of voxel time courses, Computerized Medical Imaging and Graphics, vol.33, issue.3, pp.171-181, 2009.
DOI : 10.1016/j.compmedimag.2008.11.004

H. Zou and T. Hastie, Regularization and variable selection via the elastic net, Journal of the Royal Statistical Society: Series B (Statistical Methodology), vol.5, issue.2, pp.301-320, 2005.
DOI : 10.1073/pnas.201162998